code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from __future__ import annotations from collections import Counter from random import random class lowerCAmelCase : '''simple docstring''' def __init__( self :List[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = {} def lowerCamelCase__ ( self :int , lowerCamelCase_ :str ) -> None: """simple docstring""" UpperCamelCase__ = {} def lowerCamelCase__ ( self :Any , lowerCamelCase_ :str , lowerCamelCase_ :str , lowerCamelCase_ :float ) -> None: """simple docstring""" if nodea not in self.connections: self.add_node(lowerCamelCase_ ) if nodea not in self.connections: self.add_node(lowerCamelCase_ ) UpperCamelCase__ = probability def lowerCamelCase__ ( self :Optional[Any] ) -> list[str]: """simple docstring""" return list(self.connections ) def lowerCamelCase__ ( self :Union[str, Any] , lowerCamelCase_ :str ) -> str: """simple docstring""" UpperCamelCase__ = 0 UpperCamelCase__ = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def snake_case__ ( _snake_case : str , _snake_case : list[tuple[str, str, float]] , _snake_case : int ): """simple docstring""" UpperCamelCase__ = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(_snake_case , _snake_case , _snake_case ) UpperCamelCase__ = Counter(graph.get_nodes() ) UpperCamelCase__ = start for _ in range(_snake_case ): UpperCamelCase__ = graph.transition(_snake_case ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
516
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : List[Any] = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
516
1
"""simple docstring""" import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__ ( A_ ): __a = ['''image_processor''', '''tokenizer'''] __a = '''FlavaImageProcessor''' __a = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Union[str, Any] , _lowerCamelCase : str=None , _lowerCamelCase : Dict=None , **_lowerCamelCase : Optional[int] ): _snake_case = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _lowerCamelCase , ) _snake_case = kwargs.pop('''feature_extractor''' ) _snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_lowerCamelCase , _lowerCamelCase ) _snake_case = self.image_processor def __call__( self : List[str] , _lowerCamelCase : Optional[Any] = None , _lowerCamelCase : Any = None , _lowerCamelCase : Tuple = True , _lowerCamelCase : List[str] = False , _lowerCamelCase : int = False , _lowerCamelCase : List[Any] = None , _lowerCamelCase : str = 0 , _lowerCamelCase : int = None , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : Tuple = None , _lowerCamelCase : Tuple = None , _lowerCamelCase : Dict = None , _lowerCamelCase : Optional[int] = False , _lowerCamelCase : List[Any] = False , _lowerCamelCase : str = False , _lowerCamelCase : List[Any] = False , _lowerCamelCase : str = True , _lowerCamelCase : Any = None , **_lowerCamelCase : Dict , ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: _snake_case = self.tokenizer( text=_lowerCamelCase , add_special_tokens=_lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , stride=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_token_type_ids=_lowerCamelCase , return_attention_mask=_lowerCamelCase , return_overflowing_tokens=_lowerCamelCase , return_special_tokens_mask=_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , return_length=_lowerCamelCase , verbose=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase , ) if images is not None: _snake_case = self.image_processor( _lowerCamelCase , return_image_mask=_lowerCamelCase , return_codebook_pixels=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase , ) if text is not None and images is not None: encoding.update(_lowerCamelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCamelCase ) , tensor_type=_lowerCamelCase ) def lowercase ( self : str , *_lowerCamelCase : Union[str, Any] , **_lowerCamelCase : Optional[int] ): return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def lowercase ( self : Dict , *_lowerCamelCase : Tuple , **_lowerCamelCase : Tuple ): return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @property def lowercase ( self : Optional[int] ): _snake_case = self.tokenizer.model_input_names _snake_case = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowercase ( self : List[str] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _lowerCamelCase , ) return self.image_processor_class @property def lowercase ( self : Any ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _lowerCamelCase , ) return self.image_processor
708
"""simple docstring""" import operator def _UpperCAmelCase ( __lowerCamelCase : list , __lowerCamelCase : bool = False , __lowerCamelCase : list | None = None ) -> list: _snake_case = operator.lt if reverse else operator.gt _snake_case = solution or [] if not arr: return solution _snake_case = [arr.pop(0 )] for i, item in enumerate(__lowerCamelCase ): if _operator(__lowerCamelCase , sublist[-1] ): sublist.append(__lowerCamelCase ) arr.pop(__lowerCamelCase ) # merging sublist into solution list if not solution: solution.extend(__lowerCamelCase ) else: while sublist: _snake_case = sublist.pop(0 ) for i, xx in enumerate(__lowerCamelCase ): if not _operator(__lowerCamelCase , __lowerCamelCase ): solution.insert(__lowerCamelCase , __lowerCamelCase ) break else: solution.append(__lowerCamelCase ) strand_sort(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
430
0
"""simple docstring""" import re import string import numpy as np import datasets UpperCAmelCase__ = ''' Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. ''' UpperCAmelCase__ = ''' Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 25.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 50.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 75.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results["exact_match"], 1)) 100.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."] >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 33.3 ''' UpperCAmelCase__ = ''' ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def lowerCAmelCase_ ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict=None , __lowerCAmelCase : int=False , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : Any=False , ): if regexes_to_ignore is not None: for s in regexes_to_ignore: _UpperCAmelCase = np.array([re.sub(__a , """""" , __a ) for x in predictions] ) _UpperCAmelCase = np.array([re.sub(__a , """""" , __a ) for x in references] ) else: _UpperCAmelCase = np.asarray(__a ) _UpperCAmelCase = np.asarray(__a ) if ignore_case: _UpperCAmelCase = np.char.lower(__a ) _UpperCAmelCase = np.char.lower(__a ) if ignore_punctuation: _UpperCAmelCase = string.punctuation.maketrans("""""" , """""" , string.punctuation ) _UpperCAmelCase = np.char.translate(__a , table=__a ) _UpperCAmelCase = np.char.translate(__a , table=__a ) if ignore_numbers: _UpperCAmelCase = string.digits.maketrans("""""" , """""" , string.digits ) _UpperCAmelCase = np.char.translate(__a , table=__a ) _UpperCAmelCase = np.char.translate(__a , table=__a ) _UpperCAmelCase = predictions == references return {"exact_match": np.mean(__a ) * 100}
277
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case_ : """simple docstring""" def __init__( self , __a , __a=13 , __a=10 , __a=3 , __a=2 , __a=2 , __a=True , __a=True , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10 , __a=0.02 , __a="divided_space_time" , __a=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = patch_size A__ = num_frames A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = attention_type A__ = initializer_range A__ = scope A__ = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token A__ = (image_size // patch_size) ** 2 A__ = (num_frames) * self.num_patches_per_frame + 1 def _UpperCAmelCase ( self ): """simple docstring""" A__ = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.num_labels ) A__ = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ): """simple docstring""" A__ = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) A__ = self.num_labels return config def _UpperCAmelCase ( self , __a , __a , __a ): """simple docstring""" A__ = TimesformerModel(config=__a ) model.to(__a ) model.eval() A__ = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , __a , __a , __a ): """simple docstring""" A__ = TimesformerForVideoClassification(__a ) model.to(__a ) model.eval() A__ = model(__a ) # verify the logits shape A__ = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __a ) def _UpperCAmelCase ( self ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class snake_case_ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_: Tuple = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE_: str = ( {"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_: List[Any] = False SCREAMING_SNAKE_CASE_: Dict = False SCREAMING_SNAKE_CASE_: Optional[int] = False SCREAMING_SNAKE_CASE_: Any = False def _UpperCAmelCase ( self ): """simple docstring""" A__ = TimesformerModelTester(self ) A__ = ConfigTester( self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def _UpperCAmelCase ( self , __a , __a , __a=False ): """simple docstring""" A__ = copy.deepcopy(__a ) if return_labels: if model_class in get_values(__a ): A__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) return inputs_dict def _UpperCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='TimeSformer does not use inputs_embeds' ) def _UpperCAmelCase ( self ): """simple docstring""" pass def _UpperCAmelCase ( self ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def _UpperCAmelCase ( self ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(__a ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , __a ) def _UpperCAmelCase ( self ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def _UpperCAmelCase ( self ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__a ) @slow def _UpperCAmelCase ( self ): """simple docstring""" for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TimesformerModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def _UpperCAmelCase ( self ): """simple docstring""" if not self.has_attentions: pass else: A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True for model_class in self.all_model_classes: A__ = self.model_tester.seq_length A__ = self.model_tester.num_frames A__ = True A__ = False A__ = True A__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(__a , __a ) ) A__ = outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(__a , __a ) ) A__ = outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) A__ = len(__a ) # Check attention is always last and order is fine A__ = True A__ = True A__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + 1 , len(__a ) ) A__ = outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def _UpperCAmelCase ( self ): """simple docstring""" def check_hidden_states_output(__a , __a , __a ): A__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(__a , __a ) ) A__ = outputs.hidden_states A__ = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__a ) , __a ) A__ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(__a , __a , __a ) def __lowerCamelCase ( ): A__ = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' ,filename='eating_spaghetti.npy' ,repo_type='dataset' ) A__ = np.load(lowerCAmelCase__ ) return list(lowerCAmelCase__ ) @require_torch @require_vision class snake_case_ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCAmelCase ( self ): """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _UpperCAmelCase ( self ): """simple docstring""" A__ = TimesformerForVideoClassification.from_pretrained('facebook/timesformer-base-finetuned-k400' ).to( __a ) A__ = self.default_image_processor A__ = prepare_video() A__ = image_processor(video[:8] , return_tensors='pt' ).to(__a ) # forward pass with torch.no_grad(): A__ = model(**__a ) # verify the logits A__ = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , __a ) A__ = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
260
0
'''simple docstring''' from collections.abc import Generator def lowercase ( ): """simple docstring""" _A , _A : int = 0, 1 while True: _A , _A : Optional[Any] = b, a + b yield b def lowercase ( lowerCAmelCase : int = 1000): """simple docstring""" _A : Union[str, Any] = 1 _A : Dict = fibonacci_generator() while len(str(next(lowercase__))) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
719
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase__ ( snake_case_ ): """simple docstring""" __magic_name__ = 42 __magic_name__ = 42 def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[int]: super().__init__() self.register_modules(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) @torch.no_grad() def __call__( self , UpperCAmelCase__ = 1 , UpperCAmelCase__ = 5_0 , UpperCAmelCase__ = None , UpperCAmelCase__ = "pil" , UpperCAmelCase__ = True , **UpperCAmelCase__ , ) -> Union[Tuple, ImagePipelineOutput]: _A : List[Any] = self.unet.config.sample_size _A : List[Any] = (batch_size, 3, img_size, img_size) _A : Optional[int] = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) _A : str = randn_tensor(UpperCAmelCase__ , generator=UpperCAmelCase__ , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(UpperCAmelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper _A : Dict = self.scheduler.schedule[t] _A : Optional[Any] = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat _A , _A : Tuple = self.scheduler.add_noise_to_input(UpperCAmelCase__ , UpperCAmelCase__ , generator=UpperCAmelCase__ ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. _A : str = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev _A : Tuple = self.scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. _A : Tuple = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample _A : List[str] = self.scheduler.step_correct( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , step_output.prev_sample , step_output['''derivative'''] , ) _A : Optional[int] = step_output.prev_sample _A : List[str] = (sample / 2 + 0.5).clamp(0 , 1 ) _A : int = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _A : int = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase__ )
417
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: A__ : Tuple = None A__ : List[Any] = logging.get_logger(__name__) A__ : str = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} A__ : Union[str, Any] = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } A__ : List[str] = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } A__ : str = '''▁''' class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Any = VOCAB_FILES_NAMES lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : int = ['input_ids', 'attention_mask'] lowerCamelCase : Union[str, Any] = BarthezTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , **SCREAMING_SNAKE_CASE_ , ) -> Dict: # Mask token behave like a normal word, i.e. include the space before it __lowerCamelCase : str = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : List[Any] = vocab_file __lowerCamelCase : str = False if not self.vocab_file else True def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Dict: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCamelCase : List[Any] = [self.cls_token_id] __lowerCamelCase : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Optional[int]: __lowerCamelCase : Tuple = [self.sep_token_id] __lowerCamelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[Any]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCamelCase : int = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
13
"""simple docstring""" __A : Optional[int] = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' __A : str = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] __A : str = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
499
0
'''simple docstring''' from math import factorial, pi def __UpperCAmelCase ( a_: float, a_: int = 30 ): if not isinstance(a_, (int, float) ): raise ValueError("maclaurin_sin() requires either an int or float for theta" ) if not isinstance(a_, a_ ) or accuracy <= 0: raise ValueError("maclaurin_sin() requires a positive int for accuracy" ) _UpperCAmelCase : Dict = float(a_ ) _UpperCAmelCase : Union[str, Any] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(a_ ) ) def __UpperCAmelCase ( a_: float, a_: int = 30 ): if not isinstance(a_, (int, float) ): raise ValueError("maclaurin_cos() requires either an int or float for theta" ) if not isinstance(a_, a_ ) or accuracy <= 0: raise ValueError("maclaurin_cos() requires a positive int for accuracy" ) _UpperCAmelCase : Any = float(a_ ) _UpperCAmelCase : List[Any] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(a_ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
257
'''simple docstring''' import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = '▁' __a = {'vocab_file': 'prophetnet.tokenizer'} __a = { 'vocab_file': { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer' ), } } __a = { 'microsoft/xprophetnet-large-wiki100-cased': {'do_lower_case': False}, } __a = { 'microsoft/xprophetnet-large-wiki100-cased': 512, } def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : List[str] = collections.OrderedDict() with open(a_, "r", encoding="utf-8" ) as reader: _UpperCAmelCase : List[str] = reader.readlines() for index, token in enumerate(a_ ): _UpperCAmelCase : int = token.rstrip("\n" ) _UpperCAmelCase : Optional[int] = index return vocab class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Tuple = VOCAB_FILES_NAMES UpperCamelCase_ : int = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Dict = ['''input_ids''', '''attention_mask'''] def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str="[SEP]" , lowerCAmelCase__ : str="[SEP]" , lowerCAmelCase__ : Optional[int]="[SEP]" , lowerCAmelCase__ : int="[UNK]" , lowerCAmelCase__ : List[Any]="[PAD]" , lowerCAmelCase__ : str="[CLS]" , lowerCAmelCase__ : int="[MASK]" , lowerCAmelCase__ : Optional[Dict[str, Any]] = None , **lowerCAmelCase__ : Union[str, Any] , ) -> None: """simple docstring""" _UpperCAmelCase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise _UpperCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) _UpperCAmelCase : Any = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab _UpperCAmelCase : Optional[int] = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(1_0 ): _UpperCAmelCase : int = F"""[unused{i}]""" _UpperCAmelCase : Optional[int] = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab _UpperCAmelCase : str = 1_2 _UpperCAmelCase : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(lowerCAmelCase__ ) def __getstate__( self : List[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.__dict__.copy() _UpperCAmelCase : Dict = None return state def __setstate__( self : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase : int = {} _UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return ([0] * len(lowerCAmelCase__ )) + [1] return ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1] def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" _UpperCAmelCase : int = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset def _lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" _UpperCAmelCase : Any = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : str ) -> str: """simple docstring""" return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Dict ) -> Tuple: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCAmelCase : Optional[int] = self.sp_model.PieceToId(lowerCAmelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : Dict ) -> Optional[int]: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] ) -> str: """simple docstring""" _UpperCAmelCase : List[Any] = "".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , " " ).strip() return out_string def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase : Optional[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , "wb" ) as fi: _UpperCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,) def _lowerCAmelCase ( self : str , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.sep_token_id] _UpperCAmelCase : List[Any] = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
257
1
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=_SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ): snake_case = field(default="automatic-speech-recognition" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case = Features({"audio": Audio()} ) snake_case = Features({"transcription": Value("string" )} ) snake_case = "audio" snake_case = "transcription" def __UpperCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any ): if self.audio_column not in features: raise ValueError(f"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , SCREAMING_SNAKE_CASE_ ): raise ValueError(f"""Column {self.audio_column} is not an Audio type.""" ) lowerCamelCase__ = copy.deepcopy(self ) lowerCamelCase__ = self.input_schema.copy() lowerCamelCase__ = features[self.audio_column] lowerCamelCase__ = input_schema return task_template @property def __UpperCAmelCase ( self : Optional[Any] ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
129
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: __magic_name__ = None __magic_name__ = logging.get_logger(__name__) __magic_name__ = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} __magic_name__ = { """vocab_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/tokenizer.json""", }, } __magic_name__ = { """camembert-base""": 5_12, } __magic_name__ = """▁""" class SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ): snake_case = VOCAB_FILES_NAMES snake_case = PRETRAINED_VOCAB_FILES_MAP snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case = ["input_ids", "attention_mask"] snake_case = CamembertTokenizer def __init__( self : str , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , SCREAMING_SNAKE_CASE_ : Any="<s>" , SCREAMING_SNAKE_CASE_ : Tuple="</s>" , SCREAMING_SNAKE_CASE_ : Tuple="</s>" , SCREAMING_SNAKE_CASE_ : str="<s>" , SCREAMING_SNAKE_CASE_ : Optional[int]="<unk>" , SCREAMING_SNAKE_CASE_ : str="<pad>" , SCREAMING_SNAKE_CASE_ : List[str]="<mask>" , SCREAMING_SNAKE_CASE_ : Tuple=["<s>NOTUSED", "</s>NOTUSED"] , **SCREAMING_SNAKE_CASE_ : Optional[Any] , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowerCamelCase__ = vocab_file lowerCamelCase__ = False if not self.vocab_file else True def __UpperCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] lowerCamelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ): lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase__ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
129
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE : str ='''▁''' __SCREAMING_SNAKE_CASE : Union[str, Any] ={'''vocab_file''': '''spiece.model'''} __SCREAMING_SNAKE_CASE : str ={ '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } __SCREAMING_SNAKE_CASE : Optional[int] ={ '''google/pegasus-xsum''': 512, } __SCREAMING_SNAKE_CASE : Tuple =logging.get_logger(__name__) class A_ ( __a ): _A :List[str] = VOCAB_FILES_NAMES _A :Tuple = VOCAB_FILES_NAMES _A :Any = PRETRAINED_VOCAB_FILES_MAP _A :List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A :Dict = ['''input_ids''', '''attention_mask'''] def __init__( self : str , snake_case__ : int , snake_case__ : str="<pad>" , snake_case__ : str="</s>" , snake_case__ : Dict="<unk>" , snake_case__ : int="<mask_2>" , snake_case__ : Union[str, Any]="<mask_1>" , snake_case__ : str=None , snake_case__ : List[str]=1_03 , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : List[str] , ): lowercase = offset if additional_special_tokens is not None: if not isinstance(snake_case__ , snake_case__ ): raise TypeError( F"""additional_special_tokens should be of type {type(snake_case__ )}, but is""" F""" {type(snake_case__ )}""" ) lowercase = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(snake_case__ ) , self.offset - 1 ) ] if len(set(snake_case__ ) ) != len(snake_case__ ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) lowercase = additional_special_tokens_extended else: lowercase = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=snake_case__ , unk_token=snake_case__ , mask_token=snake_case__ , pad_token=snake_case__ , mask_token_sent=snake_case__ , offset=snake_case__ , additional_special_tokens=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) lowercase = mask_token_sent lowercase = vocab_file lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case__ ) # add special tokens to encoder dict lowercase = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) lowercase = {v: k for k, v in self.encoder.items()} @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): return len(self.sp_model ) + self.offset def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowercase = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ): lowercase = self.__dict__.copy() lowercase = None return state def __setstate__( self : List[Any] , snake_case__ : Dict ): lowercase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case__ : str ): return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case__ : str ): if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] lowercase = self.sp_model.piece_to_id(snake_case__ ) return sp_id + self.offset def SCREAMING_SNAKE_CASE__ ( self : Dict , snake_case__ : int ): if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: lowercase = self.sp_model.IdToPiece(index - self.offset ) return token def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case__ : Optional[int] ): lowercase = [] lowercase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case__ ) + token lowercase = [] else: current_sub_tokens.append(snake_case__ ) out_string += self.sp_model.decode(snake_case__ ) return out_string.strip() def SCREAMING_SNAKE_CASE__ ( self : int , snake_case__ : str=False ): return 1 def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case__ : Optional[int] ): lowercase = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def SCREAMING_SNAKE_CASE__ ( self : str , snake_case__ : List , snake_case__ : Optional[List] = None , snake_case__ : bool = False ): if already_has_special_tokens: return self._special_token_mask(snake_case__ ) elif token_ids_a is None: return self._special_token_mask(snake_case__ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case__ : int , snake_case__ : str=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case__ : str , snake_case__ : Optional[str] = None ): if not os.path.isdir(snake_case__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase = os.path.join( snake_case__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , """wb""" ) as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,)
72
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Any =logging.get_logger('''transformers.models.speecht5''') __SCREAMING_SNAKE_CASE : Optional[Any] ={ '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } __SCREAMING_SNAKE_CASE : Union[str, Any] ={ '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } __SCREAMING_SNAKE_CASE : Optional[int] ={ '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } __SCREAMING_SNAKE_CASE : List[Any] ={ '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } __SCREAMING_SNAKE_CASE : List[Any] ={ '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } __SCREAMING_SNAKE_CASE : Optional[Any] ={ '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } __SCREAMING_SNAKE_CASE : Optional[int] ={ '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } __SCREAMING_SNAKE_CASE : List[Any] ={ '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } __SCREAMING_SNAKE_CASE : List[Any] ={ **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __SCREAMING_SNAKE_CASE : List[str] ={ **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __SCREAMING_SNAKE_CASE : Optional[int] ={ **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __SCREAMING_SNAKE_CASE : Dict =[] __SCREAMING_SNAKE_CASE : List[str] =[ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] __SCREAMING_SNAKE_CASE : List[str] =IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] __SCREAMING_SNAKE_CASE : Any =IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] __SCREAMING_SNAKE_CASE : Any =IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): for attribute in key.split(""".""" ): lowercase = getattr(lowerCAmelCase__ ,lowerCAmelCase__ ) if weight_type is not None: lowercase = getattr(lowerCAmelCase__ ,lowerCAmelCase__ ).shape else: lowercase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase = value elif weight_type == "weight_g": lowercase = value elif weight_type == "weight_v": lowercase = value elif weight_type == "bias": lowercase = value elif weight_type == "running_mean": lowercase = value elif weight_type == "running_var": lowercase = value elif weight_type == "num_batches_tracked": lowercase = value else: lowercase = value logger.info(f"""{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.""" ) def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ): for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowercase , lowercase = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowercase = [] if task == "s2t": lowercase = hf_model.speechta.encoder.prenet.feature_encoder lowercase = MAPPING_S2T lowercase = IGNORE_KEYS_S2T elif task == "t2s": lowercase = None lowercase = MAPPING_T2S lowercase = IGNORE_KEYS_T2S elif task == "s2s": lowercase = hf_model.speechta.encoder.prenet.feature_encoder lowercase = MAPPING_S2S lowercase = IGNORE_KEYS_S2S else: raise ValueError(f"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(lowerCAmelCase__ ,lowerCAmelCase__ ): logger.info(f"""{name} was ignored""" ) continue lowercase = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,hf_model.config.feat_extract_norm == """group""" ,) lowercase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: lowercase , lowercase = key.split(""".*.""" ) if prefix in name and suffix in name: lowercase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: lowercase = True if "*" in mapped_key: lowercase = name.split(lowerCAmelCase__ )[0].split(""".""" )[-2] lowercase = mapped_key.replace("""*""" ,lowerCAmelCase__ ) if "weight_g" in name: lowercase = """weight_g""" elif "weight_v" in name: lowercase = """weight_v""" elif "bias" in name: lowercase = """bias""" elif "weight" in name: lowercase = """weight""" elif "running_mean" in name: lowercase = """running_mean""" elif "running_var" in name: lowercase = """running_var""" elif "num_batches_tracked" in name: lowercase = """num_batches_tracked""" else: lowercase = None set_recursively(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowercase = full_name.split("""conv_layers.""" )[-1] lowercase = name.split(""".""" ) lowercase = int(items[0] ) lowercase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) lowercase = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=None ,lowerCAmelCase__=None ,): if config_path is not None: lowercase = SpeechTaConfig.from_pretrained(lowerCAmelCase__ ) else: lowercase = SpeechTaConfig() if task == "s2t": lowercase = config.max_text_positions lowercase = SpeechTaForSpeechToText(lowerCAmelCase__ ) elif task == "t2s": lowercase = 1_876 lowercase = 600 lowercase = config.max_speech_positions lowercase = SpeechTaForTextToSpeech(lowerCAmelCase__ ) elif task == "s2s": lowercase = 1_876 lowercase = config.max_speech_positions lowercase = SpeechTaForSpeechToSpeech(lowerCAmelCase__ ) else: raise ValueError(f"""Unknown task name: {task}""" ) if vocab_path: lowercase = SpeechTaTokenizer(lowerCAmelCase__ ,model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it lowercase = AddedToken("""<mask>""" ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) lowercase = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) lowercase = SpeechTaFeatureExtractor() lowercase = SpeechTaProcessor(tokenizer=lowerCAmelCase__ ,feature_extractor=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) lowercase = torch.load(lowerCAmelCase__ ) recursively_load_weights(fairseq_checkpoint["""model"""] ,lowerCAmelCase__ ,lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) if repo_id: print("""Pushing to the hub...""" ) processor.push_to_hub(lowerCAmelCase__ ) model.push_to_hub(lowerCAmelCase__ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[Any] =argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) __SCREAMING_SNAKE_CASE : Optional[Any] =parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
72
1
import argparse import json import subprocess def __A(lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = ( F'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) _UpperCamelCase = subprocess.run(lowerCAmelCase , shell=lowerCAmelCase , stdout=subprocess.PIPE ) _UpperCamelCase = output.stdout.decode("""utf-8""" ) _UpperCamelCase = json.loads(lowerCAmelCase ) _UpperCamelCase = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(lowerCAmelCase ) # save the result so we can report them on Slack with open("""offline_runners.txt""" , """w""" ) as fp: fp.write(json.dumps(lowerCAmelCase ) ) if len(lowerCAmelCase ) > 0: _UpperCamelCase = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def __A(lowerCAmelCase ) -> Tuple: """simple docstring""" return values.split(""",""" ) lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--target_runners", default=None, type=list_str, required=True, help="Comma-separated list of runners to check status.", ) parser.add_argument( "--token", default=None, type=str, required=True, help="A token that has actions:read permission." ) lowerCamelCase__ = parser.parse_args() get_runner_status(args.target_runners, args.token)
612
from __future__ import annotations lowerCamelCase__ = "#" class lowerCAmelCase__ : def __init__( self ) -> None: '''simple docstring''' _UpperCamelCase = {} def A_ ( self , a ) -> None: '''simple docstring''' _UpperCamelCase = self._trie for char in text: if char not in trie: _UpperCamelCase = {} _UpperCamelCase = trie[char] _UpperCamelCase = True def A_ ( self , a ) -> tuple | list: '''simple docstring''' _UpperCamelCase = self._trie for char in prefix: if char in trie: _UpperCamelCase = trie[char] else: return [] return self._elements(a ) def A_ ( self , a ) -> tuple: '''simple docstring''' _UpperCamelCase = [] for c, v in d.items(): _UpperCamelCase = [""" """] if c == END else [(c + s) for s in self._elements(a )] result.extend(a ) return tuple(a ) lowerCamelCase__ = Trie() lowerCamelCase__ = ("depart", "detergent", "daring", "dog", "deer", "deal") for word in words: trie.insert_word(word) def __A(lowerCAmelCase ) -> tuple: """simple docstring""" _UpperCamelCase = trie.find_word(lowerCAmelCase ) return tuple(string + word for word in suffixes ) def __A() -> None: """simple docstring""" print(autocomplete_using_trie("""de""" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
612
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCamelCase : Optional[Any] = logging.get_logger(__name__) _UpperCamelCase : Optional[Any] = """▁""" _UpperCamelCase : Optional[int] = {"""vocab_file""": """sentencepiece.bpe.model"""} _UpperCamelCase : Dict = { """vocab_file""": { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model""", } } _UpperCamelCase : Optional[int] = { """facebook/xglm-564M""": 2_0_4_8, } class _lowerCAmelCase( _a): """simple docstring""" lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ['''input_ids''', '''attention_mask'''] def __init__( self , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase = None , **UpperCAmelCase , )-> None: __A = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer __A = 7 __A = [f"<madeupword{i}>" for i in range(self.num_madeup_words )] __A = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase ) ) __A = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __A = 1 # Mimic fairseq token-to-id alignment for the first 4 token __A = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} __A = len(self.sp_model ) __A = {f"<madeupword{i}>": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(UpperCAmelCase ) __A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self )-> Union[str, Any]: __A = self.__dict__.copy() __A = None __A = self.sp_model.serialized_model_proto() return state def __setstate__( self , UpperCAmelCase )-> Optional[int]: __A = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __A = {} __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase , UpperCAmelCase = None )-> List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a __A = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False )-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase , UpperCAmelCase = None )-> List[int]: __A = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def SCREAMING_SNAKE_CASE__ ( self )-> Any: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def SCREAMING_SNAKE_CASE__ ( self )-> Union[str, Any]: __A = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase )-> List[str]: return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase )-> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __A = self.sp_model.PieceToId(UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase )-> Tuple: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase )-> Union[str, Any]: __A = ''''''.join(UpperCAmelCase ).replace(UpperCAmelCase , ''' ''' ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase , UpperCAmelCase = None )-> Tuple[str]: if not os.path.isdir(UpperCAmelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __A = os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , '''wb''' ) as fi: __A = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (out_vocab_file,)
341
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _UpperCamelCase : Dict = logging.get_logger(__name__) _UpperCamelCase : List[str] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } _UpperCamelCase : Dict = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def __UpperCamelCase ( snake_case , snake_case , snake_case , snake_case , snake_case ) -> Optional[Any]: '''simple docstring''' for attribute in key.split('''.''' ): __A = getattr(snake_case , snake_case ) if weight_type is not None: __A = getattr(snake_case , snake_case ).shape else: __A = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __A = value elif weight_type == "weight_g": __A = value elif weight_type == "weight_v": __A = value elif weight_type == "bias": __A = value else: __A = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __UpperCamelCase ( snake_case , snake_case ) -> Union[str, Any]: '''simple docstring''' __A = [] __A = fairseq_model.state_dict() __A = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight __A = None for name, value in fairseq_dict.items(): __A = False if "conv_layers" in name: load_conv_layer( snake_case , snake_case , snake_case , snake_case , hf_model.config.feat_extract_norm == '''group''' , ) __A = True elif name.split('''.''' )[0] == "proj": __A = fairseq_model.proj __A = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __A = True if "*" in mapped_key: __A = name.split(snake_case )[0].split('''.''' )[-2] __A = mapped_key.replace('''*''' , snake_case ) if "weight_g" in name: __A = '''weight_g''' elif "weight_v" in name: __A = '''weight_v''' elif "bias" in name: __A = '''bias''' elif "weight" in name: __A = '''weight''' else: __A = None set_recursively(snake_case , snake_case , snake_case , snake_case , snake_case ) continue if not is_used: unused_weights.append(snake_case ) logger.warning(F"Unused weights: {unused_weights}" ) return proj_weight def __UpperCamelCase ( snake_case , snake_case , snake_case , snake_case , snake_case ) -> Any: '''simple docstring''' __A = full_name.split('''conv_layers.''' )[-1] __A = name.split('''.''' ) __A = int(items[0] ) __A = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __A = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __A = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) __A = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) __A = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(snake_case ) def __UpperCamelCase ( snake_case ) -> Union[str, Any]: '''simple docstring''' __A , __A = emb.weight.shape __A = nn.Linear(snake_case , snake_case , bias=snake_case ) __A = emb.weight.data return lin_layer def __UpperCamelCase ( snake_case ) -> List[str]: '''simple docstring''' with open(snake_case , '''r''' , encoding='''utf-8''' ) as f: __A = f.readlines() __A = [line.split(''' ''' )[0] for line in lines] __A = len(snake_case ) __A = { '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(snake_case , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __UpperCamelCase ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ) -> Dict: '''simple docstring''' __A = WavaVecaConfig.from_pretrained(snake_case ) __A = SpeechaTextaConfig.from_pretrained( snake_case , vocab_size=snake_case , decoder_layers=snake_case , do_stable_layer_norm=snake_case ) __A = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=snake_case , return_attention_mask=snake_case , ) __A , __A , __A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __A = model[0].eval() # set weights for wav2vec2 encoder __A = WavaVecaModel(snake_case ) __A = recursively_load_weights_wavaveca(model.encoder , snake_case ) __A = SpeechaTextaForCausalLM(snake_case ) __A , __A = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=snake_case ) # set output linear layer unexpected_keys.remove('''embed_out''' ) __A = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(F"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) __A = SpeechEncoderDecoderModel(encoder=snake_case , decoder=snake_case ) __A = False # add projection layer __A = nn.Parameter(projection_layer.weight ) __A = nn.Parameter(projection_layer.bias ) __A = create_vocab_dict(snake_case ) with open(os.path.join(snake_case , '''vocab.json''' ) , '''w''' ) as fp: json.dump(snake_case , snake_case ) __A = SpeechaTextaTokenizer(os.path.join(snake_case , '''vocab.json''' ) ) tokenizer.save_pretrained(snake_case ) __A = hf_wavavec.config.to_dict() __A = tokenizer.pad_token_id __A = tokenizer.bos_token_id __A = tokenizer.eos_token_id __A = '''speech_to_text_2''' __A = '''wav2vec2''' __A = SpeechEncoderDecoderConfig.from_dict(snake_case ) hf_wavavec.save_pretrained(snake_case ) feature_extractor.save_pretrained(snake_case ) if __name__ == "__main__": _UpperCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-large-lv60""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/s2t-small-mustc-en-fr-st""", type=str, help="""Path to hf decoder s2t checkpoint config""", ) parser.add_argument("""--vocab_size""", default=1_0_2_2_4, type=int, help="""Vocab size of decoder""") parser.add_argument("""--num_decoder_layers""", default=7, type=int, help="""Number of decoder layers""") _UpperCamelCase : Dict = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
341
1
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __UpperCAmelCase = 0 __UpperCAmelCase = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __UpperCAmelCase = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __UpperCAmelCase = tuple[int, int] class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> None: UpperCamelCase : int = pos_x UpperCamelCase : Optional[Any] = pos_y UpperCamelCase : Tuple = (pos_y, pos_x) UpperCamelCase : Any = goal_x UpperCamelCase : Union[str, Any] = goal_y UpperCamelCase : Optional[int] = g_cost UpperCamelCase : str = parent UpperCamelCase : Optional[Any] = self.calculate_heuristic() UpperCamelCase : str = self.g_cost + self.h_cost def snake_case_ ( self ) -> float: UpperCamelCase : str = self.pos_x - self.goal_x UpperCamelCase : Union[str, Any] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(SCREAMING_SNAKE_CASE_ ) + abs(SCREAMING_SNAKE_CASE_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self, SCREAMING_SNAKE_CASE_ ) -> bool: return self.f_cost < other.f_cost class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> int: UpperCamelCase : List[Any] = Node(start[1], start[0], goal[1], goal[0], 0, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = Node(goal[1], goal[0], goal[1], goal[0], 9_9999, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = [self.start] UpperCamelCase : list[Node] = [] UpperCamelCase : Optional[int] = False def snake_case_ ( self ) -> list[TPosition]: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCamelCase : Union[str, Any] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(SCREAMING_SNAKE_CASE_ ) self.closed_nodes.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = self.get_successors(SCREAMING_SNAKE_CASE_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(SCREAMING_SNAKE_CASE_ ) else: # retrieve the best current path UpperCamelCase : List[str] = self.open_nodes.pop(self.open_nodes.index(SCREAMING_SNAKE_CASE_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(SCREAMING_SNAKE_CASE_ ) else: self.open_nodes.append(SCREAMING_SNAKE_CASE_ ) return [self.start.pos] def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> list[Node]: UpperCamelCase : Any = [] for action in delta: UpperCamelCase : str = parent.pos_x + action[1] UpperCamelCase : int = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, self.target.pos_y, self.target.pos_x, parent.g_cost + 1, SCREAMING_SNAKE_CASE_, ) ) return successors def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> list[TPosition]: UpperCamelCase : Union[str, Any] = node UpperCamelCase : str = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCamelCase : Union[str, Any] = current_node.parent path.reverse() return path class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> None: UpperCamelCase : Union[str, Any] = AStar(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = AStar(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = False def snake_case_ ( self ) -> list[TPosition]: while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() UpperCamelCase : Union[str, Any] = self.fwd_astar.open_nodes.pop(0 ) UpperCamelCase : str = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) self.fwd_astar.closed_nodes.append(SCREAMING_SNAKE_CASE_ ) self.bwd_astar.closed_nodes.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = current_bwd_node UpperCamelCase : Tuple = current_fwd_node UpperCamelCase : Tuple = { self.fwd_astar: self.fwd_astar.get_successors(SCREAMING_SNAKE_CASE_ ), self.bwd_astar: self.bwd_astar.get_successors(SCREAMING_SNAKE_CASE_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(SCREAMING_SNAKE_CASE_ ) else: # retrieve the best current path UpperCamelCase : Optional[Any] = astar.open_nodes.pop( astar.open_nodes.index(SCREAMING_SNAKE_CASE_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(SCREAMING_SNAKE_CASE_ ) else: astar.open_nodes.append(SCREAMING_SNAKE_CASE_ ) return [self.fwd_astar.start.pos] def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> list[TPosition]: UpperCamelCase : Optional[Any] = self.fwd_astar.retrace_path(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.bwd_astar.retrace_path(SCREAMING_SNAKE_CASE_ ) bwd_path.pop() bwd_path.reverse() UpperCamelCase : Tuple = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __UpperCAmelCase = (0, 0) __UpperCAmelCase = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __UpperCAmelCase = time.time() __UpperCAmelCase = AStar(init, goal) __UpperCAmelCase = a_star.search() __UpperCAmelCase = time.time() - start_time print(F"""AStar execution time = {end_time:f} seconds""") __UpperCAmelCase = time.time() __UpperCAmelCase = BidirectionalAStar(init, goal) __UpperCAmelCase = time.time() - bd_start_time print(F"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
40
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class SCREAMING_SNAKE_CASE__ ( __a , unittest.TestCase ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = ShapEImgaImgPipeline UpperCamelCase__ : Union[str, Any] = ['''image'''] UpperCamelCase__ : str = ['''image'''] UpperCamelCase__ : Dict = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] UpperCamelCase__ : Optional[int] = False @property def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: return 32 @property def UpperCAmelCase_ ( self : str ) -> List[Any]: return 32 @property def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: return self.time_input_dim * 4 @property def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: return 8 @property def UpperCAmelCase_ ( self : Any ) -> str: torch.manual_seed(0 ) snake_case__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) snake_case__ = CLIPVisionModel(lowerCAmelCase__ ) return model @property def UpperCAmelCase_ ( self : List[str] ) -> str: snake_case__ = CLIPImageProcessor( crop_size=224 , do_center_crop=lowerCAmelCase__ , do_normalize=lowerCAmelCase__ , do_resize=lowerCAmelCase__ , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor @property def UpperCAmelCase_ ( self : int ) -> Tuple: torch.manual_seed(0 ) snake_case__ = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } snake_case__ = PriorTransformer(**lowerCAmelCase__ ) return model @property def UpperCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]: torch.manual_seed(0 ) snake_case__ = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } snake_case__ = ShapERenderer(**lowerCAmelCase__ ) return model def UpperCAmelCase_ ( self : str ) -> int: snake_case__ = self.dummy_prior snake_case__ = self.dummy_image_encoder snake_case__ = self.dummy_image_processor snake_case__ = self.dummy_renderer snake_case__ = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=lowerCAmelCase__ , clip_sample=lowerCAmelCase__ , clip_sample_range=1.0 , ) snake_case__ = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def UpperCAmelCase_ ( self : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict=0 ) -> Dict: snake_case__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) if str(lowerCAmelCase__ ).startswith("""mps""" ): snake_case__ = torch.manual_seed(lowerCAmelCase__ ) else: snake_case__ = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) snake_case__ = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def UpperCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]: snake_case__ = """cpu""" snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**lowerCAmelCase__ ) snake_case__ = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case__ = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) snake_case__ = output.images[0] snake_case__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) snake_case__ = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : str ) -> List[Any]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCAmelCase_ ( self : Tuple ) -> Tuple: snake_case__ = torch_device == """cpu""" snake_case__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase__ , relax_max_difference=lowerCAmelCase__ , ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**lowerCAmelCase__ ) snake_case__ = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case__ = 1 snake_case__ = 2 snake_case__ = self.get_dummy_inputs(lowerCAmelCase__ ) for key in inputs.keys(): if key in self.batch_params: snake_case__ = batch_size * [inputs[key]] snake_case__ = pipe(**lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : List[str] ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Tuple ) -> Tuple: snake_case__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) snake_case__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) snake_case__ = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) snake_case__ = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case__ = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) snake_case__ = pipe( lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
214
0
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class UpperCAmelCase_ ( _A ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase__ : UNetaDModel , UpperCamelCase__ : UNetaDModel , UpperCamelCase__ : DDPMScheduler , UpperCamelCase__ : List[Any] , ) -> Tuple: """simple docstring""" super().__init__() __magic_name__ = value_function __magic_name__ = unet __magic_name__ = scheduler __magic_name__ = env __magic_name__ = env.get_dataset() __magic_name__ = {} for key in self.data.keys(): try: __magic_name__ = self.data[key].mean() except: # noqa: E722 pass __magic_name__ = {} for key in self.data.keys(): try: __magic_name__ = self.data[key].std() except: # noqa: E722 pass __magic_name__ = env.observation_space.shape[0] __magic_name__ = env.action_space.shape[0] def _lowercase ( self : List[str] , UpperCamelCase__ : Any , UpperCamelCase__ : Dict ) -> List[Any]: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def _lowercase ( self : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple ) -> Tuple: """simple docstring""" return x_in * self.stds[key] + self.means[key] def _lowercase ( self : str , UpperCamelCase__ : List[str] ) -> List[Any]: """simple docstring""" if type(UpperCamelCase__ ) is dict: return {k: self.to_torch(UpperCamelCase__ ) for k, v in x_in.items()} elif torch.is_tensor(UpperCamelCase__ ): return x_in.to(self.unet.device ) return torch.tensor(UpperCamelCase__ , device=self.unet.device ) def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[Any] ) -> Tuple: """simple docstring""" for key, val in cond.items(): __magic_name__ = val.clone() return x_in def _lowercase ( self : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : Any ) -> Dict: """simple docstring""" __magic_name__ = x.shape[0] __magic_name__ = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model __magic_name__ = torch.full((batch_size,) , UpperCamelCase__ , device=self.unet.device , dtype=torch.long ) for _ in range(UpperCamelCase__ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models __magic_name__ = self.value_function(x.permute(0 , 2 , 1 ) , UpperCamelCase__ ).sample __magic_name__ = torch.autograd.grad([y.sum()] , [x] )[0] __magic_name__ = self.scheduler._get_variance(UpperCamelCase__ ) __magic_name__ = torch.exp(0.5 * posterior_variance ) __magic_name__ = model_std * grad __magic_name__ = 0 __magic_name__ = x.detach() __magic_name__ = x + scale * grad __magic_name__ = self.reset_xa(UpperCamelCase__ , UpperCamelCase__ , self.action_dim ) __magic_name__ = self.unet(x.permute(0 , 2 , 1 ) , UpperCamelCase__ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg __magic_name__ = self.scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , predict_epsilon=UpperCamelCase__ )["""prev_sample"""] # apply conditions to the trajectory (set the initial state) __magic_name__ = self.reset_xa(UpperCamelCase__ , UpperCamelCase__ , self.action_dim ) __magic_name__ = self.to_torch(UpperCamelCase__ ) return x, y def __call__( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : Any=64 , UpperCamelCase__ : Optional[int]=32 , UpperCamelCase__ : int=2 , UpperCamelCase__ : Optional[int]=0.1 ) -> Any: """simple docstring""" __magic_name__ = self.normalize(UpperCamelCase__ , """observations""" ) __magic_name__ = obs[None].repeat(UpperCamelCase__ , axis=0 ) __magic_name__ = {0: self.to_torch(UpperCamelCase__ )} __magic_name__ = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) __magic_name__ = randn_tensor(UpperCamelCase__ , device=self.unet.device ) __magic_name__ = self.reset_xa(UpperCamelCase__ , UpperCamelCase__ , self.action_dim ) __magic_name__ = self.to_torch(UpperCamelCase__ ) # run the diffusion process __magic_name__ , __magic_name__ = self.run_diffusion(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # sort output trajectories by value __magic_name__ = y.argsort(0 , descending=UpperCamelCase__ ).squeeze() __magic_name__ = x[sorted_idx] __magic_name__ = sorted_values[:, :, : self.action_dim] __magic_name__ = actions.detach().cpu().numpy() __magic_name__ = self.de_normalize(UpperCamelCase__ , key="""actions""" ) # select the action with the highest value if y is not None: __magic_name__ = 0 else: # if we didn't run value guiding, select a random action __magic_name__ = np.random.randint(0 , UpperCamelCase__ ) __magic_name__ = denorm_actions[selected_index, 0] return denorm_actions
76
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : Tuple = { 'SCUT-DLVCLab/lilt-roberta-en-base': ( 'https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json' ), } class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = """lilt""" def __init__( self : Dict , UpperCamelCase__ : List[str]=3_0522 , UpperCamelCase__ : Optional[Any]=768 , UpperCamelCase__ : Dict=12 , UpperCamelCase__ : Optional[Any]=12 , UpperCamelCase__ : Dict=3072 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : int=0.1 , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Union[str, Any]=512 , UpperCamelCase__ : Dict=2 , UpperCamelCase__ : Dict=0.02 , UpperCamelCase__ : Any=1E-12 , UpperCamelCase__ : Optional[int]=0 , UpperCamelCase__ : str="absolute" , UpperCamelCase__ : Any=None , UpperCamelCase__ : Dict=4 , UpperCamelCase__ : Tuple=1024 , **UpperCamelCase__ : Optional[int] , ) -> Dict: """simple docstring""" super().__init__(pad_token_id=UpperCamelCase__ , **UpperCamelCase__ ) __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = hidden_act __magic_name__ = intermediate_size __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = type_vocab_size __magic_name__ = initializer_range __magic_name__ = layer_norm_eps __magic_name__ = position_embedding_type __magic_name__ = classifier_dropout __magic_name__ = channel_shrink_ratio __magic_name__ = max_ad_position_embeddings
76
1
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __lowerCAmelCase =logging.get_logger(__name__) # pylint: disable=invalid-name __lowerCAmelCase ="\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\")\n >>> pipe_prior.to(\"cuda\")\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\")\n >>> pipe.to(\"cuda\")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save(\"cat.png\")\n ```\n" def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=8 ) -> int: """simple docstring""" a_ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 a_ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class _snake_case ( snake_case ): """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) -> List[str]: super().__init__() self.register_modules( unet=A_ , scheduler=A_ , movq=A_ , ) a_ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: if latents is None: a_ = randn_tensor(A_ , generator=A_ , device=A_ , dtype=A_ ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) a_ = latents.to(A_ ) a_ = latents * scheduler.init_noise_sigma return latents def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__=0 ) -> Optional[int]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) a_ = torch.device(F'''cuda:{gpu_id}''' ) a_ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A_ , A_ ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__=0 ) -> Dict: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) a_ = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=A_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) a_ = None for cpu_offloaded_model in [self.unet, self.movq]: a_ , a_ = cpu_offload_with_hook(A_ , A_ , prev_module_hook=A_ ) # We'll offload the last model manually. a_ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(A_ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A_ ) def __call__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = 512 , UpperCAmelCase__ = 512 , UpperCAmelCase__ = 100 , UpperCAmelCase__ = 4.0 , UpperCAmelCase__ = 1 , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = "pil" , UpperCAmelCase__ = True , ) -> Optional[int]: a_ = self._execution_device a_ = guidance_scale > 1.0 if isinstance(A_ , A_ ): a_ = torch.cat(A_ , dim=0 ) a_ = image_embeds.shape[0] * num_images_per_prompt if isinstance(A_ , A_ ): a_ = torch.cat(A_ , dim=0 ) if do_classifier_free_guidance: a_ = image_embeds.repeat_interleave(A_ , dim=0 ) a_ = negative_image_embeds.repeat_interleave(A_ , dim=0 ) a_ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=A_ ) self.scheduler.set_timesteps(A_ , device=A_ ) a_ = self.scheduler.timesteps a_ = self.unet.config.in_channels a_ , a_ = downscale_height_and_width(A_ , A_ , self.movq_scale_factor ) # create initial latent a_ = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , A_ , A_ , A_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(A_ ) ): # expand the latents if we are doing classifier free guidance a_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents a_ = {'image_embeds': image_embeds} a_ = self.unet( sample=A_ , timestep=A_ , encoder_hidden_states=A_ , added_cond_kwargs=A_ , return_dict=A_ , )[0] if do_classifier_free_guidance: a_ , a_ = noise_pred.split(latents.shape[1] , dim=1 ) a_ , a_ = noise_pred.chunk(2 ) a_ , a_ = variance_pred.chunk(2 ) a_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) a_ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): a_ , a_ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 a_ = self.scheduler.step( A_ , A_ , A_ , generator=A_ , )[0] # post-processing a_ = self.movq.decode(A_ , force_not_quantize=A_ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: a_ = image * 0.5 + 0.5 a_ = image.clamp(0 , 1 ) a_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": a_ = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
697
from PIL import Image def _SCREAMING_SNAKE_CASE ( lowercase : Image ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = image.size lowerCamelCase_ = 0 lowerCamelCase_ = image.load() for i in range(lowercase ): for j in range(lowercase ): lowerCamelCase_ = pixels[j, i] mean += pixel mean //= width * height for j in range(lowercase ): for i in range(lowercase ): lowerCamelCase_ = 2_55 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": lowerCamelCase : Optional[Any] = mean_threshold(Image.open("path_to_image").convert("L")) image.save("output_image_path")
70
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __UpperCAmelCase ( self : int ): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. lowerCamelCase__ = [[1, 2, 4], [1, 2, 3, 4]] lowerCamelCase__ = DisjunctiveConstraint(SCREAMING_SNAKE_CASE_ ) self.assertTrue(isinstance(dc.token_ids , SCREAMING_SNAKE_CASE_ ) ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __UpperCAmelCase ( self : Union[str, Any] ): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). lowerCamelCase__ = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(SCREAMING_SNAKE_CASE_ ): DisjunctiveConstraint(SCREAMING_SNAKE_CASE_ ) # fails here def __UpperCAmelCase ( self : str ): lowerCamelCase__ = [[1, 2, 3], [1, 2, 4]] lowerCamelCase__ = DisjunctiveConstraint(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = dc.update(1 ) lowerCamelCase__ = stepped is True and completed is False and reset is False self.assertTrue(SCREAMING_SNAKE_CASE_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = dc.update(2 ) lowerCamelCase__ = stepped is True and completed is False and reset is False self.assertTrue(SCREAMING_SNAKE_CASE_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = dc.update(3 ) lowerCamelCase__ = stepped is True and completed is True and reset is False self.assertTrue(SCREAMING_SNAKE_CASE_ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __UpperCAmelCase ( self : Union[str, Any] ): lowerCamelCase__ = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowerCamelCase__ = DisjunctiveConstraint(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
258
"""simple docstring""" import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def _A ( __lowercase ): """simple docstring""" lowerCamelCase__ = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCamelCase__ = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowerCamelCase__ = 4 lowerCamelCase__ = 48 lowerCamelCase__ = """pixelshuffle_aux""" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCamelCase__ = [6, 6, 6, 6] lowerCamelCase__ = 60 lowerCamelCase__ = [6, 6, 6, 6] lowerCamelCase__ = """pixelshuffledirect""" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCamelCase__ = 4 lowerCamelCase__ = """nearest+conv""" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowerCamelCase__ = 1 lowerCamelCase__ = 1 lowerCamelCase__ = 126 lowerCamelCase__ = 7 lowerCamelCase__ = 2_55.0 lowerCamelCase__ = """""" return config def _A ( __lowercase , __lowercase ): """simple docstring""" if "patch_embed.proj" in name and "layers" not in name: lowerCamelCase__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowerCamelCase__ = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" ) if "layers" in name: lowerCamelCase__ = name.replace("""layers""" , """encoder.stages""" ) if "residual_group.blocks" in name: lowerCamelCase__ = name.replace("""residual_group.blocks""" , """layers""" ) if "attn.proj" in name: lowerCamelCase__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowerCamelCase__ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowerCamelCase__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowerCamelCase__ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowerCamelCase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCamelCase__ = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: lowerCamelCase__ = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: lowerCamelCase__ = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: lowerCamelCase__ = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: lowerCamelCase__ = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if "patch_embed.proj" in name: lowerCamelCase__ = name.replace("""patch_embed.proj""" , """patch_embed.projection""" ) if name == "norm.weight": lowerCamelCase__ = """layernorm.weight""" if name == "norm.bias": lowerCamelCase__ = """layernorm.bias""" if "conv_first" in name: lowerCamelCase__ = name.replace("""conv_first""" , """first_convolution""" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowerCamelCase__ = name.replace("""conv_last""" , """final_convolution""" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowerCamelCase__ = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" ) if "upsample.0" in name: lowerCamelCase__ = name.replace("""upsample.0""" , """upsample.convolution_0""" ) if "upsample.2" in name: lowerCamelCase__ = name.replace("""upsample.2""" , """upsample.convolution_1""" ) lowerCamelCase__ = """upsample.""" + name elif config.upsampler == "pixelshuffledirect": lowerCamelCase__ = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" ) lowerCamelCase__ = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" ) else: pass else: lowerCamelCase__ = """swin2sr.""" + name return name def _A ( __lowercase , __lowercase ): """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase__ = orig_state_dict.pop(__lowercase ) if "qkv" in key: lowerCamelCase__ = key.split(""".""" ) lowerCamelCase__ = int(key_split[1] ) lowerCamelCase__ = int(key_split[4] ) lowerCamelCase__ = config.embed_dim if "weight" in key: lowerCamelCase__ = val[:dim, :] lowerCamelCase__ = val[dim : dim * 2, :] lowerCamelCase__ = val[-dim:, :] else: lowerCamelCase__ = val[:dim] lowerCamelCase__ = val[dim : dim * 2] lowerCamelCase__ = val[-dim:] pass else: lowerCamelCase__ = val return orig_state_dict def _A ( __lowercase , __lowercase , __lowercase ): """simple docstring""" lowerCamelCase__ = get_config(__lowercase ) lowerCamelCase__ = SwinaSRForImageSuperResolution(__lowercase ) model.eval() lowerCamelCase__ = torch.hub.load_state_dict_from_url(__lowercase , map_location="""cpu""" ) lowerCamelCase__ = convert_state_dict(__lowercase , __lowercase ) lowerCamelCase__ , lowerCamelCase__ = model.load_state_dict(__lowercase , strict=__lowercase ) if len(__lowercase ) > 0: raise ValueError("""Missing keys when converting: {}""".format(__lowercase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f"""Unexpected key {key} in state_dict""" ) # verify values lowerCamelCase__ = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true""" lowerCamelCase__ = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert("""RGB""" ) lowerCamelCase__ = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowerCamelCase__ = 126 if """Jpeg""" in checkpoint_url else 256 lowerCamelCase__ = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ), ] ) lowerCamelCase__ = transforms(__lowercase ).unsqueeze(0 ) if config.num_channels == 1: lowerCamelCase__ = pixel_values[:, 0, :, :].unsqueeze(1 ) lowerCamelCase__ = model(__lowercase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowerCamelCase__ = torch.Size([1, 3, 512, 512] ) lowerCamelCase__ = torch.tensor( [[-0.70_87, -0.71_38, -0.67_21], [-0.83_40, -0.80_95, -0.72_98], [-0.91_49, -0.84_14, -0.79_40]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCamelCase__ = torch.Size([1, 3, 1024, 1024] ) lowerCamelCase__ = torch.tensor( [[-0.77_75, -0.81_05, -0.89_33], [-0.77_64, -0.83_56, -0.92_25], [-0.79_76, -0.86_86, -0.95_79]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowerCamelCase__ = torch.Size([1, 3, 1024, 1024] ) lowerCamelCase__ = torch.tensor( [[-0.80_35, -0.75_04, -0.74_91], [-0.85_38, -0.81_24, -0.77_82], [-0.88_04, -0.86_51, -0.84_93]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCamelCase__ = torch.Size([1, 3, 512, 512] ) lowerCamelCase__ = torch.tensor( [[-0.76_69, -0.86_62, -0.87_67], [-0.88_10, -0.99_62, -0.98_20], [-0.93_40, -1.03_22, -1.11_49]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCamelCase__ = torch.Size([1, 3, 1024, 1024] ) lowerCamelCase__ = torch.tensor( [[-0.52_38, -0.55_57, -0.63_21], [-0.60_16, -0.59_03, -0.63_91], [-0.62_44, -0.63_34, -0.68_89]] ) assert ( outputs.reconstruction.shape == expected_shape ), f"""Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}""" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , __lowercase , atol=1e-3 ) print("""Looks ok!""" ) lowerCamelCase__ = { """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": ( """swin2SR-classical-sr-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": ( """swin2SR-classical-sr-x4-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": ( """swin2SR-compressed-sr-x4-48""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": ( """swin2SR-lightweight-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": ( """swin2SR-realworld-sr-x4-64-bsrgan-psnr""" ), } lowerCamelCase__ = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowercase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(__lowercase ) if push_to_hub: model.push_to_hub(f"""caidas/{model_name}""" ) processor.push_to_hub(f"""caidas/{model_name}""" ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""", type=str, help="""URL of the original Swin2SR checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""") __magic_name__ = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
258
1
"""simple docstring""" import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def A_ ( snake_case__ ) -> List[Any]: _UpperCamelCase :Any = args.pruning_method _UpperCamelCase :Any = args.threshold _UpperCamelCase :Optional[int] = args.model_name_or_path.rstrip('''/''' ) _UpperCamelCase :Tuple = args.target_model_path print(f"Load fine-pruned model from {model_name_or_path}" ) _UpperCamelCase :Optional[int] = torch.load(os.path.join(snake_case__ , '''pytorch_model.bin''' ) ) _UpperCamelCase :Union[str, Any] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _UpperCamelCase :Any = tensor print(f"Copied layer {name}" ) elif "classifier" in name or "qa_output" in name: _UpperCamelCase :Optional[int] = tensor print(f"Copied layer {name}" ) elif "bias" in name: _UpperCamelCase :Tuple = tensor print(f"Copied layer {name}" ) else: if pruning_method == "magnitude": _UpperCamelCase :Optional[Any] = MagnitudeBinarizer.apply(inputs=snake_case__ , threshold=snake_case__ ) _UpperCamelCase :Tuple = tensor * mask print(f"Pruned layer {name}" ) elif pruning_method == "topK": if "mask_scores" in name: continue _UpperCamelCase :int = name[:-6] _UpperCamelCase :Tuple = model[f"{prefix_}mask_scores"] _UpperCamelCase :Dict = TopKBinarizer.apply(snake_case__ , snake_case__ ) _UpperCamelCase :Any = tensor * mask print(f"Pruned layer {name}" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _UpperCamelCase :Optional[Any] = name[:-6] _UpperCamelCase :Tuple = model[f"{prefix_}mask_scores"] _UpperCamelCase :Any = ThresholdBinarizer.apply(snake_case__ , snake_case__ , snake_case__ ) _UpperCamelCase :Dict = tensor * mask print(f"Pruned layer {name}" ) elif pruning_method == "l0": if "mask_scores" in name: continue _UpperCamelCase :Any = name[:-6] _UpperCamelCase :List[str] = model[f"{prefix_}mask_scores"] _UpperCamelCase , _UpperCamelCase :Union[str, Any] = -0.1, 1.1 _UpperCamelCase :Dict = torch.sigmoid(snake_case__ ) _UpperCamelCase :Dict = s * (r - l) + l _UpperCamelCase :Dict = s_bar.clamp(min=0.0 , max=1.0 ) _UpperCamelCase :Any = tensor * mask print(f"Pruned layer {name}" ) else: raise ValueError('''Unknown pruning method''' ) if target_model_path is None: _UpperCamelCase :Tuple = os.path.join( os.path.dirname(snake_case__ ) , f"bertarized_{os.path.basename(snake_case__ )}" ) if not os.path.isdir(snake_case__ ): shutil.copytree(snake_case__ , snake_case__ ) print(f"\nCreated folder {target_model_path}" ) torch.save(snake_case__ , os.path.join(snake_case__ , '''pytorch_model.bin''' ) ) print('''\nPruned model saved! See you later!''' ) if __name__ == "__main__": UpperCamelCase__ :Optional[Any] = argparse.ArgumentParser() parser.add_argument( """--pruning_method""", choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""], type=str, required=True, help=( """Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,""" """ sigmoied_threshold = Soft movement pruning)""" ), ) parser.add_argument( """--threshold""", type=float, required=False, help=( """For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.""" """For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.""" """Not needed for `l0`""" ), ) parser.add_argument( """--model_name_or_path""", type=str, required=True, help="""Folder containing the model that was previously fine-pruned""", ) parser.add_argument( """--target_model_path""", default=None, type=str, required=False, help="""Folder containing the model that was previously fine-pruned""", ) UpperCamelCase__ :Any = parser.parse_args() main(args)
355
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ :str = logging.get_logger(__name__) UpperCamelCase__ :Optional[int] = { """microsoft/markuplm-base""": """https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json""", """microsoft/markuplm-large""": """https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json""", } class A( lowerCamelCase__ ): """simple docstring""" A = "markuplm" def __init__( self , SCREAMING_SNAKE_CASE__=3_05_22 , SCREAMING_SNAKE_CASE__=7_68 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=30_72 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=5_12 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.0_2 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=2_56 , SCREAMING_SNAKE_CASE__=10_24 , SCREAMING_SNAKE_CASE__=2_16 , SCREAMING_SNAKE_CASE__=10_01 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=50 , SCREAMING_SNAKE_CASE__="absolute" , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ , ) -> Optional[Any]: """simple docstring""" super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) _UpperCamelCase :Any = vocab_size _UpperCamelCase :Union[str, Any] = hidden_size _UpperCamelCase :List[Any] = num_hidden_layers _UpperCamelCase :int = num_attention_heads _UpperCamelCase :Tuple = hidden_act _UpperCamelCase :str = intermediate_size _UpperCamelCase :Optional[int] = hidden_dropout_prob _UpperCamelCase :Any = attention_probs_dropout_prob _UpperCamelCase :Union[str, Any] = max_position_embeddings _UpperCamelCase :Dict = type_vocab_size _UpperCamelCase :int = initializer_range _UpperCamelCase :Optional[int] = layer_norm_eps _UpperCamelCase :Any = position_embedding_type _UpperCamelCase :Any = use_cache _UpperCamelCase :List[str] = classifier_dropout # additional properties _UpperCamelCase :Union[str, Any] = max_depth _UpperCamelCase :Union[str, Any] = max_xpath_tag_unit_embeddings _UpperCamelCase :Optional[Any] = max_xpath_subs_unit_embeddings _UpperCamelCase :int = tag_pad_id _UpperCamelCase :str = subs_pad_id _UpperCamelCase :List[str] = xpath_unit_hidden_size
355
1
"""simple docstring""" a_ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def a__ ( ) -> None: _A = input("Enter message: " ) _A = input("Enter key [alphanumeric]: " ) _A = input("Encrypt/Decrypt [e/d]: " ) if mode.lower().startswith("e" ): _A = "encrypt" _A = encrypt_message(__lowercase , __lowercase ) elif mode.lower().startswith("d" ): _A = "decrypt" _A = decrypt_message(__lowercase , __lowercase ) print(f"""\n{mode.title()}ed message:""" ) print(__lowercase ) def a__ ( __lowercase , __lowercase ) -> str: return translate_message(__lowercase , __lowercase , "encrypt" ) def a__ ( __lowercase , __lowercase ) -> str: return translate_message(__lowercase , __lowercase , "decrypt" ) def a__ ( __lowercase , __lowercase , __lowercase ) -> str: _A = [] _A = 0 _A = key.upper() for symbol in message: _A = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__lowercase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__lowercase ): _A = 0 else: translated.append(__lowercase ) return "".join(__lowercase ) if __name__ == "__main__": main()
621
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def a__ ( __lowercase ) -> Optional[int]: _A = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", "decoder.output_projection.weight", ] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def a__ ( __lowercase ) -> List[Any]: _A , _A = emb.weight.shape _A = nn.Linear(__lowercase , __lowercase , bias=__lowercase ) _A = emb.weight.data return lin_layer def a__ ( __lowercase , __lowercase="facebook/mbart-large-en-ro" , __lowercase=False , __lowercase=False ) -> List[str]: _A = torch.load(__lowercase , map_location="cpu" )["model"] remove_ignore_keys_(__lowercase ) _A = state_dict["encoder.embed_tokens.weight"].shape[0] _A = MBartConfig.from_pretrained(__lowercase , vocab_size=__lowercase ) if mbart_aa and finetuned: _A = "relu" _A = state_dict["decoder.embed_tokens.weight"] _A = MBartForConditionalGeneration(__lowercase ) model.model.load_state_dict(__lowercase ) if finetuned: _A = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default="facebook/mbart-large-cc25", type=str, help="Which huggingface architecture to use: mbart-large", ) parser.add_argument("--mbart_50", action="store_true", help="whether the model is mMART-50 checkpoint") parser.add_argument("--finetuned", action="store_true", help="whether the model is a fine-tuned checkpoint") a_ = parser.parse_args() a_ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
621
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _a ( lowerCAmelCase , lowerCAmelCase=False )-> int: SCREAMING_SNAKE_CASE_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE_ = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def _a ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False )-> List[str]: for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE_ = "" else: SCREAMING_SNAKE_CASE_ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE_ = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE_ = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE_ = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE_ = in_proj_bias[-config.hidden_size :] def _a ( lowerCAmelCase )-> Any: SCREAMING_SNAKE_CASE_ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(lowerCAmelCase , lowerCAmelCase ) def _a ( lowerCAmelCase )-> Any: SCREAMING_SNAKE_CASE_ = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(lowerCAmelCase , lowerCAmelCase ) def _a ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )-> List[str]: SCREAMING_SNAKE_CASE_ = dct.pop(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = val def _a ( lowerCAmelCase , lowerCAmelCase )-> Optional[int]: SCREAMING_SNAKE_CASE_ = ViTMSNConfig() SCREAMING_SNAKE_CASE_ = 1000 SCREAMING_SNAKE_CASE_ = "datasets/huggingface/label-files" SCREAMING_SNAKE_CASE_ = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE_ = json.load(open(hf_hub_download(lowerCAmelCase , lowerCAmelCase ) , 'r' ) ) SCREAMING_SNAKE_CASE_ = {int(lowerCAmelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ = idalabel SCREAMING_SNAKE_CASE_ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE_ = 384 SCREAMING_SNAKE_CASE_ = 1536 SCREAMING_SNAKE_CASE_ = 6 elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE_ = 1024 SCREAMING_SNAKE_CASE_ = 4096 SCREAMING_SNAKE_CASE_ = 24 SCREAMING_SNAKE_CASE_ = 16 SCREAMING_SNAKE_CASE_ = 0.1 elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE_ = 4 elif "l7" in checkpoint_url: SCREAMING_SNAKE_CASE_ = 7 SCREAMING_SNAKE_CASE_ = 1024 SCREAMING_SNAKE_CASE_ = 4096 SCREAMING_SNAKE_CASE_ = 24 SCREAMING_SNAKE_CASE_ = 16 SCREAMING_SNAKE_CASE_ = 0.1 SCREAMING_SNAKE_CASE_ = ViTMSNModel(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.hub.load_state_dict_from_url(lowerCAmelCase , map_location='cpu' )["target_encoder"] SCREAMING_SNAKE_CASE_ = ViTImageProcessor(size=config.image_size ) remove_projection_head(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = create_rename_keys(lowerCAmelCase , base_model=lowerCAmelCase ) for src, dest in rename_keys: rename_key(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) read_in_q_k_v(lowerCAmelCase , lowerCAmelCase , base_model=lowerCAmelCase ) model.load_state_dict(lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE_ = Image.open(requests.get(lowerCAmelCase , stream=lowerCAmelCase ).raw ) SCREAMING_SNAKE_CASE_ = ViTImageProcessor( size=config.image_size , image_mean=lowerCAmelCase , image_std=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = image_processor(images=lowerCAmelCase , return_tensors='pt' ) # forward pass torch.manual_seed(2 ) SCREAMING_SNAKE_CASE_ = model(**lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE_ = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: SCREAMING_SNAKE_CASE_ = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE_ = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE_ = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: SCREAMING_SNAKE_CASE_ = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , lowerCAmelCase , atol=1E-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE: str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) SCREAMING_SNAKE_CASE: str = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
360
import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets SCREAMING_SNAKE_CASE__ = datasets.logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = "\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n" SCREAMING_SNAKE_CASE__ = "\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project's README at https://github.com/google-research/bleurt#readme for more information.\n" SCREAMING_SNAKE_CASE__ = "\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n 'scores': List of scores.\nExamples:\n\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> bleurt = datasets.load_metric(\"bleurt\")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [1.03, 1.04]\n" SCREAMING_SNAKE_CASE__ = { "bleurt-tiny-128": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip", "bleurt-tiny-512": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip", "bleurt-base-128": "https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip", "bleurt-base-512": "https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip", "bleurt-large-128": "https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip", "bleurt-large-512": "https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip", "BLEURT-20-D3": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip", "BLEURT-20-D6": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip", "BLEURT-20-D12": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip", "BLEURT-20": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip", } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def _snake_case ( self : List[str]): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/google-research/bleurt" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence"), "references": datasets.Value("string" , id="sequence"), }) , codebase_urls=["https://github.com/google-research/bleurt"] , reference_urls=["https://github.com/google-research/bleurt", "https://arxiv.org/abs/2004.04696"] , ) def _snake_case ( self : Any , UpperCAmelCase : Any): # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( "Using default BLEURT-Base checkpoint for sequence maximum length 128. " "You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512').") SCREAMING_SNAKE_CASE_ :str = "bleurt-base-128" if self.config_name.lower() in CHECKPOINT_URLS: SCREAMING_SNAKE_CASE_ :Dict = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: SCREAMING_SNAKE_CASE_ :Dict = self.config_name.upper() else: raise KeyError( F"{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}") # download the model checkpoint specified by self.config_name and set up the scorer SCREAMING_SNAKE_CASE_ :Optional[Any] = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name]) SCREAMING_SNAKE_CASE_ :Dict = score.BleurtScorer(os.path.join(UpperCAmelCase , UpperCAmelCase)) def _snake_case ( self : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any]): SCREAMING_SNAKE_CASE_ :Optional[int] = self.scorer.score(references=UpperCAmelCase , candidates=UpperCAmelCase) return {"scores": scores}
631
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( _lowercase : Tuple ) -> list[int]: # This function is recursive __UpperCAmelCase: int = len(_lowercase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __UpperCAmelCase: str = array[0] __UpperCAmelCase: Optional[Any] = False __UpperCAmelCase: Any = 1 __UpperCAmelCase: list[int] = [] while not is_found and i < array_length: if array[i] < pivot: __UpperCAmelCase: Union[str, Any] = True __UpperCAmelCase: List[str] = [element for element in array[i:] if element >= array[i]] __UpperCAmelCase: Union[str, Any] = longest_subsequence(_lowercase ) if len(_lowercase ) > len(_lowercase ): __UpperCAmelCase: List[str] = temp_array else: i += 1 __UpperCAmelCase: List[str] = [element for element in array[1:] if element >= pivot] __UpperCAmelCase: List[str] = [pivot, *longest_subsequence(_lowercase )] if len(_lowercase ) > len(_lowercase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
719
'''simple docstring''' import numpy # List of input, output pairs SCREAMING_SNAKE_CASE_ = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) SCREAMING_SNAKE_CASE_ = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) SCREAMING_SNAKE_CASE_ = [2, 4, 1, 5] SCREAMING_SNAKE_CASE_ = len(train_data) SCREAMING_SNAKE_CASE_ = 0.009 def UpperCamelCase__ ( _lowercase : Union[str, Any] , _lowercase : List[Any]="train" ) -> int: return calculate_hypothesis_value(_lowercase , _lowercase ) - output( _lowercase , _lowercase ) def UpperCamelCase__ ( _lowercase : Dict ) -> Optional[Any]: __UpperCAmelCase: List[Any] = 0 for i in range(len(_lowercase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def UpperCamelCase__ ( _lowercase : List[str] , _lowercase : List[str] ) -> Optional[Any]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def UpperCamelCase__ ( _lowercase : Dict , _lowercase : str ) -> Dict: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def UpperCamelCase__ ( _lowercase : Optional[int] , _lowercase : Union[str, Any]=m ) -> Optional[Any]: __UpperCAmelCase: int = 0 for i in range(_lowercase ): if index == -1: summation_value += _error(_lowercase ) else: summation_value += _error(_lowercase ) * train_data[i][0][index] return summation_value def UpperCamelCase__ ( _lowercase : Tuple ) -> Optional[int]: __UpperCAmelCase: Any = summation_of_cost_derivative(_lowercase , _lowercase ) / m return cost_derivative_value def UpperCamelCase__ ( ) -> Tuple: global parameter_vector # Tune these values to set a tolerance value for predicted output __UpperCAmelCase: str = 0.00_00_02 __UpperCAmelCase: List[Any] = 0 __UpperCAmelCase: Optional[Any] = 0 while True: j += 1 __UpperCAmelCase: Any = [0, 0, 0, 0] for i in range(0 , len(_lowercase ) ): __UpperCAmelCase: str = get_cost_derivative(i - 1 ) __UpperCAmelCase: List[str] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( _lowercase , _lowercase , atol=_lowercase , rtol=_lowercase , ): break __UpperCAmelCase: List[Any] = temp_parameter_vector print(("""Number of iterations:""", j) ) def UpperCamelCase__ ( ) -> Dict: for i in range(len(_lowercase ) ): print(("""Actual output value:""", output(_lowercase , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(_lowercase , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
466
0
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __UpperCAmelCase = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model __UpperCAmelCase = { # fairseq: '''wmt19-ru-en''': {'''length_penalty''': 1.1}, '''wmt19-en-ru''': {'''length_penalty''': 1.15}, '''wmt19-en-de''': {'''length_penalty''': 1.0}, '''wmt19-de-en''': {'''length_penalty''': 1.1}, # allenai: '''wmt16-en-de-dist-12-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-dist-6-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-12-1''': {'''length_penalty''': 0.8}, '''wmt19-de-en-6-6-base''': {'''length_penalty''': 0.6}, '''wmt19-de-en-6-6-big''': {'''length_penalty''': 0.6}, } # this remaps the different models to their organization names __UpperCAmelCase = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __UpperCAmelCase = '''facebook''' for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: __UpperCAmelCase = '''allenai''' def lowercase__ ( lowerCAmelCase__ : Tuple ) -> Optional[Any]: '''simple docstring''' # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} a__ : List[str] = dict((re.sub(R"@@$" , "" , _a ), v) if k.endswith("@@" ) else (re.sub(R"$" , "</w>" , _a ), v) for k, v in d.items() ) a__ : Optional[Any] = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F"{k}</w>"] a__ : List[str] = d[k] # restore return da def lowercase__ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str ) -> List[str]: '''simple docstring''' # prep assert os.path.exists(_a ) os.makedirs(_a , exist_ok=_a ) print(F"Writing results to {pytorch_dump_folder_path}" ) # handle various types of models a__ : int = basename(_a ) a__ : str = dirname(_a ) a__ : Tuple = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel a__ : str = cls.hub_models() a__ : Optional[int] = {"bpe": "fastbpe", "tokenizer": "moses"} a__ : Optional[int] = "." # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(F"using checkpoint {checkpoint_file}" ) a__ : Dict = hub_utils.from_pretrained( _a , _a , _a , archive_map=_a , **_a ) a__ : List[Any] = vars(chkpt["args"]["model"] ) a__ : List[Any] = args["source_lang"] a__ : Dict = args["target_lang"] a__ : List[Any] = dirname(_a ) a__ : Optional[int] = basename(_a ) # dicts a__ : Optional[Any] = os.path.join(_a , F"dict.{src_lang}.txt" ) a__ : int = os.path.join(_a , F"dict.{tgt_lang}.txt" ) a__ : Tuple = Dictionary.load(_a ) a__ : Optional[Any] = rewrite_dict_keys(src_dict.indices ) a__ : Tuple = len(_a ) a__ : Any = os.path.join(_a , "vocab-src.json" ) print(F"Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records" ) with open(_a , "w" , encoding="utf-8" ) as f: f.write(json.dumps(_a , ensure_ascii=_a , indent=_a ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab a__ : Tuple = True for k in src_vocab.keys(): if not k.islower(): a__ : Tuple = False break a__ : Any = Dictionary.load(_a ) a__ : Tuple = rewrite_dict_keys(tgt_dict.indices ) a__ : List[str] = len(_a ) a__ : List[Any] = os.path.join(_a , "vocab-tgt.json" ) print(F"Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records" ) with open(_a , "w" , encoding="utf-8" ) as f: f.write(json.dumps(_a , ensure_ascii=_a , indent=_a ) ) # merges_file (bpecodes) a__ : str = os.path.join(_a , VOCAB_FILES_NAMES["merges_file"] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" a__ : int = os.path.join(_a , _a ) if os.path.exists(_a ): break with open(_a , encoding="utf-8" ) as fin: a__ : List[Any] = fin.read() a__ : List[str] = re.sub(R" \d+$" , "" , _a , 0 , re.M ) # remove frequency number print(F"Generating {merges_file}" ) with open(_a , "w" , encoding="utf-8" ) as fout: fout.write(_a ) # model config a__ : List[Any] = os.path.join(_a , "config.json" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", F"need to extend tokenizer to support bpe={args['bpe']}" assert args["tokenizer"] == "moses", F"need to extend tokenizer to support bpe={args['tokenizer']}" a__ : str = { "architectures": ["FSMTForConditionalGeneration"], "model_type": "fsmt", "activation_dropout": args["activation_dropout"], "activation_function": "relu", "attention_dropout": args["attention_dropout"], "d_model": args["decoder_embed_dim"], "dropout": args["dropout"], "init_std": 0.02, "max_position_embeddings": args["max_source_positions"], "num_hidden_layers": args["encoder_layers"], "src_vocab_size": src_vocab_size, "tgt_vocab_size": tgt_vocab_size, "langs": [src_lang, tgt_lang], "encoder_attention_heads": args["encoder_attention_heads"], "encoder_ffn_dim": args["encoder_ffn_embed_dim"], "encoder_layerdrop": args["encoder_layerdrop"], "encoder_layers": args["encoder_layers"], "decoder_attention_heads": args["decoder_attention_heads"], "decoder_ffn_dim": args["decoder_ffn_embed_dim"], "decoder_layerdrop": args["decoder_layerdrop"], "decoder_layers": args["decoder_layers"], "bos_token_id": 0, "pad_token_id": 1, "eos_token_id": 2, "is_encoder_decoder": True, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_all_embeddings"], } # good hparam defaults to start with a__ : Any = 5 a__ : Tuple = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: a__ : List[str] = best_score_hparams[model_dir]["length_penalty"] else: a__ : Tuple = 1.0 print(F"Generating {fsmt_model_config_file}" ) with open(_a , "w" , encoding="utf-8" ) as f: f.write(json.dumps(_a , ensure_ascii=_a , indent=_a ) ) # tokenizer config a__ : int = os.path.join(_a , _a ) a__ : List[str] = { "langs": [src_lang, tgt_lang], "model_max_length": 1_0_2_4, "do_lower_case": do_lower_case, } print(F"Generating {fsmt_tokenizer_config_file}" ) with open(_a , "w" , encoding="utf-8" ) as f: f.write(json.dumps(_a , ensure_ascii=_a , indent=_a ) ) # model a__ : str = chkpt["models"][0] a__ : Tuple = model.state_dict() # rename keys to start with 'model.' a__ : Tuple = OrderedDict(("model." + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys a__ : Tuple = [ "model.model", "model.encoder.version", "model.decoder.version", "model.encoder_embed_tokens.weight", "model.decoder_embed_tokens.weight", "model.encoder.embed_positions._float_tensor", "model.decoder.embed_positions._float_tensor", ] for k in ignore_keys: model_state_dict.pop(_a , _a ) a__ : List[Any] = FSMTConfig.from_pretrained(_a ) a__ : Optional[Any] = FSMTForConditionalGeneration(_a ) # check that it loads ok model_new.load_state_dict(_a , strict=_a ) # save a__ : str = os.path.join(_a , _a ) print(F"Generating {pytorch_weights_dump_path}" ) torch.save(_a , _a ) print("Conversion is done!" ) print("\nLast step is to upload the files to s3" ) print(F"cd {data_root}" ) print(F"transformers-cli upload {model_dir}" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fsmt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __UpperCAmelCase = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
642
def lowercase ( _a ,_a ) -> str: if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) UpperCAmelCase_: str = str(bin(_a ) ) binary_number += "0" * shift_amount return binary_number def lowercase ( _a ,_a ) -> str: if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) UpperCAmelCase_: Union[str, Any] = str(bin(_a ) )[2:] if shift_amount >= len(_a ): return "0b0" UpperCAmelCase_: List[str] = binary_number[: len(_a ) - shift_amount] return "0b" + shifted_binary_number def lowercase ( _a ,_a ) -> str: if number >= 0: # Get binary representation of positive number UpperCAmelCase_: Dict = "0" + str(bin(_a ) ).strip("-" )[2:] else: # Get binary (2's complement) representation of negative number UpperCAmelCase_: Optional[int] = len(bin(_a )[3:] ) # Find 2's complement of number UpperCAmelCase_: Dict = bin(abs(_a ) - (1 << binary_number_length) )[3:] UpperCAmelCase_: Union[str, Any] = ( "1" + "0" * (binary_number_length - len(_a )) + binary_number ) if shift_amount >= len(_a ): return "0b" + binary_number[0] * len(_a ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(_a ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
137
0
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A ( UpperCamelCase__ ): a__ : Any = """ClapFeatureExtractor""" a__ : Tuple = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__(self : Dict , __a : Any , __a : Optional[int] ): super().__init__(__a , __a ) def __call__(self : List[str] , __a : Any=None , __a : Optional[Any]=None , __a : int=None , **__a : Any ): UpperCAmelCase_ = kwargs.pop("sampling_rate" , __a ) if text is None and audios is None: raise ValueError("You have to specify either text or audios. Both cannot be none." ) if text is not None: UpperCAmelCase_ = self.tokenizer(__a , return_tensors=__a , **__a ) if audios is not None: UpperCAmelCase_ = self.feature_extractor( __a , sampling_rate=__a , return_tensors=__a , **__a ) if text is not None and audios is not None: UpperCAmelCase_ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__a ) , tensor_type=__a ) def _lowercase (self : Union[str, Any] , *__a : int , **__a : Tuple ): return self.tokenizer.batch_decode(*__a , **__a ) def _lowercase (self : Dict , *__a : Dict , **__a : int ): return self.tokenizer.decode(*__a , **__a ) @property def _lowercase (self : List[str] ): UpperCAmelCase_ = self.tokenizer.model_input_names UpperCAmelCase_ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
415
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE_: Union[str, Any] =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Optional[Any] ={ 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class __A ( UpperCamelCase__ ): a__ : Tuple = """deta""" a__ : Dict = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__(self : List[str] , __a : Optional[int]=None , __a : List[str]=900 , __a : Optional[Any]=2048 , __a : Tuple=6 , __a : Dict=2048 , __a : Dict=8 , __a : List[Any]=6 , __a : Tuple=1024 , __a : int=8 , __a : Union[str, Any]=0.0 , __a : Dict=True , __a : Any="relu" , __a : Any=256 , __a : Optional[int]=0.1 , __a : Union[str, Any]=0.0 , __a : Optional[int]=0.0 , __a : Tuple=0.02 , __a : Dict=1.0 , __a : int=True , __a : List[str]=False , __a : Any="sine" , __a : Optional[int]=5 , __a : List[str]=4 , __a : Dict=4 , __a : int=True , __a : Tuple=300 , __a : int=True , __a : Tuple=True , __a : int=1 , __a : List[str]=5 , __a : str=2 , __a : Any=1 , __a : Optional[Any]=1 , __a : Optional[Any]=5 , __a : List[str]=2 , __a : Optional[Any]=0.1 , __a : Tuple=0.25 , **__a : Union[str, Any] , ): if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase_ = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"] ) else: if isinstance(__a , __a ): UpperCAmelCase_ = backbone_config.pop("model_type" ) UpperCAmelCase_ = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ = config_class.from_dict(__a ) UpperCAmelCase_ = backbone_config UpperCAmelCase_ = num_queries UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = d_model UpperCAmelCase_ = encoder_ffn_dim UpperCAmelCase_ = encoder_layers UpperCAmelCase_ = encoder_attention_heads UpperCAmelCase_ = decoder_ffn_dim UpperCAmelCase_ = decoder_layers UpperCAmelCase_ = decoder_attention_heads UpperCAmelCase_ = dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = activation_dropout UpperCAmelCase_ = activation_function UpperCAmelCase_ = init_std UpperCAmelCase_ = init_xavier_std UpperCAmelCase_ = encoder_layerdrop UpperCAmelCase_ = auxiliary_loss UpperCAmelCase_ = position_embedding_type # deformable attributes UpperCAmelCase_ = num_feature_levels UpperCAmelCase_ = encoder_n_points UpperCAmelCase_ = decoder_n_points UpperCAmelCase_ = two_stage UpperCAmelCase_ = two_stage_num_proposals UpperCAmelCase_ = with_box_refine UpperCAmelCase_ = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher UpperCAmelCase_ = class_cost UpperCAmelCase_ = bbox_cost UpperCAmelCase_ = giou_cost # Loss coefficients UpperCAmelCase_ = mask_loss_coefficient UpperCAmelCase_ = dice_loss_coefficient UpperCAmelCase_ = bbox_loss_coefficient UpperCAmelCase_ = giou_loss_coefficient UpperCAmelCase_ = eos_coefficient UpperCAmelCase_ = focal_alpha super().__init__(is_encoder_decoder=__a , **__a ) @property def _lowercase (self : Dict ): return self.encoder_attention_heads @property def _lowercase (self : Any ): return self.d_model def _lowercase (self : int ): UpperCAmelCase_ = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ = self.backbone_config.to_dict() UpperCAmelCase_ = self.__class__.model_type return output
415
1
def A ( _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Dict = '''''' for word_or_phrase in separated: if not isinstance(_lowercase , _lowercase ): raise Exception('''join() accepts only strings to be joined''' ) joined += word_or_phrase + separator return joined.strip(_lowercase ) if __name__ == "__main__": from doctest import testmod testmod()
248
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __UpperCamelCase : List[Any] = logging.get_logger(__name__) def A ( _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Union[str, Any] = nn.functional.normalize(_lowercase ) SCREAMING_SNAKE_CASE : List[str] = nn.functional.normalize(_lowercase ) return torch.mm(_lowercase , normalized_text_embeds.t() ) class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = CLIPConfig UpperCamelCase_ = ["""CLIPEncoderLayer"""] def __init__( self : str , UpperCamelCase__ : CLIPConfig ): '''simple docstring''' super().__init__(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPVisionModel(config.vision_config ) SCREAMING_SNAKE_CASE : Tuple = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.ones(17 ) , requires_grad=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.ones(3 ) , requires_grad=UpperCamelCase__ ) @torch.no_grad() def __A ( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.vision_model(UpperCamelCase__ )[1] # pooled_output SCREAMING_SNAKE_CASE : Any = self.visual_projection(UpperCamelCase__ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 SCREAMING_SNAKE_CASE : str = cosine_distance(UpperCamelCase__ , self.special_care_embeds ).cpu().float().numpy() SCREAMING_SNAKE_CASE : Optional[int] = cosine_distance(UpperCamelCase__ , self.concept_embeds ).cpu().float().numpy() SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : str = image_embeds.shape[0] for i in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE : Dict = {'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images SCREAMING_SNAKE_CASE : Optional[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): SCREAMING_SNAKE_CASE : Dict = special_cos_dist[i][concept_idx] SCREAMING_SNAKE_CASE : Union[str, Any] = self.special_care_embeds_weights[concept_idx].item() SCREAMING_SNAKE_CASE : Optional[int] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} ) SCREAMING_SNAKE_CASE : Optional[Any] = 0.01 for concept_idx in range(len(cos_dist[0] ) ): SCREAMING_SNAKE_CASE : Optional[int] = cos_dist[i][concept_idx] SCREAMING_SNAKE_CASE : List[str] = self.concept_embeds_weights[concept_idx].item() SCREAMING_SNAKE_CASE : Dict = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(UpperCamelCase__ ) result.append(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = [len(res['''bad_concepts'''] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def __A ( self : int , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : torch.FloatTensor ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.vision_model(UpperCamelCase__ )[1] # pooled_output SCREAMING_SNAKE_CASE : Union[str, Any] = self.visual_projection(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : str = cosine_distance(UpperCamelCase__ , self.special_care_embeds ) SCREAMING_SNAKE_CASE : Any = cosine_distance(UpperCamelCase__ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images SCREAMING_SNAKE_CASE : int = 0.0 SCREAMING_SNAKE_CASE : Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) SCREAMING_SNAKE_CASE : Any = torch.any(special_scores > 0 , dim=1 ) SCREAMING_SNAKE_CASE : Any = special_care * 0.01 SCREAMING_SNAKE_CASE : Optional[int] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) SCREAMING_SNAKE_CASE : List[str] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) SCREAMING_SNAKE_CASE : Tuple = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
248
1
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __A =logging.getLogger(__name__) def lowerCamelCase_ ( ): lowerCamelCase_ = argparse.ArgumentParser( description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." ) parser.add_argument("--file_path" , type=lowerCamelCase__ , default="data/dump.txt" , help="The path to the data." ) parser.add_argument("--tokenizer_type" , type=lowerCamelCase__ , default="bert" , choices=["bert", "roberta", "gpt2"] ) parser.add_argument("--tokenizer_name" , type=lowerCamelCase__ , default="bert-base-uncased" , help="The tokenizer to use." ) parser.add_argument("--dump_file" , type=lowerCamelCase__ , default="data/dump" , help="The dump file prefix." ) lowerCamelCase_ = parser.parse_args() logger.info(F'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": lowerCamelCase_ = BertTokenizer.from_pretrained(args.tokenizer_name ) lowerCamelCase_ = tokenizer.special_tokens_map["cls_token"] # `[CLS]` lowerCamelCase_ = tokenizer.special_tokens_map["sep_token"] # `[SEP]` elif args.tokenizer_type == "roberta": lowerCamelCase_ = RobertaTokenizer.from_pretrained(args.tokenizer_name ) lowerCamelCase_ = tokenizer.special_tokens_map["cls_token"] # `<s>` lowerCamelCase_ = tokenizer.special_tokens_map["sep_token"] # `</s>` elif args.tokenizer_type == "gpt2": lowerCamelCase_ = GPTaTokenizer.from_pretrained(args.tokenizer_name ) lowerCamelCase_ = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>` lowerCamelCase_ = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>` logger.info(F'Loading text from {args.file_path}' ) with open(args.file_path , "r" , encoding="utf8" ) as fp: lowerCamelCase_ = fp.readlines() logger.info("Start encoding" ) logger.info(F'{len(lowerCamelCase__ )} examples to process.' ) lowerCamelCase_ = [] lowerCamelCase_ = 0 lowerCamelCase_ = 1_0_0_0_0 lowerCamelCase_ = time.time() for text in data: lowerCamelCase_ = F'{bos} {text.strip()} {sep}' lowerCamelCase_ = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) rslt.append(lowerCamelCase__ ) iter += 1 if iter % interval == 0: lowerCamelCase_ = time.time() logger.info(F'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) lowerCamelCase_ = time.time() logger.info("Finished binarization" ) logger.info(F'{len(lowerCamelCase__ )} examples processed.' ) lowerCamelCase_ = F'{args.dump_file}.{args.tokenizer_name}.pickle' lowerCamelCase_ = tokenizer.vocab_size if vocab_size < (1 << 1_6): lowerCamelCase_ = [np.uintaa(lowerCamelCase__ ) for d in rslt] else: lowerCamelCase_ = [np.intaa(lowerCamelCase__ ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'Dump to {dp_file}' ) with open(lowerCamelCase__ , "wb" ) as handle: pickle.dump(rslt_ , lowerCamelCase__ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
313
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): if radian_mode: return [magnitude * cos(lowerCamelCase__ ), magnitude * sin(lowerCamelCase__ )] return [magnitude * cos(radians(lowerCamelCase__ ) ), magnitude * sin(radians(lowerCamelCase__ ) )] def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1_0**-1 ): lowerCamelCase_ = cross(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = sum(lowerCamelCase__ ) return abs(lowerCamelCase__ ) < eps if __name__ == "__main__": # Test to check if it works __A =array( [ polar_force(718.4, 1_8_0 - 3_0), polar_force(879.54, 4_5), polar_force(1_0_0, -9_0), ] ) __A =array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg __A =array( [ polar_force(3_0 * 9.81, 1_5), polar_force(2_1_5, 1_8_0 - 4_5), polar_force(2_6_4, 9_0 - 3_0), ] ) __A =array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg __A =array([[0, -2_0_0_0], [0, -1_2_0_0], [0, 1_5_6_0_0], [0, -1_2_4_0_0]]) __A =array([[0, 0], [6, 0], [1_0, 0], [1_2, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
313
1
'''simple docstring''' from __future__ import annotations from typing import Any def A_ ( SCREAMING_SNAKE_CASE_ ) ->int: if not postfix_notation: return 0 lowercase_ = {"""+""", """-""", """*""", """/"""} lowercase_ = [] for token in postfix_notation: if token in operations: lowercase_ , lowercase_ = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(SCREAMING_SNAKE_CASE_ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
451
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __snake_case = logging.get_logger(__name__) __snake_case = {"""vocab_file""": """spiece.model"""} __snake_case = { """vocab_file""": { """AI-Sweden/gpt-sw3-126m""": """https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-350m""": """https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-1.6b""": """https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-6.7b""": """https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-20b""": """https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model""", } } __snake_case = { """AI-Sweden/gpt-sw3-126m""": 2048, """AI-Sweden/gpt-sw3-350m""": 2048, """AI-Sweden/gpt-sw3-1.6b""": 2048, """AI-Sweden/gpt-sw3-6.7b""": 2048, """AI-Sweden/gpt-sw3-20b""": 2048, } class _a ( __a ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['''input_ids''', '''attention_mask'''] def __init__( self : str , lowercase_ : List[str] , lowercase_ : List[str]=False , lowercase_ : List[str]=False , lowercase_ : Optional[int]=False , lowercase_ : Dict=None , lowercase_ : Union[str, Any]=None , lowercase_ : List[Any]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Optional[Dict[str, Any]] = None , **lowercase_ : Tuple , ): '''simple docstring''' lowercase_ = {} if sp_model_kwargs is None else sp_model_kwargs lowercase_ = kwargs.get("""name_or_path""" ) if name_or_path is None: logger.warning( """name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,""" """ you are testing the model, this can safely be ignored""" ) lowercase_ = """None""" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing lowercase_ = """<|endoftext|>""" if eos_token is None else eos_token lowercase_ = """<unk>""" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: lowercase_ = unk_token if pad_token is None else pad_token lowercase_ = eos_token if bos_token is None else bos_token else: lowercase_ = """<pad>""" if pad_token is None else pad_token lowercase_ = """<s>""" if bos_token is None else bos_token super().__init__( do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) lowercase_ = do_lower_case lowercase_ = remove_space lowercase_ = keep_accents lowercase_ = vocab_file lowercase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase_ ) # Used for whitespace normalization in input texts # fmt : off lowercase_ = {""" """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """""", """„"""} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing lowercase_ = re.compile( F"""[{"".join(map(lowercase_ , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8_203] ) )}]""" ) def __getstate__( self : Tuple ): '''simple docstring''' lowercase_ = self.__dict__.copy() lowercase_ = None return state def __setstate__( self : Tuple , lowercase_ : Union[str, Any] ): '''simple docstring''' lowercase_ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase_ = {} lowercase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowerCamelCase__ ( self : int ): '''simple docstring''' return len(self.sp_model ) def lowerCamelCase__ ( self : List[Any] , lowercase_ : str ): '''simple docstring''' lowercase_ = self.non_printing_characters_re.sub("""""" , lowercase_ ) # Normalize whitespaces lowercase_ = """""".join([char if char not in self.whitespaces else """ """ for char in text] ) # NFC Unicode normalization lowercase_ = unicodedata.normalize("""NFC""" , lowercase_ ) return text def lowerCamelCase__ ( self : Any , lowercase_ : str , **lowercase_ : Any ): '''simple docstring''' lowercase_ = self.preprocess_text(lowercase_ ) return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def lowerCamelCase__ ( self : Dict , lowercase_ : str ): '''simple docstring''' return self.sp_model.PieceToId(lowercase_ ) def lowerCamelCase__ ( self : Any , lowercase_ : int ): '''simple docstring''' return self.sp_model.IdToPiece(lowercase_ ) @staticmethod def lowerCamelCase__ ( lowercase_ : str ): '''simple docstring''' return out_string def lowerCamelCase__ ( self : Dict , lowercase_ : List[str] ): '''simple docstring''' lowercase_ = [] lowercase_ = """""" lowercase_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase_ ) + token lowercase_ = True lowercase_ = [] else: current_sub_tokens.append(lowercase_ ) lowercase_ = False out_string += self.sp_model.decode(lowercase_ ) return out_string def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self : Tuple , lowercase_ : str , lowercase_ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowercase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase_ = os.path.join( lowercase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , """wb""" ) as fi: lowercase_ = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,) def lowerCamelCase__ ( self : Any , lowercase_ : Union[str, List[str]] , lowercase_ : Union[str, bool] = False ): '''simple docstring''' if isinstance(lowercase_ , lowercase_ ): lowercase_ = self.preprocess_text(lowercase_ ) lowercase_ = self.sp_model.encode(lowercase_ ) else: lowercase_ = [self.preprocess_text(lowercase_ ) for t in text] lowercase_ = self.sp_model.encode(lowercase_ ) if return_tensors is True or return_tensors == "pt": lowercase_ = torch.tensor(lowercase_ ) return token_ids def lowerCamelCase__ ( self : Union[str, Any] , lowercase_ : Union[int, List[int]] ): '''simple docstring''' return self.sp_model.decode(lowercase_ ) def lowerCamelCase__ ( self : Any , lowercase_ : "Conversation" ): '''simple docstring''' lowercase_ = [F"""User: {text}""" if is_user else F"""Bot: {text}""" for is_user, text in conversation.iter_texts()] lowercase_ = ( F"""{self.eos_token}{self.bos_token}""" + F"""{self.bos_token}""".join(lowercase_ ) + F"""{self.bos_token}Bot:""" ) return self.encode(text=lowercase_ )
451
1
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] ) -> Optional[int]: # Initialise PyTorch model __snake_case : List[str] = LxmertConfig.from_json_file(__UpperCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) __snake_case : Optional[int] = LxmertForPreTraining(__UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __UpperCAmelCase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __magic_name__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
718
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : Any ): # Initialise PyTorch model __snake_case : List[str] = TaConfig.from_json_file(__UpperCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) __snake_case : int = TaForConditionalGeneration(__UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __magic_name__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
679
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCAmelCase ) class __magic_name__ ( lowerCAmelCase ): """simple docstring""" lowerCamelCase__ = field(default='automatic-speech-recognition' , metadata={'include_in_asdict_even_if_is_default': True} ) lowerCamelCase__ = Features({'audio': Audio()} ) lowerCamelCase__ = Features({'transcription': Value('string' )} ) lowerCamelCase__ = "audio" lowerCamelCase__ = "transcription" def lowerCAmelCase__ ( self , lowerCamelCase ): '''simple docstring''' if self.audio_column not in features: raise ValueError(f"Column {self.audio_column} is not present in features." ) if not isinstance(features[self.audio_column] , lowerCamelCase ): raise ValueError(f"Column {self.audio_column} is not an Audio type." ) __A : List[Any] = copy.deepcopy(self ) __A : str = self.input_schema.copy() __A : List[Any] = features[self.audio_column] __A : List[str] = input_schema return task_template @property def lowerCAmelCase__ ( self ): '''simple docstring''' return {self.audio_column: "audio", self.transcription_column: "transcription"}
111
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") _UpperCamelCase = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") _UpperCamelCase = """pt""" if is_torch_available() else """tf""" @require_sentencepiece @require_tokenizers class __magic_name__ ( lowerCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = CamembertTokenizer lowerCamelCase__ = CamembertTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True def lowerCAmelCase__ ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __A : List[Any] = CamembertTokenizer(lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Optional[Any] = "<pad>" __A : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase ) , lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase ) , lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>NOTUSED" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(lowerCamelCase ) , 1004 ) def lowerCAmelCase__ ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Optional[Any] = CamembertTokenizer(lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) __A : Optional[int] = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) __A : str = "I was born in 92000, and this is falsé." __A : List[Any] = tokenizer.encode(lowerCamelCase ) __A : Tuple = rust_tokenizer.encode(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __A : Dict = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) __A : str = rust_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) __A : int = tokenizer.convert_ids_to_tokens(lowerCamelCase ) __A : Optional[int] = rust_tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' if not self.test_rust_tokenizer: return __A : Tuple = self.get_tokenizer() __A : List[Any] = self.get_rust_tokenizer() __A : Any = "I was born in 92000, and this is falsé." __A : int = tokenizer.tokenize(lowerCamelCase ) __A : Any = rust_tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __A : Any = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) __A : Optional[int] = rust_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __A : Union[str, Any] = self.get_rust_tokenizer() __A : Optional[Any] = tokenizer.encode(lowerCamelCase ) __A : Dict = rust_tokenizer.encode(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Any = {"input_ids": [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 2_7575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 2_2804, 1_8818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 1_0326, 24, 2267, 20, 416, 5072, 1_5612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. __A : int = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase , model_name="camembert-base" , revision="3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf" , sequences=lowerCamelCase , )
111
1
from ..utils import DummyObject, requires_backends class __lowercase ( metaclass=lowerCamelCase__ ): lowerCAmelCase__ = ["""note_seq"""] def __init__( self , *lowercase_ , **lowercase_) -> Any: requires_backends(self , ['note_seq']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> int: requires_backends(cls , ['note_seq']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> List[str]: requires_backends(cls , ['note_seq'])
716
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCAmelCase__ : int = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
676
0
from jiwer import compute_measures import datasets A : Dict = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' A : Optional[int] = '''\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. ''' A : List[Any] = ''' Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> wer = datasets.load_metric("wer") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def UpperCamelCase_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", ] , ) def UpperCamelCase_ ( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=False ): if concatenate_texts: return compute_measures(__UpperCamelCase , __UpperCamelCase )["wer"] else: _lowercase = 0 _lowercase = 0 for prediction, reference in zip(__UpperCamelCase , __UpperCamelCase ): _lowercase = compute_measures(__UpperCamelCase , __UpperCamelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
287
from ...processing_utils import ProcessorMixin class a_ ( _a ): a : Optional[int] = '''SpeechT5FeatureExtractor''' a : List[Any] = '''SpeechT5Tokenizer''' def __init__( self , __UpperCamelCase , __UpperCamelCase ): super().__init__(__UpperCamelCase , __UpperCamelCase ) def __call__( self , *__UpperCamelCase , **__UpperCamelCase ): _lowercase = kwargs.pop("""audio""" , __UpperCamelCase ) _lowercase = kwargs.pop("""text""" , __UpperCamelCase ) _lowercase = kwargs.pop("""text_target""" , __UpperCamelCase ) _lowercase = kwargs.pop("""audio_target""" , __UpperCamelCase ) _lowercase = kwargs.pop("""sampling_rate""" , __UpperCamelCase ) if audio is not None and text is not None: raise ValueError( """Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?""" ) if audio_target is not None and text_target is not None: raise ValueError( """Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?""" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( """You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.""" ) if audio is not None: _lowercase = self.feature_extractor(__UpperCamelCase , *__UpperCamelCase , sampling_rate=__UpperCamelCase , **__UpperCamelCase ) elif text is not None: _lowercase = self.tokenizer(__UpperCamelCase , **__UpperCamelCase ) else: _lowercase = None if audio_target is not None: _lowercase = self.feature_extractor(audio_target=__UpperCamelCase , *__UpperCamelCase , sampling_rate=__UpperCamelCase , **__UpperCamelCase ) _lowercase = targets["""input_values"""] elif text_target is not None: _lowercase = self.tokenizer(__UpperCamelCase , **__UpperCamelCase ) _lowercase = targets["""input_ids"""] else: _lowercase = None if inputs is None: return targets if targets is not None: _lowercase = labels _lowercase = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: _lowercase = decoder_attention_mask return inputs def UpperCamelCase_ ( self , *__UpperCamelCase , **__UpperCamelCase ): _lowercase = kwargs.pop("""input_values""" , __UpperCamelCase ) _lowercase = kwargs.pop("""input_ids""" , __UpperCamelCase ) _lowercase = kwargs.pop("""labels""" , __UpperCamelCase ) if input_values is not None and input_ids is not None: raise ValueError("""Cannot process both `input_values` and `input_ids` inputs.""" ) if input_values is None and input_ids is None and labels is None: raise ValueError( """You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.""" ) if input_values is not None: _lowercase = self.feature_extractor.pad(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) elif input_ids is not None: _lowercase = self.tokenizer.pad(__UpperCamelCase , **__UpperCamelCase ) else: _lowercase = None if labels is not None: if "input_ids" in labels or (isinstance(__UpperCamelCase , __UpperCamelCase ) and "input_ids" in labels[0]): _lowercase = self.tokenizer.pad(__UpperCamelCase , **__UpperCamelCase ) _lowercase = targets["""input_ids"""] else: _lowercase = self.feature_extractor.feature_size _lowercase = self.feature_extractor.num_mel_bins _lowercase = self.feature_extractor.pad(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) _lowercase = feature_size_hack _lowercase = targets["""input_values"""] else: _lowercase = None if inputs is None: return targets if targets is not None: _lowercase = labels _lowercase = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: _lowercase = decoder_attention_mask return inputs def UpperCamelCase_ ( self , *__UpperCamelCase , **__UpperCamelCase ): return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def UpperCamelCase_ ( self , *__UpperCamelCase , **__UpperCamelCase ): return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase )
287
1
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 SCREAMING_SNAKE_CASE_ : Optional[int] = { # 1536-bit 5: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 2048-bit 14: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AACAA68FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 3072-bit 15: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 4096-bit 16: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199''' + '''FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 6144-bit 17: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08''' + '''8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B''' + '''302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9''' + '''A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6''' + '''49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8''' + '''FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C''' + '''180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718''' + '''3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D''' + '''04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D''' + '''B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226''' + '''1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC''' + '''E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26''' + '''99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB''' + '''04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2''' + '''233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127''' + '''D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406''' + '''AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918''' + '''DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151''' + '''2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03''' + '''F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F''' + '''BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B''' + '''B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632''' + '''387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E''' + '''6DCC4024FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 8192-bit 18: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD''' + '''F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831''' + '''179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B''' + '''DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF''' + '''5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6''' + '''D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3''' + '''23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328''' + '''06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C''' + '''DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE''' + '''12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4''' + '''38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300''' + '''741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568''' + '''3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9''' + '''22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B''' + '''4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A''' + '''062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36''' + '''4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1''' + '''B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92''' + '''4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47''' + '''9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71''' + '''60C980DD98EDD3DFFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, } class _A : def __init__( self , SCREAMING_SNAKE_CASE__ = 14 ) -> str: if group not in primes: raise ValueError("Unsupported Group" ) lowerCamelCase__ = primes[group]["""prime"""] lowerCamelCase__ = primes[group]["""generator"""] lowerCamelCase__ = int(hexlify(urandom(32 ) ) , base=16 ) def _lowerCamelCase ( self ) -> Any: return hex(self.__private_key )[2:] def _lowerCamelCase ( self ) -> int: lowerCamelCase__ = pow(self.generator , self.__private_key , self.prime ) return hex(lowerCamelCase_ )[2:] def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: return ( 2 <= key <= self.prime - 2 and pow(lowerCamelCase_ , (self.prime - 1) // 2 , self.prime ) == 1 ) def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ) -> List[str]: lowerCamelCase__ = int(lowerCamelCase_ , base=16 ) if not self.is_valid_public_key(lowerCamelCase_ ): raise ValueError("Invalid public key" ) lowerCamelCase__ = pow(lowerCamelCase_ , self.__private_key , self.prime ) return shaaaa(str(lowerCamelCase_ ).encode() ).hexdigest() @staticmethod def _lowerCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: return ( 2 <= remote_public_key_str <= prime - 2 and pow(lowerCamelCase_ , (prime - 1) // 2 , lowerCamelCase_ ) == 1 ) @staticmethod def _lowerCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 14 ) -> int: lowerCamelCase__ = int(lowerCamelCase_ , base=16 ) lowerCamelCase__ = int(lowerCamelCase_ , base=16 ) lowerCamelCase__ = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError("Invalid public key" ) lowerCamelCase__ = pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return shaaaa(str(lowerCamelCase_ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
713
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ : int = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE_ : Optional[int] = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } SCREAMING_SNAKE_CASE_ : Any = { '''facebook/nllb-large-en-ro''': 1024, '''facebook/nllb-200-distilled-600M''': 1024, } # fmt: off SCREAMING_SNAKE_CASE_ : Optional[int] = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class _A ( __a ): __a = VOCAB_FILES_NAMES __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = PRETRAINED_VOCAB_FILES_MAP __a = ['input_ids', 'attention_mask'] __a = NllbTokenizer __a = [] __a = [] def __init__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__="<mask>" , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=False , **SCREAMING_SNAKE_CASE__ , ) -> Any: # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token lowerCamelCase__ = legacy_behaviour super().__init__( vocab_file=SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , src_lang=SCREAMING_SNAKE_CASE__ , tgt_lang=SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , legacy_behaviour=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) lowerCamelCase__ = vocab_file lowerCamelCase__ = False if not self.vocab_file else True lowerCamelCase__ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) lowerCamelCase__ = { lang_code: self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase__ = src_lang if src_lang is not None else "eng_Latn" lowerCamelCase__ = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _lowerCamelCase ( self ) -> str: return self._src_lang @src_lang.setter def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ) -> None: lowerCamelCase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]: lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> Any: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowerCamelCase__ = src_lang lowerCamelCase__ = self(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tgt_lang_id return inputs def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = "eng_Latn" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "fra_Latn" , **SCREAMING_SNAKE_CASE__ , ) -> BatchEncoding: lowerCamelCase__ = src_lang lowerCamelCase__ = tgt_lang return super().prepare_seqaseq_batch(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _lowerCamelCase ( self ) -> Any: return self.set_src_lang_special_tokens(self.src_lang ) def _lowerCamelCase ( self ) -> Tuple: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ) -> None: lowerCamelCase__ = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) if self.legacy_behaviour: lowerCamelCase__ = [] lowerCamelCase__ = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ = [self.cur_lang_code] lowerCamelCase__ = [self.eos_token_id] lowerCamelCase__ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ) -> None: lowerCamelCase__ = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) if self.legacy_behaviour: lowerCamelCase__ = [] lowerCamelCase__ = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ = [self.cur_lang_code] lowerCamelCase__ = [self.eos_token_id] lowerCamelCase__ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return lowerCamelCase__ = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
274
0
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Any: """simple docstring""" lowerCAmelCase__ :Tuple = TapasConfig.from_json_file(_SCREAMING_SNAKE_CASE ) # set absolute/relative position embeddings parameter lowerCAmelCase__ :int = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": lowerCAmelCase__ :Optional[int] = TapasForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) elif task == "WTQ": # run_task_main.py hparams lowerCAmelCase__ :Optional[int] = 4 lowerCAmelCase__ :Tuple = True # hparam_utils.py hparams lowerCAmelCase__ :Optional[int] = 0.6_6_4_6_9_4 lowerCAmelCase__ :Tuple = 0.2_0_7_9_5_1 lowerCAmelCase__ :List[str] = 0.1_2_1_1_9_4 lowerCAmelCase__ :Optional[Any] = True lowerCAmelCase__ :Dict = True lowerCAmelCase__ :Union[str, Any] = False lowerCAmelCase__ :List[str] = 0.0_3_5_2_5_1_3 lowerCAmelCase__ :Optional[Any] = TapasForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams lowerCAmelCase__ :Optional[Any] = 4 lowerCAmelCase__ :str = False # hparam_utils.py hparams lowerCAmelCase__ :Any = 3_6.4_5_1_9 lowerCAmelCase__ :Tuple = 0.9_0_3_4_2_1 lowerCAmelCase__ :Optional[int] = 2_2_2.0_8_8 lowerCAmelCase__ :int = True lowerCAmelCase__ :List[str] = True lowerCAmelCase__ :Optional[Any] = True lowerCAmelCase__ :List[str] = 0.7_6_3_1_4_1 lowerCAmelCase__ :Tuple = TapasForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) elif task == "TABFACT": lowerCAmelCase__ :List[str] = TapasForSequenceClassification(config=_SCREAMING_SNAKE_CASE ) elif task == "MLM": lowerCAmelCase__ :Optional[int] = TapasForMaskedLM(config=_SCREAMING_SNAKE_CASE ) elif task == "INTERMEDIATE_PRETRAINING": lowerCAmelCase__ :Dict = TapasModel(config=_SCREAMING_SNAKE_CASE ) else: raise ValueError(F"Task {task} not supported." ) print(F"Building PyTorch model from configuration: {config}" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model (weights and configuration) print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) # Save tokenizer files print(F"Save tokenizer files to {pytorch_dump_path}" ) lowerCAmelCase__ :str = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __A = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
93
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def _a ( lowercase__ : np.ndarray ): '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def _a ( lowercase__ : np.ndarray , lowercase__ : np.ndarray , lowercase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = np.nan for i in range(lowercase__ ): SCREAMING_SNAKE_CASE__ : int = features[:, labels == i] SCREAMING_SNAKE_CASE__ : int = data.mean(1 ) # Centralize the data of class i SCREAMING_SNAKE_CASE__ : Optional[Any] = data - column_reshape(lowercase__ ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(lowercase__ , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) SCREAMING_SNAKE_CASE__ : Any = np.dot(lowercase__ , centered_data.T ) return covariance_sum / features.shape[1] def _a ( lowercase__ : np.ndarray , lowercase__ : np.ndarray , lowercase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = features.mean(1 ) SCREAMING_SNAKE_CASE__ : List[str] = np.nan for i in range(lowercase__ ): SCREAMING_SNAKE_CASE__ : Tuple = features[:, labels == i] SCREAMING_SNAKE_CASE__ : int = data.shape[1] SCREAMING_SNAKE_CASE__ : List[Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(lowercase__ ) - column_reshape(lowercase__ ) , (column_reshape(lowercase__ ) - column_reshape(lowercase__ )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) SCREAMING_SNAKE_CASE__ : str = device_data * np.dot( column_reshape(lowercase__ ) - column_reshape(lowercase__ ) , (column_reshape(lowercase__ ) - column_reshape(lowercase__ )).T , ) return covariance_sum / features.shape[1] def _a ( lowercase__ : np.ndarray , lowercase__ : int ): '''simple docstring''' if features.any(): SCREAMING_SNAKE_CASE__ : Any = features.mean(1 ) # Center the dataset SCREAMING_SNAKE_CASE__ : Optional[Any] = features - np.reshape(lowercase__ , (data_mean.size, 1) ) SCREAMING_SNAKE_CASE__ : List[Any] = np.dot(lowercase__ , centered_data.T ) / features.shape[1] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = np.linalg.eigh(lowercase__ ) # Take all the columns in the reverse order (-1), and then takes only the first SCREAMING_SNAKE_CASE__ : List[Any] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.dot(filtered_eigenvectors.T , lowercase__ ) logging.info('Principal Component Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=lowercase__ ) logging.error('Dataset empty' ) raise AssertionError def _a ( lowercase__ : np.ndarray , lowercase__ : np.ndarray , lowercase__ : int , lowercase__ : int ): '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = eigh( covariance_between_classes(lowercase__ , lowercase__ , lowercase__ ) , covariance_within_classes(lowercase__ , lowercase__ , lowercase__ ) , ) SCREAMING_SNAKE_CASE__ : Tuple = eigenvectors[:, ::-1][:, :dimensions] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = np.linalg.svd(lowercase__ ) SCREAMING_SNAKE_CASE__ : List[Any] = svd_matrix[:, 0:dimensions] SCREAMING_SNAKE_CASE__ : int = np.dot(filtered_svd_matrix.T , lowercase__ ) logging.info('Linear Discriminant Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=lowercase__ ) logging.error('Dataset empty' ) raise AssertionError def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) SCREAMING_SNAKE_CASE__ : Tuple = np.array([0, 0, 0, 1, 1] ) SCREAMING_SNAKE_CASE__ : str = 2 SCREAMING_SNAKE_CASE__ : Dict = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(lowercase__ ) as error_info: SCREAMING_SNAKE_CASE__ : Optional[int] = linear_discriminant_analysis( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if isinstance(lowercase__ , np.ndarray ): raise AssertionError( 'Did not raise AssertionError for dimensions > classes' ) assert error_info.type is AssertionError def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) SCREAMING_SNAKE_CASE__ : List[str] = 2 SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.array([[6.92820323, 8.66025404, 10.39230485], [3.0, 3.0, 3.0]] ) with pytest.raises(lowercase__ ) as error_info: SCREAMING_SNAKE_CASE__ : int = principal_component_analysis(lowercase__ , lowercase__ ) if not np.allclose(lowercase__ , lowercase__ ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
85
0
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowercase_ : Union[str, Any] = StableDiffusionDiffEditPipeline lowercase_ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} lowercase_ : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} lowercase_ : Union[str, Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase_ : List[str] = frozenset([] ) def lowercase__ ( self : Optional[Any] ): torch.manual_seed(0 ) __snake_case = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=__lowerCAmelCase , ) __snake_case = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , ) __snake_case = DDIMInverseScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__lowerCAmelCase , set_alpha_to_zero=__lowerCAmelCase , ) torch.manual_seed(0 ) __snake_case = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) __snake_case = CLIPTextModel(__lowerCAmelCase ) __snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __snake_case = { 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowercase__ ( self : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any]=0 ): __snake_case = floats_tensor((1, 1_6, 1_6) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) __snake_case = floats_tensor((1, 2, 4, 1_6, 1_6) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) if str(__lowerCAmelCase ).startswith('mps' ): __snake_case = torch.manual_seed(__lowerCAmelCase ) else: __snake_case = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) __snake_case = { 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase__ ( self : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int]=0 ): __snake_case = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) __snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert('RGB' ) if str(__lowerCAmelCase ).startswith('mps' ): __snake_case = torch.manual_seed(__lowerCAmelCase ) else: __snake_case = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) __snake_case = { 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase__ ( self : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str]=0 ): __snake_case = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) __snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert('RGB' ) if str(__lowerCAmelCase ).startswith('mps' ): __snake_case = torch.manual_seed(__lowerCAmelCase ) else: __snake_case = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) __snake_case = { 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def lowercase__ ( self : Dict ): if not hasattr(self.pipeline_class , '_optional_components' ): return __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) __snake_case = self.get_dummy_inputs(__lowerCAmelCase ) __snake_case = pipe(**__lowerCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__lowerCAmelCase ) __snake_case = self.pipeline_class.from_pretrained(__lowerCAmelCase ) pipe_loaded.to(__lowerCAmelCase ) pipe_loaded.set_progress_bar_config(disable=__lowerCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(__lowerCAmelCase , __lowerCAmelCase ) is None , F'`{optional_component}` did not stay set to None after loading.' , ) __snake_case = self.get_dummy_inputs(__lowerCAmelCase ) __snake_case = pipe_loaded(**__lowerCAmelCase )[0] __snake_case = np.abs(output - output_loaded ).max() self.assertLess(__lowerCAmelCase , 1E-4 ) def lowercase__ ( self : List[Any] ): __snake_case = 'cpu' __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) __snake_case = self.get_dummy_mask_inputs(__lowerCAmelCase ) __snake_case = pipe.generate_mask(**__lowerCAmelCase ) __snake_case = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 1_6, 1_6) ) __snake_case = np.array([0] * 9 ) __snake_case = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCAmelCase , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def lowercase__ ( self : int ): __snake_case = 'cpu' __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) __snake_case = self.get_dummy_inversion_inputs(__lowerCAmelCase ) __snake_case = pipe.invert(**__lowerCAmelCase ).images __snake_case = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 3_2, 3_2, 3) ) __snake_case = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , ) __snake_case = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCAmelCase , 1E-3 ) def lowercase__ ( self : Dict ): super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def lowercase__ ( self : Any ): __snake_case = 'cpu' __snake_case = self.get_dummy_components() __snake_case = {'beta_start': 0.00085, 'beta_end': 0.012, 'beta_schedule': 'scaled_linear'} __snake_case = DPMSolverMultistepScheduler(**__lowerCAmelCase ) __snake_case = DPMSolverMultistepInverseScheduler(**__lowerCAmelCase ) __snake_case = self.pipeline_class(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) __snake_case = self.get_dummy_inversion_inputs(__lowerCAmelCase ) __snake_case = pipe.invert(**__lowerCAmelCase ).images __snake_case = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 3_2, 3_2, 3) ) __snake_case = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , ) __snake_case = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCAmelCase , 1E-3 ) @require_torch_gpu @slow class a_ ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ): super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def lowercase__ ( cls : Union[str, Any] ): __snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) __snake_case = raw_image.convert('RGB' ).resize((7_6_8, 7_6_8) ) __snake_case = raw_image def lowercase__ ( self : List[str] ): __snake_case = torch.manual_seed(0 ) __snake_case = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=__lowerCAmelCase , torch_dtype=torch.floataa ) __snake_case = DDIMScheduler.from_config(pipe.scheduler.config ) __snake_case = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__lowerCAmelCase ) __snake_case = 'a bowl of fruit' __snake_case = 'a bowl of pears' __snake_case = pipe.generate_mask( image=self.raw_image , source_prompt=__lowerCAmelCase , target_prompt=__lowerCAmelCase , generator=__lowerCAmelCase , ) __snake_case = pipe.invert( prompt=__lowerCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=__lowerCAmelCase ).latents __snake_case = pipe( prompt=__lowerCAmelCase , mask_image=__lowerCAmelCase , image_latents=__lowerCAmelCase , generator=__lowerCAmelCase , negative_prompt=__lowerCAmelCase , inpaint_strength=0.7 , output_type='numpy' , ).images[0] __snake_case = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((7_6_8, 7_6_8) ) ) / 2_5_5 ) assert np.abs((expected_image - image).max() ) < 5E-1 def lowercase__ ( self : Optional[int] ): __snake_case = torch.manual_seed(0 ) __snake_case = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=__lowerCAmelCase , torch_dtype=torch.floataa ) __snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __snake_case = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__lowerCAmelCase ) __snake_case = 'a bowl of fruit' __snake_case = 'a bowl of pears' __snake_case = pipe.generate_mask( image=self.raw_image , source_prompt=__lowerCAmelCase , target_prompt=__lowerCAmelCase , generator=__lowerCAmelCase , ) __snake_case = pipe.invert( prompt=__lowerCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=__lowerCAmelCase , num_inference_steps=2_5 , ).latents __snake_case = pipe( prompt=__lowerCAmelCase , mask_image=__lowerCAmelCase , image_latents=__lowerCAmelCase , generator=__lowerCAmelCase , negative_prompt=__lowerCAmelCase , inpaint_strength=0.7 , num_inference_steps=2_5 , output_type='numpy' , ).images[0] __snake_case = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((7_6_8, 7_6_8) ) ) / 2_5_5 ) assert np.abs((expected_image - image).max() ) < 5E-1
427
'''simple docstring''' import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput _lowercase = """scheduler_config.json""" class a_ ( UpperCAmelCase__ ): lowercase_ : int = 1 lowercase_ : Tuple = 2 lowercase_ : List[Any] = 3 lowercase_ : Optional[int] = 4 lowercase_ : Dict = 5 lowercase_ : str = 6 lowercase_ : Tuple = 7 lowercase_ : Tuple = 8 lowercase_ : List[Any] = 9 lowercase_ : Dict = 10 lowercase_ : Optional[int] = 11 lowercase_ : List[Any] = 12 lowercase_ : Union[str, Any] = 13 lowercase_ : List[str] = 14 @dataclass class a_ ( UpperCAmelCase__ ): lowercase_ : torch.FloatTensor class a_ : lowercase_ : str = SCHEDULER_CONFIG_NAME lowercase_ : Union[str, Any] = [] lowercase_ : Dict = True @classmethod def lowercase__ ( cls : Optional[Any] , __lowerCAmelCase : Dict[str, Any] = None , __lowerCAmelCase : Optional[str] = None , __lowerCAmelCase : str=False , **__lowerCAmelCase : Optional[int] , ): __snake_case , __snake_case , __snake_case = cls.load_config( pretrained_model_name_or_path=__lowerCAmelCase , subfolder=__lowerCAmelCase , return_unused_kwargs=__lowerCAmelCase , return_commit_hash=__lowerCAmelCase , **__lowerCAmelCase , ) return cls.from_config(__lowerCAmelCase , return_unused_kwargs=__lowerCAmelCase , **__lowerCAmelCase ) def lowercase__ ( self : List[Any] , __lowerCAmelCase : Union[str, os.PathLike] , __lowerCAmelCase : bool = False , **__lowerCAmelCase : Tuple ): self.save_config(save_directory=__lowerCAmelCase , push_to_hub=__lowerCAmelCase , **__lowerCAmelCase ) @property def lowercase__ ( self : Union[str, Any] ): return self._get_compatibles() @classmethod def lowercase__ ( cls : Union[str, Any] ): __snake_case = list(set([cls.__name__] + cls._compatibles ) ) __snake_case = importlib.import_module(__name__.split('.' )[0] ) __snake_case = [ getattr(__lowerCAmelCase , __lowerCAmelCase ) for c in compatible_classes_str if hasattr(__lowerCAmelCase , __lowerCAmelCase ) ] return compatible_classes
427
1
import numpy as np def lowerCAmelCase_ ( __a ) -> np.array: """simple docstring""" return 1 / (1 + np.exp(-vector )) def lowerCAmelCase_ ( __a ) -> np.array: """simple docstring""" return vector * sigmoid(1.7_0_2 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
59
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _lowerCamelCase( lowercase__ ) -> List[Any]: '''simple docstring''' if not is_accelerate_available(): return method __lowercase= version.parse(accelerate.__version__ ).base_version if version.parse(lowercase__ ) < version.parse('0.17.0' ): return method def wrapper(self , *lowercase__ , **lowercase__ ): if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ): self._hf_hook.pre_forward(self ) return method(self , *lowercase__ , **lowercase__ ) return wrapper
230
0
import argparse import collections import json import os import re import string import sys import numpy as np lowerCAmelCase = re.compile(R"""\b(a|an|the)\b""", re.UNICODE) lowerCAmelCase = None def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = argparse.ArgumentParser('''Official evaluation script for SQuAD version 2.0.''' ) parser.add_argument('''data_file''' , metavar='''data.json''' , help='''Input data JSON file.''' ) parser.add_argument('''pred_file''' , metavar='''pred.json''' , help='''Model predictions.''' ) parser.add_argument( '''--out-file''' , '''-o''' , metavar='''eval.json''' , help='''Write accuracy metrics to file (default is stdout).''' ) parser.add_argument( '''--na-prob-file''' , '''-n''' , metavar='''na_prob.json''' , help='''Model estimates of probability of no answer.''' ) parser.add_argument( '''--na-prob-thresh''' , '''-t''' , type=lowercase_ , default=1.0 , help='''Predict "" if no-answer probability exceeds this (default = 1.0).''' , ) parser.add_argument( '''--out-image-dir''' , '''-p''' , metavar='''out_images''' , default=lowercase_ , help='''Save precision-recall curves to directory.''' ) parser.add_argument('''--verbose''' , '''-v''' , action='''store_true''' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __UpperCAmelCase : Optional[Any] = bool(qa['''answers''']['''text'''] ) return qid_to_has_ans def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' def remove_articles(lowercase_ ): return ARTICLES_REGEX.sub(''' ''' , lowercase_ ) def white_space_fix(lowercase_ ): return " ".join(text.split() ) def remove_punc(lowercase_ ): __UpperCAmelCase : str = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowercase_ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowercase_ ) ) ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' if not s: return [] return normalize_answer(lowercase_ ).split() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' return int(normalize_answer(lowercase_ ) == normalize_answer(lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = get_tokens(lowercase_ ) __UpperCAmelCase : Optional[Any] = get_tokens(lowercase_ ) __UpperCAmelCase : Union[str, Any] = collections.Counter(lowercase_ ) & collections.Counter(lowercase_ ) __UpperCAmelCase : List[Any] = sum(common.values() ) if len(lowercase_ ) == 0 or len(lowercase_ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 __UpperCAmelCase : str = 1.0 * num_same / len(lowercase_ ) __UpperCAmelCase : Optional[int] = 1.0 * num_same / len(lowercase_ ) __UpperCAmelCase : List[str] = (2 * precision * recall) / (precision + recall) return fa def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = {} __UpperCAmelCase : List[str] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __UpperCAmelCase : List[Any] = qa['''id'''] __UpperCAmelCase : Optional[int] = [t for t in qa['''answers''']['''text'''] if normalize_answer(lowercase_ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string __UpperCAmelCase : Union[str, Any] = [''''''] if qid not in preds: print(f"Missing prediction for {qid}" ) continue __UpperCAmelCase : str = preds[qid] # Take max over all gold answers __UpperCAmelCase : Tuple = max(compute_exact(lowercase_ , lowercase_ ) for a in gold_answers ) __UpperCAmelCase : str = max(compute_fa(lowercase_ , lowercase_ ) for a in gold_answers ) return exact_scores, fa_scores def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = {} for qid, s in scores.items(): __UpperCAmelCase : Tuple = na_probs[qid] > na_prob_thresh if pred_na: __UpperCAmelCase : Union[str, Any] = float(not qid_to_has_ans[qid] ) else: __UpperCAmelCase : List[str] = s return new_scores def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None ) -> int: '''simple docstring''' if not qid_list: __UpperCAmelCase : int = len(lowercase_ ) return collections.OrderedDict( [ ('''exact''', 1_0_0.0 * sum(exact_scores.values() ) / total), ('''f1''', 1_0_0.0 * sum(fa_scores.values() ) / total), ('''total''', total), ] ) else: __UpperCAmelCase : int = len(lowercase_ ) return collections.OrderedDict( [ ('''exact''', 1_0_0.0 * sum(exact_scores[k] for k in qid_list ) / total), ('''f1''', 1_0_0.0 * sum(fa_scores[k] for k in qid_list ) / total), ('''total''', total), ] ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' for k in new_eval: __UpperCAmelCase : Optional[int] = new_eval[k] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' plt.step(lowercase_ , lowercase_ , color='''b''' , alpha=0.2 , where='''post''' ) plt.fill_between(lowercase_ , lowercase_ , step='''post''' , alpha=0.2 , color='''b''' ) plt.xlabel('''Recall''' ) plt.ylabel('''Precision''' ) plt.xlim([0.0, 1.0_5] ) plt.ylim([0.0, 1.0_5] ) plt.title(lowercase_ ) plt.savefig(lowercase_ ) plt.clf() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Dict = sorted(lowercase_ , key=lambda lowercase_ : na_probs[k] ) __UpperCAmelCase : Union[str, Any] = 0.0 __UpperCAmelCase : int = 1.0 __UpperCAmelCase : str = 0.0 __UpperCAmelCase : str = [1.0] __UpperCAmelCase : str = [0.0] __UpperCAmelCase : Union[str, Any] = 0.0 for i, qid in enumerate(lowercase_ ): if qid_to_has_ans[qid]: true_pos += scores[qid] __UpperCAmelCase : Dict = true_pos / float(i + 1 ) __UpperCAmelCase : List[Any] = true_pos / float(lowercase_ ) if i == len(lowercase_ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(lowercase_ ) recalls.append(lowercase_ ) if out_image: plot_pr_curve(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) return {"ap": 1_0_0.0 * avg_prec} def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' if out_image_dir and not os.path.exists(lowercase_ ): os.makedirs(lowercase_ ) __UpperCAmelCase : str = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return __UpperCAmelCase : Tuple = make_precision_recall_eval( lowercase_ , lowercase_ , lowercase_ , lowercase_ , out_image=os.path.join(lowercase_ , '''pr_exact.png''' ) , title='''Precision-Recall curve for Exact Match score''' , ) __UpperCAmelCase : Dict = make_precision_recall_eval( lowercase_ , lowercase_ , lowercase_ , lowercase_ , out_image=os.path.join(lowercase_ , '''pr_f1.png''' ) , title='''Precision-Recall curve for F1 score''' , ) __UpperCAmelCase : List[str] = {k: float(lowercase_ ) for k, v in qid_to_has_ans.items()} __UpperCAmelCase : List[str] = make_precision_recall_eval( lowercase_ , lowercase_ , lowercase_ , lowercase_ , out_image=os.path.join(lowercase_ , '''pr_oracle.png''' ) , title='''Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)''' , ) merge_eval(lowercase_ , lowercase_ , '''pr_exact''' ) merge_eval(lowercase_ , lowercase_ , '''pr_f1''' ) merge_eval(lowercase_ , lowercase_ , '''pr_oracle''' ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' if not qid_list: return __UpperCAmelCase : Tuple = [na_probs[k] for k in qid_list] __UpperCAmelCase : str = np.ones_like(lowercase_ ) / float(len(lowercase_ ) ) plt.hist(lowercase_ , weights=lowercase_ , bins=20 , range=(0.0, 1.0) ) plt.xlabel('''Model probability of no-answer''' ) plt.ylabel('''Proportion of dataset''' ) plt.title(f"Histogram of no-answer probability: {name}" ) plt.savefig(os.path.join(lowercase_ , f"na_prob_hist_{name}.png" ) ) plt.clf() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) __UpperCAmelCase : Any = num_no_ans __UpperCAmelCase : Optional[Any] = cur_score __UpperCAmelCase : List[str] = 0.0 __UpperCAmelCase : Tuple = sorted(lowercase_ , key=lambda lowercase_ : na_probs[k] ) for i, qid in enumerate(lowercase_ ): if qid not in scores: continue if qid_to_has_ans[qid]: __UpperCAmelCase : Tuple = scores[qid] else: if preds[qid]: __UpperCAmelCase : Optional[Any] = -1 else: __UpperCAmelCase : str = 0 cur_score += diff if cur_score > best_score: __UpperCAmelCase : Optional[int] = cur_score __UpperCAmelCase : int = na_probs[qid] return 1_0_0.0 * best_score / len(lowercase_ ), best_thresh def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = find_best_thresh(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = find_best_thresh(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) __UpperCAmelCase : int = best_exact __UpperCAmelCase : List[Any] = exact_thresh __UpperCAmelCase : Union[str, Any] = best_fa __UpperCAmelCase : Optional[Any] = fa_thresh def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' with open(OPTS.data_file ) as f: __UpperCAmelCase : List[Any] = json.load(lowercase_ ) __UpperCAmelCase : List[Any] = dataset_json['''data'''] with open(OPTS.pred_file ) as f: __UpperCAmelCase : str = json.load(lowercase_ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: __UpperCAmelCase : Optional[int] = json.load(lowercase_ ) else: __UpperCAmelCase : List[str] = {k: 0.0 for k in preds} __UpperCAmelCase : int = make_qid_to_has_ans(lowercase_ ) # maps qid to True/False __UpperCAmelCase : int = [k for k, v in qid_to_has_ans.items() if v] __UpperCAmelCase : List[Any] = [k for k, v in qid_to_has_ans.items() if not v] __UpperCAmelCase , __UpperCAmelCase : Dict = get_raw_scores(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = apply_no_ans_threshold(lowercase_ , lowercase_ , lowercase_ , OPTS.na_prob_thresh ) __UpperCAmelCase : Optional[Any] = apply_no_ans_threshold(lowercase_ , lowercase_ , lowercase_ , OPTS.na_prob_thresh ) __UpperCAmelCase : Any = make_eval_dict(lowercase_ , lowercase_ ) if has_ans_qids: __UpperCAmelCase : Tuple = make_eval_dict(lowercase_ , lowercase_ , qid_list=lowercase_ ) merge_eval(lowercase_ , lowercase_ , '''HasAns''' ) if no_ans_qids: __UpperCAmelCase : List[str] = make_eval_dict(lowercase_ , lowercase_ , qid_list=lowercase_ ) merge_eval(lowercase_ , lowercase_ , '''NoAns''' ) if OPTS.na_prob_file: find_all_best_thresh(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , OPTS.out_image_dir ) histogram_na_prob(lowercase_ , lowercase_ , OPTS.out_image_dir , '''hasAns''' ) histogram_na_prob(lowercase_ , lowercase_ , OPTS.out_image_dir , '''noAns''' ) if OPTS.out_file: with open(OPTS.out_file , '''w''' ) as f: json.dump(lowercase_ , lowercase_ ) else: print(json.dumps(lowercase_ , indent=2 ) ) if __name__ == "__main__": lowerCAmelCase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("""Agg""") import matplotlib.pyplot as plt main()
675
def __SCREAMING_SNAKE_CASE ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCAmelCase = generate_large_matrix() lowerCAmelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: '''simple docstring''' assert all(row == sorted(lowercase_ , reverse=lowercase_ ) for row in grid ) assert all(list(lowercase_ ) == sorted(lowercase_ , reverse=lowercase_ ) for col in zip(*lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[Any] = len(lowercase_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase : List[Any] = (left + right) // 2 __UpperCAmelCase : Dict = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase : Dict = mid + 1 else: __UpperCAmelCase : Optional[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : Dict = len(grid[0] ) for i in range(len(lowercase_ ) ): __UpperCAmelCase : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase_ ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = 0 for row in grid: for i, number in enumerate(lowercase_ ): if number < 0: total += len(lowercase_ ) - i break return total def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase : Tuple = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase : Union[str, Any] = timeit(f"{func}(grid=grid)" , setup=lowercase_ , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
675
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _a ( self : Union[str, Any] ): """simple docstring""" A__ = tempfile.mkdtemp() # fmt: off A__ = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on A__ = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) A__ = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] A__ = {'unk_token': '<unk>'} A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_snake_case ) ) A__ = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073], 'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711], } A__ = os.path.join(self.tmpdirname , _snake_case ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(_snake_case , _snake_case ) def _a ( self : Optional[int] , **_snake_case : str ): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def _a ( self : Union[str, Any] , **_snake_case : str ): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_snake_case ) def _a ( self : int , **_snake_case : List[str] ): """simple docstring""" return CLIPImageProcessor.from_pretrained(self.tmpdirname , **_snake_case ) def _a ( self : int ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _a ( self : Dict ): """simple docstring""" A__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A__ = [Image.fromarray(np.moveaxis(_snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self : int ): """simple docstring""" A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = self.get_image_processor() A__ = CLIPProcessor(tokenizer=_snake_case , image_processor=_snake_case ) processor_slow.save_pretrained(self.tmpdirname ) A__ = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_snake_case ) A__ = CLIPProcessor(tokenizer=_snake_case , image_processor=_snake_case ) processor_fast.save_pretrained(self.tmpdirname ) A__ = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _snake_case ) self.assertIsInstance(processor_fast.tokenizer , _snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _snake_case ) self.assertIsInstance(processor_fast.image_processor , _snake_case ) def _a ( self : Dict ): """simple docstring""" A__ = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) A__ = self.get_image_processor(do_normalize=_snake_case , padding_value=1.0 ) A__ = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_snake_case , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _snake_case ) def _a ( self : Dict ): """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=_snake_case , image_processor=_snake_case ) A__ = self.prepare_image_inputs() A__ = image_processor(_snake_case , return_tensors='np' ) A__ = processor(images=_snake_case , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self : List[str] ): """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=_snake_case , image_processor=_snake_case ) A__ = 'lower newer' A__ = processor(text=_snake_case ) A__ = tokenizer(_snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self : Optional[Any] ): """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=_snake_case , image_processor=_snake_case ) A__ = 'lower newer' A__ = self.prepare_image_inputs() A__ = processor(text=_snake_case , images=_snake_case ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_snake_case ): processor() def _a ( self : List[Any] ): """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=_snake_case , image_processor=_snake_case ) A__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A__ = processor.batch_decode(_snake_case ) A__ = tokenizer.batch_decode(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) def _a ( self : Optional[int] ): """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=_snake_case , image_processor=_snake_case ) A__ = 'lower newer' A__ = self.prepare_image_inputs() A__ = processor(text=_snake_case , images=_snake_case ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
9
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ : def __init__( self : Any , __A : Optional[int] , __A : Optional[int]=2 , __A : int=3 , __A : Union[str, Any]=4 , __A : Tuple=2 , __A : Union[str, Any]=7 , __A : Any=True , __A : List[str]=True , __A : Tuple=True , __A : Tuple=True , __A : List[str]=99 , __A : Tuple=36 , __A : Union[str, Any]=3 , __A : str=4 , __A : str=37 , __A : int="gelu" , __A : Union[str, Any]=0.1 , __A : str=0.1 , __A : List[Any]=512 , __A : Optional[int]=16 , __A : int=2 , __A : List[Any]=0.02 , __A : Optional[Any]=6 , __A : int=6 , __A : str=3 , __A : Optional[int]=4 , __A : Union[str, Any]=None , __A : Tuple=1000 , ) ->Any: """simple docstring""" a__ :Any = parent a__ :Optional[int] = batch_size a__ :Union[str, Any] = num_channels a__ :Any = image_size a__ :Optional[Any] = patch_size a__ :Optional[Any] = text_seq_length a__ :int = is_training a__ :Tuple = use_input_mask a__ :Any = use_token_type_ids a__ :int = use_labels a__ :str = vocab_size a__ :List[str] = hidden_size a__ :Optional[int] = num_hidden_layers a__ :List[str] = num_attention_heads a__ :List[str] = intermediate_size a__ :int = hidden_act a__ :Optional[Any] = hidden_dropout_prob a__ :Union[str, Any] = attention_probs_dropout_prob a__ :int = max_position_embeddings a__ :Tuple = type_vocab_size a__ :Union[str, Any] = type_sequence_label_size a__ :List[Any] = initializer_range a__ :str = coordinate_size a__ :Union[str, Any] = shape_size a__ :int = num_labels a__ :Optional[int] = num_choices a__ :str = scope a__ :int = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) a__ :str = text_seq_length a__ :Tuple = (image_size // patch_size) ** 2 + 1 a__ :Optional[int] = self.text_seq_length + self.image_seq_length def _snake_case ( self : Optional[Any] ) ->Dict: """simple docstring""" a__ :str = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) a__ :Optional[Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: a__ :Optional[Any] = bbox[i, j, 3] a__ :List[str] = bbox[i, j, 1] a__ :str = t if bbox[i, j, 2] < bbox[i, j, 0]: a__ :Any = bbox[i, j, 2] a__ :int = bbox[i, j, 0] a__ :Optional[Any] = t a__ :int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ :List[Any] = None if self.use_input_mask: a__ :str = random_attention_mask([self.batch_size, self.text_seq_length] ) a__ :Optional[Any] = None if self.use_token_type_ids: a__ :str = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) a__ :List[str] = None a__ :List[str] = None if self.use_labels: a__ :str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ :List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) a__ :Tuple = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _snake_case ( self : Tuple , __A : Any , __A : Union[str, Any] , __A : List[str] , __A : Dict , __A : int , __A : Union[str, Any] , __A : Union[str, Any] , __A : Any ) ->Dict: """simple docstring""" a__ :Optional[int] = LayoutLMvaModel(config=__A ) model.to(__A ) model.eval() # text + image a__ :List[Any] = model(__A , pixel_values=__A ) a__ :int = model( __A , bbox=__A , pixel_values=__A , attention_mask=__A , token_type_ids=__A ) a__ :Union[str, Any] = model(__A , bbox=__A , pixel_values=__A , token_type_ids=__A ) a__ :Optional[Any] = model(__A , bbox=__A , pixel_values=__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only a__ :Dict = model(__A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only a__ :Dict = model(pixel_values=__A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _snake_case ( self : Tuple , __A : List[str] , __A : str , __A : Union[str, Any] , __A : str , __A : Any , __A : List[Any] , __A : str , __A : Tuple ) ->Tuple: """simple docstring""" a__ :Optional[Any] = self.num_labels a__ :Tuple = LayoutLMvaForSequenceClassification(__A ) model.to(__A ) model.eval() a__ :str = model( __A , bbox=__A , pixel_values=__A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : Optional[int] , __A : str , __A : Tuple , __A : Union[str, Any] , __A : Union[str, Any] , __A : Dict , __A : int , __A : Optional[int] , __A : int ) ->List[str]: """simple docstring""" a__ :Dict = self.num_labels a__ :Dict = LayoutLMvaForTokenClassification(config=__A ) model.to(__A ) model.eval() a__ :Tuple = model( __A , bbox=__A , pixel_values=__A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _snake_case ( self : str , __A : Optional[Any] , __A : Optional[Any] , __A : List[str] , __A : Union[str, Any] , __A : int , __A : Optional[int] , __A : Union[str, Any] , __A : str ) ->Dict: """simple docstring""" a__ :List[str] = LayoutLMvaForQuestionAnswering(config=__A ) model.to(__A ) model.eval() a__ :List[str] = model( __A , bbox=__A , pixel_values=__A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self : List[Any] ) ->Dict: """simple docstring""" a__ :str = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) :str = config_and_inputs a__ :Tuple = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( _a ,_a ,unittest.TestCase): lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase_ = ( {'document-question-answering': LayoutLMvaForQuestionAnswering, 'feature-extraction': LayoutLMvaModel} if is_torch_available() else {} ) def _snake_case ( self : List[str] , __A : Union[str, Any] , __A : Optional[Any] , __A : Optional[int] , __A : List[str] , __A : Dict ) ->Dict: """simple docstring""" return True def _snake_case ( self : Optional[int] ) ->Optional[Any]: """simple docstring""" a__ :int = LayoutLMvaModelTester(self ) a__ :Union[str, Any] = ConfigTester(self , config_class=__A , hidden_size=37 ) def _snake_case ( self : int , __A : int , __A : List[Any] , __A : Optional[int]=False ) ->Optional[Any]: """simple docstring""" a__ :Union[str, Any] = copy.deepcopy(__A ) if model_class in get_values(__A ): a__ :Dict = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(__A , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__A ): a__ :List[str] = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=__A ) elif model_class in get_values(__A ): a__ :int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) a__ :Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) elif model_class in [ *get_values(__A ), ]: a__ :List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) elif model_class in [ *get_values(__A ), ]: a__ :List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=__A , ) return inputs_dict def _snake_case ( self : Optional[Any] ) ->List[Any]: """simple docstring""" self.config_tester.run_common_tests() def _snake_case ( self : List[Any] ) ->List[Any]: """simple docstring""" a__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def _snake_case ( self : int ) ->Optional[Any]: """simple docstring""" a__ :str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a__ :List[Any] = type self.model_tester.create_and_check_model(*__A ) def _snake_case ( self : Tuple ) ->str: """simple docstring""" a__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__A ) def _snake_case ( self : List[Any] ) ->List[str]: """simple docstring""" a__ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__A ) def _snake_case ( self : Optional[int] ) ->Dict: """simple docstring""" a__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__A ) @slow def _snake_case ( self : Union[str, Any] ) ->str: """simple docstring""" for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ :int = LayoutLMvaModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowerCamelCase__ ( ) -> Optional[Any]: """simple docstring""" a__ :List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class lowerCAmelCase_ ( unittest.TestCase): @cached_property def _snake_case ( self : Union[str, Any] ) ->Dict: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=__A ) if is_vision_available() else None @slow def _snake_case ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" a__ :Optional[Any] = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(__A ) a__ :str = self.default_image_processor a__ :List[str] = prepare_img() a__ :Tuple = image_processor(images=__A , return_tensors="pt" ).pixel_values.to(__A ) a__ :Dict = torch.tensor([[1, 2]] ) a__ :Optional[Any] = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass a__ :int = model( input_ids=input_ids.to(__A ) , bbox=bbox.to(__A ) , pixel_values=pixel_values.to(__A ) , ) # verify the logits a__ :int = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , __A ) a__ :Any = torch.tensor( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ).to(__A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __A , atol=1E-4 ) )
395
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase__ = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } lowerCamelCase__ = { '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } lowerCamelCase__ = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = PRETRAINED_INIT_CONFIGURATION __A = ['''input_ids''', '''attention_mask'''] __A = DistilBertTokenizer def __init__( self : Tuple , lowercase_ : int=None , lowercase_ : Optional[int]=None , lowercase_ : int=True , lowercase_ : Optional[int]="[UNK]" , lowercase_ : str="[SEP]" , lowercase_ : str="[PAD]" , lowercase_ : str="[CLS]" , lowercase_ : Optional[Any]="[MASK]" , lowercase_ : Optional[Any]=True , lowercase_ : int=None , **lowercase_ : Optional[Any] , ) -> List[str]: """simple docstring""" super().__init__( lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , tokenize_chinese_chars=lowercase_ , strip_accents=lowercase_ , **lowercase_ , ) _UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase" , lowercase_) != do_lower_case or normalizer_state.get("strip_accents" , lowercase_) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowercase_) != tokenize_chinese_chars ): _UpperCamelCase = getattr(lowercase_ , normalizer_state.pop("type")) _UpperCamelCase = do_lower_case _UpperCamelCase = strip_accents _UpperCamelCase = tokenize_chinese_chars _UpperCamelCase = normalizer_class(**lowercase_) _UpperCamelCase = do_lower_case def __UpperCAmelCase ( self : int , lowercase_ : Optional[Any] , lowercase_ : str=None) -> Tuple: """simple docstring""" _UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCAmelCase ( self : List[str] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def __UpperCAmelCase ( self : str , lowercase_ : str , lowercase_ : Optional[str] = None) -> Tuple[str]: """simple docstring""" _UpperCamelCase = self._tokenizer.model.save(lowercase_ , name=lowercase_) return tuple(lowercase_)
82
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowerCamelCase__ = { '''cola''': 2, '''mnli''': 3, '''mrpc''': 2, '''sst-2''': 2, '''sts-b''': 1, '''qqp''': 2, '''qnli''': 2, '''rte''': 2, '''wnli''': 2, } logging.set_verbosity_info() def lowerCAmelCase__ ( a__ , a__ , a__ , a__=None ) ->Optional[Any]: '''simple docstring''' _UpperCamelCase = XLNetConfig.from_json_file(a__ ) _UpperCamelCase = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f'Building PyTorch XLNetForSequenceClassification model from configuration: {config}' ) _UpperCamelCase = finetuning_task _UpperCamelCase = GLUE_TASKS_NUM_LABELS[finetuning_task] _UpperCamelCase = XLNetForSequenceClassification(a__ ) elif "squad" in finetuning_task: _UpperCamelCase = finetuning_task _UpperCamelCase = XLNetForQuestionAnswering(a__ ) else: _UpperCamelCase = XLNetLMHeadModel(a__ ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(a__ , a__ , a__ ) # Save pytorch-model _UpperCamelCase = os.path.join(a__ , a__ ) _UpperCamelCase = os.path.join(a__ , a__ ) print(f'Save PyTorch model to {os.path.abspath(a__ )}' ) torch.save(model.state_dict() , a__ ) print(f'Save configuration file to {os.path.abspath(a__ )}' ) with open(a__ , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--xlnet_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained XLNet model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--finetuning_task''', default=None, type=str, help='''Name of a task on which the XLNet TensorFlow model was fine-tuned''', ) lowerCamelCase__ = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
82
1
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCamelCase (a_ :List[Any] , a_ :Union[str, Any] , a_ :Tuple , a_ :List[str] , a_ :str=True , a_ :str="pt") -> List[str]: lowercase :Optional[int] = {'''add_prefix_space''': True} if isinstance(a_ , a_) and not line.startswith(''' ''') else {} lowercase :Optional[int] = padding_side return tokenizer( [line] , max_length=a_ , padding='''max_length''' if pad_to_max_length else None , truncation=a_ , return_tensors=a_ , add_special_tokens=a_ , **a_ , ) def lowerCamelCase (a_ :str , a_ :Tuple , a_ :Optional[Any]=None , ) -> Tuple: lowercase :Optional[Any] = input_ids.ne(a_).any(dim=0) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __magic_name__ ( __UpperCAmelCase ): def __init__( self : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : str="train" , snake_case__ : Optional[Any]=None , snake_case__ : Tuple=None , snake_case__ : Any=None , snake_case__ : Dict="" , ): '''simple docstring''' super().__init__() lowercase :Tuple = Path(snake_case__ ).joinpath(type_path + '''.source''' ) lowercase :Union[str, Any] = Path(snake_case__ ).joinpath(type_path + '''.target''' ) lowercase :List[Any] = self.get_char_lens(self.src_file ) lowercase :Tuple = max_source_length lowercase :Optional[int] = max_target_length assert min(self.src_lens ) > 0, f"""found empty line in {self.src_file}""" lowercase :Any = tokenizer lowercase :Tuple = prefix if n_obs is not None: lowercase :List[str] = self.src_lens[:n_obs] lowercase :List[Any] = src_lang lowercase :str = tgt_lang def __len__( self : Any ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self : str , snake_case__ : Any ): '''simple docstring''' lowercase :Optional[int] = index + 1 # linecache starts at 1 lowercase :Optional[Any] = self.prefix + linecache.getline(str(self.src_file ) , snake_case__ ).rstrip('''\n''' ) lowercase :Dict = linecache.getline(str(self.tgt_file ) , snake_case__ ).rstrip('''\n''' ) assert source_line, f"""empty source line for index {index}""" assert tgt_line, f"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , snake_case__ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowercase :Dict = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer ) lowercase :Optional[int] = self.tokenizer.generator if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer lowercase :Optional[int] = encode_line(snake_case__ , snake_case__ , self.max_source_length , '''right''' ) lowercase :Tuple = encode_line(snake_case__ , snake_case__ , self.max_target_length , '''right''' ) lowercase :List[str] = source_inputs['''input_ids'''].squeeze() lowercase :Optional[Any] = target_inputs['''input_ids'''].squeeze() lowercase :List[str] = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def __snake_case ( snake_case__ : Optional[int] ): '''simple docstring''' return [len(snake_case__ ) for x in Path(snake_case__ ).open().readlines()] def __snake_case ( self : Tuple , snake_case__ : Union[str, Any] ): '''simple docstring''' lowercase :Optional[Any] = torch.stack([x['''input_ids'''] for x in batch] ) lowercase :Tuple = torch.stack([x['''attention_mask'''] for x in batch] ) lowercase :Tuple = torch.stack([x['''decoder_input_ids'''] for x in batch] ) lowercase :str = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer.pad_token_id ) lowercase :Optional[int] = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer.pad_token_id ) lowercase :List[Any] = trim_batch(snake_case__ , snake_case__ ) lowercase , lowercase :List[str] = trim_batch(snake_case__ , snake_case__ , attention_mask=snake_case__ ) lowercase :Optional[int] = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch UpperCAmelCase = getLogger(__name__) def lowerCamelCase (a_ :List[List]) -> Tuple: return list(itertools.chain.from_iterable(a_)) def lowerCamelCase (a_ :str) -> None: lowercase :List[str] = get_git_info() save_json(a_ , os.path.join(a_ , '''git_log.json''')) def lowerCamelCase (a_ :Optional[int] , a_ :Optional[int] , a_ :Optional[Any]=4 , **a_ :Optional[Any]) -> str: with open(a_ , '''w''') as f: json.dump(a_ , a_ , indent=a_ , **a_) def lowerCamelCase (a_ :Dict) -> Union[str, Any]: with open(a_) as f: return json.load(a_) def lowerCamelCase () -> List[str]: lowercase :Dict = git.Repo(search_parent_directories=a_) lowercase :int = { '''repo_id''': str(a_), '''repo_sha''': str(repo.head.object.hexsha), '''repo_branch''': str(repo.active_branch), '''hostname''': str(socket.gethostname()), } return repo_infos def lowerCamelCase (a_ :Callable , a_ :Iterable) -> List: return list(map(a_ , a_)) def lowerCamelCase (a_ :Optional[Any] , a_ :str) -> Any: with open(a_ , '''wb''') as f: return pickle.dump(a_ , a_) def lowerCamelCase (a_ :List[str]) -> List[str]: def remove_articles(a_ :Union[str, Any]): return re.sub(R'''\b(a|an|the)\b''' , ''' ''' , a_) def white_space_fix(a_ :Tuple): return " ".join(text.split()) def remove_punc(a_ :int): lowercase :List[Any] = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(a_ :int): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(a_)))) def lowerCamelCase (a_ :List[str] , a_ :Any) -> List[str]: lowercase :Dict = normalize_answer(a_).split() lowercase :int = normalize_answer(a_).split() lowercase :List[Any] = Counter(a_) & Counter(a_) lowercase :Optional[int] = sum(common.values()) if num_same == 0: return 0 lowercase :str = 1.0 * num_same / len(a_) lowercase :Tuple = 1.0 * num_same / len(a_) lowercase :Tuple = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase (a_ :Tuple , a_ :Optional[Any]) -> List[Any]: return normalize_answer(a_) == normalize_answer(a_) def lowerCamelCase (a_ :List[str] , a_ :List[str]) -> Dict: assert len(a_) == len(a_) lowercase :Any = 0 for hypo, pred in zip(a_ , a_): em += exact_match_score(a_ , a_) if len(a_) > 0: em /= len(a_) return {"em": em} def lowerCamelCase (a_ :Union[str, Any]) -> Optional[Any]: return model_prefix.startswith('''rag''') def lowerCamelCase (a_ :List[str] , a_ :Tuple , a_ :List[str]) -> Any: lowercase :List[str] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowercase :str = '''dropout_rate''' for p in extra_params: if getattr(a_ , a_ , a_): if not hasattr(a_ , a_) and not hasattr(a_ , equivalent_param[p]): logger.info('''config doesn\'t have a `{}` attribute'''.format(a_)) delattr(a_ , a_) continue lowercase :List[str] = p if hasattr(a_ , a_) else equivalent_param[p] setattr(a_ , a_ , getattr(a_ , a_)) delattr(a_ , a_) return hparams, config
677
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase = { '''configuration_encodec''': [ '''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EncodecConfig''', ], '''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EncodecModel''', '''EncodecPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
677
1
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowercase ( unittest.TestCase ): @slow def _UpperCamelCase ( self ) -> int: lowerCamelCase : Tuple = FlaxMTaForConditionalGeneration.from_pretrained('google/mt5-small' ) lowerCamelCase : Any = AutoTokenizer.from_pretrained('google/mt5-small' ) lowerCamelCase : List[str] = tokenizer('Hello there' , return_tensors='np' ).input_ids lowerCamelCase : Dict = tokenizer('Hi I am' , return_tensors='np' ).input_ids lowerCamelCase : Any = shift_tokens_right(lowercase__ , model.config.pad_token_id , model.config.decoder_start_token_id ) lowerCamelCase : Any = model(lowercase__ , decoder_input_ids=lowercase__ ).logits lowerCamelCase : Tuple = optax.softmax_cross_entropy(lowercase__ , onehot(lowercase__ , logits.shape[-1] ) ).mean() lowerCamelCase : Tuple = -(labels.shape[-1] * loss.item()) lowerCamelCase : Union[str, Any] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
703
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCAmelCase ( ): '''simple docstring''' raise RuntimeError('CUDA out of memory.' ) class _lowercase ( nn.Module ): def __init__( self ) -> Optional[Any]: super().__init__() lowerCamelCase : Dict = nn.Linear(3 , 4 ) lowerCamelCase : Optional[int] = nn.BatchNormad(4 ) lowerCamelCase : List[str] = nn.Linear(4 , 5 ) def _UpperCamelCase ( self , UpperCAmelCase_ ) -> Dict: return self.lineara(self.batchnorm(self.lineara(UpperCAmelCase_ ) ) ) class _lowercase ( unittest.TestCase ): def _UpperCamelCase ( self ) -> Dict: lowerCamelCase : Union[str, Any] = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCAmelCase_ ): nonlocal batch_sizes batch_sizes.append(UpperCAmelCase_ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(UpperCAmelCase_ , [128, 64, 32, 16, 8] ) def _UpperCamelCase ( self ) -> Any: lowerCamelCase : Optional[Any] = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCAmelCase_ , UpperCAmelCase_ ): nonlocal batch_sizes batch_sizes.append(UpperCAmelCase_ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga lowerCamelCase , lowerCamelCase : List[str] = mock_training_loop_function('hello' ) self.assertListEqual(UpperCAmelCase_ , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, 'hello'] ) def _UpperCamelCase ( self ) -> List[str]: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(UpperCAmelCase_ ): pass with self.assertRaises(UpperCAmelCase_ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def _UpperCamelCase ( self ) -> List[str]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(UpperCAmelCase_ ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(UpperCAmelCase_ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def _UpperCamelCase ( self ) -> Any: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(UpperCAmelCase_ ) as cm: mock_training_loop_function(128 , 'hello' , 'world' ) self.assertIn('Batch size was passed into `f`' , cm.exception.args[0] ) self.assertIn('`f(arg1=\'hello\', arg2=\'world\')' , cm.exception.args[0] ) def _UpperCamelCase ( self ) -> List[str]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(UpperCAmelCase_ ): raise ValueError('Oops, we had an error!' ) with self.assertRaises(UpperCAmelCase_ ) as cm: mock_training_loop_function() self.assertIn('Oops, we had an error!' , cm.exception.args[0] ) @require_cuda def _UpperCamelCase ( self ) -> Union[str, Any]: lowerCamelCase : List[str] = torch.cuda.memory_allocated() lowerCamelCase : Optional[int] = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , UpperCAmelCase_ ) lowerCamelCase : Tuple = release_memory(UpperCAmelCase_ ) self.assertEqual(torch.cuda.memory_allocated() , UpperCAmelCase_ )
133
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase_ ( a__ , unittest.TestCase ): UpperCAmelCase__ : List[Any] = ShapEImgaImgPipeline UpperCAmelCase__ : str = ["image"] UpperCAmelCase__ : int = ["image"] UpperCAmelCase__ : Optional[int] = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] UpperCAmelCase__ : Tuple = False @property def snake_case_ ( self ) -> Union[str, Any]: return 32 @property def snake_case_ ( self ) -> str: return 32 @property def snake_case_ ( self ) -> int: return self.time_input_dim * 4 @property def snake_case_ ( self ) -> Optional[int]: return 8 @property def snake_case_ ( self ) -> Optional[int]: torch.manual_seed(0 ) UpperCamelCase : Union[str, Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size, image_size=64, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_channels=3, num_hidden_layers=5, patch_size=1, ) UpperCamelCase : List[Any] = CLIPVisionModel(SCREAMING_SNAKE_CASE_ ) return model @property def snake_case_ ( self ) -> str: UpperCamelCase : Dict = CLIPImageProcessor( crop_size=224, do_center_crop=SCREAMING_SNAKE_CASE_, do_normalize=SCREAMING_SNAKE_CASE_, do_resize=SCREAMING_SNAKE_CASE_, image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], resample=3, size=224, ) return image_processor @property def snake_case_ ( self ) -> Any: torch.manual_seed(0 ) UpperCamelCase : Dict = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } UpperCamelCase : Any = PriorTransformer(**SCREAMING_SNAKE_CASE_ ) return model @property def snake_case_ ( self ) -> Optional[int]: torch.manual_seed(0 ) UpperCamelCase : Dict = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } UpperCamelCase : List[Any] = ShapERenderer(**SCREAMING_SNAKE_CASE_ ) return model def snake_case_ ( self ) -> Dict: UpperCamelCase : Dict = self.dummy_prior UpperCamelCase : Tuple = self.dummy_image_encoder UpperCamelCase : Optional[Any] = self.dummy_image_processor UpperCamelCase : Any = self.dummy_renderer UpperCamelCase : Optional[int] = HeunDiscreteScheduler( beta_schedule='exp', num_train_timesteps=1024, prediction_type='sample', use_karras_sigmas=SCREAMING_SNAKE_CASE_, clip_sample=SCREAMING_SNAKE_CASE_, clip_sample_range=1.0, ) UpperCamelCase : Optional[int] = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=0 ) -> List[Any]: UpperCamelCase : Any = floats_tensor((1, 3, 64, 64), rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): UpperCamelCase : Dict = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : Dict = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Tuple = 'cpu' UpperCamelCase : List[str] = self.get_dummy_components() UpperCamelCase : List[str] = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : Optional[int] = output.images[0] UpperCamelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) UpperCamelCase : Any = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ ( self ) -> List[Any]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Optional[Any] = torch_device == 'cpu' UpperCamelCase : Any = True self._test_inference_batch_single_identical( batch_size=2, test_max_difference=SCREAMING_SNAKE_CASE_, relax_max_difference=SCREAMING_SNAKE_CASE_, ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Union[str, Any] = self.get_dummy_components() UpperCamelCase : Tuple = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = 1 UpperCamelCase : Optional[Any] = 2 UpperCamelCase : Optional[int] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) for key in inputs.keys(): if key in self.batch_params: UpperCamelCase : str = batch_size * [inputs[key]] UpperCamelCase : Any = pipe(**SCREAMING_SNAKE_CASE_, num_images_per_prompt=SCREAMING_SNAKE_CASE_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ) -> str: UpperCamelCase : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png' ) UpperCamelCase : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy' ) UpperCamelCase : Optional[int] = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img' ) UpperCamelCase : List[str] = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) UpperCamelCase : int = pipe( SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, guidance_scale=3.0, num_inference_steps=64, frame_size=64, output_type='np', ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
40
def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = '' for i in table: res += inp[i - 1] return res def a__ ( A__ ): return data[1:] + data[0] def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = '' for i in range(len(A__ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : Tuple = int('0b' + data[0] + data[-1], 2 ) SCREAMING_SNAKE_CASE_ : Tuple = int('0b' + data[1:3], 2 ) return bin(s[row][col] )[2:] def a__ ( A__, A__, A__, A__, A__ ): SCREAMING_SNAKE_CASE_ : List[Any] = message[:4] SCREAMING_SNAKE_CASE_ : int = message[4:] SCREAMING_SNAKE_CASE_ : List[str] = apply_table(A__, A__ ) SCREAMING_SNAKE_CASE_ : Dict = xor(A__, A__ ) SCREAMING_SNAKE_CASE_ : Any = apply_sbox(A__, temp[:4] ) # noqa: E741 SCREAMING_SNAKE_CASE_ : List[Any] = apply_sbox(A__, temp[4:] ) SCREAMING_SNAKE_CASE_ : Any = '0' * (2 - len(A__ )) + l # noqa: E741 SCREAMING_SNAKE_CASE_ : List[Any] = '0' * (2 - len(A__ )) + r SCREAMING_SNAKE_CASE_ : Optional[int] = apply_table(l + r, A__ ) SCREAMING_SNAKE_CASE_ : Dict = xor(A__, A__ ) return temp + right if __name__ == "__main__": lowerCAmelCase__ : Optional[Any] =input('Enter 10 bit key: ') lowerCAmelCase__ : int =input('Enter 8 bit message: ') lowerCAmelCase__ : Any =[6, 3, 7, 4, 8, 5, 10, 9] lowerCAmelCase__ : List[str] =[3, 5, 2, 7, 4, 10, 1, 9, 8, 6] lowerCAmelCase__ : Dict =[2, 4, 3, 1] lowerCAmelCase__ : Dict =[2, 6, 3, 1, 4, 8, 5, 7] lowerCAmelCase__ : Union[str, Any] =[4, 1, 3, 5, 7, 2, 8, 6] lowerCAmelCase__ : Dict =[4, 1, 2, 3, 2, 3, 4, 1] lowerCAmelCase__ : str =[[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] lowerCAmelCase__ : Any =[[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation lowerCAmelCase__ : Dict =apply_table(key, paa_table) lowerCAmelCase__ : List[str] =temp[:5] lowerCAmelCase__ : List[Any] =temp[5:] lowerCAmelCase__ : Tuple =left_shift(left) lowerCAmelCase__ : Optional[Any] =left_shift(right) lowerCAmelCase__ : Optional[int] =apply_table(left + right, pa_table) lowerCAmelCase__ : Optional[Any] =left_shift(left) lowerCAmelCase__ : Optional[Any] =left_shift(right) lowerCAmelCase__ : List[str] =left_shift(left) lowerCAmelCase__ : Optional[int] =left_shift(right) lowerCAmelCase__ : Tuple =apply_table(left + right, pa_table) # encryption lowerCAmelCase__ : Tuple =apply_table(message, IP) lowerCAmelCase__ : List[Any] =function(expansion, sa, sa, keya, temp) lowerCAmelCase__ : str =temp[4:] + temp[:4] lowerCAmelCase__ : Optional[Any] =function(expansion, sa, sa, keya, temp) lowerCAmelCase__ : Optional[int] =apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption lowerCAmelCase__ : Union[str, Any] =apply_table(CT, IP) lowerCAmelCase__ : Tuple =function(expansion, sa, sa, keya, temp) lowerCAmelCase__ : Union[str, Any] =temp[4:] + temp[:4] lowerCAmelCase__ : Dict =function(expansion, sa, sa, keya, temp) lowerCAmelCase__ : int =apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
101
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool _snake_case = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'facebook/nllb-200-distilled-600M' lowerCamelCase__ = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) lowerCamelCase__ = 'translator' lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = LANGUAGE_CODES lowerCamelCase__ = ['text', 'text', 'text'] lowerCamelCase__ = ['text'] def snake_case__ ( self, __a, __a, __a): '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(f"{src_lang} is not a supported language.") if tgt_lang not in self.lang_to_code: raise ValueError(f"{tgt_lang} is not a supported language.") _lowerCAmelCase : str = self.lang_to_code[src_lang] _lowerCAmelCase : Optional[int] = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( __a, return_tensors="pt", src_lang=__a, tgt_lang=__a) def snake_case__ ( self, __a): '''simple docstring''' return self.model.generate(**__a) def snake_case__ ( self, __a): '''simple docstring''' return self.post_processor.decode(outputs[0].tolist(), skip_special_tokens=__a)
658
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Dict = OmegaConf.load(_lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(_lowerCamelCase ) ) ) return config def A ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' if conf_path is None: _lowerCAmelCase : Union[str, Any] = "./model_checkpoints/vqgan_only.yaml" _lowerCAmelCase : Tuple = load_config(_lowerCamelCase , display=_lowerCamelCase ) _lowerCAmelCase : str = VQModel(**config.model.params ) if ckpt_path is None: _lowerCAmelCase : Optional[int] = "./model_checkpoints/vqgan_only.pt" _lowerCAmelCase : int = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) if ".ckpt" in ckpt_path: _lowerCAmelCase : List[Any] = sd["state_dict"] model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) model.to(_lowerCamelCase ) del sd return model def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = model.encode(_lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) _lowerCAmelCase : int = model.decode(_lowerCamelCase ) return xrec def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[str] = string.rsplit("." , 1 ) if reload: _lowerCAmelCase : Dict = importlib.import_module(_lowerCamelCase ) importlib.reload(_lowerCamelCase ) return getattr(importlib.import_module(_lowerCamelCase , package=_lowerCamelCase ) , cls ) def A ( _lowerCamelCase ): '''simple docstring''' if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True , _lowerCamelCase=True ): '''simple docstring''' _lowerCAmelCase : str = instantiate_from_config(_lowerCamelCase ) if sd is not None: model.load_state_dict(_lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if ckpt: _lowerCAmelCase : Optional[int] = torch.load(_lowerCamelCase , map_location="cpu" ) _lowerCAmelCase : int = pl_sd["global_step"] print(F"loaded model from global step {global_step}." ) else: _lowerCAmelCase : Optional[int] = {"state_dict": None} _lowerCAmelCase : Any = None _lowerCAmelCase : Optional[int] = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=_lowerCamelCase , eval_mode=_lowerCamelCase )["model"] return model, global_step
658
1
"""simple docstring""" import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging UpperCamelCase_ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowerCAmelCase ( _lowercase ): """simple docstring""" def __init__( self : Optional[Any] , _snake_case : Any , _snake_case : List[str]=768 ) -> Dict: """simple docstring""" super().__init__(_snake_case ) A_ = proj_size A_ = CLIPVisionModel(_snake_case ) A_ = PaintByExampleMapper(_snake_case ) A_ = nn.LayerNorm(config.hidden_size ) A_ = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling A_ = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def lowerCamelCase__ ( self : Tuple , _snake_case : Optional[int] , _snake_case : Optional[int]=False ) -> Dict: """simple docstring""" A_ = self.model(pixel_values=_snake_case ) A_ = clip_output.pooler_output A_ = self.mapper(latent_states[:, None] ) A_ = self.final_layer_norm(_snake_case ) A_ = self.proj_out(_snake_case ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , _snake_case : Optional[int] ) -> Optional[Any]: """simple docstring""" super().__init__() A_ = (config.num_hidden_layers + 1) // 5 A_ = config.hidden_size A_ = 1 A_ = nn.ModuleList( [ BasicTransformerBlock(_snake_case , _snake_case , _snake_case , activation_fn="gelu" , attention_bias=_snake_case ) for _ in range(_snake_case ) ] ) def lowerCamelCase__ ( self : List[str] , _snake_case : int ) -> int: """simple docstring""" for block in self.blocks: A_ = block(_snake_case ) return hidden_states
115
'''simple docstring''' import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) def a_ ( UpperCamelCase_ ): A_ = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) A_ = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , UpperCamelCase_ ) if matches: A_ = float(matches[1] ) A_ = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". A_ = 1_0_0_1 A_ = "imagenet-1k-id2label.json" A_ = "huggingface/label-files" A_ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type="dataset" ) , "r" ) ) A_ = {int(UpperCamelCase_ ) + 1: v for k, v in idalabel.items()} A_ = "background" A_ = idalabel A_ = {v: k for k, v in idalabel.items()} return config def a_ ( ): A_ = "http://images.cocodataset.org/val2017/000000039769.jpg" A_ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return im @torch.no_grad() def a_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False ): A_ = get_mobilenet_va_config(UpperCamelCase_ ) # Load 🤗 model A_ = MobileNetVaForImageClassification(UpperCamelCase_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor A_ = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 3_2} , ) A_ = image_processor(images=prepare_img() , return_tensors="pt" ) A_ = model(**UpperCamelCase_ ) A_ = outputs.logits assert logits.shape == (1, 1_0_0_1) if model_name == "mobilenet_v1_1.0_224": A_ = torch.tensor([-4.1739, -1.1233, 3.1205] ) elif model_name == "mobilenet_v1_0.75_192": A_ = torch.tensor([-3.9440, -2.3141, -0.3333] ) else: A_ = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , UpperCamelCase_ , atol=1e-4 ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCamelCase_ ) if push_to_hub: print("Pushing to the hub..." ) A_ = "google/" + model_name image_processor.push_to_hub(UpperCamelCase_ ) model.push_to_hub(UpperCamelCase_ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''mobilenet_v1_1.0_224''', type=str, help='''Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.''', ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original TensorFlow checkpoint (.ckpt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __SCREAMING_SNAKE_CASE : Dict = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
452
0
import os import sys SCREAMING_SNAKE_CASE_ = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) SCREAMING_SNAKE_CASE_ = [ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def __lowercase ( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return AutoConfig.from_pretrained(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __lowercase ( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' return AutoTokenizer.from_pretrained(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @add_start_docstrings(AutoModel.__doc__ ) def __lowercase ( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' return AutoModel.from_pretrained(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __lowercase ( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __lowercase ( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __lowercase ( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __lowercase ( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
720
from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=lowerCAmelCase_ ): '''simple docstring''' __snake_case : Dict = ["sentencepiece"] def __init__( self : int ,*lowerCamelCase__ : Any ,**lowerCamelCase__ : Any ) -> str: '''simple docstring''' requires_backends(self ,["""sentencepiece"""] ) class UpperCamelCase__ ( metaclass=lowerCAmelCase_ ): '''simple docstring''' __snake_case : Union[str, Any] = ["sentencepiece"] def __init__( self : Any ,*lowerCamelCase__ : str ,**lowerCamelCase__ : List[Any] ) -> str: '''simple docstring''' requires_backends(self ,["""sentencepiece"""] ) class UpperCamelCase__ ( metaclass=lowerCAmelCase_ ): '''simple docstring''' __snake_case : str = ["sentencepiece"] def __init__( self : Union[str, Any] ,*lowerCamelCase__ : Union[str, Any] ,**lowerCamelCase__ : Optional[int] ) -> Optional[int]: '''simple docstring''' requires_backends(self ,["""sentencepiece"""] ) class UpperCamelCase__ ( metaclass=lowerCAmelCase_ ): '''simple docstring''' __snake_case : Dict = ["sentencepiece"] def __init__( self : Tuple ,*lowerCamelCase__ : Dict ,**lowerCamelCase__ : Any ) -> Union[str, Any]: '''simple docstring''' requires_backends(self ,["""sentencepiece"""] ) class UpperCamelCase__ ( metaclass=lowerCAmelCase_ ): '''simple docstring''' __snake_case : Dict = ["sentencepiece"] def __init__( self : Optional[int] ,*lowerCamelCase__ : List[Any] ,**lowerCamelCase__ : Optional[int] ) -> str: '''simple docstring''' requires_backends(self ,["""sentencepiece"""] ) class UpperCamelCase__ ( metaclass=lowerCAmelCase_ ): '''simple docstring''' __snake_case : List[str] = ["sentencepiece"] def __init__( self : Union[str, Any] ,*lowerCamelCase__ : Union[str, Any] ,**lowerCamelCase__ : Optional[Any] ) -> Tuple: '''simple docstring''' requires_backends(self ,["""sentencepiece"""] ) class UpperCamelCase__ ( metaclass=lowerCAmelCase_ ): '''simple docstring''' __snake_case : List[str] = ["sentencepiece"] def __init__( self : int ,*lowerCamelCase__ : List[str] ,**lowerCamelCase__ : str ) -> Optional[int]: '''simple docstring''' requires_backends(self ,["""sentencepiece"""] ) class UpperCamelCase__ ( metaclass=lowerCAmelCase_ ): '''simple docstring''' __snake_case : int = ["sentencepiece"] def __init__( self : Union[str, Any] ,*lowerCamelCase__ : List[Any] ,**lowerCamelCase__ : Optional[Any] ) -> int: '''simple docstring''' requires_backends(self ,["""sentencepiece"""] ) class UpperCamelCase__ ( metaclass=lowerCAmelCase_ ): '''simple docstring''' __snake_case : List[Any] = ["sentencepiece"] def __init__( self : List[str] ,*lowerCamelCase__ : List[str] ,**lowerCamelCase__ : int ) -> Tuple: '''simple docstring''' requires_backends(self ,["""sentencepiece"""] ) class UpperCamelCase__ ( metaclass=lowerCAmelCase_ ): '''simple docstring''' __snake_case : Union[str, Any] = ["sentencepiece"] def __init__( self : str ,*lowerCamelCase__ : Union[str, Any] ,**lowerCamelCase__ : List[str] ) -> Optional[int]: '''simple docstring''' requires_backends(self ,["""sentencepiece"""] ) class UpperCamelCase__ ( metaclass=lowerCAmelCase_ ): '''simple docstring''' __snake_case : Any = ["sentencepiece"] def __init__( self : int ,*lowerCamelCase__ : Dict ,**lowerCamelCase__ : List[Any] ) -> List[str]: '''simple docstring''' requires_backends(self ,["""sentencepiece"""] ) class UpperCamelCase__ ( metaclass=lowerCAmelCase_ ): '''simple docstring''' __snake_case : Any = ["sentencepiece"] def __init__( self : Dict ,*lowerCamelCase__ : Any ,**lowerCamelCase__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' requires_backends(self ,["""sentencepiece"""] ) class UpperCamelCase__ ( metaclass=lowerCAmelCase_ ): '''simple docstring''' __snake_case : Tuple = ["sentencepiece"] def __init__( self : Dict ,*lowerCamelCase__ : int ,**lowerCamelCase__ : Optional[int] ) -> Optional[Any]: '''simple docstring''' requires_backends(self ,["""sentencepiece"""] ) class UpperCamelCase__ ( metaclass=lowerCAmelCase_ ): '''simple docstring''' __snake_case : List[Any] = ["sentencepiece"] def __init__( self : Optional[Any] ,*lowerCamelCase__ : Tuple ,**lowerCamelCase__ : int ) -> Any: '''simple docstring''' requires_backends(self ,["""sentencepiece"""] ) class UpperCamelCase__ ( metaclass=lowerCAmelCase_ ): '''simple docstring''' __snake_case : Tuple = ["sentencepiece"] def __init__( self : Optional[Any] ,*lowerCamelCase__ : Tuple ,**lowerCamelCase__ : Dict ) -> Union[str, Any]: '''simple docstring''' requires_backends(self ,["""sentencepiece"""] ) class UpperCamelCase__ ( metaclass=lowerCAmelCase_ ): '''simple docstring''' __snake_case : List[Any] = ["sentencepiece"] def __init__( self : int ,*lowerCamelCase__ : str ,**lowerCamelCase__ : Optional[Any] ) -> Dict: '''simple docstring''' requires_backends(self ,["""sentencepiece"""] ) class UpperCamelCase__ ( metaclass=lowerCAmelCase_ ): '''simple docstring''' __snake_case : int = ["sentencepiece"] def __init__( self : Union[str, Any] ,*lowerCamelCase__ : Any ,**lowerCamelCase__ : str ) -> List[Any]: '''simple docstring''' requires_backends(self ,["""sentencepiece"""] ) class UpperCamelCase__ ( metaclass=lowerCAmelCase_ ): '''simple docstring''' __snake_case : Dict = ["sentencepiece"] def __init__( self : int ,*lowerCamelCase__ : Any ,**lowerCamelCase__ : Dict ) -> List[Any]: '''simple docstring''' requires_backends(self ,["""sentencepiece"""] ) class UpperCamelCase__ ( metaclass=lowerCAmelCase_ ): '''simple docstring''' __snake_case : int = ["sentencepiece"] def __init__( self : List[Any] ,*lowerCamelCase__ : str ,**lowerCamelCase__ : Any ) -> int: '''simple docstring''' requires_backends(self ,["""sentencepiece"""] ) class UpperCamelCase__ ( metaclass=lowerCAmelCase_ ): '''simple docstring''' __snake_case : Union[str, Any] = ["sentencepiece"] def __init__( self : Dict ,*lowerCamelCase__ : Optional[int] ,**lowerCamelCase__ : str ) -> Tuple: '''simple docstring''' requires_backends(self ,["""sentencepiece"""] ) class UpperCamelCase__ ( metaclass=lowerCAmelCase_ ): '''simple docstring''' __snake_case : str = ["sentencepiece"] def __init__( self : Union[str, Any] ,*lowerCamelCase__ : int ,**lowerCamelCase__ : Any ) -> List[str]: '''simple docstring''' requires_backends(self ,["""sentencepiece"""] ) class UpperCamelCase__ ( metaclass=lowerCAmelCase_ ): '''simple docstring''' __snake_case : Any = ["sentencepiece"] def __init__( self : Dict ,*lowerCamelCase__ : Tuple ,**lowerCamelCase__ : str ) -> int: '''simple docstring''' requires_backends(self ,["""sentencepiece"""] ) class UpperCamelCase__ ( metaclass=lowerCAmelCase_ ): '''simple docstring''' __snake_case : List[str] = ["sentencepiece"] def __init__( self : Optional[int] ,*lowerCamelCase__ : Optional[int] ,**lowerCamelCase__ : Union[str, Any] ) -> Tuple: '''simple docstring''' requires_backends(self ,["""sentencepiece"""] ) class UpperCamelCase__ ( metaclass=lowerCAmelCase_ ): '''simple docstring''' __snake_case : str = ["sentencepiece"] def __init__( self : Optional[Any] ,*lowerCamelCase__ : Optional[int] ,**lowerCamelCase__ : List[Any] ) -> Any: '''simple docstring''' requires_backends(self ,["""sentencepiece"""] ) class UpperCamelCase__ ( metaclass=lowerCAmelCase_ ): '''simple docstring''' __snake_case : Optional[Any] = ["sentencepiece"] def __init__( self : List[str] ,*lowerCamelCase__ : Tuple ,**lowerCamelCase__ : str ) -> Union[str, Any]: '''simple docstring''' requires_backends(self ,["""sentencepiece"""] ) class UpperCamelCase__ ( metaclass=lowerCAmelCase_ ): '''simple docstring''' __snake_case : Optional[int] = ["sentencepiece"] def __init__( self : Optional[Any] ,*lowerCamelCase__ : Tuple ,**lowerCamelCase__ : str ) -> Dict: '''simple docstring''' requires_backends(self ,["""sentencepiece"""] ) class UpperCamelCase__ ( metaclass=lowerCAmelCase_ ): '''simple docstring''' __snake_case : Tuple = ["sentencepiece"] def __init__( self : Any ,*lowerCamelCase__ : Optional[int] ,**lowerCamelCase__ : Any ) -> Optional[int]: '''simple docstring''' requires_backends(self ,["""sentencepiece"""] ) class UpperCamelCase__ ( metaclass=lowerCAmelCase_ ): '''simple docstring''' __snake_case : Dict = ["sentencepiece"] def __init__( self : Union[str, Any] ,*lowerCamelCase__ : List[str] ,**lowerCamelCase__ : List[Any] ) -> str: '''simple docstring''' requires_backends(self ,["""sentencepiece"""] ) class UpperCamelCase__ ( metaclass=lowerCAmelCase_ ): '''simple docstring''' __snake_case : str = ["sentencepiece"] def __init__( self : int ,*lowerCamelCase__ : str ,**lowerCamelCase__ : str ) -> Dict: '''simple docstring''' requires_backends(self ,["""sentencepiece"""] ) class UpperCamelCase__ ( metaclass=lowerCAmelCase_ ): '''simple docstring''' __snake_case : Union[str, Any] = ["sentencepiece"] def __init__( self : int ,*lowerCamelCase__ : List[Any] ,**lowerCamelCase__ : Optional[int] ) -> List[str]: '''simple docstring''' requires_backends(self ,["""sentencepiece"""] ) class UpperCamelCase__ ( metaclass=lowerCAmelCase_ ): '''simple docstring''' __snake_case : Union[str, Any] = ["sentencepiece"] def __init__( self : List[Any] ,*lowerCamelCase__ : Tuple ,**lowerCamelCase__ : Dict ) -> Dict: '''simple docstring''' requires_backends(self ,["""sentencepiece"""] )
116
0
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent __a : List[str] = {"""UserAgent""": UserAgent().random} def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase = script.contents[0] __lowercase = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _UpperCamelCase : """simple docstring""" def __init__( self , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' __lowercase = F"https://www.instagram.com/{username}/" __lowercase = self.get_json() def _SCREAMING_SNAKE_CASE ( self ) -> dict: '''simple docstring''' __lowercase = requests.get(self.url , headers=lowerCamelCase__ ).text __lowercase = BeautifulSoup(lowerCamelCase__ , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ) -> str: '''simple docstring''' return F"{self.__class__.__name__}(\'{self.username}\')" def __str__( self ) -> str: '''simple docstring''' return F"{self.fullname} ({self.username}) is {self.biography}" @property def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' return self.user_data["username"] @property def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' return self.user_data["full_name"] @property def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' return self.user_data["biography"] @property def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' return self.user_data["business_email"] @property def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' return self.user_data["external_url"] @property def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def _SCREAMING_SNAKE_CASE ( self ) -> bool: '''simple docstring''' return self.user_data["is_verified"] @property def _SCREAMING_SNAKE_CASE ( self ) -> bool: '''simple docstring''' return self.user_data["is_private"] def UpperCAmelCase ( lowercase = "github" ): """simple docstring""" import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions __lowercase = InstagramUser(UpperCamelCase__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , UpperCamelCase__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() __a : Union[str, Any] = InstagramUser("""github""") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
534
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class a ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase_ : Tuple = 'M-CLIP' def __init__( self : Any , lowerCamelCase__ : List[Any]=1_024 , lowerCamelCase__ : List[str]=768 , **lowerCamelCase__ : Optional[int] ) -> int: """simple docstring""" __lowercase = transformerDimSize __lowercase = imageDimSize super().__init__(**lowerCamelCase__ ) class a ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase_ : Dict = MCLIPConfig def __init__( self : Union[str, Any] , lowerCamelCase__ : Tuple , *lowerCamelCase__ : Union[str, Any] , **lowerCamelCase__ : Any ) -> List[str]: """simple docstring""" super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) __lowercase = XLMRobertaModel(lowerCamelCase__ ) __lowercase = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def UpperCAmelCase_ ( self : str , lowerCamelCase__ : int , lowerCamelCase__ : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = self.transformer(input_ids=lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0] __lowercase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(lowerCamelCase__ ), embs
332
0
"""simple docstring""" import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCAmelCase_ : Any = logging.get_logger(__name__) lowerCAmelCase_ : Optional[Any] = { '''artists_file''': '''artists.json''', '''lyrics_file''': '''lyrics.json''', '''genres_file''': '''genres.json''', } lowerCAmelCase_ : List[str] = { '''artists_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json''', }, '''genres_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json''', }, '''lyrics_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json''', }, } lowerCAmelCase_ : Union[str, Any] = { '''jukebox''': 5_1_2, } class UpperCamelCase_ ( a_ ): _A : int = VOCAB_FILES_NAMES _A : Dict = PRETRAINED_VOCAB_FILES_MAP _A : List[Any] = PRETRAINED_LYRIC_TOKENS_SIZES _A : Optional[Any] = ['input_ids', 'attention_mask'] def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=["v3", "v2", "v2"] , snake_case__=5_12 , snake_case__=5 , snake_case__="<|endoftext|>" , **snake_case__ , ) -> int: """simple docstring""" UpperCAmelCase = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else unk_token super().__init__( unk_token=snake_case__ , n_genres=snake_case__ , version=snake_case__ , max_n_lyric_tokens=snake_case__ , **snake_case__ , ) UpperCAmelCase = version UpperCAmelCase = max_n_lyric_tokens UpperCAmelCase = n_genres with open(snake_case__ , encoding="""utf-8""" ) as vocab_handle: UpperCAmelCase = json.load(snake_case__ ) with open(snake_case__ , encoding="""utf-8""" ) as vocab_handle: UpperCAmelCase = json.load(snake_case__ ) with open(snake_case__ , encoding="""utf-8""" ) as vocab_handle: UpperCAmelCase = json.load(snake_case__ ) UpperCAmelCase = R"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: UpperCAmelCase = oov.replace(R"""\-'""" , R"""\-+'""" ) UpperCAmelCase = regex.compile(snake_case__ ) UpperCAmelCase = {v: k for k, v in self.artists_encoder.items()} UpperCAmelCase = {v: k for k, v in self.genres_encoder.items()} UpperCAmelCase = {v: k for k, v in self.lyrics_encoder.items()} @property def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Any: """simple docstring""" UpperCAmelCase = [self.artists_encoder.get(snake_case__ , 0 ) for artist in list_artists] for genres in range(len(snake_case__ ) ): UpperCAmelCase = [self.genres_encoder.get(snake_case__ , 0 ) for genre in list_genres[genres]] UpperCAmelCase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) UpperCAmelCase = [[self.lyrics_encoder.get(snake_case__ , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def UpperCamelCase_ ( self , snake_case__ ) -> List[Any]: """simple docstring""" return list(snake_case__ ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self.prepare_for_tokenization(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase = self._tokenize(snake_case__ ) return artist, genre, lyrics def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = False ) -> Tuple[str, str, str, Dict[str, Any]]: """simple docstring""" for idx in range(len(self.version ) ): if self.version[idx] == "v3": UpperCAmelCase = artists[idx].lower() UpperCAmelCase = [genres[idx].lower()] else: UpperCAmelCase = self._normalize(artists[idx] ) + """.v2""" UpperCAmelCase = [ self._normalize(snake_case__ ) + """.v2""" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": UpperCAmelCase = regex.compile(R"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" ) UpperCAmelCase = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" UpperCAmelCase = {vocab[index]: index + 1 for index in range(len(snake_case__ ) )} UpperCAmelCase = 0 UpperCAmelCase = len(snake_case__ ) + 1 UpperCAmelCase = self.vocab UpperCAmelCase = {v: k for k, v in self.vocab.items()} UpperCAmelCase = """""" else: UpperCAmelCase = regex.compile(R"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" ) UpperCAmelCase = self._run_strip_accents(snake_case__ ) UpperCAmelCase = lyrics.replace("""\\""" , """\n""" ) UpperCAmelCase = self.out_of_vocab.sub("""""" , snake_case__ ), [], [] return artists, genres, lyrics def UpperCamelCase_ ( self , snake_case__ ) -> Dict: """simple docstring""" UpperCAmelCase = unicodedata.normalize("""NFD""" , snake_case__ ) UpperCAmelCase = [] for char in text: UpperCAmelCase = unicodedata.category(snake_case__ ) if cat == "Mn": continue output.append(snake_case__ ) return "".join(snake_case__ ) def UpperCamelCase_ ( self , snake_case__ ) -> str: """simple docstring""" UpperCAmelCase = ( [chr(snake_case__ ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(snake_case__ ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(snake_case__ ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["""."""] ) UpperCAmelCase = frozenset(snake_case__ ) UpperCAmelCase = re.compile(R"""_+""" ) UpperCAmelCase = """""".join([c if c in accepted else """_""" for c in text.lower()] ) UpperCAmelCase = pattern.sub("""_""" , snake_case__ ).strip("""_""" ) return text def UpperCamelCase_ ( self , snake_case__ ) -> str: """simple docstring""" return " ".join(snake_case__ ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ = None , snake_case__ = False ) -> List[str]: """simple docstring""" if not isinstance(snake_case__ , snake_case__ ): UpperCAmelCase = TensorType(snake_case__ ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf UpperCAmelCase = tf.constant UpperCAmelCase = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch UpperCAmelCase = torch.tensor UpperCAmelCase = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 UpperCAmelCase = jnp.array UpperCAmelCase = _is_jax else: UpperCAmelCase = np.asarray UpperCAmelCase = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: UpperCAmelCase = [inputs] if not is_tensor(snake_case__ ): UpperCAmelCase = as_tensor(snake_case__ ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" ) return inputs def __call__( self , snake_case__ , snake_case__ , snake_case__="" , snake_case__="pt" ) -> BatchEncoding: """simple docstring""" UpperCAmelCase = [0, 0, 0] UpperCAmelCase = [artist] * len(self.version ) UpperCAmelCase = [genres] * len(self.version ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self.tokenize(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._convert_token_to_id(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase = [-INFINITY] * len(full_tokens[-1] ) UpperCAmelCase = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=snake_case__ ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(snake_case__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase = os.path.join( snake_case__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(snake_case__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=snake_case__ ) ) UpperCAmelCase = os.path.join( snake_case__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(snake_case__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=snake_case__ ) ) UpperCAmelCase = os.path.join( snake_case__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(snake_case__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=snake_case__ ) ) return (artists_file, genres_file, lyrics_file) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = self.artists_decoder.get(snake_case__ ) UpperCAmelCase = [self.genres_decoder.get(snake_case__ ) for genre in genres_index] UpperCAmelCase = [self.lyrics_decoder.get(snake_case__ ) for character in lyric_index] return artist, genres, lyrics
714
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ : List[Any] = logging.get_logger(__name__) lowerCAmelCase_ : Tuple = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } lowerCAmelCase_ : int = { '''b0''': { '''hidden_dim''': 1_2_8_0, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 2_2_4, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1_2_8_0, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 2_4_0, '''dropout_rate''': 0.2, '''dw_padding''': [1_6], }, '''b2''': { '''hidden_dim''': 1_4_0_8, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 2_6_0, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 1_6], }, '''b3''': { '''hidden_dim''': 1_5_3_6, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 3_0_0, '''dropout_rate''': 0.3, '''dw_padding''': [5, 1_8], }, '''b4''': { '''hidden_dim''': 1_7_9_2, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 3_8_0, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2_0_4_8, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 4_5_6, '''dropout_rate''': 0.4, '''dw_padding''': [1_3, 2_7], }, '''b6''': { '''hidden_dim''': 2_3_0_4, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 5_2_8, '''dropout_rate''': 0.5, '''dw_padding''': [3_1], }, '''b7''': { '''hidden_dim''': 2_5_6_0, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 6_0_0, '''dropout_rate''': 0.5, '''dw_padding''': [1_8], }, } def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = EfficientNetConfig() UpperCAmelCase = CONFIG_MAP[model_name]["""hidden_dim"""] UpperCAmelCase = CONFIG_MAP[model_name]["""width_coef"""] UpperCAmelCase = CONFIG_MAP[model_name]["""depth_coef"""] UpperCAmelCase = CONFIG_MAP[model_name]["""image_size"""] UpperCAmelCase = CONFIG_MAP[model_name]["""dropout_rate"""] UpperCAmelCase = CONFIG_MAP[model_name]["""dw_padding"""] UpperCAmelCase = """huggingface/label-files""" UpperCAmelCase = """imagenet-1k-id2label.json""" UpperCAmelCase = 1000 UpperCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase = {int(lowerCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase = Image.open(requests.get(lowerCAmelCase , stream=lowerCAmelCase ).raw ) return im def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = CONFIG_MAP[model_name]["""image_size"""] UpperCAmelCase = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.4_85, 0.4_56, 0.4_06] , image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63] , do_center_crop=lowerCAmelCase , ) return preprocessor def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] UpperCAmelCase = sorted(set(lowerCAmelCase ) ) UpperCAmelCase = len(lowerCAmelCase ) UpperCAmelCase = {b: str(lowerCAmelCase ) for b, i in zip(lowerCAmelCase , range(lowerCAmelCase ) )} UpperCAmelCase = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: UpperCAmelCase = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) UpperCAmelCase = {} for item in rename_keys: if item[0] in original_param_names: UpperCAmelCase = """efficientnet.""" + item[1] UpperCAmelCase = """classifier.weight""" UpperCAmelCase = """classifier.bias""" return key_mapping def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue UpperCAmelCase = key_mapping[key] if "_conv" in key and "kernel" in key: UpperCAmelCase = torch.from_numpy(lowerCAmelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: UpperCAmelCase = torch.from_numpy(lowerCAmelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: UpperCAmelCase = torch.from_numpy(np.transpose(lowerCAmelCase ) ) else: UpperCAmelCase = torch.from_numpy(lowerCAmelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowerCAmelCase ) @torch.no_grad() def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = model_classes[model_name]( include_top=lowerCAmelCase , weights="""imagenet""" , input_tensor=lowerCAmelCase , input_shape=lowerCAmelCase , pooling=lowerCAmelCase , classes=1000 , classifier_activation="""softmax""" , ) UpperCAmelCase = original_model.trainable_variables UpperCAmelCase = original_model.non_trainable_variables UpperCAmelCase = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: UpperCAmelCase = param.numpy() UpperCAmelCase = list(tf_params.keys() ) # Load HuggingFace model UpperCAmelCase = get_efficientnet_config(lowerCAmelCase ) UpperCAmelCase = EfficientNetForImageClassification(lowerCAmelCase ).eval() UpperCAmelCase = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) UpperCAmelCase = rename_keys(lowerCAmelCase ) replace_params(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Initialize preprocessor and preprocess input image UpperCAmelCase = convert_image_processor(lowerCAmelCase ) UpperCAmelCase = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): UpperCAmelCase = hf_model(**lowerCAmelCase ) UpperCAmelCase = outputs.logits.detach().numpy() # Original model inference UpperCAmelCase = False UpperCAmelCase = CONFIG_MAP[model_name]["""image_size"""] UpperCAmelCase = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) UpperCAmelCase = image.img_to_array(lowerCAmelCase ) UpperCAmelCase = np.expand_dims(lowerCAmelCase , axis=0 ) UpperCAmelCase = original_model.predict(lowerCAmelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowerCAmelCase , lowerCAmelCase , atol=1e-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(lowerCAmelCase ): os.mkdir(lowerCAmelCase ) # Save converted model and image processor hf_model.save_pretrained(lowerCAmelCase ) preprocessor.save_pretrained(lowerCAmelCase ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) UpperCAmelCase = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(lowerCAmelCase ) hf_model.push_to_hub(lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') lowerCAmelCase_ : Optional[Any] = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
378
0
from collections.abc import Callable import numpy as np def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> np.ndarray: """simple docstring""" UpperCamelCase_ = int(np.ceil((x_end - xa) / step_size ) ) UpperCamelCase_ = np.zeros((n + 1,) ) UpperCamelCase_ = ya UpperCamelCase_ = xa for k in range(SCREAMING_SNAKE_CASE_ ): UpperCamelCase_ = y[k] + step_size * ode_func(SCREAMING_SNAKE_CASE_ , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
628
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __magic_name__ ( snake_case ): UpperCamelCase_ :Dict = (KDPMaDiscreteScheduler,) UpperCamelCase_ :str = 1_0 def UpperCAmelCase_ ( self , **_lowercase )-> str: UpperCamelCase_ = { "num_train_timesteps": 1_100, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**_lowercase ) return config def UpperCAmelCase_ ( self )-> Union[str, Any]: for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=_lowercase ) def UpperCAmelCase_ ( self )-> int: for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def UpperCAmelCase_ ( self )-> str: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_lowercase ) def UpperCAmelCase_ ( self )-> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = self.scheduler_classes[0] UpperCamelCase_ = self.get_scheduler_config(prediction_type="v_prediction" ) UpperCamelCase_ = scheduler_class(**_lowercase ) scheduler.set_timesteps(self.num_inference_steps ) UpperCamelCase_ = self.dummy_model() UpperCamelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCamelCase_ = sample.to(_lowercase ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase_ = scheduler.scale_model_input(_lowercase , _lowercase ) UpperCamelCase_ = model(_lowercase , _lowercase ) UpperCamelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase ) UpperCamelCase_ = output.prev_sample UpperCamelCase_ = torch.sum(torch.abs(_lowercase ) ) UpperCamelCase_ = torch.mean(torch.abs(_lowercase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_9_3_4e-0_7 ) < 1e-2 assert abs(result_mean.item() - 6.1_1_1_2e-1_0 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2e-0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_002 ) < 1e-3 def UpperCAmelCase_ ( self )-> Dict: if torch_device == "mps": return UpperCamelCase_ = self.scheduler_classes[0] UpperCamelCase_ = self.get_scheduler_config() UpperCamelCase_ = scheduler_class(**_lowercase ) scheduler.set_timesteps(self.num_inference_steps ) UpperCamelCase_ = self.dummy_model() UpperCamelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCamelCase_ = sample.to(_lowercase ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase_ = scheduler.scale_model_input(_lowercase , _lowercase ) UpperCamelCase_ = model(_lowercase , _lowercase ) UpperCamelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase ) UpperCamelCase_ = output.prev_sample UpperCamelCase_ = torch.sum(torch.abs(_lowercase ) ) UpperCamelCase_ = torch.mean(torch.abs(_lowercase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 def UpperCAmelCase_ ( self )-> Optional[int]: if torch_device == "mps": return UpperCamelCase_ = self.scheduler_classes[0] UpperCamelCase_ = self.get_scheduler_config() UpperCamelCase_ = scheduler_class(**_lowercase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowercase ) UpperCamelCase_ = self.dummy_model() UpperCamelCase_ = self.dummy_sample_deter.to(_lowercase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: UpperCamelCase_ = scheduler.scale_model_input(_lowercase , _lowercase ) UpperCamelCase_ = model(_lowercase , _lowercase ) UpperCamelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase ) UpperCamelCase_ = output.prev_sample UpperCamelCase_ = torch.sum(torch.abs(_lowercase ) ) UpperCamelCase_ = torch.mean(torch.abs(_lowercase ) ) if str(_lowercase ).startswith("cpu" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3
628
1
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip __UpperCamelCase : Optional[int] = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def a_ ( _A ) -> List[Any]: """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def a_ ( _A , _A , _A ) -> Optional[Any]: """simple docstring""" return max(metric_fn(_A , _A ) for gt in ground_truths ) def a_ ( _A , _A , _A ) -> Union[str, Any]: """simple docstring""" snake_case__ = [line.strip() for line in open(_A , 'r' ).readlines()] snake_case__ = [] if args.gold_data_mode == "qa": snake_case__ = pd.read_csv(_A , sep='\t' , header=_A ) for answer_list in data[1]: snake_case__ = ast.literal_eval(_A ) answers.append(_A ) else: snake_case__ = [line.strip() for line in open(_A , 'r' ).readlines()] snake_case__ = [[reference] for reference in references] snake_case__ = snake_case__ = snake_case__ = 0 for prediction, ground_truths in zip(_A , _A ): total += 1 em += metric_max_over_ground_truths(_A , _A , _A ) fa += metric_max_over_ground_truths(_A , _A , _A ) snake_case__ = 100.0 * em / total snake_case__ = 100.0 * fa / total logger.info(f'''F1: {fa:.2f}''' ) logger.info(f'''EM: {em:.2f}''' ) def a_ ( _A , _A , _A ) -> Optional[int]: """simple docstring""" snake_case__ = args.k snake_case__ = [line.strip() for line in open(_A , 'r' ).readlines()] snake_case__ = [line.strip() for line in open(_A , 'r' ).readlines()] snake_case__ = snake_case__ = 0 for hypo, reference in zip(_A , _A ): snake_case__ = set(hypo.split('\t' )[:k] ) snake_case__ = set(reference.split('\t' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k snake_case__ = 100.0 * em / total logger.info(f'''Precision@{k}: {em: .2f}''' ) def a_ ( _A , _A , _A ) -> List[Any]: """simple docstring""" def strip_title(_A ): if title.startswith('"' ): snake_case__ = title[1:] if title.endswith('"' ): snake_case__ = title[:-1] return title snake_case__ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _A , return_tensors='pt' , padding=_A , truncation=_A , )['input_ids'].to(args.device ) snake_case__ = rag_model.rag.question_encoder(_A ) snake_case__ = question_enc_outputs[0] snake_case__ = rag_model.retriever( _A , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='pt' , ) snake_case__ = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) snake_case__ = [] for docs in all_docs: snake_case__ = [strip_title(_A ) for title in docs['title']] provenance_strings.append('\t'.join(_A ) ) return provenance_strings def a_ ( _A , _A , _A ) -> Dict: """simple docstring""" with torch.no_grad(): snake_case__ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _A , return_tensors='pt' , padding=_A , truncation=_A ) snake_case__ = inputs_dict.input_ids.to(args.device ) snake_case__ = inputs_dict.attention_mask.to(args.device ) snake_case__ = rag_model.generate( # rag_model overwrites generate _A , attention_mask=_A , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_A , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) snake_case__ = rag_model.retriever.generator_tokenizer.batch_decode(_A , skip_special_tokens=_A ) if args.print_predictions: for q, a in zip(_A , _A ): logger.info('Q: {} - A: {}'.format(_A , _A ) ) return answers def a_ ( ) -> List[Any]: """simple docstring""" snake_case__ = argparse.ArgumentParser() parser.add_argument( '--model_type' , choices=['rag_sequence', 'rag_token', 'bart'] , type=_A , help=( 'RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the' ' model_name_or_path' ) , ) parser.add_argument( '--index_name' , default=_A , choices=['exact', 'compressed', 'legacy'] , type=_A , help='RAG model retriever type' , ) parser.add_argument( '--index_path' , default=_A , type=_A , help='Path to the retrieval index' , ) parser.add_argument('--n_docs' , default=5 , type=_A , help='Number of retrieved docs' ) parser.add_argument( '--model_name_or_path' , default=_A , type=_A , required=_A , help='Path to pretrained checkpoints or model identifier from huggingface.co/models' , ) parser.add_argument( '--eval_mode' , choices=['e2e', 'retrieval'] , default='e2e' , type=_A , help=( 'Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates' ' precision@k.' ) , ) parser.add_argument('--k' , default=1 , type=_A , help='k for the precision@k calculation' ) parser.add_argument( '--evaluation_set' , default=_A , type=_A , required=_A , help='Path to a file containing evaluation samples' , ) parser.add_argument( '--gold_data_path' , default=_A , type=_A , required=_A , help='Path to a tab-separated file with gold samples' , ) parser.add_argument( '--gold_data_mode' , default='qa' , type=_A , choices=['qa', 'ans'] , help=( 'Format of the gold data file' 'qa - a single line in the following format: question [tab] answer_list' 'ans - a single line of the gold file contains the expected answer string' ) , ) parser.add_argument( '--predictions_path' , type=_A , default='predictions.txt' , help='Name of the predictions file, to be stored in the checkpoints directory' , ) parser.add_argument( '--eval_all_checkpoints' , action='store_true' , help='Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number' , ) parser.add_argument( '--eval_batch_size' , default=8 , type=_A , help='Batch size per GPU/CPU for evaluation.' , ) parser.add_argument( '--recalculate' , help='Recalculate predictions even if the prediction file exists' , action='store_true' , ) parser.add_argument( '--num_beams' , default=4 , type=_A , help='Number of beams to be used when generating answers' , ) parser.add_argument('--min_length' , default=1 , type=_A , help='Min length of the generated answers' ) parser.add_argument('--max_length' , default=50 , type=_A , help='Max length of the generated answers' ) parser.add_argument( '--print_predictions' , action='store_true' , help='If True, prints predictions while evaluating.' , ) parser.add_argument( '--print_docs' , action='store_true' , help='If True, prints docs retried while generating.' , ) snake_case__ = parser.parse_args() snake_case__ = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) return args def a_ ( _A ) -> Optional[Any]: """simple docstring""" snake_case__ = {} if args.model_type is None: snake_case__ = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('rag' ): snake_case__ = RagTokenForGeneration if args.model_type == 'rag_token' else RagSequenceForGeneration snake_case__ = args.n_docs if args.index_name is not None: snake_case__ = args.index_name if args.index_path is not None: snake_case__ = args.index_path else: snake_case__ = BartForConditionalGeneration snake_case__ = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('Evaluate the following checkpoints: %s' , _A ) snake_case__ = get_scores if args.eval_mode == 'e2e' else get_precision_at_k snake_case__ = evaluate_batch_eae if args.eval_mode == 'e2e' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('Calculating metrics based on an existing predictions file: {}'.format(args.predictions_path ) ) score_fn(_A , args.predictions_path , args.gold_data_path ) continue logger.info('***** Running evaluation for {} *****'.format(_A ) ) logger.info(' Batch size = %d' , args.eval_batch_size ) logger.info(' Predictions will be stored under {}'.format(args.predictions_path ) ) if args.model_type.startswith('rag' ): snake_case__ = RagRetriever.from_pretrained(_A , **_A ) snake_case__ = model_class.from_pretrained(_A , retriever=_A , **_A ) model.retriever.init_retrieval() else: snake_case__ = model_class.from_pretrained(_A , **_A ) model.to(args.device ) with open(args.evaluation_set , 'r' ) as eval_file, open(args.predictions_path , 'w' ) as preds_file: snake_case__ = [] for line in tqdm(_A ): questions.append(line.strip() ) if len(_A ) == args.eval_batch_size: snake_case__ = evaluate_batch_fn(_A , _A , _A ) preds_file.write('\n'.join(_A ) + '\n' ) preds_file.flush() snake_case__ = [] if len(_A ) > 0: snake_case__ = evaluate_batch_fn(_A , _A , _A ) preds_file.write('\n'.join(_A ) ) preds_file.flush() score_fn(_A , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": __UpperCamelCase : Optional[Any] = get_args() main(args)
701
def a_ ( _A , _A ) -> float: """simple docstring""" if digit_amount > 0: return round(number - int(_A ) , _A ) return number - int(_A ) if __name__ == "__main__": print(decimal_isolate(1.5_3, 0)) print(decimal_isolate(3_5.3_4_5, 1)) print(decimal_isolate(3_5.3_4_5, 2)) print(decimal_isolate(3_5.3_4_5, 3)) print(decimal_isolate(-1_4.7_8_9, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-1_4.1_2_3, 1)) print(decimal_isolate(-1_4.1_2_3, 2)) print(decimal_isolate(-1_4.1_2_3, 3))
372
0
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> Any: """simple docstring""" snake_case__ : Dict =FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) snake_case__ : int =AutoTokenizer.from_pretrained('''google/mt5-small''' ) snake_case__ : str =tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids snake_case__ : Any =tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids snake_case__ : Any =shift_tokens_right(__SCREAMING_SNAKE_CASE , model.config.pad_token_id , model.config.decoder_start_token_id ) snake_case__ : List[str] =model(__SCREAMING_SNAKE_CASE , decoder_input_ids=__SCREAMING_SNAKE_CASE ).logits snake_case__ : str =optax.softmax_cross_entropy(__SCREAMING_SNAKE_CASE , onehot(__SCREAMING_SNAKE_CASE , logits.shape[-1] ) ).mean() snake_case__ : Optional[int] =-(labels.shape[-1] * loss.item()) snake_case__ : List[Any] =-84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
381
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCAmelCase : """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=36 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=None , ) -> List[Any]: """simple docstring""" snake_case__ : Any =parent snake_case__ : str =batch_size snake_case__ : str =seq_length snake_case__ : Any =is_training snake_case__ : Optional[Any] =use_input_mask snake_case__ : List[str] =use_token_type_ids snake_case__ : int =use_labels snake_case__ : Dict =vocab_size snake_case__ : Union[str, Any] =embedding_size snake_case__ : Union[str, Any] =hidden_size snake_case__ : Dict =num_hidden_layers snake_case__ : List[Any] =num_hidden_groups snake_case__ : str =num_attention_heads snake_case__ : List[str] =intermediate_size snake_case__ : Dict =hidden_act snake_case__ : Tuple =hidden_dropout_prob snake_case__ : List[Any] =attention_probs_dropout_prob snake_case__ : Any =max_position_embeddings snake_case__ : int =type_vocab_size snake_case__ : Union[str, Any] =type_sequence_label_size snake_case__ : str =initializer_range snake_case__ : Optional[Any] =num_labels snake_case__ : Dict =num_choices snake_case__ : List[str] =scope def UpperCAmelCase ( self ) -> str: """simple docstring""" snake_case__ : Dict =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Tuple =None if self.use_input_mask: snake_case__ : Any =random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Union[str, Any] =None if self.use_token_type_ids: snake_case__ : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : Optional[Any] =None snake_case__ : Optional[Any] =None snake_case__ : Optional[Any] =None if self.use_labels: snake_case__ : List[str] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : str =ids_tensor([self.batch_size] , self.num_choices ) snake_case__ : Dict =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self ) -> List[str]: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" snake_case__ : List[Any] =AlbertModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : List[str] =model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] =model(__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) snake_case__ : int =model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" snake_case__ : List[Any] =AlbertForPreTraining(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Optional[int] =model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , sentence_order_label=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" snake_case__ : Optional[Any] =AlbertForMaskedLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Tuple =model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" snake_case__ : Dict =AlbertForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Optional[Any] =model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , start_positions=__SCREAMING_SNAKE_CASE , end_positions=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" snake_case__ : Optional[Any] =self.num_labels snake_case__ : Any =AlbertForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Tuple =model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" snake_case__ : int =self.num_labels snake_case__ : int =AlbertForTokenClassification(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Optional[Any] =model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" snake_case__ : Dict =self.num_choices snake_case__ : Optional[Any] =AlbertForMultipleChoice(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Dict =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ : int =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ : int =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ : Tuple =model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self ) -> Any: """simple docstring""" snake_case__ : Optional[Any] =self.prepare_config_and_inputs() ( ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ) : List[str] =config_and_inputs snake_case__ : Union[str, Any] ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ =( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase__ =( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ =True def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ) -> Optional[Any]: """simple docstring""" snake_case__ : int =super()._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) if return_labels: if model_class in get_values(__SCREAMING_SNAKE_CASE ): snake_case__ : Dict =torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) return inputs_dict def UpperCAmelCase ( self ) -> Dict: """simple docstring""" snake_case__ : str =AlbertModelTester(self ) snake_case__ : Optional[Any] =ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def UpperCAmelCase ( self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self ) -> Dict: """simple docstring""" snake_case__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ) -> List[Any]: """simple docstring""" snake_case__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ) -> Any: """simple docstring""" snake_case__ : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ) -> Any: """simple docstring""" snake_case__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case__ : List[Any] =type self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Optional[Any] =AlbertModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> int: """simple docstring""" snake_case__ : Dict =AlbertModel.from_pretrained('''albert-base-v2''' ) snake_case__ : Dict =torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) snake_case__ : List[Any] =torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): snake_case__ : Union[str, Any] =model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )[0] snake_case__ : Dict =torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] =torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
381
1
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _snake_case ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _snake_case ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" _lowerCAmelCase : Union[str, Any] = tmp_path / "cache" _lowerCAmelCase : List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowerCAmelCase : int = ParquetDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def _snake_case ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase : Any = tmp_path / "cache" _lowerCAmelCase : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _lowerCAmelCase : Dict = features.copy() if features else default_expected_features _lowerCAmelCase : Dict = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) _lowerCAmelCase : List[Any] = ParquetDatasetReader(SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _snake_case ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _lowerCAmelCase : str = tmp_path / "cache" _lowerCAmelCase : int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _lowerCAmelCase : Tuple = ParquetDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , split=SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def _snake_case ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _lowerCAmelCase : Any = parquet_path elif issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _lowerCAmelCase : Tuple = [parquet_path] _lowerCAmelCase : Any = tmp_path / "cache" _lowerCAmelCase : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _lowerCAmelCase : Any = ParquetDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _snake_case ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=("train",) ) -> Tuple: """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for split in splits: _lowerCAmelCase : Optional[int] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _snake_case ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _lowerCAmelCase : Union[str, Any] = tmp_path / "cache" _lowerCAmelCase : Tuple = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowerCAmelCase : Optional[int] = ParquetDatasetReader( {"train": parquet_path} , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def _snake_case ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" _lowerCAmelCase : Optional[int] = tmp_path / "cache" _lowerCAmelCase : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _lowerCAmelCase : List[Any] = features.copy() if features else default_expected_features _lowerCAmelCase : Tuple = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) _lowerCAmelCase : Optional[Any] = ParquetDatasetReader({"train": parquet_path} , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _snake_case ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if split: _lowerCAmelCase : str = {split: parquet_path} else: _lowerCAmelCase : str = "train" _lowerCAmelCase : Any = {"train": parquet_path, "test": parquet_path} _lowerCAmelCase : Union[str, Any] = tmp_path / "cache" _lowerCAmelCase : List[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _lowerCAmelCase : Optional[Any] = ParquetDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _snake_case ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _lowerCAmelCase : Any = ParquetDatasetWriter(SCREAMING_SNAKE_CASE , tmp_path / "foo.parquet" ) assert writer.write() > 0 _lowerCAmelCase : Any = pq.ParquetFile(tmp_path / "foo.parquet" ) _lowerCAmelCase : Dict = pf.read() assert dataset.data.table == output_table def _snake_case ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" _lowerCAmelCase : int = str(shared_datadir / "test_image_rgb.jpg" ) _lowerCAmelCase : str = {"image": [image_path]} _lowerCAmelCase : Any = Features({"image": Image()} ) _lowerCAmelCase : List[str] = Dataset.from_dict(SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE ) _lowerCAmelCase : str = ParquetDatasetWriter(SCREAMING_SNAKE_CASE , tmp_path / "foo.parquet" ) assert writer.write() > 0 _lowerCAmelCase : str = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features _lowerCAmelCase : str = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=SCREAMING_SNAKE_CASE ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def _snake_case ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" assert get_writer_batch_size(SCREAMING_SNAKE_CASE ) == expected
700
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin __UpperCAmelCase = '\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n' class A__ ( unittest.TestCase , A ): """simple docstring""" def __magic_name__ ( self : Tuple ): '''simple docstring''' _lowerCAmelCase : Dict = load_tool("text-question-answering" ) self.tool.setup() _lowerCAmelCase : int = load_tool("text-question-answering" , remote=A_ ) def __magic_name__ ( self : List[str] ): '''simple docstring''' _lowerCAmelCase : Dict = self.tool(A_ , "What did Hugging Face do in April 2021?" ) self.assertEqual(A_ , "launched the BigScience Research Workshop" ) def __magic_name__ ( self : Tuple ): '''simple docstring''' _lowerCAmelCase : int = self.remote_tool(A_ , "What did Hugging Face do in April 2021?" ) self.assertEqual(A_ , "launched the BigScience Research Workshop" ) def __magic_name__ ( self : Dict ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.tool(text=A_ , question="What did Hugging Face do in April 2021?" ) self.assertEqual(A_ , "launched the BigScience Research Workshop" ) def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.remote_tool(text=A_ , question="What did Hugging Face do in April 2021?" ) self.assertEqual(A_ , "launched the BigScience Research Workshop" )
503
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : Tuple = (DEISMultistepScheduler,) _UpperCamelCase : List[str] = (("num_inference_steps", 25),) def SCREAMING_SNAKE_CASE__ ( self , **snake_case ): lowercase = { 'num_train_timesteps': 1000, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, } config.update(**SCREAMING_SNAKE_CASE__ ) return config def SCREAMING_SNAKE_CASE__ ( self , snake_case=0 , **snake_case ): lowercase = dict(self.forward_default_kwargs ) lowercase = kwargs.pop('num_inference_steps' , SCREAMING_SNAKE_CASE__ ) lowercase = self.dummy_sample lowercase = 0.1 * sample lowercase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowercase = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) lowercase = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals lowercase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE__ ) lowercase = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals lowercase = dummy_past_residuals[: new_scheduler.config.solver_order] lowercase , lowercase = sample, sample for t in range(SCREAMING_SNAKE_CASE__ , time_step + scheduler.config.solver_order + 1 ): lowercase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample lowercase = new_scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self , snake_case=0 , **snake_case ): lowercase = dict(self.forward_default_kwargs ) lowercase = kwargs.pop('num_inference_steps' , SCREAMING_SNAKE_CASE__ ) lowercase = self.dummy_sample lowercase = 0.1 * sample lowercase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowercase = self.get_scheduler_config() lowercase = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals (must be after setting timesteps) lowercase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE__ ) lowercase = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residual (must be after setting timesteps) lowercase = dummy_past_residuals[: new_scheduler.config.solver_order] lowercase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample lowercase = new_scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE__ ( self , snake_case=None , **snake_case ): if scheduler is None: lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) lowercase = scheduler_class(**SCREAMING_SNAKE_CASE__ ) lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) lowercase = scheduler_class(**SCREAMING_SNAKE_CASE__ ) lowercase = 10 lowercase = self.dummy_model() lowercase = self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(scheduler.timesteps ): lowercase = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample return sample def SCREAMING_SNAKE_CASE__ ( self ): lowercase = dict(self.forward_default_kwargs ) lowercase = kwargs.pop('num_inference_steps' , SCREAMING_SNAKE_CASE__ ) for scheduler_class in self.scheduler_classes: lowercase = self.get_scheduler_config() lowercase = scheduler_class(**SCREAMING_SNAKE_CASE__ ) lowercase = self.dummy_sample lowercase = 0.1 * sample if num_inference_steps is not None and hasattr(SCREAMING_SNAKE_CASE__ , 'set_timesteps' ): scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) elif num_inference_steps is not None and not hasattr(SCREAMING_SNAKE_CASE__ , 'set_timesteps' ): lowercase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase = [residual + 0.2, residual + 0.15, residual + 0.10] lowercase = dummy_past_residuals[: scheduler.config.solver_order] lowercase = scheduler.timesteps[5] lowercase = scheduler.timesteps[6] lowercase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample lowercase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = DEISMultistepScheduler(**self.get_scheduler_config() ) lowercase = self.full_loop(scheduler=SCREAMING_SNAKE_CASE__ ) lowercase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_mean.item() - 0.23_916 ) < 1E-3 lowercase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowercase = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowercase = UniPCMultistepScheduler.from_config(scheduler.config ) lowercase = DEISMultistepScheduler.from_config(scheduler.config ) lowercase = self.full_loop(scheduler=SCREAMING_SNAKE_CASE__ ) lowercase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_mean.item() - 0.23_916 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ): for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( self ): self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE__ ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE__ , prediction_type=SCREAMING_SNAKE_CASE__ , sample_max_value=SCREAMING_SNAKE_CASE__ , algorithm_type='deis' , solver_order=SCREAMING_SNAKE_CASE__ , solver_type=SCREAMING_SNAKE_CASE__ , ) def SCREAMING_SNAKE_CASE__ ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( self ): for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=SCREAMING_SNAKE_CASE__ , solver_type=SCREAMING_SNAKE_CASE__ , prediction_type=SCREAMING_SNAKE_CASE__ , algorithm_type=SCREAMING_SNAKE_CASE__ , ) lowercase = self.full_loop( solver_order=SCREAMING_SNAKE_CASE__ , solver_type=SCREAMING_SNAKE_CASE__ , prediction_type=SCREAMING_SNAKE_CASE__ , algorithm_type=SCREAMING_SNAKE_CASE__ , ) assert not torch.isnan(SCREAMING_SNAKE_CASE__ ).any(), "Samples have nan numbers" def SCREAMING_SNAKE_CASE__ ( self ): self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE__ ) self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( self ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE__ , time_step=0 ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.full_loop() lowercase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_mean.item() - 0.23_916 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.full_loop(prediction_type='v_prediction' ) lowercase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_mean.item() - 0.091 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config(thresholding=SCREAMING_SNAKE_CASE__ , dynamic_thresholding_ratio=0 ) lowercase = scheduler_class(**SCREAMING_SNAKE_CASE__ ) lowercase = 10 lowercase = self.dummy_model() lowercase = self.dummy_sample_deter.half() scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(scheduler.timesteps ): lowercase = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample assert sample.dtype == torch.floataa
84
def __lowerCamelCase ( _lowercase ) -> str: return "".join(chr(ord(_lowercase ) - 32 ) if 'a' <= char <= 'z' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
282
0
import math class lowerCamelCase_ : def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ ) -> int: """simple docstring""" _UpperCamelCase = 0.0 _UpperCamelCase = 0.0 for i in range(len(__a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> list[list[int | float]]: """simple docstring""" for i in range(len(__a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def _lowercase ( ) -> None: """simple docstring""" _UpperCamelCase = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _UpperCamelCase = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _UpperCamelCase = SelfOrganizingMap() _UpperCamelCase = 3 _UpperCamelCase = 0.5 for _ in range(lowercase_ ): for j in range(len(lowercase_ ) ): # training sample _UpperCamelCase = training_samples[j] # Compute the winning vector _UpperCamelCase = self_organizing_map.get_winner(lowercase_ , lowercase_ ) # Update the winning vector _UpperCamelCase = self_organizing_map.update(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # classify test sample _UpperCamelCase = [0, 0, 0, 1] _UpperCamelCase = self_organizing_map.get_winner(lowercase_ , lowercase_ ) # results print(f'''Clusters that the test sample belongs to : {winner}''' ) print(f'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
707
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __lowerCAmelCase = imread(r"""digital_image_processing/image_data/lena_small.jpg""") __lowerCAmelCase = cvtColor(img, COLOR_BGR2GRAY) def _lowercase ( ) -> List[str]: """simple docstring""" _UpperCamelCase = cn.convert_to_negative(a__ ) # assert negative_img array for at least one True assert negative_img.any() def _lowercase ( ) -> Union[str, Any]: """simple docstring""" with Image.open("digital_image_processing/image_data/lena_small.jpg" ) as img: # Work around assertion for response assert str(cc.change_contrast(a__ , 1_10 ) ).startswith( "<PIL.Image.Image image mode=RGB size=100x100 at" ) def _lowercase ( ) -> Any: """simple docstring""" _UpperCamelCase = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _lowercase ( ) -> List[str]: """simple docstring""" _UpperCamelCase = imread("digital_image_processing/image_data/lena_small.jpg" , 0 ) # assert ambiguous array for all == True assert canny_img.all() _UpperCamelCase = canny.canny(a__ ) # assert canny array for at least one True assert canny_array.any() def _lowercase ( ) -> Tuple: """simple docstring""" assert gg.gaussian_filter(a__ , 5 , sigma=0.9 ).all() def _lowercase ( ) -> List[Any]: """simple docstring""" _UpperCamelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) _UpperCamelCase = conv.img_convolve(a__ , a__ ).astype(a__ ) assert res.any() def _lowercase ( ) -> int: """simple docstring""" assert med.median_filter(a__ , 3 ).any() def _lowercase ( ) -> Tuple: """simple docstring""" _UpperCamelCase , _UpperCamelCase = sob.sobel_filter(a__ ) assert grad.any() and theta.any() def _lowercase ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = sp.make_sepia(a__ , 20 ) assert sepia.all() def _lowercase ( a__ : str = "digital_image_processing/image_data/lena_small.jpg" ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = bs.Burkes(imread(a__ , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def _lowercase ( a__ : str = "digital_image_processing/image_data/lena_small.jpg" , ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = rs.NearestNeighbour(imread(a__ , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def _lowercase ( ) -> Any: """simple docstring""" _UpperCamelCase = "digital_image_processing/image_data/lena.jpg" # Reading the image and converting it to grayscale. _UpperCamelCase = imread(a__ , 0 ) # Test for get_neighbors_pixel function() return not None _UpperCamelCase = 0 _UpperCamelCase = 0 _UpperCamelCase = image[x_coordinate][y_coordinate] _UpperCamelCase = lbp.get_neighbors_pixel( a__ , a__ , a__ , a__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image _UpperCamelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): _UpperCamelCase = lbp.local_binary_value(a__ , a__ , a__ ) assert lbp_image.any()
589
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __lowercase : str ={ """configuration_audio_spectrogram_transformer""": [ """AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ASTConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[Any] =[ """AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ASTForAudioClassification""", """ASTModel""", """ASTPreTrainedModel""", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Dict =["""ASTFeatureExtractor"""] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __lowercase : List[str] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
54
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __A ={ 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def _UpperCamelCase ( UpperCamelCase__ ): assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): if args.student_type == "roberta": UpperCAmelCase__ : Optional[Any] = False elif args.student_type == "gpt2": UpperCAmelCase__ : str = False def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): if args.student_type == "roberta": UpperCAmelCase__ : str = False def _UpperCamelCase ( ): UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser(description="""Training""" ) parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""" ) parser.add_argument( """--dump_path""" , type=UpperCamelCase__ , required=UpperCamelCase__ , help="""The output directory (log, checkpoints, parameters, etc.)""" ) parser.add_argument( """--data_file""" , type=UpperCamelCase__ , required=UpperCamelCase__ , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , ) parser.add_argument( """--student_type""" , type=UpperCamelCase__ , choices=["""distilbert""", """roberta""", """gpt2"""] , required=UpperCamelCase__ , help="""The student type (DistilBERT, RoBERTa).""" , ) parser.add_argument("""--student_config""" , type=UpperCamelCase__ , required=UpperCamelCase__ , help="""Path to the student configuration.""" ) parser.add_argument( """--student_pretrained_weights""" , default=UpperCamelCase__ , type=UpperCamelCase__ , help="""Load student initialization checkpoint.""" ) parser.add_argument( """--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=UpperCamelCase__ , help="""Teacher type (BERT, RoBERTa).""" ) parser.add_argument("""--teacher_name""" , type=UpperCamelCase__ , required=UpperCamelCase__ , help="""The teacher model.""" ) parser.add_argument("""--temperature""" , default=2.0 , type=UpperCamelCase__ , help="""Temperature for the softmax temperature.""" ) parser.add_argument( """--alpha_ce""" , default=0.5 , type=UpperCamelCase__ , help="""Linear weight for the distillation loss. Must be >=0.""" ) parser.add_argument( """--alpha_mlm""" , default=0.0 , type=UpperCamelCase__ , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , ) parser.add_argument("""--alpha_clm""" , default=0.5 , type=UpperCamelCase__ , help="""Linear weight for the CLM loss. Must be >=0.""" ) parser.add_argument("""--alpha_mse""" , default=0.0 , type=UpperCamelCase__ , help="""Linear weight of the MSE loss. Must be >=0.""" ) parser.add_argument( """--alpha_cos""" , default=0.0 , type=UpperCamelCase__ , help="""Linear weight of the cosine embedding loss. Must be >=0.""" ) parser.add_argument( """--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" ) parser.add_argument( """--mlm_mask_prop""" , default=0.15 , type=UpperCamelCase__ , help="""Proportion of tokens for which we need to make a prediction.""" , ) parser.add_argument("""--word_mask""" , default=0.8 , type=UpperCamelCase__ , help="""Proportion of tokens to mask out.""" ) parser.add_argument("""--word_keep""" , default=0.1 , type=UpperCamelCase__ , help="""Proportion of tokens to keep.""" ) parser.add_argument("""--word_rand""" , default=0.1 , type=UpperCamelCase__ , help="""Proportion of tokens to randomly replace.""" ) parser.add_argument( """--mlm_smoothing""" , default=0.7 , type=UpperCamelCase__ , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , ) parser.add_argument("""--token_counts""" , type=UpperCamelCase__ , help="""The token counts in the data_file for MLM.""" ) parser.add_argument( """--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , ) parser.add_argument( """--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , ) parser.add_argument( """--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , ) parser.add_argument("""--n_epoch""" , type=UpperCamelCase__ , default=3 , help="""Number of pass on the whole dataset.""" ) parser.add_argument("""--batch_size""" , type=UpperCamelCase__ , default=5 , help="""Batch size (for each process).""" ) parser.add_argument( """--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , ) parser.add_argument( """--gradient_accumulation_steps""" , type=UpperCamelCase__ , default=5_0 , help="""Gradient accumulation for larger training batches.""" , ) parser.add_argument("""--warmup_prop""" , default=0.05 , type=UpperCamelCase__ , help="""Linear warmup proportion.""" ) parser.add_argument("""--weight_decay""" , default=0.0 , type=UpperCamelCase__ , help="""Weight decay if we apply some.""" ) parser.add_argument("""--learning_rate""" , default=5e-4 , type=UpperCamelCase__ , help="""The initial learning rate for Adam.""" ) parser.add_argument("""--adam_epsilon""" , default=1e-6 , type=UpperCamelCase__ , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , default=5.0 , type=UpperCamelCase__ , help="""Max gradient norm.""" ) parser.add_argument("""--initializer_range""" , default=0.02 , type=UpperCamelCase__ , help="""Random initialization range.""" ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=UpperCamelCase__ , default="""O1""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_gpu""" , type=UpperCamelCase__ , default=1 , help="""Number of GPUs in the node.""" ) parser.add_argument("""--local_rank""" , type=UpperCamelCase__ , default=-1 , help="""Distributed training - Local rank""" ) parser.add_argument("""--seed""" , type=UpperCamelCase__ , default=5_6 , help="""Random seed""" ) parser.add_argument("""--log_interval""" , type=UpperCamelCase__ , default=5_0_0 , help="""Tensorboard logging interval.""" ) parser.add_argument("""--checkpoint_interval""" , type=UpperCamelCase__ , default=4_0_0_0 , help="""Checkpoint interval.""" ) UpperCAmelCase__ : Dict = parser.parse_args() sanity_checks(UpperCamelCase__ ) # ARGS # init_gpu_params(UpperCamelCase__ ) set_seed(UpperCamelCase__ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' """ itUse `--force` if you want to overwrite it""" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(f'''Param: {args}''' ) with open(os.path.join(args.dump_path , """parameters.json""" ) , """w""" ) as f: json.dump(vars(UpperCamelCase__ ) , UpperCamelCase__ , indent=4 ) git_log(args.dump_path ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = MODEL_CLASSES[args.student_type] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase__ : Optional[Any] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase__ : Any = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase__ : Any = tokenizer.all_special_tokens.index(UpperCamelCase__ ) UpperCAmelCase__ : str = tokenizer.all_special_ids[idx] logger.info(f'''Special tokens {special_tok_ids}''' ) UpperCAmelCase__ : Any = special_tok_ids UpperCAmelCase__ : str = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f'''Loading data from {args.data_file}''' ) with open(args.data_file , """rb""" ) as fp: UpperCAmelCase__ : str = pickle.load(UpperCamelCase__ ) if args.mlm: logger.info(f'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , """rb""" ) as fp: UpperCAmelCase__ : int = pickle.load(UpperCamelCase__ ) UpperCAmelCase__ : Optional[Any] = np.maximum(UpperCamelCase__ , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase__ : Tuple = 0.0 # do not predict special tokens UpperCAmelCase__ : Any = torch.from_numpy(UpperCamelCase__ ) else: UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : Optional[int] = LmSeqsDataset(params=UpperCamelCase__ , data=UpperCamelCase__ ) logger.info("""Data loader created.""" ) # STUDENT # logger.info(f'''Loading student config from {args.student_config}''' ) UpperCAmelCase__ : int = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase__ : Optional[int] = True if args.student_pretrained_weights is not None: logger.info(f'''Loading pretrained weights from {args.student_pretrained_weights}''' ) UpperCAmelCase__ : str = student_model_class.from_pretrained(args.student_pretrained_weights , config=UpperCamelCase__ ) else: UpperCAmelCase__ : Any = student_model_class(UpperCamelCase__ ) if args.n_gpu > 0: student.to(f'''cuda:{args.local_rank}''' ) logger.info("""Student loaded.""" ) # TEACHER # UpperCAmelCase__ : int = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=UpperCamelCase__ ) if args.n_gpu > 0: teacher.to(f'''cuda:{args.local_rank}''' ) logger.info(f'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(UpperCamelCase__ , UpperCamelCase__ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(UpperCamelCase__ , UpperCamelCase__ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase__ : Optional[Any] = Distiller( params=UpperCamelCase__ , dataset=UpperCamelCase__ , token_probs=UpperCamelCase__ , student=UpperCamelCase__ , teacher=UpperCamelCase__ ) distiller.train() logger.info("""Let's go get some drinks.""" ) if __name__ == "__main__": main()
407
0
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : def __init__( self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : List[str]=13 , snake_case__ : int=30 , snake_case__ : int=2 , snake_case__ : List[str]=3 , snake_case__ : List[str]=True , snake_case__ : Union[str, Any]=True , snake_case__ : str=32 , snake_case__ : Dict=5 , snake_case__ : int=4 , snake_case__ : Dict=37 , snake_case__ : Optional[int]="gelu" , snake_case__ : Tuple=0.1 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : List[Any]=10 , snake_case__ : Optional[int]=0.02 , snake_case__ : Union[str, Any]=3 , snake_case__ : str=0.6 , snake_case__ : Optional[Any]=None , ): lowercase = parent lowercase = batch_size lowercase = image_size lowercase = patch_size lowercase = num_channels lowercase = is_training lowercase = use_labels lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = type_sequence_label_size lowercase = initializer_range lowercase = mask_ratio lowercase = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowercase = (image_size // patch_size) ** 2 lowercase = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def SCREAMING_SNAKE_CASE__ ( self : int ): lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : Dict ): lowercase = ViTMAEModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowercase = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case__ : List[Any] , snake_case__ : Tuple , snake_case__ : str ): lowercase = ViTMAEForPreTraining(snake_case__ ) model.to(snake_case__ ) model.eval() lowercase = model(snake_case__ ) lowercase = (self.image_size // self.patch_size) ** 2 lowercase = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowercase = 1 lowercase = ViTMAEForPreTraining(snake_case__ ) model.to(snake_case__ ) model.eval() lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase = model(snake_case__ ) lowercase = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase = config_and_inputs lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class A_ ( __a , __a , unittest.TestCase ): _A :int = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _A :Any = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} _A :Dict = False _A :Tuple = False _A :List[Any] = False _A :List[str] = False def SCREAMING_SNAKE_CASE__ ( self : str ): lowercase = ViTMAEModelTester(self ) lowercase = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE__ ( self : str ): pass def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(snake_case__ ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case__ : int , snake_case__ : Any , snake_case__ : Optional[int] ): # make masks reproducible np.random.seed(2 ) lowercase = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) lowercase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase = torch.from_numpy(snake_case__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowercase = pt_noise super().check_pt_tf_models(snake_case__ , snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ): lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowercase = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowercase = outputs[0].cpu().numpy() lowercase = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case__ ) lowercase = model_class.from_pretrained(snake_case__ ) model.to(snake_case__ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowercase = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) # Make sure we don't have nans lowercase = after_outputs[0].cpu().numpy() lowercase = 0 lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case__ , 1E-5 ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def SCREAMING_SNAKE_CASE__ ( self : str ): pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def SCREAMING_SNAKE_CASE__ ( self : int ): pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def SCREAMING_SNAKE_CASE__ ( self : int ): pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): pass @slow def SCREAMING_SNAKE_CASE__ ( self : Any ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = ViTMAEModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def UpperCamelCase__ ( ): lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) lowercase = ViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ).to(snake_case__ ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=snake_case__ , return_tensors="""pt""" ).to(snake_case__ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowercase = ViTMAEConfig() lowercase = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowercase = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): lowercase = model(**snake_case__ , noise=torch.from_numpy(snake_case__ ).to(device=snake_case__ ) ) # verify the logits lowercase = torch.Size((1, 1_96, 7_68) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowercase = torch.tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(snake_case__ ) , atol=1E-4 ) )
718
# using dfs for finding eulerian path traversal def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ): lowercase = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: lowercase , lowercase = True, True lowercase = dfs(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) return path def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowercase = 0 lowercase = -1 for i in range(lowerCAmelCase__ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 lowercase = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowercase = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] lowercase , lowercase = check_circuit_or_path(lowerCAmelCase__ ,lowerCAmelCase__ ) if check == 3: print("""graph is not Eulerian""" ) print("""no path""" ) return lowercase = 1 if check == 2: lowercase = odd_node print("""graph has a Euler path""" ) if check == 1: print("""graph has a Euler cycle""" ) lowercase = dfs(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) print(lowerCAmelCase__ ) def UpperCamelCase__ ( ): lowercase = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} lowercase = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} lowercase = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} lowercase = {1: [2, 3], 2: [1, 3], 3: [1, 2]} lowercase = { 1: [], 2: [] # all degree is zero } lowercase = 10 check_euler(lowerCAmelCase__ ,lowerCAmelCase__ ) check_euler(lowerCAmelCase__ ,lowerCAmelCase__ ) check_euler(lowerCAmelCase__ ,lowerCAmelCase__ ) check_euler(lowerCAmelCase__ ,lowerCAmelCase__ ) check_euler(lowerCAmelCase__ ,lowerCAmelCase__ ) if __name__ == "__main__": main()
72
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : Dict = { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = """realm""" def __init__( self : Dict , _lowercase : str=30_522 , _lowercase : List[Any]=768 , _lowercase : Any=128 , _lowercase : Any=12 , _lowercase : Union[str, Any]=12 , _lowercase : Any=8 , _lowercase : str=3_072 , _lowercase : Union[str, Any]="gelu_new" , _lowercase : Any=0.1 , _lowercase : List[str]=0.1 , _lowercase : str=512 , _lowercase : int=2 , _lowercase : str=0.0_2 , _lowercase : Optional[Any]=1e-12 , _lowercase : Tuple=256 , _lowercase : Tuple=10 , _lowercase : Union[str, Any]=1e-3 , _lowercase : Optional[Any]=5 , _lowercase : Optional[Any]=320 , _lowercase : List[str]=13_353_718 , _lowercase : Dict=5_000 , _lowercase : Any=1 , _lowercase : Dict=0 , _lowercase : Any=2 , **_lowercase : List[str] , ): super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) # Common config A = vocab_size A = max_position_embeddings A = hidden_size A = retriever_proj_size A = num_hidden_layers A = num_attention_heads A = num_candidates A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = type_vocab_size A = layer_norm_eps # Reader config A = span_hidden_size A = max_span_width A = reader_layer_norm_eps A = reader_beam_size A = reader_seq_len # Retrieval config A = num_block_records A = searcher_beam_size
690
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCamelCase : List[str] = logging.get_logger(__name__) class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = ["""pixel_values"""] def __init__( self : Tuple , _lowercase : bool = True , _lowercase : Optional[Dict[str, int]] = None , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 255 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , **_lowercase : List[str] , ): super().__init__(**_lowercase ) A = size if size is not None else {'shortest_edge': 256} A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Any , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple , ): A = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(_lowercase , size=size['shortest_edge'] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[Any] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[int] , ): A = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : float , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Any , _lowercase : ImageInput , _lowercase : Optional[bool] = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[float] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_lowercase : Any , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(_lowercase ) for image in images] if do_resize: A = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: A = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: A = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: A = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] A = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def __a ( self : int , _lowercase : List[str] , _lowercase : List[Tuple] = None ): A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(_lowercase ): A = target_sizes.numpy() A = [] for idx in range(len(_lowercase ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=_lowercase ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
690
1
import os import re import shutil import sys import tempfile import unittest import black UpperCamelCase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. UpperCamelCase_ = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class snake_case_ ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase__ =tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir, "schedulers/" ) ) UpperCAmelCase__ =self.diffusers_dir shutil.copy( os.path.join(A_, "src/diffusers/schedulers/scheduling_ddpm.py" ), os.path.join(self.diffusers_dir, "schedulers/scheduling_ddpm.py" ), ) def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase__ ="src/diffusers" shutil.rmtree(self.diffusers_dir ) def __UpperCAmelCase ( self, A_, A_, A_, A_=None ) -> List[Any]: UpperCAmelCase__ =comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: UpperCAmelCase__ =comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result UpperCAmelCase__ =black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=119 ) UpperCAmelCase__ =black.format_str(A_, mode=A_ ) UpperCAmelCase__ =os.path.join(self.diffusers_dir, "new_code.py" ) with open(A_, "w", newline="\n" ) as f: f.write(A_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(A_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name, overwrite=A_ ) with open(A_, "r" ) as f: self.assertTrue(f.read(), A_ ) def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase__ =check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(A_, A_ ) def __UpperCAmelCase ( self ) -> Any: # Base copy consistency self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput", "DDPMSchedulerOutput", REFERENCE_CODE + "\n", ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput", "DDPMSchedulerOutput", A_, ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test", "TestSchedulerOutput", re.sub("DDPM", "Test", A_ ), ) # Copy consistency with a really long name UpperCAmelCase__ ="TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""", f"""{long_class_name}SchedulerOutput""", re.sub("Bert", A_, A_ ), ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test", "TestSchedulerOutput", A_, overwrite_result=re.sub("DDPM", "Test", A_ ), )
705
import math def _UpperCAmelCase ( A , A ): '''simple docstring''' if ( not isinstance(A , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * power_factor def _UpperCAmelCase ( A , A ): '''simple docstring''' if ( not isinstance(A , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
510
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = {} class UpperCAmelCase_ ( snake_case ): UpperCamelCase ="llama" UpperCamelCase =["past_key_values"] def __init__( self , UpperCamelCase_=3_20_00 , UpperCamelCase_=40_96 , UpperCamelCase_=1_10_08 , UpperCamelCase_=32 , UpperCamelCase_=32 , UpperCamelCase_=None , UpperCamelCase_="silu" , UpperCamelCase_=20_48 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-6 , UpperCamelCase_=True , UpperCamelCase_=0 , UpperCamelCase_=1 , UpperCamelCase_=2 , UpperCamelCase_=1 , UpperCamelCase_=False , UpperCamelCase_=None , **UpperCamelCase_ , ) -> int: __lowercase : Any = vocab_size __lowercase : Tuple = max_position_embeddings __lowercase : Optional[int] = hidden_size __lowercase : Tuple = intermediate_size __lowercase : Union[str, Any] = num_hidden_layers __lowercase : str = num_attention_heads # for backward compatibility if num_key_value_heads is None: __lowercase : Union[str, Any] = num_attention_heads __lowercase : Optional[int] = num_key_value_heads __lowercase : Union[str, Any] = hidden_act __lowercase : Tuple = initializer_range __lowercase : Tuple = rms_norm_eps __lowercase : Dict = pretraining_tp __lowercase : str = use_cache __lowercase : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , tie_word_embeddings=UpperCamelCase_ , **UpperCamelCase_ , ) def _lowerCamelCase ( self ) -> int: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , UpperCamelCase_ ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F"""got {self.rope_scaling}""" ) __lowercase : Optional[int] = self.rope_scaling.get('''type''' , UpperCamelCase_ ) __lowercase : Dict = self.rope_scaling.get('''factor''' , UpperCamelCase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
76
import glob import os import random from string import ascii_lowercase, digits import cva __lowerCamelCase : Union[str, Any] = "" __lowerCamelCase : Dict = "" __lowerCamelCase : Optional[int] = "" __lowerCamelCase : Optional[Any] = 1 # (0 is vertical, 1 is horizontal) def SCREAMING_SNAKE_CASE__ ( ) -> None: A__ , A__ : Optional[int] =get_dataset(snake_case_, snake_case_ ) print('''Processing...''' ) A__ , A__ , A__ : List[Any] =update_image_and_anno(snake_case_, snake_case_, snake_case_ ) for index, image in enumerate(snake_case_ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' A__ : List[Any] =random_chars(3_2 ) A__ : Union[str, Any] =paths[index].split(os.sep )[-1].rsplit('''.''', 1 )[0] A__ : Any =f'{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}' cva.imwrite(f'/{file_root}.jpg', snake_case_, [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(f'Success {index+1}/{len(snake_case_ )} with {file_name}' ) A__ : str =[] for anno in new_annos[index]: A__ : Optional[Any] =f'{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}' annos_list.append(snake_case_ ) with open(f'/{file_root}.txt', '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> tuple[list, list]: A__ : int =[] A__ : int =[] for label_file in glob.glob(os.path.join(snake_case_, '''*.txt''' ) ): A__ : Optional[int] =label_file.split(os.sep )[-1].rsplit('''.''', 1 )[0] with open(snake_case_ ) as in_file: A__ : Union[str, Any] =in_file.readlines() A__ : Union[str, Any] =os.path.join(snake_case_, f'{label_name}.jpg' ) A__ : Optional[Any] =[] for obj_list in obj_lists: A__ : Optional[int] =obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(snake_case_ ) labels.append(snake_case_ ) return img_paths, labels def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ = 1 ) -> tuple[list, list, list]: A__ : List[Any] =[] A__ : List[str] =[] A__ : Any =[] for idx in range(len(snake_case_ ) ): A__ : int =[] A__ : Any =img_list[idx] path_list.append(snake_case_ ) A__ : str =anno_list[idx] A__ : List[str] =cva.imread(snake_case_ ) if flip_type == 1: A__ : Optional[int] =cva.flip(snake_case_, snake_case_ ) for bbox in img_annos: A__ : List[str] =1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: A__ : List[str] =cva.flip(snake_case_, snake_case_ ) for bbox in img_annos: A__ : Optional[int] =1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(snake_case_ ) new_imgs_list.append(snake_case_ ) return new_imgs_list, new_annos_lists, path_list def SCREAMING_SNAKE_CASE__ ( snake_case_ = 3_2 ) -> str: assert number_char > 1, "The number of character should greater than 1" A__ : Optional[int] =ascii_lowercase + digits return "".join(random.choice(snake_case_ ) for _ in range(snake_case_ ) ) if __name__ == "__main__": main() print("DONE ✅")
416
0
"""simple docstring""" import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() _lowercase : Optional[int] = logging.get_logger(__name__) def lowercase__ ( snake_case_ :List[Any] ): __UpperCAmelCase = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) __UpperCAmelCase = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , _UpperCamelCase ) if matches: __UpperCAmelCase = float(matches[1] ) __UpperCAmelCase = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __UpperCAmelCase = 1_001 __UpperCAmelCase = '''imagenet-1k-id2label.json''' __UpperCAmelCase = '''huggingface/label-files''' __UpperCAmelCase = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase = {int(_UpperCamelCase ) + 1: v for k, v in idalabel.items()} __UpperCAmelCase = '''background''' __UpperCAmelCase = idalabel __UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def lowercase__ ( ): __UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im @torch.no_grad() def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :List[Any] , snake_case_ :Optional[Any] , snake_case_ :Optional[int]=False ): __UpperCAmelCase = get_mobilenet_va_config(_UpperCamelCase ) # Load 🤗 model __UpperCAmelCase = MobileNetVaForImageClassification(_UpperCamelCase ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __UpperCAmelCase = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , ) __UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCAmelCase = model(**_UpperCamelCase ) __UpperCAmelCase = outputs.logits assert logits.shape == (1, 1_001) if model_name == "mobilenet_v1_1.0_224": __UpperCAmelCase = torch.tensor([-4.1739, -1.1233, 3.1205] ) elif model_name == "mobilenet_v1_0.75_192": __UpperCAmelCase = torch.tensor([-3.9440, -2.3141, -0.3333] ) else: __UpperCAmelCase = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _UpperCamelCase , atol=1E-4 ) Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_UpperCamelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_UpperCamelCase ) if push_to_hub: print('''Pushing to the hub...''' ) __UpperCAmelCase = '''google/''' + model_name image_processor.push_to_hub(_UpperCamelCase ) model.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": _lowercase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='mobilenet_v1_1.0_224', type=str, help='Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.', ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original TensorFlow checkpoint (.ckpt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _lowercase : Tuple = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
721
"""simple docstring""" import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _lowercase : int = logging.get_logger(__name__) _lowercase : List[str] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _lowercase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : a__ : str = field( default=_lowerCAmelCase , metadata={"help": "Model type selected in the list: " + ", ".join(_lowerCAmelCase )} ) a__ : str = field( default=_lowerCAmelCase , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."} ) a__ : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) a__ : int = field( default=128 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , ) a__ : int = field( default=64 , metadata={ "help": ( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ) } , ) a__ : int = field( default=30 , metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) } , ) a__ : bool = field( default=_lowerCAmelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) a__ : bool = field( default=_lowerCAmelCase , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."} ) a__ : float = field( default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) a__ : int = field( default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) a__ : int = field( default=0 , metadata={ "help": ( "language id of input for language-specific xlm models (see" " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" ) } , ) a__ : int = field(default=1 , metadata={"help": "multiple threads for converting example to features"} ) class _UpperCAmelCase ( _lowerCAmelCase ): a__ : List[str] = "train" a__ : List[Any] = "dev" class _UpperCAmelCase ( _lowerCAmelCase ): a__ : SquadDataTrainingArguments a__ : List[SquadFeatures] a__ : Split a__ : bool def __init__( self : Optional[Any] , _lowercase : SquadDataTrainingArguments , _lowercase : PreTrainedTokenizer , _lowercase : Optional[int] = None , _lowercase : Union[str, Split] = Split.train , _lowercase : Optional[bool] = False , _lowercase : Optional[str] = None , _lowercase : Optional[str] = "pt" , ): __UpperCAmelCase = args __UpperCAmelCase = is_language_sensitive __UpperCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_lowercase , _lowercase ): try: __UpperCAmelCase = Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) __UpperCAmelCase = mode # Load data features from cache or dataset file __UpperCAmelCase = '''v2''' if args.version_2_with_negative else '''v1''' __UpperCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __UpperCAmelCase = cached_features_file + '''.lock''' with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not args.overwrite_cache: __UpperCAmelCase = time.time() __UpperCAmelCase = torch.load(_lowercase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __UpperCAmelCase = self.old_features['''features'''] __UpperCAmelCase = self.old_features.get('''dataset''' , _lowercase ) __UpperCAmelCase = self.old_features.get('''examples''' , _lowercase ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ''' future run''' ) else: if mode == Split.dev: __UpperCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: __UpperCAmelCase = self.processor.get_train_examples(args.data_dir ) __UpperCAmelCase , __UpperCAmelCase = squad_convert_examples_to_features( examples=self.examples , tokenizer=_lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowercase , ) __UpperCAmelCase = time.time() torch.save( {'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples} , _lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self : Dict ): return len(self.features ) def __getitem__( self : Any , _lowercase : Optional[int] ): # Convert to Tensors and build dataset __UpperCAmelCase = self.features[i] __UpperCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long ) __UpperCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long ) __UpperCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long ) __UpperCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long ) __UpperCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float ) __UpperCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': attention_mask, '''token_type_ids''': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} ) if self.args.version_2_with_negative: inputs.update({'''is_impossible''': is_impossible} ) if self.is_language_sensitive: inputs.update({'''langs''': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __UpperCAmelCase = torch.tensor(feature.start_position , dtype=torch.long ) __UpperCAmelCase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} ) return inputs
397
0
'''simple docstring''' from __future__ import annotations from random import choice def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] ): return choice(__snake_case ) def _SCREAMING_SNAKE_CASE ( __snake_case : list[int] , __snake_case : int ): _A = random_pivot(__snake_case ) # partition based on pivot # linear time _A = [e for e in lst if e < pivot] _A = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(__snake_case ) == k - 1: return pivot # pivot is in elements bigger than k elif len(__snake_case ) < k - 1: return kth_number(__snake_case , k - len(__snake_case ) - 1 ) # pivot is in elements smaller than k else: return kth_number(__snake_case , __snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
107
"""simple docstring""" from __future__ import annotations class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __a , __a : List[Any] = text, pattern __a , __a : Tuple = len(_UpperCAmelCase ), len(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def _lowerCamelCase ( self , _UpperCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _lowerCamelCase ( self ): # searches pattern in text and returns index positions __a : Dict = [] for i in range(self.textLen - self.patLen + 1 ): __a : List[str] = self.mismatch_in_text(_UpperCAmelCase ) if mismatch_index == -1: positions.append(_UpperCAmelCase ) else: __a : Tuple = self.match_in_pattern(self.text[mismatch_index] ) __a : Optional[int] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A = '''ABAABA''' A = '''AB''' A = BoyerMooreSearch(text, pattern) A = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
52
0
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if gpta_config_file == "": UpperCAmelCase__ :List[str] = GPTaConfig() else: UpperCAmelCase__ :Dict = GPTaConfig.from_json_file(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Optional[int] = GPTaModel(SCREAMING_SNAKE_CASE ) # Load weights from numpy load_tf_weights_in_gpta(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model UpperCAmelCase__ :Any = pytorch_dump_folder_path + '/' + WEIGHTS_NAME UpperCAmelCase__ :Dict = pytorch_dump_folder_path + '/' + CONFIG_NAME print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __snake_case : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) __snake_case : int = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
433
from math import factorial def A ( SCREAMING_SNAKE_CASE = 100 ): """simple docstring""" return sum(map(SCREAMING_SNAKE_CASE , str(factorial(SCREAMING_SNAKE_CASE ) ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
433
1
'''simple docstring''' import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def _UpperCamelCase ( UpperCamelCase__ ): def wrapper(*UpperCamelCase__ , **UpperCamelCase__ ): UpperCAmelCase__ : List[str] = timeit.default_timer() UpperCAmelCase__ : List[Any] = func(*UpperCamelCase__ , **UpperCamelCase__ ) UpperCAmelCase__ : Tuple = timeit.default_timer() - starttime return delta UpperCAmelCase__ : Union[str, Any] = func.__name__ return wrapper def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__=1_0_0 , UpperCamelCase__=None ): UpperCAmelCase__ : str = [] UpperCAmelCase__ : List[str] = seq_shapes or {} for i in range(UpperCamelCase__ ): UpperCAmelCase__ : Optional[int] = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(UpperCamelCase__ , _ArrayXD ): UpperCAmelCase__ : List[str] = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(UpperCamelCase__ , datasets.Value ): if v.dtype == "string": UpperCAmelCase__ : Union[str, Any] = """The small grey turtle was surprisingly fast when challenged.""" else: UpperCAmelCase__ : Dict = np.random.randint(1_0 , size=1 ).astype(v.dtype ).item() elif isinstance(UpperCamelCase__ , datasets.Sequence ): while isinstance(UpperCamelCase__ , datasets.Sequence ): UpperCAmelCase__ : List[str] = v.feature UpperCAmelCase__ : str = seq_shapes[k] UpperCAmelCase__ : Optional[Any] = np.random.rand(*UpperCamelCase__ ).astype(v.dtype ) UpperCAmelCase__ : Tuple = data dummy_data.append((i, example) ) return dummy_data def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1_0_0 , UpperCamelCase__=None ): UpperCAmelCase__ : Union[str, Any] = generate_examples(UpperCamelCase__ , num_examples=UpperCamelCase__ , seq_shapes=UpperCamelCase__ ) with ArrowWriter(features=UpperCamelCase__ , path=UpperCamelCase__ ) as writer: for key, record in dummy_data: UpperCAmelCase__ : Optional[int] = features.encode_example(UpperCamelCase__ ) writer.write(UpperCamelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f'''Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.''' ) UpperCAmelCase__ : Optional[int] = datasets.Dataset.from_file(filename=UpperCamelCase__ , info=datasets.DatasetInfo(features=UpperCamelCase__ ) ) return dataset
407
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __A ='<<<<<<< This should probably be modified because it mentions: ' __A ='=======\n>>>>>>>\n' __A =[ 'TextEncoderConfig', 'ByteTextEncoder', 'SubwordTextEncoder', 'encoder_config', 'maybe_build_from_corpus', 'manual_dir', ] __A =[ # (pattern, replacement) # Order is important here for some replacements (R'tfds\.core', R'datasets'), (R'tf\.io\.gfile\.GFile', R'open'), (R'tf\.([\w\d]+)', R'datasets.Value(\'\1\')'), (R'tfds\.features\.Text\(\)', R'datasets.Value(\'string\')'), (R'tfds\.features\.Text\(', R'datasets.Value(\'string\'),'), (R'features\s*=\s*tfds.features.FeaturesDict\(', R'features=datasets.Features('), (R'tfds\.features\.FeaturesDict\(', R'dict('), (R'The TensorFlow Datasets Authors', R'The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'), (R'tfds\.', R'datasets.'), (R'dl_manager\.manual_dir', R'self.config.data_dir'), (R'self\.builder_config', R'self.config'), ] def _UpperCamelCase ( UpperCamelCase__ ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class _snake_case ( a__ ): @staticmethod def snake_case__ ( _lowerCamelCase): UpperCAmelCase__ : List[str] = parser.add_parser( """convert""" , help="""Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.""" , ) train_parser.add_argument( """--tfds_path""" , type=_lowerCamelCase , required=_lowerCamelCase , help="""Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.""" , ) train_parser.add_argument( """--datasets_directory""" , type=_lowerCamelCase , required=_lowerCamelCase , help="""Path to the HuggingFace Datasets folder.""") train_parser.set_defaults(func=_lowerCamelCase) def __init__( self , _lowerCamelCase , _lowerCamelCase , *_lowerCamelCase): UpperCAmelCase__ : Optional[Any] = get_logger("""datasets-cli/converting""") UpperCAmelCase__ : Any = tfds_path UpperCAmelCase__ : Any = datasets_directory def snake_case__ ( self): if os.path.isdir(self._tfds_path): UpperCAmelCase__ : Dict = os.path.abspath(self._tfds_path) elif os.path.isfile(self._tfds_path): UpperCAmelCase__ : str = os.path.dirname(self._tfds_path) else: raise ValueError("""--tfds_path is neither a directory nor a file. Please check path.""") UpperCAmelCase__ : List[Any] = os.path.abspath(self._datasets_directory) self._logger.info(f'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''') UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : Any = [] UpperCAmelCase__ : Optional[Any] = {} if os.path.isdir(self._tfds_path): UpperCAmelCase__ : Dict = os.listdir(_lowerCamelCase) else: UpperCAmelCase__ : List[Any] = [os.path.basename(self._tfds_path)] for f_name in file_names: self._logger.info(f'''Looking at file {f_name}''') UpperCAmelCase__ : str = os.path.join(_lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase) if not os.path.isfile(_lowerCamelCase) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("""Skipping file""") continue with open(_lowerCamelCase , encoding="""utf-8""") as f: UpperCAmelCase__ : Optional[Any] = f.readlines() UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Dict = False UpperCAmelCase__ : List[Any] = [] for line in lines: UpperCAmelCase__ : Optional[Any] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: UpperCAmelCase__ : str = """import datasets\n""" elif "import tensorflow" in out_line: # order is important here UpperCAmelCase__ : Optional[Any] = """""" continue elif "from absl import logging" in out_line: UpperCAmelCase__ : List[Any] = """from datasets import logging\n""" elif "getLogger" in out_line: UpperCAmelCase__ : Optional[int] = out_line.replace("""getLogger""" , """get_logger""") elif any(expression in out_line for expression in TO_HIGHLIGHT): UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : List[Any] = list(filter(lambda _lowerCamelCase: e in out_line , _lowerCamelCase)) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_lowerCamelCase) + """\n""") out_lines.append(_lowerCamelCase) out_lines.append(_lowerCamelCase) continue else: for pattern, replacement in TO_CONVERT: UpperCAmelCase__ : Optional[Any] = re.sub(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: UpperCAmelCase__ : List[str] = re.match(r"""from\stensorflow_datasets.*import\s([^\.\r\n]+)""" , _lowerCamelCase) tfds_imports.extend(imp.strip() for imp in match.group(1).split(""",""")) UpperCAmelCase__ : Dict = """from . import """ + match.group(1) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'''Error converting {out_line.strip()}''') if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: UpperCAmelCase__ : int = True out_lines.append(_lowerCamelCase) if is_builder or "wmt" in f_name: # We create a new directory for each dataset UpperCAmelCase__ : Optional[Any] = f_name.replace(""".py""" , """""") UpperCAmelCase__ : Union[str, Any] = os.path.join(_lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : int = os.path.join(_lowerCamelCase , _lowerCamelCase) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase) self._logger.info(f'''Adding directory {output_dir}''') imports_to_builder_map.update({imp: output_dir for imp in tfds_imports}) else: # Utilities will be moved at the end utils_files.append(_lowerCamelCase) if needs_manual_update: with_manual_update.append(_lowerCamelCase) with open(_lowerCamelCase , """w""" , encoding="""utf-8""") as f: f.writelines(_lowerCamelCase) self._logger.info(f'''Converted in {output_file}''') for utils_file in utils_files: try: UpperCAmelCase__ : Optional[int] = os.path.basename(_lowerCamelCase) UpperCAmelCase__ : int = imports_to_builder_map[f_name.replace(""".py""" , """""")] self._logger.info(f'''Moving {dest_folder} to {utils_file}''') shutil.copy(_lowerCamelCase , _lowerCamelCase) except KeyError: self._logger.error(f'''Cannot find destination folder for {utils_file}. Please copy manually.''') if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''')
407
1
"""simple docstring""" from typing import Dict from .base import GenericTensor, Pipeline class __lowerCAmelCase ( lowercase_ ): def UpperCAmelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' if tokenize_kwargs is None: __UpperCamelCase = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) __UpperCamelCase = truncation __UpperCamelCase = tokenize_kwargs __UpperCamelCase = {} if return_tensors is not None: __UpperCamelCase = return_tensors return preprocess_params, {}, postprocess_params def UpperCAmelCase ( self , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.framework __UpperCamelCase = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) return model_inputs def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.model(**UpperCamelCase__ ) return model_outputs def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return super().__call__(*UpperCamelCase__ , **UpperCamelCase__ )
711
"""simple docstring""" import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class __lowerCAmelCase ( unittest.TestCase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = 32 , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , __UpperCAmelCase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , __UpperCAmelCase = True , __UpperCAmelCase=7 , __UpperCAmelCase=30 , __UpperCAmelCase=400 , __UpperCAmelCase=3 , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = do_resize __UpperCamelCase = size if size is not None else {'shortest_edge': 288} __UpperCamelCase = size_divisor __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_normalize __UpperCamelCase = do_center_crop __UpperCamelCase = image_mean __UpperCamelCase = image_std __UpperCamelCase = do_pad __UpperCamelCase = batch_size __UpperCamelCase = num_channels __UpperCamelCase = min_resolution __UpperCamelCase = max_resolution def UpperCAmelCase ( self ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' if not batched: __UpperCamelCase = self.size['shortest_edge'] __UpperCamelCase = image_inputs[0] if isinstance(__UpperCAmelCase , Image.Image ): __UpperCamelCase , __UpperCamelCase = image.size else: __UpperCamelCase , __UpperCamelCase = image.shape[1], image.shape[2] __UpperCamelCase = size / min(__UpperCAmelCase , __UpperCAmelCase ) if h < w: __UpperCamelCase , __UpperCamelCase = size, scale * w else: __UpperCamelCase , __UpperCamelCase = scale * h, size __UpperCamelCase = int((1333 / 800) * size ) if max(__UpperCAmelCase , __UpperCAmelCase ) > max_size: __UpperCamelCase = max_size / max(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = newh * scale __UpperCamelCase = neww * scale __UpperCamelCase , __UpperCamelCase = int(newh + 0.5 ), int(neww + 0.5 ) __UpperCamelCase , __UpperCamelCase = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __UpperCamelCase = [] for image in image_inputs: __UpperCamelCase , __UpperCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __UpperCamelCase = max(__UpperCAmelCase , key=lambda __UpperCAmelCase : item[0] )[0] __UpperCamelCase = max(__UpperCAmelCase , key=lambda __UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = BridgeTowerImageProcessor if is_vision_available() else None def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BridgeTowerImageProcessingTester(self ) @property def UpperCAmelCase ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'image_std' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'size_divisor' ) ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __UpperCamelCase , __UpperCamelCase = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCamelCase = image_processing(__UpperCAmelCase , return_tensors='pt' ).pixel_values __UpperCamelCase , __UpperCamelCase = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __UpperCamelCase , __UpperCamelCase = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCamelCase = image_processing(__UpperCAmelCase , return_tensors='pt' ).pixel_values __UpperCamelCase , __UpperCamelCase = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __UpperCamelCase , __UpperCamelCase = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCamelCase = image_processing(__UpperCAmelCase , return_tensors='pt' ).pixel_values __UpperCamelCase , __UpperCamelCase = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
293
0
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): @property def _lowercase ( self: Dict ): '''simple docstring''' torch.manual_seed(0 ) _lowerCamelCase : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=("DownBlock2D", "AttnDownBlock2D") ,up_block_types=("AttnUpBlock2D", "UpBlock2D") ,) return model @property def _lowercase ( self: Dict ): '''simple docstring''' torch.manual_seed(0 ) _lowerCamelCase : Union[str, Any] = VQModel( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=3 ,) return model @property def _lowercase ( self: Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) _lowerCamelCase : List[str] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) return CLIPTextModel(__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : int = self.dummy_uncond_unet _lowerCamelCase : Dict = DDIMScheduler() _lowerCamelCase : List[Any] = self.dummy_vq_model _lowerCamelCase : List[str] = LDMPipeline(unet=__lowerCAmelCase ,vqvae=__lowerCAmelCase ,scheduler=__lowerCAmelCase ) ldm.to(__lowerCAmelCase ) ldm.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : List[Any] = torch.manual_seed(0 ) _lowerCamelCase : Optional[Any] = ldm(generator=__lowerCAmelCase ,num_inference_steps=2 ,output_type="numpy" ).images _lowerCamelCase : Tuple = torch.manual_seed(0 ) _lowerCamelCase : List[str] = ldm(generator=__lowerCAmelCase ,num_inference_steps=2 ,output_type="numpy" ,return_dict=__lowerCAmelCase )[0] _lowerCamelCase : Tuple = image[0, -3:, -3:, -1] _lowerCamelCase : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCamelCase : Any = np.array([0.85_12, 0.8_18, 0.64_11, 0.68_08, 0.44_65, 0.56_18, 0.46, 0.62_31, 0.51_72] ) _lowerCamelCase : Union[str, Any] = 1e-2 if torch_device != "mps" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class A_ ( unittest.TestCase ): def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256" ) ldm.to(__lowerCAmelCase ) ldm.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Any = torch.manual_seed(0 ) _lowerCamelCase : Any = ldm(generator=__lowerCAmelCase ,num_inference_steps=5 ,output_type="numpy" ).images _lowerCamelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _lowerCamelCase : Dict = np.array([0.43_99, 0.4_49_75, 0.4_68_25, 0.4_74, 0.43_59, 0.45_81, 0.4_50_95, 0.43_41, 0.44_47] ) _lowerCamelCase : List[Any] = 1e-2 if torch_device != "mps" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
46
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def lowerCamelCase_( ) -> None: '''simple docstring''' print("Making key files..." ) make_key_files("rsa" , 1024 ) print("Key files generation successful." ) def lowerCamelCase_( _lowerCamelCase ) -> tuple[tuple[int, int], tuple[int, int]]: '''simple docstring''' print("Generating prime p..." ) _lowerCamelCase : List[str] = rabinMiller.generate_large_prime(_lowerCamelCase ) print("Generating prime q..." ) _lowerCamelCase : Tuple = rabinMiller.generate_large_prime(_lowerCamelCase ) _lowerCamelCase : Dict = p * q print("Generating e that is relatively prime to (p - 1) * (q - 1)..." ) while True: _lowerCamelCase : Tuple = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(_lowerCamelCase , (p - 1) * (q - 1) ) == 1: break print("Calculating d that is mod inverse of e..." ) _lowerCamelCase : str = cryptoMath.find_mod_inverse(_lowerCamelCase , (p - 1) * (q - 1) ) _lowerCamelCase : Dict = (n, e) _lowerCamelCase : Dict = (n, d) return (public_key, private_key) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> None: '''simple docstring''' if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print("\nWARNING:" ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" "Use a different name or delete these files and re-run this program." ) sys.exit() _lowerCamelCase, _lowerCamelCase : Dict = generate_key(_lowerCamelCase ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , "w" ) as out_file: out_file.write(F"""{key_size},{public_key[0]},{public_key[1]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , "w" ) as out_file: out_file.write(F"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
46
1
import sys import turtle def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): '''simple docstring''' my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(lowerCAmelCase__ , get_mid(lowerCAmelCase__ , lowerCAmelCase__ ) , get_mid(lowerCAmelCase__ , lowerCAmelCase__ ) , depth - 1 ) triangle(lowerCAmelCase__ , get_mid(lowerCAmelCase__ , lowerCAmelCase__ ) , get_mid(lowerCAmelCase__ , lowerCAmelCase__ ) , depth - 1 ) triangle(lowerCAmelCase__ , get_mid(lowerCAmelCase__ , lowerCAmelCase__ ) , get_mid(lowerCAmelCase__ , lowerCAmelCase__ ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( "Correct format for using this script: " "python fractals.py <int:depth_for_fractal>" ) lowercase__ :Dict = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("red") lowercase__ :Optional[int] = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
700
def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' return int((input_a, input_a).count(0 ) == 0 ) def UpperCamelCase ( ): '''simple docstring''' assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
633
0
from __future__ import annotations import requests _snake_case = set( '''approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports'''.split() ) def _UpperCamelCase ( snake_case__, snake_case__ = 1, snake_case__ = "new", snake_case__ = None ) -> dict: __UpperCAmelCase : int = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(snake_case__ ) - valid_terms ) ): __UpperCAmelCase : Any = f'''Invalid search term: {invalid_search_terms}''' raise ValueError(snake_case__ ) __UpperCAmelCase : int = requests.get( f'''https://reddit.com/r/{subreddit}/{age}.json?limit={limit}''', headers={"User-agent": "A random string"}, ) if response.status_code == 429: raise requests.HTTPError __UpperCAmelCase : int = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(snake_case__ )} __UpperCAmelCase : str = {} for id_ in range(snake_case__ ): __UpperCAmelCase : List[str] = { item: data["data"]["children"][id_]["data"][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('''learnpython''', wanted_data=['''title''', '''url''', '''selftext''']))
382
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class _snake_case ( _lowercase ): lowerCamelCase__: List[Any] = "speech_to_text_2" lowerCamelCase__: Optional[Any] = ["past_key_values"] lowerCamelCase__: str = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self: List[str] , __lowerCamelCase: Union[str, Any]=1_00_00 , __lowerCamelCase: str=6 , __lowerCamelCase: Dict=20_48 , __lowerCamelCase: Optional[int]=4 , __lowerCamelCase: Tuple=0.0 , __lowerCamelCase: Dict=True , __lowerCamelCase: Dict="relu" , __lowerCamelCase: Optional[int]=2_56 , __lowerCamelCase: Tuple=0.1 , __lowerCamelCase: Any=0.0 , __lowerCamelCase: List[Any]=0.0 , __lowerCamelCase: Optional[Any]=0.02 , __lowerCamelCase: Tuple=2 , __lowerCamelCase: int=True , __lowerCamelCase: Dict=1 , __lowerCamelCase: Tuple=0 , __lowerCamelCase: Tuple=2 , __lowerCamelCase: Union[str, Any]=10_24 , **__lowerCamelCase: List[Any] , ) -> List[Any]: __UpperCAmelCase : List[str] = vocab_size __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Optional[int] = decoder_ffn_dim __UpperCAmelCase : List[Any] = decoder_layers __UpperCAmelCase : int = decoder_attention_heads __UpperCAmelCase : List[str] = dropout __UpperCAmelCase : Optional[Any] = attention_dropout __UpperCAmelCase : List[str] = activation_dropout __UpperCAmelCase : Any = activation_function __UpperCAmelCase : List[Any] = init_std __UpperCAmelCase : List[str] = decoder_layerdrop __UpperCAmelCase : int = use_cache __UpperCAmelCase : Tuple = decoder_layers __UpperCAmelCase : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCAmelCase : str = max_target_positions super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , **__lowerCamelCase , )
382
1
def __UpperCAmelCase ( __a : str ) -> bool: """simple docstring""" _a : List[Any] = [int(__a ) for i in ip_va_address.split('''.''' ) if i.isdigit()] return len(__a ) == 4 and all(0 <= int(__a ) <= 254 for octet in octets ) if __name__ == "__main__": a__ = input().strip() a__ = '''valid''' if is_ip_va_address_valid(ip) else '''invalid''' print(f'''{ip} is a {valid_or_invalid} IP v4 address.''')
578
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[Any] = "gptj" UpperCAmelCase__ : Union[str, Any] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _a=5_0_4_0_0 , _a=2_0_4_8 , _a=4_0_9_6 , _a=2_8 , _a=1_6 , _a=6_4 , _a=None , _a="gelu_new" , _a=0.0 , _a=0.0 , _a=0.0 , _a=1e-5 , _a=0.02 , _a=True , _a=5_0_2_5_6 , _a=5_0_2_5_6 , _a=False , **_a , ) -> str: _a : Any = vocab_size _a : str = n_positions _a : Union[str, Any] = n_embd _a : Tuple = n_layer _a : int = n_head _a : List[str] = n_inner _a : List[str] = rotary_dim _a : Optional[int] = activation_function _a : List[str] = resid_pdrop _a : List[str] = embd_pdrop _a : Optional[Any] = attn_pdrop _a : Union[str, Any] = layer_norm_epsilon _a : Optional[Any] = initializer_range _a : Tuple = use_cache _a : Union[str, Any] = bos_token_id _a : Tuple = eos_token_id super().__init__( bos_token_id=_a , eos_token_id=_a , tie_word_embeddings=_a , **_a ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __init__( self , _a , _a = "default" , _a = None , _a = False , ) -> List[str]: super().__init__(_a , task=_a , patching_specs=_a , use_past=_a ) if not getattr(self._config , '''pad_token_id''' , _a ): # TODO: how to do that better? _a : Optional[int] = 0 @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: _a : List[str] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(_a , direction='''inputs''' ) _a : Optional[int] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: _a : List[Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def __lowercase ( self ) -> int: return self._config.n_layer @property def __lowercase ( self ) -> int: return self._config.n_head def __lowercase ( self , _a , _a = -1 , _a = -1 , _a = False , _a = None , ) -> Mapping[str, Any]: _a : str = super(_a , self ).generate_dummy_inputs( _a , batch_size=_a , seq_length=_a , is_pair=_a , framework=_a ) # We need to order the input in the way they appears in the forward() _a : List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a : Union[str, Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _a : Dict = seqlen + 2 _a : Optional[Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _a : Union[str, Any] = [ (torch.zeros(_a ), torch.zeros(_a )) for _ in range(self.num_layers ) ] _a : Any = common_inputs['''attention_mask'''] if self.use_past: _a : str = ordered_inputs['''attention_mask'''].dtype _a : Optional[int] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_a , _a , dtype=_a )] , dim=1 ) return ordered_inputs @property def __lowercase ( self ) -> int: return 1_3
578
1
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType UpperCAmelCase__ : Dict = get_logger(__name__) def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ) -> Union[str, Any]: os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) with FSDP.state_dict_type( __SCREAMING_SNAKE_CASE , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): UpperCamelCase__ : Optional[int] = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: UpperCamelCase__ : Dict = F"""{MODEL_NAME}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}.bin""" UpperCamelCase__ : int = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if accelerator.process_index == 0: logger.info(F"""Saving model to {output_model_file}""" ) torch.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) logger.info(F"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: UpperCamelCase__ : List[Any] = ( F"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) UpperCamelCase__ : List[Any] = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) logger.info(F"""Saving model to {output_model_file}""" ) torch.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) logger.info(F"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: UpperCamelCase__ : int = os.path.join(__SCREAMING_SNAKE_CASE , F"""{MODEL_NAME}_{model_index}""" ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) logger.info(F"""Saving model to {ckpt_dir}""" ) UpperCamelCase__ : Any = {'model': state_dict} dist_cp.save_state_dict( state_dict=__SCREAMING_SNAKE_CASE , storage_writer=dist_cp.FileSystemWriter(__SCREAMING_SNAKE_CASE ) , planner=DefaultSavePlanner() , ) logger.info(F"""Model saved to {ckpt_dir}""" ) def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ) -> List[Any]: accelerator.wait_for_everyone() with FSDP.state_dict_type( __SCREAMING_SNAKE_CASE , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__SCREAMING_SNAKE_CASE ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return UpperCamelCase__ : List[str] = F"""{MODEL_NAME}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}.bin""" UpperCamelCase__ : Optional[int] = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) logger.info(F"""Loading model from {input_model_file}""" ) UpperCamelCase__ : Any = torch.load(__SCREAMING_SNAKE_CASE ) logger.info(F"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: UpperCamelCase__ : List[str] = ( F"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) UpperCamelCase__ : Optional[int] = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) logger.info(F"""Loading model from {input_model_file}""" ) UpperCamelCase__ : Optional[int] = torch.load(__SCREAMING_SNAKE_CASE ) logger.info(F"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: UpperCamelCase__ : List[Any] = ( os.path.join(__SCREAMING_SNAKE_CASE , F"""{MODEL_NAME}_{model_index}""" ) if F"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(F"""Loading model from {ckpt_dir}""" ) UpperCamelCase__ : Any = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=__SCREAMING_SNAKE_CASE , storage_reader=dist_cp.FileSystemReader(__SCREAMING_SNAKE_CASE ) , planner=DefaultLoadPlanner() , ) UpperCamelCase__ : List[str] = state_dict['model'] logger.info(F"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ) -> Any: os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) with FSDP.state_dict_type( __SCREAMING_SNAKE_CASE , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): UpperCamelCase__ : Dict = FSDP.optim_state_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: UpperCamelCase__ : Tuple = ( F"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else F"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) UpperCamelCase__ : List[Any] = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) logger.info(F"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) logger.info(F"""Optimizer state saved in {output_optimizer_file}""" ) else: UpperCamelCase__ : Union[str, Any] = os.path.join(__SCREAMING_SNAKE_CASE , F"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) logger.info(F"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(__SCREAMING_SNAKE_CASE ) , planner=DefaultSavePlanner() , ) logger.info(F"""Optimizer state saved in {ckpt_dir}""" ) def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ) -> List[str]: accelerator.wait_for_everyone() with FSDP.state_dict_type( __SCREAMING_SNAKE_CASE , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: UpperCamelCase__ : Optional[Any] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: UpperCamelCase__ : int = ( F"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else F"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) UpperCamelCase__ : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) logger.info(F"""Loading Optimizer state from {input_optimizer_file}""" ) UpperCamelCase__ : Union[str, Any] = torch.load(__SCREAMING_SNAKE_CASE ) logger.info(F"""Optimizer state loaded from {input_optimizer_file}""" ) else: UpperCamelCase__ : Union[str, Any] = ( os.path.join(__SCREAMING_SNAKE_CASE , F"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if F"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(F"""Loading Optimizer from {ckpt_dir}""" ) UpperCamelCase__ : List[str] = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(__SCREAMING_SNAKE_CASE ) , ) UpperCamelCase__ : Optional[Any] = optim_state['optimizer'] logger.info(F"""Optimizer loaded from {ckpt_dir}""" ) UpperCamelCase__ : Any = FSDP.optim_state_dict_to_load(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) optimizer.load_state_dict(__SCREAMING_SNAKE_CASE )
410
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> tuple[int | None, int | None, float]: if not arr: return None, None, 0 if low == high: return low, high, arr[low] UpperCamelCase__ : List[str] = (low + high) // 2 UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : int = max_subarray(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : List[str] = max_subarray(__SCREAMING_SNAKE_CASE , mid + 1 , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = max_cross_sum(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> tuple[int, int, float]: UpperCamelCase__ , UpperCamelCase__ : Tuple = float('-inf' ), -1 UpperCamelCase__ , UpperCamelCase__ : List[Any] = float('-inf' ), -1 UpperCamelCase__ : int | float = 0 for i in range(__SCREAMING_SNAKE_CASE , low - 1 , -1 ): summ += arr[i] if summ > left_sum: UpperCamelCase__ : str = summ UpperCamelCase__ : str = i UpperCamelCase__ : int = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: UpperCamelCase__ : Optional[Any] = summ UpperCamelCase__ : Any = i return max_left, max_right, (left_sum + right_sum) def _lowercase ( __SCREAMING_SNAKE_CASE ) -> float: UpperCamelCase__ : List[str] = [randint(1 , __SCREAMING_SNAKE_CASE ) for _ in range(__SCREAMING_SNAKE_CASE )] UpperCamelCase__ : Optional[Any] = time.time() max_subarray(__SCREAMING_SNAKE_CASE , 0 , input_size - 1 ) UpperCamelCase__ : Dict = time.time() return end - start def _lowercase ( ) -> None: UpperCamelCase__ : str = [10, 100, 1000, 1_0000, 5_0000, 10_0000, 20_0000, 30_0000, 40_0000, 50_0000] UpperCamelCase__ : int = [time_max_subarray(__SCREAMING_SNAKE_CASE ) for input_size in input_sizes] print('No of Inputs\t\tTime Taken' ) for input_size, runtime in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): print(__SCREAMING_SNAKE_CASE , '\t\t' , __SCREAMING_SNAKE_CASE ) plt.plot(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) plt.xlabel('Number of Inputs' ) plt.ylabel('Time taken in seconds' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
410
1
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE: def __init__( self , lowerCamelCase__ , lowerCamelCase__=2 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=10 , lowerCamelCase__=3 , lowerCamelCase__=32 * 8 , lowerCamelCase__=32 * 8 , lowerCamelCase__=4 , lowerCamelCase__=64 , ) -> List[str]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = is_training __lowercase = use_auxiliary_loss __lowercase = num_queries __lowercase = num_channels __lowercase = min_size __lowercase = max_size __lowercase = num_labels __lowercase = hidden_dim __lowercase = hidden_dim def snake_case__ ( self ) -> Tuple: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCamelCase__ ) __lowercase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase__ ) __lowercase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase__ ) > 0.5 ).float() __lowercase = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase__ ) > 0.5).long() __lowercase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def snake_case__ ( self ) -> str: """simple docstring""" __lowercase = MaskaFormerConfig( hidden_size=self.hidden_dim , ) __lowercase = self.num_queries __lowercase = self.num_labels __lowercase = [1, 1, 1, 1] __lowercase = self.num_channels __lowercase = 64 __lowercase = 128 __lowercase = self.hidden_dim __lowercase = self.hidden_dim __lowercase = self.hidden_dim return config def snake_case__ ( self ) -> int: """simple docstring""" __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase = self.prepare_config_and_inputs() __lowercase = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: """simple docstring""" __lowercase = output.encoder_hidden_states __lowercase = output.pixel_decoder_hidden_states __lowercase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , config.decoder_layers ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase = MaskaFormerModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowercase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCamelCase__ , lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: """simple docstring""" __lowercase = MaskaFormerForUniversalSegmentation(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() def comm_check_on_output(lowerCamelCase__ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __lowercase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) __lowercase = model( pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class SCREAMING_SNAKE_CASE( __A , __A , unittest.TestCase ): snake_case_ : Union[str, Any] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () snake_case_ : Any = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} snake_case_ : Union[str, Any] = False snake_case_ : List[str] = False snake_case_ : Optional[Any] = False snake_case_ : Optional[int] = False def snake_case__ ( self ) -> str: """simple docstring""" __lowercase = MaskaFormerModelTester(self ) __lowercase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def snake_case__ ( self ) -> int: """simple docstring""" self.config_tester.run_common_tests() def snake_case__ ( self ) -> Dict: """simple docstring""" __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def snake_case__ ( self ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowerCamelCase__ ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def snake_case__ ( self ) -> Dict: """simple docstring""" pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def snake_case__ ( self ) -> int: """simple docstring""" pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def snake_case__ ( self ) -> List[str]: """simple docstring""" pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def snake_case__ ( self ) -> List[Any]: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def snake_case__ ( self ) -> Dict: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def snake_case__ ( self ) -> List[str]: """simple docstring""" pass def snake_case__ ( self ) -> List[Any]: """simple docstring""" __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowerCamelCase__ ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) @slow def snake_case__ ( self ) -> List[str]: """simple docstring""" for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __lowercase = MaskaFormerModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def snake_case__ ( self ) -> str: """simple docstring""" __lowercase = (self.model_tester.min_size,) * 2 __lowercase = { """pixel_values""": torch.randn((2, 3, *size) , device=lowerCamelCase__ ), """mask_labels""": torch.randn((2, 10, *size) , device=lowerCamelCase__ ), """class_labels""": torch.zeros(2 , 10 , device=lowerCamelCase__ ).long(), } __lowercase = self.model_tester.get_config() __lowercase = MaskaFormerForUniversalSegmentation(lowerCamelCase__ ).to(lowerCamelCase__ ) __lowercase = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None ) def snake_case__ ( self ) -> int: """simple docstring""" __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def snake_case__ ( self ) -> Optional[int]: """simple docstring""" __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) __lowercase = model(**lowerCamelCase__ , output_attentions=lowerCamelCase__ ) self.assertTrue(outputs.attentions is not None ) def snake_case__ ( self ) -> Dict: """simple docstring""" if not self.model_tester.is_training: return __lowercase = self.all_model_classes[1] __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs() __lowercase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() __lowercase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ).loss loss.backward() def snake_case__ ( self ) -> Tuple: """simple docstring""" __lowercase = self.all_model_classes[1] __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs() __lowercase = True __lowercase = True __lowercase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) model.train() __lowercase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) __lowercase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __lowercase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __lowercase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __lowercase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCamelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) A : Any = 1E-4 def snake_case_ ( ): """simple docstring""" __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class SCREAMING_SNAKE_CASE( unittest.TestCase ): @cached_property def snake_case__ ( self ) -> Dict: """simple docstring""" return "facebook/mask2former-swin-small-coco-instance" @cached_property def snake_case__ ( self ) -> str: """simple docstring""" return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def snake_case__ ( self ) -> List[str]: """simple docstring""" __lowercase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(lowerCamelCase__ , return_tensors="""pt""" ).to(lowerCamelCase__ ) __lowercase = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): __lowercase = model(**lowerCamelCase__ ) __lowercase = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) __lowercase = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) __lowercase = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def snake_case__ ( self ) -> int: """simple docstring""" __lowercase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(lowerCamelCase__ , return_tensors="""pt""" ).to(lowerCamelCase__ ) __lowercase = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): __lowercase = model(**lowerCamelCase__ ) # masks_queries_logits __lowercase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __lowercase = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] __lowercase = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) # class_queries_logits __lowercase = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __lowercase = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def snake_case__ ( self ) -> Any: """simple docstring""" __lowercase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() __lowercase = self.default_image_processor __lowercase = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , ) __lowercase = inputs["""pixel_values"""].to(lowerCamelCase__ ) __lowercase = [el.to(lowerCamelCase__ ) for el in inputs["""mask_labels"""]] __lowercase = [el.to(lowerCamelCase__ ) for el in inputs["""class_labels"""]] with torch.no_grad(): __lowercase = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None )
708
'''simple docstring''' import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A : Tuple = """▁""" A : List[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class SCREAMING_SNAKE_CASE( __A , unittest.TestCase ): snake_case_ : Optional[int] = BertGenerationTokenizer snake_case_ : List[str] = False snake_case_ : Optional[int] = True def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" super().setUp() __lowercase = BertGenerationTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self ) -> List[str]: """simple docstring""" __lowercase = """<s>""" __lowercase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def snake_case__ ( self ) -> List[Any]: """simple docstring""" __lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(lowerCamelCase__ ) , 1002 ) def snake_case__ ( self ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def snake_case__ ( self ) -> Optional[int]: """simple docstring""" __lowercase = BertGenerationTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) __lowercase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [285, 46, 10, 170, 382] , ) __lowercase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __lowercase = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __lowercase = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def snake_case__ ( self ) -> Any: """simple docstring""" return BertGenerationTokenizer.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) @slow def snake_case__ ( self ) -> Tuple: """simple docstring""" __lowercase = """Hello World!""" __lowercase = [1_8536, 2260, 101] self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) ) @slow def snake_case__ ( self ) -> Any: """simple docstring""" __lowercase = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) __lowercase = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) ) @require_torch @slow def snake_case__ ( self ) -> List[Any]: """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence __lowercase = list(self.big_tokenizer.get_vocab().keys() )[:10] __lowercase = """ """.join(lowerCamelCase__ ) __lowercase = self.big_tokenizer.encode_plus(lowerCamelCase__ , return_tensors="""pt""" , return_token_type_ids=lowerCamelCase__ ) __lowercase = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=lowerCamelCase__ ) __lowercase = BertGenerationConfig() __lowercase = BertGenerationEncoder(lowerCamelCase__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCamelCase__ ) model(**lowerCamelCase__ ) @slow def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" __lowercase = {"""input_ids""": [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name="""google/bert_for_seq_generation_L-24_bbc_encoder""" , revision="""c817d1fd1be2ffa69431227a1fe320544943d4db""" , )
163
0
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __lt__( self : Optional[int] , __magic_name__ : int ) -> List[Any]: return self[-1] < other[-1] def __eq__( self : Any , __magic_name__ : List[str] ) -> Optional[Any]: return self[-1] == other[-1] def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = [] # sort into stacks for element in collection: SCREAMING_SNAKE_CASE_ = Stack([element] ) SCREAMING_SNAKE_CASE_ = bisect_left(__UpperCamelCase , __UpperCamelCase ) if i != len(__UpperCamelCase ): stacks[i].append(__UpperCamelCase ) else: stacks.append(__UpperCamelCase ) # use a heap-based merge to merge stack efficiently SCREAMING_SNAKE_CASE_ = merge(*(reversed(__UpperCamelCase ) for stack in stacks) ) return collection if __name__ == "__main__": A : Optional[int] = input("Enter numbers separated by a comma:\n").strip() A : int = [int(item) for item in user_input.split(",")] print(patience_sort(unsorted))
140
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A : Tuple = "pt" elif is_tf_available(): A : Optional[int] = "tf" else: A : Optional[Any] = "jax" class lowerCamelCase (SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ByTaTokenizer lowerCamelCase__ = False def __A ( self : Union[str, Any] ) -> List[Any]: super().setUp() SCREAMING_SNAKE_CASE_ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __A ( self : Tuple ) -> Union[str, Any]: return ByTaTokenizer.from_pretrained("google/byt5-small" ) def __A ( self : List[Any] , **__magic_name__ : Dict ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ ) def __A ( self : List[str] , __magic_name__ : List[Any] , __magic_name__ : Optional[int]=False , __magic_name__ : Optional[int]=20 , __magic_name__ : Any=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. SCREAMING_SNAKE_CASE_ = [] for i in range(len(__magic_name__ ) ): try: SCREAMING_SNAKE_CASE_ = tokenizer.decode([i] , clean_up_tokenization_spaces=__magic_name__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda __magic_name__ : re.match(r"^[ a-zA-Z]+$" , t[1] ) , __magic_name__ ) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda __magic_name__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__magic_name__ ) , __magic_name__ ) ) if max_length is not None and len(__magic_name__ ) > max_length: SCREAMING_SNAKE_CASE_ = toks[:max_length] if min_length is not None and len(__magic_name__ ) < min_length and len(__magic_name__ ) > 0: while len(__magic_name__ ) < min_length: SCREAMING_SNAKE_CASE_ = toks + toks # toks_str = [t[1] for t in toks] SCREAMING_SNAKE_CASE_ = [t[0] for t in toks] # Ensure consistency SCREAMING_SNAKE_CASE_ = tokenizer.decode(__magic_name__ , clean_up_tokenization_spaces=__magic_name__ ) if " " not in output_txt and len(__magic_name__ ) > 1: SCREAMING_SNAKE_CASE_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__magic_name__ ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__magic_name__ ) ) if with_prefix_space: SCREAMING_SNAKE_CASE_ = " " + output_txt SCREAMING_SNAKE_CASE_ = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) return output_txt, output_ids def __A ( self : Dict ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] ) SCREAMING_SNAKE_CASE_ = tokenizer(["hi", "I went to the gym", ""] ) self.assertListEqual(batch_with_eos_added["input_ids"] , batch_without_eos_added["input_ids"] ) def __A ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = "Unicode €." SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ ) SCREAMING_SNAKE_CASE_ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["input_ids"] , __magic_name__ ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(__magic_name__ ) self.assertEqual(__magic_name__ , "Unicode €.</s>" ) SCREAMING_SNAKE_CASE_ = tokenizer("e è é ê ë" ) SCREAMING_SNAKE_CASE_ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["input_ids"] , __magic_name__ ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(__magic_name__ ) self.assertEqual(__magic_name__ , "e è é ê ë</s>" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "e è é ê ë</s>" ) def __A ( self : Any ) -> int: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors=__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) if FRAMEWORK != "jax": SCREAMING_SNAKE_CASE_ = list(batch.input_ids.numpy()[0] ) else: SCREAMING_SNAKE_CASE_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __A ( self : List[Any] ) -> int: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ["A long paragraph for summarization.", "Another paragraph for summarization."] SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors=__magic_name__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" , __magic_name__ ) self.assertIn("attention_mask" , __magic_name__ ) self.assertNotIn("decoder_input_ids" , __magic_name__ ) self.assertNotIn("decoder_attention_mask" , __magic_name__ ) def __A ( self : List[str] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = [ "Summary of the text.", "Another summary.", ] SCREAMING_SNAKE_CASE_ = tokenizer( text_target=__magic_name__ , max_length=32 , padding="max_length" , truncation=__magic_name__ , return_tensors=__magic_name__ ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def __A ( self : str ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ["A long paragraph for summarization. </s>"] SCREAMING_SNAKE_CASE_ = ["Summary of the text. </s>"] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] SCREAMING_SNAKE_CASE_ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , text_target=__magic_name__ ) self.assertEqual(__magic_name__ , batch["input_ids"][0] ) self.assertEqual(__magic_name__ , batch["labels"][0] ) def __A ( self : Dict ) -> List[str]: # safety check on max_len default value so we are sure the test works SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = " He is very happy, UNwant\u00E9d,running" SCREAMING_SNAKE_CASE_ = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) shutil.rmtree(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) SCREAMING_SNAKE_CASE_ = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__magic_name__ ) def __A ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__magic_name__ ) with open(os.path.join(__magic_name__ , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(__magic_name__ ) with open(os.path.join(__magic_name__ , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(__magic_name__ ) SCREAMING_SNAKE_CASE_ = [F'''<extra_id_{i}>''' for i in range(125 )] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ "an_additional_special_token" ] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(__magic_name__ , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) with open(os.path.join(__magic_name__ , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( __magic_name__ , ) self.assertIn( "an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=__magic_name__ )] SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( __magic_name__ , additional_special_tokens=__magic_name__ , ) self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , ) def __A ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained(__magic_name__ ) self.assertTrue(tokenizer.decode([255] ) == "" ) def __A ( self : Optional[int] ) -> List[Any]: pass def __A ( self : List[Any] ) -> List[Any]: pass def __A ( self : List[str] ) -> List[str]: pass def __A ( self : Any ) -> Union[str, Any]: pass def __A ( self : List[Any] ) -> Tuple: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens SCREAMING_SNAKE_CASE_ = self.get_tokenizers(fast=__magic_name__ , do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"] SCREAMING_SNAKE_CASE_ = tokenizer.convert_tokens_to_string(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) def __A ( self : List[str] ) -> Any: SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = tokenizer.convert_ids_to_tokens( __magic_name__ , skip_special_tokens=__magic_name__ ) for attr in attributes_list: setattr(__magic_name__ , attr + "_id" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + "_id" ) , __magic_name__ ) setattr(__magic_name__ , attr + "_id" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + "_id" ) , __magic_name__ ) setattr(__magic_name__ , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(__magic_name__ , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(__magic_name__ , "additional_special_tokens_ids" ) , [] ) setattr(__magic_name__ , "additional_special_tokens_ids" , [token_id_to_test_setters] ) self.assertListEqual(getattr(__magic_name__ , "additional_special_tokens" ) , [token_to_test_setters] ) self.assertListEqual(getattr(__magic_name__ , "additional_special_tokens_ids" ) , [token_id_to_test_setters] )
140
1
def A(__a: int = 100 ): lowerCAmelCase_ = 0 lowerCAmelCase_ = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F'''{solution() = }''')
719
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __magic_name__ (unittest.TestCase ): @parameterized.expand([(None,), ("foo.json",)] ) def __a ( self , _a ) -> Tuple: lowerCAmelCase_ = GenerationConfig( do_sample=_a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_a , config_name=_a ) lowerCAmelCase_ = GenerationConfig.from_pretrained(_a , config_name=_a ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , _a ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , _a ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = AutoConfig.from_pretrained("gpt2" ) lowerCAmelCase_ = GenerationConfig.from_model_config(_a ) lowerCAmelCase_ = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(_a , _a ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = GenerationConfig() lowerCAmelCase_ = { "max_new_tokens": 1024, "foo": "bar", } lowerCAmelCase_ = copy.deepcopy(_a ) lowerCAmelCase_ = generation_config.update(**_a ) # update_kwargs was not modified (no side effects) self.assertEqual(_a , _a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(_a , {"foo": "bar"} ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = GenerationConfig() lowerCAmelCase_ = "bar" with tempfile.TemporaryDirectory("test-generation-config" ) as tmp_dir: generation_config.save_pretrained(_a ) lowerCAmelCase_ = GenerationConfig.from_pretrained(_a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , "bar" ) lowerCAmelCase_ = GenerationConfig.from_model_config(_a ) assert not hasattr(_a , "foo" ) # no new kwargs should be initialized if from config def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , _a ) self.assertEqual(default_config.num_beams , 1 ) lowerCAmelCase_ = GenerationConfig( do_sample=_a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , _a ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_a ) lowerCAmelCase_ = GenerationConfig.from_pretrained(_a , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , _a ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __magic_name__ (unittest.TestCase ): @classmethod def __a ( cls ) -> Optional[Any]: lowerCAmelCase_ = TOKEN HfFolder.save_token(_a ) @classmethod def __a ( cls ) -> Optional[int]: try: delete_repo(token=cls._token , repo_id="test-generation-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-generation-config-org" ) except HTTPError: pass def __a ( self ) -> List[Any]: lowerCAmelCase_ = GenerationConfig( do_sample=_a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("test-generation-config" , use_auth_token=self._token ) lowerCAmelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a , getattr(_a , _a ) ) # Reset repo delete_repo(token=self._token , repo_id="test-generation-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _a , repo_id="test-generation-config" , push_to_hub=_a , use_auth_token=self._token ) lowerCAmelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a , getattr(_a , _a ) ) def __a ( self ) -> List[str]: lowerCAmelCase_ = GenerationConfig( do_sample=_a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("valid_org/test-generation-config-org" , use_auth_token=self._token ) lowerCAmelCase_ = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a , getattr(_a , _a ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-generation-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _a , repo_id="valid_org/test-generation-config-org" , push_to_hub=_a , use_auth_token=self._token ) lowerCAmelCase_ = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a , getattr(_a , _a ) )
226
0
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowerCamelCase__ ( __lowerCamelCase : int ): __UpperCAmelCase : Optional[Any] = prime_factors(__lowerCamelCase ) if is_square_free(__lowerCamelCase ): return -1 if len(__lowerCamelCase ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
63
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """Visual-Attention-Network/van-base""": ( """https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json""" ), } class __UpperCamelCase ( a__ ): _UpperCAmelCase = "van" def __init__( self ,_A=224 ,_A=3 ,_A=[7, 3, 3, 3] ,_A=[4, 2, 2, 2] ,_A=[64, 128, 320, 512] ,_A=[3, 3, 12, 3] ,_A=[8, 8, 4, 4] ,_A="gelu" ,_A=0.0_2 ,_A=1E-6 ,_A=1E-2 ,_A=0.0 ,_A=0.0 ,**_A ,): '''simple docstring''' super().__init__(**_A ) _lowerCAmelCase : str = image_size _lowerCAmelCase : Optional[Any] = num_channels _lowerCAmelCase : Optional[int] = patch_sizes _lowerCAmelCase : Any = strides _lowerCAmelCase : Optional[int] = hidden_sizes _lowerCAmelCase : List[str] = depths _lowerCAmelCase : Dict = mlp_ratios _lowerCAmelCase : Any = hidden_act _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : Optional[int] = layer_norm_eps _lowerCAmelCase : Tuple = layer_scale_init_value _lowerCAmelCase : Tuple = drop_path_rate _lowerCAmelCase : str = dropout_rate
259
0
from datetime import datetime import matplotlib.pyplot as plt import torch def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ): for param in module.parameters(): SCREAMING_SNAKE_CASE__ = False def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = """cuda""" if torch.cuda.is_available() else """cpu""" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): SCREAMING_SNAKE_CASE__ = """mps""" if device == "mps": print( """WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch""" """ errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues""" """ with generations.""" ) return device def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] ): SCREAMING_SNAKE_CASE__ = plt.imshow(UpperCamelCase__ ) fig.axes.get_xaxis().set_visible(UpperCamelCase__ ) fig.axes.get_yaxis().set_visible(UpperCamelCase__ ) plt.show() def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = datetime.now() SCREAMING_SNAKE_CASE__ = current_time.strftime("""%H:%M:%S""" ) return timestamp
59
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json', # See all Nat models at https://huggingface.co/models?filter=nat } class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ ): lowerCamelCase_ = "nat" lowerCamelCase_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self :List[Any] , __A :Optional[Any]=4 , __A :Any=3 , __A :Optional[int]=64 , __A :Optional[int]=[3, 4, 6, 5] , __A :Union[str, Any]=[2, 4, 8, 16] , __A :Optional[Any]=7 , __A :Optional[Any]=3.0 , __A :List[Any]=True , __A :int=0.0 , __A :Dict=0.0 , __A :Optional[Any]=0.1 , __A :str="gelu" , __A :Optional[Any]=0.0_2 , __A :Optional[int]=1E-5 , __A :Optional[int]=0.0 , __A :Optional[Any]=None , __A :Union[str, Any]=None , **__A :Union[str, Any] , ) -> Optional[int]: """simple docstring""" super().__init__(**__A ) SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = embed_dim SCREAMING_SNAKE_CASE__ = depths SCREAMING_SNAKE_CASE__ = len(__A ) SCREAMING_SNAKE_CASE__ = num_heads SCREAMING_SNAKE_CASE__ = kernel_size SCREAMING_SNAKE_CASE__ = mlp_ratio SCREAMING_SNAKE_CASE__ = qkv_bias SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = drop_path_rate SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE__ = int(embed_dim * 2 ** (len(__A ) - 1) ) SCREAMING_SNAKE_CASE__ = layer_scale_init_value SCREAMING_SNAKE_CASE__ = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(__A ) + 1 )] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_aligned_output_features_output_indices( out_features=__A , out_indices=__A , stage_names=self.stage_names )
59
1
"""simple docstring""" from math import sqrt def __snake_case ( SCREAMING_SNAKE_CASE: int ): """simple docstring""" _lowerCAmelCase = 0 for i in range(1 , int(sqrt(SCREAMING_SNAKE_CASE ) + 1 ) ): if n % i == 0 and i != sqrt(SCREAMING_SNAKE_CASE ): total += i + n // i elif i == sqrt(SCREAMING_SNAKE_CASE ): total += i return total - n def __snake_case ( SCREAMING_SNAKE_CASE: int = 1_0000 ): """simple docstring""" _lowerCAmelCase = sum( i for i in range(1 , SCREAMING_SNAKE_CASE ) if sum_of_divisors(sum_of_divisors(SCREAMING_SNAKE_CASE ) ) == i and sum_of_divisors(SCREAMING_SNAKE_CASE ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
580
"""simple docstring""" from __future__ import annotations _snake_case = [True] * 1_0_0_0_0_0_1 _snake_case = 2 while i * i <= 1_0_0_0_0_0_0: if seive[i]: for j in range(i * i, 1_0_0_0_0_0_1, i): _snake_case = False i += 1 def __snake_case ( SCREAMING_SNAKE_CASE: int ): """simple docstring""" return seive[n] def __snake_case ( SCREAMING_SNAKE_CASE: int ): """simple docstring""" return any(digit in '02468' for digit in str(SCREAMING_SNAKE_CASE ) ) def __snake_case ( SCREAMING_SNAKE_CASE: int = 100_0000 ): """simple docstring""" _lowerCAmelCase = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(SCREAMING_SNAKE_CASE ) and not contains_an_even_digit(SCREAMING_SNAKE_CASE ): _lowerCAmelCase = str(SCREAMING_SNAKE_CASE ) _lowerCAmelCase = [int(str_num[j:] + str_num[:j] ) for j in range(len(SCREAMING_SNAKE_CASE ) )] if all(is_prime(SCREAMING_SNAKE_CASE ) for i in list_nums ): result.append(SCREAMING_SNAKE_CASE ) return result def __snake_case ( ): """simple docstring""" return len(find_circular_primes() ) if __name__ == "__main__": print(f'{len(find_circular_primes()) = }')
580
1
'''simple docstring''' def snake_case ( a_ : list ) -> list: """simple docstring""" if len(a_ ) <= 1: return [tuple(a_ )] UpperCamelCase_ : Optional[int] = [] def generate(a_ : int , a_ : list ): UpperCamelCase_ : Union[str, Any] = [0] * n res.append(tuple(a_ ) ) UpperCamelCase_ : List[str] = 0 while i < n: if c[i] < i: if i % 2 == 0: UpperCamelCase_ : Any = arr[i], arr[0] else: UpperCamelCase_ : List[Any] = arr[i], arr[c[i]] res.append(tuple(a_ ) ) c[i] += 1 UpperCamelCase_ : List[Any] = 0 else: UpperCamelCase_ : Optional[int] = 0 i += 1 generate(len(a_ ) , a_ ) return res if __name__ == "__main__": UpperCamelCase =input("Enter numbers separated by a comma:\n").strip() UpperCamelCase =[int(item) for item in user_input.split(",")] print(heaps(arr))
712
'''simple docstring''' import pytest import datasets # Import fixture modules as plugins UpperCamelCase =["tests.fixtures.files", "tests.fixtures.hub", "tests.fixtures.fsspec"] def snake_case ( a_ : List[str] , a_ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for item in items: if any(marker in item.keywords for marker in ["""integration""", """unit"""] ): continue item.add_marker(pytest.mark.unit ) def snake_case ( a_ : Optional[int] ) -> Optional[Any]: """simple docstring""" config.addinivalue_line("""markers""" , """torchaudio_latest: mark test to run with torchaudio>=0.12""" ) @pytest.fixture(autouse=a_ ) def snake_case ( a_ : Any , a_ : Optional[int] ) -> Tuple: """simple docstring""" UpperCamelCase_ : Optional[Any] = tmp_path_factory.getbasetemp() / """cache""" UpperCamelCase_ : str = test_hf_cache_home / """datasets""" UpperCamelCase_ : Any = test_hf_cache_home / """metrics""" UpperCamelCase_ : List[Any] = test_hf_cache_home / """modules""" monkeypatch.setattr("""datasets.config.HF_DATASETS_CACHE""" , str(a_ ) ) monkeypatch.setattr("""datasets.config.HF_METRICS_CACHE""" , str(a_ ) ) monkeypatch.setattr("""datasets.config.HF_MODULES_CACHE""" , str(a_ ) ) UpperCamelCase_ : List[Any] = test_hf_datasets_cache / """downloads""" monkeypatch.setattr("""datasets.config.DOWNLOADED_DATASETS_PATH""" , str(a_ ) ) UpperCamelCase_ : Any = test_hf_datasets_cache / """downloads""" / """extracted""" monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(a_ ) ) @pytest.fixture(autouse=a_ , scope="""session""" ) def snake_case ( ) -> Any: """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=a_ ) def snake_case ( a_ : Optional[int] ) -> Union[str, Any]: """simple docstring""" monkeypatch.setattr("""datasets.config.HF_UPDATE_DOWNLOAD_COUNTS""" , a_ ) @pytest.fixture def snake_case ( a_ : int ) -> Union[str, Any]: """simple docstring""" monkeypatch.setattr("""sqlalchemy.util.deprecations.SILENCE_UBER_WARNING""" , a_ )
543
0
import os import time import numpy as np import onnxruntime as ort lowerCamelCase__ : int = '1' lowerCamelCase__ : Optional[int] = '0' lowerCamelCase__ : Optional[Any] = '1' lowerCamelCase__ : int = ort.SessionOptions() lowerCamelCase__ : List[Any] = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print('Create inference session...') lowerCamelCase__ : List[str] = ['TensorrtExecutionProvider', 'CUDAExecutionProvider'] lowerCamelCase__ : List[str] = ort.InferenceSession('model.onnx', sess_options=sess_opt, providers=execution_provider) lowerCamelCase__ : Union[str, Any] = ort.RunOptions() lowerCamelCase__ : int = 128 lowerCamelCase__ : Dict = 1 lowerCamelCase__ : Tuple = np.ones((batch, sequence), dtype=np.intaa) lowerCamelCase__ : Union[str, Any] = np.ones((batch, sequence), dtype=np.intaa) lowerCamelCase__ : Any = np.ones((batch, sequence), dtype=np.intaa) print('Warm up phase...') sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('Start inference...') lowerCamelCase__ : str = time.time() lowerCamelCase__ : int = 2_000 lowerCamelCase__ : Any = {} for iter in range(max_iters): lowerCamelCase__ : str = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('Average Inference Time = {:.3f} ms'.format((time.time() - start_time) * 1_000 / max_iters))
31
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( __lowerCAmelCase ): lowerCAmelCase__ : Optional[int] = (UnCLIPScheduler,) def __a ( self : Any , **lowerCamelCase : int ): '''simple docstring''' a__ = { "num_train_timesteps": 1_0_0_0, "variance_type": "fixed_small_log", "clip_sample": True, "clip_sample_range": 1.0, "prediction_type": "epsilon", } config.update(**lowerCamelCase ) return config def __a ( self : Dict ): '''simple docstring''' for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCamelCase ) def __a ( self : List[str] ): '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowerCamelCase ) def __a ( self : Any ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCamelCase ) def __a ( self : List[str] ): '''simple docstring''' for clip_sample_range in [1, 5, 1_0, 2_0]: self.check_over_configs(clip_sample_range=lowerCamelCase ) def __a ( self : Optional[Any] ): '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowerCamelCase ) def __a ( self : str ): '''simple docstring''' for time_step in [0, 5_0_0, 9_9_9]: for prev_timestep in [None, 5, 1_0_0, 2_5_0, 5_0_0, 7_5_0]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowerCamelCase , prev_timestep=lowerCamelCase ) def __a ( self : int ): '''simple docstring''' a__ = self.scheduler_classes[0] a__ = self.get_scheduler_config(variance_type="fixed_small_log" ) a__ = scheduler_class(**lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0549625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.9994987 ) ) < 1e-5 def __a ( self : List[Any] ): '''simple docstring''' a__ = self.scheduler_classes[0] a__ = self.get_scheduler_config(variance_type="learned_range" ) a__ = scheduler_class(**lowerCamelCase ) a__ = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowerCamelCase ) - -10.1712790 < 1e-5 assert scheduler._get_variance(4_8_7 , predicted_variance=lowerCamelCase ) - -5.7998052 < 1e-5 assert scheduler._get_variance(9_9_9 , predicted_variance=lowerCamelCase ) - -0.0010011 < 1e-5 def __a ( self : List[Any] ): '''simple docstring''' a__ = self.scheduler_classes[0] a__ = self.get_scheduler_config() a__ = scheduler_class(**lowerCamelCase ) a__ = scheduler.timesteps a__ = self.dummy_model() a__ = self.dummy_sample_deter a__ = torch.manual_seed(0 ) for i, t in enumerate(lowerCamelCase ): # 1. predict noise residual a__ = model(lowerCamelCase , lowerCamelCase ) # 2. predict previous mean of sample x_t-1 a__ = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ).prev_sample a__ = pred_prev_sample a__ = torch.sum(torch.abs(lowerCamelCase ) ) a__ = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 252.2682495 ) < 1e-2 assert abs(result_mean.item() - 0.3284743 ) < 1e-3 def __a ( self : Union[str, Any] ): '''simple docstring''' a__ = self.scheduler_classes[0] a__ = self.get_scheduler_config() a__ = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(2_5 ) a__ = scheduler.timesteps a__ = self.dummy_model() a__ = self.dummy_sample_deter a__ = torch.manual_seed(0 ) for i, t in enumerate(lowerCamelCase ): # 1. predict noise residual a__ = model(lowerCamelCase , lowerCamelCase ) if i + 1 == timesteps.shape[0]: a__ = None else: a__ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 a__ = scheduler.step( lowerCamelCase , lowerCamelCase , lowerCamelCase , prev_timestep=lowerCamelCase , generator=lowerCamelCase ).prev_sample a__ = pred_prev_sample a__ = torch.sum(torch.abs(lowerCamelCase ) ) a__ = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 258.2044983 ) < 1e-2 assert abs(result_mean.item() - 0.3362038 ) < 1e-3 def __a ( self : List[Any] ): '''simple docstring''' pass def __a ( self : Dict ): '''simple docstring''' pass
489
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: a_ :Dict = None a_ :List[str] = logging.get_logger(__name__) a_ :Tuple = '▁' a_ :int = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} a_ :int = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } a_ :Optional[int] = { 'google/pegasus-xsum': 5_12, } class lowercase ( _UpperCAmelCase ): '''simple docstring''' lowerCamelCase : List[str] = VOCAB_FILES_NAMES lowerCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = PegasusTokenizer lowerCamelCase : str = ['''input_ids''', '''attention_mask'''] def __init__( self : List[str] , _lowercase : str=None , _lowercase : Optional[Any]=None , _lowercase : List[Any]="<pad>" , _lowercase : Union[str, Any]="</s>" , _lowercase : Any="<unk>" , _lowercase : str="<mask_2>" , _lowercase : Optional[Any]="<mask_1>" , _lowercase : Optional[int]=None , _lowercase : List[str]=1_03 , **_lowercase : Dict , ): SCREAMING_SNAKE_CASE__ : Optional[Any] = offset if additional_special_tokens is not None: if not isinstance(_lowercase , _lowercase ): raise TypeError( f"""additional_special_tokens should be of type {type(_lowercase )}, but is""" f""" {type(_lowercase )}""" ) SCREAMING_SNAKE_CASE__ : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(_lowercase ) , self.offset - 1 ) ] if len(set(_lowercase ) ) != len(_lowercase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) SCREAMING_SNAKE_CASE__ : List[str] = additional_special_tokens_extended else: SCREAMING_SNAKE_CASE__ : List[Any] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] super().__init__( _lowercase , tokenizer_file=_lowercase , pad_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , mask_token=_lowercase , mask_token_sent=_lowercase , offset=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[int] = vocab_file SCREAMING_SNAKE_CASE__ : str = False if not self.vocab_file else True def lowercase__ ( self : int , _lowercase : Any ): SCREAMING_SNAKE_CASE__ : int = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( '''There should be 3 special tokens: mask_token, pad_token, and eos_token +''' f""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" ) return [1 if x in all_special_ids else 0 for x in seq] def lowercase__ ( self : str , _lowercase : List , _lowercase : Optional[List] = None , _lowercase : bool = False ): if already_has_special_tokens: return self._special_token_mask(_lowercase ) elif token_ids_a is None: return self._special_token_mask(_lowercase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase__ ( self : List[str] , _lowercase : Optional[Any] , _lowercase : Tuple=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase__ ( self : int , _lowercase : str , _lowercase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_lowercase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE__ : Tuple = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
717
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() a_ :Tuple = logging.get_logger(__name__) def a ( A__ , A__=False ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''') ) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''') ) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''') ) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias""") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE__ : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) # fmt: on return rename_keys def a ( A__ , A__ , A__=False ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE__ : str = '''''' else: SCREAMING_SNAKE_CASE__ : Optional[Any] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ : Dict = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ : str = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE__ : Optional[Any] = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE__ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE__ : Optional[int] = in_proj_bias[-config.hidden_size :] def a ( A__ ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(A__ , A__ ) def a ( A__ , A__ , A__ ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = dct.pop(A__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = val def a ( ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE__ : List[Any] = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def a ( A__ , A__ , A__=False ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=A__ , ) SCREAMING_SNAKE_CASE__ : Dict = ViTHybridConfig(backbone_config=A__ , image_size=3_8_4 , num_labels=1_0_0_0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = False # load original model from timm SCREAMING_SNAKE_CASE__ : int = timm.create_model(A__ , pretrained=A__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys SCREAMING_SNAKE_CASE__ : Union[str, Any] = timm_model.state_dict() if base_model: remove_classification_head_(A__ ) SCREAMING_SNAKE_CASE__ : Dict = create_rename_keys(A__ , A__ ) for src, dest in rename_keys: rename_key(A__ , A__ , A__ ) read_in_q_k_v(A__ , A__ , A__ ) SCREAMING_SNAKE_CASE__ : Tuple = '''huggingface/label-files''' SCREAMING_SNAKE_CASE__ : List[Any] = '''imagenet-1k-id2label.json''' SCREAMING_SNAKE_CASE__ : Tuple = json.load(open(hf_hub_download(A__ , A__ , repo_type='''dataset''' ) , '''r''' ) ) SCREAMING_SNAKE_CASE__ : int = {int(A__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ : Optional[int] = idalabel SCREAMING_SNAKE_CASE__ : int = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": SCREAMING_SNAKE_CASE__ : Union[str, Any] = ViTHybridModel(A__ ).eval() else: SCREAMING_SNAKE_CASE__ : List[Any] = ViTHybridForImageClassification(A__ ).eval() model.load_state_dict(A__ ) # create image processor SCREAMING_SNAKE_CASE__ : Union[str, Any] = create_transform(**resolve_data_config({} , model=A__ ) ) SCREAMING_SNAKE_CASE__ : Tuple = transform.transforms SCREAMING_SNAKE_CASE__ : Union[str, Any] = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } SCREAMING_SNAKE_CASE__ : List[Any] = ViTHybridImageProcessor( do_resize=A__ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=A__ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=A__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) SCREAMING_SNAKE_CASE__ : Dict = prepare_img() SCREAMING_SNAKE_CASE__ : Any = transform(A__ ).unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : Dict = processor(A__ , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(A__ , A__ ) # verify logits with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Dict = model(A__ ) SCREAMING_SNAKE_CASE__ : Dict = outputs.logits print('''Predicted class:''' , logits.argmax(-1 ).item() ) if base_model: SCREAMING_SNAKE_CASE__ : str = timm_model.forward_features(A__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(A__ , outputs.pooler_output , atol=1e-3 ) else: SCREAMING_SNAKE_CASE__ : Dict = timm_model(A__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(A__ , outputs.logits , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(A__ ).mkdir(exist_ok=A__ ) print(f"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(A__ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(A__ ) if push_to_hub: print(f"""Pushing model and processor to the hub {vit_name}""" ) model.push_to_hub(f"""ybelkada/{vit_name}""" ) processor.push_to_hub(f"""ybelkada/{vit_name}""" ) if __name__ == "__main__": a_ :str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_r50_s16_384', type=str, help='Name of the hybrid ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) a_ :Union[str, Any] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
250
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device __snake_case :str =False class lowerCAmelCase__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : Dict ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: A = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) A = torch.manual_seed(0 ) A = pipe.dual_guided( prompt='first prompt' , image=__UpperCamelCase , text_to_image_strength=0.7_5 , generator=__UpperCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__UpperCamelCase ) A = VersatileDiffusionPipeline.from_pretrained(__UpperCamelCase , torch_dtype=torch.floataa ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) A = generator.manual_seed(0 ) A = pipe.dual_guided( prompt='first prompt' , image=__UpperCamelCase , text_to_image_strength=0.7_5 , generator=__UpperCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def __UpperCamelCase ( self : Tuple ) -> List[str]: A = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) A = 'cyberpunk 2077' A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) A = torch.manual_seed(0 ) A = pipe.dual_guided( prompt=__UpperCamelCase , image=__UpperCamelCase , text_to_image_strength=0.7_5 , generator=__UpperCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images A = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) A = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 A = 'A painting of a squirrel eating a burger ' A = torch.manual_seed(0 ) A = pipe.text_to_image( prompt=__UpperCamelCase , generator=__UpperCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images A = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) A = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 A = pipe.image_variation(__UpperCamelCase , generator=__UpperCamelCase , output_type='numpy' ).images A = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) A = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
106
"""simple docstring""" def __snake_case ( __A : list , __A : int , __A : int = 0 , __A : int = 0 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = right or len(__A ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__A , __A , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
265
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ : Any = logging.get_logger(__name__) a_ : Tuple = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class UpperCamelCase ( UpperCamelCase__ ): __UpperCamelCase ="xmod" def __init__( self : Optional[Any] , snake_case__ : Optional[int]=3_0_5_2_2 , snake_case__ : int=7_6_8 , snake_case__ : str=1_2 , snake_case__ : Dict=1_2 , snake_case__ : List[str]=3_0_7_2 , snake_case__ : List[str]="gelu" , snake_case__ : Optional[int]=0.1 , snake_case__ : Optional[Any]=0.1 , snake_case__ : Any=5_1_2 , snake_case__ : int=2 , snake_case__ : str=0.02 , snake_case__ : Optional[int]=1E-12 , snake_case__ : int=1 , snake_case__ : Any=0 , snake_case__ : List[Any]=2 , snake_case__ : Union[str, Any]="absolute" , snake_case__ : List[Any]=True , snake_case__ : int=None , snake_case__ : Optional[Any]=False , snake_case__ : List[str]=2 , snake_case__ : Tuple=False , snake_case__ : int=True , snake_case__ : Optional[Any]=True , snake_case__ : int=("en_XX",) , snake_case__ : Dict=None , **snake_case__ : Any , ): """simple docstring""" super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = position_embedding_type SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = classifier_dropout SCREAMING_SNAKE_CASE = pre_norm SCREAMING_SNAKE_CASE = adapter_reduction_factor SCREAMING_SNAKE_CASE = adapter_layer_norm SCREAMING_SNAKE_CASE = adapter_reuse_layer_norm SCREAMING_SNAKE_CASE = ln_before_adapter SCREAMING_SNAKE_CASE = list(_a ) SCREAMING_SNAKE_CASE = default_language class UpperCamelCase ( UpperCamelCase__ ): @property def UpperCamelCase ( self : Optional[int] ): """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""} else: SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
710
from ....configuration_utils import PretrainedConfig from ....utils import logging a_ : Any = logging.get_logger(__name__) a_ : Dict = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="van" def __init__( self : Optional[Any] , snake_case__ : Tuple=2_2_4 , snake_case__ : Dict=3 , snake_case__ : Union[str, Any]=[7, 3, 3, 3] , snake_case__ : str=[4, 2, 2, 2] , snake_case__ : Optional[Any]=[6_4, 1_2_8, 3_2_0, 5_1_2] , snake_case__ : Optional[Any]=[3, 3, 1_2, 3] , snake_case__ : Tuple=[8, 8, 4, 4] , snake_case__ : Any="gelu" , snake_case__ : Dict=0.02 , snake_case__ : List[str]=1E-6 , snake_case__ : int=1E-2 , snake_case__ : Any=0.0 , snake_case__ : Tuple=0.0 , **snake_case__ : Any , ): """simple docstring""" super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = patch_sizes SCREAMING_SNAKE_CASE = strides SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = mlp_ratios SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = layer_scale_init_value SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = dropout_rate
673
0
'''simple docstring''' def UpperCamelCase_ ( A__ , A__ , A__ ): def count_of_possible_combinations(A__ ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(A__ ) def UpperCamelCase_ ( A__ , A__ , A__ ): def count_of_possible_combinations_with_dp_array( A__ , A__ ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] a_ = sum( count_of_possible_combinations_with_dp_array(target - item , A__ ) for item in array ) a_ = answer return answer a_ = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(A__ , A__ ) def UpperCamelCase_ ( A__ , A__ , A__ ): a_ = [0] * (target + 1) a_ = 1 for i in range(1 , target + 1 ): for j in range(A__ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() lowercase__ =3 lowercase__ =5 lowercase__ =[1, 2, 5] print(combination_sum_iv(n, array, target))
263
'''simple docstring''' from __future__ import annotations def UpperCamelCase_ ( A__ ): a_ = [True] * limit a_ = False a_ = False a_ = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): a_ = i * 2 while index < limit: a_ = False a_ = index + i a_ = [2] for i in range(3 , A__ , 2 ): if is_prime[i]: primes.append(A__ ) return primes def UpperCamelCase_ ( A__ = 1_00_00_00 ): a_ = prime_sieve(A__ ) a_ = 0 a_ = 0 for i in range(len(A__ ) ): for j in range(i + length , len(A__ ) ): a_ = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: a_ = j - i a_ = sol return largest if __name__ == "__main__": print(F"""{solution() = }""")
263
1
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def a ( ) -> str: __magic_name__: Any = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) __magic_name__: List[Any] = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(__UpperCAmelCase ) # Let's go __magic_name__: List[Any] = parser.parse_args() if not hasattr(__UpperCAmelCase , """func""" ): parser.print_help() exit(1 ) # Run __magic_name__: int = args.func(__UpperCAmelCase ) service.run() if __name__ == "__main__": main()
213
"""simple docstring""" from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = ["image_processor"] UpperCAmelCase__ = "SamImageProcessor" def __init__( self : str , __snake_case : Union[str, Any] ) -> str: super().__init__(__snake_case ) __magic_name__: List[Any] = self.image_processor __magic_name__: Optional[int] = -1_0 __magic_name__: Dict = self.image_processor.size["""longest_edge"""] def __call__( self : List[Any] , __snake_case : Tuple=None , __snake_case : Any=None , __snake_case : Optional[Any]=None , __snake_case : str=None , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : Dict , ) -> BatchEncoding: __magic_name__: Optional[int] = self.image_processor( __snake_case , return_tensors=__snake_case , **__snake_case , ) # pop arguments that are not used in the foward but used nevertheless __magic_name__: int = encoding_image_processor["""original_sizes"""] if hasattr(__snake_case , """numpy""" ): # Checks if Torch or TF tensor __magic_name__: Optional[Any] = original_sizes.numpy() __magic_name__, __magic_name__, __magic_name__: Any = self._check_and_preprocess_points( input_points=__snake_case , input_labels=__snake_case , input_boxes=__snake_case , ) __magic_name__: Optional[int] = self._normalize_and_convert( __snake_case , __snake_case , input_points=__snake_case , input_labels=__snake_case , input_boxes=__snake_case , return_tensors=__snake_case , ) return encoding_image_processor def lowerCamelCase__ ( self : Tuple , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : Any=None , __snake_case : Dict=None , __snake_case : Union[str, Any]=None , __snake_case : Union[str, Any]="pt" , ) -> Any: if input_points is not None: if len(__snake_case ) != len(__snake_case ): __magic_name__: str = [ self._normalize_coordinates(self.target_size , __snake_case , original_sizes[0] ) for point in input_points ] else: __magic_name__: List[str] = [ self._normalize_coordinates(self.target_size , __snake_case , __snake_case ) for point, original_size in zip(__snake_case , __snake_case ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __magic_name__, __magic_name__: Tuple = self._pad_points_and_labels(__snake_case , __snake_case ) __magic_name__: Tuple = np.array(__snake_case ) if input_labels is not None: __magic_name__: List[Any] = np.array(__snake_case ) if input_boxes is not None: if len(__snake_case ) != len(__snake_case ): __magic_name__: List[str] = [ self._normalize_coordinates(self.target_size , __snake_case , original_sizes[0] , is_bounding_box=__snake_case ) for box in input_boxes ] else: __magic_name__: List[Any] = [ self._normalize_coordinates(self.target_size , __snake_case , __snake_case , is_bounding_box=__snake_case ) for box, original_size in zip(__snake_case , __snake_case ) ] __magic_name__: int = np.array(__snake_case ) if input_boxes is not None: if return_tensors == "pt": __magic_name__: Union[str, Any] = torch.from_numpy(__snake_case ) # boxes batch size of 1 by default __magic_name__: Union[str, Any] = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __magic_name__: List[Any] = tf.convert_to_tensor(__snake_case ) # boxes batch size of 1 by default __magic_name__: Optional[Any] = tf.expand_dims(__snake_case , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes} ) if input_points is not None: if return_tensors == "pt": __magic_name__: Union[str, Any] = torch.from_numpy(__snake_case ) # point batch size of 1 by default __magic_name__: Optional[int] = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __magic_name__: Dict = tf.convert_to_tensor(__snake_case ) # point batch size of 1 by default __magic_name__: Union[str, Any] = tf.expand_dims(__snake_case , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points} ) if input_labels is not None: if return_tensors == "pt": __magic_name__: Union[str, Any] = torch.from_numpy(__snake_case ) # point batch size of 1 by default __magic_name__: Optional[Any] = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __magic_name__: Union[str, Any] = tf.convert_to_tensor(__snake_case ) # point batch size of 1 by default __magic_name__: int = tf.expand_dims(__snake_case , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels} ) return encoding_image_processor def lowerCamelCase__ ( self : List[str] , __snake_case : Tuple , __snake_case : Dict ) -> Optional[int]: __magic_name__: Union[str, Any] = max([point.shape[0] for point in input_points] ) __magic_name__: Any = [] for i, point in enumerate(__snake_case ): if point.shape[0] != expected_nb_points: __magic_name__: Optional[Any] = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) __magic_name__: str = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(__snake_case ) __magic_name__: str = processed_input_points return input_points, input_labels def lowerCamelCase__ ( self : Tuple , __snake_case : int , __snake_case : np.ndarray , __snake_case : Tuple , __snake_case : List[str]=False ) -> np.ndarray: __magic_name__, __magic_name__: Any = original_size __magic_name__, __magic_name__: Tuple = self.image_processor._get_preprocess_shape(__snake_case , longest_edge=__snake_case ) __magic_name__: List[str] = deepcopy(__snake_case ).astype(__snake_case ) if is_bounding_box: __magic_name__: List[str] = coords.reshape(-1 , 2 , 2 ) __magic_name__: str = coords[..., 0] * (new_w / old_w) __magic_name__: int = coords[..., 1] * (new_h / old_h) if is_bounding_box: __magic_name__: str = coords.reshape(-1 , 4 ) return coords def lowerCamelCase__ ( self : int , __snake_case : Optional[Any]=None , __snake_case : Optional[int]=None , __snake_case : int=None , ) -> Dict: if input_points is not None: if hasattr(__snake_case , """numpy""" ): # Checks for TF or Torch tensor __magic_name__: Union[str, Any] = input_points.numpy().tolist() if not isinstance(__snake_case , __snake_case ) or not isinstance(input_points[0] , __snake_case ): raise ValueError("""Input points must be a list of list of floating points.""" ) __magic_name__: Dict = [np.array(__snake_case ) for input_point in input_points] else: __magic_name__: str = None if input_labels is not None: if hasattr(__snake_case , """numpy""" ): __magic_name__: Optional[int] = input_labels.numpy().tolist() if not isinstance(__snake_case , __snake_case ) or not isinstance(input_labels[0] , __snake_case ): raise ValueError("""Input labels must be a list of list integers.""" ) __magic_name__: Tuple = [np.array(__snake_case ) for label in input_labels] else: __magic_name__: str = None if input_boxes is not None: if hasattr(__snake_case , """numpy""" ): __magic_name__: Tuple = input_boxes.numpy().tolist() if ( not isinstance(__snake_case , __snake_case ) or not isinstance(input_boxes[0] , __snake_case ) or not isinstance(input_boxes[0][0] , __snake_case ) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""" ) __magic_name__: List[Any] = [np.array(__snake_case ).astype(np.floataa ) for box in input_boxes] else: __magic_name__: List[str] = None return input_points, input_labels, input_boxes @property def lowerCamelCase__ ( self : Optional[int] ) -> Any: __magic_name__: int = self.image_processor.model_input_names return list(dict.fromkeys(__snake_case ) ) def lowerCamelCase__ ( self : Any , *__snake_case : str , **__snake_case : Union[str, Any] ) -> Optional[Any]: return self.image_processor.post_process_masks(*__snake_case , **__snake_case )
213
1
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ , __magic_name__ : Union[str, Any] =analyze_text(lowerCamelCase ) __magic_name__ : List[Any] =list(""" """ + ascii_lowercase ) # what is our total sum of probabilities. __magic_name__ : Union[str, Any] =sum(single_char_strings.values() ) # one length string __magic_name__ : Optional[int] =0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: __magic_name__ : str =single_char_strings[ch] __magic_name__ : Dict =my_str / all_sum my_fir_sum += prob * math.loga(lowerCamelCase ) # entropy formula. # print entropy print(F"{round(-1 * my_fir_sum ):.1f}" ) # two len string __magic_name__ : Optional[Any] =sum(two_char_strings.values() ) __magic_name__ : int =0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: __magic_name__ : List[str] =cha + cha if sequence in two_char_strings: __magic_name__ : str =two_char_strings[sequence] __magic_name__ : Union[str, Any] =int(lowerCamelCase ) / all_sum my_sec_sum += prob * math.loga(lowerCamelCase ) # print second entropy print(F"{round(-1 * my_sec_sum ):.1f}" ) # print the difference between them print(F"{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}" ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Tuple =Counter() # type: ignore __magic_name__ : int =Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(lowerCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def lowerCAmelCase_ ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
21
'''simple docstring''' import colorsys from PIL import Image # type: ignore def lowerCamelCase_ ( __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : int ) -> float: """simple docstring""" _A = x _A = y for step in range(__UpperCamelCase ): # noqa: B007 _A = a * a - b * b + x _A = 2 * a * b + y _A = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCamelCase_ ( __UpperCamelCase : float ) -> tuple: """simple docstring""" if distance == 1: return (0, 0, 0) else: return (2_5_5, 2_5_5, 2_5_5) def lowerCamelCase_ ( __UpperCamelCase : float ) -> tuple: """simple docstring""" if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_5_5 ) for i in colorsys.hsv_to_rgb(__UpperCamelCase , 1 , 1 ) ) def lowerCamelCase_ ( __UpperCamelCase : int = 8_0_0 , __UpperCamelCase : int = 6_0_0 , __UpperCamelCase : float = -0.6 , __UpperCamelCase : float = 0 , __UpperCamelCase : float = 3.2 , __UpperCamelCase : int = 5_0 , __UpperCamelCase : bool = True , ) -> Image.Image: """simple docstring""" _A = Image.new('RGB' , (image_width, image_height) ) _A = img.load() # loop through the image-coordinates for image_x in range(__UpperCamelCase ): for image_y in range(__UpperCamelCase ): # determine the figure-coordinates based on the image-coordinates _A = figure_width / image_width * image_height _A = figure_center_x + (image_x / image_width - 0.5) * figure_width _A = figure_center_y + (image_y / image_height - 0.5) * figure_height _A = get_distance(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: _A = get_color_coded_rgb(__UpperCamelCase ) else: _A = get_black_and_white_rgb(__UpperCamelCase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCAmelCase = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
292
0
def UpperCamelCase ( lowerCAmelCase_ ) -> str: '''simple docstring''' if number > 0: raise ValueError('input must be a negative integer' ) _A= len(bin(lowerCAmelCase_ )[3:] ) _A= bin(abs(lowerCAmelCase_ ) - (1 << binary_number_length) )[3:] _A= ( ( '1' + '0' * (binary_number_length - len(lowerCAmelCase_ )) + twos_complement_number ) if number < 0 else '0' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
711
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class lowerCAmelCase ( _a ): def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ): warnings.warn( 'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PerceiverImageProcessor instead.' , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
476
0
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef __snake_case = ( '''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ) def _A ( _lowercase , _lowercase ) -> str: """simple docstring""" warnings.warn(_lowercase , _lowercase ) requires_backends(_lowercase , 'sklearn' ) return (preds == labels).mean() def _A ( _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" warnings.warn(_lowercase , _lowercase ) requires_backends(_lowercase , 'sklearn' ) __UpperCamelCase = simple_accuracy(_lowercase , _lowercase ) __UpperCamelCase = fa_score(y_true=_lowercase , y_pred=_lowercase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def _A ( _lowercase , _lowercase ) -> List[str]: """simple docstring""" warnings.warn(_lowercase , _lowercase ) requires_backends(_lowercase , 'sklearn' ) __UpperCamelCase = pearsonr(_lowercase , _lowercase )[0] __UpperCamelCase = spearmanr(_lowercase , _lowercase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def _A ( _lowercase , _lowercase , _lowercase ) -> Dict: """simple docstring""" warnings.warn(_lowercase , _lowercase ) requires_backends(_lowercase , 'sklearn' ) assert len(_lowercase ) == len(_lowercase ), f'''Predictions and labels have mismatched lengths {len(_lowercase )} and {len(_lowercase )}''' if task_name == "cola": return {"mcc": matthews_corrcoef(_lowercase , _lowercase )} elif task_name == "sst-2": return {"acc": simple_accuracy(_lowercase , _lowercase )} elif task_name == "mrpc": return acc_and_fa(_lowercase , _lowercase ) elif task_name == "sts-b": return pearson_and_spearman(_lowercase , _lowercase ) elif task_name == "qqp": return acc_and_fa(_lowercase , _lowercase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(_lowercase , _lowercase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(_lowercase , _lowercase )} elif task_name == "qnli": return {"acc": simple_accuracy(_lowercase , _lowercase )} elif task_name == "rte": return {"acc": simple_accuracy(_lowercase , _lowercase )} elif task_name == "wnli": return {"acc": simple_accuracy(_lowercase , _lowercase )} elif task_name == "hans": return {"acc": simple_accuracy(_lowercase , _lowercase )} else: raise KeyError(_lowercase ) def _A ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: """simple docstring""" warnings.warn(_lowercase , _lowercase ) requires_backends(_lowercase , 'sklearn' ) if len(_lowercase ) != len(_lowercase ): raise ValueError(f'''Predictions and labels have mismatched lengths {len(_lowercase )} and {len(_lowercase )}''' ) if task_name == "xnli": return {"acc": simple_accuracy(_lowercase , _lowercase )} else: raise KeyError(_lowercase )
1
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) __snake_case : Union[str, Any] = _symbol_database.Default() __snake_case : Union[str, Any] = _descriptor_pool.Default().AddSerializedFile( b"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03" ) __snake_case : Optional[Any] = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals) if _descriptor._USE_C_DESCRIPTORS is False: __snake_case : Optional[int] = None __snake_case : List[Any] = b"H\003" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" __snake_case : int = 45 __snake_case : Any = 1581 __snake_case : str = 1517 __snake_case : Tuple = 1570 __snake_case : List[Any] = 1584 __snake_case : List[str] = 1793 __snake_case : Optional[Any] = 1795 __snake_case : Tuple = 1916 __snake_case : str = 1864 __snake_case : Dict = 1905 __snake_case : str = 1919 __snake_case : int = 2429 __snake_case : str = 2208 __snake_case : Tuple = 2418 __snake_case : List[Any] = 2323 __snake_case : str = 2407 # @@protoc_insertion_point(module_scope)
131
0
'''simple docstring''' def A__ ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float , ): lowerCamelCase__ = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("""All input parameters must be positive""" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("""Relative densities cannot be greater than one""" ) else: lowerCamelCase__ = 1 - (matter_density + radiation_density + dark_energy) lowerCamelCase__ = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) lowerCamelCase__ = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation UpperCamelCase : Any = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
720
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): lowerCamelCase__ = tempfile.mkdtemp() lowerCamelCase__ = BlipImageProcessor() lowerCamelCase__ = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" ) lowerCamelCase__ = BlipProcessor(_lowerCAmelCase ,_lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self ,**_lowerCAmelCase ): return AutoProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ).tokenizer def UpperCamelCase_ ( self ,**_lowerCAmelCase ): return AutoProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ).image_processor def UpperCamelCase_ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ): lowerCamelCase__ = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] lowerCamelCase__ = [Image.fromarray(np.moveaxis(_lowerCAmelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self ): lowerCamelCase__ = BlipProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) lowerCamelCase__ = self.get_image_processor(do_normalize=_lowerCAmelCase ,padding_value=1.0 ) lowerCamelCase__ = BlipProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=_lowerCAmelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = image_processor(_lowerCAmelCase ,return_tensors="""np""" ) lowerCamelCase__ = processor(images=_lowerCAmelCase ,return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = processor(text=_lowerCAmelCase ) lowerCamelCase__ = tokenizer(_lowerCAmelCase ,return_token_type_ids=_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__ = processor.batch_decode(_lowerCAmelCase ) lowerCamelCase__ = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] )
9
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class UpperCAmelCase__ ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ : torch.FloatTensor class UpperCAmelCase__ ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" @register_to_config def __init__( self: List[str] , __lowerCAmelCase: int = 3 , __lowerCAmelCase: List[Any] = 3 , __lowerCAmelCase: Tuple = ("DownEncoderBlock2D",) , __lowerCAmelCase: Optional[int] = ("UpDecoderBlock2D",) , __lowerCAmelCase: Optional[int] = (64,) , __lowerCAmelCase: Union[str, Any] = 1 , __lowerCAmelCase: Tuple = "silu" , __lowerCAmelCase: Dict = 3 , __lowerCAmelCase: List[str] = 32 , __lowerCAmelCase: Union[str, Any] = 256 , __lowerCAmelCase: Optional[Any] = 32 , __lowerCAmelCase: str = None , __lowerCAmelCase: Optional[int] = 0.18215 , __lowerCAmelCase: Optional[Any] = "group" , ) -> Dict: '''simple docstring''' super().__init__() # pass init params to Encoder __UpperCAmelCase = Encoder( in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , down_block_types=__lowerCAmelCase , block_out_channels=__lowerCAmelCase , layers_per_block=__lowerCAmelCase , act_fn=__lowerCAmelCase , norm_num_groups=__lowerCAmelCase , double_z=__lowerCAmelCase , ) __UpperCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels __UpperCAmelCase = nn.Convad(__lowerCAmelCase , __lowerCAmelCase , 1 ) __UpperCAmelCase = VectorQuantizer(__lowerCAmelCase , __lowerCAmelCase , beta=0.25 , remap=__lowerCAmelCase , sane_index_shape=__lowerCAmelCase ) __UpperCAmelCase = nn.Convad(__lowerCAmelCase , __lowerCAmelCase , 1 ) # pass init params to Decoder __UpperCAmelCase = Decoder( in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , up_block_types=__lowerCAmelCase , block_out_channels=__lowerCAmelCase , layers_per_block=__lowerCAmelCase , act_fn=__lowerCAmelCase , norm_num_groups=__lowerCAmelCase , norm_type=__lowerCAmelCase , ) @apply_forward_hook def _UpperCAmelCase ( self: Dict , __lowerCAmelCase: List[str] , __lowerCAmelCase: int = True ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = self.encoder(__lowerCAmelCase ) __UpperCAmelCase = self.quant_conv(__lowerCAmelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=__lowerCAmelCase ) @apply_forward_hook def _UpperCAmelCase ( self: int , __lowerCAmelCase: List[str] , __lowerCAmelCase: Any = False , __lowerCAmelCase: Tuple = True ) -> List[Any]: '''simple docstring''' if not force_not_quantize: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self.quantize(__lowerCAmelCase ) else: __UpperCAmelCase = h __UpperCAmelCase = self.post_quant_conv(__lowerCAmelCase ) __UpperCAmelCase = self.decoder(__lowerCAmelCase , quant if self.config.norm_type == "spatial" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__lowerCAmelCase ) def _UpperCAmelCase ( self: Union[str, Any] , __lowerCAmelCase: Union[str, Any] , __lowerCAmelCase: Optional[Any] = True ) -> Any: '''simple docstring''' __UpperCAmelCase = sample __UpperCAmelCase = self.encode(__lowerCAmelCase ).latents __UpperCAmelCase = self.decode(__lowerCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__lowerCAmelCase )
221
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def a_ ( __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Any ) -> str: """simple docstring""" # Initialise PyTorch model lowerCamelCase_ =BertConfig.from_json_file(__snake_case ) print(F'''Building PyTorch model from configuration: {config}''' ) lowerCamelCase_ =BertForPreTraining(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_bert(__snake_case , __snake_case , __snake_case ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __snake_case ) if __name__ == "__main__": a_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--bert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) a_ : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
676
0
'''simple docstring''' import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCamelCase ( snake_case_ , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = AudioLDMPipeline __lowercase : Any = TEXT_TO_AUDIO_PARAMS __lowercase : Optional[Any] = TEXT_TO_AUDIO_BATCH_PARAMS __lowercase : Optional[Any] = frozenset( [ '''num_inference_steps''', '''num_waveforms_per_prompt''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def snake_case__ ( self ): """simple docstring""" torch.manual_seed(0 ) __A : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=(32, 64) , class_embed_type='simple_projection' , projection_class_embeddings_input_dim=32 , class_embeddings_concat=__lowercase , ) __A : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=__lowercase , set_alpha_to_one=__lowercase , ) torch.manual_seed(0 ) __A : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __A : str = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , projection_dim=32 , ) __A : str = ClapTextModelWithProjection(__lowercase ) __A : Tuple = RobertaTokenizer.from_pretrained('hf-internal-testing/tiny-random-roberta' , model_max_length=77 ) __A : List[Any] = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=16_000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=__lowercase , ) __A : Optional[Any] = SpeechTaHifiGan(__lowercase ) __A : int = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'vocoder': vocoder, } return components def snake_case__ ( self , __lowercase , __lowercase=0 ): """simple docstring""" if str(__lowercase ).startswith('mps' ): __A : int = torch.manual_seed(__lowercase ) else: __A : Optional[int] = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __A : str = { 'prompt': 'A hammer hitting a wooden surface', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, } return inputs def snake_case__ ( self ): """simple docstring""" __A : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator __A : List[str] = self.get_dummy_components() __A : Any = AudioLDMPipeline(**__lowercase ) __A : Tuple = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __A : List[Any] = self.get_dummy_inputs(__lowercase ) __A : Any = audioldm_pipe(**__lowercase ) __A : Tuple = output.audios[0] assert audio.ndim == 1 assert len(__lowercase ) == 256 __A : int = audio[:10] __A : Dict = np.array( [-0.0_0_5_0, 0.0_0_5_0, -0.0_0_6_0, 0.0_0_3_3, -0.0_0_2_6, 0.0_0_3_3, -0.0_0_2_7, 0.0_0_3_3, -0.0_0_2_8, 0.0_0_3_3] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def snake_case__ ( self ): """simple docstring""" __A : Union[str, Any] = self.get_dummy_components() __A : Any = AudioLDMPipeline(**__lowercase ) __A : List[Any] = audioldm_pipe.to(__lowercase ) __A : List[str] = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __A : str = self.get_dummy_inputs(__lowercase ) __A : List[Any] = 3 * [inputs['prompt']] # forward __A : str = audioldm_pipe(**__lowercase ) __A : Union[str, Any] = output.audios[0] __A : Tuple = self.get_dummy_inputs(__lowercase ) __A : Tuple = 3 * [inputs.pop('prompt' )] __A : Dict = audioldm_pipe.tokenizer( __lowercase , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__lowercase , return_tensors='pt' , ) __A : List[Any] = text_inputs['input_ids'].to(__lowercase ) __A : int = audioldm_pipe.text_encoder( __lowercase , ) __A : str = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state __A : Optional[int] = F.normalize(__lowercase , dim=-1 ) __A : Any = prompt_embeds # forward __A : Tuple = audioldm_pipe(**__lowercase ) __A : List[Any] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def snake_case__ ( self ): """simple docstring""" __A : str = self.get_dummy_components() __A : Tuple = AudioLDMPipeline(**__lowercase ) __A : List[Any] = audioldm_pipe.to(__lowercase ) __A : Optional[int] = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __A : Optional[int] = self.get_dummy_inputs(__lowercase ) __A : Optional[int] = 3 * ['this is a negative prompt'] __A : str = negative_prompt __A : Optional[int] = 3 * [inputs['prompt']] # forward __A : str = audioldm_pipe(**__lowercase ) __A : Optional[Any] = output.audios[0] __A : str = self.get_dummy_inputs(__lowercase ) __A : List[str] = 3 * [inputs.pop('prompt' )] __A : Optional[int] = [] for p in [prompt, negative_prompt]: __A : Optional[Any] = audioldm_pipe.tokenizer( __lowercase , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__lowercase , return_tensors='pt' , ) __A : Optional[Any] = text_inputs['input_ids'].to(__lowercase ) __A : str = audioldm_pipe.text_encoder( __lowercase , ) __A : Union[str, Any] = text_embeds.text_embeds # additional L_2 normalization over each hidden-state __A : Any = F.normalize(__lowercase , dim=-1 ) embeds.append(__lowercase ) __A : Union[str, Any] = embeds # forward __A : str = audioldm_pipe(**__lowercase ) __A : Any = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def snake_case__ ( self ): """simple docstring""" __A : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator __A : List[str] = self.get_dummy_components() __A : Dict = PNDMScheduler(skip_prk_steps=__lowercase ) __A : Optional[int] = AudioLDMPipeline(**__lowercase ) __A : Optional[Any] = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __A : Tuple = self.get_dummy_inputs(__lowercase ) __A : int = 'egg cracking' __A : Union[str, Any] = audioldm_pipe(**__lowercase , negative_prompt=__lowercase ) __A : Union[str, Any] = output.audios[0] assert audio.ndim == 1 assert len(__lowercase ) == 256 __A : str = audio[:10] __A : List[Any] = np.array( [-0.0_0_5_1, 0.0_0_5_0, -0.0_0_6_0, 0.0_0_3_4, -0.0_0_2_6, 0.0_0_3_3, -0.0_0_2_7, 0.0_0_3_3, -0.0_0_2_8, 0.0_0_3_2] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def snake_case__ ( self ): """simple docstring""" __A : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator __A : Any = self.get_dummy_components() __A : Dict = PNDMScheduler(skip_prk_steps=__lowercase ) __A : Optional[int] = AudioLDMPipeline(**__lowercase ) __A : Union[str, Any] = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __A : Tuple = 'A hammer hitting a wooden surface' # test num_waveforms_per_prompt=1 (default) __A : Any = audioldm_pipe(__lowercase , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts __A : Union[str, Any] = 2 __A : Dict = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt __A : Dict = 2 __A : Tuple = audioldm_pipe(__lowercase , num_inference_steps=2 , num_waveforms_per_prompt=__lowercase ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts __A : Optional[Any] = 2 __A : Union[str, Any] = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=__lowercase ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def snake_case__ ( self ): """simple docstring""" __A : Any = 'cpu' # ensure determinism for the device-dependent torch.Generator __A : List[str] = self.get_dummy_components() __A : Union[str, Any] = AudioLDMPipeline(**__lowercase ) __A : List[Any] = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __A : List[Any] = audioldm_pipe.vocoder.config.sampling_rate __A : Union[str, Any] = self.get_dummy_inputs(__lowercase ) __A : Tuple = audioldm_pipe(audio_length_in_s=0.0_1_6 , **__lowercase ) __A : str = output.audios[0] assert audio.ndim == 1 assert len(__lowercase ) / vocoder_sampling_rate == 0.0_1_6 __A : List[Any] = audioldm_pipe(audio_length_in_s=0.0_3_2 , **__lowercase ) __A : Optional[int] = output.audios[0] assert audio.ndim == 1 assert len(__lowercase ) / vocoder_sampling_rate == 0.0_3_2 def snake_case__ ( self ): """simple docstring""" __A : int = self.get_dummy_components() __A : Any = AudioLDMPipeline(**__lowercase ) __A : int = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __A : Tuple = ['hey'] __A : Union[str, Any] = audioldm_pipe(__lowercase , num_inference_steps=1 ) __A : Any = output.audios.shape assert audio_shape == (1, 256) __A : Optional[int] = audioldm_pipe.vocoder.config config.model_in_dim *= 2 __A : Tuple = SpeechTaHifiGan(__lowercase ).to(__lowercase ) __A : List[str] = audioldm_pipe(__lowercase , num_inference_steps=1 ) __A : List[str] = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def snake_case__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__lowercase ) def snake_case__ ( self ): """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=__lowercase ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def snake_case__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__lowercase ) @slow class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self , __lowercase , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=0 ): """simple docstring""" __A : str = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __A : List[str] = np.random.RandomState(__lowercase ).standard_normal((1, 8, 128, 16) ) __A : Optional[int] = torch.from_numpy(__lowercase ).to(device=__lowercase , dtype=__lowercase ) __A : str = { 'prompt': 'A hammer hitting a wooden surface', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 2.5, } return inputs def snake_case__ ( self ): """simple docstring""" __A : Any = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) __A : Any = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __A : int = self.get_inputs(__lowercase ) __A : Dict = 25 __A : Optional[Any] = audioldm_pipe(**__lowercase ).audios[0] assert audio.ndim == 1 assert len(__lowercase ) == 81_920 __A : Dict = audio[77_230:77_240] __A : Dict = np.array( [-0.4_8_8_4, -0.4_6_0_7, 0.0_0_2_3, 0.5_0_0_7, 0.5_8_9_6, 0.5_1_5_1, 0.3_8_1_3, -0.0_2_0_8, -0.3_6_8_7, -0.4_3_1_5] ) __A : Optional[int] = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def snake_case__ ( self ): """simple docstring""" __A : Tuple = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) __A : int = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) __A : Dict = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __A : Union[str, Any] = self.get_inputs(__lowercase ) __A : List[Any] = audioldm_pipe(**__lowercase ).audios[0] assert audio.ndim == 1 assert len(__lowercase ) == 81_920 __A : List[Any] = audio[27_780:27_790] __A : Optional[int] = np.array([-0.2_1_3_1, -0.0_8_7_3, -0.0_1_2_4, -0.0_1_8_9, 0.0_5_6_9, 0.1_3_7_3, 0.1_8_8_3, 0.2_8_8_6, 0.3_2_9_7, 0.2_2_1_2] ) __A : Dict = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
712
'''simple docstring''' from heapq import heappop, heappush import numpy as np def _lowercase ( UpperCamelCase__ : np.ndarray, UpperCamelCase__ : tuple[int, int], UpperCamelCase__ : tuple[int, int], UpperCamelCase__ : bool, ): __A ,__A : Optional[Any] = grid.shape __A : List[Any] = [-1, 1, 0, 0] __A : Optional[int] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] __A ,__A : int = [(0, source)], set() __A : Any = np.full((rows, cols), np.inf ) __A : int = 0 __A : Any = np.empty((rows, cols), dtype=UpperCamelCase__ ) __A : List[Any] = None while queue: ((__A) ,(__A)) : List[Any] = heappop(UpperCamelCase__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: __A : Tuple = [] while (x, y) != source: path.append((x, y) ) __A ,__A : int = predecessors[x, y] path.append(UpperCamelCase__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(UpperCamelCase__ ) ): __A ,__A : List[Any] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: __A : str = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(UpperCamelCase__, (dist + 1, (nx, ny)) ) __A : int = dist + 1 __A : List[str] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
540
0
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int]=None ): __UpperCAmelCase : Dict = None if token is not None: __UpperCAmelCase : List[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"""Bearer {token}"""} __UpperCAmelCase : str = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" __UpperCAmelCase : List[Any] = requests.get(__lowerCamelCase , headers=__lowerCamelCase ).json() __UpperCAmelCase : Optional[Any] = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) __UpperCAmelCase : Union[str, Any] = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(__lowerCamelCase ): __UpperCAmelCase : Optional[int] = requests.get(url + f"""&page={i + 2}""" , headers=__lowerCamelCase ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def lowerCamelCase__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int]=None ): __UpperCAmelCase : List[Any] = None if token is not None: __UpperCAmelCase : List[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"""Bearer {token}"""} __UpperCAmelCase : List[Any] = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" __UpperCAmelCase : Union[str, Any] = requests.get(__lowerCamelCase , headers=__lowerCamelCase ).json() __UpperCAmelCase : Optional[int] = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) __UpperCAmelCase : Optional[int] = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(__lowerCamelCase ): __UpperCAmelCase : Any = requests.get(url + f"""&page={i + 2}""" , headers=__lowerCamelCase ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] ): __UpperCAmelCase : Union[str, Any] = None if token is not None: __UpperCAmelCase : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"""Bearer {token}"""} __UpperCAmelCase : Tuple = requests.get(__lowerCamelCase , headers=__lowerCamelCase , allow_redirects=__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = result.headers["""Location"""] __UpperCAmelCase : List[Any] = requests.get(__lowerCamelCase , allow_redirects=__lowerCamelCase ) __UpperCAmelCase : Dict = os.path.join(__lowerCamelCase , f"""{artifact_name}.zip""" ) with open(__lowerCamelCase , """wb""" ) as fp: fp.write(response.content ) def lowerCamelCase__ ( __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int]=None ): __UpperCAmelCase : str = [] __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : Tuple = None with zipfile.ZipFile(__lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(__lowerCamelCase ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(__lowerCamelCase ) as f: for line in f: __UpperCAmelCase : Dict = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs __UpperCAmelCase : Union[str, Any] = line[: line.index(""": """ )] __UpperCAmelCase : str = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed __UpperCAmelCase : Optional[int] = line[len("""FAILED """ ) :] failed_tests.append(__lowerCamelCase ) elif filename == "job_name.txt": __UpperCAmelCase : Optional[int] = line if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError( f"""`errors` and `failed_tests` should have the same number of elements. Got {len(__lowerCamelCase )} for `errors` """ f"""and {len(__lowerCamelCase )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" """ problem.""" ) __UpperCAmelCase : Dict = None if job_name and job_links: __UpperCAmelCase : List[str] = job_links.get(__lowerCamelCase , __lowerCamelCase ) # A list with elements of the form (line of error, error, failed test) __UpperCAmelCase : Union[str, Any] = [x + [y] + [job_link] for x, y in zip(__lowerCamelCase , __lowerCamelCase )] return result def lowerCamelCase__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : Any=None ): __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : List[Any] = [os.path.join(__lowerCamelCase , __lowerCamelCase ) for p in os.listdir(__lowerCamelCase ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(__lowerCamelCase , job_links=__lowerCamelCase ) ) return errors def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : int=None ): __UpperCAmelCase : str = Counter() counter.update([x[1] for x in logs] ) __UpperCAmelCase : Union[str, Any] = counter.most_common() __UpperCAmelCase : Optional[int] = {} for error, count in counts: if error_filter is None or error not in error_filter: __UpperCAmelCase : str = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} __UpperCAmelCase : Dict = dict(sorted(r.items() , key=lambda __lowerCamelCase : item[1]["count"] , reverse=__lowerCamelCase ) ) return r def lowerCamelCase__ ( __lowerCamelCase : Tuple ): __UpperCAmelCase : List[str] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): __UpperCAmelCase : List[Any] = test.split("""/""" )[2] else: __UpperCAmelCase : Any = None return test def lowerCamelCase__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : List[str]=None ): __UpperCAmelCase : Union[str, Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] __UpperCAmelCase : Tuple = [x for x in logs if x[2] is not None] __UpperCAmelCase : Union[str, Any] = {x[2] for x in logs} __UpperCAmelCase : Optional[int] = {} for test in tests: __UpperCAmelCase : Tuple = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) __UpperCAmelCase : List[str] = counter.most_common() __UpperCAmelCase : Any = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} __UpperCAmelCase : Dict = sum(error_counts.values() ) if n_errors > 0: __UpperCAmelCase : str = {"""count""": n_errors, """errors""": error_counts} __UpperCAmelCase : Any = dict(sorted(r.items() , key=lambda __lowerCamelCase : item[1]["count"] , reverse=__lowerCamelCase ) ) return r def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] ): __UpperCAmelCase : Union[str, Any] = """| no. | error | status |""" __UpperCAmelCase : str = """|-:|:-|:-|""" __UpperCAmelCase : str = [header, sep] for error in reduced_by_error: __UpperCAmelCase : Tuple = reduced_by_error[error]["""count"""] __UpperCAmelCase : List[Any] = f"""| {count} | {error[:100]} | |""" lines.append(__lowerCamelCase ) return "\n".join(__lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : List[Any] ): __UpperCAmelCase : int = """| model | no. of errors | major error | count |""" __UpperCAmelCase : int = """|-:|-:|-:|-:|""" __UpperCAmelCase : int = [header, sep] for model in reduced_by_model: __UpperCAmelCase : Optional[int] = reduced_by_model[model]["""count"""] __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = list(reduced_by_model[model]["""errors"""].items() )[0] __UpperCAmelCase : Dict = f"""| {model} | {count} | {error[:60]} | {_count} |""" lines.append(__lowerCamelCase ) return "\n".join(__lowerCamelCase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") a : Union[str, Any] = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) a : List[str] = get_job_links(args.workflow_run_id, token=args.token) a : Optional[Any] = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: a : Dict = k.find(" / ") a : Optional[Any] = k[index + len(" / ") :] a : Tuple = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) a : Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) a : Optional[Any] = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error a : Optional[Any] = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors a : List[str] = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) a : List[str] = reduce_by_error(errors) a : str = reduce_by_model(errors) a : Optional[Any] = make_github_table(reduced_by_error) a : Union[str, Any] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
63
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __lowerCAmelCase = None __lowerCAmelCase = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __lowerCAmelCase = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class _lowerCAmelCase : '''simple docstring''' lowerCAmelCase_ = True lowerCAmelCase_ = None # Automatically constructed lowerCAmelCase_ = "PIL.Image.Image" lowerCAmelCase_ = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) lowerCAmelCase_ = field(default="Image" , init=__snake_case , repr=__snake_case ) def __call__(self ) -> Optional[int]: return self.pa_type def lowercase (self , UpperCAmelCase ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(UpperCAmelCase , UpperCAmelCase ): _snake_case = np.array(UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): return {"path": value, "bytes": None} elif isinstance(UpperCAmelCase , UpperCAmelCase ): return {"path": None, "bytes": value} elif isinstance(UpperCAmelCase , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(UpperCAmelCase ) elif isinstance(UpperCAmelCase , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(UpperCAmelCase ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f"""An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def lowercase (self , UpperCAmelCase , UpperCAmelCase=None ) -> "PIL.Image.Image": if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: _snake_case = {} _snake_case, _snake_case = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f"""An image should have one of 'path' or 'bytes' but both are None in {value}.""" ) else: if is_local_path(UpperCAmelCase ): _snake_case = PIL.Image.open(UpperCAmelCase ) else: _snake_case = path.split("""::""" )[-1] try: _snake_case = string_to_dict(UpperCAmelCase , config.HUB_DATASETS_URL )["""repo_id"""] _snake_case = token_per_repo_id.get(UpperCAmelCase ) except ValueError: _snake_case = None with xopen(UpperCAmelCase , """rb""" , use_auth_token=UpperCAmelCase ) as f: _snake_case = BytesIO(f.read() ) _snake_case = PIL.Image.open(bytes_ ) else: _snake_case = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def lowercase (self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def lowercase (self , UpperCAmelCase ) -> pa.StructArray: if pa.types.is_string(storage.type ): _snake_case = pa.array([None] * len(UpperCAmelCase ) , type=pa.binary() ) _snake_case = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _snake_case = pa.array([None] * len(UpperCAmelCase ) , type=pa.string() ) _snake_case = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: _snake_case = storage.field("""bytes""" ) else: _snake_case = pa.array([None] * len(UpperCAmelCase ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: _snake_case = storage.field("""path""" ) else: _snake_case = pa.array([None] * len(UpperCAmelCase ) , type=pa.string() ) _snake_case = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): _snake_case = pa.array( [encode_np_array(np.array(UpperCAmelCase ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) _snake_case = pa.array([None] * len(UpperCAmelCase ) , type=pa.string() ) _snake_case = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(UpperCAmelCase , self.pa_type ) def lowercase (self , UpperCAmelCase ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(UpperCAmelCase ): with xopen(UpperCAmelCase , """rb""" ) as f: _snake_case = f.read() return bytes_ _snake_case = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) _snake_case = pa.array( [os.path.basename(UpperCAmelCase ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) _snake_case = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(UpperCAmelCase , self.pa_type ) def __SCREAMING_SNAKE_CASE ( ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() _snake_case = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = BytesIO() if image.format in list_image_compression_formats(): _snake_case = image.format else: _snake_case = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(_SCREAMING_SNAKE_CASE , format=_SCREAMING_SNAKE_CASE ) return buffer.getvalue() def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if hasattr(_SCREAMING_SNAKE_CASE , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_SCREAMING_SNAKE_CASE )} def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) _snake_case = array.dtype _snake_case = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER _snake_case = dtype.kind _snake_case = dtype.itemsize _snake_case = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: _snake_case = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( f"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" ) if dtype is not dest_dtype: warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: _snake_case = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: _snake_case = dtype_byteorder + dtype_kind + str(_SCREAMING_SNAKE_CASE ) _snake_case = np.dtype(_SCREAMING_SNAKE_CASE ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" ) _snake_case = PIL.Image.fromarray(array.astype(_SCREAMING_SNAKE_CASE ) ) return {"path": None, "bytes": image_to_bytes(_SCREAMING_SNAKE_CASE )} def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: _snake_case, _snake_case = first_non_null_value(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): _snake_case = no_op_if_value_is_null(_SCREAMING_SNAKE_CASE ) return [obj_to_image_dict_func(_SCREAMING_SNAKE_CASE ) for obj in objs] elif isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ): _snake_case = no_op_if_value_is_null(_SCREAMING_SNAKE_CASE ) return [obj_to_image_dict_func(_SCREAMING_SNAKE_CASE ) for obj in objs] else: return objs else: return objs
585
0
"""simple docstring""" import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ = logging.get_logger(__name__) A_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} A_ = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } A_ = { '''allenai/longformer-base-4096''': 4096, '''allenai/longformer-large-4096''': 4096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _lowerCAmelCase ( ) ->List[str]: A__ : Tuple = ( list(range(ord("""!""" ), ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ), ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ), ord("""ÿ""" ) + 1 ) ) ) A__ : int = bs[:] A__ : Optional[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCAmelCase__ ) cs.append(2**8 + n ) n += 1 A__ : Optional[Any] = [chr(UpperCAmelCase__ ) for n in cs] return dict(zip(UpperCAmelCase__, UpperCAmelCase__ ) ) def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->Tuple: A__ : Tuple = set() A__ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A__ : str = char return pairs class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ['input_ids', 'attention_mask'] def __init__( self : List[str] , snake_case : List[str] , snake_case : str , snake_case : Dict="replace" , snake_case : Optional[int]="<s>" , snake_case : Any="</s>" , snake_case : List[Any]="</s>" , snake_case : str="<s>" , snake_case : Tuple="<unk>" , snake_case : List[str]="<pad>" , snake_case : Optional[Any]="<mask>" , snake_case : Tuple=False , **snake_case : Dict , ): '''simple docstring''' A__ : Optional[Any] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else bos_token A__ : Optional[Any] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else eos_token A__ : int = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else sep_token A__ : str = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else cls_token A__ : Optional[Any] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else unk_token A__ : Optional[int] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A__ : Union[str, Any] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token super().__init__( errors=snake_case , bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , cls_token=snake_case , pad_token=snake_case , mask_token=snake_case , add_prefix_space=snake_case , **snake_case , ) with open(snake_case , encoding="""utf-8""" ) as vocab_handle: A__ : Tuple = json.load(snake_case ) A__ : Dict = {v: k for k, v in self.encoder.items()} A__ : Dict = errors # how to handle errors in decoding A__ : Dict = bytes_to_unicode() A__ : Optional[int] = {v: k for k, v in self.byte_encoder.items()} with open(snake_case , encoding="""utf-8""" ) as merges_handle: A__ : List[str] = merges_handle.read().split("""\n""" )[1:-1] A__ : Dict = [tuple(merge.split() ) for merge in bpe_merges] A__ : Union[str, Any] = dict(zip(snake_case , range(len(snake_case ) ) ) ) A__ : Tuple = {} A__ : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions A__ : Union[str, Any] = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' return len(self.encoder ) def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _UpperCamelCase ( self : str , snake_case : Tuple ): '''simple docstring''' if token in self.cache: return self.cache[token] A__ : str = tuple(snake_case ) A__ : Any = get_pairs(snake_case ) if not pairs: return token while True: A__ : int = min(snake_case , key=lambda snake_case : self.bpe_ranks.get(snake_case , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A__ , A__ : int = bigram A__ : List[str] = [] A__ : Dict = 0 while i < len(snake_case ): try: A__ : int = word.index(snake_case , snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A__ : str = j if word[i] == first and i < len(snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A__ : Any = tuple(snake_case ) A__ : Optional[Any] = new_word if len(snake_case ) == 1: break else: A__ : int = get_pairs(snake_case ) A__ : Dict = """ """.join(snake_case ) A__ : int = word return word def _UpperCamelCase ( self : int , snake_case : List[str] ): '''simple docstring''' A__ : int = [] for token in re.findall(self.pat , snake_case ): A__ : Union[str, Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(snake_case ).split(""" """ ) ) return bpe_tokens def _UpperCamelCase ( self : Optional[Any] , snake_case : Dict ): '''simple docstring''' return self.encoder.get(snake_case , self.encoder.get(self.unk_token ) ) def _UpperCamelCase ( self : Optional[int] , snake_case : int ): '''simple docstring''' return self.decoder.get(snake_case ) def _UpperCamelCase ( self : Union[str, Any] , snake_case : Union[str, Any] ): '''simple docstring''' A__ : Union[str, Any] = """""".join(snake_case ) A__ : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def _UpperCamelCase ( self : List[str] , snake_case : str , snake_case : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A__ : Any = os.path.join( snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A__ : int = os.path.join( snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(snake_case , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case , ensure_ascii=snake_case ) + """\n""" ) A__ : Optional[int] = 0 with open(snake_case , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) A__ : Dict = token_index writer.write(""" """.join(snake_case ) + """\n""" ) index += 1 return vocab_file, merge_file def _UpperCamelCase ( self : List[Any] , snake_case : List[int] , snake_case : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ : Optional[int] = [self.cls_token_id] A__ : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCamelCase ( self : int , snake_case : List[int] , snake_case : Optional[List[int]] = None , snake_case : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) if token_ids_a is None: return [1] + ([0] * len(snake_case )) + [1] return [1] + ([0] * len(snake_case )) + [1, 1] + ([0] * len(snake_case )) + [1] def _UpperCamelCase ( self : Union[str, Any] , snake_case : List[int] , snake_case : Optional[List[int]] = None ): '''simple docstring''' A__ : int = [self.sep_token_id] A__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCamelCase ( self : str , snake_case : Optional[Any] , snake_case : List[str]=False , **snake_case : Optional[Any] ): '''simple docstring''' A__ : Optional[Any] = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(snake_case ) > 0 and not text[0].isspace()): A__ : str = """ """ + text return (text, kwargs)
498
"""simple docstring""" from __future__ import annotations class __SCREAMING_SNAKE_CASE : def __init__( self : Any , snake_case : str , snake_case : str ): '''simple docstring''' A__ , A__ : List[str] = text, pattern A__ , A__ : List[str] = len(snake_case ), len(snake_case ) def _UpperCamelCase ( self : str , snake_case : str ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def _UpperCamelCase ( self : Any , snake_case : int ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : str = [] for i in range(self.textLen - self.patLen + 1 ): A__ : List[Any] = self.mismatch_in_text(snake_case ) if mismatch_index == -1: positions.append(snake_case ) else: A__ : Dict = self.match_in_pattern(self.text[mismatch_index] ) A__ : Union[str, Any] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A_ = '''ABAABA''' A_ = '''AB''' A_ = BoyerMooreSearch(text, pattern) A_ = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
498
1
from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCamelCase : Tuple = logging.get_logger(__name__) class A__ ( A__ ): """simple docstring""" _lowercase = ['input_features', 'attention_mask'] def __init__( self : str , lowerCamelCase__ : List[str]=80 , lowerCamelCase__ : Any=16_000 , lowerCamelCase__ : int=80 , lowerCamelCase__ : Optional[Any]=0.0 , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : Dict=True , lowerCamelCase__ : Tuple=True , **lowerCamelCase__ : Optional[int] , ): super().__init__(feature_size=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , padding_value=lowerCamelCase__ , **lowerCamelCase__ ) a__ : Dict = num_mel_bins a__ : Optional[int] = do_ceptral_normalize a__ : List[str] = normalize_means a__ : Any = normalize_vars a__ : Optional[Any] = True def _UpperCamelCase( self : Optional[Any] , lowerCamelCase__ : np.ndarray , ): a__ : Tuple = waveform * (2**15) # Kaldi compliance: 16-bit signed integers a__ : Union[str, Any] = torch.from_numpy(lowerCamelCase__ ).unsqueeze(0 ) a__ : str = ta_kaldi.fbank(lowerCamelCase__ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def _UpperCamelCase( lowerCamelCase__ : np.ndarray , lowerCamelCase__ : int , lowerCamelCase__ : Optional[bool] = True , lowerCamelCase__ : Optional[bool] = True , lowerCamelCase__ : float = 0.0 , ): # make sure we normalize float32 arrays if normalize_means: a__ : List[str] = x[:input_length].mean(axis=0 ) a__ : Dict = np.subtract(lowerCamelCase__ , lowerCamelCase__ ) if normalize_vars: a__ : Any = x[:input_length].std(axis=0 ) a__ : List[str] = np.divide(lowerCamelCase__ , lowerCamelCase__ ) if input_length < x.shape[0]: a__ : str = padding_value # make sure array is in float32 a__ : List[Any] = x.astype(np.floataa ) return x def _UpperCamelCase( self : Tuple , lowerCamelCase__ : List[np.ndarray] , lowerCamelCase__ : Optional[np.ndarray] = None ): a__ : List[str] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(lowerCamelCase__ , lowerCamelCase__ , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(lowerCamelCase__ , lowerCamelCase__ ) ] def __call__( self : str , lowerCamelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCamelCase__ : Union[bool, str, PaddingStrategy] = False , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : bool = False , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[Union[str, TensorType]] = None , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[bool] = None , **lowerCamelCase__ : List[Any] , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) a__ : List[str] = isinstance(lowerCamelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) a__ : Dict = is_batched_numpy or ( isinstance(lowerCamelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: a__ : str = [np.asarray(lowerCamelCase__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase__ , np.ndarray ): a__ : Tuple = np.asarray(lowerCamelCase__ , dtype=np.floataa ) elif isinstance(lowerCamelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): a__ : str = raw_speech.astype(np.floataa ) # always return batch if not is_batched: a__ : List[str] = [raw_speech] # extract fbank features a__ : Any = [self._extract_fbank_features(lowerCamelCase__ ) for waveform in raw_speech] # convert into correct format for padding a__ : Any = BatchFeature({"input_features": features} ) a__ : Any = self.pad( lowerCamelCase__ , padding=lowerCamelCase__ , max_length=lowerCamelCase__ , truncation=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , **lowerCamelCase__ , ) # make sure list is in array format a__ : List[str] = padded_inputs.get("input_features" ) if isinstance(input_features[0] , lowerCamelCase__ ): a__ : Optional[int] = [np.asarray(lowerCamelCase__ , dtype=np.floataa ) for feature in input_features] a__ : Dict = padded_inputs.get("attention_mask" ) if attention_mask is not None: a__ : Optional[int] = [np.asarray(lowerCamelCase__ , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: a__ : Optional[Any] = ( np.array(lowerCamelCase__ , dtype=np.intaa ) if self._get_padding_strategies(lowerCamelCase__ , max_length=lowerCamelCase__ ) is not PaddingStrategy.DO_NOT_PAD else None ) a__ : Optional[Any] = self.normalize( padded_inputs["input_features"] , attention_mask=lowerCamelCase__ ) if return_tensors is not None: a__ : Optional[Any] = padded_inputs.convert_to_tensors(lowerCamelCase__ ) return padded_inputs
37
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __lowerCAmelCase : Any = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: __lowerCAmelCase : List[Any] = json.load(f) @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self : List[str] , _snake_case : List[Any] ): return FSMTTokenizer.from_pretrained(_snake_case ) def snake_case_ ( self : Any , _snake_case : List[str] ): __lowercase : str = FSMTForConditionalGeneration.from_pretrained(_snake_case ).to(_snake_case ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['''en-ru''', 26.0], ['''ru-en''', 22.0], ['''en-de''', 22.0], ['''de-en''', 29.0], ] ) @slow def snake_case_ ( self : Tuple , _snake_case : int , _snake_case : Union[str, Any] ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality __lowercase : Tuple = F'facebook/wmt19-{pair}' __lowercase : Tuple = self.get_tokenizer(_snake_case ) __lowercase : Dict = self.get_model(_snake_case ) __lowercase : Dict = bleu_data[pair]['''src'''] __lowercase : Any = bleu_data[pair]['''tgt'''] __lowercase : Any = tokenizer(_snake_case , return_tensors='''pt''' , truncation=_snake_case , padding='''longest''' ).to(_snake_case ) __lowercase : Optional[int] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) __lowercase : Any = tokenizer.batch_decode( _snake_case , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case ) __lowercase : Tuple = calculate_bleu(_snake_case , _snake_case ) print(_snake_case ) self.assertGreaterEqual(scores['''bleu'''] , _snake_case )
509
0
import warnings from .generation import TFGenerationMixin class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" warnings.warn( "Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will " "be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead." , snake_case , )
62
def __A ( _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: _A = mf_knapsack(i - 1 , _lowercase , _lowercase , _lowercase ) else: _A = max( mf_knapsack(i - 1 , _lowercase , _lowercase , _lowercase ) , mf_knapsack(i - 1 , _lowercase , _lowercase , j - wt[i - 1] ) + val[i - 1] , ) _A = val return f[i][j] def __A ( _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' _A = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: _A = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: _A = dp[i - 1][w_] return dp[n][w_], dp def __A ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' if not (isinstance(_lowercase , (list, tuple) ) and isinstance(_lowercase , (list, tuple) )): raise ValueError( '''Both the weights and values vectors must be either lists or tuples''' ) _A = len(_lowercase ) if num_items != len(_lowercase ): _A = ( '''The number of weights must be the same as the number of values.\n''' f"""But got {num_items} weights and {len(_lowercase )} values""" ) raise ValueError(_lowercase ) for i in range(_lowercase ): if not isinstance(wt[i] , _lowercase ): _A = ( '''All weights must be integers but got weight of ''' f"""type {type(wt[i] )} at index {i}""" ) raise TypeError(_lowercase ) _A ,_A = knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) _A = set() _construct_solution(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) return optimal_val, example_optional_set def __A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(_lowercase , _lowercase , i - 1 , _lowercase , _lowercase ) else: optimal_set.add(_lowercase ) _construct_solution(_lowercase , _lowercase , i - 1 , j - wt[i - 1] , _lowercase ) if __name__ == "__main__": __A = [3, 2, 4, 4] __A = [4, 3, 2, 3] __A = 4 __A = 6 __A = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] __A , __A = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 __A , __A = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print('optimal_value = ', optimal_solution) print('An optimal subset corresponding to the optimal value', optimal_subset)
62
1
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def UpperCAmelCase ( A : str ): SCREAMING_SNAKE_CASE : Any = int(number**0.5 ) return number == sq * sq def UpperCAmelCase ( A : Tuple , A : Tuple , A : Any , A : Union[str, Any] , A : int , A : Optional[int] ): SCREAMING_SNAKE_CASE : str = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den SCREAMING_SNAKE_CASE : Union[str, Any] = x_den * y_den * z_den SCREAMING_SNAKE_CASE : Tuple = gcd(_A , _A ) top //= hcf bottom //= hcf return top, bottom def UpperCAmelCase ( A : List[str] = 35 ): SCREAMING_SNAKE_CASE : Optional[int] = set() SCREAMING_SNAKE_CASE : List[str] = 42 SCREAMING_SNAKE_CASE : int = Fraction(0 ) SCREAMING_SNAKE_CASE : List[str] = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 SCREAMING_SNAKE_CASE : Dict = x_num * y_den + x_den * y_num SCREAMING_SNAKE_CASE : List[Any] = x_den * y_den SCREAMING_SNAKE_CASE : str = gcd(_A , _A ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE : Optional[Any] = add_three( _A , _A , _A , _A , _A , _A ) unique_s.add(_A ) # n=2 SCREAMING_SNAKE_CASE : Any = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) SCREAMING_SNAKE_CASE : Tuple = x_den * x_den * y_den * y_den if is_sq(_A ) and is_sq(_A ): SCREAMING_SNAKE_CASE : Union[str, Any] = int(sqrt(_A ) ) SCREAMING_SNAKE_CASE : Optional[int] = int(sqrt(_A ) ) SCREAMING_SNAKE_CASE : List[str] = gcd(_A , _A ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE : Dict = add_three( _A , _A , _A , _A , _A , _A ) unique_s.add(_A ) # n=-1 SCREAMING_SNAKE_CASE : str = x_num * y_num SCREAMING_SNAKE_CASE : List[str] = x_den * y_num + x_num * y_den SCREAMING_SNAKE_CASE : List[str] = gcd(_A , _A ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE : str = add_three( _A , _A , _A , _A , _A , _A ) unique_s.add(_A ) # n=2 SCREAMING_SNAKE_CASE : List[Any] = x_num * x_num * y_num * y_num SCREAMING_SNAKE_CASE : str = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_A ) and is_sq(_A ): SCREAMING_SNAKE_CASE : Optional[Any] = int(sqrt(_A ) ) SCREAMING_SNAKE_CASE : int = int(sqrt(_A ) ) SCREAMING_SNAKE_CASE : Optional[int] = gcd(_A , _A ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE : List[Any] = add_three( _A , _A , _A , _A , _A , _A ) unique_s.add(_A ) for num, den in unique_s: total += Fraction(_A , _A ) return total.denominator + total.numerator if __name__ == "__main__": print(f'{solution() = }')
527
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class __SCREAMING_SNAKE_CASE( unittest.TestCase ): def __init__( self: int , UpperCamelCase: List[Any] , UpperCamelCase: Optional[int]=7 , UpperCamelCase: List[Any]=3 , UpperCamelCase: List[Any]=30 , UpperCamelCase: List[Any]=4_00 , UpperCamelCase: Union[str, Any]=True , UpperCamelCase: Any=None , UpperCamelCase: Tuple=True , UpperCamelCase: List[str]=[0.5, 0.5, 0.5] , UpperCamelCase: Dict=[0.5, 0.5, 0.5] , UpperCamelCase: Tuple=True , UpperCamelCase: List[str]=1 / 2_55 , UpperCamelCase: Union[str, Any]=True , ) -> List[str]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ = size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33} snake_case__ = parent snake_case__ = batch_size snake_case__ = num_channels snake_case__ = min_resolution snake_case__ = max_resolution snake_case__ = do_resize snake_case__ = size snake_case__ = do_normalize snake_case__ = image_mean snake_case__ = image_std snake_case__ = do_rescale snake_case__ = rescale_factor snake_case__ = do_pad def lowerCAmelCase_ ( self: Dict ) -> str: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase_ ( self: Any , UpperCamelCase: List[Any] , UpperCamelCase: Optional[int]=False ) -> int: if not batched: snake_case__ = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): snake_case__ , snake_case__ = image.size else: snake_case__ , snake_case__ = image.shape[1], image.shape[2] if w < h: snake_case__ = int(self.size['shortest_edge'] * h / w ) snake_case__ = self.size['shortest_edge'] elif w > h: snake_case__ = self.size['shortest_edge'] snake_case__ = int(self.size['shortest_edge'] * w / h ) else: snake_case__ = self.size['shortest_edge'] snake_case__ = self.size['shortest_edge'] else: snake_case__ = [] for image in image_inputs: snake_case__ , snake_case__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] snake_case__ = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __SCREAMING_SNAKE_CASE( a_ , unittest.TestCase ): _UpperCAmelCase = ConditionalDetrImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self: Dict ) -> Union[str, Any]: snake_case__ = ConditionalDetrImageProcessingTester(self ) @property def lowerCAmelCase_ ( self: Optional[Any] ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self: Dict ) -> Union[str, Any]: snake_case__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'size' ) ) def lowerCAmelCase_ ( self: int ) -> Optional[int]: snake_case__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33} ) self.assertEqual(image_processor.do_pad , UpperCamelCase ) snake_case__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCamelCase ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] ) -> List[Any]: pass def lowerCAmelCase_ ( self: Optional[int] ) -> Tuple: # Initialize image_processing snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input snake_case__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) snake_case__ = image_processing(UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self: Tuple ) -> List[str]: # Initialize image_processing snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input snake_case__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ = image_processing(UpperCamelCase , return_tensors='pt' ).pixel_values snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self: List[str] ) -> Union[str, Any]: # Initialize image_processing snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input snake_case__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ = image_processing(UpperCamelCase , return_tensors='pt' ).pixel_values snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase_ ( self: str ) -> Any: # prepare image and target snake_case__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: snake_case__ = json.loads(f.read() ) snake_case__ = {'image_id': 3_97_69, 'annotations': target} # encode them snake_case__ = ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' ) snake_case__ = image_processing(images=UpperCamelCase , annotations=UpperCamelCase , return_tensors='pt' ) # verify pixel values snake_case__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , UpperCamelCase ) snake_case__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , UpperCamelCase , atol=1e-4 ) ) # verify area snake_case__ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , UpperCamelCase ) ) # verify boxes snake_case__ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , UpperCamelCase ) snake_case__ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , UpperCamelCase , atol=1e-3 ) ) # verify image_id snake_case__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , UpperCamelCase ) ) # verify is_crowd snake_case__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , UpperCamelCase ) ) # verify class_labels snake_case__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , UpperCamelCase ) ) # verify orig_size snake_case__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , UpperCamelCase ) ) # verify size snake_case__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , UpperCamelCase ) ) @slow def lowerCAmelCase_ ( self: List[Any] ) -> Dict: # prepare image, target and masks_path snake_case__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: snake_case__ = json.loads(f.read() ) snake_case__ = {'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target} snake_case__ = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them snake_case__ = ConditionalDetrImageProcessor(format='coco_panoptic' ) snake_case__ = image_processing(images=UpperCamelCase , annotations=UpperCamelCase , masks_path=UpperCamelCase , return_tensors='pt' ) # verify pixel values snake_case__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , UpperCamelCase ) snake_case__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , UpperCamelCase , atol=1e-4 ) ) # verify area snake_case__ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , UpperCamelCase ) ) # verify boxes snake_case__ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , UpperCamelCase ) snake_case__ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , UpperCamelCase , atol=1e-3 ) ) # verify image_id snake_case__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , UpperCamelCase ) ) # verify is_crowd snake_case__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , UpperCamelCase ) ) # verify class_labels snake_case__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , UpperCamelCase ) ) # verify masks snake_case__ = 82_28_73 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , UpperCamelCase ) # verify orig_size snake_case__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , UpperCamelCase ) ) # verify size snake_case__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , UpperCamelCase ) )
328
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) snake_case__ : Tuple = { "configuration_layoutlmv3": [ "LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv3Config", "LayoutLMv3OnnxConfig", ], "processing_layoutlmv3": ["LayoutLMv3Processor"], "tokenization_layoutlmv3": ["LayoutLMv3Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = ["LayoutLMv3TokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[str] = [ "LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv3ForQuestionAnswering", "LayoutLMv3ForSequenceClassification", "LayoutLMv3ForTokenClassification", "LayoutLMv3Model", "LayoutLMv3PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : str = [ "TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLayoutLMv3ForQuestionAnswering", "TFLayoutLMv3ForSequenceClassification", "TFLayoutLMv3ForTokenClassification", "TFLayoutLMv3Model", "TFLayoutLMv3PreTrainedModel", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = ["LayoutLMv3FeatureExtractor"] snake_case__ : Dict = ["LayoutLMv3ImageProcessor"] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys snake_case__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
705
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def lowercase ( __A : bytes , __A : int ) -> np.array: '''simple docstring''' snake_case : List[str] = f"""{sampling_rate}""" snake_case : Union[str, Any] = """1""" snake_case : List[str] = """f32le""" snake_case : Optional[Any] = [ """ffmpeg""", """-i""", """pipe:0""", """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] try: with subprocess.Popen(__A , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: snake_case : str = ffmpeg_process.communicate(__A ) except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to load audio files from filename""" ) from error snake_case : int = output_stream[0] snake_case : Tuple = np.frombuffer(__A , np.floataa ) if audio.shape[0] == 0: raise ValueError("""Malformed soundfile""" ) return audio def lowercase ( __A : int , __A : float , __A : str = "f32le" , ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = f"""{sampling_rate}""" snake_case : int = """1""" if format_for_conversion == "s16le": snake_case : Dict = 2 elif format_for_conversion == "f32le": snake_case : Optional[Any] = 4 else: raise ValueError(f"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) snake_case : Dict = platform.system() if system == "Linux": snake_case : List[str] = """alsa""" snake_case : Union[str, Any] = """default""" elif system == "Darwin": snake_case : Optional[int] = """avfoundation""" snake_case : str = """:0""" elif system == "Windows": snake_case : List[str] = """dshow""" snake_case : Union[str, Any] = """default""" snake_case : Union[str, Any] = [ """ffmpeg""", """-f""", format_, """-i""", input_, """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-fflags""", """nobuffer""", """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] snake_case : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample snake_case : Optional[Any] = _ffmpeg_stream(__A , __A ) for item in iterator: yield item def lowercase ( __A : int , __A : float , __A : Optional[int] = None , __A : Optional[Union[Tuple[float, float], float]] = None , __A : str = "f32le" , ) -> Optional[Any]: '''simple docstring''' if stream_chunk_s is not None: snake_case : List[str] = stream_chunk_s else: snake_case : Tuple = chunk_length_s snake_case : Optional[Any] = ffmpeg_microphone(__A , __A , format_for_conversion=__A ) if format_for_conversion == "s16le": snake_case : List[Any] = np.intaa snake_case : Dict = 2 elif format_for_conversion == "f32le": snake_case : List[Any] = np.floataa snake_case : Optional[Any] = 4 else: raise ValueError(f"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: snake_case : Tuple = chunk_length_s / 6 snake_case : str = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__A , (int, float) ): snake_case : int = [stride_length_s, stride_length_s] snake_case : Any = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample snake_case : int = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample snake_case : str = datetime.datetime.now() snake_case : Tuple = datetime.timedelta(seconds=__A ) for item in chunk_bytes_iter(__A , __A , stride=(stride_left, stride_right) , stream=__A ): # Put everything back in numpy scale snake_case : List[str] = np.frombuffer(item["""raw"""] , dtype=__A ) snake_case : List[Any] = ( item["""stride"""][0] // size_of_sample, item["""stride"""][1] // size_of_sample, ) snake_case : Tuple = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def lowercase ( __A : Optional[Any] , __A : int , __A : Tuple[int, int] , __A : bool = False ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = b"""""" snake_case , snake_case : str = stride if stride_left + stride_right >= chunk_len: raise ValueError( f"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) snake_case : List[Any] = 0 for raw in iterator: acc += raw if stream and len(__A ) < chunk_len: snake_case : Dict = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__A ) >= chunk_len: # We are flushing the accumulator snake_case : str = (_stride_left, stride_right) snake_case : str = {"""raw""": acc[:chunk_len], """stride""": stride} if stream: snake_case : Optional[Any] = False yield item snake_case : int = stride_left snake_case : Union[str, Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__A ) > stride_left: snake_case : Dict = {"""raw""": acc, """stride""": (_stride_left, 0)} if stream: snake_case : Tuple = False yield item def lowercase ( __A : Optional[int] , __A : int ) -> List[str]: '''simple docstring''' snake_case : List[str] = 2**24 # 16Mo try: with subprocess.Popen(__A , stdout=subprocess.PIPE , bufsize=__A ) as ffmpeg_process: while True: snake_case : Union[str, Any] = ffmpeg_process.stdout.read(__A ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to stream audio files from filename""" ) from error
315
0
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin snake_case_ : Any = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class snake_case__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = XLMRobertaTokenizer SCREAMING_SNAKE_CASE__ = XLMRobertaTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : Optional[Any] = XLMRobertaTokenizer(lowercase , keep_accents=lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : Any ): '''simple docstring''' UpperCAmelCase : Any = "<pad>" UpperCAmelCase : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase ) , lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase ) , lowercase ) def __lowerCAmelCase ( self : Any ): '''simple docstring''' UpperCAmelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(lowercase ) , 10_02 ) def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase : List[str] = XLMRobertaTokenizer(lowercase , keep_accents=lowercase ) UpperCAmelCase : Optional[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowercase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) UpperCAmelCase : Optional[int] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase : List[Any] = tokenizer.convert_tokens_to_ids(lowercase ) self.assertListEqual( lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(lowercase ) self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase : Union[str, Any] = (self.rust_tokenizer_class, "hf-internal-testing/tiny-xlm-roberta", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase : str = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) UpperCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(lowercase , **lowercase ) UpperCAmelCase : Tuple = tempfile.mkdtemp() UpperCAmelCase : int = tokenizer_r.save_pretrained(lowercase ) UpperCAmelCase : Any = tokenizer_p.save_pretrained(lowercase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) UpperCAmelCase : Optional[int] = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(lowercase , lowercase ) # Checks everything loads correctly in the same way UpperCAmelCase : int = tokenizer_r.from_pretrained(lowercase ) UpperCAmelCase : str = tokenizer_p.from_pretrained(lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase , lowercase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowercase ) # Save tokenizer rust, legacy_format=True UpperCAmelCase : Dict = tempfile.mkdtemp() UpperCAmelCase : Tuple = tokenizer_r.save_pretrained(lowercase , legacy_format=lowercase ) UpperCAmelCase : Any = tokenizer_p.save_pretrained(lowercase ) # Checks it save with the same files self.assertSequenceEqual(lowercase , lowercase ) # Checks everything loads correctly in the same way UpperCAmelCase : str = tokenizer_r.from_pretrained(lowercase ) UpperCAmelCase : int = tokenizer_p.from_pretrained(lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase , lowercase ) ) shutil.rmtree(lowercase ) # Save tokenizer rust, legacy_format=False UpperCAmelCase : Tuple = tempfile.mkdtemp() UpperCAmelCase : Tuple = tokenizer_r.save_pretrained(lowercase , legacy_format=lowercase ) UpperCAmelCase : Dict = tokenizer_p.save_pretrained(lowercase ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase : Union[str, Any] = tokenizer_r.from_pretrained(lowercase ) UpperCAmelCase : str = tokenizer_p.from_pretrained(lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase , lowercase ) ) shutil.rmtree(lowercase ) @cached_property def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' return XLMRobertaTokenizer.from_pretrained("xlm-roberta-base" ) def __lowerCAmelCase ( self : int ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowercase , f.name ) UpperCAmelCase : List[str] = XLMRobertaTokenizer(f.name , keep_accents=lowercase ) UpperCAmelCase : List[str] = pickle.dumps(lowercase ) pickle.loads(lowercase ) def __lowerCAmelCase ( self : str ): '''simple docstring''' if not self.test_rust_tokenizer: return UpperCAmelCase : Any = self.get_tokenizer() UpperCAmelCase : Tuple = self.get_rust_tokenizer() UpperCAmelCase : Union[str, Any] = "I was born in 92000, and this is falsé." UpperCAmelCase : Tuple = tokenizer.tokenize(lowercase ) UpperCAmelCase : List[str] = rust_tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) UpperCAmelCase : Any = tokenizer.encode(lowercase , add_special_tokens=lowercase ) UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) UpperCAmelCase : List[Any] = self.get_rust_tokenizer() UpperCAmelCase : Any = tokenizer.encode(lowercase ) UpperCAmelCase : int = rust_tokenizer.encode(lowercase ) self.assertListEqual(lowercase , lowercase ) @slow def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = "Hello World!" UpperCAmelCase : List[str] = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowercase , self.big_tokenizer.encode(lowercase ) ) @slow def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase : Tuple = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) UpperCAmelCase : List[str] = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowercase , self.big_tokenizer.encode(lowercase ) ) @slow def __lowerCAmelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase : Dict = {"input_ids": [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase , model_name="xlm-roberta-base" , revision="d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3" , )
595
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class snake_case__ : @staticmethod def __lowerCAmelCase ( *lowercase : Any , **lowercase : str ): '''simple docstring''' pass def lowercase_ ( _lowercase : Image ): '''simple docstring''' UpperCAmelCase : str = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def lowercase_ ( _lowercase : Image ): '''simple docstring''' UpperCAmelCase : int = np.array(_lowercase ) UpperCAmelCase : Union[str, Any] = npimg.shape return {"hash": hashimage(_lowercase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class snake_case__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE__ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) SCREAMING_SNAKE_CASE__ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def __lowerCAmelCase ( self : List[Any] , lowercase : List[str] , lowercase : Dict , lowercase : str ): '''simple docstring''' UpperCAmelCase : Optional[Any] = MaskGenerationPipeline(model=lowercase , image_processor=lowercase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __lowerCAmelCase ( self : Optional[Any] , lowercase : Dict , lowercase : Dict ): '''simple docstring''' pass @require_tf @unittest.skip("Image segmentation not implemented in TF" ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' pass @slow @require_torch def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase : Any = pipeline("mask-generation" , model="facebook/sam-vit-huge" ) UpperCAmelCase : str = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg" , points_per_batch=2_56 ) # Shortening by hashing UpperCAmelCase : Optional[Any] = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(lowercase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (4_80, 6_40)}, "scores": 1.0_4_4_4}, {"mask": {"hash": "6affa964c6", "shape": (4_80, 6_40)}, "scores": 1.0_2_1}, {"mask": {"hash": "dfe28a0388", "shape": (4_80, 6_40)}, "scores": 1.0_1_6_7}, {"mask": {"hash": "c0a5f4a318", "shape": (4_80, 6_40)}, "scores": 1.0_1_3_2}, {"mask": {"hash": "fe8065c197", "shape": (4_80, 6_40)}, "scores": 1.0_0_5_3}, {"mask": {"hash": "e2d0b7a0b7", "shape": (4_80, 6_40)}, "scores": 0.9_9_6_7}, {"mask": {"hash": "453c7844bd", "shape": (4_80, 6_40)}, "scores": 0.9_9_3}, {"mask": {"hash": "3d44f2926d", "shape": (4_80, 6_40)}, "scores": 0.9_9_0_9}, {"mask": {"hash": "64033ddc3f", "shape": (4_80, 6_40)}, "scores": 0.9_8_7_9}, {"mask": {"hash": "801064ff79", "shape": (4_80, 6_40)}, "scores": 0.9_8_3_4}, {"mask": {"hash": "6172f276ef", "shape": (4_80, 6_40)}, "scores": 0.9_7_1_6}, {"mask": {"hash": "b49e60e084", "shape": (4_80, 6_40)}, "scores": 0.9_6_1_2}, {"mask": {"hash": "a811e775fd", "shape": (4_80, 6_40)}, "scores": 0.9_5_9_9}, {"mask": {"hash": "a6a8ebcf4b", "shape": (4_80, 6_40)}, "scores": 0.9_5_5_2}, {"mask": {"hash": "9d8257e080", "shape": (4_80, 6_40)}, "scores": 0.9_5_3_2}, {"mask": {"hash": "32de6454a8", "shape": (4_80, 6_40)}, "scores": 0.9_5_1_6}, {"mask": {"hash": "af3d4af2c8", "shape": (4_80, 6_40)}, "scores": 0.9_4_9_9}, {"mask": {"hash": "3c6db475fb", "shape": (4_80, 6_40)}, "scores": 0.9_4_8_3}, {"mask": {"hash": "c290813fb9", "shape": (4_80, 6_40)}, "scores": 0.9_4_6_4}, {"mask": {"hash": "b6f0b8f606", "shape": (4_80, 6_40)}, "scores": 0.9_4_3}, {"mask": {"hash": "92ce16bfdf", "shape": (4_80, 6_40)}, "scores": 0.9_4_3}, {"mask": {"hash": "c749b25868", "shape": (4_80, 6_40)}, "scores": 0.9_4_0_8}, {"mask": {"hash": "efb6cab859", "shape": (4_80, 6_40)}, "scores": 0.9_3_3_5}, {"mask": {"hash": "1ff2eafb30", "shape": (4_80, 6_40)}, "scores": 0.9_3_2_6}, {"mask": {"hash": "788b798e24", "shape": (4_80, 6_40)}, "scores": 0.9_2_6_2}, {"mask": {"hash": "abea804f0e", "shape": (4_80, 6_40)}, "scores": 0.8_9_9_9}, {"mask": {"hash": "7b9e8ddb73", "shape": (4_80, 6_40)}, "scores": 0.8_9_8_6}, {"mask": {"hash": "cd24047c8a", "shape": (4_80, 6_40)}, "scores": 0.8_9_8_4}, {"mask": {"hash": "6943e6bcbd", "shape": (4_80, 6_40)}, "scores": 0.8_8_7_3}, {"mask": {"hash": "b5f47c9191", "shape": (4_80, 6_40)}, "scores": 0.8_8_7_1} ] , ) # fmt: on @require_torch @slow def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase : List[Any] = "facebook/sam-vit-huge" UpperCAmelCase : Optional[int] = pipeline("mask-generation" , model=lowercase ) UpperCAmelCase : Dict = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg" , pred_iou_thresh=1 , points_per_batch=2_56 ) # Shortening by hashing UpperCAmelCase : str = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(lowercase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (4_80, 6_40)}, "scores": 1.0_4_4_4}, {"mask": {"hash": "6affa964c6", "shape": (4_80, 6_40)}, "scores": 1.0_2_1_0}, {"mask": {"hash": "dfe28a0388", "shape": (4_80, 6_40)}, "scores": 1.0_1_6_7}, {"mask": {"hash": "c0a5f4a318", "shape": (4_80, 6_40)}, "scores": 1.0_1_3_2}, {"mask": {"hash": "fe8065c197", "shape": (4_80, 6_40)}, "scores": 1.0_0_5_3}, ] , )
595
1
'''simple docstring''' import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class lowercase ( __lowerCamelCase ): '''simple docstring''' def a__ ( self : str ) -> List[Any]: '''simple docstring''' lowerCamelCase__ = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def a__ ( self : Dict ) -> Dict: '''simple docstring''' with self.assertRaises(SCREAMING_SNAKE_CASE_ ): lowerCamelCase__ = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def a__ ( self : int ) -> Optional[Any]: '''simple docstring''' with self.assertRaises(SCREAMING_SNAKE_CASE_ ): lowerCamelCase__ = pa.array(TypedSequence([1, 2, 3] , try_type=Value("bool" ) , type=Value("int64" ) ) ) def a__ ( self : List[Any] ) -> Any: '''simple docstring''' lowerCamelCase__ = pa.array(TypedSequence([1, 2, 3] , type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def a__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): lowerCamelCase__ = pa.array(TypedSequence(["foo", "bar"] , type=Value("int64" ) ) ) def a__ ( self : Any ) -> Optional[Any]: '''simple docstring''' lowerCamelCase__ = pa.array(TypedSequence([1, 2, 3] , try_type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def a__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowerCamelCase__ = pa.array(TypedSequence(["foo", "bar"] , try_type=Value("int64" ) ) ) self.assertEqual(arr.type , pa.string() ) def a__ ( self : Optional[Any] ) -> Any: '''simple docstring''' lowerCamelCase__ = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def a__ ( self : Dict ) -> List[str]: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): lowerCamelCase__ = pa.array(TypedSequence(["foo", "bar"] , type=ArrayaD((1, 3) , "int64" ) ) ) def a__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def a__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' lowerCamelCase__ = pa.array(TypedSequence(["foo", "bar"] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def a__ ( self : Any ) -> Optional[int]: '''simple docstring''' import PIL.Image lowerCamelCase__ = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( "datasets.arrow_writer.cast_to_python_objects" , side_effect=SCREAMING_SNAKE_CASE_ ) as mock_cast_to_python_objects: lowerCamelCase__ = pa.array(TypedSequence([{"path": None, "bytes": B"image_bytes"}, pil_image] , type=Image() ) ) lowerCamelCase__ , lowerCamelCase__ = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("optimize_list_casting" , SCREAMING_SNAKE_CASE_ ) self.assertFalse(kwargs["optimize_list_casting"] ) def lowerCamelCase_ ( lowercase__ , lowercase__): lowerCamelCase__ = pa.BufferReader(__a) if isinstance(__a , pa.Buffer) else pa.memory_map(__a) lowerCamelCase__ = pa.ipc.open_stream(__a) lowerCamelCase__ = f.read_all() assert len(pa_table.to_batches()) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10]) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}]) def lowerCamelCase_ ( lowercase__ , lowercase__): lowerCamelCase__ = pa.BufferOutputStream() lowerCamelCase__ = pa.schema(__a) if fields else None with ArrowWriter(stream=__a , schema=__a , writer_batch_size=__a) as writer: writer.write({"col_1": "foo", "col_2": 1}) writer.write({"col_1": "bar", "col_2": 2}) lowerCamelCase__ , lowerCamelCase__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCamelCase__ = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(__a , metadata=writer._schema.metadata) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1) def lowerCamelCase_ ( ): lowerCamelCase__ = pa.BufferOutputStream() lowerCamelCase__ = Features({"labels": ClassLabel(names=["neg", "pos"])}) with ArrowWriter(stream=__a , features=__a) as writer: writer.write({"labels": 0}) writer.write({"labels": 1}) lowerCamelCase__ , lowerCamelCase__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata lowerCamelCase__ = pa.BufferReader(output.getvalue()) lowerCamelCase__ = pa.ipc.open_stream(__a) lowerCamelCase__ = f.read_all() lowerCamelCase__ = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(__a) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10]) def lowerCamelCase_ ( lowercase__): lowerCamelCase__ = pa.BufferOutputStream() with ArrowWriter( stream=__a , writer_batch_size=__a , hash_salt="split_name" , check_duplicates=__a , ) as writer: with pytest.raises(__a): writer.write({"col_1": "foo", "col_2": 1} , key=[1, 2]) lowerCamelCase__ , lowerCamelCase__ = writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 10]) def lowerCamelCase_ ( lowercase__): lowerCamelCase__ = pa.BufferOutputStream() with ArrowWriter( stream=__a , writer_batch_size=__a , hash_salt="split_name" , check_duplicates=__a , ) as writer: with pytest.raises(__a): writer.write({"col_1": "foo", "col_2": 1} , key=10) writer.write({"col_1": "bar", "col_2": 2} , key=10) lowerCamelCase__ , lowerCamelCase__ = writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 10]) def lowerCamelCase_ ( lowercase__): lowerCamelCase__ = pa.BufferOutputStream() with ArrowWriter( stream=__a , writer_batch_size=__a , hash_salt="split_name" , check_duplicates=__a , ) as writer: writer.write({"col_1": "foo", "col_2": 1} , key=1) writer.write({"col_1": "bar", "col_2": 2} , key=2) lowerCamelCase__ , lowerCamelCase__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10]) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}]) def lowerCamelCase_ ( lowercase__ , lowercase__): lowerCamelCase__ = pa.BufferOutputStream() lowerCamelCase__ = pa.schema(__a) if fields else None with ArrowWriter(stream=__a , schema=__a , writer_batch_size=__a) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]}) writer.write_batch({"col_1": [], "col_2": []}) lowerCamelCase__ , lowerCamelCase__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCamelCase__ = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(__a , metadata=writer._schema.metadata) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10]) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}]) def lowerCamelCase_ ( lowercase__ , lowercase__): lowerCamelCase__ = pa.BufferOutputStream() lowerCamelCase__ = pa.schema(__a) if fields else None with ArrowWriter(stream=__a , schema=__a , writer_batch_size=__a) as writer: writer.write_table(pa.Table.from_pydict({"col_1": ["foo", "bar"], "col_2": [1, 2]})) lowerCamelCase__ , lowerCamelCase__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCamelCase__ = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(__a , metadata=writer._schema.metadata) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10]) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}]) def lowerCamelCase_ ( lowercase__ , lowercase__): lowerCamelCase__ = pa.BufferOutputStream() lowerCamelCase__ = pa.schema(__a) if fields else None with ArrowWriter(stream=__a , schema=__a , writer_batch_size=__a) as writer: writer.write_row(pa.Table.from_pydict({"col_1": ["foo"], "col_2": [1]})) writer.write_row(pa.Table.from_pydict({"col_1": ["bar"], "col_2": [2]})) lowerCamelCase__ , lowerCamelCase__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCamelCase__ = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(__a , metadata=writer._schema.metadata) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1) def lowerCamelCase_ ( ): with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ = {"col_1": pa.string(), "col_2": pa.intaa()} lowerCamelCase__ = os.path.join(__a , "test.arrow") with ArrowWriter(path=__a , schema=pa.schema(__a)) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]}) lowerCamelCase__ , lowerCamelCase__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(__a , metadata=writer._schema.metadata) _check_output(__a , 1) def lowerCamelCase_ ( lowercase__): if pa.types.is_list(__a): return get_base_dtype(arr_type.value_type) else: return arr_type def lowerCamelCase_ ( lowercase__ , lowercase__): if isinstance(lst[0] , __a): change_first_primitive_element_in_list(lst[0] , __a) else: lowerCamelCase__ = value @pytest.mark.parametrize("optimized_int_type, expected_dtype" , [(None, pa.intaa()), (Value("int32"), pa.intaa())]) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]]) def lowerCamelCase_ ( lowercase__ , lowercase__ , lowercase__): lowerCamelCase__ = pa.array(TypedSequence(__a , optimized_int_type=__a)) assert get_base_dtype(arr.type) == expected_dtype @pytest.mark.parametrize( "col, expected_dtype" , [ ("attention_mask", pa.inta()), ("special_tokens_mask", pa.inta()), ("token_type_ids", pa.inta()), ("input_ids", pa.intaa()), ("other", pa.intaa()), ] , ) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]]) def lowerCamelCase_ ( lowercase__ , lowercase__ , lowercase__): lowerCamelCase__ = pa.array(OptimizedTypedSequence(__a , col=__a)) assert get_base_dtype(arr.type) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications lowerCamelCase__ = copy.deepcopy(__a) lowerCamelCase__ = np.iinfo(expected_dtype.to_pandas_dtype()).max + 1 change_first_primitive_element_in_list(__a , __a) lowerCamelCase__ = pa.array(OptimizedTypedSequence(__a , col=__a)) assert get_base_dtype(arr.type) == pa.intaa() @pytest.mark.parametrize("raise_exception" , [False, True]) def lowerCamelCase_ ( lowercase__ , lowercase__): lowerCamelCase__ = str(tmp_path / "dataset-train.arrow") try: with ArrowWriter(path=__a) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def lowerCamelCase_ ( lowercase__): lowerCamelCase__ = "mock://dataset-train.arrow" with ArrowWriter(path=__a , storage_options=mockfs.storage_options) as writer: assert isinstance(writer._fs , type(__a)) assert writer._fs.storage_options == mockfs.storage_options writer.write({"col_1": "foo", "col_2": 1}) writer.write({"col_1": "bar", "col_2": 2}) lowerCamelCase__ , lowerCamelCase__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(__a) def lowerCamelCase_ ( ): lowerCamelCase__ = pa.BufferOutputStream() with ParquetWriter(stream=__a) as writer: writer.write({"col_1": "foo", "col_2": 1}) writer.write({"col_1": "bar", "col_2": 2}) lowerCamelCase__ , lowerCamelCase__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 lowerCamelCase__ = pa.BufferReader(output.getvalue()) lowerCamelCase__ = pq.read_table(__a) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("embed_local_files" , [False, True]) def lowerCamelCase_ ( lowercase__ , lowercase__): import PIL.Image lowerCamelCase__ = str(tmp_path / "test_image_rgb.jpg") PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta)).save(__a , format="png") lowerCamelCase__ = pa.BufferOutputStream() with ParquetWriter( stream=__a , features=Features({"image": Image()}) , embed_local_files=__a) as writer: writer.write({"image": image_path}) writer.finalize() lowerCamelCase__ = pa.BufferReader(output.getvalue()) lowerCamelCase__ = pq.read_table(__a) lowerCamelCase__ = pa_table.to_pydict() if embed_local_files: assert isinstance(out["image"][0]["path"] , __a) with open(__a , "rb") as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def lowerCamelCase_ ( ): lowerCamelCase__ = pa.schema([pa.field("col_1" , pa.string() , nullable=__a)]) lowerCamelCase__ = pa.BufferOutputStream() with ArrowWriter(stream=__a) as writer: writer._build_writer(inferred_schema=__a) assert writer._schema == pa.schema([pa.field("col_1" , pa.string())])
720
'''simple docstring''' from __future__ import annotations def lowerCamelCase_ ( lowercase__ , lowercase__ , lowercase__): lowerCamelCase__ = list(range(len(lowercase__))) lowerCamelCase__ = [v / w for v, w in zip(lowercase__ , lowercase__)] index.sort(key=lambda lowercase__: ratio[i] , reverse=lowercase__) lowerCamelCase__ = 0 lowerCamelCase__ = [0] * len(lowercase__) for i in index: if weight[i] <= capacity: lowerCamelCase__ = 1 max_value += value[i] capacity -= weight[i] else: lowerCamelCase__ = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
187
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) a__ = { '''configuration_perceiver''': ['''PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PerceiverConfig''', '''PerceiverOnnxConfig'''], '''tokenization_perceiver''': ['''PerceiverTokenizer'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = ['''PerceiverFeatureExtractor'''] a__ = ['''PerceiverImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PerceiverForImageClassificationConvProcessing''', '''PerceiverForImageClassificationFourier''', '''PerceiverForImageClassificationLearned''', '''PerceiverForMaskedLM''', '''PerceiverForMultimodalAutoencoding''', '''PerceiverForOpticalFlow''', '''PerceiverForSequenceClassification''', '''PerceiverLayer''', '''PerceiverModel''', '''PerceiverPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
14
"""simple docstring""" from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig __lowerCamelCase = logging.get_logger(__name__) # General docstring __lowerCamelCase = 'RegNetConfig' # Base docstring __lowerCamelCase = 'facebook/regnet-y-040' __lowerCamelCase = [1, 10_88, 7, 7] # Image classification docstring __lowerCamelCase = 'facebook/regnet-y-040' __lowerCamelCase = 'tabby, tabby cat' __lowerCamelCase = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __A ( tf.keras.layers.Layer ): def __init__( self : List[str] , __snake_case : int , __snake_case : int = 3 , __snake_case : int = 1 , __snake_case : int = 1 , __snake_case : Optional[str] = "relu" , **__snake_case : str , ) -> Any: super().__init__(**__snake_case ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __magic_name__: Optional[int] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __magic_name__: Dict = tf.keras.layers.ConvaD( filters=__snake_case , kernel_size=__snake_case , strides=__snake_case , padding="""VALID""" , groups=__snake_case , use_bias=__snake_case , name="""convolution""" , ) __magic_name__: int = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="""normalization""" ) __magic_name__: Optional[int] = ACTaFN[activation] if activation is not None else tf.identity def lowerCamelCase__ ( self : Optional[int] , __snake_case : str ) -> Dict: __magic_name__: Optional[Any] = self.convolution(self.padding(__snake_case ) ) __magic_name__: Union[str, Any] = self.normalization(__snake_case ) __magic_name__: Tuple = self.activation(__snake_case ) return hidden_state class __A ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] , __snake_case : RegNetConfig , **__snake_case : Dict ) -> Optional[int]: super().__init__(**__snake_case ) __magic_name__: Tuple = config.num_channels __magic_name__: Optional[int] = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="""embedder""" , ) def lowerCamelCase__ ( self : List[str] , __snake_case : Dict ) -> int: __magic_name__: Union[str, Any] = shape_list(__snake_case )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __magic_name__: Any = tf.transpose(__snake_case , perm=(0, 2, 3, 1) ) __magic_name__: Dict = self.embedder(__snake_case ) return hidden_state class __A ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] , __snake_case : int , __snake_case : int = 2 , **__snake_case : Any ) -> Dict: super().__init__(**__snake_case ) __magic_name__: Union[str, Any] = tf.keras.layers.ConvaD( filters=__snake_case , kernel_size=1 , strides=__snake_case , use_bias=__snake_case , name="""convolution""" ) __magic_name__: Dict = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="""normalization""" ) def lowerCamelCase__ ( self : Optional[Any] , __snake_case : tf.Tensor , __snake_case : bool = False ) -> tf.Tensor: return self.normalization(self.convolution(__snake_case ) , training=__snake_case ) class __A ( tf.keras.layers.Layer ): def __init__( self : int , __snake_case : int , __snake_case : int , **__snake_case : str ) -> str: super().__init__(**__snake_case ) __magic_name__: Optional[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__snake_case , name="""pooler""" ) __magic_name__: Optional[Any] = [ tf.keras.layers.ConvaD(filters=__snake_case , kernel_size=1 , activation="""relu""" , name="""attention.0""" ), tf.keras.layers.ConvaD(filters=__snake_case , kernel_size=1 , activation="""sigmoid""" , name="""attention.2""" ), ] def lowerCamelCase__ ( self : Dict , __snake_case : List[str] ) -> List[Any]: # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] __magic_name__: List[str] = self.pooler(__snake_case ) for layer_module in self.attention: __magic_name__: List[str] = layer_module(__snake_case ) __magic_name__: Optional[Any] = hidden_state * pooled return hidden_state class __A ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] , __snake_case : RegNetConfig , __snake_case : int , __snake_case : int , __snake_case : int = 1 , **__snake_case : Optional[int] ) -> Optional[int]: super().__init__(**__snake_case ) __magic_name__: List[str] = in_channels != out_channels or stride != 1 __magic_name__: Union[str, Any] = max(1 , out_channels // config.groups_width ) __magic_name__: Optional[Any] = ( TFRegNetShortCut(__snake_case , stride=__snake_case , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __magic_name__: List[str] = [ TFRegNetConvLayer(__snake_case , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( __snake_case , stride=__snake_case , groups=__snake_case , activation=config.hidden_act , name="""layer.1""" ), TFRegNetConvLayer(__snake_case , kernel_size=1 , activation=__snake_case , name="""layer.2""" ), ] __magic_name__: Any = ACTaFN[config.hidden_act] def lowerCamelCase__ ( self : Optional[int] , __snake_case : Any ) -> Union[str, Any]: __magic_name__: Any = hidden_state for layer_module in self.layers: __magic_name__: Optional[int] = layer_module(__snake_case ) __magic_name__: str = self.shortcut(__snake_case ) hidden_state += residual __magic_name__: int = self.activation(__snake_case ) return hidden_state class __A ( tf.keras.layers.Layer ): def __init__( self : List[str] , __snake_case : RegNetConfig , __snake_case : int , __snake_case : int , __snake_case : int = 1 , **__snake_case : Union[str, Any] ) -> Dict: super().__init__(**__snake_case ) __magic_name__: str = in_channels != out_channels or stride != 1 __magic_name__: Dict = max(1 , out_channels // config.groups_width ) __magic_name__: Tuple = ( TFRegNetShortCut(__snake_case , stride=__snake_case , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) __magic_name__: str = [ TFRegNetConvLayer(__snake_case , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( __snake_case , stride=__snake_case , groups=__snake_case , activation=config.hidden_act , name="""layer.1""" ), TFRegNetSELayer(__snake_case , reduced_channels=int(round(in_channels / 4 ) ) , name="""layer.2""" ), TFRegNetConvLayer(__snake_case , kernel_size=1 , activation=__snake_case , name="""layer.3""" ), ] __magic_name__: Optional[int] = ACTaFN[config.hidden_act] def lowerCamelCase__ ( self : List[str] , __snake_case : int ) -> Dict: __magic_name__: int = hidden_state for layer_module in self.layers: __magic_name__: Optional[Any] = layer_module(__snake_case ) __magic_name__: Union[str, Any] = self.shortcut(__snake_case ) hidden_state += residual __magic_name__: Any = self.activation(__snake_case ) return hidden_state class __A ( tf.keras.layers.Layer ): def __init__( self : int , __snake_case : RegNetConfig , __snake_case : int , __snake_case : int , __snake_case : int = 2 , __snake_case : int = 2 , **__snake_case : List[Any] ) -> Optional[int]: super().__init__(**__snake_case ) __magic_name__: int = TFRegNetXLayer if config.layer_type == """x""" else TFRegNetYLayer __magic_name__: Optional[Any] = [ # downsampling is done in the first layer with stride of 2 layer(__snake_case , __snake_case , __snake_case , stride=__snake_case , name="""layers.0""" ), *[layer(__snake_case , __snake_case , __snake_case , name=F'layers.{i+1}' ) for i in range(depth - 1 )], ] def lowerCamelCase__ ( self : int , __snake_case : Union[str, Any] ) -> Tuple: for layer_module in self.layers: __magic_name__: Dict = layer_module(__snake_case ) return hidden_state class __A ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] , __snake_case : RegNetConfig , **__snake_case : Optional[Any] ) -> Dict: super().__init__(**__snake_case ) __magic_name__: List[Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( __snake_case , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="""stages.0""" , ) ) __magic_name__: Dict = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(__snake_case , config.depths[1:] ) ): self.stages.append(TFRegNetStage(__snake_case , __snake_case , __snake_case , depth=__snake_case , name=F'stages.{i+1}' ) ) def lowerCamelCase__ ( self : int , __snake_case : tf.Tensor , __snake_case : bool = False , __snake_case : bool = True ) -> TFBaseModelOutputWithNoAttention: __magic_name__: int = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __magic_name__: Optional[Any] = hidden_states + (hidden_state,) __magic_name__: Optional[Any] = stage_module(__snake_case ) if output_hidden_states: __magic_name__: int = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=__snake_case , hidden_states=__snake_case ) @keras_serializable class __A ( tf.keras.layers.Layer ): UpperCAmelCase__ = RegNetConfig def __init__( self : Optional[int] , __snake_case : Any , **__snake_case : List[str] ) -> int: super().__init__(**__snake_case ) __magic_name__: Union[str, Any] = config __magic_name__: Optional[int] = TFRegNetEmbeddings(__snake_case , name="""embedder""" ) __magic_name__: int = TFRegNetEncoder(__snake_case , name="""encoder""" ) __magic_name__: int = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__snake_case , name="""pooler""" ) @unpack_inputs def lowerCamelCase__ ( self : Optional[Any] , __snake_case : tf.Tensor , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: __magic_name__: Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __magic_name__: int = return_dict if return_dict is not None else self.config.use_return_dict __magic_name__: List[str] = self.embedder(__snake_case , training=__snake_case ) __magic_name__: Optional[Any] = self.encoder( __snake_case , output_hidden_states=__snake_case , return_dict=__snake_case , training=__snake_case ) __magic_name__: str = encoder_outputs[0] __magic_name__: List[Any] = self.pooler(__snake_case ) # Change to NCHW output format have uniformity in the modules __magic_name__: int = tf.transpose(__snake_case , perm=(0, 3, 1, 2) ) __magic_name__: List[str] = tf.transpose(__snake_case , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __magic_name__: List[str] = tuple([tf.transpose(__snake_case , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__snake_case , pooler_output=__snake_case , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = RegNetConfig UpperCAmelCase__ = "regnet" UpperCAmelCase__ = "pixel_values" @property def lowerCamelCase__ ( self : Optional[int] ) -> Union[str, Any]: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) , dtype=tf.floataa )} __lowerCamelCase = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' __lowerCamelCase = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." ,SCREAMING_SNAKE_CASE_ ,) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Optional[Any] , __snake_case : RegNetConfig , *__snake_case : List[Any] , **__snake_case : Tuple ) -> Tuple: super().__init__(__snake_case , *__snake_case , **__snake_case ) __magic_name__: List[str] = TFRegNetMainLayer(__snake_case , name="""regnet""" ) @unpack_inputs @add_start_docstrings_to_model_forward(__snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__snake_case , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCamelCase__ ( self : Dict , __snake_case : tf.Tensor , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : int=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: __magic_name__: Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __magic_name__: Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict __magic_name__: List[str] = self.regnet( pixel_values=__snake_case , output_hidden_states=__snake_case , return_dict=__snake_case , training=__snake_case , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,SCREAMING_SNAKE_CASE_ ,) class __A ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): def __init__( self : int , __snake_case : RegNetConfig , *__snake_case : Any , **__snake_case : Any ) -> Optional[Any]: super().__init__(__snake_case , *__snake_case , **__snake_case ) __magic_name__: Union[str, Any] = config.num_labels __magic_name__: Tuple = TFRegNetMainLayer(__snake_case , name="""regnet""" ) # classification head __magic_name__: List[Any] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="""classifier.1""" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(__snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__snake_case , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCamelCase__ ( self : List[str] , __snake_case : tf.Tensor = None , __snake_case : tf.Tensor = None , __snake_case : bool = None , __snake_case : bool = None , __snake_case : Dict=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: __magic_name__: Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __magic_name__: Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict __magic_name__: Any = self.regnet( __snake_case , output_hidden_states=__snake_case , return_dict=__snake_case , training=__snake_case ) __magic_name__: Optional[Any] = outputs.pooler_output if return_dict else outputs[1] __magic_name__: Optional[int] = self.classifier[0](__snake_case ) __magic_name__: List[Any] = self.classifier[1](__snake_case ) __magic_name__: Optional[int] = None if labels is None else self.hf_compute_loss(labels=__snake_case , logits=__snake_case ) if not return_dict: __magic_name__: List[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=__snake_case , logits=__snake_case , hidden_states=outputs.hidden_states )
96
0
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class lowercase ( nn.Module ): def __init__( self ,A__ ,A__ ,A__ ,A__=0.0 ,A__ = None ,A__ = "geglu" ,A__ = None ,A__ = False ,A__ = False ,A__ = False ,A__ = False ,A__ = True ,A__ = "layer_norm" ,A__ = False ,): super().__init__() lowercase = only_cross_attention lowercase = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero''' lowercase = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm''' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to' f' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.') # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: lowercase = AdaLayerNorm(A__ ,A__) elif self.use_ada_layer_norm_zero: lowercase = AdaLayerNormZero(A__ ,A__) else: lowercase = nn.LayerNorm(A__ ,elementwise_affine=A__) lowercase = Attention( query_dim=A__ ,heads=A__ ,dim_head=A__ ,dropout=A__ ,bias=A__ ,cross_attention_dim=cross_attention_dim if only_cross_attention else None ,upcast_attention=A__ ,) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. lowercase = ( AdaLayerNorm(A__ ,A__) if self.use_ada_layer_norm else nn.LayerNorm(A__ ,elementwise_affine=A__) ) lowercase = Attention( query_dim=A__ ,cross_attention_dim=cross_attention_dim if not double_self_attention else None ,heads=A__ ,dim_head=A__ ,dropout=A__ ,bias=A__ ,upcast_attention=A__ ,) # is self-attn if encoder_hidden_states is none else: lowercase = None lowercase = None # 3. Feed-forward lowercase = nn.LayerNorm(A__ ,elementwise_affine=A__) lowercase = FeedForward(A__ ,dropout=A__ ,activation_fn=A__ ,final_dropout=A__) # let chunk size default to None lowercase = None lowercase = 0 def A__ ( self ,A__ ,A__): # Sets chunk feed-forward lowercase = chunk_size lowercase = dim def A__ ( self ,A__ ,A__ = None ,A__ = None ,A__ = None ,A__ = None ,A__ = None ,A__ = None ,): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: lowercase = self.norma(A__ ,A__) elif self.use_ada_layer_norm_zero: lowercase , lowercase , lowercase , lowercase , lowercase = self.norma( A__ ,A__ ,A__ ,hidden_dtype=hidden_states.dtype) else: lowercase = self.norma(A__) lowercase = cross_attention_kwargs if cross_attention_kwargs is not None else {} lowercase = self.attna( A__ ,encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None ,attention_mask=A__ ,**A__ ,) if self.use_ada_layer_norm_zero: lowercase = gate_msa.unsqueeze(1) * attn_output lowercase = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: lowercase = ( self.norma(A__ ,A__) if self.use_ada_layer_norm else self.norma(A__) ) lowercase = self.attna( A__ ,encoder_hidden_states=A__ ,attention_mask=A__ ,**A__ ,) lowercase = attn_output + hidden_states # 3. Feed-forward lowercase = self.norma(A__) if self.use_ada_layer_norm_zero: lowercase = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.') lowercase = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size lowercase = torch.cat( [self.ff(A__) for hid_slice in norm_hidden_states.chunk(A__ ,dim=self._chunk_dim)] ,dim=self._chunk_dim ,) else: lowercase = self.ff(A__) if self.use_ada_layer_norm_zero: lowercase = gate_mlp.unsqueeze(1) * ff_output lowercase = ff_output + hidden_states return hidden_states class lowercase ( nn.Module ): def __init__( self ,A__ ,A__ = None ,A__ = 4 ,A__ = 0.0 ,A__ = "geglu" ,A__ = False ,): super().__init__() lowercase = int(dim * mult) lowercase = dim_out if dim_out is not None else dim if activation_fn == "gelu": lowercase = GELU(A__ ,A__) if activation_fn == "gelu-approximate": lowercase = GELU(A__ ,A__ ,approximate='''tanh''') elif activation_fn == "geglu": lowercase = GEGLU(A__ ,A__) elif activation_fn == "geglu-approximate": lowercase = ApproximateGELU(A__ ,A__) lowercase = nn.ModuleList([]) # project in self.net.append(A__) # project dropout self.net.append(nn.Dropout(A__)) # project out self.net.append(nn.Linear(A__ ,A__)) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(A__)) def A__ ( self ,A__): for module in self.net: lowercase = module(A__) return hidden_states class lowercase ( nn.Module ): def __init__( self ,A__ ,A__ ,A__ = "none"): super().__init__() lowercase = nn.Linear(A__ ,A__) lowercase = approximate def A__ ( self ,A__): if gate.device.type != "mps": return F.gelu(A__ ,approximate=self.approximate) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa) ,approximate=self.approximate).to(dtype=gate.dtype) def A__ ( self ,A__): lowercase = self.proj(A__) lowercase = self.gelu(A__) return hidden_states class lowercase ( nn.Module ): def __init__( self ,A__ ,A__): super().__init__() lowercase = nn.Linear(A__ ,dim_out * 2) def A__ ( self ,A__): if gate.device.type != "mps": return F.gelu(A__) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa)).to(dtype=gate.dtype) def A__ ( self ,A__): lowercase , lowercase = self.proj(A__).chunk(2 ,dim=-1) return hidden_states * self.gelu(A__) class lowercase ( nn.Module ): def __init__( self ,A__ ,A__): super().__init__() lowercase = nn.Linear(A__ ,A__) def A__ ( self ,A__): lowercase = self.proj(A__) return x * torch.sigmoid(1.702 * x) class lowercase ( nn.Module ): def __init__( self ,A__ ,A__): super().__init__() lowercase = nn.Embedding(A__ ,A__) lowercase = nn.SiLU() lowercase = nn.Linear(A__ ,embedding_dim * 2) lowercase = nn.LayerNorm(A__ ,elementwise_affine=A__) def A__ ( self ,A__ ,A__): lowercase = self.linear(self.silu(self.emb(A__))) lowercase , lowercase = torch.chunk(A__ ,2) lowercase = self.norm(A__) * (1 + scale) + shift return x class lowercase ( nn.Module ): def __init__( self ,A__ ,A__): super().__init__() lowercase = CombinedTimestepLabelEmbeddings(A__ ,A__) lowercase = nn.SiLU() lowercase = nn.Linear(A__ ,6 * embedding_dim ,bias=A__) lowercase = nn.LayerNorm(A__ ,elementwise_affine=A__ ,eps=1E-6) def A__ ( self ,A__ ,A__ ,A__ ,A__=None): lowercase = self.linear(self.silu(self.emb(A__ ,A__ ,hidden_dtype=A__))) lowercase , lowercase , lowercase , lowercase , lowercase , lowercase = emb.chunk(6 ,dim=1) lowercase = self.norm(A__) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class lowercase ( nn.Module ): def __init__( self ,A__ ,A__ ,A__ ,A__ = None ,A__ = 1E-5): super().__init__() lowercase = num_groups lowercase = eps if act_fn is None: lowercase = None else: lowercase = get_activation(A__) lowercase = nn.Linear(A__ ,out_dim * 2) def A__ ( self ,A__ ,A__): if self.act: lowercase = self.act(A__) lowercase = self.linear(A__) lowercase = emb[:, :, None, None] lowercase , lowercase = emb.chunk(2 ,dim=1) lowercase = F.group_norm(A__ ,self.num_groups ,eps=self.eps) lowercase = x * (1 + scale) + shift return x
633
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
633
1
def UpperCAmelCase ( a_ ) -> list: """simple docstring""" return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(a_ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('doctest').testmod()
55
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCamelCase_ ( a_ ): _A : Optional[int] = 'facebook/bart-large-mnli' _A : Union[str, Any] = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) _A : Dict = 'text_classifier' _A : Union[str, Any] = AutoTokenizer _A : Tuple = AutoModelForSequenceClassification _A : Optional[int] = ['text', ['text']] _A : Dict = ['text'] def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" super().setup() UpperCAmelCase = self.model.config UpperCAmelCase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("""entail""" ): UpperCAmelCase = int(snake_case__ ) if self.entailment_id == -1: raise ValueError("""Could not determine the entailment ID from the model config, please pass it at init.""" ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ ) -> List[Any]: """simple docstring""" UpperCAmelCase = labels return self.pre_processor( [text] * len(snake_case__ ) , [f'''This example is {label}''' for label in labels] , return_tensors="""pt""" , padding="""max_length""" , ) def UpperCamelCase_ ( self , snake_case__ ) -> str: """simple docstring""" UpperCAmelCase = outputs.logits UpperCAmelCase = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
673
0
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors __A = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = "sequence-classification" def __init__( self: str , __A: Union[str, Any] ) -> List[str]: if type(__A ) == dict: _A = Namespace(**__A ) _A = glue_output_modes[hparams.task] _A = glue_tasks_num_labels[hparams.task] super().__init__(__A , __A , self.mode ) def __A ( self: Optional[Any] , **__A: Union[str, Any] ) -> Optional[int]: return self.model(**__A ) def __A ( self: Any , __A: Union[str, Any] , __A: int ) -> Optional[Any]: _A = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _A = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None _A = self(**__A ) _A = outputs[0] _A = self.trainer.lr_schedulers[0]['''scheduler'''] _A = {'''loss''': loss, '''rate''': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def __A ( self: List[str] ) -> Dict: _A = self.hparams _A = processors[args.task]() _A = processor.get_labels() for mode in ["train", "dev"]: _A = self._feature_file(__A ) if os.path.exists(__A ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __A ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) _A = ( processor.get_dev_examples(args.data_dir ) if mode == '''dev''' else processor.get_train_examples(args.data_dir ) ) _A = convert_examples_to_features( __A , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('''Saving features into cached file %s''' , __A ) torch.save(__A , __A ) def __A ( self: List[str] , __A: str , __A: int , __A: bool = False ) -> DataLoader: _A = '''dev''' if mode == '''test''' else mode _A = self._feature_file(__A ) logger.info('''Loading features from cached file %s''' , __A ) _A = torch.load(__A ) _A = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _A = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _A = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _A = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _A = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__A , __A , __A , __A ) , batch_size=__A , shuffle=__A , ) def __A ( self: List[str] , __A: str , __A: Tuple ) -> str: _A = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _A = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None _A = self(**__A ) _A ,_A = outputs[:2] _A = logits.detach().cpu().numpy() _A = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __A ( self: str , __A: Dict ) -> tuple: _A = torch.stack([x['''val_loss'''] for x in outputs] ).mean().detach().cpu().item() _A = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _A = np.argmax(__A , axis=1 ) elif self.hparams.glue_output_mode == "regression": _A = np.squeeze(__A ) _A = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) _A = [[] for _ in range(out_label_ids.shape[0] )] _A = [[] for _ in range(out_label_ids.shape[0] )] _A = {**{'''val_loss''': val_loss_mean}, **compute_metrics(self.hparams.task , __A , __A )} _A = dict(results.items() ) _A = results return ret, preds_list, out_label_list def __A ( self: Any , __A: list ) -> dict: _A ,_A ,_A = self._eval_end(__A ) _A = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __A ( self: int , __A: Union[str, Any] ) -> dict: _A ,_A ,_A = self._eval_end(__A ) _A = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __A ( __A: Optional[Any] , __A: Optional[Any] ) -> Optional[Any]: BaseTransformer.add_model_specific_args(__A , __A ) parser.add_argument( '''--max_seq_length''' , default=1_28 , type=__A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--task''' , default='''''' , type=__A , required=__A , help='''The GLUE task to run''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__A , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser def __A ( ): '''simple docstring''' _A = argparse.ArgumentParser() add_generic_args(_lowercase , os.getcwd() ) _A = GLUETransformer.add_model_specific_args(_lowercase , os.getcwd() ) _A = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _A = os.path.join( '''./results''' , f"""{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}""" , ) os.makedirs(args.output_dir ) _A = GLUETransformer(_lowercase ) _A = generic_train(_lowercase , _lowercase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _A = sorted(glob.glob(os.path.join(args.output_dir , '''checkpoint-epoch=*.ckpt''' ) , recursive=_lowercase ) ) _A = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_lowercase ) if __name__ == "__main__": main()
62
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput __A = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" def __init__( self: int , *__A: str , __A: List[Any]=None , __A: Union[str, Any]=None , __A: List[Any]=None , **__A: int ) -> List[Any]: super().__init__(*__A , **__A ) _A = eval_examples _A = post_process_function _A = quant_trainer_args _A = 1_28 # default number of calibration samples def __A ( self: Union[str, Any] , __A: List[Any]=None ) -> Optional[Any]: if calib_dataset is None and self.calib_dataset is None: raise ValueError('''Trainer: calibration requires an calib_dataset.''' ) _A = calib_dataset if calib_dataset is not None else self.calib_dataset _A = self._remove_unused_columns(__A , description='''Calibration''' ) return DataLoader( __A , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=__A , ) def __A ( self: List[Any] , __A: Any=None ) -> Optional[int]: _A = self.train_dataset if calib_dataset is None else calib_dataset _A = self.get_calib_dataloader(__A ) _A = self.model quant_trainer.configure_model(__A , self.quant_trainer_args , calib=__A ) model.eval() quant_trainer.enable_calibration(__A ) logger.info('''***** Running calibration *****''' ) logger.info(f""" Num examples = {self.calib_num}""" ) logger.info(f""" Batch size = {calib_dataloader.batch_size}""" ) for step, inputs in enumerate(__A ): # Prediction step _A ,_A ,_A = self.prediction_step(__A , __A , prediction_loss_only=__A ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(__A , self.quant_trainer_args ) _A = model def __A ( self: Any , __A: Dict=None , __A: Tuple=None , __A: List[Any]=None , __A: str = "eval" ) -> int: _A = self.eval_dataset if eval_dataset is None else eval_dataset _A = self.get_eval_dataloader(__A ) _A = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _A = self.compute_metrics _A = None _A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _A = eval_loop( __A , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__A , ) finally: _A = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: _A = self.post_process_function(__A , __A , output.predictions ) _A = self.compute_metrics(__A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): _A = metrics.pop(__A ) self.log(__A ) else: _A = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _A = self.callback_handler.on_evaluate(self.args , self.state , self.control , __A ) return metrics def __A ( self: Union[str, Any] , __A: Optional[int] , __A: int , __A: List[Any]=None , __A: str = "test" ) -> Union[str, Any]: _A = self.get_test_dataloader(__A ) # Temporarily disable metric computation, we will do it in the loop here. _A = self.compute_metrics _A = None _A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _A = eval_loop( __A , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__A , ) finally: _A = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output _A = self.post_process_function(__A , __A , output.predictions , '''predict''' ) _A = self.compute_metrics(__A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): _A = metrics.pop(__A ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__A ) def __A ( self: Tuple , __A: Optional[Any]="./" ) -> List[str]: _A = self.eval_dataset _A = self.get_eval_dataloader(__A ) _A = next(iter(__A ) ) # saving device - to make it consistent _A = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) # convert to tuple _A = tuple(v.to(__A ) for k, v in batch.items() ) logger.info('''Converting model to be onnx compatible''' ) from pytorch_quantization.nn import TensorQuantizer _A = True _A = self.model.to(__A ) model.eval() model.float() _A = model.module if hasattr(__A , '''module''' ) else model quant_trainer.configure_model(__A , self.quant_trainer_args ) _A = os.path.join(__A , '''model.onnx''' ) logger.info(f"""exporting model to {output_model_file}""" ) _A = {0: '''batch_size''', 1: '''seq_len'''} torch.onnx.export( __A , __A , __A , export_params=__A , opset_version=13 , do_constant_folding=__A , input_names=['''input_ids''', '''attention_mask''', '''token_type_ids'''] , output_names=['''output_start_logits''', '''output_end_logits'''] , dynamic_axes={ '''input_ids''': axes, '''attention_mask''': axes, '''token_type_ids''': axes, '''output_start_logits''': axes, '''output_end_logits''': axes, } , verbose=__A , ) logger.info('''onnx export finished''' )
62
1
'''simple docstring''' import cmath import math def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : int = math.radians(lowerCamelCase__ ) A_ : List[str] = math.radians(lowerCamelCase__ ) # Convert voltage and current to rectangular form A_ : Optional[Any] = cmath.rect(lowerCamelCase__ , lowerCamelCase__ ) A_ : Tuple = cmath.rect(lowerCamelCase__ , lowerCamelCase__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
667
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCamelCase :List[str] = imread(R'''digital_image_processing/image_data/lena_small.jpg''') lowerCamelCase :Optional[int] = cvtColor(img, COLOR_BGR2GRAY) def a ( ): '''simple docstring''' A_ : List[Any] = cn.convert_to_negative(lowerCamelCase__ ) # assert negative_img array for at least one True assert negative_img.any() def a ( ): '''simple docstring''' with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(lowerCamelCase__ , 1_10 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def a ( ): '''simple docstring''' A_ : int = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def a ( ): '''simple docstring''' A_ : int = imread("""digital_image_processing/image_data/lena_small.jpg""" , 0 ) # assert ambiguous array for all == True assert canny_img.all() A_ : List[Any] = canny.canny(lowerCamelCase__ ) # assert canny array for at least one True assert canny_array.any() def a ( ): '''simple docstring''' assert gg.gaussian_filter(lowerCamelCase__ , 5 , sigma=0.9 ).all() def a ( ): '''simple docstring''' A_ : int = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) A_ : Optional[Any] = conv.img_convolve(lowerCamelCase__ , lowerCamelCase__ ).astype(lowerCamelCase__ ) assert res.any() def a ( ): '''simple docstring''' assert med.median_filter(lowerCamelCase__ , 3 ).any() def a ( ): '''simple docstring''' A_, A_ : int = sob.sobel_filter(lowerCamelCase__ ) assert grad.any() and theta.any() def a ( ): '''simple docstring''' A_ : int = sp.make_sepia(lowerCamelCase__ , 20 ) assert sepia.all() def a ( lowerCamelCase__ = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' A_ : Any = bs.Burkes(imread(lowerCamelCase__ , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def a ( lowerCamelCase__ = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' A_ : Union[str, Any] = rs.NearestNeighbour(imread(lowerCamelCase__ , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def a ( ): '''simple docstring''' A_ : int = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. A_ : Union[str, Any] = imread(lowerCamelCase__ , 0 ) # Test for get_neighbors_pixel function() return not None A_ : str = 0 A_ : str = 0 A_ : Dict = image[x_coordinate][y_coordinate] A_ : Optional[Any] = lbp.get_neighbors_pixel( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image A_ : str = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): A_ : Any = lbp.local_binary_value(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) assert lbp_image.any()
667
1
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = R'\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n' class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): @add_start_docstrings(UpperCAmelCase) def __call__(self , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' raise NotImplementedError('''StoppingCriteria needs to be subclassed''') class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): def __init__(self , UpperCAmelCase , UpperCAmelCase = None): '''simple docstring''' __UpperCAmelCase =max_length __UpperCAmelCase =max_position_embeddings @add_start_docstrings(UpperCAmelCase) def __call__(self , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =input_ids.shape[-1] __UpperCAmelCase =cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( '''This is a friendly reminder - the current text generation call will exceed the model\'s predefined ''' f"""maximum length ({self.max_position_embeddings}). Depending on the model, you may observe """ '''exceptions, performance degradation, or nothing at all.''') return is_done class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): def __init__(self , UpperCAmelCase , UpperCAmelCase): '''simple docstring''' warnings.warn( '''The class `MaxNewTokensCriteria` is deprecated. ''' f"""Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` """ '''with `max_length = start_length + max_new_tokens` instead.''' , UpperCAmelCase , ) __UpperCAmelCase =start_length __UpperCAmelCase =max_new_tokens __UpperCAmelCase =start_length + max_new_tokens @add_start_docstrings(UpperCAmelCase) def __call__(self , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' return input_ids.shape[-1] >= self.max_length class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): def __init__(self , UpperCAmelCase , UpperCAmelCase = None): '''simple docstring''' __UpperCAmelCase =max_time __UpperCAmelCase =time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(UpperCAmelCase) def __call__(self , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' return time.time() - self.initial_timestamp > self.max_time class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): @add_start_docstrings(UpperCAmelCase) def __call__(self , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' return any(criteria(UpperCAmelCase , UpperCAmelCase) for criteria in self) @property def A__ (self): '''simple docstring''' for stopping_criterium in self: if isinstance(UpperCAmelCase , UpperCAmelCase): return stopping_criterium.max_length elif isinstance(UpperCAmelCase , UpperCAmelCase): return stopping_criterium.max_length return None def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ ) -> StoppingCriteriaList: __UpperCAmelCase =stopping_criteria.max_length __UpperCAmelCase =deepcopy(snake_case__ ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn('''You set different `max_length` for stopping criteria and `max_length` parameter''' , snake_case__ ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=snake_case__ ) ) return new_stopping_criteria
709
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor UpperCamelCase_ = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def SCREAMING_SNAKE_CASE ( snake_case__ ) -> Optional[int]: if isinstance(snake_case__ , torch.Tensor ): return image elif isinstance(snake_case__ , PIL.Image.Image ): __UpperCAmelCase =[image] __UpperCAmelCase =[trans(img.convert('''RGB''' ) ) for img in image] __UpperCAmelCase =torch.stack(snake_case__ ) return image class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): def __init__(self , UpperCAmelCase , UpperCAmelCase): '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM __UpperCAmelCase =DDIMScheduler.from_config(scheduler.config) self.register_modules(unet=UpperCAmelCase , scheduler=UpperCAmelCase) def A__ (self , UpperCAmelCase): '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(f"""The value of strength should in [0.0, 1.0] but is {strength}""") def A__ (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =min(int(num_inference_steps * strength) , UpperCAmelCase) __UpperCAmelCase =max(num_inference_steps - init_timestep , 0) __UpperCAmelCase =self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def A__ (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None): '''simple docstring''' if not isinstance(UpperCAmelCase , (torch.Tensor, PIL.Image.Image, list)): raise ValueError( f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(UpperCAmelCase)}""") __UpperCAmelCase =image.to(device=UpperCAmelCase , dtype=UpperCAmelCase) if isinstance(UpperCAmelCase , UpperCAmelCase) and len(UpperCAmelCase) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(UpperCAmelCase)}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""") __UpperCAmelCase =init_latents.shape __UpperCAmelCase =randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=UpperCAmelCase , dtype=UpperCAmelCase) # get latents print('''add noise to latents at timestep''' , UpperCAmelCase) __UpperCAmelCase =self.scheduler.add_noise(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase) __UpperCAmelCase =init_latents return latents @torch.no_grad() def __call__(self , UpperCAmelCase = None , UpperCAmelCase = 0.8 , UpperCAmelCase = 1 , UpperCAmelCase = None , UpperCAmelCase = 0.0 , UpperCAmelCase = 5_0 , UpperCAmelCase = None , UpperCAmelCase = "pil" , UpperCAmelCase = True , ): '''simple docstring''' self.check_inputs(UpperCAmelCase) # 2. Preprocess image __UpperCAmelCase =preprocess(UpperCAmelCase) # 3. set timesteps self.scheduler.set_timesteps(UpperCAmelCase , device=self.device) __UpperCAmelCase , __UpperCAmelCase =self.get_timesteps(UpperCAmelCase , UpperCAmelCase , self.device) __UpperCAmelCase =timesteps[:1].repeat(UpperCAmelCase) # 4. Prepare latent variables __UpperCAmelCase =self.prepare_latents(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , self.unet.dtype , self.device , UpperCAmelCase) __UpperCAmelCase =latents # 5. Denoising loop for t in self.progress_bar(UpperCAmelCase): # 1. predict noise model_output __UpperCAmelCase =self.unet(UpperCAmelCase , UpperCAmelCase).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __UpperCAmelCase =self.scheduler.step( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , eta=UpperCAmelCase , use_clipped_model_output=UpperCAmelCase , generator=UpperCAmelCase , ).prev_sample __UpperCAmelCase =(image / 2 + 0.5).clamp(0 , 1) __UpperCAmelCase =image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": __UpperCAmelCase =self.numpy_to_pil(UpperCAmelCase) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=UpperCAmelCase)
142
0
def lowerCamelCase( a__ ,a__ ,a__): return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(a__)) def lowerCamelCase( a__ ,a__ ,a__ ,a__): # Base Case if index == len(a__): return True # Recursive Step for i in range(a__): if valid_coloring(graph[index] ,a__ ,a__): # Color current vertex _SCREAMING_SNAKE_CASE =i # Validate coloring if util_color(a__ ,a__ ,a__ ,index + 1): return True # Backtrack _SCREAMING_SNAKE_CASE =-1 return False def lowerCamelCase( a__ ,a__): _SCREAMING_SNAKE_CASE =[-1] * len(a__) if util_color(a__ ,a__ ,a__ ,0): return colored_vertices return []
691
from typing import TYPE_CHECKING from ....utils import _LazyModule snake_case_ : Dict = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys snake_case_ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
691
1
import math def lowerCamelCase__ ( __lowerCAmelCase : int ): """simple docstring""" lowerCAmelCase_ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__lowerCAmelCase ) def lowerCamelCase__ ( __lowerCAmelCase : float = 1 / 12345 ): """simple docstring""" lowerCAmelCase_ = 0 lowerCAmelCase_ = 0 lowerCAmelCase_ = 3 while True: lowerCAmelCase_ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__lowerCAmelCase ): lowerCAmelCase_ = int(__lowerCAmelCase ) total_partitions += 1 if check_partition_perfect(__lowerCAmelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__lowerCAmelCase ) integer += 1 if __name__ == "__main__": print(f"""{solution() = }""")
704
import math class _lowerCAmelCase : def __init__( self , _UpperCamelCase=0 ) -> Tuple: # a graph with Node 0,1,...,N-1 lowerCAmelCase_ = n lowerCAmelCase_ = [ [math.inf for j in range(0 , _UpperCamelCase )] for i in range(0 , _UpperCamelCase ) ] # adjacency matrix for weight lowerCAmelCase_ = [ [math.inf for j in range(0 , _UpperCamelCase )] for i in range(0 , _UpperCamelCase ) ] # dp[i][j] stores minimum distance from i to j def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: lowerCAmelCase_ = w def __a ( self ) -> List[str]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): lowerCAmelCase_ = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __a ( self , _UpperCamelCase , _UpperCamelCase ) -> Dict: return self.dp[u][v] if __name__ == "__main__": _A = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
279
0
_lowerCAmelCase: Union[str, Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _lowerCAmelCase: int = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _lowerCAmelCase: Any = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def _lowercase( __a : int , __a : int , __a : int ): assert len(str(__a ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: a__ =year // 100 a__ =(5 * (century % 4) + 2) % 7 a__ =year % 100 a__ =centurian % 12 a__ =( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 a__ =( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) a__ =(dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
20
import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def A ( __UpperCamelCase ) -> Union[str, Any]: if hor == 128: A__ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A__ = (32, 128, 256) A__ = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: A__ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A__ = (32, 64, 128, 256) A__ = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') A__ = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) A__ = model.state_dict() A__ = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 65_536, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } A__ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A__ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A__ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() , f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , 'w' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) def A ( ) -> List[str]: A__ = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 128, 256), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 65_536, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } A__ = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) A__ = model A__ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A__ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A__ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() , 'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' , 'w' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": unet(3_2) # unet(128) value_function()
9
0
'''simple docstring''' import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class __UpperCAmelCase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase=True , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): UpperCAmelCase__ : List[str] = parent UpperCAmelCase__ : Tuple = batch_size UpperCAmelCase__ : Dict = seq_length UpperCAmelCase__ : Dict = is_training UpperCAmelCase__ : List[Any] = use_input_mask UpperCAmelCase__ : List[Any] = use_token_type_ids UpperCAmelCase__ : List[Any] = use_labels UpperCAmelCase__ : Optional[Any] = vocab_size UpperCAmelCase__ : Union[str, Any] = hidden_size UpperCAmelCase__ : Tuple = num_hidden_layers UpperCAmelCase__ : Optional[int] = num_attention_heads UpperCAmelCase__ : Optional[Any] = intermediate_multiple_size UpperCAmelCase__ : str = hidden_act UpperCAmelCase__ : List[Any] = hidden_dropout UpperCAmelCase__ : str = attention_dropout UpperCAmelCase__ : List[Any] = weight_tying UpperCAmelCase__ : Any = max_position_embeddings UpperCAmelCase__ : Tuple = type_vocab_size UpperCAmelCase__ : Optional[Any] = type_sequence_label_size UpperCAmelCase__ : Any = initializer_range UpperCAmelCase__ : Any = num_labels UpperCAmelCase__ : Optional[int] = num_choices UpperCAmelCase__ : str = scope def lowerCamelCase ( self ): UpperCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : str = None if self.use_input_mask: UpperCAmelCase__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : Union[str, Any] = None if self.use_labels: UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ : Optional[int] = self.get_config() return config, input_ids, input_mask, token_labels def lowerCamelCase ( self ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def lowerCamelCase ( self ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ : Any = True return config, input_ids, input_mask, token_labels def lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ : Optional[Any] = GPTNeoXJapaneseModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ : List[str] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) UpperCAmelCase__ : Union[str, Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : Optional[int] = GPTNeoXJapaneseModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ : Optional[int] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ : Dict = GPTNeoXJapaneseForCausalLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ : List[Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ : str = True UpperCAmelCase__ : Union[str, Any] = GPTNeoXJapaneseForCausalLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() # first forward pass UpperCAmelCase__ : List[Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) UpperCAmelCase__ : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase__ : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase__ : Optional[int] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase__ : int = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase__ : Any = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase__ : Optional[Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) UpperCAmelCase__ : Any = output_from_no_past['''hidden_states'''][0] UpperCAmelCase__ : str = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , )['''hidden_states'''][0] # select random slice UpperCAmelCase__ : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase__ : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase__ : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) def lowerCamelCase ( self ): UpperCAmelCase__ : List[str] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = config_and_inputs UpperCAmelCase__ : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () SCREAMING_SNAKE_CASE : List[Any] = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE : Tuple = ( {"feature-extraction": GPTNeoXJapaneseModel, "text-generation": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : Optional[int] = False def lowerCamelCase ( self ): UpperCAmelCase__ : List[str] = GPTNeoXJapaneseModelTester(self ) UpperCAmelCase__ : Optional[int] = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def lowerCamelCase ( self ): self.config_tester.run_common_tests() def lowerCamelCase ( self ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase ( self ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase ( self ): # This regression test was failing with PyTorch < 1.3 UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCAmelCase__ : Optional[int] = None self.model_tester.create_and_check_model_as_decoder(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase ( self ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase ( self ): UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_UpperCAmelCase ) @slow def lowerCamelCase ( self ): UpperCAmelCase__ : Tuple = '''abeja/gpt-neox-japanese-2.7b''' UpperCAmelCase__ : int = ['''データサイエンティストとは、''', '''100年後に必要とされる会社は、''', '''フルリモートの環境で働くために必要なことは、''', '''国境の長いトンネルを抜けると''', '''美味しい日本食といえば、'''] UpperCAmelCase__ : Union[str, Any] = [ '''データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。''', '''100年後に必要とされる会社は、「人」が中心の会社です。''', '''フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。''', '''国境の長いトンネルを抜けると、そこは雪国だった。''', '''美味しい日本食といえば、やっぱりお寿司ですよね。''', ] UpperCAmelCase__ : Any = GPTNeoXJapaneseTokenizer.from_pretrained(_UpperCAmelCase ) UpperCAmelCase__ : List[str] = GPTNeoXJapaneseForCausalLM.from_pretrained(_UpperCAmelCase ) UpperCAmelCase__ : int = [] for prompt in prompts: UpperCAmelCase__ : Optional[Any] = tokenizer(_UpperCAmelCase , return_tensors='''pt''' ).input_ids UpperCAmelCase__ : Dict = model.generate(_UpperCAmelCase , max_length=50 ) UpperCAmelCase__ : Tuple = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) predicted_outputs += generated_string self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
708
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCAmelCase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=224 , _UpperCAmelCase=1000 , _UpperCAmelCase=[3, 3, 6, 4] , _UpperCAmelCase=[48, 56, 112, 220] , ): UpperCAmelCase__ : List[str] = parent UpperCAmelCase__ : Union[str, Any] = batch_size UpperCAmelCase__ : Tuple = num_channels UpperCAmelCase__ : Tuple = is_training UpperCAmelCase__ : Union[str, Any] = use_labels UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase__ : Optional[int] = num_labels UpperCAmelCase__ : Optional[Any] = image_size UpperCAmelCase__ : int = layer_depths UpperCAmelCase__ : List[str] = embed_dims def lowerCamelCase ( self ): UpperCAmelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Union[str, Any] = None if self.use_labels: UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase__ : Optional[int] = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_UpperCAmelCase , layer_scale_init_value=1E-5 , ) def lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ : List[str] = SwiftFormerModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ : List[Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ : List[str] = self.num_labels UpperCAmelCase__ : str = SwiftFormerForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ : Optional[Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) UpperCAmelCase__ : Optional[Any] = SwiftFormerForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Optional[int] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self ): ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) : Tuple = self.prepare_config_and_inputs() UpperCAmelCase__ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE : Union[str, Any] = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : List[Any] = False def lowerCamelCase ( self ): UpperCAmelCase__ : Tuple = SwiftFormerModelTester(self ) UpperCAmelCase__ : Any = ConfigTester( self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def lowerCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def lowerCamelCase ( self ): pass def lowerCamelCase ( self ): UpperCAmelCase__ , UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Optional[Any] = model_class(_UpperCAmelCase ) UpperCAmelCase__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def lowerCamelCase ( self ): UpperCAmelCase__ , UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Union[str, Any] = model_class(_UpperCAmelCase ) UpperCAmelCase__ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Union[str, Any] = [*signature.parameters.keys()] UpperCAmelCase__ : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowerCamelCase ( self ): UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowerCamelCase ( self ): UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def lowerCamelCase ( self ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : List[Any] = SwiftFormerModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def lowerCamelCase ( self ): pass def lowerCamelCase ( self ): def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ : str = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase__ : str = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) UpperCAmelCase__ : Optional[int] = outputs.hidden_states UpperCAmelCase__ : Optional[Any] = 8 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_UpperCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) UpperCAmelCase__ , UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Optional[Any] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ : int = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase ( self ): def _config_zero_init(_UpperCAmelCase ): UpperCAmelCase__ : str = copy.deepcopy(_UpperCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_UpperCAmelCase , _UpperCAmelCase , 1E-10 ) if isinstance(getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase ): UpperCAmelCase__ : Union[str, Any] = _config_zero_init(getattr(_UpperCAmelCase , _UpperCAmelCase ) ) setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return configs_no_init UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Optional[Any] = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: UpperCAmelCase__ : str = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCamelCase ( self ): pass def lowerCAmelCase__ ( ) -> Optional[int]: UpperCAmelCase__ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase ( self ): return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def lowerCamelCase ( self ): UpperCAmelCase__ : int = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(_UpperCAmelCase ) UpperCAmelCase__ : Tuple = self.default_image_processor UpperCAmelCase__ : str = prepare_img() UpperCAmelCase__ : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Optional[Any] = model(**_UpperCAmelCase ) # verify the logits UpperCAmelCase__ : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) UpperCAmelCase__ : List[str] = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) )
599
0