code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
def _a ( __lowercase = 200_0000 ) -> int: """simple docstring""" __UpperCamelCase = [0 for i in range(n + 1 )] __UpperCamelCase = 1 __UpperCamelCase = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , __lowercase ): __UpperCamelCase = 1 __UpperCamelCase = 0 for i in range(__lowercase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F'''{solution() = }''')
383
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class lowerCAmelCase_ ( _lowercase , _lowercase ): """simple docstring""" UpperCAmelCase__ = 1 @register_to_config def __init__( self , _SCREAMING_SNAKE_CASE = 1_000 , _SCREAMING_SNAKE_CASE = None ) -> Tuple: # set `betas`, `alphas`, `timesteps` self.set_timesteps(_SCREAMING_SNAKE_CASE ) # standard deviation of the initial noise distribution __UpperCamelCase = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. __UpperCamelCase = 4 # running values __UpperCamelCase = [] def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> int: __UpperCamelCase = num_inference_steps __UpperCamelCase = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] __UpperCamelCase = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: __UpperCamelCase = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: __UpperCamelCase = torch.sin(steps * math.pi / 2 ) ** 2 __UpperCamelCase = (1.0 - self.betas**2) ** 0.5 __UpperCamelCase = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] __UpperCamelCase = timesteps.to(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = [] def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , ) -> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) __UpperCamelCase = (self.timesteps == timestep).nonzero().item() __UpperCamelCase = timestep_index + 1 __UpperCamelCase = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(_SCREAMING_SNAKE_CASE ) if len(self.ets ) == 1: __UpperCamelCase = self.ets[-1] elif len(self.ets ) == 2: __UpperCamelCase = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: __UpperCamelCase = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: __UpperCamelCase = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) __UpperCamelCase = self._get_prev_sample(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE ) def __lowercase( self , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> torch.FloatTensor: return sample def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: __UpperCamelCase = self.alphas[timestep_index] __UpperCamelCase = self.betas[timestep_index] __UpperCamelCase = self.alphas[prev_timestep_index] __UpperCamelCase = self.betas[prev_timestep_index] __UpperCamelCase = (sample - sigma * ets) / max(_SCREAMING_SNAKE_CASE , 1e-8 ) __UpperCamelCase = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ) -> int: return self.config.num_train_timesteps
383
1
from __future__ import annotations UpperCAmelCase__ = "#" class __lowerCAmelCase : def __init__( self : Union[str, Any]) -> None: """simple docstring""" _UpperCAmelCase = {} def _lowerCamelCase ( self : List[Any] , A : str) -> None: """simple docstring""" _UpperCAmelCase = self._trie for char in text: if char not in trie: _UpperCAmelCase = {} _UpperCAmelCase = trie[char] _UpperCAmelCase = True def _lowerCamelCase ( self : Tuple , A : str) -> tuple | list: """simple docstring""" _UpperCAmelCase = self._trie for char in prefix: if char in trie: _UpperCAmelCase = trie[char] else: return [] return self._elements(A) def _lowerCamelCase ( self : List[str] , A : dict) -> tuple: """simple docstring""" _UpperCAmelCase = [] for c, v in d.items(): _UpperCAmelCase = [' '] if c == END else [(c + s) for s in self._elements(A)] result.extend(A) return tuple(A) UpperCAmelCase__ = Trie() UpperCAmelCase__ = ("depart", "detergent", "daring", "dog", "deer", "deal") for word in words: trie.insert_word(word) def A ( _UpperCAmelCase : str ) -> tuple: '''simple docstring''' _UpperCAmelCase = trie.find_word(_UpperCAmelCase ) return tuple(string + word for word in suffixes ) def A ( ) -> None: '''simple docstring''' print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
639
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCAmelCase__ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCAmelCase__ = "▁" # Segments (not really needed) UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = '''left''' UpperCamelCase = XLNetTokenizer def __init__( self : Any , A : Union[str, Any]=None , A : str=None , A : Tuple=False , A : Tuple=True , A : Any=False , A : List[str]="<s>" , A : List[str]="</s>" , A : Optional[int]="<unk>" , A : Tuple="<sep>" , A : str="<pad>" , A : Dict="<cls>" , A : Dict="<mask>" , A : Optional[Any]=["<eop>", "<eod>"] , **A : Optional[Any] , ) -> str: """simple docstring""" _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else mask_token super().__init__( vocab_file=A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , **A , ) _UpperCAmelCase = 3 _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowerCamelCase ( self : List[str] , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(A): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(A): copyfile(self.vocab_file , A) return (out_vocab_file,)
639
1
from maths.prime_check import is_prime def a_ ( __magic_name__ ) -> Optional[Any]: """simple docstring""" if not isinstance(__magic_name__ , __magic_name__ ): snake_case : Union[str, Any] = F"Input value of [number={number}] must be an integer" raise TypeError(__magic_name__ ) if is_prime(__magic_name__ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
598
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 1_6 lowerCAmelCase_ = 3_2 def _A ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase = 16 ): '''simple docstring''' A__ = AutoTokenizer.from_pretrained('bert-base-cased' ) A__ = DatasetDict( { 'train': dataset['train'].select(UpperCAmelCase ), 'validation': dataset['train'].select(UpperCAmelCase ), 'test': dataset['validation'], } ) def tokenize_function(UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) A__ = tokenizer(examples['sentence1'] ,examples['sentence2'] ,truncation=UpperCAmelCase ,max_length=UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ = datasets.map( UpperCAmelCase ,batched=UpperCAmelCase ,remove_columns=['idx', 'sentence1', 'sentence2'] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ = tokenized_datasets.rename_column('label' ,'labels' ) def collate_fn(UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ = 16 elif accelerator.mixed_precision != "no": A__ = 8 else: A__ = None return tokenizer.pad( UpperCAmelCase ,padding='longest' ,max_length=UpperCAmelCase ,pad_to_multiple_of=UpperCAmelCase ,return_tensors='pt' ,) # Instantiate dataloaders. A__ = DataLoader( tokenized_datasets['train'] ,shuffle=UpperCAmelCase ,collate_fn=UpperCAmelCase ,batch_size=UpperCAmelCase ) A__ = DataLoader( tokenized_datasets['validation'] ,shuffle=UpperCAmelCase ,collate_fn=UpperCAmelCase ,batch_size=UpperCAmelCase ) A__ = DataLoader( tokenized_datasets['test'] ,shuffle=UpperCAmelCase ,collate_fn=UpperCAmelCase ,batch_size=UpperCAmelCase ) return train_dataloader, eval_dataloader, test_dataloader def _A ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' A__ = [] # Download the dataset A__ = load_dataset('glue' ,'mrpc' ) # Create our splits A__ = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator A__ = Accelerator(cpu=args.cpu ,mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ = config['lr'] A__ = int(config['num_epochs'] ) A__ = int(config['seed'] ) A__ = int(config['batch_size'] ) A__ = evaluate.load('glue' ,'mrpc' ) # If the batch size is too big we use gradient accumulation A__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ = batch_size // MAX_GPU_BATCH_SIZE A__ = MAX_GPU_BATCH_SIZE set_seed(UpperCAmelCase ) # New Code # # Create our folds: A__ = kfold.split(np.zeros(datasets['train'].num_rows ) ,datasets['train']['label'] ) A__ = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(UpperCAmelCase ): A__ , A__ , A__ = get_fold_dataloaders( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' ,return_dict=UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ = model.to(accelerator.device ) # Instantiate optimizer A__ = AdamW(params=model.parameters() ,lr=UpperCAmelCase ) # Instantiate scheduler A__ = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase ,num_warmup_steps=100 ,num_training_steps=(len(UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ = accelerator.prepare( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ) # Now we train the model for epoch in range(UpperCAmelCase ): model.train() for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ = model(**UpperCAmelCase ) A__ = outputs.loss A__ = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**UpperCAmelCase ) A__ = outputs.logits.argmax(dim=-1 ) A__ , A__ = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=UpperCAmelCase ,references=UpperCAmelCase ,) A__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" ,UpperCAmelCase ) # New Code # # We also run predictions on the test set at the very end A__ = [] for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**UpperCAmelCase ) A__ = outputs.logits A__ , A__ = accelerator.gather_for_metrics((predictions, batch['labels']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(UpperCAmelCase ,dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: A__ = torch.cat(UpperCAmelCase ,dim=0 ) A__ = torch.stack(UpperCAmelCase ,dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) A__ = metric.compute(predictions=UpperCAmelCase ,references=UpperCAmelCase ) accelerator.print('Average test metrics from all folds:' ,UpperCAmelCase ) def _A ( ): '''simple docstring''' A__ = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' ,type=UpperCAmelCase ,default=UpperCAmelCase ,choices=['no', 'fp16', 'bf16', 'fp8'] ,help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' ,) parser.add_argument('--cpu' ,action='store_true' ,help='If passed, will train on the CPU.' ) # New Code # parser.add_argument('--num_folds' ,type=UpperCAmelCase ,default=3 ,help='The number of splits to perform across the dataset' ) A__ = parser.parse_args() A__ = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(UpperCAmelCase ,UpperCAmelCase ) if __name__ == "__main__": main()
531
0
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def lowerCAmelCase_ ( __lowerCamelCase ): if not is_accelerate_available(): return method __snake_case : int = version.parse(accelerate.__version__ ).base_version if version.parse(__lowerCamelCase ) < version.parse("0.17.0" ): return method def wrapper(self , *__lowerCamelCase , **__lowerCamelCase ): if hasattr(self , "_hf_hook" ) and hasattr(self._hf_hook , "pre_forward" ): self._hf_hook.pre_forward(self ) return method(self , *__lowerCamelCase , **__lowerCamelCase ) return wrapper
203
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a : """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Tuple=13 , lowerCamelCase : Tuple=32 , lowerCamelCase : Any=2 , lowerCamelCase : Union[str, Any]=3 , lowerCamelCase : Tuple=16 , lowerCamelCase : Any=[32, 64, 128] , lowerCamelCase : str=[1, 2, 1] , lowerCamelCase : Union[str, Any]=[2, 2, 4] , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : Optional[int]=2.0 , lowerCamelCase : Tuple=True , lowerCamelCase : Optional[int]=0.0 , lowerCamelCase : List[str]=0.0 , lowerCamelCase : Dict=0.1 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : Any=False , lowerCamelCase : Any=True , lowerCamelCase : str=0.02 , lowerCamelCase : Tuple=1E-5 , lowerCamelCase : str=True , lowerCamelCase : Optional[Any]=None , lowerCamelCase : List[str]=True , lowerCamelCase : Union[str, Any]=10 , lowerCamelCase : Any=8 , lowerCamelCase : List[str]=["stage1", "stage2"] , lowerCamelCase : Optional[int]=[1, 2] , ) -> Optional[int]: __snake_case : Any = parent __snake_case : int = batch_size __snake_case : Optional[int] = image_size __snake_case : int = patch_size __snake_case : Any = num_channels __snake_case : List[Any] = embed_dim __snake_case : str = hidden_sizes __snake_case : int = depths __snake_case : Any = num_heads __snake_case : Any = window_size __snake_case : Optional[Any] = mlp_ratio __snake_case : Any = qkv_bias __snake_case : List[Any] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : Tuple = drop_path_rate __snake_case : Tuple = hidden_act __snake_case : Optional[int] = use_absolute_embeddings __snake_case : Optional[int] = patch_norm __snake_case : int = layer_norm_eps __snake_case : Any = initializer_range __snake_case : Any = is_training __snake_case : Tuple = scope __snake_case : Tuple = use_labels __snake_case : Any = type_sequence_label_size __snake_case : Dict = encoder_stride __snake_case : Union[str, Any] = out_features __snake_case : Union[str, Any] = out_indices def __snake_case ( self : Optional[Any] ) -> str: __snake_case : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Optional[Any] = None if self.use_labels: __snake_case : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Optional[Any] = self.get_config() return config, pixel_values, labels def __snake_case ( self : Union[str, Any] ) -> List[Any]: return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __snake_case ( self : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : Dict , lowerCamelCase : str ) -> str: __snake_case : Tuple = FocalNetModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : List[str] = model(lowerCamelCase ) __snake_case : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __snake_case : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __snake_case ( self : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : List[Any] ) -> Optional[int]: __snake_case : Union[str, Any] = FocalNetBackbone(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : int = model(lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __snake_case : Dict = None __snake_case : Any = FocalNetBackbone(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Optional[int] = model(lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __snake_case ( self : Any , lowerCamelCase : Optional[Any] , lowerCamelCase : List[Any] , lowerCamelCase : Any ) -> Optional[int]: __snake_case : List[Any] = FocalNetForMaskedImageModeling(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : List[str] = model(lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __snake_case : List[str] = 1 __snake_case : Any = FocalNetForMaskedImageModeling(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __snake_case : int = model(lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __snake_case ( self : str , lowerCamelCase : Dict , lowerCamelCase : Any , lowerCamelCase : str ) -> Optional[Any]: __snake_case : Tuple = self.type_sequence_label_size __snake_case : List[Any] = FocalNetForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Optional[Any] = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __snake_case : Optional[int] = 1 __snake_case : str = FocalNetForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __snake_case : Optional[Any] = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __snake_case ( self : Optional[int] ) -> Optional[int]: __snake_case : str = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : List[str] = config_and_inputs __snake_case : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a (_lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : int = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) __UpperCAmelCase : Optional[int] = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : List[str] = False __UpperCAmelCase : str = False __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : List[str] = False def __snake_case ( self : List[str] ) -> Tuple: __snake_case : Optional[Any] = FocalNetModelTester(self ) __snake_case : int = ConfigTester(self , config_class=lowerCamelCase , embed_dim=37 , has_text_modality=lowerCamelCase ) def __snake_case ( self : Optional[int] ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __snake_case ( self : str ) -> Tuple: return def __snake_case ( self : Union[str, Any] ) -> str: __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def __snake_case ( self : str ) -> int: __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase ) def __snake_case ( self : List[str] ) -> Optional[int]: __snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase ) def __snake_case ( self : str ) -> List[str]: __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def __snake_case ( self : Dict ) -> List[str]: pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def __snake_case ( self : str ) -> int: pass def __snake_case ( self : Optional[int] ) -> Tuple: __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __snake_case : Dict = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase , nn.Linear ) ) def __snake_case ( self : List[str] ) -> Optional[int]: __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __snake_case : List[str] = model_class(lowerCamelCase ) __snake_case : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : List[Any] = [*signature.parameters.keys()] __snake_case : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def __snake_case ( self : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : Union[str, Any] ) -> str: __snake_case : Tuple = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): __snake_case : List[Any] = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) __snake_case : List[str] = outputs.hidden_states __snake_case : Tuple = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) # FocalNet has a different seq_length __snake_case : Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __snake_case : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __snake_case : List[Any] = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) __snake_case , __snake_case , __snake_case , __snake_case : Tuple = reshaped_hidden_states[0].shape __snake_case : Optional[int] = ( reshaped_hidden_states[0].view(lowerCamelCase , lowerCamelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __snake_case ( self : Tuple ) -> int: __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __snake_case : Optional[Any] = True self.check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Dict = True self.check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) def __snake_case ( self : Optional[int] ) -> Any: __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Optional[int] = 3 __snake_case : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __snake_case : Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __snake_case : Dict = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __snake_case : List[Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __snake_case : List[str] = True self.check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Tuple = True self.check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase , (padded_height, padded_width) ) @slow def __snake_case ( self : List[Any] ) -> Union[str, Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : List[str] = FocalNetModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def __snake_case ( self : Tuple ) -> List[Any]: __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Optional[Any] = _config_zero_init(lowerCamelCase ) for model_class in self.all_model_classes: __snake_case : Tuple = model_class(config=lowerCamelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class a (unittest.TestCase ): """simple docstring""" @cached_property def __snake_case ( self : Union[str, Any] ) -> List[Any]: # TODO update organization return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def __snake_case ( self : int ) -> Optional[int]: __snake_case : List[str] = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(lowerCamelCase ) __snake_case : str = self.default_image_processor __snake_case : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) __snake_case : Optional[Any] = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __snake_case : int = model(**lowerCamelCase ) # verify the logits __snake_case : List[str] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) __snake_case : Optional[int] = torch.tensor([0.21_66, -0.43_68, 0.21_91] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class a (_lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = (FocalNetBackbone,) if is_torch_available() else () __UpperCAmelCase : Dict = FocalNetConfig __UpperCAmelCase : Any = False def __snake_case ( self : str ) -> List[str]: __snake_case : Tuple = FocalNetModelTester(self )
203
1
def a_ (__A , __A , __A , __A ) -> int: """simple docstring""" __a , __a : Any = len(__A ), len(grid[0] ) if ( min(__A , __A ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) __a : Dict = 0 count += depth_first_search(__A , row + 1 , __A , __A ) count += depth_first_search(__A , row - 1 , __A , __A ) count += depth_first_search(__A , __A , col + 1 , __A ) count += depth_first_search(__A , __A , col - 1 , __A ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
351
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class snake_case_ ( __UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case__ = MvpTokenizer snake_case__ = MvpTokenizerFast snake_case__ = True snake_case__ = filter_roberta_detectors def UpperCAmelCase__ (self: List[str] ) -> Any: '''simple docstring''' super().setUp() __a : Dict = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] __a : Optional[int] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) __a : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] __a : Optional[int] = {"unk_token": "<unk>"} __a : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __a : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__UpperCAmelCase ) ) def UpperCAmelCase__ (self: List[Any] , **__UpperCAmelCase: Dict ) -> int: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase__ (self: str , **__UpperCAmelCase: Tuple ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase__ (self: Any , __UpperCAmelCase: int ) -> List[str]: '''simple docstring''' return "lower newer", "lower newer" @cached_property def UpperCAmelCase__ (self: List[Any] ) -> Union[str, Any]: '''simple docstring''' return MvpTokenizer.from_pretrained("RUCAIBox/mvp" ) @cached_property def UpperCAmelCase__ (self: str ) -> List[Any]: '''simple docstring''' return MvpTokenizerFast.from_pretrained("RUCAIBox/mvp" ) @require_torch def UpperCAmelCase__ (self: Dict ) -> List[Any]: '''simple docstring''' __a : Union[str, Any] = ["A long paragraph for summarization.", "Another paragraph for summarization."] __a : List[Any] = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a : Optional[Any] = tokenizer(__UpperCAmelCase , max_length=len(__UpperCAmelCase ) , padding=__UpperCAmelCase , return_tensors="pt" ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) __a : Optional[int] = batch.input_ids.tolist()[0] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) # Test that special tokens are reset @require_torch def UpperCAmelCase__ (self: Optional[int] ) -> List[Any]: '''simple docstring''' __a : int = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a : int = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors="pt" ) # check if input_ids are returned and no labels self.assertIn("input_ids" , __UpperCAmelCase ) self.assertIn("attention_mask" , __UpperCAmelCase ) self.assertNotIn("labels" , __UpperCAmelCase ) self.assertNotIn("decoder_attention_mask" , __UpperCAmelCase ) @require_torch def UpperCAmelCase__ (self: Any ) -> Union[str, Any]: '''simple docstring''' __a : List[Any] = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a : int = tokenizer(text_target=__UpperCAmelCase , max_length=32 , padding="max_length" , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) @require_torch def UpperCAmelCase__ (self: int ) -> Union[str, Any]: '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a : str = tokenizer( ["I am a small frog" * 1024, "I am a small frog"] , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors="pt" ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(batch.input_ids.shape , (2, 1024) ) @require_torch def UpperCAmelCase__ (self: str ) -> Any: '''simple docstring''' __a : Optional[int] = ["A long paragraph for summarization."] __a : Tuple = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a : Dict = tokenizer(__UpperCAmelCase , text_target=__UpperCAmelCase , return_tensors="pt" ) __a : str = inputs["input_ids"] __a : Optional[Any] = inputs["labels"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def UpperCAmelCase__ (self: Dict ) -> str: '''simple docstring''' pass def UpperCAmelCase__ (self: Any ) -> Optional[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a : Tuple = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) __a : List[Any] = self.tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) __a : Tuple = "A, <mask> AllenNLP sentence." __a : Dict = tokenizer_r.encode_plus(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) __a : List[Any] = tokenizer_p.encode_plus(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) __a : Optional[int] = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) __a : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __UpperCAmelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( __UpperCAmelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
351
1
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase : def __init__( self : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any]=13 , UpperCAmelCase : Optional[Any]=7 , UpperCAmelCase : Dict=True , UpperCAmelCase : Any=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Dict=False , UpperCAmelCase : Dict=False , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Tuple=99 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Optional[Any]=32 , UpperCAmelCase : Optional[int]=5 , UpperCAmelCase : Dict=4 , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Tuple=512 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : List[str]=0.0_2 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Any="last" , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=0 , ) -> List[Any]: lowerCamelCase__ : List[str] = parent lowerCamelCase__ : Optional[Any] = batch_size lowerCamelCase__ : int = seq_length lowerCamelCase__ : Union[str, Any] = is_training lowerCamelCase__ : Dict = use_input_lengths lowerCamelCase__ : str = use_token_type_ids lowerCamelCase__ : str = use_labels lowerCamelCase__ : int = gelu_activation lowerCamelCase__ : Optional[Any] = sinusoidal_embeddings lowerCamelCase__ : Optional[Any] = causal lowerCamelCase__ : Any = asm lowerCamelCase__ : Any = n_langs lowerCamelCase__ : Tuple = vocab_size lowerCamelCase__ : int = n_special lowerCamelCase__ : str = hidden_size lowerCamelCase__ : List[Any] = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : str = attention_probs_dropout_prob lowerCamelCase__ : Union[str, Any] = max_position_embeddings lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : int = initializer_range lowerCamelCase__ : List[str] = num_labels lowerCamelCase__ : List[Any] = num_choices lowerCamelCase__ : Optional[Any] = summary_type lowerCamelCase__ : Optional[Any] = use_proj lowerCamelCase__ : Dict = scope lowerCamelCase__ : List[str] = bos_token_id def A_ ( self : List[str] ) -> List[Any]: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : List[str] = None if self.use_input_lengths: lowerCamelCase__ : Optional[int] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCamelCase__ : str = None if self.use_token_type_ids: lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowerCamelCase__ : Union[str, Any] = None lowerCamelCase__ : Union[str, Any] = None lowerCamelCase__ : Union[str, Any] = None if self.use_labels: lowerCamelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : int = ids_tensor([self.batch_size] , 2 ).float() lowerCamelCase__ : Any = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : Union[str, Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def A_ ( self : str ) -> List[str]: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def A_ ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : List[Any] , ) -> Union[str, Any]: lowerCamelCase__ : str = XLMModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Optional[int] = model(UpperCAmelCase , lengths=UpperCAmelCase , langs=UpperCAmelCase ) lowerCamelCase__ : List[str] = model(UpperCAmelCase , langs=UpperCAmelCase ) lowerCamelCase__ : str = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] , ) -> str: lowerCamelCase__ : int = XLMWithLMHeadModel(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : List[str] = model(UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : str , ) -> List[Any]: lowerCamelCase__ : List[str] = XLMForQuestionAnsweringSimple(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Tuple = model(UpperCAmelCase ) lowerCamelCase__ : Tuple = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : int , ) -> List[str]: lowerCamelCase__ : Tuple = XLMForQuestionAnswering(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : List[str] = model(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , p_mask=UpperCAmelCase , ) lowerCamelCase__ : Dict = model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , ) ((lowerCamelCase__) , ) : str = result_with_labels.to_tuple() lowerCamelCase__ : List[str] = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) ((lowerCamelCase__) , ) : Dict = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def A_ ( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , ) -> int: lowerCamelCase__ : Union[str, Any] = XLMForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Any = model(UpperCAmelCase ) lowerCamelCase__ : Dict = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A_ ( self : str , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : str , ) -> Optional[Any]: lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : Tuple = XLMForTokenClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : List[Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self : str , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Dict , ) -> List[Any]: lowerCamelCase__ : Optional[int] = self.num_choices lowerCamelCase__ : int = XLMForMultipleChoice(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : List[str] = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A_ ( self : Optional[Any] ) -> Union[str, Any]: lowerCamelCase__ : Dict = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : List[str] = config_and_inputs lowerCamelCase__ : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase__ = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCAmelCase__ = ( { """feature-extraction""": XLMModel, """fill-mask""": XLMWithLMHeadModel, """question-answering""": XLMForQuestionAnsweringSimple, """text-classification""": XLMForSequenceClassification, """text-generation""": XLMWithLMHeadModel, """token-classification""": XLMForTokenClassification, """zero-shot""": XLMForSequenceClassification, } if is_torch_available() else {} ) def A_ ( self : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple ) -> Optional[int]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def A_ ( self : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int]=False ) -> Tuple: lowerCamelCase__ : List[str] = super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": lowerCamelCase__ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) lowerCamelCase__ : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) return inputs_dict def A_ ( self : str ) -> Union[str, Any]: lowerCamelCase__ : Union[str, Any] = XLMModelTester(self ) lowerCamelCase__ : Any = ConfigTester(self , config_class=UpperCAmelCase , emb_dim=37 ) def A_ ( self : Optional[int] ) -> List[Any]: self.config_tester.run_common_tests() def A_ ( self : Any ) -> List[Any]: lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*UpperCAmelCase ) def A_ ( self : str ) -> Any: lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*UpperCAmelCase ) def A_ ( self : Dict ) -> Optional[Any]: lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*UpperCAmelCase ) def A_ ( self : Optional[Any] ) -> Optional[Any]: lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*UpperCAmelCase ) def A_ ( self : Any ) -> Optional[int]: lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*UpperCAmelCase ) def A_ ( self : Any ) -> str: lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*UpperCAmelCase ) def A_ ( self : Any ) -> Optional[int]: lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*UpperCAmelCase ) def A_ ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[Any]=False , UpperCAmelCase : str=1 ) -> Union[str, Any]: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual( [isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_attentions in attentions] , [True] * len(UpperCAmelCase ) ) self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(UpperCAmelCase ): # adds PAD dummy token lowerCamelCase__ : Any = min_length + idx + 1 lowerCamelCase__ : Union[str, Any] = min_length + idx + 1 lowerCamelCase__ : Optional[Any] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(UpperCAmelCase ) ) def A_ ( self : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : List[str]=False , UpperCAmelCase : Tuple=1 ) -> Union[str, Any]: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual( [isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(UpperCAmelCase ) , ) self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(UpperCAmelCase ): # adds PAD dummy token lowerCamelCase__ : str = min_length + idx + 1 lowerCamelCase__ : Any = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(UpperCAmelCase ) , ) pass @slow def A_ ( self : Optional[Any] ) -> Union[str, Any]: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Dict = XLMModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_torch class lowerCAmelCase ( unittest.TestCase ): @slow def A_ ( self : Any ) -> List[Any]: lowerCamelCase__ : Dict = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(UpperCAmelCase ) lowerCamelCase__ : int = torch.tensor([[14, 447]] , dtype=torch.long , device=UpperCAmelCase ) # the president lowerCamelCase__ : Tuple = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference lowerCamelCase__ : List[Any] = model.generate(UpperCAmelCase , do_sample=UpperCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , UpperCAmelCase )
188
_UpperCAmelCase : List[Any] = { """meter""": """m""", """kilometer""": """km""", """megametre""": """Mm""", """gigametre""": """Gm""", """terametre""": """Tm""", """petametre""": """Pm""", """exametre""": """Em""", """zettametre""": """Zm""", """yottametre""": """Ym""", } # Exponent of the factor(meter) _UpperCAmelCase : Dict = { """m""": 0, """km""": 3, """Mm""": 6, """Gm""": 9, """Tm""": 12, """Pm""": 15, """Em""": 18, """Zm""": 21, """Ym""": 24, } def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> float: lowerCamelCase__ : Dict = from_type.lower().strip('s' ) lowerCamelCase__ : Dict = to_type.lower().strip('s' ) lowerCamelCase__ : Dict = UNIT_SYMBOL.get(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase__ : str = UNIT_SYMBOL.get(_UpperCAmelCase , _UpperCAmelCase ) if from_sanitized not in METRIC_CONVERSION: lowerCamelCase__ : List[Any] = ( F"""Invalid 'from_type' value: {from_type!r}.\n""" F"""Conversion abbreviations are: {", ".join(_UpperCAmelCase )}""" ) raise ValueError(_UpperCAmelCase ) if to_sanitized not in METRIC_CONVERSION: lowerCamelCase__ : Optional[Any] = ( F"""Invalid 'to_type' value: {to_type!r}.\n""" F"""Conversion abbreviations are: {", ".join(_UpperCAmelCase )}""" ) raise ValueError(_UpperCAmelCase ) lowerCamelCase__ : Any = METRIC_CONVERSION[from_sanitized] lowerCamelCase__ : Optional[int] = METRIC_CONVERSION[to_sanitized] lowerCamelCase__ : List[str] = 1 if from_exponent > to_exponent: lowerCamelCase__ : Dict = from_exponent - to_exponent else: lowerCamelCase__ : Dict = -(to_exponent - from_exponent) return value * pow(10 , _UpperCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
188
1
import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self :Optional[Any] ) -> str: super().__init__() __SCREAMING_SNAKE_CASE : Optional[Any] = nn.Linear(3 , 4 ) __SCREAMING_SNAKE_CASE : str = nn.BatchNormad(4 ) __SCREAMING_SNAKE_CASE : List[Any] = nn.Linear(4 , 5 ) def __magic_name__( self :Optional[int] , lowerCAmelCase__ :Tuple ) -> Any: return self.lineara(self.batchnorm(self.lineara(lowerCAmelCase__ ) ) ) class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :List[Any] ) -> str: __SCREAMING_SNAKE_CASE : List[Any] = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(lowerCAmelCase__ , model.state_dict() ) __SCREAMING_SNAKE_CASE : List[str] = os.path.join(lowerCAmelCase__ , '''index.json''' ) self.assertTrue(os.path.isfile(lowerCAmelCase__ ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: __SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(lowerCAmelCase__ , f'''{key}.dat''' ) self.assertTrue(os.path.isfile(lowerCAmelCase__ ) ) # TODO: add tests on the fact weights are properly loaded def __magic_name__( self :int ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Optional[Any] = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: __SCREAMING_SNAKE_CASE : str = torch.randn(2 , 3 , dtype=lowerCAmelCase__ ) with TemporaryDirectory() as tmp_dir: __SCREAMING_SNAKE_CASE : Tuple = offload_weight(lowerCAmelCase__ , '''weight''' , lowerCAmelCase__ , {} ) __SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(lowerCAmelCase__ , '''weight.dat''' ) self.assertTrue(os.path.isfile(lowerCAmelCase__ ) ) self.assertDictEqual(lowerCAmelCase__ , {'''weight''': {'''shape''': [2, 3], '''dtype''': str(lowerCAmelCase__ ).split('''.''' )[1]}} ) __SCREAMING_SNAKE_CASE : List[Any] = load_offloaded_weight(lowerCAmelCase__ , index['''weight'''] ) self.assertTrue(torch.equal(lowerCAmelCase__ , lowerCAmelCase__ ) ) def __magic_name__( self :int ) -> Dict: __SCREAMING_SNAKE_CASE : Tuple = ModelForTest() __SCREAMING_SNAKE_CASE : int = model.state_dict() __SCREAMING_SNAKE_CASE : List[Any] = {k: v for k, v in state_dict.items() if '''linear2''' not in k} __SCREAMING_SNAKE_CASE : Optional[int] = {k: v for k, v in state_dict.items() if '''linear2''' in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = OffloadedWeightsLoader(state_dict=lowerCAmelCase__ , save_folder=lowerCAmelCase__ ) # Every key is there with the right value self.assertEqual(sorted(lowerCAmelCase__ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowerCAmelCase__ , weight_map[key] ) ) __SCREAMING_SNAKE_CASE : Dict = {k: v for k, v in state_dict.items() if '''weight''' in k} __SCREAMING_SNAKE_CASE : Union[str, Any] = {k: v for k, v in state_dict.items() if '''weight''' not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = OffloadedWeightsLoader(state_dict=lowerCAmelCase__ , save_folder=lowerCAmelCase__ ) # Every key is there with the right value self.assertEqual(sorted(lowerCAmelCase__ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowerCAmelCase__ , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) # Duplicates are removed __SCREAMING_SNAKE_CASE : Optional[int] = OffloadedWeightsLoader(state_dict=lowerCAmelCase__ , save_folder=lowerCAmelCase__ ) # Every key is there with the right value self.assertEqual(sorted(lowerCAmelCase__ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowerCAmelCase__ , weight_map[key] ) ) def __magic_name__( self :str ) -> Any: __SCREAMING_SNAKE_CASE : List[Any] = {'''a.1''': 0, '''a.10''': 1, '''a.2''': 2} __SCREAMING_SNAKE_CASE : Union[str, Any] = extract_submodules_state_dict(lowerCAmelCase__ , ['''a.1''', '''a.2'''] ) self.assertDictEqual(lowerCAmelCase__ , {'''a.1''': 0, '''a.2''': 2} ) __SCREAMING_SNAKE_CASE : Optional[Any] = {'''a.1.a''': 0, '''a.10.a''': 1, '''a.2.a''': 2} __SCREAMING_SNAKE_CASE : List[str] = extract_submodules_state_dict(lowerCAmelCase__ , ['''a.1''', '''a.2'''] ) self.assertDictEqual(lowerCAmelCase__ , {'''a.1.a''': 0, '''a.2.a''': 2} )
696
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCAmelCase : int ={ 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 1_2_8, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 5_0, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 1_0, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 1_0, 'exponential_decay_length_penalty': (5, 1.0_1), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class _lowercase ( unittest.TestCase ): '''simple docstring''' @classmethod def __magic_name__( cls :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : str = TOKEN HfFolder.save_token(lowerCAmelCase__ ) @classmethod def __magic_name__( cls :List[str] ) -> List[str]: try: delete_repo(token=cls._token , repo_id='''test-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-config''' ) except HTTPError: pass def __magic_name__( self :Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('''test-config''' , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : Tuple = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase__ , repo_id='''test-config''' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : Union[str, Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def __magic_name__( self :int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : Any = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCAmelCase__ , repo_id='''valid_org/test-config-org''' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : List[Any] = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def __magic_name__( self :Dict ) -> Optional[int]: CustomConfig.register_for_auto_class() __SCREAMING_SNAKE_CASE : Tuple = CustomConfig(attribute=42 ) config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''} ) __SCREAMING_SNAKE_CASE : Optional[Any] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''' , trust_remote_code=lowerCAmelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''' ) self.assertEqual(new_config.attribute , 42 ) class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :List[str] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __SCREAMING_SNAKE_CASE : Optional[Any] = c.n_embd + 1 # int __SCREAMING_SNAKE_CASE : Optional[Any] = c.resid_pdrop + 1.0 # float __SCREAMING_SNAKE_CASE : Dict = not c.scale_attn_weights # bool __SCREAMING_SNAKE_CASE : Optional[int] = c.summary_type + '''foo''' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCAmelCase__ , c.n_embd , '''mismatch for key: n_embd''' ) self.assertEqual(lowerCAmelCase__ , c.resid_pdrop , '''mismatch for key: resid_pdrop''' ) self.assertEqual(lowerCAmelCase__ , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''' ) self.assertEqual(lowerCAmelCase__ , c.summary_type , '''mismatch for key: summary_type''' ) def __magic_name__( self :Dict ) -> str: __SCREAMING_SNAKE_CASE : Dict = PretrainedConfig() __SCREAMING_SNAKE_CASE : str = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCAmelCase__ , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''] ) __SCREAMING_SNAKE_CASE : List[Any] = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCAmelCase__ , lowerCAmelCase__ )] if len(lowerCAmelCase__ ) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' f''' {', '.join(lowerCAmelCase__ )}.''' ) def __magic_name__( self :Union[str, Any] ) -> List[Any]: with self.assertRaises(lowerCAmelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder __SCREAMING_SNAKE_CASE : List[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' ) __SCREAMING_SNAKE_CASE : List[str] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''' ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Optional[Any]: # A mock response for an HTTP head request to emulate server down __SCREAMING_SNAKE_CASE : Union[str, Any] = mock.Mock() __SCREAMING_SNAKE_CASE : List[Any] = 500 __SCREAMING_SNAKE_CASE : Union[str, Any] = {} __SCREAMING_SNAKE_CASE : Optional[Any] = HTTPError __SCREAMING_SNAKE_CASE : str = {} # Download this model to make sure it's in the cache. __SCREAMING_SNAKE_CASE : Union[str, Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=lowerCAmelCase__ ) as mock_head: __SCREAMING_SNAKE_CASE : Optional[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() def __magic_name__( self :Union[str, Any] ) -> List[Any]: # This test is for deprecated behavior and can be removed in v5 __SCREAMING_SNAKE_CASE : Optional[int] = BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''' ) def __magic_name__( self :str ) -> List[str]: __SCREAMING_SNAKE_CASE : int = AutoConfig.from_pretrained('''bert-base-cased''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCAmelCase__ , '''config.4.0.0.json''' ) , '''w''' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __SCREAMING_SNAKE_CASE : List[str] = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __SCREAMING_SNAKE_CASE : List[Any] = ['''config.42.0.0.json'''] __SCREAMING_SNAKE_CASE : Tuple = 768 configuration.save_pretrained(lowerCAmelCase__ ) shutil.move(os.path.join(lowerCAmelCase__ , '''config.4.0.0.json''' ) , os.path.join(lowerCAmelCase__ , '''config.42.0.0.json''' ) ) __SCREAMING_SNAKE_CASE : Dict = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 768 ) def __magic_name__( self :List[str] ) -> Union[str, Any]: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. __SCREAMING_SNAKE_CASE : Union[str, Any] = '''hf-internal-testing/test-two-configs''' import transformers as new_transformers __SCREAMING_SNAKE_CASE : int = '''v4.0.0''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCAmelCase__ , return_unused_kwargs=lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCAmelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __SCREAMING_SNAKE_CASE : List[str] = '''v3.0.0''' __SCREAMING_SNAKE_CASE : Any = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(old_configuration.hidden_size , 768 )
696
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__: Any = logging.get_logger(__name__) A__: List[str] = { '''xlm-mlm-en-2048''': '''https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json''', '''xlm-mlm-ende-1024''': '''https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json''', '''xlm-mlm-enfr-1024''': '''https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json''', '''xlm-mlm-enro-1024''': '''https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json''', '''xlm-mlm-tlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json''', '''xlm-mlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json''', '''xlm-clm-enfr-1024''': '''https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json''', '''xlm-clm-ende-1024''': '''https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json''', '''xlm-mlm-17-1280''': '''https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json''', '''xlm-mlm-100-1280''': '''https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json''', } class A__ ( UpperCAmelCase__ ): __UpperCamelCase : str = "xlm" __UpperCamelCase : List[str] = { "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self :List[str] , SCREAMING_SNAKE_CASE :int=3_0_1_4_5 , SCREAMING_SNAKE_CASE :List[str]=2_0_4_8 , SCREAMING_SNAKE_CASE :str=1_2 , SCREAMING_SNAKE_CASE :Tuple=1_6 , SCREAMING_SNAKE_CASE :Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE :Optional[Any]=0.1 , SCREAMING_SNAKE_CASE :List[Any]=True , SCREAMING_SNAKE_CASE :str=False , SCREAMING_SNAKE_CASE :List[Any]=False , SCREAMING_SNAKE_CASE :Optional[int]=False , SCREAMING_SNAKE_CASE :str=1 , SCREAMING_SNAKE_CASE :List[str]=True , SCREAMING_SNAKE_CASE :int=5_1_2 , SCREAMING_SNAKE_CASE :Any=2_0_4_8**-0.5 , SCREAMING_SNAKE_CASE :Any=1e-12 , SCREAMING_SNAKE_CASE :Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE :Dict=0 , SCREAMING_SNAKE_CASE :Tuple=1 , SCREAMING_SNAKE_CASE :Tuple=2 , SCREAMING_SNAKE_CASE :Optional[int]=3 , SCREAMING_SNAKE_CASE :Dict=5 , SCREAMING_SNAKE_CASE :List[str]=True , SCREAMING_SNAKE_CASE :List[Any]="first" , SCREAMING_SNAKE_CASE :Optional[Any]=True , SCREAMING_SNAKE_CASE :Dict=None , SCREAMING_SNAKE_CASE :List[str]=True , SCREAMING_SNAKE_CASE :Tuple=0.1 , SCREAMING_SNAKE_CASE :List[str]=5 , SCREAMING_SNAKE_CASE :List[str]=5 , SCREAMING_SNAKE_CASE :Tuple=0 , SCREAMING_SNAKE_CASE :Tuple=0 , SCREAMING_SNAKE_CASE :Any=2 , SCREAMING_SNAKE_CASE :Optional[int]=0 , **SCREAMING_SNAKE_CASE :Tuple , ) -> List[str]: '''simple docstring''' _a : Tuple =vocab_size _a : int =emb_dim _a : Dict =n_layers _a : List[Any] =n_heads _a : str =dropout _a : Tuple =attention_dropout _a : Dict =gelu_activation _a : Any =sinusoidal_embeddings _a : str =causal _a : str =asm _a : Tuple =n_langs _a : str =use_lang_emb _a : Dict =layer_norm_eps _a : Union[str, Any] =bos_index _a : int =eos_index _a : Optional[int] =pad_index _a : List[Any] =unk_index _a : int =mask_index _a : Any =is_encoder _a : Tuple =max_position_embeddings _a : Optional[Any] =embed_init_std _a : List[Any] =init_std _a : str =summary_type _a : Optional[int] =summary_use_proj _a : List[str] =summary_activation _a : Tuple =summary_proj_to_labels _a : List[Any] =summary_first_dropout _a : Union[str, Any] =start_n_top _a : Optional[int] =end_n_top _a : List[Any] =mask_token_id _a : List[Any] =lang_id if "n_words" in kwargs: _a : Dict =kwargs["""n_words"""] super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class A__ ( UpperCAmelCase__ ): @property def __UpperCAmelCase ( self :Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _a : Optional[Any] ={0: """batch""", 1: """choice""", 2: """sequence"""} else: _a : Tuple ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
716
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType A__: Optional[Any] = logging.get_logger(__name__) A__: Optional[Any] = { '''openai/whisper-base''': '''https://huggingface.co/openai/whisper-base/resolve/main/config.json''', } # fmt: off A__: List[str] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 1_0563, 1_0786, 1_1420, 1_1709, 1_1907, 1_3163, 1_3697, 1_3700, 1_4808, 1_5306, 1_6410, 1_6791, 1_7992, 1_9203, 1_9510, 2_0724, 2_2305, 2_2935, 2_7007, 3_0109, 3_0420, 3_3409, 3_4949, 4_0283, 4_0493, 4_0549, 4_7282, 4_9146, 5_0257, 5_0359, 5_0360, 5_0361 ] A__: Any = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 1_0428, 1_0929, 1_1938, 1_2033, 1_2331, 1_2562, 1_3793, 1_4157, 1_4635, 1_5265, 1_5618, 1_6553, 1_6604, 1_8362, 1_8956, 2_0075, 2_1675, 2_2520, 2_6130, 2_6161, 2_6435, 2_8279, 2_9464, 3_1650, 3_2302, 3_2470, 3_6865, 4_2863, 4_7425, 4_9870, 5_0254, 5_0258, 5_0360, 5_0361, 5_0362 ] class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Tuple = "whisper" __UpperCamelCase : Optional[Any] = ["past_key_values"] __UpperCamelCase : Union[str, Any] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self :Union[str, Any] , SCREAMING_SNAKE_CASE :Optional[Any]=5_1_8_6_5 , SCREAMING_SNAKE_CASE :Union[str, Any]=8_0 , SCREAMING_SNAKE_CASE :Any=6 , SCREAMING_SNAKE_CASE :str=4 , SCREAMING_SNAKE_CASE :Dict=6 , SCREAMING_SNAKE_CASE :Union[str, Any]=4 , SCREAMING_SNAKE_CASE :str=1_5_3_6 , SCREAMING_SNAKE_CASE :Optional[Any]=1_5_3_6 , SCREAMING_SNAKE_CASE :Any=0.0 , SCREAMING_SNAKE_CASE :Optional[Any]=0.0 , SCREAMING_SNAKE_CASE :Optional[int]=5_0_2_5_7 , SCREAMING_SNAKE_CASE :Optional[Any]=True , SCREAMING_SNAKE_CASE :Dict=True , SCREAMING_SNAKE_CASE :Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE :List[Any]=2_5_6 , SCREAMING_SNAKE_CASE :List[Any]=0.0 , SCREAMING_SNAKE_CASE :Any=0.0 , SCREAMING_SNAKE_CASE :List[Any]=0.0 , SCREAMING_SNAKE_CASE :Optional[Any]=0.02 , SCREAMING_SNAKE_CASE :int=False , SCREAMING_SNAKE_CASE :Dict=1_5_0_0 , SCREAMING_SNAKE_CASE :Tuple=4_4_8 , SCREAMING_SNAKE_CASE :Optional[Any]=5_0_2_5_6 , SCREAMING_SNAKE_CASE :List[Any]=5_0_2_5_6 , SCREAMING_SNAKE_CASE :int=5_0_2_5_6 , SCREAMING_SNAKE_CASE :str=None , SCREAMING_SNAKE_CASE :Any=[2_2_0, 5_0_2_5_6] , SCREAMING_SNAKE_CASE :List[Any]=False , SCREAMING_SNAKE_CASE :Tuple=2_5_6 , SCREAMING_SNAKE_CASE :List[str]=False , SCREAMING_SNAKE_CASE :Dict=0.05 , SCREAMING_SNAKE_CASE :Optional[int]=1_0 , SCREAMING_SNAKE_CASE :List[Any]=2 , SCREAMING_SNAKE_CASE :List[str]=0.0 , SCREAMING_SNAKE_CASE :Any=1_0 , SCREAMING_SNAKE_CASE :Dict=0 , SCREAMING_SNAKE_CASE :List[Any]=7 , **SCREAMING_SNAKE_CASE :Any , ) -> Dict: '''simple docstring''' _a : Tuple =vocab_size _a : List[str] =num_mel_bins _a : Optional[Any] =d_model _a : Any =encoder_layers _a : Dict =encoder_attention_heads _a : Dict =decoder_layers _a : Optional[Any] =decoder_attention_heads _a : Any =decoder_ffn_dim _a : List[str] =encoder_ffn_dim _a : int =dropout _a : Union[str, Any] =attention_dropout _a : Union[str, Any] =activation_dropout _a : List[str] =activation_function _a : str =init_std _a : Optional[int] =encoder_layerdrop _a : Any =decoder_layerdrop _a : Union[str, Any] =use_cache _a : Union[str, Any] =encoder_layers _a : str =scale_embedding # scale factor will be sqrt(d_model) if True _a : Tuple =max_source_positions _a : Optional[Any] =max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. _a : Union[str, Any] =classifier_proj_size _a : Dict =use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a : List[str] =apply_spec_augment _a : int =mask_time_prob _a : Optional[Any] =mask_time_length _a : Dict =mask_time_min_masks _a : List[Any] =mask_feature_prob _a : Optional[int] =mask_feature_length _a : List[str] =mask_feature_min_masks _a : List[str] =median_filter_width super().__init__( pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , is_encoder_decoder=SCREAMING_SNAKE_CASE , decoder_start_token_id=SCREAMING_SNAKE_CASE , suppress_tokens=SCREAMING_SNAKE_CASE , begin_suppress_tokens=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) class A__ ( UpperCAmelCase__ ): @property def __UpperCAmelCase ( self :Dict ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' _a : Optional[Any] =OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: _a : List[str] ={0: """batch"""} else: _a : int ={0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE , direction="""inputs""" ) return common_inputs def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , SCREAMING_SNAKE_CASE :int = -1 , SCREAMING_SNAKE_CASE :int = -1 , SCREAMING_SNAKE_CASE :bool = False , SCREAMING_SNAKE_CASE :Optional["TensorType"] = None , SCREAMING_SNAKE_CASE :int = 2_2_0_5_0 , SCREAMING_SNAKE_CASE :float = 5.0 , SCREAMING_SNAKE_CASE :int = 2_2_0 , ) -> Mapping[str, Any]: '''simple docstring''' _a : int =OrderedDict() _a : List[str] =OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=SCREAMING_SNAKE_CASE , framework=SCREAMING_SNAKE_CASE , sampling_rate=SCREAMING_SNAKE_CASE , time_duration=SCREAMING_SNAKE_CASE , frequency=SCREAMING_SNAKE_CASE , ) _a : str =encoder_inputs["""input_features"""].shape[2] _a : str =encoder_sequence_length // 2 if self.use_past else seq_length _a : List[Any] =super().generate_dummy_inputs( preprocessor.tokenizer , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =encoder_inputs.pop("""input_features""" ) _a : Optional[Any] =decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: _a : List[Any] =decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def __UpperCAmelCase ( self :List[str] ) -> float: '''simple docstring''' return 1e-3
506
0
def __SCREAMING_SNAKE_CASE ( a__ : list ,a__ : list ,a__ : int ,a__ : int ,a__ : int ) -> int: if index == number_of_items: return 0 __A : Optional[int] = 0 __A : List[Any] = 0 __A : int = knapsack(a__ ,a__ ,a__ ,a__ ,index + 1 ) if weights[index] <= max_weight: __A : Union[str, Any] = values[index] + knapsack( a__ ,a__ ,a__ ,max_weight - weights[index] ,index + 1 ) return max(a__ ,a__ ) if __name__ == "__main__": import doctest doctest.testmod()
17
"""simple docstring""" from ..utils import DummyObject, requires_backends class A__ ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['torch', 'transformers', 'onnx'] def __init__( self: Union[str, Any] , *_SCREAMING_SNAKE_CASE: Any , **_SCREAMING_SNAKE_CASE: int) -> List[Any]: """simple docstring""" requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Union[str, Any] , *_SCREAMING_SNAKE_CASE: List[Any] , **_SCREAMING_SNAKE_CASE: Union[str, Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: int , *_SCREAMING_SNAKE_CASE: Any , **_SCREAMING_SNAKE_CASE: str) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"]) class A__ ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['torch', 'transformers', 'onnx'] def __init__( self: Tuple , *_SCREAMING_SNAKE_CASE: Optional[Any] , **_SCREAMING_SNAKE_CASE: List[str]) -> Optional[int]: """simple docstring""" requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Dict , *_SCREAMING_SNAKE_CASE: Optional[Any] , **_SCREAMING_SNAKE_CASE: int) -> List[Any]: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Optional[Any] , *_SCREAMING_SNAKE_CASE: Dict , **_SCREAMING_SNAKE_CASE: Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"]) class A__ ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['torch', 'transformers', 'onnx'] def __init__( self: int , *_SCREAMING_SNAKE_CASE: List[Any] , **_SCREAMING_SNAKE_CASE: int) -> List[str]: """simple docstring""" requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Dict , *_SCREAMING_SNAKE_CASE: Any , **_SCREAMING_SNAKE_CASE: Any) -> str: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: List[Any] , *_SCREAMING_SNAKE_CASE: List[str] , **_SCREAMING_SNAKE_CASE: int) -> int: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"]) class A__ ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['torch', 'transformers', 'onnx'] def __init__( self: Tuple , *_SCREAMING_SNAKE_CASE: List[str] , **_SCREAMING_SNAKE_CASE: List[str]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: List[str] , *_SCREAMING_SNAKE_CASE: Tuple , **_SCREAMING_SNAKE_CASE: int) -> int: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Optional[int] , *_SCREAMING_SNAKE_CASE: str , **_SCREAMING_SNAKE_CASE: Any) -> int: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"]) class A__ ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['torch', 'transformers', 'onnx'] def __init__( self: Optional[Any] , *_SCREAMING_SNAKE_CASE: Union[str, Any] , **_SCREAMING_SNAKE_CASE: Optional[int]) -> str: """simple docstring""" requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Optional[int] , *_SCREAMING_SNAKE_CASE: List[Any] , **_SCREAMING_SNAKE_CASE: Tuple) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: int , *_SCREAMING_SNAKE_CASE: str , **_SCREAMING_SNAKE_CASE: Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"]) class A__ ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['torch', 'transformers', 'onnx'] def __init__( self: List[Any] , *_SCREAMING_SNAKE_CASE: List[str] , **_SCREAMING_SNAKE_CASE: List[str]) -> int: """simple docstring""" requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Union[str, Any] , *_SCREAMING_SNAKE_CASE: Optional[int] , **_SCREAMING_SNAKE_CASE: Optional[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: str , *_SCREAMING_SNAKE_CASE: Optional[int] , **_SCREAMING_SNAKE_CASE: Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"])
293
0
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers __A : Tuple = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
701
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class __UpperCamelCase : def __init__( self :Union[str, Any] ,_UpperCamelCase :int ,_UpperCamelCase :str=1_3 ,_UpperCamelCase :Tuple=7 ,_UpperCamelCase :Tuple=False ,_UpperCamelCase :Tuple=True ,_UpperCamelCase :Union[str, Any]=False ,_UpperCamelCase :int=True ,_UpperCamelCase :List[str]=3_3 ,_UpperCamelCase :Any=3_2 ,_UpperCamelCase :Any=5 ,_UpperCamelCase :List[str]=4 ,_UpperCamelCase :Tuple=3_7 ,_UpperCamelCase :Optional[Any]="gelu" ,_UpperCamelCase :Any=0.1 ,_UpperCamelCase :List[Any]=0.1 ,_UpperCamelCase :Any=5_1_2 ,_UpperCamelCase :Tuple=1_6 ,_UpperCamelCase :Any=2 ,_UpperCamelCase :Optional[Any]=0.02 ,_UpperCamelCase :List[str]=3 ,_UpperCamelCase :Union[str, Any]=4 ,_UpperCamelCase :Dict=None ,): snake_case_ : Tuple = parent snake_case_ : List[str] = batch_size snake_case_ : List[str] = seq_length snake_case_ : Any = is_training snake_case_ : List[Any] = use_input_mask snake_case_ : int = use_token_type_ids snake_case_ : Optional[int] = use_labels snake_case_ : List[str] = vocab_size snake_case_ : Dict = hidden_size snake_case_ : Optional[int] = num_hidden_layers snake_case_ : Optional[Any] = num_attention_heads snake_case_ : int = intermediate_size snake_case_ : Optional[Any] = hidden_act snake_case_ : int = hidden_dropout_prob snake_case_ : Optional[int] = attention_probs_dropout_prob snake_case_ : Optional[int] = max_position_embeddings snake_case_ : List[str] = type_vocab_size snake_case_ : int = type_sequence_label_size snake_case_ : Dict = initializer_range snake_case_ : Any = num_labels snake_case_ : Any = num_choices snake_case_ : Tuple = scope def a__ ( self :str ): snake_case_ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case_ : str = None if self.use_input_mask: snake_case_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Dict = None snake_case_ : List[str] = None snake_case_ : Tuple = None if self.use_labels: snake_case_ : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) snake_case_ : Union[str, Any] = ids_tensor([self.batch_size] ,self.num_choices ) snake_case_ : Dict = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self :Optional[Any] ): return EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,pad_token_id=1 ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) def a__ ( self :str ,_UpperCamelCase :List[Any] ,_UpperCamelCase :List[str] ,_UpperCamelCase :Any ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :List[Any] ,_UpperCamelCase :Optional[int] ): snake_case_ : Union[str, Any] = EsmModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ : int = model(_UpperCamelCase ,attention_mask=_UpperCamelCase ) snake_case_ : str = model(_UpperCamelCase ) snake_case_ : Optional[int] = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def a__ ( self :Any ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Any ,_UpperCamelCase :Dict ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :Optional[int] ): snake_case_ : str = EsmForMaskedLM(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ : Dict = model(_UpperCamelCase ,attention_mask=_UpperCamelCase ,labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self :Optional[int] ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :List[str] ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :Any ): snake_case_ : List[Any] = self.num_labels snake_case_ : int = EsmForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ : int = model(_UpperCamelCase ,attention_mask=_UpperCamelCase ,labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self :Union[str, Any] ): snake_case_ : Dict = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) : Optional[int] = config_and_inputs snake_case_ : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): lowercase : Optional[int] = False lowercase : List[str] = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) lowercase : int = () lowercase : List[str] = ( { 'feature-extraction': EsmModel, 'fill-mask': EsmForMaskedLM, 'text-classification': EsmForSequenceClassification, 'token-classification': EsmForTokenClassification, 'zero-shot': EsmForSequenceClassification, } if is_torch_available() else {} ) lowercase : str = True def a__ ( self :Any ): snake_case_ : Any = EsmModelTester(self ) snake_case_ : str = ConfigTester(self ,config_class=_UpperCamelCase ,hidden_size=3_7 ) def a__ ( self :Optional[Any] ): self.config_tester.run_common_tests() def a__ ( self :Optional[Any] ): snake_case_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def a__ ( self :Dict ): snake_case_ : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ : int = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def a__ ( self :Dict ): snake_case_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCamelCase ) def a__ ( self :List[str] ): snake_case_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) @slow def a__ ( self :Union[str, Any] ): for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : int = EsmModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def a__ ( self :Tuple ): snake_case_ : Dict = self.model_tester.prepare_config_and_inputs()[0] snake_case_ : Optional[int] = EsmEmbeddings(config=_UpperCamelCase ) snake_case_ : List[Any] = torch.as_tensor([[1_2, 3_1, 1_3, model.padding_idx]] ) snake_case_ : Union[str, Any] = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) snake_case_ : Optional[Any] = create_position_ids_from_input_ids(_UpperCamelCase ,model.padding_idx ) self.assertEqual(position_ids.shape ,expected_positions.shape ) self.assertTrue(torch.all(torch.eq(_UpperCamelCase ,_UpperCamelCase ) ) ) def a__ ( self :List[Any] ): snake_case_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] snake_case_ : List[Any] = EsmEmbeddings(config=_UpperCamelCase ) snake_case_ : Dict = torch.empty(2 ,4 ,3_0 ) snake_case_ : List[Any] = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] snake_case_ : Any = torch.as_tensor([expected_single_positions, expected_single_positions] ) snake_case_ : str = embeddings.create_position_ids_from_inputs_embeds(_UpperCamelCase ) self.assertEqual(position_ids.shape ,expected_positions.shape ) self.assertTrue(torch.all(torch.eq(_UpperCamelCase ,_UpperCamelCase ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def a__ ( self :Optional[Any] ): pass @unittest.skip("""Esm does not support embedding resizing""" ) def a__ ( self :Optional[int] ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def a__ ( self :Optional[int] ): pass @require_torch class __UpperCamelCase ( lowercase__ ): @slow def a__ ( self :Any ): with torch.no_grad(): snake_case_ : Optional[Any] = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() snake_case_ : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) snake_case_ : Dict = model(_UpperCamelCase )[0] snake_case_ : Optional[int] = 3_3 snake_case_ : List[Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape ,_UpperCamelCase ) snake_case_ : Union[str, Any] = torch.tensor( [[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,_UpperCamelCase ,atol=1E-4 ) ) @slow def a__ ( self :List[Any] ): with torch.no_grad(): snake_case_ : List[Any] = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() snake_case_ : str = torch.tensor([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) snake_case_ : Optional[Any] = model(_UpperCamelCase )[0] # compare the actual values for a slice. snake_case_ : List[str] = torch.tensor( [[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,_UpperCamelCase ,atol=1E-4 ) )
267
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = '''deberta-v2''' def __init__( self , lowerCamelCase_=1_2_8_1_0_0 , lowerCamelCase_=1_5_3_6 , lowerCamelCase_=2_4 , lowerCamelCase_=2_4 , lowerCamelCase_=6_1_4_4 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=0 , lowerCamelCase_=0.02 , lowerCamelCase_=1e-7 , lowerCamelCase_=False , lowerCamelCase_=-1 , lowerCamelCase_=0 , lowerCamelCase_=True , lowerCamelCase_=None , lowerCamelCase_=0 , lowerCamelCase_="gelu" , **lowerCamelCase_ , ) -> Optional[int]: super().__init__(**lowerCamelCase_) UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = relative_attention UpperCamelCase = max_relative_positions UpperCamelCase = pad_token_id UpperCamelCase = position_biased_input # Backwards compatibility if type(lowerCamelCase_) == str: UpperCamelCase = [x.strip() for x in pos_att_type.lower().split('''|''')] UpperCamelCase = pos_att_type UpperCamelCase = vocab_size UpperCamelCase = layer_norm_eps UpperCamelCase = kwargs.get('''pooler_hidden_size''' , lowerCamelCase_) UpperCamelCase = pooler_dropout UpperCamelCase = pooler_hidden_act class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @property def UpperCAmelCase__ ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCamelCase = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)]) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)]) @property def UpperCAmelCase__ ( self) -> int: return 1_2 def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = -1 , lowerCamelCase_ = -1 , lowerCamelCase_ = -1 , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = 3 , lowerCamelCase_ = 4_0 , lowerCamelCase_ = 4_0 , lowerCamelCase_ = None , ) -> Mapping[str, Any]: UpperCamelCase = super().generate_dummy_inputs(preprocessor=lowerCamelCase_ , framework=lowerCamelCase_) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
34
'''simple docstring''' from math import pi def _lowerCAmelCase (_lowercase , _lowercase ): """simple docstring""" return 2 * pi * radius * (angle / 3_60) if __name__ == "__main__": print(arc_length(90, 10))
331
0
'''simple docstring''' import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def __UpperCAmelCase ( __magic_name__ )-> Tuple: """simple docstring""" snake_case_ : Union[str, Any] = args.pruning_method snake_case_ : Union[str, Any] = args.threshold snake_case_ : str = args.model_name_or_path.rstrip("/" ) snake_case_ : int = args.target_model_path print(F'''Load fine-pruned model from {model_name_or_path}''' ) snake_case_ : Optional[int] = torch.load(os.path.join(__magic_name__ ,"pytorch_model.bin" ) ) snake_case_ : Tuple = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: snake_case_ : List[Any] = tensor print(F'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: snake_case_ : Optional[Any] = tensor print(F'''Copied layer {name}''' ) elif "bias" in name: snake_case_ : Union[str, Any] = tensor print(F'''Copied layer {name}''' ) else: if pruning_method == "magnitude": snake_case_ : int = MagnitudeBinarizer.apply(inputs=__magic_name__ ,threshold=__magic_name__ ) snake_case_ : int = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue snake_case_ : Any = name[:-6] snake_case_ : Any = model[F'''{prefix_}mask_scores'''] snake_case_ : Union[str, Any] = TopKBinarizer.apply(__magic_name__ ,__magic_name__ ) snake_case_ : List[Any] = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue snake_case_ : Optional[Any] = name[:-6] snake_case_ : Any = model[F'''{prefix_}mask_scores'''] snake_case_ : Tuple = ThresholdBinarizer.apply(__magic_name__ ,__magic_name__ ,__magic_name__ ) snake_case_ : List[str] = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue snake_case_ : List[str] = name[:-6] snake_case_ : List[Any] = model[F'''{prefix_}mask_scores'''] snake_case_ : Dict = -0.1, 1.1 snake_case_ : Optional[Any] = torch.sigmoid(__magic_name__ ) snake_case_ : Union[str, Any] = s * (r - l) + l snake_case_ : Optional[int] = s_bar.clamp(min=0.0 ,max=1.0 ) snake_case_ : Dict = tensor * mask print(F'''Pruned layer {name}''' ) else: raise ValueError("Unknown pruning method" ) if target_model_path is None: snake_case_ : int = os.path.join( os.path.dirname(__magic_name__ ) ,F'''bertarized_{os.path.basename(__magic_name__ )}''' ) if not os.path.isdir(__magic_name__ ): shutil.copytree(__magic_name__ ,__magic_name__ ) print(F'''\nCreated folder {target_model_path}''' ) torch.save(__magic_name__ ,os.path.join(__magic_name__ ,"pytorch_model.bin" ) ) print("\nPruned model saved! See you later!" ) if __name__ == "__main__": __lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '''--pruning_method''', choices=['''l0''', '''magnitude''', '''topK''', '''sigmoied_threshold'''], type=str, required=True, help=( '''Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,''' ''' sigmoied_threshold = Soft movement pruning)''' ), ) parser.add_argument( '''--threshold''', type=float, required=False, help=( '''For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.''' '''For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.''' '''Not needed for `l0`''' ), ) parser.add_argument( '''--model_name_or_path''', type=str, required=True, help='''Folder containing the model that was previously fine-pruned''', ) parser.add_argument( '''--target_model_path''', default=None, type=str, required=False, help='''Folder containing the model that was previously fine-pruned''', ) __lowerCamelCase : Dict = parser.parse_args() main(args)
721
'''simple docstring''' import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''): raise Exception('''requires fairseq >= 1.0.0a''') logging.set_verbosity_info() __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Union[str, Any] = '''Hello world! cécé herlolip''' def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : str = FairseqRobertaModel.from_pretrained(__magic_name__ ) roberta.eval() # disable dropout snake_case_ : Dict = roberta.model.encoder.sentence_encoder snake_case_ : List[str] = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings ,hidden_size=roberta.cfg.model.encoder_embed_dim ,num_hidden_layers=roberta.cfg.model.encoder_layers ,num_attention_heads=roberta.cfg.model.encoder_attention_heads ,intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=514 ,type_vocab_size=1 ,layer_norm_eps=1E-5 ,) if classification_head: snake_case_ : List[str] = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our RoBERTa config:" ,__magic_name__ ) snake_case_ : List[str] = XLMRobertaXLForSequenceClassification(__magic_name__ ) if classification_head else XLMRobertaXLForMaskedLM(__magic_name__ ) model.eval() # Now let's copy all the weights. # Embeddings snake_case_ : List[Any] = roberta_sent_encoder.embed_tokens.weight snake_case_ : int = roberta_sent_encoder.embed_positions.weight snake_case_ : Union[str, Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. snake_case_ : Union[str, Any] = roberta_sent_encoder.layer_norm.weight snake_case_ : str = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer snake_case_ : BertLayer = model.roberta.encoder.layer[i] snake_case_ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] snake_case_ : RobertaAttention = layer.attention snake_case_ : Dict = roberta_layer.self_attn_layer_norm.weight snake_case_ : Dict = roberta_layer.self_attn_layer_norm.bias # self attention snake_case_ : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) snake_case_ : Dict = roberta_layer.self_attn.q_proj.weight snake_case_ : Any = roberta_layer.self_attn.q_proj.bias snake_case_ : Optional[Any] = roberta_layer.self_attn.k_proj.weight snake_case_ : Optional[Any] = roberta_layer.self_attn.k_proj.bias snake_case_ : Optional[int] = roberta_layer.self_attn.v_proj.weight snake_case_ : Any = roberta_layer.self_attn.v_proj.bias # self-attention output snake_case_ : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape snake_case_ : List[str] = roberta_layer.self_attn.out_proj.weight snake_case_ : Optional[int] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm snake_case_ : int = roberta_layer.final_layer_norm.weight snake_case_ : Union[str, Any] = roberta_layer.final_layer_norm.bias # intermediate snake_case_ : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape snake_case_ : List[str] = roberta_layer.fca.weight snake_case_ : List[Any] = roberta_layer.fca.bias # output snake_case_ : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape snake_case_ : Any = roberta_layer.fca.weight snake_case_ : Any = roberta_layer.fca.bias # end of layer if classification_head: snake_case_ : int = roberta.model.classification_heads["mnli"].dense.weight snake_case_ : Union[str, Any] = roberta.model.classification_heads["mnli"].dense.bias snake_case_ : Tuple = roberta.model.classification_heads["mnli"].out_proj.weight snake_case_ : str = roberta.model.classification_heads["mnli"].out_proj.bias else: # LM Head snake_case_ : Optional[Any] = roberta.model.encoder.lm_head.dense.weight snake_case_ : int = roberta.model.encoder.lm_head.dense.bias snake_case_ : Optional[Any] = roberta.model.encoder.lm_head.layer_norm.weight snake_case_ : Optional[int] = roberta.model.encoder.lm_head.layer_norm.bias snake_case_ : int = roberta.model.encoder.lm_head.weight snake_case_ : List[str] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. snake_case_ : torch.Tensor = roberta.encode(__magic_name__ ).unsqueeze(0 ) # batch of size 1 snake_case_ : Union[str, Any] = model(__magic_name__ )[0] if classification_head: snake_case_ : Optional[Any] = roberta.model.classification_heads["mnli"](roberta.extract_features(__magic_name__ ) ) else: snake_case_ : List[str] = roberta.model(__magic_name__ )[0] print(our_output.shape ,their_output.shape ) snake_case_ : str = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 snake_case_ : Any = torch.allclose(__magic_name__ ,__magic_name__ ,atol=1E-3 ) print("Do both models output the same tensors?" ,"🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) pathlib.Path(__magic_name__ ).mkdir(parents=__magic_name__ ,exist_ok=__magic_name__ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) __lowerCamelCase : Tuple = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
656
0
"""simple docstring""" import re import string import numpy as np import datasets lowercase_ = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" lowercase_ = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" lowercase_ = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def __UpperCAmelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , reference_urls=[] , ) def __UpperCAmelCase ( self , _a , _a , _a=None , _a=False , _a=False , _a=False , ): if regexes_to_ignore is not None: for s in regexes_to_ignore: __a = np.array([re.sub(_a , '''''' , _a ) for x in predictions] ) __a = np.array([re.sub(_a , '''''' , _a ) for x in references] ) else: __a = np.asarray(_a ) __a = np.asarray(_a ) if ignore_case: __a = np.char.lower(_a ) __a = np.char.lower(_a ) if ignore_punctuation: __a = string.punctuation.maketrans('''''' , '''''' , string.punctuation ) __a = np.char.translate(_a , table=_a ) __a = np.char.translate(_a , table=_a ) if ignore_numbers: __a = string.digits.maketrans('''''' , '''''' , string.digits ) __a = np.char.translate(_a , table=_a ) __a = np.char.translate(_a , table=_a ) __a = predictions == references return {"exact_match": np.mean(_a ) * 100}
695
"""simple docstring""" import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str ) -> List[Any]: # Initialise PyTorch model __a = RemBertConfig.from_json_file(lowerCAmelCase__ ) print('''Building PyTorch model from configuration: {}'''.format(str(lowerCAmelCase__ ) ) ) __a = RemBertModel(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(lowerCAmelCase__ ) ) torch.save(model.state_dict() , lowerCAmelCase__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase_ = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
695
1
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class lowerCAmelCase ( datasets.BeamBasedBuilder ): def lowercase ( self ): return datasets.DatasetInfo( features=datasets.Features({'content': datasets.Value('string' )} ) , supervised_keys=_SCREAMING_SNAKE_CASE , ) def lowercase ( self , snake_case__ , snake_case__ ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_dummy_examples()} )] def lowercase ( self , snake_case__ , snake_case__ ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_SCREAMING_SNAKE_CASE ) class lowerCAmelCase ( datasets.BeamBasedBuilder ): def lowercase ( self ): return datasets.DatasetInfo( features=datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) , supervised_keys=_SCREAMING_SNAKE_CASE , ) def lowercase ( self , snake_case__ , snake_case__ ): return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_nested_examples()} ) ] def lowercase ( self , snake_case__ , snake_case__ ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( ) -> Dict: """simple docstring""" return [(i, {"content": content}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] def __UpperCamelCase ( ) -> Dict: """simple docstring""" return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] class lowerCAmelCase ( lowerCAmelCase__ ): @require_beam def lowercase ( self ): lowerCAmelCase : int = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCAmelCase : Optional[Any] = DummyBeamDataset(cache_dir=_SCREAMING_SNAKE_CASE , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_SCREAMING_SNAKE_CASE , builder.name , 'default' , '0.0.0' , f"{builder.name}-train.arrow" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) lowerCAmelCase : str = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _SCREAMING_SNAKE_CASE ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _SCREAMING_SNAKE_CASE ) self.assertDictEqual(dset['train'][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def lowercase ( self ): import apache_beam as beam lowerCAmelCase : Any = beam.io.parquetio.WriteToParquet lowerCAmelCase : int = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCAmelCase : Any = DummyBeamDataset(cache_dir=_SCREAMING_SNAKE_CASE , beam_runner='DirectRunner' ) with patch('apache_beam.io.parquetio.WriteToParquet' ) as write_parquet_mock: lowerCAmelCase : int = partial(_SCREAMING_SNAKE_CASE , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( _SCREAMING_SNAKE_CASE , builder.name , 'default' , '0.0.0' , f"{builder.name}-train-00000-of-00002.arrow" ) ) ) self.assertTrue( os.path.exists( os.path.join( _SCREAMING_SNAKE_CASE , builder.name , 'default' , '0.0.0' , f"{builder.name}-train-00000-of-00002.arrow" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) lowerCAmelCase : Tuple = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _SCREAMING_SNAKE_CASE ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _SCREAMING_SNAKE_CASE ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['train']['content'] ) , sorted(['foo', 'bar', 'foobar'] ) ) self.assertTrue( os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def lowercase ( self ): with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCAmelCase : str = DummyBeamDataset(cache_dir=_SCREAMING_SNAKE_CASE ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def lowercase ( self ): lowerCAmelCase : List[str] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCAmelCase : Optional[int] = NestedBeamDataset(cache_dir=_SCREAMING_SNAKE_CASE , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_SCREAMING_SNAKE_CASE , builder.name , 'default' , '0.0.0' , f"{builder.name}-train.arrow" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) ) lowerCAmelCase : List[str] = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _SCREAMING_SNAKE_CASE ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _SCREAMING_SNAKE_CASE ) self.assertDictEqual(dset['train'][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset
709
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Tuple = GPTSwaTokenizer _lowerCamelCase : str = False _lowerCamelCase : Dict = True _lowerCamelCase : Optional[Any] = False def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : Tuple = GPTSwaTokenizer(snake_case__ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self , snake_case__ ): lowerCAmelCase : List[Any] = 'This is a test' lowerCAmelCase : List[Any] = 'This is a test' return input_text, output_text def lowercase ( self ): lowerCAmelCase : Tuple = '<s>' lowerCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(snake_case__ ) , 2000 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def lowercase ( self ): lowerCAmelCase : List[Any] = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [465, 287, 265, 631, 842] ) lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(snake_case__ ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def lowercase ( self ): lowerCAmelCase : str = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[int] = ['This is a test', 'I was born in 92000, and this is falsé.'] lowerCAmelCase : Tuple = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(snake_case__ , snake_case__ ): self.assertListEqual(tokenizer.encode_fast(snake_case__ ) , snake_case__ ) # Test that decode_fast returns the input text for text, token_ids in zip(snake_case__ , snake_case__ ): self.assertEqual(tokenizer.decode_fast(snake_case__ ) , snake_case__ ) @slow def lowercase ( self ): lowerCAmelCase : str = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=snake_case__ , )
646
0
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowerCamelCase_ = [3, 3, 3, 3] lowerCamelCase_ = [5, 5, 5, 5] elif "fl4" in model_name: lowerCamelCase_ = [4, 4, 4, 4] lowerCamelCase_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowerCamelCase_ = [3, 3, 3, 3] if "lrf" in model_name: lowerCamelCase_ = [3, 3, 3, 3] else: lowerCamelCase_ = [2, 2, 2, 2] if "tiny" in model_name: lowerCamelCase_ = 96 elif "small" in model_name: lowerCamelCase_ = 96 elif "base" in model_name: lowerCamelCase_ = 128 elif "large" in model_name: lowerCamelCase_ = 192 elif "xlarge" in model_name: lowerCamelCase_ = 256 elif "huge" in model_name: lowerCamelCase_ = 352 # set label information lowerCamelCase_ = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowerCamelCase_ = '''imagenet-22k-id2label.json''' else: lowerCamelCase_ = '''imagenet-1k-id2label.json''' lowerCamelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ ,lowerCAmelCase__ ,repo_type='''dataset''' ) ,'''r''' ) ) lowerCamelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ = {v: k for k, v in idalabel.items()} lowerCamelCase_ = FocalNetConfig( embed_dim=lowerCAmelCase__ ,depths=lowerCAmelCase__ ,focal_levels=lowerCAmelCase__ ,focal_windows=lowerCAmelCase__ ,use_conv_embed=lowerCAmelCase__ ,idalabel=lowerCAmelCase__ ,labelaid=lowerCAmelCase__ ,use_post_layernorm=lowerCAmelCase__ ,use_layerscale=lowerCAmelCase__ ,) return config def lowercase ( lowerCAmelCase__ ): if "patch_embed.proj" in name: lowerCamelCase_ = name.replace('''patch_embed.proj''' ,'''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowerCamelCase_ = name.replace('''patch_embed.norm''' ,'''embeddings.norm''' ) if "layers" in name: lowerCamelCase_ = '''encoder.''' + name if "encoder.layers" in name: lowerCamelCase_ = name.replace('''encoder.layers''' ,'''encoder.stages''' ) if "downsample.proj" in name: lowerCamelCase_ = name.replace('''downsample.proj''' ,'''downsample.projection''' ) if "blocks" in name: lowerCamelCase_ = name.replace('''blocks''' ,'''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowerCamelCase_ = name.replace('''modulation.f''' ,'''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowerCamelCase_ = name.replace('''modulation.h''' ,'''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowerCamelCase_ = name.replace('''modulation.proj''' ,'''modulation.projection_out''' ) if name == "norm.weight": lowerCamelCase_ = '''layernorm.weight''' if name == "norm.bias": lowerCamelCase_ = '''layernorm.bias''' if "head" in name: lowerCamelCase_ = name.replace('''head''' ,'''classifier''' ) else: lowerCamelCase_ = '''focalnet.''' + name return name def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ): # fmt: off lowerCamelCase_ = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowerCamelCase_ = model_name_to_url[model_name] print('''Checkpoint URL: ''' ,lowerCAmelCase__ ) lowerCamelCase_ = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ,map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowerCamelCase_ = state_dict.pop(lowerCAmelCase__ ) lowerCamelCase_ = val lowerCamelCase_ = get_focalnet_config(lowerCAmelCase__ ) lowerCamelCase_ = FocalNetForImageClassification(lowerCAmelCase__ ) model.eval() # load state dict model.load_state_dict(lowerCAmelCase__ ) # verify conversion lowerCamelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ = BitImageProcessor( do_resize=lowerCAmelCase__ ,size={'''shortest_edge''': 256} ,resample=PILImageResampling.BILINEAR ,do_center_crop=lowerCAmelCase__ ,crop_size=224 ,do_normalize=lowerCAmelCase__ ,image_mean=lowerCAmelCase__ ,image_std=lowerCAmelCase__ ,) lowerCamelCase_ = Image.open(requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ).raw ) lowerCamelCase_ = processor(images=lowerCAmelCase__ ,return_tensors='''pt''' ) lowerCamelCase_ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] ,std=[0.229, 0.224, 0.225] ), ] ) lowerCamelCase_ = image_transforms(lowerCAmelCase__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values ,lowerCAmelCase__ ,atol=1E-4 ) lowerCamelCase_ = model(**lowerCAmelCase__ ) lowerCamelCase_ = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' ,model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' ,outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowerCamelCase_ = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": lowerCamelCase_ = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": lowerCamelCase_ = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": lowerCamelCase_ = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": lowerCamelCase_ = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": lowerCamelCase_ = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] ,lowerCAmelCase__ ,atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(f"Pushing model and processor of {model_name} to the hub..." ) model.push_to_hub(f"{model_name}" ) processor.push_to_hub(f"{model_name}" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) A_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
29
import sys _a : Any = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def a_ ( __magic_name__ ) -> int: """simple docstring""" snake_case : Dict = 1 for digit in s: product *= int(__magic_name__ ) return product def a_ ( __magic_name__ = N ) -> int: """simple docstring""" snake_case : str = -sys.maxsize - 1 snake_case : Optional[int] = n[:13] snake_case : Tuple = 13 while cur_index < len(__magic_name__ ) - 13: if int(n[cur_index] ) >= int(substr[0] ): snake_case : str = substr[1:] + n[cur_index] cur_index += 1 else: snake_case : List[Any] = max(__magic_name__ , str_eval(__magic_name__ ) ) snake_case : Union[str, Any] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f"{solution() = }")
598
0
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _a = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = field(default=lowerCamelCase , metadata={'help': 'Whether to use SortishSampler or not.'} ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) lowercase__ = field( default=lowerCamelCase , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) lowercase__ = field( default=lowerCamelCase , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) lowercase__ = field( default=lowerCamelCase , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(__a , __a): _UpperCamelCase = v.to_dict() return d
78
"""simple docstring""" import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# _a = [ # (stable-diffusion, HF Diffusers) ("""time_embed.0.weight""", """time_embedding.linear_1.weight"""), ("""time_embed.0.bias""", """time_embedding.linear_1.bias"""), ("""time_embed.2.weight""", """time_embedding.linear_2.weight"""), ("""time_embed.2.bias""", """time_embedding.linear_2.bias"""), ("""input_blocks.0.0.weight""", """conv_in.weight"""), ("""input_blocks.0.0.bias""", """conv_in.bias"""), ("""out.0.weight""", """conv_norm_out.weight"""), ("""out.0.bias""", """conv_norm_out.bias"""), ("""out.2.weight""", """conv_out.weight"""), ("""out.2.bias""", """conv_out.bias"""), ] _a = [ # (stable-diffusion, HF Diffusers) ("""in_layers.0""", """norm1"""), ("""in_layers.2""", """conv1"""), ("""out_layers.0""", """norm2"""), ("""out_layers.3""", """conv2"""), ("""emb_layers.1""", """time_emb_proj"""), ("""skip_connection""", """conv_shortcut"""), ] _a = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks _a = F"""down_blocks.{i}.resnets.{j}.""" _a = F"""input_blocks.{3*i + j + 1}.0.""" unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 _a = F"""down_blocks.{i}.attentions.{j}.""" _a = F"""input_blocks.{3*i + j + 1}.1.""" unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks _a = F"""up_blocks.{i}.resnets.{j}.""" _a = F"""output_blocks.{3*i + j}.0.""" unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 _a = F"""up_blocks.{i}.attentions.{j}.""" _a = F"""output_blocks.{3*i + j}.1.""" unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 _a = F"""down_blocks.{i}.downsamplers.0.conv.""" _a = F"""input_blocks.{3*(i+1)}.0.op.""" unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 _a = F"""up_blocks.{i}.upsamplers.0.""" _a = F"""output_blocks.{3*i + 2}.{1 if i == 0 else 2}.""" unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) _a = """mid_block.attentions.0.""" _a = """middle_block.1.""" unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): _a = F"""mid_block.resnets.{j}.""" _a = F"""middle_block.{2*j}.""" unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: _UpperCamelCase = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: _UpperCamelCase = v.replace(__snake_case, __snake_case ) _UpperCamelCase = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: _UpperCamelCase = v.replace(__snake_case, __snake_case ) _UpperCamelCase = v _UpperCamelCase = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# _a = [ # (stable-diffusion, HF Diffusers) ("""nin_shortcut""", """conv_shortcut"""), ("""norm_out""", """conv_norm_out"""), ("""mid.attn_1.""", """mid_block.attentions.0."""), ] for i in range(4): # down_blocks have two resnets for j in range(2): _a = F"""encoder.down_blocks.{i}.resnets.{j}.""" _a = F"""encoder.down.{i}.block.{j}.""" vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: _a = F"""down_blocks.{i}.downsamplers.0.""" _a = F"""down.{i}.downsample.""" vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) _a = F"""up_blocks.{i}.upsamplers.0.""" _a = F"""up.{3-i}.upsample.""" vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): _a = F"""decoder.up_blocks.{i}.resnets.{j}.""" _a = F"""decoder.up.{3-i}.block.{j}.""" vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): _a = F"""mid_block.resnets.{i}.""" _a = F"""mid.block_{i+1}.""" vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) _a = [ # (stable-diffusion, HF Diffusers) ("""norm.""", """group_norm."""), ("""q.""", """query."""), ("""k.""", """key."""), ("""v.""", """value."""), ("""proj_out.""", """proj_attn."""), ] def lowerCamelCase__ ( __snake_case ) -> List[str]: """simple docstring""" return w.reshape(*w.shape, 1, 1 ) def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: _UpperCamelCase = v.replace(__snake_case, __snake_case ) _UpperCamelCase = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: _UpperCamelCase = v.replace(__snake_case, __snake_case ) _UpperCamelCase = v _UpperCamelCase = {v: vae_state_dict[k] for k, v in mapping.items()} _UpperCamelCase = ['''q''', '''k''', '''v''', '''proj_out'''] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if F'''mid.attn_1.{weight_name}.weight''' in k: print(F'''Reshaping {k} for SD format''' ) _UpperCamelCase = reshape_weight_for_sd(__snake_case ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# _a = [ # (stable-diffusion, HF Diffusers) ("""resblocks.""", """text_model.encoder.layers."""), ("""ln_1""", """layer_norm1"""), ("""ln_2""", """layer_norm2"""), (""".c_fc.""", """.fc1."""), (""".c_proj.""", """.fc2."""), (""".attn""", """.self_attn"""), ("""ln_final.""", """transformer.text_model.final_layer_norm."""), ("""token_embedding.weight""", """transformer.text_model.embeddings.token_embedding.weight"""), ("""positional_embedding""", """transformer.text_model.embeddings.position_embedding.weight"""), ] _a = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} _a = re.compile("""|""".join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp _a = {"""q""": 0, """k""": 1, """v""": 2} def lowerCamelCase__ ( __snake_case ) -> Any: """simple docstring""" _UpperCamelCase = {} _UpperCamelCase = {} _UpperCamelCase = {} for k, v in text_enc_dict.items(): if ( k.endswith('''.self_attn.q_proj.weight''' ) or k.endswith('''.self_attn.k_proj.weight''' ) or k.endswith('''.self_attn.v_proj.weight''' ) ): _UpperCamelCase = k[: -len('''.q_proj.weight''' )] _UpperCamelCase = k[-len('''q_proj.weight''' )] if k_pre not in capture_qkv_weight: _UpperCamelCase = [None, None, None] _UpperCamelCase = v continue if ( k.endswith('''.self_attn.q_proj.bias''' ) or k.endswith('''.self_attn.k_proj.bias''' ) or k.endswith('''.self_attn.v_proj.bias''' ) ): _UpperCamelCase = k[: -len('''.q_proj.bias''' )] _UpperCamelCase = k[-len('''q_proj.bias''' )] if k_pre not in capture_qkv_bias: _UpperCamelCase = [None, None, None] _UpperCamelCase = v continue _UpperCamelCase = textenc_pattern.sub(lambda __snake_case : protected[re.escape(m.group(0 ) )], __snake_case ) _UpperCamelCase = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) _UpperCamelCase = textenc_pattern.sub(lambda __snake_case : protected[re.escape(m.group(0 ) )], __snake_case ) _UpperCamelCase = torch.cat(__snake_case ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) _UpperCamelCase = textenc_pattern.sub(lambda __snake_case : protected[re.escape(m.group(0 ) )], __snake_case ) _UpperCamelCase = torch.cat(__snake_case ) return new_state_dict def lowerCamelCase__ ( __snake_case ) -> Tuple: """simple docstring""" return text_enc_dict if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--use_safetensors""", action="""store_true""", help="""Save weights use safetensors, default is ckpt.""" ) _a = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors _a = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.safetensors""") _a = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.safetensors""") _a = osp.join(args.model_path, """text_encoder""", """model.safetensors""") # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): _a = load_file(unet_path, device="""cpu""") else: _a = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.bin""") _a = torch.load(unet_path, map_location="""cpu""") if osp.exists(vae_path): _a = load_file(vae_path, device="""cpu""") else: _a = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.bin""") _a = torch.load(vae_path, map_location="""cpu""") if osp.exists(text_enc_path): _a = load_file(text_enc_path, device="""cpu""") else: _a = osp.join(args.model_path, """text_encoder""", """pytorch_model.bin""") _a = torch.load(text_enc_path, map_location="""cpu""") # Convert the UNet model _a = convert_unet_state_dict(unet_state_dict) _a = {"""model.diffusion_model.""" + k: v for k, v in unet_state_dict.items()} # Convert the VAE model _a = convert_vae_state_dict(vae_state_dict) _a = {"""first_stage_model.""" + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper _a = """text_model.encoder.layers.22.layer_norm2.bias""" in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm _a = {"""transformer.""" + k: v for k, v in text_enc_dict.items()} _a = convert_text_enc_state_dict_vaa(text_enc_dict) _a = {"""cond_stage_model.model.""" + k: v for k, v in text_enc_dict.items()} else: _a = convert_text_enc_state_dict(text_enc_dict) _a = {"""cond_stage_model.transformer.""" + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint _a = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: _a = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: _a = {"""state_dict""": state_dict} torch.save(state_dict, args.checkpoint_path)
78
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = {'''vocab_file''': '''sentencepiece.bpe.model'''} __a = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, } __a = { '''moussaKam/mbarthez''': 10_24, '''moussaKam/barthez''': 10_24, '''moussaKam/barthez-orangesum-title''': 10_24, } __a = '''▁''' class __SCREAMING_SNAKE_CASE ( A__ ): A : Optional[int] = VOCAB_FILES_NAMES A : List[str] = PRETRAINED_VOCAB_FILES_MAP A : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : str = ['input_ids', 'attention_mask'] def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__="<mask>" , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): # Mask token behave like a normal word, i.e. include the space before it lowercase : Any = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token lowercase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) lowercase : Optional[Any] = vocab_file lowercase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE__ ) ) lowercase : Union[str, Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} lowercase : Optional[int] = len(self.sp_model ) - 1 lowercase : int = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase : Union[str, Any] = [self.cls_token_id] lowercase : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): lowercase : Tuple = [self.sep_token_id] lowercase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __lowerCamelCase ( self ): return len(self.sp_model ) def __lowerCamelCase ( self ): lowercase : int = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase : List[str] = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ ) return spm_id if spm_id else self.unk_token_id def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : Tuple = [] lowercase : Optional[Any] = '''''' lowercase : Optional[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) + token lowercase : Optional[Any] = True lowercase : str = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) return out_string.strip() def __getstate__( self ): lowercase : Optional[int] = self.__dict__.copy() lowercase : str = None return state def __setstate__( self , SCREAMING_SNAKE_CASE__ ): lowercase : Optional[int] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase : List[str] = {} lowercase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase : Tuple = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , '''wb''' ) as fi: lowercase : int = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
319
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @require_torch def __lowerCamelCase ( self ): lowercase : Optional[Any] = pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''' ) lowercase : Any = load_dataset('''ashraq/esc50''' ) lowercase : Union[str, Any] = dataset['''train''']['''audio'''][-1]['''array'''] lowercase : Optional[int] = audio_classifier(SCREAMING_SNAKE_CASE__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{'''score''': 0.501, '''label''': '''Sound of a dog'''}, {'''score''': 0.499, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''' ) def __lowerCamelCase ( self ): pass @slow @require_torch def __lowerCamelCase ( self ): lowercase : List[str] = pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog lowercase : List[str] = load_dataset('''ashraq/esc50''' ) lowercase : Dict = dataset['''train''']['''audio'''][-1]['''array'''] lowercase : Dict = audio_classifier(SCREAMING_SNAKE_CASE__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [ {'''score''': 0.999, '''label''': '''Sound of a dog'''}, {'''score''': 0.001, '''label''': '''Sound of vaccum cleaner'''}, ] , ) lowercase : Tuple = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [ [ {'''score''': 0.999, '''label''': '''Sound of a dog'''}, {'''score''': 0.001, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) lowercase : Dict = audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [ [ {'''score''': 0.999, '''label''': '''Sound of a dog'''}, {'''score''': 0.001, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''' ) def __lowerCamelCase ( self ): pass
319
1
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class __A ( a ): __A = """MCTCTFeatureExtractor""" __A = """AutoTokenizer""" def __init__( self , UpperCAmelCase_ , UpperCAmelCase_ ): super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase =self.feature_extractor lowerCamelCase =False def __call__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*UpperCAmelCase_ , **UpperCAmelCase_ ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) lowerCamelCase =kwargs.pop("""raw_speech""" ) else: lowerCamelCase =kwargs.pop("""audio""" , UpperCAmelCase_ ) lowerCamelCase =kwargs.pop("""sampling_rate""" , UpperCAmelCase_ ) lowerCamelCase =kwargs.pop("""text""" , UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 0: lowerCamelCase =args[0] lowerCamelCase =args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: lowerCamelCase =self.feature_extractor(UpperCAmelCase_ , *UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , **UpperCAmelCase_ ) if text is not None: lowerCamelCase =self.tokenizer(UpperCAmelCase_ , **UpperCAmelCase_ ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase =encodings["""input_ids"""] return inputs def _snake_case ( self , *UpperCAmelCase_ , **UpperCAmelCase_ ): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _snake_case ( self , *UpperCAmelCase_ , **UpperCAmelCase_ ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCamelCase =kwargs.pop("""input_features""" , UpperCAmelCase_ ) lowerCamelCase =kwargs.pop("""labels""" , UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 0: lowerCamelCase =args[0] lowerCamelCase =args[1:] if input_features is not None: lowerCamelCase =self.feature_extractor.pad(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) if labels is not None: lowerCamelCase =self.tokenizer.pad(UpperCAmelCase_ , **UpperCAmelCase_ ) if labels is None: return input_features elif input_features is None: return labels else: lowerCamelCase =labels["""input_ids"""] return input_features def _snake_case ( self , *UpperCAmelCase_ , **UpperCAmelCase_ ): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @contextmanager def _snake_case ( self ): warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) lowerCamelCase =True lowerCamelCase =self.tokenizer yield lowerCamelCase =self.feature_extractor lowerCamelCase =False
269
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore UpperCAmelCase__ : List[Any] =list(good_file_paths()) assert filepaths, "good_file_paths() failed!" UpperCAmelCase__ : Dict =[file for file in filepaths if file != file.lower()] if upper_files: print(F"{len(upper_files)} files contain uppercase characters:") print('''\n'''.join(upper_files) + '''\n''') UpperCAmelCase__ : Dict =[file for file in filepaths if ''' ''' in file] if space_files: print(F"{len(space_files)} files contain space characters:") print('''\n'''.join(space_files) + '''\n''') UpperCAmelCase__ : Dict =[file for file in filepaths if '''-''' in file] if hyphen_files: print(F"{len(hyphen_files)} files contain hyphen characters:") print('''\n'''.join(hyphen_files) + '''\n''') UpperCAmelCase__ : Optional[int] =[file for file in filepaths if os.sep not in file] if nodir_files: print(F"{len(nodir_files)} files are not in a directory:") print('''\n'''.join(nodir_files) + '''\n''') UpperCAmelCase__ : str =len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
269
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase_ : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase_ : Tuple = { 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class lowerCamelCase_ ( __A , __A ): _lowerCAmelCase : Tuple = 'swin' _lowerCAmelCase : str = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Union[str, Any] , lowerCAmelCase__ : Tuple=2_24 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Optional[Any]=96 , lowerCAmelCase__ : Union[str, Any]=[2, 2, 6, 2] , lowerCAmelCase__ : Tuple=[3, 6, 12, 24] , lowerCAmelCase__ : Union[str, Any]=7 , lowerCAmelCase__ : List[str]=4.0 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Union[str, Any]=0.0 , lowerCAmelCase__ : Optional[int]=0.0 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : Any=0.02 , lowerCAmelCase__ : str=1e-5 , lowerCAmelCase__ : Any=32 , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Dict , ): """simple docstring""" super().__init__(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : Any = patch_size SCREAMING_SNAKE_CASE : Optional[Any] = num_channels SCREAMING_SNAKE_CASE : Any = embed_dim SCREAMING_SNAKE_CASE : List[str] = depths SCREAMING_SNAKE_CASE : Union[str, Any] = len(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = num_heads SCREAMING_SNAKE_CASE : Optional[int] = window_size SCREAMING_SNAKE_CASE : List[Any] = mlp_ratio SCREAMING_SNAKE_CASE : int = qkv_bias SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = drop_path_rate SCREAMING_SNAKE_CASE : int = hidden_act SCREAMING_SNAKE_CASE : int = use_absolute_embeddings SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Tuple = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE : int = int(embed_dim * 2 ** (len(lowerCAmelCase__ ) - 1) ) SCREAMING_SNAKE_CASE : Union[str, Any] = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(lowerCAmelCase__ ) + 1 )] SCREAMING_SNAKE_CASE : Any = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names ) class lowerCamelCase_ ( __A ): _lowerCAmelCase : Optional[Any] = version.parse('1.11' ) @property def __lowercase ( self : Optional[Any] ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowercase ( self : Optional[int] ): """simple docstring""" return 1e-4
527
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ort.SessionOptions() SCREAMING_SNAKE_CASE : Union[str, Any] = False return options def __UpperCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : int = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Optional[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Tuple = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Optional[int] = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=10 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Union[str, Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) SCREAMING_SNAKE_CASE : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=a , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : List[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Dict = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=20 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : Optional[int] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
25
0
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def __magic_name__ ( lowercase ) -> Optional[int]: """simple docstring""" lowercase_ : int = SwinConfig(image_size=192 ) if "base" in model_name: lowercase_ : Dict = 6 lowercase_ : int = 128 lowercase_ : Tuple = (2, 2, 18, 2) lowercase_ : Tuple = (4, 8, 16, 32) elif "large" in model_name: lowercase_ : Optional[Any] = 12 lowercase_ : List[Any] = 192 lowercase_ : Optional[int] = (2, 2, 18, 2) lowercase_ : str = (6, 12, 24, 48) else: raise ValueError("""Model not supported, only supports base and large variants""" ) lowercase_ : int = window_size lowercase_ : str = embed_dim lowercase_ : Union[str, Any] = depths lowercase_ : List[str] = num_heads return config def __magic_name__ ( lowercase ) -> Tuple: """simple docstring""" if "encoder.mask_token" in name: lowercase_ : str = name.replace("""encoder.mask_token""" , """embeddings.mask_token""" ) if "encoder.patch_embed.proj" in name: lowercase_ : List[Any] = name.replace("""encoder.patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "encoder.patch_embed.norm" in name: lowercase_ : Tuple = name.replace("""encoder.patch_embed.norm""" , """embeddings.norm""" ) if "attn.proj" in name: lowercase_ : Optional[int] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowercase_ : List[str] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase_ : Optional[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase_ : Any = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase_ : int = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase_ : Any = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": lowercase_ : Optional[int] = """layernorm.weight""" if name == "encoder.norm.bias": lowercase_ : str = """layernorm.bias""" if "decoder" in name: pass else: lowercase_ : Optional[int] = """swin.""" + name return name def __magic_name__ ( lowercase , lowercase ) -> Union[str, Any]: """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase_ : Tuple = orig_state_dict.pop(lowercase ) if "attn_mask" in key: pass elif "qkv" in key: lowercase_ : Union[str, Any] = key.split(""".""" ) lowercase_ : Any = int(key_split[2] ) lowercase_ : Optional[Any] = int(key_split[4] ) lowercase_ : Union[str, Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase_ : Optional[int] = val[:dim, :] lowercase_ : Optional[int] = val[ dim : dim * 2, : ] lowercase_ : str = val[-dim:, :] else: lowercase_ : List[str] = val[ :dim ] lowercase_ : str = val[ dim : dim * 2 ] lowercase_ : Optional[int] = val[ -dim: ] else: lowercase_ : List[str] = val return orig_state_dict def __magic_name__ ( lowercase , lowercase , lowercase , lowercase ) -> List[str]: """simple docstring""" lowercase_ : List[Any] = torch.load(lowercase , map_location="""cpu""" )["""model"""] lowercase_ : Union[str, Any] = get_swin_config(lowercase ) lowercase_ : Tuple = SwinForMaskedImageModeling(lowercase ) model.eval() lowercase_ : Tuple = convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) lowercase_ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase_ : Optional[int] = ViTImageProcessor(size={"""height""": 192, """width""": 192} ) lowercase_ : Dict = Image.open(requests.get(lowercase , stream=lowercase ).raw ) lowercase_ : List[str] = image_processor(images=lowercase , return_tensors="""pt""" ) with torch.no_grad(): lowercase_ : Tuple = model(**lowercase ).logits print(outputs.keys() ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase ) if push_to_hub: print(f"""Pushing model and image processor for {model_name} to hub""" ) model.push_to_hub(f"""microsoft/{model_name}""" ) image_processor.push_to_hub(f"""microsoft/{model_name}""" ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""swin-base-simmim-window6-192""", type=str, choices=["""swin-base-simmim-window6-192""", """swin-large-simmim-window12-192"""], help="""Name of the Swin SimMIM model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth""", type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) UpperCAmelCase_ = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
721
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ = { """configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["""VisionEncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["""TFVisionEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["""FlaxVisionEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
436
0
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = CodeGenTokenizer __SCREAMING_SNAKE_CASE = CodeGenTokenizerFast __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = {"""add_prefix_space""": True} __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] UpperCAmelCase__ = dict(zip(__a , range(len(__a ) ) ) ) UpperCAmelCase__ = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] UpperCAmelCase__ = {'unk_token': '<unk>'} UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__a ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__a ) ) def UpperCamelCase__ (self , **__a ) -> List[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **__a ) def UpperCamelCase__ (self , **__a ) -> Any: """simple docstring""" kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **__a ) def UpperCamelCase__ (self , __a ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'lower newer' UpperCAmelCase__ = 'lower newer' return input_text, output_text def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase__ = 'lower newer' UpperCAmelCase__ = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] UpperCAmelCase__ = tokenizer.tokenize(__a , add_prefix_space=__a ) self.assertListEqual(__a , __a ) UpperCAmelCase__ = tokens + [tokenizer.unk_token] UpperCAmelCase__ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def UpperCamelCase__ (self ) -> int: """simple docstring""" if not self.test_rust_tokenizer: return UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_rust_tokenizer(add_prefix_space=__a ) UpperCAmelCase__ = 'lower newer' # Testing tokenization UpperCAmelCase__ = tokenizer.tokenize(__a , add_prefix_space=__a ) UpperCAmelCase__ = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids without special tokens UpperCAmelCase__ = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) UpperCAmelCase__ = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids with special tokens UpperCAmelCase__ = self.get_rust_tokenizer(add_prefix_space=__a ) UpperCAmelCase__ = tokenizer.encode(__a , add_prefix_space=__a ) UpperCAmelCase__ = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) # Testing the unknown token UpperCAmelCase__ = tokens + [rust_tokenizer.unk_token] UpperCAmelCase__ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__a ) , __a ) def UpperCamelCase__ (self , *__a , **__a ) -> Dict: """simple docstring""" pass def UpperCamelCase__ (self , __a=15 ) -> List[Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase__ = self.rust_tokenizer_class.from_pretrained(__a , **__a ) # Simple input UpperCAmelCase__ = 'This is a simple input' UpperCAmelCase__ = ['This is a simple input 1', 'This is a simple input 2'] UpperCAmelCase__ = ('This is a simple input', 'This is a pair') UpperCAmelCase__ = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='max_length' ) # Simple input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='max_length' ) # Simple input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='max_length' , ) # Pair input self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='max_length' ) # Pair input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='max_length' ) # Pair input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='max_length' , ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input UpperCAmelCase__ = 'This is a simple input' UpperCAmelCase__ = ['This is a simple input looooooooong', 'This is a simple input'] UpperCAmelCase__ = ('This is a simple input', 'This is a pair') UpperCAmelCase__ = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] UpperCAmelCase__ = tokenizer.pad_token_id UpperCAmelCase__ = tokenizer(__a , padding='max_length' , max_length=30 , return_tensors='np' ) UpperCAmelCase__ = tokenizer(__a , padding=__a , truncate=__a , return_tensors='np' ) UpperCAmelCase__ = tokenizer(*__a , padding='max_length' , max_length=60 , return_tensors='np' ) UpperCAmelCase__ = tokenizer(__a , padding=__a , truncate=__a , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = '$$$' UpperCAmelCase__ = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=__a , add_bos_token=__a ) UpperCAmelCase__ = 'This is a simple input' UpperCAmelCase__ = ['This is a simple input 1', 'This is a simple input 2'] UpperCAmelCase__ = tokenizer.bos_token_id UpperCAmelCase__ = tokenizer(__a ) UpperCAmelCase__ = tokenizer(__a ) self.assertEqual(out_s.input_ids[0] , __a ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) UpperCAmelCase__ = tokenizer.decode(out_s.input_ids ) UpperCAmelCase__ = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __a ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = CodeGenTokenizer.from_pretrained('Salesforce/codegen-350M-mono' ) UpperCAmelCase__ = '\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#' UpperCAmelCase__ = '\nif len_a > len_b: result = a\nelse: result = b' UpperCAmelCase__ = tokenizer.encode(__a ) UpperCAmelCase__ = ['^#', re.escape('<|endoftext|>' ), '^\'\'\'', '^"""', '\n\n\n'] UpperCAmelCase__ = tokenizer.decode(__a , truncate_before_pattern=__a ) self.assertEqual(__a , __a ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" pass
146
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = BloomTokenizerFast __SCREAMING_SNAKE_CASE = BloomTokenizerFast __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = """tokenizer_file""" __SCREAMING_SNAKE_CASE = {"""bos_token""": """<s>""", """eos_token""": """</s>""", """unk_token""": """<unk>""", """pad_token""": """<pad>"""} def UpperCamelCase__ (self ) -> Any: """simple docstring""" super().setUp() UpperCAmelCase__ = BloomTokenizerFast.from_pretrained('bigscience/tokenizer' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ (self , **__a ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **__a ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.get_rust_tokenizer() UpperCAmelCase__ = ['The quick brown fox</s>', 'jumps over the lazy dog</s>'] UpperCAmelCase__ = [[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]] UpperCAmelCase__ = tokenizer.batch_encode_plus(__a )['input_ids'] self.assertListEqual(__a , __a ) UpperCAmelCase__ = tokenizer.batch_decode(__a ) self.assertListEqual(__a , __a ) def UpperCamelCase__ (self , __a=6 ) -> List[str]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase__ = self.rust_tokenizer_class.from_pretrained(__a , **__a ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input UpperCAmelCase__ = 'This is a simple input' UpperCAmelCase__ = ['This is a simple input 1', 'This is a simple input 2'] UpperCAmelCase__ = ('This is a simple input', 'This is a pair') UpperCAmelCase__ = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests try: tokenizer_r.encode(__a , max_length=__a ) tokenizer_r.encode_plus(__a , max_length=__a ) tokenizer_r.batch_encode_plus(__a , max_length=__a ) tokenizer_r.encode(__a , max_length=__a ) tokenizer_r.batch_encode_plus(__a , max_length=__a ) except ValueError: self.fail('Bloom Tokenizer should be able to deal with padding' ) UpperCAmelCase__ = None # Hotfixing padding = None self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='max_length' ) # Simple input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='max_length' ) # Simple input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='max_length' , ) # Pair input self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='max_length' ) # Pair input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='max_length' ) # Pair input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='max_length' , ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.get_rust_tokenizer() UpperCAmelCase__ = load_dataset('xnli' , 'all_languages' , split='test' , streaming=__a ) UpperCAmelCase__ = next(iter(__a ) )['premise'] # pick up one data UpperCAmelCase__ = list(sample_data.values() ) UpperCAmelCase__ = list(map(tokenizer.encode , __a ) ) UpperCAmelCase__ = [tokenizer.decode(__a , clean_up_tokenization_spaces=__a ) for x in output_tokens] self.assertListEqual(__a , __a ) def UpperCamelCase__ (self ) -> Dict: """simple docstring""" self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
146
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __lowercase = logging.get_logger(__name__) __lowercase = { '''Helsinki-NLP/opus-mt-en-de''': '''https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json''', # See all Marian models at https://huggingface.co/models?filter=marian } class _snake_case ( lowerCAmelCase_ ): """simple docstring""" _UpperCamelCase : Dict = '''marian''' _UpperCamelCase : List[str] = ['''past_key_values'''] _UpperCamelCase : Tuple = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Optional[int] , UpperCamelCase_ : Tuple=58101 , UpperCamelCase_ : int=None , UpperCamelCase_ : str=1024 , UpperCamelCase_ : List[str]=12 , UpperCamelCase_ : List[Any]=4096 , UpperCamelCase_ : Union[str, Any]=16 , UpperCamelCase_ : int=12 , UpperCamelCase_ : Optional[Any]=4096 , UpperCamelCase_ : Union[str, Any]=16 , UpperCamelCase_ : Optional[int]=0.0 , UpperCamelCase_ : Optional[Any]=0.0 , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Optional[int]="gelu" , UpperCamelCase_ : int=1024 , UpperCamelCase_ : Optional[Any]=0.1 , UpperCamelCase_ : Dict=0.0 , UpperCamelCase_ : List[str]=0.0 , UpperCamelCase_ : Optional[int]=0.0_2 , UpperCamelCase_ : Union[str, Any]=58100 , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Union[str, Any]=58100 , UpperCamelCase_ : Dict=0 , UpperCamelCase_ : int=0 , UpperCamelCase_ : int=True , **UpperCamelCase_ : Union[str, Any] , ): lowerCAmelCase_ : Tuple =vocab_size lowerCAmelCase_ : int =decoder_vocab_size or vocab_size lowerCAmelCase_ : int =max_position_embeddings lowerCAmelCase_ : Any =d_model lowerCAmelCase_ : List[Any] =encoder_ffn_dim lowerCAmelCase_ : List[Any] =encoder_layers lowerCAmelCase_ : Any =encoder_attention_heads lowerCAmelCase_ : Optional[int] =decoder_ffn_dim lowerCAmelCase_ : List[str] =decoder_layers lowerCAmelCase_ : Union[str, Any] =decoder_attention_heads lowerCAmelCase_ : List[str] =dropout lowerCAmelCase_ : int =attention_dropout lowerCAmelCase_ : Optional[int] =activation_dropout lowerCAmelCase_ : Union[str, Any] =activation_function lowerCAmelCase_ : List[str] =init_std lowerCAmelCase_ : List[Any] =encoder_layerdrop lowerCAmelCase_ : Optional[int] =decoder_layerdrop lowerCAmelCase_ : int =use_cache lowerCAmelCase_ : Tuple =encoder_layers lowerCAmelCase_ : Any =scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase_ : Union[str, Any] =share_encoder_decoder_embeddings super().__init__( pad_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , is_encoder_decoder=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , forced_eos_token_id=UpperCamelCase_ , **UpperCamelCase_ , ) class _snake_case ( lowerCAmelCase_ ): """simple docstring""" @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def __A ( self : str ): if self.task in ["default", "seq2seq-lm"]: lowerCAmelCase_ : List[str] =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowerCAmelCase_ : Any ={0: '''batch'''} lowerCAmelCase_ : Any ={0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: lowerCAmelCase_ : List[Any] ={0: '''batch''', 1: '''decoder_sequence'''} lowerCAmelCase_ : int ={0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase_ , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. lowerCAmelCase_ : List[str] =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] =self.num_layers for i in range(UpperCamelCase_ ): lowerCAmelCase_ : int ={0: '''batch''', 2: '''past_sequence + sequence'''} lowerCAmelCase_ : List[Any] ={0: '''batch''', 2: '''past_sequence + sequence'''} else: lowerCAmelCase_ : Optional[Any] =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def __A ( self : Union[str, Any] ): if self.task in ["default", "seq2seq-lm"]: lowerCAmelCase_ : List[str] =super().outputs else: lowerCAmelCase_ : Optional[Any] =super(UpperCamelCase_ , self ).outputs if self.use_past: lowerCAmelCase_ , lowerCAmelCase_ : Dict =self.num_layers for i in range(UpperCamelCase_ ): lowerCAmelCase_ : Optional[Any] ={0: '''batch''', 2: '''past_sequence + sequence'''} lowerCAmelCase_ : Optional[Any] ={0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def __A ( self : int , UpperCamelCase_ : PreTrainedTokenizer , UpperCamelCase_ : int = -1 , UpperCamelCase_ : int = -1 , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[TensorType] = None , ): lowerCAmelCase_ : Optional[Any] =self._generate_dummy_inputs_for_encoder_and_decoder( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Generate decoder inputs lowerCAmelCase_ : List[Any] =seq_length if not self.use_past else 1 lowerCAmelCase_ : Dict =self._generate_dummy_inputs_for_encoder_and_decoder( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase_ : Union[str, Any] ={F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} lowerCAmelCase_ : List[Any] =dict(**UpperCamelCase_ , **UpperCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowerCAmelCase_ , lowerCAmelCase_ : Dict =common_inputs['''input_ids'''].shape lowerCAmelCase_ : Tuple =common_inputs['''decoder_input_ids'''].shape[1] lowerCAmelCase_ , lowerCAmelCase_ : Any =self.num_attention_heads lowerCAmelCase_ : Optional[int] =( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCAmelCase_ : Optional[int] =decoder_seq_length + 3 lowerCAmelCase_ : List[Any] =( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowerCAmelCase_ : Dict =torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(UpperCamelCase_ , UpperCamelCase_ )] , dim=1 ) lowerCAmelCase_ : int =[] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowerCAmelCase_ , lowerCAmelCase_ : Dict =self.num_layers lowerCAmelCase_ : Union[str, Any] =min(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase_ : Optional[Any] =max(UpperCamelCase_ , UpperCamelCase_ ) - min_num_layers lowerCAmelCase_ : Union[str, Any] ='''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(UpperCamelCase_ ): common_inputs["past_key_values"].append( ( torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ ), ) ) # TODO: test this. lowerCAmelCase_ : List[str] =encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(UpperCamelCase_ , UpperCamelCase_ ): common_inputs["past_key_values"].append((torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ )) ) return common_inputs def __A ( self : Optional[Any] , UpperCamelCase_ : PreTrainedTokenizer , UpperCamelCase_ : int = -1 , UpperCamelCase_ : int = -1 , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[TensorType] = None , ): lowerCAmelCase_ : str =self._generate_dummy_inputs_for_encoder_and_decoder( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowerCAmelCase_ , lowerCAmelCase_ : List[Any] =common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowerCAmelCase_ : int =seqlen + 2 lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] =self.num_layers lowerCAmelCase_ , lowerCAmelCase_ : List[Any] =self.num_attention_heads lowerCAmelCase_ : Tuple =( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCAmelCase_ : Any =common_inputs['''attention_mask'''].dtype lowerCAmelCase_ : List[str] =torch.cat( [common_inputs['''attention_mask'''], torch.ones(UpperCamelCase_ , UpperCamelCase_ , dtype=UpperCamelCase_ )] , dim=1 ) lowerCAmelCase_ : List[str] =[ (torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ )) for _ in range(UpperCamelCase_ ) ] return common_inputs def __A ( self : List[Any] , UpperCamelCase_ : PreTrainedTokenizer , UpperCamelCase_ : int = -1 , UpperCamelCase_ : int = -1 , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCAmelCase_ : Tuple =compute_effective_axis_dimension( UpperCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCAmelCase_ : List[Any] =tokenizer.num_special_tokens_to_add(UpperCamelCase_ ) lowerCAmelCase_ : Tuple =compute_effective_axis_dimension( UpperCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase_ ) # Generate dummy inputs according to compute batch and sequence lowerCAmelCase_ : List[Any] =[''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size lowerCAmelCase_ : Any =dict(tokenizer(UpperCamelCase_ , return_tensors=UpperCamelCase_ ) ) return common_inputs def __A ( self : List[Any] , UpperCamelCase_ : PreTrainedTokenizer , UpperCamelCase_ : int = -1 , UpperCamelCase_ : int = -1 , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: lowerCAmelCase_ : Optional[Any] =self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCamelCase_ , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , is_pair=UpperCamelCase_ , framework=UpperCamelCase_ ) else: lowerCAmelCase_ : int =self._generate_dummy_inputs_for_causal_lm( UpperCamelCase_ , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , is_pair=UpperCamelCase_ , framework=UpperCamelCase_ ) return common_inputs def __A ( self : Any , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int ): if self.task in ["default", "seq2seq-lm"]: lowerCAmelCase_ : Optional[Any] =super()._flatten_past_key_values_(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) else: lowerCAmelCase_ : Dict =super(UpperCamelCase_ , self )._flatten_past_key_values_( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) @property def __A ( self : Union[str, Any] ): return 1E-4
305
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class _snake_case ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any]=1 , UpperCamelCase_ : Optional[int]=False , **UpperCamelCase_ : List[Any] ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase_ : Tuple =vocab_size lowerCAmelCase_ : Optional[Any] =d_embed lowerCAmelCase_ : int =d_proj lowerCAmelCase_ : int =cutoffs + [vocab_size] lowerCAmelCase_ : List[str] =[0] + self.cutoffs lowerCAmelCase_ : List[str] =div_val lowerCAmelCase_ : Dict =self.cutoffs[0] lowerCAmelCase_ : Union[str, Any] =len(self.cutoffs ) - 1 lowerCAmelCase_ : List[str] =self.shortlist_size + self.n_clusters lowerCAmelCase_ : int =keep_order lowerCAmelCase_ : str =[] lowerCAmelCase_ : int =[] def __A ( self : Union[str, Any] , UpperCamelCase_ : Dict ): if self.n_clusters > 0: lowerCAmelCase_ : str =self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer='''zeros''' , trainable=UpperCamelCase_ , name='''cluster_weight''' ) lowerCAmelCase_ : Any =self.add_weight( shape=(self.n_clusters,) , initializer='''zeros''' , trainable=UpperCamelCase_ , name='''cluster_bias''' ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: lowerCAmelCase_ : List[str] =self.add_weight( shape=(self.d_embed, self.d_proj) , initializer='''zeros''' , trainable=UpperCamelCase_ , name=F'out_projs_._{i}' , ) self.out_projs.append(UpperCamelCase_ ) else: self.out_projs.append(UpperCamelCase_ ) lowerCAmelCase_ : Any =self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer='''zeros''' , trainable=UpperCamelCase_ , name=F'out_layers_._{i}_._weight' , ) lowerCAmelCase_ : List[Any] =self.add_weight( shape=(self.vocab_size,) , initializer='''zeros''' , trainable=UpperCamelCase_ , name=F'out_layers_._{i}_._bias' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): lowerCAmelCase_ , lowerCAmelCase_ : int =self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase_ : Any =self.d_embed // (self.div_val**i) lowerCAmelCase_ : Any =self.add_weight( shape=(d_emb_i, self.d_proj) , initializer='''zeros''' , trainable=UpperCamelCase_ , name=F'out_projs_._{i}' ) self.out_projs.append(UpperCamelCase_ ) lowerCAmelCase_ : Union[str, Any] =self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer='''zeros''' , trainable=UpperCamelCase_ , name=F'out_layers_._{i}_._weight' , ) lowerCAmelCase_ : Optional[Any] =self.add_weight( shape=(r_idx - l_idx,) , initializer='''zeros''' , trainable=UpperCamelCase_ , name=F'out_layers_._{i}_._bias' , ) self.out_layers.append((weight, bias) ) super().build(UpperCamelCase_ ) @staticmethod def __A ( UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any=None ): lowerCAmelCase_ : Tuple =x if proj is not None: lowerCAmelCase_ : List[str] =tf.einsum('''ibd,ed->ibe''' , UpperCamelCase_ , UpperCamelCase_ ) return tf.einsum('''ibd,nd->ibn''' , UpperCamelCase_ , UpperCamelCase_ ) + b @staticmethod def __A ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] ): lowerCAmelCase_ : str =shape_list(UpperCamelCase_ ) lowerCAmelCase_ : Tuple =tf.range(lp_size[0] , dtype=target.dtype ) lowerCAmelCase_ : Any =tf.stack([r, target] , 1 ) return tf.gather_nd(UpperCamelCase_ , UpperCamelCase_ ) def __A ( self : str , UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : List[str]=False ): lowerCAmelCase_ : int =0 if self.n_clusters == 0: lowerCAmelCase_ : Tuple =self._logit(UpperCamelCase_ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: lowerCAmelCase_ : Dict =tf.nn.sparse_softmax_cross_entropy_with_logits(labels=UpperCamelCase_ , logits=UpperCamelCase_ ) lowerCAmelCase_ : Dict =tf.nn.log_softmax(UpperCamelCase_ , axis=-1 ) else: lowerCAmelCase_ : Optional[int] =shape_list(UpperCamelCase_ ) lowerCAmelCase_ : List[str] =[] lowerCAmelCase_ : str =tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] =self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: lowerCAmelCase_ : int =(target >= l_idx) & (target < r_idx) lowerCAmelCase_ : List[Any] =tf.where(UpperCamelCase_ ) lowerCAmelCase_ : Dict =tf.boolean_mask(UpperCamelCase_ , UpperCamelCase_ ) - l_idx if self.div_val == 1: lowerCAmelCase_ : int =self.out_layers[0][0][l_idx:r_idx] lowerCAmelCase_ : Union[str, Any] =self.out_layers[0][1][l_idx:r_idx] else: lowerCAmelCase_ : str =self.out_layers[i][0] lowerCAmelCase_ : Any =self.out_layers[i][1] if i == 0: lowerCAmelCase_ : Any =tf.concat([cur_W, self.cluster_weight] , 0 ) lowerCAmelCase_ : str =tf.concat([cur_b, self.cluster_bias] , 0 ) lowerCAmelCase_ : Optional[int] =self._logit(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.out_projs[0] ) lowerCAmelCase_ : Tuple =tf.nn.log_softmax(UpperCamelCase_ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: lowerCAmelCase_ : Union[str, Any] =tf.boolean_mask(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase_ : Dict =self._gather_logprob(UpperCamelCase_ , UpperCamelCase_ ) else: lowerCAmelCase_ : Dict =self._logit(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.out_projs[i] ) lowerCAmelCase_ : List[str] =tf.nn.log_softmax(UpperCamelCase_ ) lowerCAmelCase_ : List[str] =self.cutoffs[0] + i - 1 # No probability for the head cluster lowerCAmelCase_ : Dict =head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(UpperCamelCase_ ) if target is not None: lowerCAmelCase_ : Optional[int] =tf.boolean_mask(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase_ : Any =tf.boolean_mask(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase_ : Dict =self._gather_logprob(UpperCamelCase_ , UpperCamelCase_ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(UpperCamelCase_ , -cur_logprob , shape_list(UpperCamelCase_ ) ) lowerCAmelCase_ : List[Any] =tf.concat(UpperCamelCase_ , axis=-1 ) if target is not None: if return_mean: lowerCAmelCase_ : Tuple =tf.reduce_mean(UpperCamelCase_ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(UpperCamelCase_ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(UpperCamelCase_ , name=self.name , aggregation='''mean''' if return_mean else '''''' ) return out
305
1
from collections.abc import Callable class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Callable | None = None ) -> None: # Stores actual heap items. A : list =[] # Stores indexes of each item for supporting updates and deletion. A : dict ={} # Stores current size of heap. A : Tuple =0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. A : Any =key or (lambda SCREAMING_SNAKE_CASE__ : x) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> int | None: return int((i - 1) / 2 ) if i > 0 else None def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> int | None: A : Tuple =int(2 * i + 1 ) return left if 0 < left < self.size else None def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int ) -> int | None: A : List[str] =int(2 * i + 2 ) return right if 0 < right < self.size else None def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> None: A , A : Tuple =( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. A , A : Tuple =self.arr[j], self.arr[i] def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> bool: return self.arr[i][1] < self.arr[j][1] def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> int: A : List[Any] =self._left(SCREAMING_SNAKE_CASE__ ) A : int =self._right(SCREAMING_SNAKE_CASE__ ) A : Dict =i if left is not None and not self._cmp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A : Tuple =left if right is not None and not self._cmp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A : Dict =right return valid_parent def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int ) -> None: A : Dict =self._parent(SCREAMING_SNAKE_CASE__ ) while parent is not None and not self._cmp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self._swap(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A , A : int =parent, self._parent(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> None: A : str =self._get_valid_parent(SCREAMING_SNAKE_CASE__ ) while valid_parent != index: self._swap(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A , A : Optional[int] =valid_parent, self._get_valid_parent(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> None: if item not in self.pos_map: return A : Any =self.pos_map[item] A : Any =[item, self.key(SCREAMING_SNAKE_CASE__ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(SCREAMING_SNAKE_CASE__ ) self._heapify_down(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : int ) -> None: if item not in self.pos_map: return A : Any =self.pos_map[item] del self.pos_map[item] A : List[Any] =self.arr[self.size - 1] A : int =index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(SCREAMING_SNAKE_CASE__ ) self._heapify_down(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> None: A : Optional[int] =len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(SCREAMING_SNAKE_CASE__ )] ) else: A : Optional[int] =[item, self.key(SCREAMING_SNAKE_CASE__ )] A : Optional[int] =self.size self.size += 1 self._heapify_up(self.size - 1 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> tuple | None: return self.arr[0] if self.size else None def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> tuple | None: A : Optional[Any] =self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def A__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
305
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class SCREAMING_SNAKE_CASE_ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int = 16 , SCREAMING_SNAKE_CASE__ : int = 88 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : float = 0.0 , SCREAMING_SNAKE_CASE__ : int = 32 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : str = "geglu" , SCREAMING_SNAKE_CASE__ : Optional[int] = None , ) -> Optional[int]: super().__init__() A : Tuple =nn.ModuleList( [ TransformeraDModel( num_attention_heads=SCREAMING_SNAKE_CASE__ , attention_head_dim=SCREAMING_SNAKE_CASE__ , in_channels=SCREAMING_SNAKE_CASE__ , num_layers=SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , norm_num_groups=SCREAMING_SNAKE_CASE__ , cross_attention_dim=SCREAMING_SNAKE_CASE__ , attention_bias=SCREAMING_SNAKE_CASE__ , sample_size=SCREAMING_SNAKE_CASE__ , num_vector_embeds=SCREAMING_SNAKE_CASE__ , activation_fn=SCREAMING_SNAKE_CASE__ , num_embeds_ada_norm=SCREAMING_SNAKE_CASE__ , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference A : List[Any] =0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` A : str =[77, 2_57] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` A : Optional[int] =[1, 0] def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : bool = True , ) -> Dict: A : Any =hidden_states A : int =[] A : str =0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens A : Optional[int] =encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] A : str =self.transformer_index_for_condition[i] A : str =self.transformers[transformer_index]( SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , timestep=SCREAMING_SNAKE_CASE__ , cross_attention_kwargs=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] A : str =encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) A : Any =output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=SCREAMING_SNAKE_CASE__ )
305
1
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup __UpperCAmelCase : str = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def A__ ( SCREAMING_SNAKE_CASE__ = "mumbai") -> Generator[tuple[str, str], None, None]: __snake_case: List[Any] = BeautifulSoup(requests.get(url + location).content , """html.parser""") # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""" , attrs={"""data-tn-component""": """organicJob"""}): __snake_case: int = job.find("""a""" , attrs={"""data-tn-element""": """jobTitle"""}).text.strip() __snake_case: List[Any] = job.find("""span""" , {"""class""": """company"""}).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(f'Job {i:>2} is {job[0]} at {job[1]}')
707
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> List[str]: # load base model __snake_case: str = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE__ , torch_dtype=torch.floataa) # load LoRA weight from .safetensors __snake_case: Dict = load_file(SCREAMING_SNAKE_CASE__) __snake_case: List[str] = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: __snake_case: Optional[int] = key.split(""".""")[0].split(LORA_PREFIX_TEXT_ENCODER + """_""")[-1].split("""_""") __snake_case: Union[str, Any] = pipeline.text_encoder else: __snake_case: Optional[int] = key.split(""".""")[0].split(LORA_PREFIX_UNET + """_""")[-1].split("""_""") __snake_case: List[Any] = pipeline.unet # find the target layer __snake_case: Optional[Any] = layer_infos.pop(0) while len(SCREAMING_SNAKE_CASE__) > -1: try: __snake_case: Optional[Any] = curr_layer.__getattr__(SCREAMING_SNAKE_CASE__) if len(SCREAMING_SNAKE_CASE__) > 0: __snake_case: Optional[int] = layer_infos.pop(0) elif len(SCREAMING_SNAKE_CASE__) == 0: break except Exception: if len(SCREAMING_SNAKE_CASE__) > 0: temp_name += "_" + layer_infos.pop(0) else: __snake_case: Tuple = layer_infos.pop(0) __snake_case: Any = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""")) pair_keys.append(SCREAMING_SNAKE_CASE__) else: pair_keys.append(SCREAMING_SNAKE_CASE__) pair_keys.append(key.replace("""lora_up""" , """lora_down""")) # update weight if len(state_dict[pair_keys[0]].shape) == 4: __snake_case: Union[str, Any] = state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.floataa) __snake_case: Dict = state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.floataa) curr_layer.weight.data += alpha * torch.mm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__).unsqueeze(2).unsqueeze(3) else: __snake_case: List[Any] = state_dict[pair_keys[0]].to(torch.floataa) __snake_case: Dict = state_dict[pair_keys[1]].to(torch.floataa) curr_layer.weight.data += alpha * torch.mm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) # update visited list for item in pair_keys: visited.append(SCREAMING_SNAKE_CASE__) return pipeline if __name__ == "__main__": __UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "--base_model_path", default=None, type=str, required=True, help="Path to the base model in diffusers format." ) parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--lora_prefix_unet", default="lora_unet", type=str, help="The prefix of UNet weight in safetensors" ) parser.add_argument( "--lora_prefix_text_encoder", default="lora_te", type=str, help="The prefix of text encoder weight in safetensors", ) parser.add_argument("--alpha", default=0.75, type=float, help="The merging ratio in W = W0 + alpha * deltaW") parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not." ) parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") __UpperCAmelCase : str = parser.parse_args() __UpperCAmelCase : Union[str, Any] = args.base_model_path __UpperCAmelCase : str = args.checkpoint_path __UpperCAmelCase : List[str] = args.dump_path __UpperCAmelCase : Optional[int] = args.lora_prefix_unet __UpperCAmelCase : Optional[int] = args.lora_prefix_text_encoder __UpperCAmelCase : int = args.alpha __UpperCAmelCase : List[Any] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) __UpperCAmelCase : Union[str, Any] = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
155
0
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument( "--original_config_file", type=str, required=True, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--image_size", default=512, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") def A ( _lowerCamelCase ): '''simple docstring''' if string == "True": return True elif string == "False": return False else: raise ValueError(F"could not parse string as bool {string}" ) parser.add_argument( "--use_linear_projection", help="Override for use linear projection", required=False, type=parse_bool ) parser.add_argument("--cross_attention_dim", help="Override for cross attention_dim", required=False, type=int) _snake_case = parser.parse_args() _snake_case = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
500
def A ( _lowerCamelCase ): '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = F"Input value of [number={number}] must be an integer" raise TypeError(_lowerCamelCase ) if number < 1: _lowerCAmelCase : Tuple = F"Input value of [number={number}] must be > 0" raise ValueError(_lowerCamelCase ) _lowerCAmelCase : Dict = 1 for i in range(1 , _lowerCamelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
500
1
"""simple docstring""" from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split lowercase__ = datasets.load_iris() lowercase__ = np.array(data['data']) lowercase__ = np.array(data['target']) lowercase__ = data['target_names'] lowercase__ , lowercase__ , lowercase__ , lowercase__ = train_test_split(X, y) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: return np.linalg.norm(np.array(_SCREAMING_SNAKE_CASE ) - np.array(_SCREAMING_SNAKE_CASE ) ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=5 ) ->Tuple: a__: str = zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # List of distances of all points from the point to be classified a__: Dict = [] for data_point in data: a__: Optional[int] = euclidean_distance(data_point[0] , _SCREAMING_SNAKE_CASE ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. a__: List[Any] = [i[1] for i in sorted(_SCREAMING_SNAKE_CASE )[:k]] # Most commonly occurring class among them # is the class into which the point is classified a__: Optional[Any] = Counter(_SCREAMING_SNAKE_CASE ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
709
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class __snake_case ( __lowerCAmelCase ): a__ = """speech_to_text""" a__ = ["""past_key_values"""] a__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , lowercase=1_00_00 , lowercase=12 , lowercase=20_48 , lowercase=4 , lowercase=6 , lowercase=20_48 , lowercase=4 , lowercase=0.0 , lowercase=0.0 , lowercase=True , lowercase=True , lowercase="relu" , lowercase=2_56 , lowercase=0.1 , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=2 , lowercase=True , lowercase=1 , lowercase=0 , lowercase=2 , lowercase=60_00 , lowercase=10_24 , lowercase=2 , lowercase=(5, 5) , lowercase=10_24 , lowercase=80 , lowercase=1 , **lowercase , ) -> List[str]: '''simple docstring''' a__: int = vocab_size a__: Any = d_model a__: List[str] = encoder_ffn_dim a__: int = encoder_layers a__: int = encoder_attention_heads a__: int = decoder_ffn_dim a__: Optional[int] = decoder_layers a__: Optional[Any] = decoder_attention_heads a__: str = dropout a__: List[Any] = attention_dropout a__: Union[str, Any] = activation_dropout a__: Tuple = activation_function a__: Optional[Any] = init_std a__: List[str] = encoder_layerdrop a__: Optional[int] = decoder_layerdrop a__: Union[str, Any] = use_cache a__: Union[str, Any] = encoder_layers a__: str = scale_embedding # scale factor will be sqrt(d_model) if True a__: Tuple = max_source_positions a__: Union[str, Any] = max_target_positions a__: List[str] = num_conv_layers a__: Union[str, Any] = list(lowercase) a__: Dict = conv_channels a__: List[Any] = input_feat_per_channel a__: Any = input_channels if len(self.conv_kernel_sizes) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' f'but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, ' f'`config.num_conv_layers = {self.num_conv_layers}`.') super().__init__( pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , decoder_start_token_id=lowercase , **lowercase , )
217
0
from __future__ import annotations from math import pow, sqrt def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(lowerCamelCase__ , 2 ) - pow(lowerCamelCase__ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(lowerCamelCase__ , 2 ) - pow(lowerCamelCase__ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(lowerCamelCase__ , 2 ) + pow(lowerCamelCase__ , 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
463
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase , lowercase=13 , lowercase=32 , lowercase=3 , lowercase=4 , lowercase=[10, 20, 30, 40] , lowercase=[2, 2, 3, 2] , lowercase=True , lowercase=True , lowercase=37 , lowercase="gelu" , lowercase=10 , lowercase=0.0_2 , lowercase=["stage2", "stage3", "stage4"] , lowercase=[2, 3, 4] , lowercase=None , ) -> Any: lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = num_channels lowerCamelCase_ = num_stages lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = num_labels lowerCamelCase_ = initializer_range lowerCamelCase_ = out_features lowerCamelCase_ = out_indices lowerCamelCase_ = scope def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_( self ) -> Dict: return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowercase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase ) -> Tuple: lowerCamelCase_ = ConvNextModel(config=lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase ) -> str: lowerCamelCase_ = ConvNextForImageClassification(lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase ) -> str: lowerCamelCase_ = ConvNextBackbone(config=lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCamelCase_ = None lowerCamelCase_ = ConvNextBackbone(config=lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , unittest.TestCase ): lowerCAmelCase__ = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) lowerCAmelCase__ = ( {'feature-extraction': ConvNextModel, 'image-classification': ConvNextForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = ConvNextModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 ) def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: return @unittest.skip(reason="ConvNext does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: pass @unittest.skip(reason="ConvNext does not support input and output embeddings" ) def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: pass @unittest.skip(reason="ConvNext does not use feedforward chunking" ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: pass def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(lowercase ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: def check_hidden_states_output(lowercase , lowercase , lowercase ): lowerCamelCase_ = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(lowercase , lowercase ) ) lowerCamelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase_ = self.model_tester.num_stages self.assertEqual(len(lowercase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = True check_hidden_states_output(lowercase , lowercase , lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True check_hidden_states_output(lowercase , lowercase , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase ) @slow def SCREAMING_SNAKE_CASE_( self ) -> Dict: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = ConvNextModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def lowerCamelCase_ ( ): lowerCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_( self ) -> List[str]: return AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: lowerCamelCase_ = ConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224" ).to(lowercase ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=lowercase , return_tensors="pt" ).to(lowercase ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**lowercase ) # verify the logits lowerCamelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase ) lowerCamelCase_ = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4 ) ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase , snake_case_ ): lowerCAmelCase__ = (ConvNextBackbone,) if is_torch_available() else () lowerCAmelCase__ = ConvNextConfig lowerCAmelCase__ = False def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: lowerCamelCase_ = ConvNextModelTester(self )
463
1
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = int(__lowerCAmelCase ) assert noofclusters < len(__lowerCAmelCase ) # Find out the dimensionality lowercase_ = len(vectors[0] ) # Will help select random centroids from among the available vectors lowercase_ = list(range(len(__lowerCAmelCase ) ) ) shuffle(__lowerCAmelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. lowercase_ = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION lowercase_ = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points lowercase_ = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(__lowerCAmelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values lowercase_ = tf.placeholder("""float64""" , [dim] ) lowercase_ = [] for centroid in centroids: cent_assigns.append(tf.assign(__lowerCAmelCase , __lowerCAmelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) lowercase_ = [tf.Variable(0 ) for i in range(len(__lowerCAmelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value lowercase_ = tf.placeholder("""int32""" ) lowercase_ = [] for assignment in assignments: cluster_assigns.append(tf.assign(__lowerCAmelCase , __lowerCAmelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input lowercase_ = tf.placeholder("""float""" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors lowercase_ = tf.reduce_mean(__lowerCAmelCase , 0 ) ##Node for computing Euclidean distances # Placeholders for input lowercase_ = tf.placeholder("""float""" , [dim] ) lowercase_ = tf.placeholder("""float""" , [dim] ) lowercase_ = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(__lowerCAmelCase , __lowerCAmelCase ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input lowercase_ = tf.placeholder("""float""" , [noofclusters] ) lowercase_ = tf.argmin(__lowerCAmelCase , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. lowercase_ = tf.initialize_all_variables() # Initialize all variables sess.run(__lowerCAmelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. lowercase_ = 1_00 for _ in range(__lowerCAmelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(__lowerCAmelCase ) ): lowercase_ = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. lowercase_ = [ sess.run(__lowerCAmelCase , feed_dict={va: vect, va: sess.run(__lowerCAmelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input lowercase_ = sess.run( __lowerCAmelCase , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(__lowerCAmelCase ): # Collect all the vectors assigned to this cluster lowercase_ = [ vectors[i] for i in range(len(__lowerCAmelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location lowercase_ = sess.run( __lowerCAmelCase , feed_dict={mean_input: array(__lowerCAmelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments lowercase_ = sess.run(__lowerCAmelCase ) lowercase_ = sess.run(__lowerCAmelCase ) return centroids, assignments
712
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Any = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : int = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys UpperCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure)
100
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCAmelCase : Dict = { "configuration_maskformer": ["MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "MaskFormerConfig"], "configuration_maskformer_swin": ["MaskFormerSwinConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[Any] = ["MaskFormerFeatureExtractor"] _lowerCAmelCase : Dict = ["MaskFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Any = [ "MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "MaskFormerForInstanceSegmentation", "MaskFormerModel", "MaskFormerPreTrainedModel", ] _lowerCAmelCase : Tuple = [ "MaskFormerSwinBackbone", "MaskFormerSwinModel", "MaskFormerSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _lowerCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure)
261
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class snake_case : """simple docstring""" _lowerCAmelCase = LEDConfig _lowerCAmelCase = {} _lowerCAmelCase = 'gelu' def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=99 , lowerCamelCase=32 , lowerCamelCase=2 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=20 , lowerCamelCase=2 , lowerCamelCase=1 , lowerCamelCase=0 , lowerCamelCase=4 , ) -> Dict: """simple docstring""" snake_case__ : int = parent snake_case__ : Union[str, Any] = batch_size snake_case__ : Optional[Any] = seq_length snake_case__ : Any = is_training snake_case__ : Any = use_labels snake_case__ : Optional[Any] = vocab_size snake_case__ : List[Any] = hidden_size snake_case__ : Optional[int] = num_hidden_layers snake_case__ : List[str] = num_attention_heads snake_case__ : Tuple = intermediate_size snake_case__ : List[str] = hidden_dropout_prob snake_case__ : str = attention_probs_dropout_prob snake_case__ : Optional[Any] = max_position_embeddings snake_case__ : List[Any] = eos_token_id snake_case__ : Optional[Any] = pad_token_id snake_case__ : Tuple = bos_token_id snake_case__ : Optional[Any] = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after snake_case__ : Optional[Any] = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests snake_case__ : Optional[Any] = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def lowercase__ ( self ) -> int: """simple docstring""" snake_case__ : Dict = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case__ : Union[str, Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case__ : List[str] = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Union[str, Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) snake_case__ : str = prepare_led_inputs_dict(lowerCamelCase , lowerCamelCase , lowerCamelCase ) snake_case__ : str = tf.concat( [tf.zeros_like(lowerCamelCase )[:, :-1], tf.ones_like(lowerCamelCase )[:, -1:]] , axis=-1 , ) snake_case__ : List[str] = global_attention_mask return config, inputs_dict def lowercase__ ( self , lowerCamelCase , lowerCamelCase ) -> Any: """simple docstring""" snake_case__ : Optional[Any] = TFLEDModel(config=lowerCamelCase ).get_decoder() snake_case__ : str = inputs_dict['''input_ids'''] snake_case__ : Tuple = input_ids[:1, :] snake_case__ : List[str] = inputs_dict['''attention_mask'''][:1, :] snake_case__ : Union[str, Any] = 1 # first forward pass snake_case__ : Dict = model(lowerCamelCase , attention_mask=lowerCamelCase , use_cache=lowerCamelCase ) snake_case__ ,snake_case__ : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case__ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : Optional[int] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case__ : Optional[int] = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case__ : Dict = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case__ : List[str] = model(lowerCamelCase , attention_mask=lowerCamelCase )[0] snake_case__ : int = model(lowerCamelCase , attention_mask=lowerCamelCase , past_key_values=lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case__ : List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case__ : List[str] = output_from_no_past[:, -3:, random_slice_idx] snake_case__ : Tuple = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCamelCase , lowerCamelCase , rtol=1E-3 ) def _A ( snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : Tuple=None , snake_case__ : List[str]=None , snake_case__ : Union[str, Any]=None , snake_case__ : List[str]=None , ): if attention_mask is None: snake_case__ : Dict = tf.cast(tf.math.not_equal(snake_case__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case__ : Tuple = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case__ : List[str] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case__ : Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class snake_case ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _lowerCAmelCase = (TFLEDForConditionalGeneration,) if is_tf_available() else () _lowerCAmelCase = ( { 'conversational': TFLEDForConditionalGeneration, 'feature-extraction': TFLEDModel, 'summarization': TFLEDForConditionalGeneration, 'text2text-generation': TFLEDForConditionalGeneration, 'translation': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : Union[str, Any] = TFLEDModelTester(self ) snake_case__ : int = ConfigTester(self , config_class=lowerCamelCase ) def lowercase__ ( self ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self ) -> List[Any]: """simple docstring""" snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCamelCase ) def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ ,snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Dict = tf.zeros_like(inputs_dict['''attention_mask'''] ) snake_case__ : Union[str, Any] = 2 snake_case__ : Tuple = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) snake_case__ : Optional[Any] = True snake_case__ : Optional[int] = self.model_tester.seq_length snake_case__ : str = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowerCamelCase ): snake_case__ : Optional[Any] = outputs.decoder_attentions self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowerCamelCase ): snake_case__ : Union[str, Any] = [t.numpy() for t in outputs.encoder_attentions] snake_case__ : Optional[Any] = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: snake_case__ : Dict = True snake_case__ : int = False snake_case__ : Optional[int] = False snake_case__ : Optional[int] = model_class(lowerCamelCase ) snake_case__ : Any = model(self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) snake_case__ : Dict = len(lowerCamelCase ) self.assertEqual(config.output_hidden_states , lowerCamelCase ) check_encoder_attentions_output(lowerCamelCase ) if self.is_encoder_decoder: snake_case__ : List[str] = model_class(lowerCamelCase ) snake_case__ : Optional[int] = model(self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase ) check_decoder_attentions_output(lowerCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] snake_case__ : Union[str, Any] = True snake_case__ : str = model_class(lowerCamelCase ) snake_case__ : Union[str, Any] = model(self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase ) check_encoder_attentions_output(lowerCamelCase ) # Check attention is always last and order is fine snake_case__ : Tuple = True snake_case__ : Any = True snake_case__ : Any = model_class(lowerCamelCase ) snake_case__ : Any = model(self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowerCamelCase ) ) self.assertEqual(model.config.output_hidden_states , lowerCamelCase ) check_encoder_attentions_output(lowerCamelCase ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def lowercase__ ( self ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self ) -> int: """simple docstring""" pass def _A ( snake_case__ : Optional[int] ): return tf.constant(snake_case__ , dtype=tf.intaa ) _lowerCAmelCase : Tuple = 1E-4 @slow @require_tf class snake_case ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : Union[str, Any] = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here snake_case__ : Dict = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) snake_case__ : str = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) snake_case__ : str = prepare_led_inputs_dict(model.config , lowerCamelCase , lowerCamelCase ) snake_case__ : List[str] = model(**lowerCamelCase )[0] snake_case__ : str = (1, 1024, 768) self.assertEqual(output.shape , lowerCamelCase ) # change to expected output here snake_case__ : Optional[Any] = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase , atol=1E-3 ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : Optional[int] = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here snake_case__ : Optional[int] = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) snake_case__ : str = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) snake_case__ : str = prepare_led_inputs_dict(model.config , lowerCamelCase , lowerCamelCase ) snake_case__ : Tuple = model(**lowerCamelCase )[0] snake_case__ : List[str] = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , lowerCamelCase ) # change to expected output here snake_case__ : Any = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase , atol=1E-3 , rtol=1E-3 )
261
1
from collections import deque def snake_case__ ( lowerCamelCase_ ): A : Any = len(lowerCamelCase_ ) A : Union[str, Any] = deque() A : Any = [False for _ in range(lowerCamelCase_ )] A : Any = [-1 for _ in range(lowerCamelCase_ )] A : str = index_of[:] def strong_connect(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): A : int = index # the number when this node is seen A : Union[str, Any] = index # lowest rank node reachable from here index += 1 stack.append(lowerCamelCase_ ) A : Optional[Any] = True for w in g[v]: if index_of[w] == -1: A : List[Any] = strong_connect(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) A : Tuple = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: A : List[str] = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: A : Tuple = [] A : int = stack.pop() A : Tuple = False component.append(lowerCamelCase_ ) while w != v: A : Tuple = stack.pop() A : Tuple = False component.append(lowerCamelCase_ ) components.append(lowerCamelCase_ ) return index A : Optional[int] = [] for v in range(lowerCamelCase_ ): if index_of[v] == -1: strong_connect(lowerCamelCase_ , 0 , lowerCamelCase_ ) return components def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ ): A : int = [[] for _ in range(lowerCamelCase_ )] for u, v in edges: g[u].append(lowerCamelCase_ ) return g if __name__ == "__main__": # Test lowercase : Any = 7 lowercase : Tuple = [0, 0, 1, 2, 3, 3, 4, 4, 6] lowercase : Dict = [1, 3, 2, 0, 1, 4, 5, 6, 5] lowercase : str = [(u, v) for u, v in zip(source, target)] lowercase : Optional[Any] = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
719
def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ ): A : Optional[int] = len(lowerCamelCase_ ) A : List[Any] = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): A : Tuple = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): A : List[str] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: A : str = subset[i - 1][j] if arr[i - 1] <= j: A : str = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
423
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging _A = logging.get_logger(__name__) _A = { '''EleutherAI/gpt-neo-1.3B''': '''https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json''', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class A ( UpperCamelCase__ ): __snake_case = 'gpt_neo' __snake_case = ['past_key_values'] __snake_case = {'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self, UpperCamelCase__=5_0257, UpperCamelCase__=2048, UpperCamelCase__=2048, UpperCamelCase__=24, UpperCamelCase__=[[["global", "local"], 12]], UpperCamelCase__=16, UpperCamelCase__=None, UpperCamelCase__=256, UpperCamelCase__="gelu_new", UpperCamelCase__=0.0, UpperCamelCase__=0.0, UpperCamelCase__=0.0, UpperCamelCase__=0.1, UpperCamelCase__=1E-5, UpperCamelCase__=0.02, UpperCamelCase__=True, UpperCamelCase__=5_0256, UpperCamelCase__=5_0256, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = vocab_size lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_layers lowerCAmelCase_ = num_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = window_size lowerCAmelCase_ = activation_function lowerCAmelCase_ = resid_dropout lowerCAmelCase_ = embed_dropout lowerCAmelCase_ = attention_dropout lowerCAmelCase_ = classifier_dropout lowerCAmelCase_ = layer_norm_epsilon lowerCAmelCase_ = initializer_range lowerCAmelCase_ = use_cache lowerCAmelCase_ = bos_token_id lowerCAmelCase_ = eos_token_id lowerCAmelCase_ = attention_types lowerCAmelCase_ = self.expand_attention_types_params(snake_case_ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.attention_layers)` == `config.num_layers` ''' f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, " f"`config.num_layers = {self.num_layers}`. " '''`config.attention_layers` is prepared using `config.attention_types`. ''' '''Please verify the value of `config.attention_types` argument.''' ) super().__init__(bos_token_id=snake_case_, eos_token_id=snake_case_, **snake_case_ ) @staticmethod def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def __UpperCamelCase ( _A , _A , _A , _A ): import torch lowerCAmelCase_ = input.size() lowerCAmelCase_ = len(__a ) lowerCAmelCase_ = shape[dimension] lowerCAmelCase_ = torch.arange(0 , __a , __a ) lowerCAmelCase_ = torch.div(sizedim - size , __a , rounding_mode='''floor''' ) + 1 lowerCAmelCase_ = torch.arange(__a ) + low_indices[:min_length][:, None] lowerCAmelCase_ = [slice(__a )] * rank lowerCAmelCase_ = indices lowerCAmelCase_ = input[s] lowerCAmelCase_ = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(__a ) def __UpperCamelCase ( _A , _A ): import torch lowerCAmelCase_ = torch.arange(1 , __a ) lowerCAmelCase_ = torch.remainder(__a , __a ) lowerCAmelCase_ = remainders == 0 lowerCAmelCase_ = candidates[divisor_indices] lowerCAmelCase_ = torch.max(__a ) return largest_divisor, torch.div(__a , __a , rounding_mode='''floor''' ) class A ( UpperCamelCase__ ): @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(snake_case_, direction='''inputs''' ) lowerCAmelCase_ = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowerCAmelCase_ = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self._config.num_heads def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = -1, UpperCamelCase__ = -1, UpperCamelCase__ = False, UpperCamelCase__ = None, ): """simple docstring""" lowerCAmelCase_ = super(snake_case_, self ).generate_dummy_inputs( snake_case_, batch_size=snake_case_, seq_length=snake_case_, is_pair=snake_case_, framework=snake_case_ ) # We need to order the input in the way they appears in the forward() lowerCAmelCase_ = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowerCAmelCase_ = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowerCAmelCase_ = seqlen + 2 lowerCAmelCase_ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase_ = [ (torch.zeros(snake_case_ ), torch.zeros(snake_case_ )) for _ in range(self.num_layers ) ] lowerCAmelCase_ = common_inputs['''attention_mask'''] if self.use_past: lowerCAmelCase_ = ordered_inputs['''attention_mask'''].dtype lowerCAmelCase_ = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(snake_case_, snake_case_, dtype=snake_case_ )], dim=1 ) return ordered_inputs @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return 13
431
from ..utils import DummyObject, requires_backends class _lowerCAmelCase ( metaclass=UpperCamelCase__ ): lowerCamelCase__ = ['torch', 'torchsde'] def __init__( self , *snake_case_ , **snake_case_ ) -> Optional[int]: requires_backends(self , ['''torch''', '''torchsde'''] ) @classmethod def __a ( cls , *snake_case_ , **snake_case_ ) -> Optional[Any]: requires_backends(cls , ['''torch''', '''torchsde'''] ) @classmethod def __a ( cls , *snake_case_ , **snake_case_ ) -> Union[str, Any]: requires_backends(cls , ['''torch''', '''torchsde'''] )
258
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase__ : Any = { """configuration_roc_bert""": ["""ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoCBertConfig"""], """tokenization_roc_bert""": ["""RoCBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Any = [ """ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoCBertForCausalLM""", """RoCBertForMaskedLM""", """RoCBertForMultipleChoice""", """RoCBertForPreTraining""", """RoCBertForQuestionAnswering""", """RoCBertForSequenceClassification""", """RoCBertForTokenClassification""", """RoCBertLayer""", """RoCBertModel""", """RoCBertPreTrainedModel""", """load_tf_weights_in_roc_bert""", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys UpperCamelCase__ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
708
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def A_( A , A ): assert isinstance(A , A ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def A_( A , A , A ): UpperCAmelCase_ = tmp_path / """cache""" UpperCAmelCase_ = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase_ = TextDatasetReader(A , cache_dir=A , keep_in_memory=A ).read() _check_text_dataset(A , A ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def A_( A , A , A ): UpperCAmelCase_ = tmp_path / """cache""" UpperCAmelCase_ = {"""text""": """string"""} UpperCAmelCase_ = features.copy() if features else default_expected_features UpperCAmelCase_ = ( Features({feature: Value(A ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase_ = TextDatasetReader(A , features=A , cache_dir=A ).read() _check_text_dataset(A , A ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def A_( A , A , A ): UpperCAmelCase_ = tmp_path / """cache""" UpperCAmelCase_ = {"""text""": """string"""} UpperCAmelCase_ = TextDatasetReader(A , cache_dir=A , split=A ).read() _check_text_dataset(A , A ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def A_( A , A , A ): if issubclass(A , A ): UpperCAmelCase_ = text_path elif issubclass(A , A ): UpperCAmelCase_ = [text_path] UpperCAmelCase_ = tmp_path / """cache""" UpperCAmelCase_ = {"""text""": """string"""} UpperCAmelCase_ = TextDatasetReader(A , cache_dir=A ).read() _check_text_dataset(A , A ) def A_( A , A , A=("train",) ): assert isinstance(A , A ) for split in splits: UpperCAmelCase_ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def A_( A , A , A ): UpperCAmelCase_ = tmp_path / """cache""" UpperCAmelCase_ = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase_ = TextDatasetReader({"""train""": text_path} , cache_dir=A , keep_in_memory=A ).read() _check_text_datasetdict(A , A ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def A_( A , A , A ): UpperCAmelCase_ = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" UpperCAmelCase_ = {"""text""": """string"""} UpperCAmelCase_ = features.copy() if features else default_expected_features UpperCAmelCase_ = ( Features({feature: Value(A ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase_ = TextDatasetReader({"""train""": text_path} , features=A , cache_dir=A ).read() _check_text_datasetdict(A , A ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def A_( A , A , A ): if split: UpperCAmelCase_ = {split: text_path} else: UpperCAmelCase_ = """train""" UpperCAmelCase_ = {"""train""": text_path, """test""": text_path} UpperCAmelCase_ = tmp_path / """cache""" UpperCAmelCase_ = {"""text""": """string"""} UpperCAmelCase_ = TextDatasetReader(A , cache_dir=A ).read() _check_text_datasetdict(A , A , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
486
0
'''simple docstring''' UpperCamelCase__ : Any = { '''Pillow''': '''Pillow<10.0.0''', '''accelerate''': '''accelerate>=0.20.3''', '''av''': '''av==9.2.0''', '''beautifulsoup4''': '''beautifulsoup4''', '''black''': '''black~=23.1''', '''codecarbon''': '''codecarbon==1.2.0''', '''cookiecutter''': '''cookiecutter==1.7.3''', '''dataclasses''': '''dataclasses''', '''datasets''': '''datasets!=2.5.0''', '''decord''': '''decord==0.6.0''', '''deepspeed''': '''deepspeed>=0.9.3''', '''diffusers''': '''diffusers''', '''dill''': '''dill<0.3.5''', '''evaluate''': '''evaluate>=0.2.0''', '''fairscale''': '''fairscale>0.3''', '''faiss-cpu''': '''faiss-cpu''', '''fastapi''': '''fastapi''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1,<=0.7.0''', '''ftfy''': '''ftfy''', '''fugashi''': '''fugashi>=1.0''', '''GitPython''': '''GitPython<3.1.19''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.14.1,<1.0''', '''importlib_metadata''': '''importlib_metadata''', '''ipadic''': '''ipadic>=1.0.0,<2.0''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2,<=0.4.13''', '''jaxlib''': '''jaxlib>=0.1.65,<=0.4.13''', '''jieba''': '''jieba''', '''kenlm''': '''kenlm''', '''keras-nlp''': '''keras-nlp>=0.3.1''', '''librosa''': '''librosa''', '''nltk''': '''nltk''', '''natten''': '''natten>=0.14.6''', '''numpy''': '''numpy>=1.17''', '''onnxconverter-common''': '''onnxconverter-common''', '''onnxruntime-tools''': '''onnxruntime-tools>=1.4.2''', '''onnxruntime''': '''onnxruntime>=1.4.0''', '''opencv-python''': '''opencv-python''', '''optuna''': '''optuna''', '''optax''': '''optax>=0.0.8,<=0.1.4''', '''packaging''': '''packaging>=20.0''', '''parameterized''': '''parameterized''', '''phonemizer''': '''phonemizer''', '''protobuf''': '''protobuf''', '''psutil''': '''psutil''', '''pyyaml''': '''pyyaml>=5.1''', '''pydantic''': '''pydantic<2''', '''pytest''': '''pytest>=7.2.0''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''python''': '''python>=3.8.0''', '''ray[tune]''': '''ray[tune]''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''rhoknp''': '''rhoknp>=1.1.0,<1.3.1''', '''rjieba''': '''rjieba''', '''rouge-score''': '''rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1''', '''ruff''': '''ruff>=0.0.241,<=0.0.259''', '''sacrebleu''': '''sacrebleu>=1.4.12,<2.0.0''', '''sacremoses''': '''sacremoses''', '''safetensors''': '''safetensors>=0.3.1''', '''sagemaker''': '''sagemaker>=2.31.0''', '''scikit-learn''': '''scikit-learn''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''sigopt''': '''sigopt''', '''starlette''': '''starlette''', '''sudachipy''': '''sudachipy>=0.6.6''', '''sudachidict_core''': '''sudachidict_core>=20220729''', '''tensorflow-cpu''': '''tensorflow-cpu>=2.6,<2.14''', '''tensorflow''': '''tensorflow>=2.6,<2.14''', '''tensorflow-text''': '''tensorflow-text<2.14''', '''tf2onnx''': '''tf2onnx''', '''timeout-decorator''': '''timeout-decorator''', '''timm''': '''timm''', '''tokenizers''': '''tokenizers>=0.11.1,!=0.11.3,<0.14''', '''torch''': '''torch>=1.9,!=1.12.0''', '''torchaudio''': '''torchaudio''', '''torchvision''': '''torchvision''', '''pyctcdecode''': '''pyctcdecode>=0.4.0''', '''tqdm''': '''tqdm>=4.27''', '''unidic''': '''unidic>=1.0.2''', '''unidic_lite''': '''unidic_lite>=1.0.7''', '''urllib3''': '''urllib3<2.0.0''', '''uvicorn''': '''uvicorn''', }
578
'''simple docstring''' import math def lowerCAmelCase_ ( _lowerCamelCase: int ): __SCREAMING_SNAKE_CASE : Dict = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_lowerCamelCase ) def lowerCAmelCase_ ( _lowerCamelCase: float = 1 / 1_23_45 ): __SCREAMING_SNAKE_CASE : Optional[int] = 0 __SCREAMING_SNAKE_CASE : Optional[int] = 0 __SCREAMING_SNAKE_CASE : List[str] = 3 while True: __SCREAMING_SNAKE_CASE : int = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_lowerCamelCase ): __SCREAMING_SNAKE_CASE : str = int(_lowerCamelCase ) total_partitions += 1 if check_partition_perfect(_lowerCamelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_lowerCamelCase ) integer += 1 if __name__ == "__main__": print(f"{solution() = }")
578
1
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _lowerCAmelCase = False try: _lowerCAmelCase = _is_package_available('''google.colab''') except ModuleNotFoundError: pass @input.register class lowerCAmelCase_: '''simple docstring''' def __init__( self ,__UpperCAmelCase = None ,__UpperCAmelCase = [] ) -> str: lowerCAmelCase__ : List[Any] = 0 lowerCAmelCase__ : Dict = choices lowerCAmelCase__ : str = prompt if sys.platform == "win32": lowerCAmelCase__ : Optional[int] = """*""" else: lowerCAmelCase__ : Any = """➔ """ def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = "" ) -> int: if sys.platform != "win32": writeColor(self.choices[index] ,32 ,__UpperCAmelCase ) else: forceWrite(self.choices[index] ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: if index == self.position: forceWrite(F""" {self.arrow_char} """ ) self.write_choice(__UpperCAmelCase ) else: forceWrite(F""" {self.choices[index]}""" ) reset_cursor() def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = 1 ) -> List[Any]: lowerCAmelCase__ : int = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__UpperCAmelCase ) move_cursor(__UpperCAmelCase ,direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["""up"""] ) def UpperCAmelCase_ ( self ) -> List[str]: self.move_direction(Direction.UP ) @input.mark(KEYMAP["""down"""] ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["""newline"""] ) def UpperCAmelCase_ ( self ) -> int: move_cursor(len(self.choices ) - self.position ,"""DOWN""" ) return self.position @input.mark(KEYMAP["""interrupt"""] ) def UpperCAmelCase_ ( self ) -> int: move_cursor(len(self.choices ) - self.position ,"""DOWN""" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__UpperCAmelCase )] for number in range(10 )] ) def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : Tuple = int(chr(self.current_selection ) ) lowerCAmelCase__ : Optional[int] = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP ,-movement ) elif self.position < index: self.move_direction(Direction.DOWN ,__UpperCAmelCase ) else: return else: return def UpperCAmelCase_ ( self ,__UpperCAmelCase = 0 ) -> int: if self.prompt: linebreak() forceWrite(self.prompt ,"""\n""" ) if in_colab: forceWrite("""Please input a choice index (starting from 0), and press enter""" ,"""\n""" ) else: forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" ,"""\n""" ) lowerCAmelCase__ : List[Any] = default_choice for i in range(len(self.choices ) ): self.print_choice(__UpperCAmelCase ) forceWrite("""\n""" ) move_cursor(len(self.choices ) - self.position ,"""UP""" ) with cursor.hide(): while True: if in_colab: try: lowerCAmelCase__ : int = int(builtins.input() ) except ValueError: lowerCAmelCase__ : Optional[Any] = default_choice else: lowerCAmelCase__ : List[str] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 ,"""UP""" ) clear_line() self.write_choice(__UpperCAmelCase ,"""\n""" ) return choice
710
'''simple docstring''' import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase="attention" ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = params[f"""{prefix}/layers_{i}/{layer_name}/key/kernel"""] lowerCAmelCase__ : Tuple = params[f"""{prefix}/layers_{i}/{layer_name}/out/kernel"""] lowerCAmelCase__ : Optional[int] = params[f"""{prefix}/layers_{i}/{layer_name}/query/kernel"""] lowerCAmelCase__ : Dict = params[f"""{prefix}/layers_{i}/{layer_name}/value/kernel"""] return k, o, q, v def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=False ): """simple docstring""" if split_mlp_wi: lowerCAmelCase__ : Any = params[f"""{prefix}/layers_{i}/mlp/wi_0/kernel"""] lowerCAmelCase__ : Any = params[f"""{prefix}/layers_{i}/mlp/wi_1/kernel"""] lowerCAmelCase__ : Dict = (wi_a, wi_a) else: lowerCAmelCase__ : Union[str, Any] = params[f"""{prefix}/layers_{i}/mlp/wi/kernel"""] lowerCAmelCase__ : int = params[f"""{prefix}/layers_{i}/mlp/wo/kernel"""] return wi, wo def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" return params[f"""{prefix}/layers_{i}/{layer_name}/scale"""] def _SCREAMING_SNAKE_CASE ( UpperCamelCase , *, UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[str] = traverse_util.flatten_dict(variables["""target"""] ) lowerCAmelCase__ : Optional[Any] = {"""/""".join(UpperCamelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowerCAmelCase__ : Optional[int] = """encoder/layers_0/mlp/wi_0/kernel""" in old print("""Split MLP:""" , UpperCamelCase ) lowerCAmelCase__ : List[str] = collections.OrderedDict() # Shared embeddings. lowerCAmelCase__ : str = old["""token_embedder/embedding"""] # Encoder. for i in range(UpperCamelCase ): # Block i, layer 0 (Self Attention). lowerCAmelCase__ : Optional[Any] = tax_layer_norm_lookup(UpperCamelCase , UpperCamelCase , """encoder""" , """pre_attention_layer_norm""" ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : str = tax_attention_lookup(UpperCamelCase , UpperCamelCase , """encoder""" , """attention""" ) lowerCAmelCase__ : Tuple = layer_norm lowerCAmelCase__ : Optional[Any] = k.T lowerCAmelCase__ : Dict = o.T lowerCAmelCase__ : Any = q.T lowerCAmelCase__ : Dict = v.T # Block i, layer 1 (MLP). lowerCAmelCase__ : Optional[Any] = tax_layer_norm_lookup(UpperCamelCase , UpperCamelCase , """encoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = tax_mlp_lookup(UpperCamelCase , UpperCamelCase , """encoder""" , UpperCamelCase ) lowerCAmelCase__ : List[str] = layer_norm if split_mlp_wi: lowerCAmelCase__ : Tuple = wi[0].T lowerCAmelCase__ : Optional[Any] = wi[1].T else: lowerCAmelCase__ : Dict = wi.T lowerCAmelCase__ : List[Any] = wo.T lowerCAmelCase__ : Tuple = old[ """encoder/relpos_bias/rel_embedding""" ].T lowerCAmelCase__ : List[str] = old["""encoder/encoder_norm/scale"""] if not is_encoder_only: # Decoder. for i in range(UpperCamelCase ): # Block i, layer 0 (Self Attention). lowerCAmelCase__ : Optional[Any] = tax_layer_norm_lookup(UpperCamelCase , UpperCamelCase , """decoder""" , """pre_self_attention_layer_norm""" ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = tax_attention_lookup(UpperCamelCase , UpperCamelCase , """decoder""" , """self_attention""" ) lowerCAmelCase__ : Tuple = layer_norm lowerCAmelCase__ : List[Any] = k.T lowerCAmelCase__ : Dict = o.T lowerCAmelCase__ : Union[str, Any] = q.T lowerCAmelCase__ : Union[str, Any] = v.T # Block i, layer 1 (Cross Attention). lowerCAmelCase__ : Optional[int] = tax_layer_norm_lookup(UpperCamelCase , UpperCamelCase , """decoder""" , """pre_cross_attention_layer_norm""" ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Tuple = tax_attention_lookup(UpperCamelCase , UpperCamelCase , """decoder""" , """encoder_decoder_attention""" ) lowerCAmelCase__ : Any = layer_norm lowerCAmelCase__ : Tuple = k.T lowerCAmelCase__ : int = o.T lowerCAmelCase__ : Union[str, Any] = q.T lowerCAmelCase__ : str = v.T # Block i, layer 2 (MLP). lowerCAmelCase__ : Any = tax_layer_norm_lookup(UpperCamelCase , UpperCamelCase , """decoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase__ , lowerCAmelCase__ : Dict = tax_mlp_lookup(UpperCamelCase , UpperCamelCase , """decoder""" , UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = layer_norm if split_mlp_wi: lowerCAmelCase__ : str = wi[0].T lowerCAmelCase__ : List[Any] = wi[1].T else: lowerCAmelCase__ : List[str] = wi.T lowerCAmelCase__ : int = wo.T lowerCAmelCase__ : Union[str, Any] = old["""decoder/decoder_norm/scale"""] lowerCAmelCase__ : Dict = old[ """decoder/relpos_bias/rel_embedding""" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowerCAmelCase__ : Optional[Any] = old["""decoder/logits_dense/kernel"""].T return new def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowerCAmelCase__ : Optional[Any] = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowerCAmelCase__ : List[str] = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) lowerCAmelCase__ : Union[str, Any] = state_dict["""shared.weight"""] return state_dict def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : int = checkpoints.load_tax_checkpoint(UpperCamelCase ) lowerCAmelCase__ : List[str] = convert_tax_to_pytorch(UpperCamelCase , num_layers=config.num_layers , is_encoder_only=UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = make_state_dict(UpperCamelCase , UpperCamelCase ) model.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = False ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = TaConfig.from_json_file(UpperCamelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowerCAmelCase__ : List[Any] = TaEncoderModel(UpperCamelCase ) else: lowerCAmelCase__ : Union[str, Any] = TaForConditionalGeneration(UpperCamelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(UpperCamelCase ) # Verify that we can load the checkpoint. model.from_pretrained(UpperCamelCase ) print("""Done""" ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) _lowerCAmelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
160
0
'''simple docstring''' import datasets from .evaluate import evaluate __snake_case : Tuple = '''\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n''' __snake_case : Tuple = '''\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n''' __snake_case : Tuple = '''\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): def lowerCamelCase_ ( self ) -> List[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": {"id": datasets.Value("string" ), "prediction_text": datasets.Value("string" )}, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , ) def lowerCamelCase_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} UpperCAmelCase_ = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] UpperCAmelCase_ = evaluate(dataset=_UpperCamelCase , predictions=_UpperCamelCase ) return score
660
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowerCamelCase_ = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowerCamelCase_ = logging.get_logger(__name__) class __a ( __lowerCamelCase ): """simple docstring""" _A : Optional[int] = "maskformer" _A : List[str] = {"hidden_size": "mask_feature_size"} _A : Tuple = ["resnet", "swin"] _A : Optional[Any] = ["detr"] def __init__( self : List[str] ,_UpperCamelCase : int = 2_5_6 ,_UpperCamelCase : int = 2_5_6 ,_UpperCamelCase : float = 0.1 ,_UpperCamelCase : bool = False ,_UpperCamelCase : Optional[Dict] = None ,_UpperCamelCase : Optional[Dict] = None ,_UpperCamelCase : float = 0.02 ,_UpperCamelCase : float = 1.0 ,_UpperCamelCase : float = 1.0 ,_UpperCamelCase : float = 1.0 ,_UpperCamelCase : float = 20.0 ,_UpperCamelCase : Optional[bool] = None ,**_UpperCamelCase : str ,) -> Tuple: '''simple docstring''' if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k SCREAMING_SNAKE_CASE__ =SwinConfig( image_size=3_8_4 ,in_channels=3 ,patch_size=4 ,embed_dim=1_2_8 ,depths=[2, 2, 1_8, 2] ,num_heads=[4, 8, 1_6, 3_2] ,window_size=1_2 ,drop_path_rate=0.3 ,out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ,) if isinstance(_UpperCamelCase ,_UpperCamelCase ): SCREAMING_SNAKE_CASE__ =backbone_config.pop("""model_type""" ) SCREAMING_SNAKE_CASE__ =CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE__ =config_class.from_dict(_UpperCamelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 SCREAMING_SNAKE_CASE__ =DetrConfig() else: # verify that the decoder is supported SCREAMING_SNAKE_CASE__ =( decoder_config.pop("""model_type""" ) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {",".join(self.decoders_supported )}""" ) if isinstance(_UpperCamelCase ,_UpperCamelCase ): SCREAMING_SNAKE_CASE__ =CONFIG_MAPPING[decoder_type] SCREAMING_SNAKE_CASE__ =config_class.from_dict(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =backbone_config SCREAMING_SNAKE_CASE__ =decoder_config # main feature dimension for the model SCREAMING_SNAKE_CASE__ =fpn_feature_size SCREAMING_SNAKE_CASE__ =mask_feature_size # initializer SCREAMING_SNAKE_CASE__ =init_std SCREAMING_SNAKE_CASE__ =init_xavier_std # Hungarian matcher && loss SCREAMING_SNAKE_CASE__ =cross_entropy_weight SCREAMING_SNAKE_CASE__ =dice_weight SCREAMING_SNAKE_CASE__ =mask_weight SCREAMING_SNAKE_CASE__ =use_auxiliary_loss SCREAMING_SNAKE_CASE__ =no_object_weight SCREAMING_SNAKE_CASE__ =output_auxiliary_logits SCREAMING_SNAKE_CASE__ =self.decoder_config.encoder_attention_heads SCREAMING_SNAKE_CASE__ =self.decoder_config.num_hidden_layers super().__init__(**_UpperCamelCase ) @classmethod def __A ( cls : int ,_UpperCamelCase : PretrainedConfig ,_UpperCamelCase : PretrainedConfig ,**_UpperCamelCase : Any ) -> Union[str, Any]: '''simple docstring''' return cls( backbone_config=_UpperCamelCase ,decoder_config=_UpperCamelCase ,**_UpperCamelCase ,) def __A ( self : int ) -> Dict[str, any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE__ =self.backbone_config.to_dict() SCREAMING_SNAKE_CASE__ =self.decoder_config.to_dict() SCREAMING_SNAKE_CASE__ =self.__class__.model_type return output
151
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ :int = logging.get_logger(__name__) lowercase__ :Optional[Any] = { 'salesforce/blip2-opt-2.7b': 'https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json', } class snake_case ( __UpperCAmelCase ): '''simple docstring''' _A : Optional[int] = 'blip_2_vision_model' def __init__( self : Any , __lowercase : List[str]=1_408 , __lowercase : str=6_144 , __lowercase : Optional[int]=39 , __lowercase : List[str]=16 , __lowercase : Optional[int]=224 , __lowercase : str=14 , __lowercase : List[Any]="gelu" , __lowercase : Optional[Any]=0.0_0_0_0_1 , __lowercase : Dict=0.0 , __lowercase : List[str]=1e-10 , __lowercase : Union[str, Any]=True , **__lowercase : Optional[int] , ): '''simple docstring''' super().__init__(**__lowercase ) __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : Optional[int] = intermediate_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Optional[Any] = patch_size __UpperCAmelCase : str = image_size __UpperCAmelCase : str = initializer_range __UpperCAmelCase : Optional[int] = attention_dropout __UpperCAmelCase : str = layer_norm_eps __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : str = qkv_bias @classmethod def A_ ( cls : Optional[Any] , __lowercase : Union[str, os.PathLike] , **__lowercase : Optional[Any] ): '''simple docstring''' cls._set_token_in_kwargs(__lowercase ) __UpperCAmelCase : Optional[Any] = cls.get_config_dict(__lowercase , **__lowercase ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __UpperCAmelCase : str = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__lowercase , **__lowercase ) class snake_case ( __UpperCAmelCase ): '''simple docstring''' _A : int = 'blip_2_qformer' def __init__( self : Dict , __lowercase : Optional[int]=30_522 , __lowercase : int=768 , __lowercase : str=12 , __lowercase : Union[str, Any]=12 , __lowercase : int=3_072 , __lowercase : List[Any]="gelu" , __lowercase : Dict=0.1 , __lowercase : Optional[int]=0.1 , __lowercase : Dict=512 , __lowercase : Any=0.0_2 , __lowercase : Any=1e-12 , __lowercase : Dict=0 , __lowercase : Tuple="absolute" , __lowercase : str=2 , __lowercase : Union[str, Any]=1_408 , **__lowercase : str , ): '''simple docstring''' super().__init__(pad_token_id=__lowercase , **__lowercase ) __UpperCAmelCase : List[str] = vocab_size __UpperCAmelCase : List[Any] = hidden_size __UpperCAmelCase : Union[str, Any] = num_hidden_layers __UpperCAmelCase : Tuple = num_attention_heads __UpperCAmelCase : Any = hidden_act __UpperCAmelCase : Optional[int] = intermediate_size __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Dict = attention_probs_dropout_prob __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : int = layer_norm_eps __UpperCAmelCase : List[Any] = position_embedding_type __UpperCAmelCase : Union[str, Any] = cross_attention_frequency __UpperCAmelCase : Union[str, Any] = encoder_hidden_size @classmethod def A_ ( cls : int , __lowercase : Union[str, os.PathLike] , **__lowercase : Optional[int] ): '''simple docstring''' cls._set_token_in_kwargs(__lowercase ) __UpperCAmelCase : List[str] = cls.get_config_dict(__lowercase , **__lowercase ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __UpperCAmelCase : Union[str, Any] = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__lowercase , **__lowercase ) class snake_case ( __UpperCAmelCase ): '''simple docstring''' _A : Union[str, Any] = 'blip-2' _A : str = True def __init__( self : Any , __lowercase : Union[str, Any]=None , __lowercase : Union[str, Any]=None , __lowercase : Any=None , __lowercase : List[str]=32 , **__lowercase : List[Any] ): '''simple docstring''' super().__init__(**__lowercase ) if vision_config is None: __UpperCAmelCase : Any = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: __UpperCAmelCase : int = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: __UpperCAmelCase : Dict = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) __UpperCAmelCase : Any = BlipaVisionConfig(**__lowercase ) __UpperCAmelCase : List[str] = BlipaQFormerConfig(**__lowercase ) __UpperCAmelCase : Any = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' __UpperCAmelCase : Optional[Any] = CONFIG_MAPPING[text_model_type](**__lowercase ) __UpperCAmelCase : str = self.text_config.tie_word_embeddings __UpperCAmelCase : Dict = self.text_config.is_encoder_decoder __UpperCAmelCase : Union[str, Any] = num_query_tokens __UpperCAmelCase : Union[str, Any] = self.vision_config.hidden_size __UpperCAmelCase : Optional[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __UpperCAmelCase : Union[str, Any] = 1.0 __UpperCAmelCase : Optional[Any] = 0.0_2 @classmethod def A_ ( cls : str , __lowercase : BlipaVisionConfig , __lowercase : BlipaQFormerConfig , __lowercase : PretrainedConfig , **__lowercase : Dict , ): '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__lowercase , ) def A_ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : str = self.vision_config.to_dict() __UpperCAmelCase : str = self.qformer_config.to_dict() __UpperCAmelCase : Any = self.text_config.to_dict() __UpperCAmelCase : Union[str, Any] = self.__class__.model_type return output
708
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class snake_case ( unittest.TestCase ): '''simple docstring''' def A_ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Any = tempfile.mkdtemp() # fmt: off __UpperCAmelCase : Optional[int] = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __UpperCAmelCase : List[str] = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __UpperCAmelCase : Any = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __UpperCAmelCase : Dict = {'''unk_token''': '''<unk>'''} __UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __UpperCAmelCase : List[str] = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __UpperCAmelCase : Any = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def A_ ( self : Optional[Any] , **__lowercase : Tuple ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def A_ ( self : Any , **__lowercase : Optional[Any] ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase ) def A_ ( self : Dict , **__lowercase : str ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def A_ ( self : List[str] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def A_ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __UpperCAmelCase : int = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def A_ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self.get_tokenizer() __UpperCAmelCase : Dict = self.get_rust_tokenizer() __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : Any = CLIPSegProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __UpperCAmelCase : List[Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __UpperCAmelCase : Tuple = CLIPSegProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __UpperCAmelCase : str = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def A_ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Any = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Any = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __UpperCAmelCase : Tuple = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 ) __UpperCAmelCase : List[str] = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def A_ ( self : int ): '''simple docstring''' __UpperCAmelCase : int = self.get_image_processor() __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : Optional[Any] = CLIPSegProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __UpperCAmelCase : List[Any] = self.prepare_image_inputs() __UpperCAmelCase : Dict = image_processor(__lowercase , return_tensors='''np''' ) __UpperCAmelCase : Optional[int] = processor(images=__lowercase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A_ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Tuple = self.get_image_processor() __UpperCAmelCase : Any = self.get_tokenizer() __UpperCAmelCase : Any = CLIPSegProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __UpperCAmelCase : int = '''lower newer''' __UpperCAmelCase : int = processor(text=__lowercase ) __UpperCAmelCase : Any = tokenizer(__lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A_ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Tuple = self.get_image_processor() __UpperCAmelCase : Union[str, Any] = self.get_tokenizer() __UpperCAmelCase : List[Any] = CLIPSegProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __UpperCAmelCase : str = '''lower newer''' __UpperCAmelCase : int = self.prepare_image_inputs() __UpperCAmelCase : str = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def A_ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Dict = self.get_image_processor() __UpperCAmelCase : str = self.get_tokenizer() __UpperCAmelCase : Any = CLIPSegProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __UpperCAmelCase : Union[str, Any] = self.prepare_image_inputs() __UpperCAmelCase : Optional[Any] = self.prepare_image_inputs() __UpperCAmelCase : Tuple = processor(images=__lowercase , visual_prompt=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def A_ ( self : str ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self.get_image_processor() __UpperCAmelCase : Any = self.get_tokenizer() __UpperCAmelCase : Any = CLIPSegProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __UpperCAmelCase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCAmelCase : int = processor.batch_decode(__lowercase ) __UpperCAmelCase : int = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase )
374
0
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __A : Tuple = logging.get_logger(__name__) __A : int = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } __A : int = { '''b0''': { '''hidden_dim''': 1280, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 224, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1280, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 240, '''dropout_rate''': 0.2, '''dw_padding''': [16], }, '''b2''': { '''hidden_dim''': 1408, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 260, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 16], }, '''b3''': { '''hidden_dim''': 1536, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 300, '''dropout_rate''': 0.3, '''dw_padding''': [5, 18], }, '''b4''': { '''hidden_dim''': 1792, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 380, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2048, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 456, '''dropout_rate''': 0.4, '''dw_padding''': [13, 27], }, '''b6''': { '''hidden_dim''': 2304, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 528, '''dropout_rate''': 0.5, '''dw_padding''': [31], }, '''b7''': { '''hidden_dim''': 2560, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 600, '''dropout_rate''': 0.5, '''dw_padding''': [18], }, } def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : str = EfficientNetConfig() lowerCAmelCase : Any = CONFIG_MAP[model_name]['hidden_dim'] lowerCAmelCase : List[str] = CONFIG_MAP[model_name]['width_coef'] lowerCAmelCase : Optional[Any] = CONFIG_MAP[model_name]['depth_coef'] lowerCAmelCase : Dict = CONFIG_MAP[model_name]['image_size'] lowerCAmelCase : List[Any] = CONFIG_MAP[model_name]['dropout_rate'] lowerCAmelCase : Any = CONFIG_MAP[model_name]['dw_padding'] lowerCAmelCase : Union[str, Any] = 'huggingface/label-files' lowerCAmelCase : Dict = 'imagenet-1k-id2label.json' lowerCAmelCase : Dict = 1_000 lowerCAmelCase : Dict = json.load(open(hf_hub_download(_UpperCAmelCase, _UpperCAmelCase, repo_type='dataset' ), 'r' ) ) lowerCAmelCase : List[str] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase : str = idalabel lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE__ ( ) -> Any: '''simple docstring''' lowerCAmelCase : Dict = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase : List[str] = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw ) return im def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase : str = CONFIG_MAP[model_name]['image_size'] lowerCAmelCase : Dict = EfficientNetImageProcessor( size={'height': size, 'width': size}, image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6], image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3], do_center_crop=_UpperCAmelCase, ) return preprocessor def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : Dict = [v.split('_' )[0].split('block' )[1] for v in original_param_names if v.startswith('block' )] lowerCAmelCase : str = sorted(set(_UpperCAmelCase ) ) lowerCAmelCase : Dict = len(_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = {b: str(_UpperCAmelCase ) for b, i in zip(_UpperCAmelCase, range(_UpperCAmelCase ) )} lowerCAmelCase : Optional[int] = [] rename_keys.append(('stem_conv/kernel:0', 'embeddings.convolution.weight') ) rename_keys.append(('stem_bn/gamma:0', 'embeddings.batchnorm.weight') ) rename_keys.append(('stem_bn/beta:0', 'embeddings.batchnorm.bias') ) rename_keys.append(('stem_bn/moving_mean:0', 'embeddings.batchnorm.running_mean') ) rename_keys.append(('stem_bn/moving_variance:0', 'embeddings.batchnorm.running_var') ) for b in block_names: lowerCAmelCase : int = block_name_mapping[b] rename_keys.append((f"block{b}_expand_conv/kernel:0", f"encoder.blocks.{hf_b}.expansion.expand_conv.weight") ) rename_keys.append((f"block{b}_expand_bn/gamma:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.weight") ) rename_keys.append((f"block{b}_expand_bn/beta:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.bias") ) rename_keys.append( (f"block{b}_expand_bn/moving_mean:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean") ) rename_keys.append( (f"block{b}_expand_bn/moving_variance:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_var") ) rename_keys.append( (f"block{b}_dwconv/depthwise_kernel:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight") ) rename_keys.append((f"block{b}_bn/gamma:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight") ) rename_keys.append((f"block{b}_bn/beta:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias") ) rename_keys.append( (f"block{b}_bn/moving_mean:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean") ) rename_keys.append( (f"block{b}_bn/moving_variance:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var") ) rename_keys.append((f"block{b}_se_reduce/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight") ) rename_keys.append((f"block{b}_se_reduce/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias") ) rename_keys.append((f"block{b}_se_expand/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.weight") ) rename_keys.append((f"block{b}_se_expand/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.bias") ) rename_keys.append( (f"block{b}_project_conv/kernel:0", f"encoder.blocks.{hf_b}.projection.project_conv.weight") ) rename_keys.append((f"block{b}_project_bn/gamma:0", f"encoder.blocks.{hf_b}.projection.project_bn.weight") ) rename_keys.append((f"block{b}_project_bn/beta:0", f"encoder.blocks.{hf_b}.projection.project_bn.bias") ) rename_keys.append( (f"block{b}_project_bn/moving_mean:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_mean") ) rename_keys.append( (f"block{b}_project_bn/moving_variance:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_var") ) rename_keys.append(('top_conv/kernel:0', 'encoder.top_conv.weight') ) rename_keys.append(('top_bn/gamma:0', 'encoder.top_bn.weight') ) rename_keys.append(('top_bn/beta:0', 'encoder.top_bn.bias') ) rename_keys.append(('top_bn/moving_mean:0', 'encoder.top_bn.running_mean') ) rename_keys.append(('top_bn/moving_variance:0', 'encoder.top_bn.running_var') ) lowerCAmelCase : Union[str, Any] = {} for item in rename_keys: if item[0] in original_param_names: lowerCAmelCase : Dict = 'efficientnet.' + item[1] lowerCAmelCase : Tuple = 'classifier.weight' lowerCAmelCase : Optional[Any] = 'classifier.bias' return key_mapping def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue lowerCAmelCase : str = key_mapping[key] if "_conv" in key and "kernel" in key: lowerCAmelCase : List[Any] = torch.from_numpy(_UpperCAmelCase ).permute(3, 2, 0, 1 ) elif "depthwise_kernel" in key: lowerCAmelCase : int = torch.from_numpy(_UpperCAmelCase ).permute(2, 3, 0, 1 ) elif "kernel" in key: lowerCAmelCase : str = torch.from_numpy(np.transpose(_UpperCAmelCase ) ) else: lowerCAmelCase : int = torch.from_numpy(_UpperCAmelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_UpperCAmelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : Optional[int] = model_classes[model_name]( include_top=_UpperCAmelCase, weights='imagenet', input_tensor=_UpperCAmelCase, input_shape=_UpperCAmelCase, pooling=_UpperCAmelCase, classes=1_000, classifier_activation='softmax', ) lowerCAmelCase : int = original_model.trainable_variables lowerCAmelCase : Union[str, Any] = original_model.non_trainable_variables lowerCAmelCase : Union[str, Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: lowerCAmelCase : str = param.numpy() lowerCAmelCase : str = list(tf_params.keys() ) # Load HuggingFace model lowerCAmelCase : Union[str, Any] = get_efficientnet_config(_UpperCAmelCase ) lowerCAmelCase : Dict = EfficientNetForImageClassification(_UpperCAmelCase ).eval() lowerCAmelCase : str = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('Converting parameters...' ) lowerCAmelCase : str = rename_keys(_UpperCAmelCase ) replace_params(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # Initialize preprocessor and preprocess input image lowerCAmelCase : int = convert_image_processor(_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = preprocessor(images=prepare_img(), return_tensors='pt' ) # HF model inference hf_model.eval() with torch.no_grad(): lowerCAmelCase : str = hf_model(**_UpperCAmelCase ) lowerCAmelCase : Dict = outputs.logits.detach().numpy() # Original model inference lowerCAmelCase : str = False lowerCAmelCase : List[Any] = CONFIG_MAP[model_name]['image_size'] lowerCAmelCase : int = prepare_img().resize((image_size, image_size), resample=PIL.Image.NEAREST ) lowerCAmelCase : Dict = image.img_to_array(_UpperCAmelCase ) lowerCAmelCase : Optional[Any] = np.expand_dims(_UpperCAmelCase, axis=0 ) lowerCAmelCase : Optional[Any] = original_model.predict(_UpperCAmelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_UpperCAmelCase, _UpperCAmelCase, atol=1e-3 ), "The predicted logits are not the same." print('Model outputs match!' ) if save_model: # Create folder to save model if not os.path.isdir(_UpperCAmelCase ): os.mkdir(_UpperCAmelCase ) # Save converted model and image processor hf_model.save_pretrained(_UpperCAmelCase ) preprocessor.save_pretrained(_UpperCAmelCase ) if push_to_hub: # Push model and image processor to hub print(f"Pushing converted {model_name} to the hub..." ) lowerCAmelCase : Any = f"efficientnet-{model_name}" preprocessor.push_to_hub(_UpperCAmelCase ) hf_model.push_to_hub(_UpperCAmelCase ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') __A : str = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
343
import math import sys def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : str = '' try: with open(_UpperCAmelCase, 'rb' ) as binary_file: lowerCAmelCase : Any = binary_file.read() for dat in data: lowerCAmelCase : int = f"{dat:08b}" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Tuple = {'0': '0', '1': '1'} lowerCAmelCase , lowerCAmelCase : Tuple = '', '' lowerCAmelCase : Any = len(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowerCAmelCase : List[Any] = lexicon[curr_string] result += last_match_id lowerCAmelCase : int = last_match_id + '0' if math.loga(_UpperCAmelCase ).is_integer(): lowerCAmelCase : List[str] = {} for curr_key in list(_UpperCAmelCase ): lowerCAmelCase : List[Any] = lexicon.pop(_UpperCAmelCase ) lowerCAmelCase : Optional[int] = new_lex lowerCAmelCase : Tuple = last_match_id + '1' index += 1 lowerCAmelCase : List[Any] = '' return result def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> None: '''simple docstring''' lowerCAmelCase : Dict = 8 try: with open(_UpperCAmelCase, 'wb' ) as opened_file: lowerCAmelCase : List[Any] = [ to_write[i : i + byte_length] for i in range(0, len(_UpperCAmelCase ), _UpperCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_UpperCAmelCase, 2 ).to_bytes(1, byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : int = 0 for letter in data_bits: if letter == "1": break counter += 1 lowerCAmelCase : int = data_bits[counter:] lowerCAmelCase : Optional[int] = data_bits[counter + 1 :] return data_bits def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> None: '''simple docstring''' lowerCAmelCase : Tuple = read_file_binary(_UpperCAmelCase ) lowerCAmelCase : int = remove_prefix(_UpperCAmelCase ) lowerCAmelCase : List[str] = decompress_data(_UpperCAmelCase ) write_file_binary(_UpperCAmelCase, _UpperCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
343
1
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : List[Any] = "https://openaipublic.azureedge.net/jukebox/models/" __lowerCamelCase : Optional[Any] = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def __UpperCAmelCase ( __magic_name__ )-> List[Any]: """simple docstring""" if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: snake_case_ : List[str] = key.replace(".model.1.bias" ,".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: snake_case_ : str = key.replace(".model.1.weight" ,".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: snake_case_ : List[Any] = key.replace(".model.3.bias" ,".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: snake_case_ : Any = key.replace(".model.3.weight" ,".conv1d_2.weight" ) if "conditioner_blocks.0." in key: snake_case_ : str = key.replace("conditioner_blocks.0" ,"conditioner_blocks" ) if "prime_prior" in key: snake_case_ : Any = key.replace("prime_prior" ,"encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: snake_case_ : int = key.replace(".emb." ,"." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" ,".codebook" ) if "y_emb." in key: return key.replace("y_emb." ,"metadata_embedding." ) if "x_emb.emb." in key: snake_case_ : Optional[int] = key.replace("0.x_emb.emb" ,"embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" ,"encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" ,".layer_norm" ) if "_ln" in key: return key.replace("_ln" ,"_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" ,"encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" ,"encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" ,"fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" ,"embed_tokens" ) return key def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ )-> int: """simple docstring""" snake_case_ : Tuple = {} import re snake_case_ : Optional[int] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) snake_case_ : Dict = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) snake_case_ : str = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) snake_case_ : List[Any] = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) snake_case_ : List[Any] = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) snake_case_ : str = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) snake_case_ : Any = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) snake_case_ : Optional[Any] = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) snake_case_ : Any = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(__magic_name__ ): snake_case_ : Any = re_encoder_block_conv_in.match(__magic_name__ ) snake_case_ : Optional[Any] = regex_match.groups() snake_case_ : List[str] = int(groups[2] ) * 2 + int(groups[3] ) snake_case_ : List[str] = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' snake_case_ : int = re_encoder_block_conv_in.sub(__magic_name__ ,__magic_name__ ) elif re_encoder_block_resnet.fullmatch(__magic_name__ ): snake_case_ : Dict = re_encoder_block_resnet.match(__magic_name__ ) snake_case_ : Dict = regex_match.groups() snake_case_ : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) snake_case_ : Tuple = {"1": 1, "3": 2}[groups[-2]] snake_case_ : Tuple = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' snake_case_ : Union[str, Any] = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' snake_case_ : Dict = prefix + resnet_block snake_case_ : List[str] = re_encoder_block_resnet.sub(__magic_name__ ,__magic_name__ ) elif re_encoder_block_proj_out.fullmatch(__magic_name__ ): snake_case_ : List[str] = re_encoder_block_proj_out.match(__magic_name__ ) snake_case_ : Optional[int] = regex_match.groups() snake_case_ : List[str] = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' snake_case_ : Union[str, Any] = re_encoder_block_proj_out.sub(__magic_name__ ,__magic_name__ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(__magic_name__ ): snake_case_ : List[Any] = re_decoder_block_conv_out.match(__magic_name__ ) snake_case_ : int = regex_match.groups() snake_case_ : Tuple = int(groups[2] ) * 2 + int(groups[3] ) - 2 snake_case_ : int = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' snake_case_ : Dict = re_decoder_block_conv_out.sub(__magic_name__ ,__magic_name__ ) elif re_decoder_block_resnet.fullmatch(__magic_name__ ): snake_case_ : Dict = re_decoder_block_resnet.match(__magic_name__ ) snake_case_ : List[Any] = regex_match.groups() snake_case_ : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) - 2 snake_case_ : List[str] = {"1": 1, "3": 2}[groups[-2]] snake_case_ : Union[str, Any] = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' snake_case_ : Union[str, Any] = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' snake_case_ : Dict = prefix + resnet_block snake_case_ : Optional[int] = re_decoder_block_resnet.sub(__magic_name__ ,__magic_name__ ) elif re_decoder_block_proj_in.fullmatch(__magic_name__ ): snake_case_ : Optional[Any] = re_decoder_block_proj_in.match(__magic_name__ ) snake_case_ : Dict = regex_match.groups() snake_case_ : List[Any] = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' snake_case_ : Tuple = re_decoder_block_proj_in.sub(__magic_name__ ,__magic_name__ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(__magic_name__ ): snake_case_ : str = re_prior_cond_conv_out.match(__magic_name__ ) snake_case_ : List[Any] = regex_match.groups() snake_case_ : Optional[Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 snake_case_ : List[Any] = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' snake_case_ : List[str] = re_prior_cond_conv_out.sub(__magic_name__ ,__magic_name__ ) elif re_prior_cond_resnet.fullmatch(__magic_name__ ): snake_case_ : List[Any] = re_prior_cond_resnet.match(__magic_name__ ) snake_case_ : int = regex_match.groups() snake_case_ : Dict = int(groups[1] ) * 2 + int(groups[2] ) - 2 snake_case_ : Any = {"1": 1, "3": 2}[groups[-2]] snake_case_ : List[str] = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' snake_case_ : Union[str, Any] = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' snake_case_ : List[Any] = prefix + resnet_block snake_case_ : Tuple = re_prior_cond_resnet.sub(__magic_name__ ,__magic_name__ ) elif re_prior_cond_proj_in.fullmatch(__magic_name__ ): snake_case_ : List[Any] = re_prior_cond_proj_in.match(__magic_name__ ) snake_case_ : List[str] = regex_match.groups() snake_case_ : Optional[Any] = F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' snake_case_ : Dict = re_prior_cond_proj_in.sub(__magic_name__ ,__magic_name__ ) # keep original key else: snake_case_ : Union[str, Any] = original_key snake_case_ : List[Any] = replace_key(__magic_name__ ) if F'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(F'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape: snake_case_ : Dict = model_state_dict[F'''{key_prefix}.{key}'''] print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) snake_case_ : List[str] = original_key snake_case_ : str = original_key snake_case_ : Union[str, Any] = value return new_dict @torch.no_grad() def __UpperCAmelCase ( __magic_name__=None ,__magic_name__=None )-> Any: """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' ): snake_case_ : Tuple = requests.get(F'''{PREFIX}{file}''' ,allow_redirects=__magic_name__ ) os.makedirs(F'''{pytorch_dump_folder_path}/''' ,exist_ok=__magic_name__ ) open(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' ,"wb" ).write(r.content ) snake_case_ : int = MODEL_MAPPING[model_name.split("/" )[-1]] snake_case_ : List[str] = JukeboxConfig.from_pretrained(__magic_name__ ) snake_case_ : Tuple = JukeboxModel(__magic_name__ ) snake_case_ : Dict = [] snake_case_ : Optional[int] = {} for i, dict_name in enumerate(__magic_name__ ): snake_case_ : int = torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}''' )["model"] snake_case_ : List[Any] = {} for k in old_dic.keys(): if k.endswith(".b" ): snake_case_ : Any = old_dic[k] elif k.endswith(".w" ): snake_case_ : int = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: snake_case_ : Union[str, Any] = old_dic[k] else: snake_case_ : Dict = old_dic[k] snake_case_ : Optional[int] = "vqvae" if i == 0 else F'''priors.{3 - i}''' snake_case_ : Union[str, Any] = fix_jukebox_keys(__magic_name__ ,model.state_dict() ,__magic_name__ ,__magic_name__ ) weight_dict.append(__magic_name__ ) snake_case_ : Dict = weight_dict.pop(0 ) model.vqvae.load_state_dict(__magic_name__ ) for i in range(len(__magic_name__ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) with open(F'''{pytorch_dump_folder_path}/mapping.json''' ,"w" ) as txtfile: json.dump(__magic_name__ ,__magic_name__ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) return weight_dict if __name__ == "__main__": __lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''jukebox-5b-lyrics''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''jukebox-5b-lyrics-converted''', type=str, help='''Path to the output PyTorch model directory.''', ) __lowerCamelCase : Dict = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
705
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : int = { '''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''', # See all Cvt models at https://huggingface.co/models?filter=cvt } class A_ (a_ ): """simple docstring""" a__ = '''cvt''' def __init__( self :List[Any] , lowerCAmelCase__ :Optional[int]=3 , lowerCAmelCase__ :Any=[7, 3, 3] , lowerCAmelCase__ :Dict=[4, 2, 2] , lowerCAmelCase__ :Union[str, Any]=[2, 1, 1] , lowerCAmelCase__ :Any=[64, 192, 384] , lowerCAmelCase__ :List[str]=[1, 3, 6] , lowerCAmelCase__ :str=[1, 2, 10] , lowerCAmelCase__ :Any=[4.0, 4.0, 4.0] , lowerCAmelCase__ :int=[0.0, 0.0, 0.0] , lowerCAmelCase__ :Optional[Any]=[0.0, 0.0, 0.0] , lowerCAmelCase__ :Dict=[0.0, 0.0, 0.1] , lowerCAmelCase__ :List[Any]=[True, True, True] , lowerCAmelCase__ :List[Any]=[False, False, True] , lowerCAmelCase__ :Dict=["dw_bn", "dw_bn", "dw_bn"] , lowerCAmelCase__ :Any=[3, 3, 3] , lowerCAmelCase__ :Tuple=[1, 1, 1] , lowerCAmelCase__ :Optional[int]=[2, 2, 2] , lowerCAmelCase__ :Union[str, Any]=[1, 1, 1] , lowerCAmelCase__ :Any=[1, 1, 1] , lowerCAmelCase__ :List[str]=0.0_2 , lowerCAmelCase__ :Dict=1E-1_2 , **lowerCAmelCase__ :Optional[Any] , ) -> str: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) snake_case_ : int = num_channels snake_case_ : int = patch_sizes snake_case_ : Optional[Any] = patch_stride snake_case_ : Dict = patch_padding snake_case_ : Tuple = embed_dim snake_case_ : Optional[int] = num_heads snake_case_ : Union[str, Any] = depth snake_case_ : Optional[int] = mlp_ratio snake_case_ : Tuple = attention_drop_rate snake_case_ : str = drop_rate snake_case_ : Tuple = drop_path_rate snake_case_ : Any = qkv_bias snake_case_ : Union[str, Any] = cls_token snake_case_ : int = qkv_projection_method snake_case_ : Any = kernel_qkv snake_case_ : Union[str, Any] = padding_kv snake_case_ : str = stride_kv snake_case_ : Dict = padding_q snake_case_ : Tuple = stride_q snake_case_ : Any = initializer_range snake_case_ : Any = layer_norm_eps
656
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: __lowerCamelCase : str = None __lowerCamelCase : List[Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCamelCase : Any = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } __lowerCamelCase : List[str] = { '''camembert-base''': 512, } __lowerCamelCase : int = '''▁''' class A_ (a_ ): """simple docstring""" a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ['''input_ids''', '''attention_mask'''] a__ = CamembertTokenizer def __init__( self :int , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :List[str]=None , lowerCAmelCase__ :Tuple="<s>" , lowerCAmelCase__ :Tuple="</s>" , lowerCAmelCase__ :Any="</s>" , lowerCAmelCase__ :Optional[int]="<s>" , lowerCAmelCase__ :Optional[Any]="<unk>" , lowerCAmelCase__ :int="<pad>" , lowerCAmelCase__ :List[str]="<mask>" , lowerCAmelCase__ :Union[str, Any]=["<s>NOTUSED", "</s>NOTUSED"] , **lowerCAmelCase__ :Tuple , ) -> Union[str, Any]: '''simple docstring''' snake_case_ : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , **lowerCAmelCase__ , ) snake_case_ : int = vocab_file snake_case_ : str = False if not self.vocab_file else True def _A ( self :int , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] snake_case_ : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _A ( self :int , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case_ : List[Any] = [self.sep_token_id] snake_case_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _A ( self :Dict , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ : List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file , lowerCAmelCase__ ) return (out_vocab_file,)
653
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : Any = { '''configuration_longformer''': [ '''LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongformerConfig''', '''LongformerOnnxConfig''', ], '''tokenization_longformer''': ['''LongformerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = ['''LongformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ '''LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongformerForMaskedLM''', '''LongformerForMultipleChoice''', '''LongformerForQuestionAnswering''', '''LongformerForSequenceClassification''', '''LongformerForTokenClassification''', '''LongformerModel''', '''LongformerPreTrainedModel''', '''LongformerSelfAttention''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = [ '''TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLongformerForMaskedLM''', '''TFLongformerForMultipleChoice''', '''TFLongformerForQuestionAnswering''', '''TFLongformerForSequenceClassification''', '''TFLongformerForTokenClassification''', '''TFLongformerModel''', '''TFLongformerPreTrainedModel''', '''TFLongformerSelfAttention''', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys __lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
653
1
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class UpperCAmelCase ( __lowercase ): def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = SMALL_MODEL_IDENTIFIER UpperCamelCase = """pt""" UpperCamelCase = """tf""" def lowerCamelCase_ ( self : Any , __magic_name__ : Tuple ): """simple docstring""" UpperCamelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(_A ) def lowerCamelCase_ ( self : Any , __magic_name__ : Union[str, Any] ): """simple docstring""" UpperCamelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=_A ) model_tf.save_pretrained(_A ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = """mock_framework""" # Framework provided - return whatever the user provides UpperCamelCase = FeaturesManager.determine_framework(self.test_model , _A ) self.assertEqual(_A , _A ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_A ) UpperCamelCase = FeaturesManager.determine_framework(_A , _A ) self.assertEqual(_A , _A ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_A ) UpperCamelCase = FeaturesManager.determine_framework(_A , _A ) self.assertEqual(_A , _A ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_A ) UpperCamelCase = FeaturesManager.determine_framework(_A ) self.assertEqual(_A , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_A ) UpperCamelCase = FeaturesManager.determine_framework(_A ) self.assertEqual(_A , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_A ): UpperCamelCase = FeaturesManager.determine_framework(_A ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = MagicMock(return_value=_A ) with patch("""transformers.onnx.features.is_tf_available""" , _A ): UpperCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_A , self.framework_pt ) # PyTorch not in environment -> use TensorFlow UpperCamelCase = MagicMock(return_value=_A ) with patch("""transformers.onnx.features.is_torch_available""" , _A ): UpperCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_A , self.framework_tf ) # Both in environment -> use PyTorch UpperCamelCase = MagicMock(return_value=_A ) UpperCamelCase = MagicMock(return_value=_A ) with patch("""transformers.onnx.features.is_tf_available""" , _A ), patch( """transformers.onnx.features.is_torch_available""" , _A ): UpperCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_A , self.framework_pt ) # Both not in environment -> raise error UpperCamelCase = MagicMock(return_value=_A ) UpperCamelCase = MagicMock(return_value=_A ) with patch("""transformers.onnx.features.is_tf_available""" , _A ), patch( """transformers.onnx.features.is_torch_available""" , _A ): with self.assertRaises(_A ): UpperCamelCase = FeaturesManager.determine_framework(self.test_model )
705
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase ( __snake_case , unittest.TestCase ): lowercase = KandinskyInpaintPipeline lowercase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] lowercase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] lowercase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowercase = False @property def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" return 3_2 @property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" return 3_2 @property def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" return self.time_input_dim @property def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase_ ( self : str ): """simple docstring""" return 1_0_0 @property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def lowerCamelCase_ ( self : Any ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) UpperCamelCase = MultilingualCLIP(__magic_name__ ) UpperCamelCase = text_encoder.eval() return text_encoder @property def lowerCamelCase_ ( self : List[str] ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } UpperCamelCase = UNetaDConditionModel(**__magic_name__ ) return model @property def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.dummy_text_encoder UpperCamelCase = self.dummy_tokenizer UpperCamelCase = self.dummy_unet UpperCamelCase = self.dummy_movq UpperCamelCase = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__magic_name__ , ) UpperCamelCase = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCamelCase_ ( self : Tuple , __magic_name__ : Tuple , __magic_name__ : Optional[int]=0 ): """simple docstring""" UpperCamelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) UpperCamelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__magic_name__ ) # create init_image UpperCamelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase = Image.fromarray(np.uinta(__magic_name__ ) ).convert("""RGB""" ).resize((2_5_6, 2_5_6) ) # create mask UpperCamelCase = np.ones((6_4, 6_4) , dtype=np.floataa ) UpperCamelCase = 0 if str(__magic_name__ ).startswith("""mps""" ): UpperCamelCase = torch.manual_seed(__magic_name__ ) else: UpperCamelCase = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) UpperCamelCase = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 6_4, """width""": 6_4, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = """cpu""" UpperCamelCase = self.get_dummy_components() UpperCamelCase = self.pipeline_class(**__magic_name__ ) UpperCamelCase = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCamelCase = pipe(**self.get_dummy_inputs(__magic_name__ ) ) UpperCamelCase = output.images UpperCamelCase = pipe( **self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0] UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] print(F'image.shape {image.shape}' ) assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase = np.array( [0.8_326_919, 0.73_790_467, 0.20_918_581, 0.9_309_612, 0.5_511_791, 0.43_713_328, 0.5_513_321, 0.49_922_934, 0.59_497_786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def lowerCamelCase_ ( self : Dict ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase_ ( self : Dict ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) UpperCamelCase = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) UpperCamelCase = 0 UpperCamelCase = """a hat""" UpperCamelCase = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__magic_name__ ) UpperCamelCase = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) UpperCamelCase = pipeline.to(__magic_name__ ) pipeline.set_progress_bar_config(disable=__magic_name__ ) UpperCamelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCamelCase , UpperCamelCase = pipe_prior( __magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() UpperCamelCase = pipeline( __magic_name__ , image=__magic_name__ , mask_image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , generator=__magic_name__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type="""np""" , ) UpperCamelCase = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
181
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case_ : str = logging.get_logger(__name__) snake_case_ : Tuple = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class lowercase__ ( lowercase_ ): lowercase__ = "xlm-roberta-xl" def __init__( self : Tuple ,lowerCamelCase__ : Optional[int]=250880 ,lowerCamelCase__ : Tuple=2560 ,lowerCamelCase__ : Dict=36 ,lowerCamelCase__ : str=32 ,lowerCamelCase__ : Dict=10240 ,lowerCamelCase__ : Dict="gelu" ,lowerCamelCase__ : Any=0.1 ,lowerCamelCase__ : Tuple=0.1 ,lowerCamelCase__ : List[str]=514 ,lowerCamelCase__ : Tuple=1 ,lowerCamelCase__ : int=0.0_2 ,lowerCamelCase__ : Union[str, Any]=1E-05 ,lowerCamelCase__ : str=1 ,lowerCamelCase__ : Any=0 ,lowerCamelCase__ : str=2 ,lowerCamelCase__ : Tuple="absolute" ,lowerCamelCase__ : int=True ,lowerCamelCase__ : int=None ,**lowerCamelCase__ : List[str] ,): '''simple docstring''' super().__init__(pad_token_id=a__ ,bos_token_id=a__ ,eos_token_id=a__ ,**a__ ) _UpperCamelCase : List[str] = vocab_size _UpperCamelCase : List[Any] = hidden_size _UpperCamelCase : List[Any] = num_hidden_layers _UpperCamelCase : int = num_attention_heads _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : Optional[int] = intermediate_size _UpperCamelCase : Tuple = hidden_dropout_prob _UpperCamelCase : List[str] = attention_probs_dropout_prob _UpperCamelCase : List[str] = max_position_embeddings _UpperCamelCase : str = type_vocab_size _UpperCamelCase : str = initializer_range _UpperCamelCase : str = layer_norm_eps _UpperCamelCase : Union[str, Any] = position_embedding_type _UpperCamelCase : str = use_cache _UpperCamelCase : List[Any] = classifier_dropout class lowercase__ ( lowercase_ ): @property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if self.task == "multiple-choice": _UpperCamelCase : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCamelCase : List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
195
'''simple docstring''' def UpperCamelCase_( snake_case : Dict , snake_case : str , snake_case : Optional[int] , snake_case : Optional[Any] ): '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: snake_case_ = mf_knapsack(i - 1 , snake_case , snake_case , snake_case ) else: snake_case_ = max( mf_knapsack(i - 1 , snake_case , snake_case , snake_case ) , mf_knapsack(i - 1 , snake_case , snake_case , j - wt[i - 1] ) + val[i - 1] , ) snake_case_ = val return f[i][j] def UpperCamelCase_( snake_case : Dict , snake_case : Tuple , snake_case : Dict , snake_case : int ): '''simple docstring''' snake_case_ = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: snake_case_ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: snake_case_ = dp[i - 1][w_] return dp[n][w_], dp def UpperCamelCase_( snake_case : int , snake_case : list , snake_case : list ): '''simple docstring''' if not (isinstance(snake_case , (list, tuple) ) and isinstance(snake_case , (list, tuple) )): raise ValueError( "Both the weights and values vectors must be either lists or tuples" ) snake_case_ = len(snake_case ) if num_items != len(snake_case ): snake_case_ = ( "The number of weights must be the same as the number of values.\n" f'But got {num_items} weights and {len(snake_case )} values' ) raise ValueError(snake_case ) for i in range(snake_case ): if not isinstance(wt[i] , snake_case ): snake_case_ = ( "All weights must be integers but got weight of " f'type {type(wt[i] )} at index {i}' ) raise TypeError(snake_case ) snake_case_ , snake_case_ = knapsack(snake_case , snake_case , snake_case , snake_case ) snake_case_ = set() _construct_solution(snake_case , snake_case , snake_case , snake_case , snake_case ) return optimal_val, example_optional_set def UpperCamelCase_( snake_case : list , snake_case : list , snake_case : int , snake_case : int , snake_case : set ): '''simple docstring''' if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(snake_case , snake_case , i - 1 , snake_case , snake_case ) else: optimal_set.add(snake_case ) _construct_solution(snake_case , snake_case , i - 1 , j - wt[i - 1] , snake_case ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Tuple = [3, 2, 4, 4] _SCREAMING_SNAKE_CASE : int = [4, 3, 2, 3] _SCREAMING_SNAKE_CASE : List[Any] = 4 _SCREAMING_SNAKE_CASE : List[Any] = 6 _SCREAMING_SNAKE_CASE : List[str] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
400
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase_ : Optional[Any] = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Tuple = ['''ViTFeatureExtractor'''] lowerCamelCase_ : Union[str, Any] = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowerCamelCase_ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
719
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar lowerCamelCase_ : List[str] = TypeVar('''T''') lowerCamelCase_ : Optional[int] = TypeVar('''U''') class _SCREAMING_SNAKE_CASE ( Generic[T, U] ): '''simple docstring''' def __init__( self : Dict , lowercase : T | None , lowercase : U | None ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = key UpperCamelCase__ = val UpperCamelCase__ = None UpperCamelCase__ = None def __repr__( self : List[Any] ) -> str: '''simple docstring''' return ( f"Node: key: {self.key}, val: {self.val}, " f"has next: {bool(self.next )}, has prev: {bool(self.prev )}" ) class _SCREAMING_SNAKE_CASE ( Generic[T, U] ): '''simple docstring''' def __init__( self : Union[str, Any] ) -> None: '''simple docstring''' UpperCamelCase__ = DoubleLinkedListNode(lowercase , lowercase ) UpperCamelCase__ = DoubleLinkedListNode(lowercase , lowercase ) UpperCamelCase__ , UpperCamelCase__ = self.rear, self.head def __repr__( self : int ) -> str: '''simple docstring''' UpperCamelCase__ = ["""DoubleLinkedList"""] UpperCamelCase__ = self.head while node.next is not None: rep.append(str(lowercase ) ) UpperCamelCase__ = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowercase ) def A ( self : str , lowercase : DoubleLinkedListNode[T, U] ) -> None: '''simple docstring''' UpperCamelCase__ = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None UpperCamelCase__ = node UpperCamelCase__ = previous UpperCamelCase__ = node UpperCamelCase__ = self.rear def A ( self : Any , lowercase : DoubleLinkedListNode[T, U] ) -> DoubleLinkedListNode[T, U] | None: '''simple docstring''' if node.prev is None or node.next is None: return None UpperCamelCase__ = node.next UpperCamelCase__ = node.prev UpperCamelCase__ = None UpperCamelCase__ = None return node class _SCREAMING_SNAKE_CASE ( Generic[T, U] ): '''simple docstring''' __a : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self : int , lowercase : int ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = DoubleLinkedList() UpperCamelCase__ = capacity UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = {} def __repr__( self : Any ) -> str: '''simple docstring''' return ( f"CacheInfo(hits={self.hits}, misses={self.miss}, " f"capacity={self.capacity}, current size={self.num_keys})" ) def __contains__( self : Any , lowercase : T ) -> bool: '''simple docstring''' return key in self.cache def A ( self : Tuple , lowercase : T ) -> U | None: '''simple docstring''' if key in self.cache: self.hits += 1 UpperCamelCase__ = self.cache[key] UpperCamelCase__ = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowercase ) return node.val self.miss += 1 return None def A ( self : Dict , lowercase : T , lowercase : U ) -> None: '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity UpperCamelCase__ = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowercase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 UpperCamelCase__ = DoubleLinkedListNode(lowercase , lowercase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value UpperCamelCase__ = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list UpperCamelCase__ = value self.list.add(lowercase ) @classmethod def A ( cls : Optional[int] , lowercase : int = 1_2_8 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: '''simple docstring''' def cache_decorator_inner(lowercase : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*lowercase : T ) -> U: if func not in cls.decorator_function_to_instance_map: UpperCamelCase__ = LRUCache(lowercase ) UpperCamelCase__ = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: UpperCamelCase__ = func(*lowercase ) cls.decorator_function_to_instance_map[func].put(args[0] , lowercase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowercase , """cache_info""" , lowercase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
265
0
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _lowercase = 10 def lowerCamelCase__ ( a , a , a , a ): for i in range(_A , _A ): if array[i] == target: return i return -1 def lowerCamelCase__ ( a , a ): __snake_case = 0 __snake_case = len(_A ) while left <= right: if right - left < precision: return lin_search(_A , _A , _A , _A ) __snake_case = (left + right) // 3 + 1 __snake_case = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: __snake_case = one_third - 1 elif array[two_third] < target: __snake_case = two_third + 1 else: __snake_case = one_third + 1 __snake_case = two_third - 1 else: return -1 def lowerCamelCase__ ( a , a , a , a ): if left < right: if right - left < precision: return lin_search(_A , _A , _A , _A ) __snake_case = (left + right) // 3 + 1 __snake_case = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_A , one_third - 1 , _A , _A ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _A , _A , _A ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _A , _A ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _lowercase = input("""Enter numbers separated by comma:\n""").strip() _lowercase = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), f"List must be ordered.\n{collection}." _lowercase = int(input("""Enter the number to be found in the list:\n""").strip()) _lowercase = ite_ternary_search(collection, target) _lowercase = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
356
import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict SCREAMING_SNAKE_CASE : Union[str, Any] = namedtuple( """_TestCommandArgs""", [ """dataset""", """name""", """cache_dir""", """data_dir""", """all_configs""", """save_infos""", """ignore_verifications""", """force_redownload""", """clear_cache""", ], defaults=[None, None, None, False, False, False, False, False], ) def __A ( _A , _A ): """simple docstring""" return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def __A ( _A ): """simple docstring""" __a = _TestCommandArgs(dataset=_A , all_configs=_A , save_infos=_A ) __a = TestCommand(*_A ) test_command.run() __a = os.path.join(_A , "README.md" ) assert os.path.exists(_A ) __a = DatasetInfosDict.from_directory(_A ) __a = DatasetInfosDict( { "default": DatasetInfo( features=Features( { "tokens": Sequence(Value("string" ) ), "ner_tags": Sequence( ClassLabel(names=["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] ) ), "langs": Sequence(Value("string" ) ), "spans": Sequence(Value("string" ) ), } ) , splits=[ { "name": "train", "num_bytes": 235_1563, "num_examples": 1_0000, }, { "name": "validation", "num_bytes": 23_8418, "num_examples": 1000, }, ] , download_size=394_0680 , dataset_size=258_9981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: __a , __a = getattr(dataset_infos["default"] , _A ), getattr(expected_dataset_infos["default"] , _A ) if key == "num_bytes": assert is_apercent_close(_A , _A ) elif key == "splits": assert list(_A ) == list(_A ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
197
0
"""simple docstring""" from __future__ import annotations __lowercase : List[str] = tuple[int, int, int] __lowercase : List[Any] = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase __lowercase : int = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" # -------------------------- default selection -------------------------- # rotors -------------------------- __lowercase : int = """EGZWVONAHDCLFQMSIPJBYUKXTR""" __lowercase : int = """FOBHMDKEXQNRAULPGSJVTYICZW""" __lowercase : Optional[int] = """ZJXESIUQLHAVRMDOYGTNFWPBKC""" # reflector -------------------------- __lowercase : Dict = { """A""": """N""", """N""": """A""", """B""": """O""", """O""": """B""", """C""": """P""", """P""": """C""", """D""": """Q""", """Q""": """D""", """E""": """R""", """R""": """E""", """F""": """S""", """S""": """F""", """G""": """T""", """T""": """G""", """H""": """U""", """U""": """H""", """I""": """V""", """V""": """I""", """J""": """W""", """W""": """J""", """K""": """X""", """X""": """K""", """L""": """Y""", """Y""": """L""", """M""": """Z""", """Z""": """M""", } # -------------------------- extra rotors -------------------------- __lowercase : Any = """RMDJXFUWGISLHVTCQNKYPBEZOA""" __lowercase : List[str] = """SGLCPQWZHKXAREONTFBVIYJUDM""" __lowercase : Any = """HVSICLTYKQUBXDWAJZOMFGPREN""" __lowercase : List[str] = """RZWQHFMVDBKICJLNTUXAGYPSOE""" __lowercase : List[str] = """LFKIJODBEGAMQPXVUHYSTCZRWN""" __lowercase : Dict = """KOAEGVDHXPQZMLFTYWJNBRCIUS""" def lowerCamelCase_ ( _lowerCamelCase : RotorPositionT , _lowerCamelCase : RotorSelectionT , _lowerCamelCase : str ): # Checks if there are 3 unique rotors if (unique_rotsel := len(set(_lowerCamelCase ) )) < 3: lowerCamelCase_ = F"""Please use 3 unique rotors (not {unique_rotsel})""" raise Exception(_lowerCamelCase ) # Checks if rotor positions are valid lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = rotpos if not 0 < rotorposa <= len(_lowerCamelCase ): lowerCamelCase_ = F"""First rotor position is not within range of 1..26 ({rotorposa}""" raise ValueError(_lowerCamelCase ) if not 0 < rotorposa <= len(_lowerCamelCase ): lowerCamelCase_ = F"""Second rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(_lowerCamelCase ) if not 0 < rotorposa <= len(_lowerCamelCase ): lowerCamelCase_ = F"""Third rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(_lowerCamelCase ) # Validates string and returns dict lowerCamelCase_ = _plugboard(_lowerCamelCase ) return rotpos, rotsel, pbdict def lowerCamelCase_ ( _lowerCamelCase : str ): # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase_ = F"""Plugboard setting isn't type string ({type(_lowerCamelCase )})""" raise TypeError(_lowerCamelCase ) elif len(_lowerCamelCase ) % 2 != 0: lowerCamelCase_ = F"""Odd number of symbols ({len(_lowerCamelCase )})""" raise Exception(_lowerCamelCase ) elif pbstring == "": return {} pbstring.replace(''' ''' , '''''' ) # Checks if all characters are unique lowerCamelCase_ = set() for i in pbstring: if i not in abc: lowerCamelCase_ = F"""'{i}' not in list of symbols""" raise Exception(_lowerCamelCase ) elif i in tmppbl: lowerCamelCase_ = F"""Duplicate symbol ({i})""" raise Exception(_lowerCamelCase ) else: tmppbl.add(_lowerCamelCase ) del tmppbl # Created the dictionary lowerCamelCase_ = {} for j in range(0 , len(_lowerCamelCase ) - 1 , 2 ): lowerCamelCase_ = pbstring[j + 1] lowerCamelCase_ = pbstring[j] return pb def lowerCamelCase_ ( _lowerCamelCase : str , _lowerCamelCase : RotorPositionT , _lowerCamelCase : RotorSelectionT = (rotora, rotora, rotora) , _lowerCamelCase : str = "" , ): lowerCamelCase_ = text.upper() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = _validator( _lowerCamelCase , _lowerCamelCase , plugb.upper() ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = rotor_position lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 lowerCamelCase_ = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: lowerCamelCase_ = plugboard[symbol] # rotor ra -------------------------- lowerCamelCase_ = abc.index(_lowerCamelCase ) + rotorposa lowerCamelCase_ = rotora[index % len(_lowerCamelCase )] # rotor rb -------------------------- lowerCamelCase_ = abc.index(_lowerCamelCase ) + rotorposa lowerCamelCase_ = rotora[index % len(_lowerCamelCase )] # rotor rc -------------------------- lowerCamelCase_ = abc.index(_lowerCamelCase ) + rotorposa lowerCamelCase_ = rotora[index % len(_lowerCamelCase )] # reflector -------------------------- # this is the reason you don't need another machine to decipher lowerCamelCase_ = reflector[symbol] # 2nd rotors lowerCamelCase_ = abc[rotora.index(_lowerCamelCase ) - rotorposa] lowerCamelCase_ = abc[rotora.index(_lowerCamelCase ) - rotorposa] lowerCamelCase_ = abc[rotora.index(_lowerCamelCase ) - rotorposa] # 2nd plugboard if symbol in plugboard: lowerCamelCase_ = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(_lowerCamelCase ): lowerCamelCase_ = 0 rotorposa += 1 if rotorposa >= len(_lowerCamelCase ): lowerCamelCase_ = 0 rotorposa += 1 if rotorposa >= len(_lowerCamelCase ): lowerCamelCase_ = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(_lowerCamelCase ) return "".join(_lowerCamelCase ) if __name__ == "__main__": __lowercase : Union[str, Any] = """This is my Python script that emulates the Enigma machine from WWII.""" __lowercase : Optional[Any] = (1, 1, 1) __lowercase : Union[str, Any] = """pictures""" __lowercase : str = (rotora, rotora, rotora) __lowercase : Optional[int] = enigma(message, rotor_pos, rotor_sel, pb) print("""Encrypted message:""", en) print("""Decrypted message:""", enigma(en, rotor_pos, rotor_sel, pb))
710
"""simple docstring""" import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowerCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None ) -> List[Any]: '''simple docstring''' super().__init__() lowerCamelCase_ = pad_token_id lowerCamelCase_ = max_length lowerCamelCase_ = vocab lowerCamelCase_ = merges lowerCamelCase_ = BytePairTokenizer(UpperCamelCase__ , UpperCamelCase__ , sequence_length=UpperCamelCase__ ) @classmethod def _lowerCAmelCase ( cls , UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' lowerCamelCase_ = [''' '''.join(UpperCamelCase__ ) for m in tokenizer.bpe_ranks.keys()] lowerCamelCase_ = tokenizer.get_vocab() return cls(UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) @classmethod def _lowerCAmelCase ( cls , UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' lowerCamelCase_ = GPTaTokenizer.from_pretrained(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) return cls.from_tokenizer(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) @classmethod def _lowerCAmelCase ( cls , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' return cls(**UpperCamelCase__ ) def _lowerCAmelCase ( self ) -> int: '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Any: '''simple docstring''' lowerCamelCase_ = self.tf_tokenizer(UpperCamelCase__ ) lowerCamelCase_ = tf.ones_like(UpperCamelCase__ ) if self.pad_token_id is not None: # pad the tokens up to max length lowerCamelCase_ = max_length if max_length is not None else self.max_length if max_length is not None: lowerCamelCase_ , lowerCamelCase_ = pad_model_inputs( UpperCamelCase__ , max_seq_length=UpperCamelCase__ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
66
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor UpperCAmelCase__ :Tuple = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): def __init__( self : Optional[Any] , *A__ : Optional[Any] , **A__ : Optional[int] ): """simple docstring""" warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , A__ , ) super().__init__(*A__ , **A__ )
150
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ :List[str] = logging.get_logger(__name__) UpperCAmelCase__ :Union[str, Any] = { """BAAI/AltCLIP""": """https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json""", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): snake_case__ : str = 'altclip_text_model' def __init__( self : List[Any] , A__ : Optional[int]=250002 , A__ : Any=1024 , A__ : List[Any]=24 , A__ : Dict=16 , A__ : Union[str, Any]=4096 , A__ : Union[str, Any]="gelu" , A__ : str=0.1 , A__ : int=0.1 , A__ : str=514 , A__ : Optional[int]=1 , A__ : Optional[Any]=0.02 , A__ : int=0.02 , A__ : Optional[Any]=1e-0_5 , A__ : int=1 , A__ : Optional[Any]=0 , A__ : Dict=2 , A__ : Optional[int]="absolute" , A__ : Optional[int]=True , A__ : List[str]=768 , **A__ : List[str] , ): """simple docstring""" super().__init__(pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ , **A__ ) __lowerCamelCase : List[str] = vocab_size __lowerCamelCase : Optional[Any] = hidden_size __lowerCamelCase : List[str] = num_hidden_layers __lowerCamelCase : Tuple = num_attention_heads __lowerCamelCase : List[Any] = hidden_act __lowerCamelCase : Union[str, Any] = intermediate_size __lowerCamelCase : Dict = hidden_dropout_prob __lowerCamelCase : Any = attention_probs_dropout_prob __lowerCamelCase : List[str] = max_position_embeddings __lowerCamelCase : Optional[Any] = type_vocab_size __lowerCamelCase : int = initializer_range __lowerCamelCase : Optional[int] = initializer_factor __lowerCamelCase : List[Any] = layer_norm_eps __lowerCamelCase : List[str] = position_embedding_type __lowerCamelCase : str = use_cache __lowerCamelCase : Optional[Any] = project_dim class SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): snake_case__ : List[Any] = 'altclip_vision_model' def __init__( self : Optional[int] , A__ : str=768 , A__ : str=3072 , A__ : str=512 , A__ : Optional[int]=12 , A__ : List[Any]=12 , A__ : Union[str, Any]=3 , A__ : Dict=224 , A__ : List[Any]=32 , A__ : List[Any]="quick_gelu" , A__ : Dict=1e-5 , A__ : List[str]=0.0 , A__ : Dict=0.02 , A__ : List[str]=1.0 , **A__ : Union[str, Any] , ): """simple docstring""" super().__init__(**A__ ) __lowerCamelCase : Optional[int] = hidden_size __lowerCamelCase : Optional[int] = intermediate_size __lowerCamelCase : Optional[Any] = projection_dim __lowerCamelCase : Union[str, Any] = num_hidden_layers __lowerCamelCase : Optional[Any] = num_attention_heads __lowerCamelCase : str = num_channels __lowerCamelCase : Any = patch_size __lowerCamelCase : Any = image_size __lowerCamelCase : Any = initializer_range __lowerCamelCase : List[str] = initializer_factor __lowerCamelCase : List[str] = attention_dropout __lowerCamelCase : Any = layer_norm_eps __lowerCamelCase : Any = hidden_act @classmethod def a_ ( cls : str , A__ : Union[str, os.PathLike] , **A__ : List[str] ): """simple docstring""" cls._set_token_in_kwargs(A__ ) __lowerCamelCase , __lowerCamelCase : str = cls.get_config_dict(A__ , **A__ ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("""model_type""" ) == "altclip": __lowerCamelCase : Optional[Any] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(A__ , **A__ ) class SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): snake_case__ : int = 'altclip' snake_case__ : Dict = True def __init__( self : Optional[Any] , A__ : Optional[Any]=None , A__ : Union[str, Any]=None , A__ : Union[str, Any]=768 , A__ : Tuple=2.6592 , **A__ : List[Any] ): """simple docstring""" __lowerCamelCase : str = kwargs.pop("""text_config_dict""" , A__ ) __lowerCamelCase : Dict = kwargs.pop("""vision_config_dict""" , A__ ) super().__init__(**A__ ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: __lowerCamelCase : Any = {} # This is the complete result when using `text_config_dict`. __lowerCamelCase : Tuple = AltCLIPTextConfig(**A__ ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: __lowerCamelCase : Optional[Any] = ( f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. " f"The value `text_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: __lowerCamelCase : int = ( f"`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The " f"value `text_config[\"{key}\"]` will be overriden." ) logger.warning(A__ ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: __lowerCamelCase : Dict = {} # This is the complete result when using `vision_config_dict`. __lowerCamelCase : List[str] = AltCLIPVisionConfig(**A__ ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: __lowerCamelCase : str = { str(A__ ): value for key, value in _vision_config_dict["""id2label"""].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: __lowerCamelCase : List[Any] = ( f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different " f"values. The value `vision_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: __lowerCamelCase : Optional[Any] = ( f"`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. " f"The value `vision_config[\"{key}\"]` will be overriden." ) logger.warning(A__ ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: __lowerCamelCase : List[Any] = {} logger.info("""`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.""" ) if vision_config is None: __lowerCamelCase : List[str] = {} logger.info("""`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.""" ) __lowerCamelCase : Union[str, Any] = AltCLIPTextConfig(**A__ ) __lowerCamelCase : Optional[int] = AltCLIPVisionConfig(**A__ ) __lowerCamelCase : Optional[Any] = projection_dim __lowerCamelCase : List[str] = logit_scale_init_value __lowerCamelCase : Union[str, Any] = 1.0 @classmethod def a_ ( cls : Optional[Any] , A__ : AltCLIPTextConfig , A__ : AltCLIPVisionConfig , **A__ : List[str] ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **A__ ) def a_ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase : List[Any] = copy.deepcopy(self.__dict__ ) __lowerCamelCase : Optional[Any] = self.text_config.to_dict() __lowerCamelCase : Tuple = self.vision_config.to_dict() __lowerCamelCase : Tuple = self.__class__.model_type return output
150
1
"""simple docstring""" from PIL import Image def snake_case ( UpperCamelCase__ : Image , UpperCamelCase__ : float ) -> Image: def brightness(UpperCamelCase__ : int ) -> float: return 128 + level + (c - 128) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(UpperCamelCase__ ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 __lowerCamelCase :Optional[Any] = change_brightness(img, 100) brigt_img.save('image_data/lena_brightness.png', format='png')
42
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin __lowerCamelCase :Any = False @skip_mps class A__ ( __lowercase , __lowercase , __lowercase , unittest.TestCase): """simple docstring""" snake_case__ : Optional[Any] =StableDiffusionAttendAndExcitePipeline snake_case__ : Any =False snake_case__ : Dict =TEXT_TO_IMAGE_PARAMS snake_case__ : Any =TEXT_TO_IMAGE_BATCH_PARAMS.union({'''token_indices'''}) snake_case__ : Dict =TEXT_TO_IMAGE_IMAGE_PARAMS snake_case__ : str =TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def a__ ( cls: Dict )-> Tuple: super().setUpClass() torch.use_deterministic_algorithms(__a ) @classmethod def a__ ( cls: Union[str, Any] )-> Any: super().tearDownClass() torch.use_deterministic_algorithms(__a ) def a__ ( self: Tuple )-> Union[str, Any]: torch.manual_seed(0 ) lowerCamelCase : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__a , ) lowerCamelCase : Union[str, Any] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=__a , set_alpha_to_one=__a , ) torch.manual_seed(0 ) lowerCamelCase : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCamelCase : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) lowerCamelCase : Optional[int] = CLIPTextModel(__a ) lowerCamelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCamelCase : List[str] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def a__ ( self: Tuple , __a: int , __a: Union[str, Any]=0 )-> Optional[Any]: if str(__a ).startswith("""mps""" ): lowerCamelCase : Tuple = torch.manual_seed(__a ) else: lowerCamelCase : str = torch.Generator(device=__a ).manual_seed(__a ) lowerCamelCase : Dict = { """prompt""": """a cat and a frog""", """token_indices""": [2, 5], """generator""": generator, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", """max_iter_to_alter""": 2, """thresholds""": {0: 0.7}, } return inputs def a__ ( self: Dict )-> str: lowerCamelCase : Tuple = """cpu""" lowerCamelCase : List[str] = self.get_dummy_components() lowerCamelCase : List[Any] = self.pipeline_class(**__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) lowerCamelCase : Any = self.get_dummy_inputs(__a ) lowerCamelCase : Union[str, Any] = pipe(**__a ).images lowerCamelCase : Tuple = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) lowerCamelCase : Optional[Any] = np.array( [0.63_90_53_64, 0.62_89_73_07, 0.48_59_90_17, 0.5_13_36_24, 0.5_55_00_48, 0.45_76_95_16, 0.50_32_69_73, 0.5_02_31_39, 0.45_38_44_96] ) lowerCamelCase : Optional[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__a , 1e-3 ) def a__ ( self: int )-> Optional[Any]: super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def a__ ( self: Union[str, Any] )-> Optional[int]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def a__ ( self: Tuple )-> int: self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def a__ ( self: Dict )-> List[Any]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def a__ ( self: Optional[int] )-> Dict: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def a__ ( self: Any )-> Tuple: super().test_save_load_local(expected_max_difference=5e-4 ) def a__ ( self: str )-> str: super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class A__ ( unittest.TestCase): """simple docstring""" @classmethod def a__ ( cls: Any )-> Tuple: super().setUpClass() torch.use_deterministic_algorithms(__a ) @classmethod def a__ ( cls: Dict )-> Optional[int]: super().tearDownClass() torch.use_deterministic_algorithms(__a ) def a__ ( self: int )-> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self: int )-> Optional[Any]: lowerCamelCase : List[Any] = torch.manual_seed(51 ) lowerCamelCase : List[str] = StableDiffusionAttendAndExcitePipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , safety_checker=__a , torch_dtype=torch.floataa ) pipe.to("""cuda""" ) lowerCamelCase : Dict = """a painting of an elephant with glasses""" lowerCamelCase : Any = [5, 7] lowerCamelCase : Tuple = pipe( prompt=__a , token_indices=__a , guidance_scale=7.5 , generator=__a , num_inference_steps=5 , max_iter_to_alter=5 , output_type="""numpy""" , ).images[0] lowerCamelCase : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy""" ) assert np.abs((expected_image - image).max() ) < 5e-1
42
1
'''simple docstring''' import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () A_ = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). A_ = [0, 25, 50] A_ = [25, 50, 75] A_ = fuzz.membership.trimf(X, abca) A_ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. A_ = np.ones(75) A_ = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) A_ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) A_ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) A_ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) A_ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] A_ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) A_ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] A_ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] A_ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("Young") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("Middle aged") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("union") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("intersection") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("complement_a") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("difference a/b") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("alg_sum") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("alg_product") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("bdd_sum") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("bdd_difference") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
42
import math import sys def lowerCamelCase_ ( lowerCAmelCase__ : str ) -> str: '''simple docstring''' A = '' try: with open(lowerCAmelCase__ , 'rb' ) as binary_file: A = binary_file.read() for dat in data: A = F'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def lowerCamelCase_ ( lowerCAmelCase__ : str ) -> str: '''simple docstring''' A = {'0': '0', '1': '1'} A , A = '', '' A = len(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue A = lexicon[curr_string] result += last_match_id A = last_match_id + '0' if math.loga(lowerCAmelCase__ ).is_integer(): A = {} for curr_key in list(lowerCAmelCase__ ): A = lexicon.pop(lowerCAmelCase__ ) A = new_lex A = last_match_id + '1' index += 1 A = '' return result def lowerCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> None: '''simple docstring''' A = 8 try: with open(lowerCAmelCase__ , 'wb' ) as opened_file: A = [ to_write[i : i + byte_length] for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(lowerCAmelCase__ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def lowerCamelCase_ ( lowerCAmelCase__ : str ) -> str: '''simple docstring''' A = 0 for letter in data_bits: if letter == "1": break counter += 1 A = data_bits[counter:] A = data_bits[counter + 1 :] return data_bits def lowerCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> None: '''simple docstring''' A = read_file_binary(lowerCAmelCase__ ) A = remove_prefix(lowerCAmelCase__ ) A = decompress_data(lowerCAmelCase__ ) write_file_binary(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
106
0
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint lowerCAmelCase : List[str] = { """169M""": 12, """430M""": 24, """1B5""": 24, """3B""": 32, """7B""": 32, """14B""": 40, } lowerCAmelCase : Optional[Any] = { """169M""": 768, """430M""": 1024, """1B5""": 2048, """3B""": 2560, """7B""": 4096, """14B""": 5120, } def a__ ( snake_case__ ) -> Tuple: lowerCamelCase = list(state_dict.keys() ) for name in state_dict_keys: lowerCamelCase = state_dict.pop(snake_case__ ) # emb -> embedding if name.startswith("""emb.""" ): lowerCamelCase = name.replace("""emb.""" , """embeddings.""" ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("""blocks.0.ln0""" ): lowerCamelCase = name.replace("""blocks.0.ln0""" , """blocks.0.pre_ln""" ) # att -> attention lowerCamelCase = re.sub(R"""blocks\.(\d+)\.att""" , R"""blocks.\1.attention""" , snake_case__ ) # ffn -> feed_forward lowerCamelCase = re.sub(R"""blocks\.(\d+)\.ffn""" , R"""blocks.\1.feed_forward""" , snake_case__ ) # time_mix_k -> time_mix_key and reshape if name.endswith(""".time_mix_k""" ): lowerCamelCase = name.replace(""".time_mix_k""" , """.time_mix_key""" ) # time_mix_v -> time_mix_value and reshape if name.endswith(""".time_mix_v""" ): lowerCamelCase = name.replace(""".time_mix_v""" , """.time_mix_value""" ) # time_mix_r -> time_mix_key and reshape if name.endswith(""".time_mix_r""" ): lowerCamelCase = name.replace(""".time_mix_r""" , """.time_mix_receptance""" ) if name != "head.weight": lowerCamelCase = """rwkv.""" + name lowerCamelCase = weight return state_dict def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=False , snake_case__=None ) -> int: # 1. If possible, build the tokenizer. if tokenizer_file is None: print("""No `--tokenizer_file` provided, we will use the default tokenizer.""" ) lowerCamelCase = 5_02_77 lowerCamelCase = AutoTokenizer.from_pretrained("""EleutherAI/gpt-neox-20b""" ) else: lowerCamelCase = PreTrainedTokenizerFast(tokenizer_file=snake_case__ ) lowerCamelCase = len(snake_case__ ) tokenizer.save_pretrained(snake_case__ ) # 2. Build the config lowerCamelCase = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: lowerCamelCase = candidate break if size is None: raise ValueError("""Could not infer the size, please provide it with the `--size` argument.""" ) if size not in possible_sizes: raise ValueError(F'`size` should be one of {possible_sizes}, got {size}.' ) lowerCamelCase = RwkvConfig( vocab_size=snake_case__ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(snake_case__ ) # 3. Download model file then convert state_dict lowerCamelCase = hf_hub_download(snake_case__ , snake_case__ ) lowerCamelCase = torch.load(snake_case__ , map_location="""cpu""" ) lowerCamelCase = convert_state_dict(snake_case__ ) # 4. Split in shards and save lowerCamelCase , lowerCamelCase = shard_checkpoint(snake_case__ ) for shard_file, shard in shards.items(): torch.save(snake_case__ , os.path.join(snake_case__ , snake_case__ ) ) if index is not None: lowerCamelCase = os.path.join(snake_case__ , snake_case__ ) # Save the index as well with open(snake_case__ , """w""" , encoding="""utf-8""" ) as f: lowerCamelCase = json.dumps(snake_case__ , indent=2 , sort_keys=snake_case__ ) + """\n""" f.write(snake_case__ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( """Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model.""" ) lowerCamelCase = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: lowerCamelCase = torch.load(os.path.join(snake_case__ , snake_case__ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(snake_case__ , snake_case__ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("""Please provide a `model_name` to push the model to the Hub.""" ) lowerCamelCase = AutoModelForCausalLM.from_pretrained(snake_case__ ) model.push_to_hub(snake_case__ , max_shard_size="""2GB""" ) tokenizer.push_to_hub(snake_case__ ) if __name__ == "__main__": lowerCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint.""" ) parser.add_argument( """--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo.""" ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model.""" ) parser.add_argument( """--tokenizer_file""", default=None, type=str, help="""Path to the tokenizer file to use (if not provided, only the model is converted).""", ) parser.add_argument( """--size""", default=None, type=str, help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Push to the Hub the converted model.""", ) parser.add_argument( """--model_name""", default=None, type=str, help="""Name of the pushed model on the Hub, including the username / organization.""", ) lowerCAmelCase : Optional[Any] = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
710
"""simple docstring""" def a__ ( snake_case__ ) -> list: if n_term == "": return [] lowerCamelCase = [] for temp in range(int(snake_case__ ) ): series.append(F'1/{temp + 1}' if series else """1""" ) return series if __name__ == "__main__": lowerCAmelCase : Optional[int] = input("""Enter the last number (nth term) of the Harmonic Series""") print("""Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n""") print(harmonic_series(nth_term))
533
0
"""simple docstring""" from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__=3 , UpperCamelCase__=32 , UpperCamelCase__=3 , UpperCamelCase__=10 , UpperCamelCase__=[10, 20, 30, 40] , UpperCamelCase__=[1, 1, 2, 1] , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__="relu" , UpperCamelCase__=3 , UpperCamelCase__=None , ): '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = embeddings_size A__ = hidden_sizes A__ = depths A__ = is_training A__ = use_labels A__ = hidden_act A__ = num_labels A__ = scope A__ = len(UpperCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.num_labels ) A__ = self.get_config() return config, pixel_values, labels def lowercase_ ( self ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = TFRegNetModel(config=UpperCamelCase__ ) A__ = model(UpperCamelCase__ , training=UpperCamelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = self.num_labels A__ = TFRegNetForImageClassification(UpperCamelCase__ ) A__ = model(UpperCamelCase__ , labels=UpperCamelCase__ , training=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self ): '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): lowercase__ : str = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () lowercase__ : List[str] = ( {"""feature-extraction""": TFRegNetModel, """image-classification""": TFRegNetForImageClassification} if is_tf_available() else {} ) lowercase__ : List[str] = False lowercase__ : List[str] = False lowercase__ : Tuple = False lowercase__ : Any = False lowercase__ : Tuple = False def lowercase_ ( self ): '''simple docstring''' A__ = TFRegNetModelTester(self ) A__ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def lowercase_ ( self ): '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def lowercase_ ( self ): '''simple docstring''' super().test_keras_fit() @unittest.skip(reason="RegNet does not support input and output embeddings" ) def lowercase_ ( self ): '''simple docstring''' pass def lowercase_ ( self ): '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCamelCase__ ) A__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' def check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ = model_class(UpperCamelCase__ ) A__ = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) , training=UpperCamelCase__ ) A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A__ = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase__ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: A__ = layer_type A__ = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__={} ): A__ = model(UpperCamelCase__ , return_dict=UpperCamelCase__ , **UpperCamelCase__ ) A__ = model(UpperCamelCase__ , return_dict=UpperCamelCase__ , **UpperCamelCase__ ).to_tuple() def recursive_check(UpperCamelCase__ , UpperCamelCase__ ): if isinstance(UpperCamelCase__ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(UpperCamelCase__ , UpperCamelCase__ ): recursive_check(UpperCamelCase__ , UpperCamelCase__ ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(UpperCamelCase__ , UpperCamelCase__ ) ) , msg=( "Tuple and dict output are not equal. Difference:" f""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}""" ) , ) recursive_check(UpperCamelCase__ , UpperCamelCase__ ) for model_class in self.all_model_classes: A__ = model_class(UpperCamelCase__ ) A__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) A__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) check_equivalence(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) A__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) check_equivalence(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) A__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) check_equivalence(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , {"output_hidden_states": True} ) A__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) A__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) check_equivalence(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , {"output_hidden_states": True} ) def lowercase_ ( self ): '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def lowercase_ ( self ): '''simple docstring''' for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFRegNetModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def __a ( ) -> int: '''simple docstring''' A__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def lowercase_ ( self ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase_ ( self ): '''simple docstring''' A__ = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCamelCase__ , return_tensors="tf" ) # forward pass A__ = model(**UpperCamelCase__ , training=UpperCamelCase__ ) # verify the logits A__ = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A__ = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 )
337
"""simple docstring""" import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging __UpperCAmelCase =logging.get_logger(__name__) def __a ( A=None , A=None ) -> int: '''simple docstring''' return field(default_factory=lambda: default , metadata=A ) @dataclass class lowerCAmelCase__ : lowercase__ : List[str] = list_field( default=[] , metadata={ """help""": ( """Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version""" """ of all available models""" ) } , ) lowercase__ : List[int] = list_field( default=[8] , metadata={"""help""": """List of batch sizes for which memory and time performance will be evaluated"""} ) lowercase__ : List[int] = list_field( default=[8, 32, 1_28, 5_12] , metadata={"""help""": """List of sequence lengths for which memory and time performance will be evaluated"""} , ) lowercase__ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Whether to benchmark inference of model. Inference can be disabled via --no-inference."""} , ) lowercase__ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."""} , ) lowercase__ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Whether to run on available tpu devices. TPU can be disabled via --no-tpu."""} ) lowercase__ : bool = field(default=UpperCAmelCase_ , metadata={"""help""": """Use FP16 to accelerate inference."""} ) lowercase__ : bool = field(default=UpperCAmelCase_ , metadata={"""help""": """Benchmark training of model"""} ) lowercase__ : bool = field(default=UpperCAmelCase_ , metadata={"""help""": """Verbose memory tracing"""} ) lowercase__ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."""} , ) lowercase__ : bool = field( default=UpperCAmelCase_ , metadata={ """help""": """Whether to perform memory measurements. Memory measurements can be disabled via --no-memory""" } , ) lowercase__ : bool = field(default=UpperCAmelCase_ , metadata={"""help""": """Trace memory line by line"""} ) lowercase__ : bool = field(default=UpperCAmelCase_ , metadata={"""help""": """Save result to a CSV file"""} ) lowercase__ : bool = field(default=UpperCAmelCase_ , metadata={"""help""": """Save all print statements in a log file"""} ) lowercase__ : bool = field(default=UpperCAmelCase_ , metadata={"""help""": """Whether to print environment information"""} ) lowercase__ : bool = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use""" """ multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled""" """ for debugging / testing and on TPU.""" ) } , ) lowercase__ : str = field( default=f'inference_time_{round(time() )}.csv' , metadata={"""help""": """CSV filename used if saving time results to csv."""} , ) lowercase__ : str = field( default=f'inference_memory_{round(time() )}.csv' , metadata={"""help""": """CSV filename used if saving memory results to csv."""} , ) lowercase__ : str = field( default=f'train_time_{round(time() )}.csv' , metadata={"""help""": """CSV filename used if saving time results to csv for training."""} , ) lowercase__ : str = field( default=f'train_memory_{round(time() )}.csv' , metadata={"""help""": """CSV filename used if saving memory results to csv for training."""} , ) lowercase__ : str = field( default=f'env_info_{round(time() )}.csv' , metadata={"""help""": """CSV filename used if saving environment information."""} , ) lowercase__ : str = field( default=f'log_{round(time() )}.csv' , metadata={"""help""": """Log filename used if print statements are saved in log."""} , ) lowercase__ : int = field(default=3 , metadata={"""help""": """Times an experiment will be run."""} ) lowercase__ : bool = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain""" """ model weights.""" ) } , ) def lowercase_ ( self ): '''simple docstring''' warnings.warn( f"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" " are deprecated in general and it is advised to use external Benchmarking libraries " " to benchmark Transformer models." , UpperCamelCase__ , ) def lowercase_ ( self ): '''simple docstring''' return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def lowercase_ ( self ): '''simple docstring''' if len(self.models ) <= 0: raise ValueError( "Please make sure you provide at least one model name / model identifier, *e.g.* `--models" " bert-base-cased` or `args.models = ['bert-base-cased']." ) return self.models @property def lowercase_ ( self ): '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info("Multiprocessing is currently not possible on TPU." ) return False else: return True
337
1
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCamelCase ( lowercase__, lowercase__, lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Dict = StableUnCLIPImgaImgPipeline lowerCAmelCase_ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowerCAmelCase_ : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase_ : Any = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase_ : Optional[int] = frozenset([] ) def A__ ( self ): UpperCAmelCase_ = 32 UpperCAmelCase_ = embedder_hidden_size # image encoding components UpperCAmelCase_ = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCAmelCase , projection_dim=lowerCAmelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) UpperCAmelCase_ = StableUnCLIPImageNormalizer(embedding_dim=lowerCAmelCase ) UpperCAmelCase_ = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCAmelCase , layers_per_block=1 , upcast_attention=lowerCAmelCase , use_linear_projection=lowerCAmelCase , ) torch.manual_seed(0 ) UpperCAmelCase_ = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=lowerCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL() UpperCAmelCase_ = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def A__ ( self , lowerCAmelCase , lowerCAmelCase=0 , lowerCAmelCase=True ): if str(lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(lowerCAmelCase ) else: UpperCAmelCase_ = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) UpperCAmelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) if pil_image: UpperCAmelCase_ = input_image * 0.5 + 0.5 UpperCAmelCase_ = input_image.clamp(0 , 1 ) UpperCAmelCase_ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase_ = DiffusionPipeline.numpy_to_pil(lowerCAmelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def A__ ( self ): UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = StableUnCLIPImgaImgPipeline(**lowerCAmelCase ) UpperCAmelCase_ = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs(lowerCAmelCase ) inputs.update({"image_embeds": None} ) UpperCAmelCase_ = sd_pipe(**lowerCAmelCase ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self ): UpperCAmelCase_ = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowerCAmelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A__ ( self ): self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCAmelCase ) @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) UpperCAmelCase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe(lowerCAmelCase , "anime turle" , generator=lowerCAmelCase , output_type="np" ) UpperCAmelCase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) UpperCAmelCase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe(lowerCAmelCase , "anime turle" , generator=lowerCAmelCase , output_type="np" ) UpperCAmelCase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) UpperCAmelCase_ = pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase_ = pipe( lowerCAmelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
704
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } SCREAMING_SNAKE_CASE = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Any = VOCAB_FILES_NAMES lowerCAmelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ : int = ['input_ids', 'attention_mask'] lowerCAmelCase_ : str = DistilBertTokenizer def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase="[UNK]" , lowerCAmelCase="[SEP]" , lowerCAmelCase="[PAD]" , lowerCAmelCase="[CLS]" , lowerCAmelCase="[MASK]" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ = getattr(lowerCAmelCase , normalizer_state.pop("type" ) ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = strip_accents UpperCAmelCase_ = tokenize_chinese_chars UpperCAmelCase_ = normalizer_class(**lowerCAmelCase ) UpperCAmelCase_ = do_lower_case def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
23
0
"""simple docstring""" from math import sqrt def lowerCAmelCase_ ( lowercase_ : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Optional[int] = 0 for i in range(1 , int(sqrt(__A ) + 1 ) ): if n % i == 0 and i != sqrt(__A ): total += i + n // i elif i == sqrt(__A ): total += i return total - n def lowerCAmelCase_ ( lowercase_ : Union[str, Any] = 1_0000 ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Union[str, Any] = sum( i for i in range(1 , __A ) if sum_of_divisors(sum_of_divisors(__A ) ) == i and sum_of_divisors(__A ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
674
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''image_processor''', '''tokenizer'''] __SCREAMING_SNAKE_CASE = '''Pix2StructImageProcessor''' __SCREAMING_SNAKE_CASE = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self , lowercase , lowercase ) -> Any: __UpperCamelCase = False super().__init__(lowercase , lowercase ) def __call__( self , lowercase=None , lowercase = None , lowercase = True , lowercase = False , lowercase = None , lowercase = None , lowercase = 2_0_4_8 , lowercase = 0 , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = True , lowercase = None , **lowercase , ) -> BatchEncoding: if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None and not self.image_processor.is_vqa: __UpperCamelCase = self.tokenizer __UpperCamelCase = self.tokenizer( text=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_token_type_ids=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values __UpperCamelCase = self.image_processor( lowercase , return_tensors=lowercase , max_patches=lowercase , **lowercase ) else: # add pixel_values and bbox __UpperCamelCase = self.image_processor( lowercase , return_tensors=lowercase , max_patches=lowercase , header_text=lowercase , **lowercase ) if text is not None and not self.image_processor.is_vqa: __UpperCamelCase = self.tokenizer( text=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_token_type_ids=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , ) if "attention_mask" in text_encoding: __UpperCamelCase = text_encoding.pop("""attention_mask""" ) if "input_ids" in text_encoding: __UpperCamelCase = text_encoding.pop("""input_ids""" ) else: __UpperCamelCase = None if text_encoding is not None: encoding_image_processor.update(lowercase ) return encoding_image_processor def __lowerCamelCase ( self , *lowercase , **lowercase ) -> Tuple: return self.tokenizer.batch_decode(*lowercase , **lowercase ) def __lowerCamelCase ( self , *lowercase , **lowercase ) -> List[str]: return self.tokenizer.decode(*lowercase , **lowercase ) @property def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = self.tokenizer.model_input_names __UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
601
0
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys a = '3' print('Python version:', sys.version) print('OS platform:', platform.platform()) print('OS architecture:', platform.machine()) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) except ImportError: print('Torch version:', None) try: import transformers print('transformers version:', transformers.__version__) except ImportError: print('transformers version:', None)
708
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: a = False a = logging.get_logger(__name__) a = 'ybelkada/fonts' def UpperCAmelCase_ ( ): if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' """Pix2StructImageProcessor. Please upgrade torch.""" ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): requires_backends(UpperCAmelCase__ , ["""torch"""] ) _check_torch_version() lowercase_ = image_tensor.unsqueeze(0 ) lowercase_ = torch.nn.functional.unfold(UpperCAmelCase__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) lowercase_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCAmelCase__ , UpperCAmelCase__ , -1 ) lowercase_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ = 3_6 , UpperCAmelCase__ = "black" , UpperCAmelCase__ = "white" , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = None , UpperCAmelCase__ = None , ): requires_backends(UpperCAmelCase__ , """vision""" ) # Add new lines so that each line is no more than 80 characters. lowercase_ = textwrap.TextWrapper(width=8_0 ) lowercase_ = wrapper.wrap(text=UpperCAmelCase__ ) lowercase_ = """\n""".join(UpperCAmelCase__ ) if font_bytes is not None and font_path is None: lowercase_ = io.BytesIO(UpperCAmelCase__ ) elif font_path is not None: lowercase_ = font_path else: lowercase_ = hf_hub_download(UpperCAmelCase__ , """Arial.TTF""" ) lowercase_ = ImageFont.truetype(UpperCAmelCase__ , encoding="""UTF-8""" , size=UpperCAmelCase__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. lowercase_ = ImageDraw.Draw(Image.new("""RGB""" , (1, 1) , UpperCAmelCase__ ) ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = temp_draw.textbbox((0, 0) , UpperCAmelCase__ , UpperCAmelCase__ ) # Create the actual image with a bit of padding around the text. lowercase_ = text_width + left_padding + right_padding lowercase_ = text_height + top_padding + bottom_padding lowercase_ = Image.new("""RGB""" , (image_width, image_height) , UpperCAmelCase__ ) lowercase_ = ImageDraw.Draw(UpperCAmelCase__ ) draw.text(xy=(left_padding, top_padding) , text=UpperCAmelCase__ , fill=UpperCAmelCase__ , font=UpperCAmelCase__ ) return image def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ): requires_backends(UpperCAmelCase__ , """vision""" ) # Convert to PIL image if necessary lowercase_ = to_pil_image(UpperCAmelCase__ ) lowercase_ = render_text(UpperCAmelCase__ , **UpperCAmelCase__ ) lowercase_ = max(header_image.width , image.width ) lowercase_ = int(image.height * (new_width / image.width) ) lowercase_ = int(header_image.height * (new_width / header_image.width) ) lowercase_ = Image.new("""RGB""" , (new_width, new_height + new_header_height) , """white""" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary lowercase_ = to_numpy_array(UpperCAmelCase__ ) if infer_channel_dimension_format(UpperCAmelCase__ ) == ChannelDimension.LAST: lowercase_ = to_channel_dimension_format(UpperCAmelCase__ , ChannelDimension.LAST ) return new_image class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Tuple = ['flattened_patches'] def __init__( self : str , UpperCamelCase__ : bool = True , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : int = 2_048 , UpperCamelCase__ : bool = False , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = patch_size if patch_size is not None else {"""height""": 16, """width""": 16} lowercase_ = do_normalize lowercase_ = do_convert_rgb lowercase_ = max_patches lowercase_ = is_vqa def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : dict , **UpperCamelCase__ : Optional[int] ): '''simple docstring''' requires_backends(self.extract_flattened_patches , """torch""" ) _check_torch_version() # convert to torch lowercase_ = to_channel_dimension_format(UpperCamelCase__ , ChannelDimension.FIRST ) lowercase_ = torch.from_numpy(UpperCamelCase__ ) lowercase_ , lowercase_ = patch_size["""height"""], patch_size["""width"""] lowercase_ , lowercase_ = get_image_size(UpperCamelCase__ ) # maximize scale s.t. lowercase_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) lowercase_ = max(min(math.floor(scale * image_height / patch_height ) , UpperCamelCase__ ) , 1 ) lowercase_ = max(min(math.floor(scale * image_width / patch_width ) , UpperCamelCase__ ) , 1 ) lowercase_ = max(num_feasible_rows * patch_height , 1 ) lowercase_ = max(num_feasible_cols * patch_width , 1 ) lowercase_ = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="""bilinear""" , align_corners=UpperCamelCase__ , antialias=UpperCamelCase__ , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] lowercase_ = torch_extract_patches(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = patches.shape lowercase_ = patches_shape[1] lowercase_ = patches_shape[2] lowercase_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] lowercase_ = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] lowercase_ = torch.arange(UpperCamelCase__ ).reshape([rows, 1] ).repeat(1 , UpperCamelCase__ ).reshape([rows * columns, 1] ) lowercase_ = torch.arange(UpperCamelCase__ ).reshape([1, columns] ).repeat(UpperCamelCase__ , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] lowercase_ = row_ids.to(torch.floataa ) lowercase_ = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] lowercase_ = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] lowercase_ = torch.nn.functional.pad(UpperCamelCase__ , [0, 0, 0, max_patches - (rows * columns)] ).float() lowercase_ = to_numpy_array(UpperCamelCase__ ) return result def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Dict ): '''simple docstring''' if image.dtype == np.uinta: lowercase_ = image.astype(np.floataa ) # take mean across the whole `image` lowercase_ = np.mean(UpperCamelCase__ ) lowercase_ = np.std(UpperCamelCase__ ) lowercase_ = max(UpperCamelCase__ , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase_ = patch_size if patch_size is not None else self.patch_size lowercase_ = max_patches if max_patches is not None else self.max_patches lowercase_ = self.is_vqa if kwargs.get("""data_format""" , UpperCamelCase__ ) is not None: raise ValueError("""data_format is not an accepted input as the outputs are """ ) lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase_ = [convert_to_rgb(UpperCamelCase__ ) for image in images] # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError("""A header text must be provided for VQA models.""" ) lowercase_ = kwargs.pop("""font_bytes""" , UpperCamelCase__ ) lowercase_ = kwargs.pop("""font_path""" , UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = [header_text] * len(UpperCamelCase__ ) lowercase_ = [ render_header(UpperCamelCase__ , header_text[i] , font_bytes=UpperCamelCase__ , font_path=UpperCamelCase__ ) for i, image in enumerate(UpperCamelCase__ ) ] if do_normalize: lowercase_ = [self.normalize(image=UpperCamelCase__ ) for image in images] # convert to torch tensor and permute lowercase_ = [ self.extract_flattened_patches(image=UpperCamelCase__ , max_patches=UpperCamelCase__ , patch_size=UpperCamelCase__ ) for image in images ] # create attention mask in numpy lowercase_ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] lowercase_ = BatchFeature( data={"""flattened_patches""": images, """attention_mask""": attention_masks} , tensor_type=UpperCamelCase__ ) return encoded_outputs
650
0
"""simple docstring""" import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def lowerCamelCase_ (UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str]=() , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Tuple="no" , UpperCamelCase__ : Any="29500" ): _UpperCAmelCase : List[str] = False _UpperCAmelCase : Union[str, Any] = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): _UpperCAmelCase : int = True elif "IPython" in sys.modules: _UpperCAmelCase : Optional[int] = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: _UpperCAmelCase : Any = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.' ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , UpperCamelCase__ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: _UpperCAmelCase : Any = 8 _UpperCAmelCase : Optional[int] = PrepareForLaunch(UpperCamelCase__ , distributed_type='''TPU''' ) print(F'Launching a training on {num_processes} TPU cores.' ) xmp.spawn(UpperCamelCase__ , args=UpperCamelCase__ , nprocs=UpperCamelCase__ , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*UpperCamelCase__ ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=UpperCamelCase__ , master_addr='''127.0.01''' , master_port=UpperCamelCase__ , mixed_precision=UpperCamelCase__ ): _UpperCAmelCase : List[str] = PrepareForLaunch(UpperCamelCase__ , distributed_type='''MULTI_GPU''' ) print(F'Launching training on {num_processes} GPUs.' ) try: start_processes(UpperCamelCase__ , args=UpperCamelCase__ , nprocs=UpperCamelCase__ , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): _UpperCAmelCase : List[Any] = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int=() , UpperCamelCase__ : Tuple=2 ): from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=UpperCamelCase__ , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): _UpperCAmelCase : Dict = PrepareForLaunch(UpperCamelCase__ , debug=UpperCamelCase__ ) start_processes(UpperCamelCase__ , args=UpperCamelCase__ , nprocs=UpperCamelCase__ , start_method='''fork''' )
506
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCAmelCase ( a ): '''simple docstring''' def __init__( self , A , A=1_3 , A=7 , A=True , A=True , A=False , A=True , A=9_9 , A=3_2 , A=5 , A=4 , A=3_7 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=1_6 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> Tuple: _UpperCAmelCase : int = parent _UpperCAmelCase : List[Any] = batch_size _UpperCAmelCase : Union[str, Any] = seq_length _UpperCAmelCase : Any = is_training _UpperCAmelCase : str = use_input_mask _UpperCAmelCase : Tuple = use_token_type_ids _UpperCAmelCase : Tuple = use_labels _UpperCAmelCase : Tuple = vocab_size _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Dict = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Optional[int] = intermediate_size _UpperCAmelCase : List[str] = hidden_act _UpperCAmelCase : Tuple = hidden_dropout_prob _UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = max_position_embeddings _UpperCAmelCase : Optional[Any] = type_vocab_size _UpperCAmelCase : Dict = type_sequence_label_size _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Optional[int] = num_labels _UpperCAmelCase : int = num_choices _UpperCAmelCase : Any = scope def __lowerCAmelCase ( self ) -> int: _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Dict = None if self.use_input_mask: _UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : str = None _UpperCAmelCase : Any = None _UpperCAmelCase : Any = None if self.use_labels: _UpperCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : Optional[int] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self ) -> Dict: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self , A , A , A , A , A , A ) -> int: _UpperCAmelCase : List[str] = DistilBertModel(config=A ) model.to(A ) model.eval() _UpperCAmelCase : List[Any] = model(A , A ) _UpperCAmelCase : Tuple = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , A , A , A , A , A , A ) -> List[Any]: _UpperCAmelCase : Tuple = DistilBertForMaskedLM(config=A ) model.to(A ) model.eval() _UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , A , A , A , A , A , A ) -> List[str]: _UpperCAmelCase : Optional[Any] = DistilBertForQuestionAnswering(config=A ) model.to(A ) model.eval() _UpperCAmelCase : str = model( A , attention_mask=A , start_positions=A , end_positions=A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self , A , A , A , A , A , A ) -> List[Any]: _UpperCAmelCase : Optional[Any] = self.num_labels _UpperCAmelCase : Dict = DistilBertForSequenceClassification(A ) model.to(A ) model.eval() _UpperCAmelCase : Dict = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self , A , A , A , A , A , A ) -> int: _UpperCAmelCase : str = self.num_labels _UpperCAmelCase : int = DistilBertForTokenClassification(config=A ) model.to(A ) model.eval() _UpperCAmelCase : int = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self , A , A , A , A , A , A ) -> str: _UpperCAmelCase : List[str] = self.num_choices _UpperCAmelCase : Optional[int] = DistilBertForMultipleChoice(config=A ) model.to(A ) model.eval() _UpperCAmelCase : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : Optional[Any] = model( A , attention_mask=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self ) -> Optional[Any]: _UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) : List[str] = config_and_inputs _UpperCAmelCase : Tuple = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( a ,a ,unittest.TestCase ): '''simple docstring''' a__ =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) a__ =( { '''feature-extraction''': DistilBertModel, '''fill-mask''': DistilBertForMaskedLM, '''question-answering''': DistilBertForQuestionAnswering, '''text-classification''': DistilBertForSequenceClassification, '''token-classification''': DistilBertForTokenClassification, '''zero-shot''': DistilBertForSequenceClassification, } if is_torch_available() else {} ) a__ =True a__ =True a__ =True a__ =True def __lowerCAmelCase ( self ) -> Tuple: _UpperCAmelCase : Optional[Any] = DistilBertModelTester(self ) _UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A , dim=3_7 ) def __lowerCAmelCase ( self ) -> Tuple: self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> Optional[int]: _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*A ) def __lowerCAmelCase ( self ) -> Optional[Any]: _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*A ) def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*A ) def __lowerCAmelCase ( self ) -> List[Any]: _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*A ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*A ) def __lowerCAmelCase ( self ) -> Dict: _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*A ) @slow def __lowerCAmelCase ( self ) -> str: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : List[Any] = DistilBertModel.from_pretrained(A ) self.assertIsNotNone(A ) @slow @require_torch_gpu def __lowerCAmelCase ( self ) -> List[str]: _UpperCAmelCase , _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return _UpperCAmelCase : Dict = True _UpperCAmelCase : Dict = model_class(config=A ) _UpperCAmelCase : Optional[Any] = self._prepare_for_class(A , A ) _UpperCAmelCase : List[Any] = torch.jit.trace( A , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(A , os.path.join(A , '''traced_model.pt''' ) ) _UpperCAmelCase : Optional[Any] = torch.jit.load(os.path.join(A , '''traced_model.pt''' ) , map_location=A ) loaded(inputs_dict['''input_ids'''].to(A ) , inputs_dict['''attention_mask'''].to(A ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self ) -> Dict: _UpperCAmelCase : Optional[int] = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) _UpperCAmelCase : int = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _UpperCAmelCase : str = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCAmelCase : Optional[Any] = model(A , attention_mask=A )[0] _UpperCAmelCase : int = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , A ) _UpperCAmelCase : Optional[Any] = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , A , atol=1E-4 ) )
506
1
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def A_ ( UpperCAmelCase__ ) -> Optional[int]: a : Optional[int] = SwinConfig() a : Dict = swin_name.split('_' ) a : Dict = name_split[1] a : Tuple = int(name_split[4] ) a : Tuple = int(name_split[3][-1] ) if model_size == "tiny": a : Any = 96 a : List[str] = (2, 2, 6, 2) a : List[str] = (3, 6, 12, 24) elif model_size == "small": a : Any = 96 a : Tuple = (2, 2, 18, 2) a : Dict = (3, 6, 12, 24) elif model_size == "base": a : Optional[Any] = 128 a : List[str] = (2, 2, 18, 2) a : Tuple = (4, 8, 16, 32) else: a : List[str] = 192 a : Optional[Any] = (2, 2, 18, 2) a : List[Any] = (6, 12, 24, 48) if "in22k" in swin_name: a : Union[str, Any] = 2_1841 else: a : Optional[int] = 1000 a : int = 'huggingface/label-files' a : Union[str, Any] = 'imagenet-1k-id2label.json' a : List[Any] = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) a : Optional[Any] = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} a : Optional[Any] = idalabel a : str = {v: k for k, v in idalabel.items()} a : List[str] = img_size a : List[Any] = num_classes a : int = embed_dim a : Tuple = depths a : Dict = num_heads a : List[Any] = window_size return config def A_ ( UpperCAmelCase__ ) -> List[str]: if "patch_embed.proj" in name: a : Optional[Any] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: a : Any = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: a : Optional[Any] = 'encoder.' + name if "attn.proj" in name: a : Optional[int] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: a : str = name.replace('attn' , 'attention.self' ) if "norm1" in name: a : Optional[Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: a : Dict = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: a : str = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: a : Union[str, Any] = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": a : Tuple = 'layernorm.weight' if name == "norm.bias": a : Dict = 'layernorm.bias' if "head" in name: a : List[str] = name.replace('head' , 'classifier' ) else: a : List[Any] = 'swin.' + name return name def A_ ( UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: for key in orig_state_dict.copy().keys(): a : Any = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: a : List[str] = key.split('.' ) a : Dict = int(key_split[1] ) a : List[Any] = int(key_split[3] ) a : Any = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: a : List[str] = val[:dim, :] a : Tuple = val[ dim : dim * 2, : ] a : Union[str, Any] = val[-dim:, :] else: a : Tuple = val[ :dim ] a : str = val[ dim : dim * 2 ] a : Any = val[ -dim: ] else: a : Dict = val return orig_state_dict def A_ ( UpperCAmelCase__ , UpperCAmelCase__ ) -> List[Any]: a : Any = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() a : List[str] = get_swin_config(_SCREAMING_SNAKE_CASE ) a : List[Any] = SwinForImageClassification(_SCREAMING_SNAKE_CASE ) model.eval() a : Optional[int] = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) a : List[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' a : Dict = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) a : Union[str, Any] = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) a : str = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) a : List[str] = timm_model(inputs['pixel_values'] ) a : Optional[Any] = model(**_SCREAMING_SNAKE_CASE ).logits assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swin_name", default="swin_tiny_patch4_window7_224", type=str, help="Name of the Swin timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) SCREAMING_SNAKE_CASE__ : Tuple = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
707
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class A_ ( _UpperCAmelCase ): """simple docstring""" def __init__( self , __UpperCAmelCase=0.01 , __UpperCAmelCase=10_00 ) -> int: a : Dict = p_stop a : Tuple = max_length def __iter__( self ) -> str: a : Optional[Any] = 0 a : Union[str, Any] = False while not stop and count < self.max_length: yield count count += 1 a : Optional[int] = random.random() < self.p_stop class A_ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True ) -> List[str]: a : Optional[Any] = [ BatchSamplerShard(__UpperCAmelCase , 2 , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) for i in range(2 ) ] a : str = [list(__UpperCAmelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__UpperCAmelCase ) for shard in batch_sampler_shards] , [len(__UpperCAmelCase ) for e in expected] ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def lowercase_ ( self ) -> List[str]: # Check the shards when the dataset is a round multiple of total batch size. a : Tuple = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) a : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. a : Dict = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) a : Union[str, Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. a : Optional[int] = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) a : str = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. a : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) a : List[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is very small. a : Optional[Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : List[str] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) a : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : int = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) def lowercase_ ( self ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. a : List[str] = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) a : Union[str, Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. a : int = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) a : Any = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. a : List[str] = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) a : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. a : Tuple = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : int = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) a : List[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : Union[str, Any] = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) def lowercase_ ( self ) -> Optional[int]: # Check the shards when the dataset is a round multiple of total batch size. a : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) a : Optional[int] = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. a : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) a : int = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. a : Optional[int] = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) a : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. a : List[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) a : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. a : Union[str, Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : str = [[[0, 1]], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) a : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Dict = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) def lowercase_ ( self ) -> List[str]: # Check the shards when the dataset is a round multiple of batch size. a : Union[str, Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) a : Optional[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. a : List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) a : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. a : List[str] = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) a : Optional[Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. a : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) a : Optional[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : Tuple = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) def lowercase_ ( self ) -> List[Any]: a : int = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] a : Dict = [BatchSamplerShard(__UpperCAmelCase , 2 , __UpperCAmelCase , even_batches=__UpperCAmelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def lowercase_ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=2 , __UpperCAmelCase=False ) -> Tuple: random.seed(__UpperCAmelCase ) a : Dict = list(__UpperCAmelCase ) a : Any = [ IterableDatasetShard( __UpperCAmelCase , batch_size=__UpperCAmelCase , drop_last=__UpperCAmelCase , num_processes=__UpperCAmelCase , process_index=__UpperCAmelCase , split_batches=__UpperCAmelCase , ) for i in range(__UpperCAmelCase ) ] a : int = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__UpperCAmelCase ) iterable_dataset_lists.append(list(__UpperCAmelCase ) ) a : Dict = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size a : Optional[int] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) self.assertTrue(len(__UpperCAmelCase ) % shard_batch_size == 0 ) a : Optional[Any] = [] for idx in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__UpperCAmelCase ) < len(__UpperCAmelCase ): reference += reference self.assertListEqual(__UpperCAmelCase , reference[: len(__UpperCAmelCase )] ) def lowercase_ ( self ) -> int: a : Any = 42 a : Union[str, Any] = RandomIterableDataset() self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) # Edge case with a very small dataset a : Dict = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) def lowercase_ ( self ) -> List[Any]: a : str = BatchSampler(range(16 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : Any = SkipBatchSampler(__UpperCAmelCase , 2 ) self.assertListEqual(list(__UpperCAmelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase_ ( self ) -> str: a : Optional[Any] = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase_ ( self ) -> int: a : List[str] = DataLoader(list(range(16 ) ) , batch_size=4 ) a : Dict = skip_first_batches(__UpperCAmelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase_ ( self ) -> Any: a : Union[str, Any] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def lowercase_ ( self ) -> List[Any]: Accelerator() a : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
509
0
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __a : Dict = logging.getLogger() @unittest.skip("Temporarily disable the doc tests." ) @require_torch @require_tf @slow class __lowercase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Optional[int] , UpperCamelCase_ : Path , UpperCamelCase_ : Union[str, None] = None , UpperCamelCase_ : Union[List[str], None] = None , UpperCamelCase_ : Union[str, List[str], None] = None , UpperCamelCase_ : bool = True , ): """simple docstring""" __A = [file for file in os.listdir(UpperCamelCase_ ) if os.path.isfile(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) )] if identifier is not None: __A = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(UpperCamelCase_ , UpperCamelCase_ ): for n_ in n_identifier: __A = [file for file in files if n_ not in file] else: __A = [file for file in files if n_identifier not in file] __A = ignore_files or [] ignore_files.append("""__init__.py""" ) __A = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , UpperCamelCase_ ) if only_modules: __A = file.split(""".""" )[0] try: __A = getattr(UpperCamelCase_ , UpperCamelCase_ ) __A = doctest.DocTestSuite(UpperCamelCase_ ) __A = unittest.TextTestRunner().run(UpperCamelCase_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F"{module_identifier} is not a module." ) else: __A = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" __A = Path("""src/transformers""" ) __A = """modeling""" __A = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(UpperCamelCase_ , identifier=UpperCamelCase_ , ignore_files=UpperCamelCase_ ) def lowerCAmelCase_ ( self : Dict ): """simple docstring""" __A = Path("""src/transformers""" ) __A = """tokenization""" self.analyze_directory(UpperCamelCase_ , identifier=UpperCamelCase_ ) def lowerCAmelCase_ ( self : str ): """simple docstring""" __A = Path("""src/transformers""" ) __A = """configuration""" self.analyze_directory(UpperCamelCase_ , identifier=UpperCamelCase_ ) def lowerCAmelCase_ ( self : Any ): """simple docstring""" __A = Path("""src/transformers""" ) __A = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(UpperCamelCase_ , n_identifier=UpperCamelCase_ ) def lowerCAmelCase_ ( self : int ): """simple docstring""" __A = Path("""docs/source""" ) __A = ["""favicon.ico"""] self.analyze_directory(UpperCamelCase_ , ignore_files=UpperCamelCase_ , only_modules=UpperCamelCase_ )
637
from ...configuration_utils import PretrainedConfig from ...utils import logging __a : Dict = logging.get_logger(__name__) __a : Dict = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __lowercase ( lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE = "gpt_bigcode" SCREAMING_SNAKE_CASE = ["past_key_values"] SCREAMING_SNAKE_CASE = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[str] , UpperCamelCase_ : Dict=50_257 , UpperCamelCase_ : int=1_024 , UpperCamelCase_ : List[Any]=768 , UpperCamelCase_ : str=12 , UpperCamelCase_ : Union[str, Any]=12 , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Tuple="gelu_pytorch_tanh" , UpperCamelCase_ : Optional[Any]=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : Optional[int]=0.1 , UpperCamelCase_ : int=1e-5 , UpperCamelCase_ : Tuple=0.02 , UpperCamelCase_ : Any=True , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Dict=50_256 , UpperCamelCase_ : Optional[Any]=50_256 , UpperCamelCase_ : int=True , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : List[Any]=True , **UpperCamelCase_ : int , ): """simple docstring""" __A = vocab_size __A = n_positions __A = n_embd __A = n_layer __A = n_head __A = n_inner __A = activation_function __A = resid_pdrop __A = embd_pdrop __A = attn_pdrop __A = layer_norm_epsilon __A = initializer_range __A = scale_attn_weights __A = use_cache __A = attention_softmax_in_fpaa __A = scale_attention_softmax_in_fpaa __A = multi_query __A = bos_token_id __A = eos_token_id super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
637
1
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def UpperCamelCase ( _A : Union[str, Any] )-> Optional[Any]: """simple docstring""" def wrapper(*_A : Tuple , **_A : Dict ): A__ = timeit.default_timer() A__ = func(*_A , **_A ) A__ = timeit.default_timer() - starttime return delta A__ = func.__name__ return wrapper def UpperCamelCase ( _A : dict , _A : str=100 , _A : Any=None )-> Union[str, Any]: """simple docstring""" A__ = [] A__ = seq_shapes or {} for i in range(_A ): A__ = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(_A , _ArrayXD ): A__ = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(_A , datasets.Value ): if v.dtype == "string": A__ = "The small grey turtle was surprisingly fast when challenged." else: A__ = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(_A , datasets.Sequence ): while isinstance(_A , datasets.Sequence ): A__ = v.feature A__ = seq_shapes[k] A__ = np.random.rand(*_A ).astype(v.dtype ) A__ = data dummy_data.append((i, example) ) return dummy_data def UpperCamelCase ( _A : Optional[Any] , _A : Optional[int] , _A : Tuple=100 , _A : str=None )-> int: """simple docstring""" A__ = generate_examples(_A , num_examples=_A , seq_shapes=_A ) with ArrowWriter(features=_A , path=_A ) as writer: for key, record in dummy_data: A__ = features.encode_example(_A ) writer.write(_A ) A__ , A__ = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) A__ = datasets.Dataset.from_file(filename=_A , info=datasets.DatasetInfo(features=_A ) ) return dataset
232
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class UpperCamelCase ( _UpperCAmelCase , unittest.TestCase ): lowerCAmelCase : List[Any] = FlaxAutoencoderKL @property def __A ( self ): A__ = 4 A__ = 3 A__ = (32, 32) A__ = jax.random.PRNGKey(0 ) A__ = jax.random.uniform(UpperCAmelCase__ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def __A ( self ): A__ = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } A__ = self.dummy_input return init_dict, inputs_dict
232
1
def _lowercase ( a__ : int , a__ : int ) -> Dict: """simple docstring""" if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) _UpperCamelCase = str(bin(snake_case__ ) )[2:] # remove the leading "0b" _UpperCamelCase = str(bin(snake_case__ ) )[2:] # remove the leading "0b" _UpperCamelCase = max(len(snake_case__ ) , len(snake_case__ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(snake_case__ ) , b_binary.zfill(snake_case__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
147
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) _snake_case : Optional[Any] = str(bin(snake_case__ ) ) binary_number += "0" * shift_amount return binary_number def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) _snake_case : Any = str(bin(snake_case__ ) )[2:] if shift_amount >= len(snake_case__ ): return "0b0" _snake_case : Tuple = binary_number[: len(snake_case__ ) - shift_amount] return "0b" + shifted_binary_number def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" if number >= 0: # Get binary representation of positive number _snake_case : Any = """0""" + str(bin(snake_case__ ) ).strip("""-""" )[2:] else: # Get binary (2's complement) representation of negative number _snake_case : Dict = len(bin(snake_case__ )[3:] ) # Find 2's complement of number _snake_case : Tuple = bin(abs(snake_case__ ) - (1 << binary_number_length) )[3:] _snake_case : Union[str, Any] = ( """1""" + """0""" * (binary_number_length - len(snake_case__ )) + binary_number ) if shift_amount >= len(snake_case__ ): return "0b" + binary_number[0] * len(snake_case__ ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(snake_case__ ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
609
0
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument _a: Optional[Any] = { """/attention/""": """/0/SelfAttention/""", """/self_attention/""": """/0/SelfAttention/""", """/encoder_decoder_attention/""": """/1/EncDecAttention/""", """value""": """v""", """query""": """q""", """key""": """k""", """out""": """o""", """pre_self_attention_layer_norm""": """0/layer_norm""", """pre_cross_attention_layer_norm""": """1/layer_norm""", """pre_attention_layer_norm""": """0/layer_norm""", # previously 1, but seems wrong """token_embedder""": """shared""", """encoder_norm""": """final_layer_norm""", """decoder_norm""": """final_layer_norm""", """relpos_bias/rel_embedding""": """block/0/layer/0/SelfAttention/relative_attention_bias/weight""", """router/router_weights/w/""": """router/classifier/""", """roer/roer_weights/w/""": """router/classifier/""", """logits_dense""": """lm_head""", } def __lowerCAmelCase ( A ): # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model UpperCAmelCase_ = list(s_dict.keys() ) for key in keys: UpperCAmelCase_ = r".*/layers_(\d+)" UpperCAmelCase_ = key if re.match(A , A ): UpperCAmelCase_ = re.sub(r"layers_(\d+)" , r"block/\1/layer" , A ) UpperCAmelCase_ = r"(encoder|decoder)\/" if re.match(A , A ): UpperCAmelCase_ = re.match(A , A ).groups() if groups[0] == "encoder": UpperCAmelCase_ = re.sub(r"/mlp/" , r"/1/mlp/" , A ) UpperCAmelCase_ = re.sub(r"/pre_mlp_layer_norm/" , r"/1/layer_norm/" , A ) elif groups[0] == "decoder": UpperCAmelCase_ = re.sub(r"/mlp/" , r"/2/mlp/" , A ) UpperCAmelCase_ = re.sub(r"/pre_mlp_layer_norm/" , r"/2/layer_norm/" , A ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: UpperCAmelCase_ = new_key.replace(A , A ) print(F"{key} -> {new_key}" ) UpperCAmelCase_ = s_dict.pop(A ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCAmelCase_ = s_dict[ "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCAmelCase_ = s_dict[ "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: UpperCAmelCase_ = s_dict[key].shape[0] UpperCAmelCase_ = s_dict[key] for idx in range(A ): UpperCAmelCase_ = expert_weihts[idx] print(F"{key} -> {key.replace('expert/' , 'nested fstring' )}" ) s_dict.pop(A ) return s_dict _a: Any = { """NUM_ENCODER_LAYERS""": """num_layers""", """NUM_DECODER_LAYERS""": """num_decoder_layers""", """NUM_HEADS""": """num_heads""", """HEAD_DIM""": """d_kv""", """EMBED_DIM""": """d_model""", """MLP_DIM""": """d_ff""", """NUM_SELECTED_EXPERTS""": """num_selected_experts""", """NUM_ENCODER_SPARSE_LAYERS""": """num_sparse_encoder_layers""", """NUM_DECODER_SPARSE_LAYERS""": """num_sparse_decoder_layers""", """dense.MlpBlock.activations""": """feed_forward_proj""", } def __lowerCAmelCase ( A , A ): # Convert a google style config to the hugging face fromat import regex as re with open(A , "r" ) as f: UpperCAmelCase_ = f.read() UpperCAmelCase_ = re.findall(r"(.*) = ([0-9.]*)" , A ) UpperCAmelCase_ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": UpperCAmelCase_ = float(A ) if "." in value else int(A ) UpperCAmelCase_ = re.findall(r"(.*activations) = \(\'(.*)\',\)" , A )[0] UpperCAmelCase_ = str(activation[1] ) UpperCAmelCase_ = num_experts UpperCAmelCase_ = SwitchTransformersConfig(**A ) return config def __lowerCAmelCase ( A , A , A=None , A="./" , A=8 ): # Initialise PyTorch model print(F"Loading flax weights from : {flax_checkpoint_path}" ) UpperCAmelCase_ = checkpoints.load_tax_checkpoint(A ) if gin_file is not None: UpperCAmelCase_ = convert_gin_to_config(A , A ) else: UpperCAmelCase_ = SwitchTransformersConfig.from_pretrained(A ) UpperCAmelCase_ = SwitchTransformersForConditionalGeneration(A ) UpperCAmelCase_ = flax_params["target"] UpperCAmelCase_ = flatten_dict(A , sep="/" ) UpperCAmelCase_ = rename_keys(A ) UpperCAmelCase_ = unflatten_dict(A , sep="/" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(A , A ) print(F"Save PyTorch model to {pytorch_dump_path}" ) pt_model.save_pretrained(A ) if __name__ == "__main__": _a: List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the""" """ model architecture. If not provided, a `gin_file` has to be provided.""" ), ) parser.add_argument( """--gin_file""", default=None, type=str, required=False, help="""Path to the gin config file. If not provided, a `config_file` has to be passed """, ) parser.add_argument( """--config_name""", default=None, type=str, required=False, help="""Config name of SwitchTransformers model.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output pytorch model.""" ) parser.add_argument("""--num_experts""", default=8, type=int, required=False, help="""Number of experts""") _a: Any = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
268
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() _a: Optional[Any] = logging.get_logger(__name__) def __lowerCAmelCase ( A ): # initialize config if "resnet-50" in model_name: UpperCAmelCase_ = ResNetConfig.from_pretrained("microsoft/resnet-50" ) elif "resnet-101" in model_name: UpperCAmelCase_ = ResNetConfig.from_pretrained("microsoft/resnet-101" ) else: raise ValueError("Model name should include either resnet50 or resnet101" ) UpperCAmelCase_ = DetrConfig(use_timm_backbone=A , backbone_config=A ) # set label attributes UpperCAmelCase_ = "panoptic" in model_name if is_panoptic: UpperCAmelCase_ = 250 else: UpperCAmelCase_ = 91 UpperCAmelCase_ = "huggingface/label-files" UpperCAmelCase_ = "coco-detection-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(A , A , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(A ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} return config, is_panoptic def __lowerCAmelCase ( A ): # here we list all keys to be renamed (original name on the left, our name on the right) UpperCAmelCase_ = [] # stem # fmt: off rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight") ) rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight") ) rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias") ) rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean") ) rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var", ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var", ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F"transformer.encoder.layers.{i}.self_attn.out_proj.weight", F"encoder.layers.{i}.self_attn.out_proj.weight", ) ) rename_keys.append( (F"transformer.encoder.layers.{i}.self_attn.out_proj.bias", F"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"encoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"encoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"encoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"encoder.layers.{i}.fc2.bias") ) rename_keys.append( (F"transformer.encoder.layers.{i}.norm1.weight", F"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append( (F"transformer.encoder.layers.{i}.norm1.bias", F"encoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append( (F"transformer.encoder.layers.{i}.norm2.weight", F"encoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"encoder.layers.{i}.final_layer_norm.bias") ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F"transformer.decoder.layers.{i}.self_attn.out_proj.weight", F"decoder.layers.{i}.self_attn.out_proj.weight", ) ) rename_keys.append( (F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( F"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight", F"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( F"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias", F"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"decoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"decoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"decoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"decoder.layers.{i}.fc2.bias") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm1.weight", F"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm1.bias", F"decoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm2.weight", F"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm2.bias", F"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm3.weight", F"decoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"decoder.layers.{i}.final_layer_norm.bias") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) return rename_keys def __lowerCAmelCase ( A , A , A ): UpperCAmelCase_ = state_dict.pop(A ) UpperCAmelCase_ = val def __lowerCAmelCase ( A , A=False ): UpperCAmelCase_ = "" if is_panoptic: UpperCAmelCase_ = "detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) UpperCAmelCase_ = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:256, :] UpperCAmelCase_ = in_proj_bias[:256] UpperCAmelCase_ = in_proj_weight[256:512, :] UpperCAmelCase_ = in_proj_bias[256:512] UpperCAmelCase_ = in_proj_weight[-256:, :] UpperCAmelCase_ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCAmelCase_ = state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) UpperCAmelCase_ = state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:256, :] UpperCAmelCase_ = in_proj_bias[:256] UpperCAmelCase_ = in_proj_weight[256:512, :] UpperCAmelCase_ = in_proj_bias[256:512] UpperCAmelCase_ = in_proj_weight[-256:, :] UpperCAmelCase_ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention UpperCAmelCase_ = state_dict.pop( F"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight" ) UpperCAmelCase_ = state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCAmelCase_ = in_proj_weight_cross_attn[:256, :] UpperCAmelCase_ = in_proj_bias_cross_attn[:256] UpperCAmelCase_ = in_proj_weight_cross_attn[256:512, :] UpperCAmelCase_ = in_proj_bias_cross_attn[256:512] UpperCAmelCase_ = in_proj_weight_cross_attn[-256:, :] UpperCAmelCase_ = in_proj_bias_cross_attn[-256:] def __lowerCAmelCase ( ): UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(A , stream=A ).raw ) return im @torch.no_grad() def __lowerCAmelCase ( A , A=None , A=False ): UpperCAmelCase_ , UpperCAmelCase_ = get_detr_config(A ) # load original model from torch hub UpperCAmelCase_ = { "detr-resnet-50": "detr_resnet50", "detr-resnet-101": "detr_resnet101", } logger.info(F"Converting model {model_name}..." ) UpperCAmelCase_ = torch.hub.load("facebookresearch/detr" , model_name_to_original_name[model_name] , pretrained=A ).eval() UpperCAmelCase_ = detr.state_dict() # rename keys for src, dest in create_rename_keys(A ): if is_panoptic: UpperCAmelCase_ = "detr." + src rename_key(A , A , A ) # query, key and value matrices need special treatment read_in_q_k_v(A , is_panoptic=A ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase_ = "detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): UpperCAmelCase_ = state_dict.pop(A ) UpperCAmelCase_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase_ = state_dict.pop(A ) UpperCAmelCase_ = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: UpperCAmelCase_ = state_dict.pop(A ) UpperCAmelCase_ = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): UpperCAmelCase_ = state_dict.pop(A ) UpperCAmelCase_ = val # finally, create HuggingFace model and load state dict UpperCAmelCase_ = DetrForSegmentation(A ) if is_panoptic else DetrForObjectDetection(A ) model.load_state_dict(A ) model.eval() # verify our conversion on an image UpperCAmelCase_ = "coco_panoptic" if is_panoptic else "coco_detection" UpperCAmelCase_ = DetrImageProcessor(format=A ) UpperCAmelCase_ = processor(images=prepare_img() , return_tensors="pt" ) UpperCAmelCase_ = encoding["pixel_values"] UpperCAmelCase_ = detr(A ) UpperCAmelCase_ = model(A ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(A ).mkdir(exist_ok=A ) model.save_pretrained(A ) processor.save_pretrained(A ) if push_to_hub: # Upload model and image processor to the hub logger.info("Uploading PyTorch model and image processor to the hub..." ) model.push_to_hub(F"nielsr/{model_name}" ) processor.push_to_hub(F"nielsr/{model_name}" ) if __name__ == "__main__": _a: List[str] = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""detr-resnet-50""", type=str, choices=["""detr-resnet-50""", """detr-resnet-101"""], help="""Name of the DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub or not.""") _a: str = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
268
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __UpperCamelCase: Optional[int] = { """configuration_convnext""": ["""CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvNextConfig""", """ConvNextOnnxConfig"""] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase: str = ["""ConvNextFeatureExtractor"""] __UpperCamelCase: Tuple = ["""ConvNextImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase: Optional[int] = [ """CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvNextForImageClassification""", """ConvNextModel""", """ConvNextPreTrainedModel""", """ConvNextBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase: Optional[Any] = [ """TFConvNextForImageClassification""", """TFConvNextModel""", """TFConvNextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys __UpperCamelCase: Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
266
def lowerCamelCase__ ( __A :int ,__A :float ,__A :float ): """simple docstring""" return round(float(moles / volume ) * nfactor ) def lowerCamelCase__ ( __A :float ,__A :float ,__A :float ): """simple docstring""" return round(float((moles * 0.0_821 * temperature) / (volume) ) ) def lowerCamelCase__ ( __A :float ,__A :float ,__A :float ): """simple docstring""" return round(float((moles * 0.0_821 * temperature) / (pressure) ) ) def lowerCamelCase__ ( __A :float ,__A :float ,__A :float ): """simple docstring""" return round(float((pressure * volume) / (0.0_821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
268
0
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def a__ ( ) -> Tuple: lowerCamelCase = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" lowerCamelCase = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert("""RGB""" ) return image def a__ ( snake_case__ ) -> Optional[Any]: lowerCamelCase = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'visual_encoder.blocks.{i}.norm1.weight', F'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm1.bias', F'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.weight', F'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.bias', F'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.qkv.weight', F'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.weight', F'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.bias', F'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.weight', F'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.bias', F'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.weight', F'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.bias', F'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def a__ ( snake_case__ , snake_case__ , snake_case__ ) -> List[str]: lowerCamelCase = dct.pop(snake_case__ ) lowerCamelCase = val def a__ ( snake_case__ , snake_case__ ) -> Tuple: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowerCamelCase = state_dict.pop(F'visual_encoder.blocks.{i}.attn.q_bias' ) lowerCamelCase = state_dict.pop(F'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict lowerCamelCase = torch.cat((q_bias, torch.zeros_like(snake_case__ , requires_grad=snake_case__ ), v_bias) ) lowerCamelCase = qkv_bias def a__ ( snake_case__ , snake_case__ ) -> int: lowerCamelCase = 3_64 if """coco""" in model_name else 2_24 lowerCamelCase = BlipaVisionConfig(image_size=snake_case__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: lowerCamelCase = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=snake_case__ ).to_dict() elif "opt-6.7b" in model_name: lowerCamelCase = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=snake_case__ ).to_dict() elif "t5-xl" in model_name: lowerCamelCase = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowerCamelCase = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() lowerCamelCase = BlipaConfig(vision_config=snake_case__ , text_config=snake_case__ ) return config, image_size @torch.no_grad() def a__ ( snake_case__ , snake_case__=None , snake_case__=False ) -> str: lowerCamelCase = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) lowerCamelCase = tokenizer("""\n""" , add_special_tokens=snake_case__ ).input_ids[0] lowerCamelCase , lowerCamelCase = get_blipa_config(snake_case__ , eos_token_id=snake_case__ ) lowerCamelCase = BlipaForConditionalGeneration(snake_case__ ).eval() lowerCamelCase = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } lowerCamelCase , lowerCamelCase = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) lowerCamelCase = """cuda""" if torch.cuda.is_available() else """cpu""" lowerCamelCase , lowerCamelCase , lowerCamelCase = load_model_and_preprocess( name=snake_case__ , model_type=snake_case__ , is_eval=snake_case__ , device=snake_case__ ) original_model.eval() print("""Done!""" ) # update state dict keys lowerCamelCase = original_model.state_dict() lowerCamelCase = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowerCamelCase = state_dict.pop(snake_case__ ) if key.startswith("""Qformer.bert""" ): lowerCamelCase = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: lowerCamelCase = key.replace("""self""" , """attention""" ) if "opt_proj" in key: lowerCamelCase = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: lowerCamelCase = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): lowerCamelCase = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): lowerCamelCase = key.replace("""t5""" , """language""" ) lowerCamelCase = val # read in qv biases read_in_q_v_bias(snake_case__ , snake_case__ ) lowerCamelCase , lowerCamelCase = hf_model.load_state_dict(snake_case__ , strict=snake_case__ ) assert len(snake_case__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] lowerCamelCase = load_demo_image() lowerCamelCase = vis_processors["""eval"""](snake_case__ ).unsqueeze(0 ).to(snake_case__ ) lowerCamelCase = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(snake_case__ ) # create processor lowerCamelCase = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=snake_case__ , image_std=snake_case__ ) lowerCamelCase = BlipaProcessor(image_processor=snake_case__ , tokenizer=snake_case__ ) lowerCamelCase = processor(images=snake_case__ , return_tensors="""pt""" ).pixel_values.to(snake_case__ ) # make sure processor creates exact same pixel values assert torch.allclose(snake_case__ , snake_case__ ) original_model.to(snake_case__ ) hf_model.to(snake_case__ ) with torch.no_grad(): if "opt" in model_name: lowerCamelCase = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits lowerCamelCase = hf_model(snake_case__ , snake_case__ ).logits else: lowerCamelCase = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits lowerCamelCase = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) lowerCamelCase = hf_model(snake_case__ , snake_case__ , labels=snake_case__ ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": lowerCamelCase = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=snake_case__ ) assert torch.allclose(logits[0, :3, :3] , snake_case__ , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": lowerCamelCase = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=snake_case__ ) else: # cast to same type lowerCamelCase = logits.dtype assert torch.allclose(original_logits.to(snake_case__ ) , snake_case__ , atol=1E-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) lowerCamelCase = """""" lowerCamelCase = tokenizer(snake_case__ , return_tensors="""pt""" ).input_ids.to(snake_case__ ) lowerCamelCase = original_model.generate({"""image""": original_pixel_values} ) lowerCamelCase = hf_model.generate( snake_case__ , snake_case__ , do_sample=snake_case__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , snake_case__ ) lowerCamelCase = input_ids.shape[1] lowerCamelCase = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=snake_case__ ) lowerCamelCase = [text.strip() for text in output_text] print("""HF generation:""" , snake_case__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(snake_case__ ) hf_model.save_pretrained(snake_case__ ) if push_to_hub: processor.push_to_hub(F'nielsr/{model_name}' ) hf_model.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": lowerCAmelCase : Any = argparse.ArgumentParser() lowerCAmelCase : List[Any] = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""blip2-opt-2.7b""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) lowerCAmelCase : Dict = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
702
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def a__ ( snake_case__ ) -> List[str]: return getitem, k def a__ ( snake_case__ , snake_case__ ) -> Optional[Any]: return setitem, k, v def a__ ( snake_case__ ) -> str: return delitem, k def a__ ( snake_case__ , snake_case__ , *snake_case__ ) -> Union[str, Any]: try: return fun(snake_case__ , *snake_case__ ), None except Exception as e: return None, e lowerCAmelCase : Optional[int] = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) lowerCAmelCase : List[Any] = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] lowerCAmelCase : List[Any] = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] lowerCAmelCase : List[Any] = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] lowerCAmelCase : Tuple = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowerCAmelCase : Tuple = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def a__ ( snake_case__ ) -> Any: lowerCamelCase = HashMap(initial_block_size=4 ) lowerCamelCase = {} for _, (fun, *args) in enumerate(snake_case__ ): lowerCamelCase , lowerCamelCase = _run_operation(snake_case__ , snake_case__ , *snake_case__ ) lowerCamelCase , lowerCamelCase = _run_operation(snake_case__ , snake_case__ , *snake_case__ ) assert my_res == py_res assert str(snake_case__ ) == str(snake_case__ ) assert set(snake_case__ ) == set(snake_case__ ) assert len(snake_case__ ) == len(snake_case__ ) assert set(my.items() ) == set(py.items() ) def a__ ( ) -> int: def is_public(snake_case__ ) -> bool: return not name.startswith("""_""" ) lowerCamelCase = {name for name in dir({} ) if is_public(snake_case__ )} lowerCamelCase = {name for name in dir(HashMap() ) if is_public(snake_case__ )} assert dict_public_names > hash_public_names
533
0
"""simple docstring""" from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging A = logging.get_logger(__name__) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = ['''pixel_values'''] def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = PILImageResampling.BICUBIC , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = IMAGENET_DEFAULT_MEAN , _UpperCAmelCase = IMAGENET_DEFAULT_STD , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : int = size if size is not None else {'''shortest_edge''': 224} __a : str = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __a : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __a : Tuple = get_size_dict(_UpperCAmelCase , param_name='''crop_size''' ) __a : Tuple = do_resize __a : Optional[int] = size __a : List[Any] = resample __a : List[str] = do_center_crop __a : Dict = crop_size __a : Union[str, Any] = do_rescale __a : int = rescale_factor __a : int = do_normalize __a : Optional[int] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __a : Any = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = PILImageResampling.BICUBIC , _UpperCAmelCase = None , **_UpperCAmelCase , ): __a : str = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __a : str = int((256 / 224) * size['''shortest_edge'''] ) __a : Tuple = get_resize_output_image_size(_UpperCAmelCase , size=_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __a : Tuple = {'''height''': output_size[0], '''width''': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( _UpperCAmelCase , size=(size_dict['''height'''], size_dict['''width''']) , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): __a : List[Any] = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ): __a : str = do_resize if do_resize is not None else self.do_resize __a : List[str] = resample if resample is not None else self.resample __a : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop __a : Any = do_rescale if do_rescale is not None else self.do_rescale __a : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor __a : str = do_normalize if do_normalize is not None else self.do_normalize __a : List[str] = image_mean if image_mean is not None else self.image_mean __a : List[Any] = image_std if image_std is not None else self.image_std __a : Optional[Any] = size if size is not None else self.size __a : Optional[Any] = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __a : Optional[int] = crop_size if crop_size is not None else self.crop_size __a : int = get_size_dict(_UpperCAmelCase , param_name='''crop_size''' ) __a : int = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __a : Union[str, Any] = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: __a : Union[str, Any] = [self.resize(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for image in images] if do_center_crop: __a : str = [self.center_crop(_UpperCAmelCase , _UpperCAmelCase ) for image in images] if do_rescale: __a : Optional[int] = [self.rescale(_UpperCAmelCase , _UpperCAmelCase ) for image in images] if do_normalize: __a : Union[str, Any] = [self.normalize(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for image in images] __a : Tuple = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] __a : Optional[Any] = {'''pixel_values''': images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
52
'''simple docstring''' import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger _snake_case = get_logger(__name__) _snake_case = Path(__file__).parent / 'model_card_template.md' _snake_case = uuida().hex _snake_case = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES _snake_case = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES _snake_case = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def _A ( snake_case = None ) -> str: _lowercase : Dict = F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'''; torch/{_torch_version}''' if is_flax_available(): ua += F'''; jax/{_jax_version}''' ua += F'''; flax/{_flax_version}''' if is_onnx_available(): ua += F'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI" , "" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(snake_case , snake_case ): ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(snake_case , snake_case ): ua += "; " + user_agent return ua def _A ( snake_case , snake_case = None , snake_case = None ) -> Optional[Any]: if token is None: _lowercase : List[Any] = HfFolder.get_token() if organization is None: _lowercase : Tuple = whoami(snake_case )["name"] return F'''{username}/{model_id}''' else: return F'''{organization}/{model_id}''' def _A ( snake_case , snake_case ) -> Tuple: if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(snake_case , "local_rank" ) and args.local_rank not in [-1, 0]: return _lowercase : Tuple = args.hub_token if hasattr(snake_case , "hub_token" ) else None _lowercase : Optional[int] = get_full_repo_name(snake_case , token=snake_case ) _lowercase : List[Any] = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en" , license="apache-2.0" , library_name="diffusers" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=snake_case , model_name=snake_case , repo_name=snake_case , dataset_name=args.dataset_name if hasattr(snake_case , "dataset_name" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(snake_case , "gradient_accumulation_steps" ) else None ) , adam_betaa=args.adam_betaa if hasattr(snake_case , "adam_beta1" ) else None , adam_betaa=args.adam_betaa if hasattr(snake_case , "adam_beta2" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(snake_case , "adam_weight_decay" ) else None , adam_epsilon=args.adam_epsilon if hasattr(snake_case , "adam_epsilon" ) else None , lr_scheduler=args.lr_scheduler if hasattr(snake_case , "lr_scheduler" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(snake_case , "lr_warmup_steps" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(snake_case , "ema_inv_gamma" ) else None , ema_power=args.ema_power if hasattr(snake_case , "ema_power" ) else None , ema_max_decay=args.ema_max_decay if hasattr(snake_case , "ema_max_decay" ) else None , mixed_precision=args.mixed_precision , ) _lowercase : List[str] = os.path.join(args.output_dir , "README.md" ) model_card.save(snake_case ) def _A ( snake_case , snake_case = None ) -> Union[str, Any]: if resolved_file is None or commit_hash is not None: return commit_hash _lowercase : Optional[int] = str(Path(snake_case ).as_posix() ) _lowercase : Dict = re.search(r"snapshots/([^/]+)/" , snake_case ) if search is None: return None _lowercase : Union[str, Any] = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(snake_case ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. _snake_case = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) _snake_case = os.path.join(hf_cache_home, 'diffusers') def _A ( snake_case = None , snake_case = None ) -> None: if new_cache_dir is None: _lowercase : Optional[int] = DIFFUSERS_CACHE if old_cache_dir is None: _lowercase : Any = old_diffusers_cache _lowercase : int = Path(snake_case ).expanduser() _lowercase : int = Path(snake_case ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): _lowercase : int = new_cache_dir / old_blob_path.relative_to(snake_case ) new_blob_path.parent.mkdir(parents=snake_case , exist_ok=snake_case ) os.replace(snake_case , snake_case ) try: os.symlink(snake_case , snake_case ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). _snake_case = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): _snake_case = 0 else: with open(cache_version_file) as f: try: _snake_case = int(f.read()) except ValueError: _snake_case = 0 if cache_version < 1: _snake_case = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: _snake_case = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( F'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ''' 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( F'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ''' 'the directory exists and can be written to.' ) def _A ( snake_case , snake_case = None ) -> str: if variant is not None: _lowercase : Any = weights_name.split("." ) _lowercase : str = splits[:-1] + [variant] + splits[-1:] _lowercase : List[str] = ".".join(snake_case ) return weights_name def _A ( snake_case , *, snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case=None , ) -> Optional[Any]: _lowercase : Tuple = str(snake_case ) if os.path.isfile(snake_case ): return pretrained_model_name_or_path elif os.path.isdir(snake_case ): if os.path.isfile(os.path.join(snake_case , snake_case ) ): # Load from a PyTorch checkpoint _lowercase : Any = os.path.join(snake_case , snake_case ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(snake_case , snake_case , snake_case ) ): _lowercase : List[Any] = os.path.join(snake_case , snake_case , snake_case ) return model_file else: raise EnvironmentError( F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(snake_case ).base_version ) >= version.parse("0.20.0" ) ): try: _lowercase : List[str] = hf_hub_download( snake_case , filename=_add_variant(snake_case , snake_case ) , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , ) warnings.warn( F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , snake_case , ) return model_file except: # noqa: E722 warnings.warn( F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(snake_case , snake_case )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(snake_case , snake_case )}\' so that the correct variant file can be added.''' , snake_case , ) try: # 2. Load model file as usual _lowercase : Tuple = hf_hub_download( snake_case , filename=snake_case , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' "this model name. Check the model page at " F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' F''' directory containing a file named {weights_name} or''' " \nCheckout your internet connection or see how to run the library in" " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." ) except EnvironmentError: raise EnvironmentError( F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' F'''containing a file named {weights_name}''' )
245
0
'''simple docstring''' from __future__ import annotations def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> list[str]: """simple docstring""" if nth_term == "": return [""] __UpperCAmelCase : str = int(__UpperCAmelCase ) __UpperCAmelCase : Any = int(__UpperCAmelCase ) __UpperCAmelCase : List[str] = [] for temp in range(int(__UpperCAmelCase ) ): series.append(f"""1 / {pow(temp + 1 , int(__UpperCAmelCase ) )}""" if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() _a : List[str] = int(input("Enter the last number (nth term) of the P-Series")) _a : Any = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
712
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : List[Any] = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class __A (__magic_name__ ): snake_case :Any = "cvt" def __init__( self , UpperCamelCase_=3 , UpperCamelCase_=[7, 3, 3] , UpperCamelCase_=[4, 2, 2] , UpperCamelCase_=[2, 1, 1] , UpperCamelCase_=[64, 1_92, 3_84] , UpperCamelCase_=[1, 3, 6] , UpperCamelCase_=[1, 2, 10] , UpperCamelCase_=[4.0, 4.0, 4.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.1] , UpperCamelCase_=[True, True, True] , UpperCamelCase_=[False, False, True] , UpperCamelCase_=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase_=[3, 3, 3] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[2, 2, 2] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = num_channels __UpperCAmelCase : Optional[Any] = patch_sizes __UpperCAmelCase : List[str] = patch_stride __UpperCAmelCase : Tuple = patch_padding __UpperCAmelCase : int = embed_dim __UpperCAmelCase : str = num_heads __UpperCAmelCase : Any = depth __UpperCAmelCase : List[str] = mlp_ratio __UpperCAmelCase : List[str] = attention_drop_rate __UpperCAmelCase : Dict = drop_rate __UpperCAmelCase : Dict = drop_path_rate __UpperCAmelCase : str = qkv_bias __UpperCAmelCase : Optional[int] = cls_token __UpperCAmelCase : Optional[Any] = qkv_projection_method __UpperCAmelCase : Tuple = kernel_qkv __UpperCAmelCase : Optional[Any] = padding_kv __UpperCAmelCase : Optional[int] = stride_kv __UpperCAmelCase : Any = padding_q __UpperCAmelCase : List[Any] = stride_q __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Any = layer_norm_eps
10
0
"""simple docstring""" from manim import * class _lowerCAmelCase ( lowerCamelCase ): def _a ( self ) -> List[Any]: _UpperCAmelCase = Rectangle(height=0.5 , width=0.5 ) _UpperCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _UpperCAmelCase = Rectangle(height=0.25 , width=0.25 ) _UpperCAmelCase = [mem.copy() for i in range(6 )] _UpperCAmelCase = [mem.copy() for i in range(6 )] _UpperCAmelCase = VGroup(*a_ ).arrange(a_ , buff=0 ) _UpperCAmelCase = VGroup(*a_ ).arrange(a_ , buff=0 ) _UpperCAmelCase = VGroup(a_ , a_ ).arrange(a_ , buff=0 ) _UpperCAmelCase = Text("CPU" , font_size=24 ) _UpperCAmelCase = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a_ ) _UpperCAmelCase = [mem.copy() for i in range(4 )] _UpperCAmelCase = VGroup(*a_ ).arrange(a_ , buff=0 ) _UpperCAmelCase = Text("GPU" , font_size=24 ) _UpperCAmelCase = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) gpu.move_to([-1, -1, 0] ) self.add(a_ ) _UpperCAmelCase = [mem.copy() for i in range(6 )] _UpperCAmelCase = VGroup(*a_ ).arrange(a_ , buff=0 ) _UpperCAmelCase = Text("Model" , font_size=24 ) _UpperCAmelCase = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) model.move_to([3, -1.0, 0] ) self.add(a_ ) _UpperCAmelCase = [] _UpperCAmelCase = [] for i, rect in enumerate(a_ ): _UpperCAmelCase = fill.copy().set_fill(a_ , opacity=0.8 ) target.move_to(a_ ) model_arr.append(a_ ) _UpperCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(a_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(a_ ) self.add(*a_ , *a_ ) _UpperCAmelCase = [meta_mem.copy() for i in range(6 )] _UpperCAmelCase = [meta_mem.copy() for i in range(6 )] _UpperCAmelCase = VGroup(*a_ ).arrange(a_ , buff=0 ) _UpperCAmelCase = VGroup(*a_ ).arrange(a_ , buff=0 ) _UpperCAmelCase = VGroup(a_ , a_ ).arrange(a_ , buff=0 ) _UpperCAmelCase = Text("Disk" , font_size=24 ) _UpperCAmelCase = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) disk.move_to([-4, -1.25, 0] ) self.add(a_ , a_ ) _UpperCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCAmelCase = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(a_ , a_ ) _UpperCAmelCase = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(a_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(a_ ) _UpperCAmelCase = MarkupText( f"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(a_ ) ) _UpperCAmelCase = Square(0.3 ) input.set_fill(a_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , a_ , buff=0.5 ) self.play(Write(a_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=a_ , buff=0.02 ) self.play(MoveToTarget(a_ ) ) self.play(FadeOut(a_ ) ) _UpperCAmelCase = Arrow(start=a_ , end=a_ , color=a_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , a_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) _UpperCAmelCase = MarkupText( f"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(a_ , run_time=3 ) ) _UpperCAmelCase = {"run_time": 1, "fade_in": True, "fade_out": True, "buff": 0.02} self.play( Write(a_ ) , Circumscribe(model_arr[0] , color=a_ , **a_ ) , Circumscribe(model_cpu_arr[0] , color=a_ , **a_ ) , Circumscribe(gpu_rect[0] , color=a_ , **a_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) _UpperCAmelCase = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , a_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) _UpperCAmelCase = AnimationGroup( FadeOut(a_ , run_time=0.5 ) , MoveToTarget(a_ , run_time=0.5 ) , FadeIn(a_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(a_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: _UpperCAmelCase = 0.7 self.play( Circumscribe(model_arr[i] , **a_ ) , Circumscribe(cpu_left_col_base[i] , **a_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=a_ , **a_ ) , Circumscribe(gpu_rect[0] , color=a_ , **a_ ) , Circumscribe(model_arr[i + 1] , color=a_ , **a_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=a_ , **a_ ) , Circumscribe(cpu_left_col_base[-1] , color=a_ , **a_ ) , Circumscribe(gpu_rect[0] , color=a_ , **a_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) _UpperCAmelCase = a_c _UpperCAmelCase = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(a_ ) , FadeOut(a_ , run_time=0.5 ) , ) _UpperCAmelCase = MarkupText(f"Inference on a model too large for GPU memory\nis successfully completed." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(a_ , run_time=3 ) , MoveToTarget(a_ ) ) self.wait()
657
"""simple docstring""" def __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def merge(UpperCamelCase__ , UpperCamelCase__ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(UpperCamelCase__ ) <= 1: return collection _UpperCAmelCase = len(UpperCamelCase__ ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __magic_name__ = input('''Enter numbers separated by a comma:\n''').strip() __magic_name__ = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
657
1
"""simple docstring""" from __future__ import annotations def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if len(SCREAMING_SNAKE_CASE ) < 2: raise ValueError("Monogons and Digons are not polygons in the Euclidean space" ) if any(i <= 0 for i in nums ): raise ValueError("All values must be greater than 0" ) __snake_case = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
700
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class __magic_name__ : def __init__( self : Optional[int] , snake_case_ : List[str] , snake_case_ : str=13 , snake_case_ : Optional[int]=7 , snake_case_ : Optional[Any]=True , snake_case_ : Union[str, Any]=True , snake_case_ : Tuple=True , snake_case_ : int=True , snake_case_ : int=99 , snake_case_ : Optional[int]=64 , snake_case_ : Dict=32 , snake_case_ : Dict=5 , snake_case_ : List[str]=4 , snake_case_ : List[Any]=37 , snake_case_ : Optional[Any]="gelu" , snake_case_ : Optional[Any]=0.1 , snake_case_ : List[Any]=0.1 , snake_case_ : Union[str, Any]=512 , snake_case_ : int=16 , snake_case_ : List[str]=2 , snake_case_ : Union[str, Any]=0.02 , snake_case_ : Union[str, Any]=3 , snake_case_ : str=4 , snake_case_ : int=None , ): __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = embedding_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = scope def lowerCAmelCase ( self : Union[str, Any] ): __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case = ids_tensor([self.batch_size] , self.num_choices ) __snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Union[str, Any] ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Optional[Any] , snake_case_ : Any , snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : str , snake_case_ : Dict , snake_case_ : List[str] ): __snake_case = MobileBertModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() __snake_case = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) __snake_case = model(snake_case_ , token_type_ids=snake_case_ ) __snake_case = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : List[str] , snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : Optional[int] , snake_case_ : int , snake_case_ : int , snake_case_ : str , snake_case_ : str ): __snake_case = MobileBertForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() __snake_case = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : int , snake_case_ : int , snake_case_ : Any ): __snake_case = MobileBertForNextSentencePrediction(config=snake_case_ ) model.to(snake_case_ ) model.eval() __snake_case = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCAmelCase ( self : Optional[int] , snake_case_ : List[str] , snake_case_ : List[str] , snake_case_ : str , snake_case_ : Optional[Any] , snake_case_ : List[str] , snake_case_ : List[str] , snake_case_ : Dict ): __snake_case = MobileBertForPreTraining(config=snake_case_ ) model.to(snake_case_ ) model.eval() __snake_case = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , next_sentence_label=snake_case_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCAmelCase ( self : Any , snake_case_ : List[str] , snake_case_ : int , snake_case_ : Any , snake_case_ : Union[str, Any] , snake_case_ : Dict , snake_case_ : int , snake_case_ : int ): __snake_case = MobileBertForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() __snake_case = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : str , snake_case_ : Tuple , snake_case_ : int , snake_case_ : str , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : str , snake_case_ : List[str] ): __snake_case = self.num_labels __snake_case = MobileBertForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() __snake_case = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Optional[Any] , snake_case_ : Tuple , snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : Tuple , snake_case_ : Optional[int] , snake_case_ : Tuple , snake_case_ : List[Any] ): __snake_case = self.num_labels __snake_case = MobileBertForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() __snake_case = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : Any , snake_case_ : Any , snake_case_ : Dict , snake_case_ : Union[str, Any] ): __snake_case = self.num_choices __snake_case = MobileBertForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() __snake_case = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : List[Any] ): __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __magic_name__ ( lowercase__ , lowercase__ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Dict = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : Optional[int] = ( { 'feature-extraction': MobileBertModel, 'fill-mask': MobileBertForMaskedLM, 'question-answering': MobileBertForQuestionAnswering, 'text-classification': MobileBertForSequenceClassification, 'token-classification': MobileBertForTokenClassification, 'zero-shot': MobileBertForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : int = True def lowerCAmelCase ( self : List[str] , snake_case_ : List[str] , snake_case_ : str , snake_case_ : str=False ): __snake_case = super()._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ ) if return_labels: if model_class in get_values(snake_case_ ): __snake_case = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case_ ) __snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) return inputs_dict def lowerCAmelCase ( self : Optional[Any] ): __snake_case = MobileBertModelTester(self ) __snake_case = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase ( self : List[Any] ): self.config_tester.run_common_tests() def lowerCAmelCase ( self : Tuple ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case_ ) def lowerCAmelCase ( self : Optional[Any] ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case_ ) def lowerCAmelCase ( self : Tuple ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case_ ) def lowerCAmelCase ( self : Any ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case_ ) def lowerCAmelCase ( self : Any ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case_ ) def lowerCAmelCase ( self : List[str] ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case_ ) def lowerCAmelCase ( self : List[Any] ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case_ ) def lowerCAmelCase ( self : str ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case_ ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" return torch.tensor( SCREAMING_SNAKE_CASE , dtype=torch.long , device=SCREAMING_SNAKE_CASE , ) _SCREAMING_SNAKE_CASE = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): @slow def lowerCAmelCase ( self : Tuple ): __snake_case = MobileBertModel.from_pretrained("google/mobilebert-uncased" ).to(snake_case_ ) __snake_case = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): __snake_case = model(snake_case_ )[0] __snake_case = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , snake_case_ ) __snake_case = torch.tensor( [ [ [-2.4_73_65_26e07, 8.2_69_16_56e04, 1.6_52_18_38e05], [-5.7_54_17_04e-01, 3.9_05_60_22e00, 4.4_01_15_07e00], [2.6_04_73_59e00, 1.5_67_76_52e00, -1.7_32_41_88e-01], ] ] , device=snake_case_ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE __snake_case = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) __snake_case = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
614
0
'''simple docstring''' from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run A_ = True except (ImportError, AttributeError): A_ = object def _UpperCamelCase ( *__UpperCamelCase ,**__UpperCamelCase ) -> Optional[int]: pass A_ = False A_ = logging.get_logger("transformers-cli/serving") def _UpperCamelCase ( __UpperCamelCase ) -> int: lowerCamelCase_ = pipeline( task=args.task ,model=args.model if args.model else None ,config=args.config ,tokenizer=args.tokenizer ,device=args.device ,) return ServeCommand(__UpperCamelCase ,args.host ,args.port ,args.workers ) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = 42 class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = 42 class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = 42 class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' @staticmethod def UpperCamelCase( SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' lowerCamelCase_ = parser.add_parser( 'serve' , help='CLI tool to run inference requests through REST and GraphQL endpoints.' ) serve_parser.add_argument( '--task' , type=SCREAMING_SNAKE_CASE_ , choices=get_supported_tasks() , help='The task to run the pipeline on' , ) serve_parser.add_argument('--host' , type=SCREAMING_SNAKE_CASE_ , default='localhost' , help='Interface the server will listen on.' ) serve_parser.add_argument('--port' , type=SCREAMING_SNAKE_CASE_ , default=8888 , help='Port the serving will listen to.' ) serve_parser.add_argument('--workers' , type=SCREAMING_SNAKE_CASE_ , default=1 , help='Number of http workers' ) serve_parser.add_argument('--model' , type=SCREAMING_SNAKE_CASE_ , help='Model\'s name or path to stored model.' ) serve_parser.add_argument('--config' , type=SCREAMING_SNAKE_CASE_ , help='Model\'s config name or path to stored model.' ) serve_parser.add_argument('--tokenizer' , type=SCREAMING_SNAKE_CASE_ , help='Tokenizer name to use.' ) serve_parser.add_argument( '--device' , type=SCREAMING_SNAKE_CASE_ , default=-1 , help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' , ) serve_parser.set_defaults(func=SCREAMING_SNAKE_CASE_ ) def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' lowerCamelCase_ = pipeline lowerCamelCase_ = host lowerCamelCase_ = port lowerCamelCase_ = workers if not _serve_dependencies_installed: raise RuntimeError( 'Using serve command requires FastAPI and uvicorn. ' 'Please install transformers with [serving]: pip install "transformers[serving]".' 'Or install FastAPI and uvicorn separately.' ) else: logger.info(f'''Serving model over {host}:{port}''' ) lowerCamelCase_ = FastAPI( routes=[ APIRoute( '/' , self.model_info , response_model=SCREAMING_SNAKE_CASE_ , response_class=SCREAMING_SNAKE_CASE_ , methods=['GET'] , ), APIRoute( '/tokenize' , self.tokenize , response_model=SCREAMING_SNAKE_CASE_ , response_class=SCREAMING_SNAKE_CASE_ , methods=['POST'] , ), APIRoute( '/detokenize' , self.detokenize , response_model=SCREAMING_SNAKE_CASE_ , response_class=SCREAMING_SNAKE_CASE_ , methods=['POST'] , ), APIRoute( '/forward' , self.forward , response_model=SCREAMING_SNAKE_CASE_ , response_class=SCREAMING_SNAKE_CASE_ , methods=['POST'] , ), ] , timeout=600 , ) def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' run(self._app , host=self.host , port=self.port , workers=self.workers ) def UpperCamelCase( self ) -> int: '''simple docstring''' return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ = Body(SCREAMING_SNAKE_CASE_ , embed=SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ = Body(SCREAMING_SNAKE_CASE_ , embed=SCREAMING_SNAKE_CASE_ ) ) -> Dict: '''simple docstring''' try: lowerCamelCase_ = self._pipeline.tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) if return_ids: lowerCamelCase_ = self._pipeline.tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) return ServeTokenizeResult(tokens=SCREAMING_SNAKE_CASE_ , tokens_ids=SCREAMING_SNAKE_CASE_ ) else: return ServeTokenizeResult(tokens=SCREAMING_SNAKE_CASE_ ) except Exception as e: raise HTTPException(status_code=500 , detail={'model': '', 'error': str(SCREAMING_SNAKE_CASE_ )} ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ = Body(SCREAMING_SNAKE_CASE_ , embed=SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ = Body(SCREAMING_SNAKE_CASE_ , embed=SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ = Body(SCREAMING_SNAKE_CASE_ , embed=SCREAMING_SNAKE_CASE_ ) , ) -> Tuple: '''simple docstring''' try: lowerCamelCase_ = self._pipeline.tokenizer.decode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return ServeDeTokenizeResult(model='' , text=SCREAMING_SNAKE_CASE_ ) except Exception as e: raise HTTPException(status_code=500 , detail={'model': '', 'error': str(SCREAMING_SNAKE_CASE_ )} ) async def UpperCamelCase( self , SCREAMING_SNAKE_CASE_=Body(SCREAMING_SNAKE_CASE_ , embed=SCREAMING_SNAKE_CASE_ ) ) -> int: '''simple docstring''' if len(SCREAMING_SNAKE_CASE_ ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model lowerCamelCase_ = self._pipeline(SCREAMING_SNAKE_CASE_ ) return ServeForwardResult(output=SCREAMING_SNAKE_CASE_ ) except Exception as e: raise HTTPException(500 , {'error': str(SCREAMING_SNAKE_CASE_ )} )
42
'''simple docstring''' A_ = "Input must be a string of 8 numbers plus letter" A_ = "TRWAGMYFPDXBNJZSQVHLCKE" def _UpperCamelCase ( __UpperCamelCase ) -> bool: if not isinstance(__UpperCamelCase ,__UpperCamelCase ): lowerCamelCase_ = f'''Expected string as input, found {type(__UpperCamelCase ).__name__}''' raise TypeError(__UpperCamelCase ) lowerCamelCase_ = spanish_id.replace('-' ,'' ).upper() if len(__UpperCamelCase ) != 9: raise ValueError(__UpperCamelCase ) try: lowerCamelCase_ = int(spanish_id_clean[0:8] ) lowerCamelCase_ = spanish_id_clean[8] except ValueError as ex: raise ValueError(__UpperCamelCase ) from ex if letter.isdigit(): raise ValueError(__UpperCamelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
42
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class lowerCamelCase (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: SCREAMING_SNAKE_CASE__ = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) SCREAMING_SNAKE_CASE__ = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house SCREAMING_SNAKE_CASE__ = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim SCREAMING_SNAKE_CASE__ = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase )["""last_hidden_state"""].detach() self.assertEqual(output.shape , __UpperCAmelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , __UpperCAmelCase , atol=1e-3 ) ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: SCREAMING_SNAKE_CASE__ = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" ) SCREAMING_SNAKE_CASE__ = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house SCREAMING_SNAKE_CASE__ = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim SCREAMING_SNAKE_CASE__ = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase )["""last_hidden_state"""].detach() self.assertEqual(output.shape , __UpperCAmelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , __UpperCAmelCase , atol=1e-3 ) )
616
"""simple docstring""" import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def A ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(snake_case__ ): requests.request("""GET""" , """https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 ) @pytest.mark.integration def A ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" , """https://huggingface.co""" ) def A ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(snake_case__ ): http_head("""https://huggingface.co""" )
616
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class UpperCamelCase : # setable values a__ :Optional[int] = None a__ :Optional[jnp.ndarray] = None a__ :Optional[jnp.ndarray] = None # sigma(t_i) @classmethod def A_ (cls ) -> str: return cls() @dataclass class UpperCamelCase ( __a ): a__ :jnp.ndarray a__ :jnp.ndarray a__ :KarrasVeSchedulerState class UpperCamelCase ( __a , __a ): @property def A_ (self ) -> Union[str, Any]: return True @register_to_config def __init__(self , __UpperCamelCase = 0.02 , __UpperCamelCase = 100 , __UpperCamelCase = 1.007 , __UpperCamelCase = 80 , __UpperCamelCase = 0.05 , __UpperCamelCase = 50 , ) -> Any: pass def A_ (self ) -> Dict: return KarrasVeSchedulerState.create() def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = () ) -> KarrasVeSchedulerState: UpperCamelCase_ : str = jnp.arange(0 , __UpperCamelCase )[::-1].copy() UpperCamelCase_ : Optional[int] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=__UpperCamelCase , schedule=jnp.array(__UpperCamelCase , dtype=jnp.floataa ) , timesteps=__UpperCamelCase , ) def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> Tuple[jnp.ndarray, float]: if self.config.s_min <= sigma <= self.config.s_max: UpperCamelCase_ : Optional[Any] = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: UpperCamelCase_ : List[Any] = 0 # sample eps ~ N(0, S_noise^2 * I) UpperCamelCase_ : Tuple = random.split(__UpperCamelCase , num=1 ) UpperCamelCase_ : Optional[int] = self.config.s_noise * random.normal(key=__UpperCamelCase , shape=sample.shape ) UpperCamelCase_ : int = sigma + gamma * sigma UpperCamelCase_ : int = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: UpperCamelCase_ : Optional[int] = sample_hat + sigma_hat * model_output UpperCamelCase_ : Dict = (sample_hat - pred_original_sample) / sigma_hat UpperCamelCase_ : List[str] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__UpperCamelCase , derivative=__UpperCamelCase , state=__UpperCamelCase ) def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: UpperCamelCase_ : Union[str, Any] = sample_prev + sigma_prev * model_output UpperCamelCase_ : str = (sample_prev - pred_original_sample) / sigma_prev UpperCamelCase_ : Any = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__UpperCamelCase , derivative=__UpperCamelCase , state=__UpperCamelCase ) def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Dict: raise NotImplementedError()
635
from heapq import heappop, heappush import numpy as np def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : tuple[int, int] , _SCREAMING_SNAKE_CASE : tuple[int, int] , _SCREAMING_SNAKE_CASE : bool , ): UpperCamelCase_,UpperCamelCase_ : Union[str, Any] = grid.shape UpperCamelCase_ : List[str] = [-1, 1, 0, 0] UpperCamelCase_ : Dict = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] UpperCamelCase_,UpperCamelCase_ : List[Any] = [(0, source)], set() UpperCamelCase_ : Any = np.full((rows, cols) , np.inf ) UpperCamelCase_ : List[str] = 0 UpperCamelCase_ : Union[str, Any] = np.empty((rows, cols) , dtype=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : Optional[int] = None while queue: ((UpperCamelCase_),(UpperCamelCase_)) : Any = heappop(_SCREAMING_SNAKE_CASE ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: UpperCamelCase_ : Tuple = [] while (x, y) != source: path.append((x, y) ) UpperCamelCase_,UpperCamelCase_ : Union[str, Any] = predecessors[x, y] path.append(_SCREAMING_SNAKE_CASE ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCamelCase_,UpperCamelCase_ : Optional[Any] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: UpperCamelCase_ : Union[str, Any] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(_SCREAMING_SNAKE_CASE , (dist + 1, (nx, ny)) ) UpperCamelCase_ : Optional[Any] = dist + 1 UpperCamelCase_ : List[Any] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
635
1
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _lowercase = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='relu') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='relu')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='relu')) classifier.add(layers.Dense(units=1, activation='sigmoid')) # Compiling the CNN classifier.compile( optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _lowercase = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _lowercase = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) _lowercase = train_datagen.flow_from_directory( 'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) _lowercase = test_datagen.flow_from_directory( 'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('cnn.h5') # Part 3 - Making new predictions _lowercase = tf.keras.preprocessing.image.load_img( 'dataset/single_prediction/image.png', target_size=(64, 64) ) _lowercase = tf.keras.preprocessing.image.img_to_array(test_image) _lowercase = np.expand_dims(test_image, axis=0) _lowercase = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _lowercase = 'Normal' if result[0][0] == 1: _lowercase = 'Abnormality detected'
242
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class lowerCamelCase__ : def __init__( self : Any , __a : str , __a : int = 13 , __a : int = 64 , __a : int = 2 , __a : int = 3 , __a : int = 3 , __a : bool = True , __a : bool = True , __a : int = 128 , __a : Any=[16, 32, 64, 128] , __a : int = 7 , __a : int = 4 , __a : int = 37 , __a : str = "gelu" , __a : float = 0.1 , __a : float = 0.1 , __a : int = 10 , __a : float = 0.02 , __a : int = 2 , __a : int = 1 , __a : int = 128 , __a : List[int] = [2, 2, 2, 2] , __a : int = 2 , __a : int = 2 , ): '''simple docstring''' lowerCamelCase__: Any = parent lowerCamelCase__: Optional[int] = batch_size lowerCamelCase__: List[Any] = image_size lowerCamelCase__: Dict = patch_size lowerCamelCase__: int = num_channels lowerCamelCase__: Any = is_training lowerCamelCase__: List[Any] = use_labels lowerCamelCase__: List[Any] = hidden_size lowerCamelCase__: Optional[Any] = num_hidden_layers lowerCamelCase__: Optional[Any] = num_attention_heads lowerCamelCase__: int = intermediate_size lowerCamelCase__: Dict = hidden_act lowerCamelCase__: Any = hidden_dropout_prob lowerCamelCase__: Dict = attention_probs_dropout_prob lowerCamelCase__: Union[str, Any] = type_sequence_label_size lowerCamelCase__: List[str] = initializer_range lowerCamelCase__: List[str] = encoder_stride lowerCamelCase__: Dict = num_attention_outputs lowerCamelCase__: Dict = embed_dim lowerCamelCase__: Optional[int] = embed_dim + 1 lowerCamelCase__: str = resolution lowerCamelCase__: Dict = depths lowerCamelCase__: Optional[int] = hidden_sizes lowerCamelCase__: Any = dim lowerCamelCase__: Optional[Any] = mlp_expansion_ratio def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__: Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__: Any = None if self.use_labels: lowerCamelCase__: List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__: Dict = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def lowerCamelCase_ ( self : Optional[int] , __a : str , __a : Optional[Any] , __a : Dict ): '''simple docstring''' lowerCamelCase__: int = TFEfficientFormerModel(config=__a ) lowerCamelCase__: List[str] = model(__a , training=__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : int , __a : Optional[Any] , __a : List[str] , __a : Union[str, Any] ): '''simple docstring''' lowerCamelCase__: Optional[int] = self.type_sequence_label_size lowerCamelCase__: List[str] = TFEfficientFormerForImageClassification(__a ) lowerCamelCase__: List[Any] = model(__a , labels=__a , training=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__: Any = 1 lowerCamelCase__: int = TFEfficientFormerForImageClassification(__a ) lowerCamelCase__: Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__: int = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self : str ): '''simple docstring''' lowerCamelCase__: Any = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple = config_and_inputs lowerCamelCase__: List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class lowerCamelCase__ ( A__ , A__ , unittest.TestCase ): __lowerCamelCase = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) __lowerCamelCase = ( { """feature-extraction""": TFEfficientFormerModel, """image-classification""": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowerCamelCase__: Optional[int] = TFEfficientFormerModelTester(self ) lowerCamelCase__: Union[str, Any] = ConfigTester( self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""EfficientFormer does not use inputs_embeds""" ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' pass @unittest.skip(reason="""EfficientFormer does not support input and output embeddings""" ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' pass def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__: Optional[int] = model_class(__a ) lowerCamelCase__: int = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__: Dict = [*signature.parameters.keys()] lowerCamelCase__: str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' def check_hidden_states_output(__a : List[str] , __a : str , __a : Tuple ): lowerCamelCase__: List[Any] = model_class(__a ) lowerCamelCase__: Optional[Any] = model(**self._prepare_for_class(__a , __a ) , training=__a ) lowerCamelCase__: Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase__: Union[str, Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) if hasattr(self.model_tester , """encoder_seq_length""" ): lowerCamelCase__: int = self.model_tester.encoder_seq_length if hasattr(self.model_tester , """chunk_length""" ) and self.model_tester.chunk_length > 1: lowerCamelCase__: Optional[Any] = seq_length * self.model_tester.chunk_length else: lowerCamelCase__: Union[str, Any] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: lowerCamelCase__: Optional[Any] = outputs.decoder_hidden_states self.asseretIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , __a ) lowerCamelCase__: List[Any] = getattr(self.model_tester , """seq_length""" , __a ) lowerCamelCase__: Optional[int] = getattr(self.model_tester , """decoder_seq_length""" , __a ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) lowerCamelCase__ , lowerCamelCase__: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__: Any = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__: str = True check_hidden_states_output(__a , __a , __a ) def lowerCamelCase_ ( self : List[Any] , __a : int , __a : Tuple , __a : str=False ): '''simple docstring''' lowerCamelCase__: List[str] = super()._prepare_for_class(__a , __a , return_labels=__a ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) @unittest.skip(reason="""EfficientFormer does not implement masked image modeling yet""" ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowerCamelCase__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__: List[Any] = TFEfficientFormerModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowerCamelCase_ ( self : str ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: str = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__: str = True lowerCamelCase__: Tuple = getattr(self.model_tester , """seq_length""" , __a ) lowerCamelCase__: Tuple = getattr(self.model_tester , """encoder_seq_length""" , __a ) lowerCamelCase__: Optional[Any] = getattr(self.model_tester , """key_length""" , __a ) lowerCamelCase__: Tuple = getattr(self.model_tester , """chunk_length""" , __a ) if chunk_length is not None and hasattr(self.model_tester , """num_hashes""" ): lowerCamelCase__: Tuple = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: lowerCamelCase__: List[str] = True lowerCamelCase__: Dict = False lowerCamelCase__: str = True lowerCamelCase__: int = model_class(__a ) lowerCamelCase__: Any = model(**self._prepare_for_class(__a , __a ) , training=__a ) lowerCamelCase__: Optional[int] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase__: Optional[Any] = True lowerCamelCase__: str = model_class(__a ) lowerCamelCase__: Optional[Any] = model(**self._prepare_for_class(__a , __a ) , training=__a ) lowerCamelCase__: Tuple = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def lowerCamelCase_ ( self : int ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model lowerCamelCase__: List[str] = model_class(__a ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes lowerCamelCase__: str = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=__a ) for key, val in model.input_signature.items() if key in model.dummy_inputs } lowerCamelCase__: Optional[int] = model(__a ) self.assertTrue(outputs_dict is not None ) def __lowerCAmelCase ( ) -> Any: '''simple docstring''' lowerCamelCase__: str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class lowerCamelCase__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' return ( EfficientFormerImageProcessor.from_pretrained("""snap-research/efficientformer-l1-300""" ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__: Any = TFEfficientFormerForImageClassification.from_pretrained("""snap-research/efficientformer-l1-300""" ) lowerCamelCase__: str = self.default_image_processor lowerCamelCase__: List[Any] = prepare_img() lowerCamelCase__: List[str] = image_processor(images=__a , return_tensors="""tf""" ) # forward pass lowerCamelCase__: int = model(**__a , training=__a ) # verify the logits lowerCamelCase__: Union[str, Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) lowerCamelCase__: str = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) ) @slow def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' lowerCamelCase__: Tuple = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( """snap-research/efficientformer-l1-300""" ) lowerCamelCase__: Union[str, Any] = self.default_image_processor lowerCamelCase__: List[Any] = prepare_img() lowerCamelCase__: Any = image_processor(images=__a , return_tensors="""tf""" ) # forward pass lowerCamelCase__: Union[str, Any] = model(**__a , training=__a ) # verify the logits lowerCamelCase__: Any = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) lowerCamelCase__: Optional[int] = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) )
242
1
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class _A : '''simple docstring''' __lowerCamelCase : List[Any] = MBartConfig __lowerCamelCase : Dict = {} __lowerCamelCase : str = '''gelu''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=13 ,SCREAMING_SNAKE_CASE_=7 ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=False ,SCREAMING_SNAKE_CASE_=99 ,SCREAMING_SNAKE_CASE_=32 ,SCREAMING_SNAKE_CASE_=2 ,SCREAMING_SNAKE_CASE_=4 ,SCREAMING_SNAKE_CASE_=37 ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=20 ,SCREAMING_SNAKE_CASE_=2 ,SCREAMING_SNAKE_CASE_=1 ,SCREAMING_SNAKE_CASE_=0 ,): '''simple docstring''' snake_case : int = parent snake_case : List[str] = batch_size snake_case : List[Any] = seq_length snake_case : Optional[int] = is_training snake_case : int = use_labels snake_case : Any = vocab_size snake_case : str = hidden_size snake_case : Union[str, Any] = num_hidden_layers snake_case : int = num_attention_heads snake_case : Any = intermediate_size snake_case : Tuple = hidden_dropout_prob snake_case : str = attention_probs_dropout_prob snake_case : List[str] = max_position_embeddings snake_case : List[Any] = eos_token_id snake_case : Optional[int] = pad_token_id snake_case : Optional[Any] = bos_token_id def snake_case_ ( self ): '''simple docstring''' snake_case : str = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) snake_case : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 ) snake_case : Optional[Any] = tf.concat([input_ids, eos_tensor] ,axis=1 ) snake_case : int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case : int = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,**self.config_updates ,) snake_case : Tuple = prepare_mbart_inputs_dict(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) return config, inputs_dict def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Dict = TFMBartModel(config=_UpperCAmelCase ).get_decoder() snake_case : int = inputs_dict["""input_ids"""] snake_case : Tuple = input_ids[:1, :] snake_case : List[str] = inputs_dict["""attention_mask"""][:1, :] snake_case : Union[str, Any] = inputs_dict["""head_mask"""] snake_case : Tuple = 1 # first forward pass snake_case : Union[str, Any] = model(_UpperCAmelCase ,attention_mask=_UpperCAmelCase ,head_mask=_UpperCAmelCase ,use_cache=_UpperCAmelCase ) snake_case , snake_case : str = outputs.to_tuple() snake_case : Tuple = past_key_values[1] def lowercase ( __A : Optional[int] , __A : Tuple , __A : str , __A : int=None , __A : List[Any]=None , __A : str=None , __A : str=None , __A : Optional[Any]=None , ) -> List[str]: '''simple docstring''' if attention_mask is None: snake_case : int = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case : Tuple = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case : Any = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[str] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __lowerCamelCase : List[str] = (TFMBartForConditionalGeneration,) if is_tf_available() else () __lowerCamelCase : Optional[int] = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __lowerCamelCase : Optional[Any] = True __lowerCamelCase : Tuple = False __lowerCamelCase : Optional[Any] = False def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def snake_case_ ( self ): '''simple docstring''' snake_case : Tuple = TFMBartModelTester(self ) snake_case : str = ConfigTester(self ,config_class=_UpperCAmelCase ) def snake_case_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case_ ( self ): '''simple docstring''' snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class _A ( unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Tuple = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] __lowerCamelCase : List[Any] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] __lowerCamelCase : Optional[Any] = '''facebook/mbart-large-en-ro''' @cached_property def snake_case_ ( self ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def snake_case_ ( self ): '''simple docstring''' snake_case : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def snake_case_ ( self ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Any = self.translate_src_text(**_UpperCAmelCase ) self.assertListEqual(self.expected_text ,_UpperCAmelCase ) def snake_case_ ( self ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Optional[int] = self.tokenizer(self.src_text ,**_UpperCAmelCase ,return_tensors="""tf""" ) snake_case : Optional[int] = self.model.generate( model_inputs.input_ids ,attention_mask=model_inputs.attention_mask ,num_beams=2 ) snake_case : Union[str, Any] = self.tokenizer.batch_decode(_UpperCAmelCase ,skip_special_tokens=_UpperCAmelCase ) return generated_words @slow def snake_case_ ( self ): '''simple docstring''' self._assert_generated_batch_equal_expected()
36
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar snake_case__ : List[str] = TypeVar("""T""") def _snake_case (__lowercase): return (position - 1) // 2 def _snake_case (__lowercase): return (2 * position) + 1 def _snake_case (__lowercase): return (2 * position) + 2 class _a ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: UpperCamelCase_ = [] UpperCamelCase_ = {} UpperCamelCase_ = 0 def __len__( self ) -> int: return self.elements def __repr__( self ) -> str: return str(self.heap ) def _UpperCAmelCase ( self ) -> bool: # Check if the priority queue is empty return self.elements == 0 def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) UpperCamelCase_ = self.elements self.elements += 1 self._bubble_up(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) UpperCamelCase_ , UpperCamelCase_ = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: UpperCamelCase_ , UpperCamelCase_ = self.heap[0] self._bubble_down(_UpperCAmelCase ) return elem def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Update the weight of the given key UpperCamelCase_ = self.position_map[elem] UpperCamelCase_ = (elem, weight) if position > 0: UpperCamelCase_ = get_parent_position(_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] UpperCamelCase_ = self.position_map[elem] if curr_pos == 0: return None UpperCamelCase_ = get_parent_position(_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos] UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_up(_UpperCAmelCase ) return None def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] UpperCamelCase_ = self.position_map[elem] UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos] UpperCamelCase_ = get_child_left_position(_UpperCAmelCase ) UpperCamelCase_ = get_child_right_position(_UpperCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position] UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) if child_left_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) else: return None if child_right_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) return None def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Swap the nodes at the given positions UpperCamelCase_ = self.heap[nodea_pos][0] UpperCamelCase_ = self.heap[nodea_pos][0] UpperCamelCase_ , UpperCamelCase_ = ( self.heap[nodea_pos], self.heap[nodea_pos], ) UpperCamelCase_ = nodea_pos UpperCamelCase_ = nodea_pos class _a ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: UpperCamelCase_ = {} UpperCamelCase_ = 0 def __repr__( self ) -> str: return str(self.connections ) def __len__( self ) -> int: return self.nodes def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: UpperCamelCase_ = {} self.nodes += 1 def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Add an edge between 2 nodes in the graph self.add_node(_UpperCAmelCase ) self.add_node(_UpperCAmelCase ) UpperCamelCase_ = weight UpperCamelCase_ = weight def _snake_case (__lowercase , ): UpperCamelCase_ = {node: maxsize for node in graph.connections} UpperCamelCase_ = {node: None for node in graph.connections} UpperCamelCase_ = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__lowercase , __lowercase) if priority_queue.is_empty(): return dist, parent # initialization UpperCamelCase_ = priority_queue.extract_min() UpperCamelCase_ = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCamelCase_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__lowercase , dist[neighbour]) UpperCamelCase_ = node # running prim's algorithm while not priority_queue.is_empty(): UpperCamelCase_ = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCamelCase_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__lowercase , dist[neighbour]) UpperCamelCase_ = node return dist, parent
23
0
"""simple docstring""" import qiskit def __magic_name__ ( _lowerCamelCase : int , _lowerCamelCase : int ): __a : List[Any] = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register __a : int = qiskit.QuantumCircuit(_lowerCamelCase , _lowerCamelCase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator __a : str = qiskit.execute(_lowerCamelCase , _lowerCamelCase , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_lowerCamelCase ) if __name__ == "__main__": print(f'Total count for various states are: {single_qubit_measure(1, 1)}')
63
"""simple docstring""" import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument( "--original_config_file", type=str, required=True, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--image_size", default=512, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") def __magic_name__ ( _lowerCamelCase : Optional[Any] ): if string == "True": return True elif string == "False": return False else: raise ValueError(F'''could not parse string as bool {string}''' ) parser.add_argument( "--use_linear_projection", help="Override for use linear projection", required=False, type=parse_bool ) parser.add_argument("--cross_attention_dim", help="Override for cross attention_dim", required=False, type=int) lowercase__ = parser.parse_args() lowercase__ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
63
1
'''simple docstring''' import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class A_ (lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" a__ = TransfoXLTokenizer a__ = False a__ = False def _A ( self :Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' super().setUp() snake_case_ : Dict = [ "<unk>", "[CLS]", "[SEP]", "want", "unwanted", "wa", "un", "running", ",", "low", "l", ] snake_case_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _A ( self :Union[str, Any] , **lowerCAmelCase__ :Union[str, Any] ) -> Tuple: '''simple docstring''' snake_case_ : List[Any] = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **a__ ) def _A ( self :Optional[int] , lowerCAmelCase__ :int ) -> Any: '''simple docstring''' snake_case_ : Dict = "<unk> UNwanted , running" snake_case_ : Any = "<unk> unwanted, running" return input_text, output_text def _A ( self :int ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[str] = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=a__ ) snake_case_ : Tuple = tokenizer.tokenize("<unk> UNwanted , running" ) self.assertListEqual(a__ , ["<unk>", "unwanted", ",", "running"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , [0, 4, 8, 7] ) def _A ( self :int ) -> List[Any]: '''simple docstring''' snake_case_ : Union[str, Any] = TransfoXLTokenizer(lower_case=a__ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo ! how \n Are yoU ? " ) , ["hello", "!", "how", "are", "you", "?"] ) def _A ( self :Any ) -> List[Any]: '''simple docstring''' snake_case_ : List[str] = TransfoXLTokenizer(lower_case=a__ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo ! how \n Are yoU ? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' snake_case_ : List[str] = TransfoXLTokenizer(lower_case=a__ ) snake_case_ : List[Any] = "Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?" snake_case_ : Tuple = [ "Hello", "(", "bracket", ")", "and", "side", "@-@", "scrolled", "[", "and", "]", "Henry", "\'s", "$", "5", "@,@", "000", "with", "3", "@.@", "34", "m", ".", "What", "\'s", "up", "!", "?", ] self.assertListEqual(tokenizer.tokenize(a__ ) , a__ ) self.assertEqual(tokenizer.convert_tokens_to_string(a__ ) , a__ ) def _A ( self :Dict ) -> Dict: '''simple docstring''' snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : int = len(a__ ) tokenizer.add_tokens(["new1", "new2"] ) tokenizer.move_added_token("new1" , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(a__ ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("new1" ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , "new1" )
653
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig A_ : Dict =[ """openmmlab/upernet-convnext-tiny""", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring A_ : Dict ="""UperNetConfig""" class __a ( nn.Module ): def __init__( self , a__ , a__ , a__ , a__ = 0 , a__ = False , a__ = 1 , ): super().__init__() _lowerCamelCase = nn.Convad( in_channels=a__ , out_channels=a__ , kernel_size=a__ , padding=a__ , bias=a__ , dilation=a__ , ) _lowerCamelCase = nn.BatchNormad(a__ ) _lowerCamelCase = nn.ReLU() def snake_case_ ( self , a__ ): _lowerCamelCase = self.conv(a__ ) _lowerCamelCase = self.batch_norm(a__ ) _lowerCamelCase = self.activation(a__ ) return output class __a ( nn.Module ): def __init__( self , a__ , a__ , a__ ): super().__init__() _lowerCamelCase = [ nn.AdaptiveAvgPoolad(a__ ), UperNetConvModule(a__ , a__ , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(a__ ) , a__ ) def snake_case_ ( self , a__ ): _lowerCamelCase = input for layer in self.layers: _lowerCamelCase = layer(a__ ) return hidden_state class __a ( nn.Module ): def __init__( self , a__ , a__ , a__ , a__ ): super().__init__() _lowerCamelCase = pool_scales _lowerCamelCase = align_corners _lowerCamelCase = in_channels _lowerCamelCase = channels _lowerCamelCase = [] for i, pool_scale in enumerate(a__ ): _lowerCamelCase = UperNetPyramidPoolingBlock(pool_scale=a__ , in_channels=a__ , channels=a__ ) self.blocks.append(a__ ) self.add_module(str(a__ ) , a__ ) def snake_case_ ( self , a__ ): _lowerCamelCase = [] for ppm in self.blocks: _lowerCamelCase = ppm(a__ ) _lowerCamelCase = nn.functional.interpolate( a__ , size=x.size()[2:] , mode='bilinear' , align_corners=self.align_corners ) ppm_outs.append(a__ ) return ppm_outs class __a ( nn.Module ): def __init__( self , a__ , a__ ): super().__init__() _lowerCamelCase = config _lowerCamelCase = config.pool_scales # e.g. (1, 2, 3, 6) _lowerCamelCase = in_channels _lowerCamelCase = config.hidden_size _lowerCamelCase = False _lowerCamelCase = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module _lowerCamelCase = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) _lowerCamelCase = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module _lowerCamelCase = nn.ModuleList() _lowerCamelCase = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer _lowerCamelCase = UperNetConvModule(a__ , self.channels , kernel_size=1 ) _lowerCamelCase = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(a__ ) self.fpn_convs.append(a__ ) _lowerCamelCase = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def snake_case_ ( self ): self.apply(self._init_weights ) def snake_case_ ( self , a__ ): if isinstance(a__ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def snake_case_ ( self , a__ ): _lowerCamelCase = inputs[-1] _lowerCamelCase = [x] psp_outs.extend(self.psp_modules(a__ ) ) _lowerCamelCase = torch.cat(a__ , dim=1 ) _lowerCamelCase = self.bottleneck(a__ ) return output def snake_case_ ( self , a__ ): # build laterals _lowerCamelCase = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(a__ ) ) # build top-down path _lowerCamelCase = len(a__ ) for i in range(used_backbone_levels - 1 , 0 , -1 ): _lowerCamelCase = laterals[i - 1].shape[2:] _lowerCamelCase = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=a__ , mode='bilinear' , align_corners=self.align_corners ) # build outputs _lowerCamelCase = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): _lowerCamelCase = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='bilinear' , align_corners=self.align_corners ) _lowerCamelCase = torch.cat(a__ , dim=1 ) _lowerCamelCase = self.fpn_bottleneck(a__ ) _lowerCamelCase = self.classifier(a__ ) return output class __a ( nn.Module ): def __init__( self , a__ , a__ = 2 , a__ = 3 , a__ = 1 ): super().__init__() _lowerCamelCase = config _lowerCamelCase = config.auxiliary_in_channels _lowerCamelCase = config.auxiliary_channels _lowerCamelCase = config.auxiliary_num_convs _lowerCamelCase = config.auxiliary_concat_input _lowerCamelCase = in_index _lowerCamelCase = (kernel_size // 2) * dilation _lowerCamelCase = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=a__ , padding=a__ , dilation=a__ ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=a__ , padding=a__ , dilation=a__ ) ) if self.num_convs == 0: _lowerCamelCase = nn.Identity() else: _lowerCamelCase = nn.Sequential(*a__ ) if self.concat_input: _lowerCamelCase = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=a__ , padding=kernel_size // 2 ) _lowerCamelCase = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def snake_case_ ( self ): self.apply(self._init_weights ) def snake_case_ ( self , a__ ): if isinstance(a__ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def snake_case_ ( self , a__ ): # just take the relevant feature maps _lowerCamelCase = encoder_hidden_states[self.in_index] _lowerCamelCase = self.convs(a__ ) if self.concat_input: _lowerCamelCase = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) _lowerCamelCase = self.classifier(a__ ) return output class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : Tuple = UperNetConfig SCREAMING_SNAKE_CASE__ : Optional[Any] = "pixel_values" SCREAMING_SNAKE_CASE__ : str = True def snake_case_ ( self , a__ ): if isinstance(a__ , a__ ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def snake_case_ ( self ): self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def snake_case_ ( self , a__ , a__=False ): if isinstance(a__ , a__ ): _lowerCamelCase = value A_ : Union[str, Any] =R""" Parameters: This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. config ([`UperNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ A_ : int =R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." , lowerCAmelCase__ , ) class __a ( lowerCAmelCase__ ): def __init__( self , a__ ): super().__init__(a__ ) _lowerCamelCase = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) _lowerCamelCase = UperNetHead(a__ , in_channels=self.backbone.channels ) _lowerCamelCase = UperNetFCNHead(a__ ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('batch_size, sequence_length' ) ) @replace_return_docstrings(output_type=a__ , config_class=_CONFIG_FOR_DOC ) def snake_case_ ( self , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , ): _lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict _lowerCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCamelCase = output_attentions if output_attentions is not None else self.config.output_attentions _lowerCamelCase = self.backbone.forward_with_filtered_kwargs( a__ , output_hidden_states=a__ , output_attentions=a__ ) _lowerCamelCase = outputs.feature_maps _lowerCamelCase = self.decode_head(a__ ) _lowerCamelCase = nn.functional.interpolate(a__ , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=a__ ) _lowerCamelCase = None if self.auxiliary_head is not None: _lowerCamelCase = self.auxiliary_head(a__ ) _lowerCamelCase = nn.functional.interpolate( a__ , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=a__ ) _lowerCamelCase = None if labels is not None: if self.config.num_labels == 1: raise ValueError('The number of labels should be greater than one' ) else: # compute weighted loss _lowerCamelCase = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) _lowerCamelCase = loss_fct(a__ , a__ ) _lowerCamelCase = loss_fct(a__ , a__ ) _lowerCamelCase = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: _lowerCamelCase = (logits,) + outputs[1:] else: _lowerCamelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=a__ , logits=a__ , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
650
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : str = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''openai-gpt''' __UpperCAmelCase = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , lowercase_=4_0_4_7_8 , lowercase_=5_1_2 , lowercase_=7_6_8 , lowercase_=1_2 , lowercase_=1_2 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1e-5 , lowercase_=0.02 , lowercase_="cls_index" , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=0.1 , **lowercase_ , ) -> Optional[int]: __snake_case = vocab_size __snake_case = n_positions __snake_case = n_embd __snake_case = n_layer __snake_case = n_head __snake_case = afn __snake_case = resid_pdrop __snake_case = embd_pdrop __snake_case = attn_pdrop __snake_case = layer_norm_epsilon __snake_case = initializer_range __snake_case = summary_type __snake_case = summary_use_proj __snake_case = summary_activation __snake_case = summary_first_dropout __snake_case = summary_proj_to_labels super().__init__(**lowercase_)
676
from __future__ import annotations class __lowercase : def __init__( self , lowercase_) -> None: __snake_case = data __snake_case = None __snake_case = None def A ( snake_case__ : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def A ( snake_case__ : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def A ( snake_case__ : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def A ( ) -> None: # Main function for testing. '''simple docstring''' __snake_case = Node(1 ) __snake_case = Node(2 ) __snake_case = Node(3 ) __snake_case = Node(4 ) __snake_case = Node(5 ) __snake_case = Node(6 ) __snake_case = Node(7 ) __snake_case = Node(8 ) __snake_case = Node(9 ) print(is_full_binary_tree(snake_case__ ) ) print(depth_of_tree(snake_case__ ) ) print('Tree is: ' ) display(snake_case__ ) if __name__ == "__main__": main()
676
1
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __UpperCAmelCase ( __A , __A ): """simple docstring""" _lowerCamelCase = 1 @register_to_config def __init__( self , __A=2000 , __A=0.1 , __A=20 , __A=1E-3 ): __a = None __a = None __a = None def snake_case_ ( self , __A , __A = None ): __a = torch.linspace(1 , self.config.sampling_eps , __A , device=__A ) def snake_case_ ( self , __A , __A , __A , __A=None ): if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __a = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __a = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __a = std.flatten() while len(std.shape ) < len(score.shape ): __a = std.unsqueeze(-1 ) __a = -score / std # compute __a = -1.0 / len(self.timesteps ) __a = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __a = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __a = beta_t.unsqueeze(-1 ) __a = -0.5 * beta_t * x __a = torch.sqrt(__A ) __a = drift - diffusion**2 * score __a = x + drift * dt # add noise __a = randn_tensor(x.shape , layout=x.layout , generator=__A , device=x.device , dtype=x.dtype ) __a = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ): return self.config.num_train_timesteps
99
def lowerCamelCase_ ( __UpperCamelCase ): if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] A_ = grid[0] for row_n in range(1 , len(__UpperCamelCase ) ): A_ = grid[row_n] A_ = fill_row(__UpperCamelCase , __UpperCamelCase ) A_ = grid[row_n] return grid[-1][-1] def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase ): current_row[0] += row_above[0] for cell_n in range(1 , len(__UpperCamelCase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
141
0
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def _UpperCAmelCase ( UpperCamelCase: Tuple ): """simple docstring""" __lowerCAmelCase = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def _UpperCAmelCase ( UpperCamelCase: Optional[Any] , UpperCamelCase: Dict ): """simple docstring""" __lowerCAmelCase = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def _UpperCAmelCase ( UpperCamelCase: Any ): """simple docstring""" __lowerCAmelCase = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", "stage2.cls_token") ) return token def _UpperCAmelCase ( ): """simple docstring""" __lowerCAmelCase = [] head.append(("layernorm.weight", "norm.weight") ) head.append(("layernorm.bias", "norm.bias") ) head.append(("classifier.weight", "head.weight") ) head.append(("classifier.bias", "head.bias") ) return head def _UpperCAmelCase ( UpperCamelCase: List[Any] , UpperCamelCase: Tuple , UpperCamelCase: Optional[int] , UpperCamelCase: Any ): """simple docstring""" __lowerCAmelCase = "imagenet-1k-id2label.json" __lowerCAmelCase = 1_0_0_0 __lowerCAmelCase = "huggingface/label-files" __lowerCAmelCase = num_labels __lowerCAmelCase = json.load(open(cached_download(hf_hub_url(UpperCamelCase , UpperCamelCase , repo_type="dataset" ) ) , "r" ) ) __lowerCAmelCase = {int(UpperCamelCase ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} __lowerCAmelCase = __lowerCAmelCase = CvtConfig(num_labels=UpperCamelCase , idalabel=UpperCamelCase , labelaid=UpperCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("/" , 1 )[-1][4:6] == "13": __lowerCAmelCase = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("/" , 1 )[-1][4:6] == "21": __lowerCAmelCase = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __lowerCAmelCase = [2, 2, 2_0] __lowerCAmelCase = [3, 1_2, 1_6] __lowerCAmelCase = [1_9_2, 7_6_8, 1_0_2_4] __lowerCAmelCase = CvtForImageClassification(UpperCamelCase ) __lowerCAmelCase = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) __lowerCAmelCase = image_size __lowerCAmelCase = torch.load(UpperCamelCase , map_location=torch.device("cpu" ) ) __lowerCAmelCase = OrderedDict() __lowerCAmelCase = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: __lowerCAmelCase = list_of_state_dict + cls_token(UpperCamelCase ) __lowerCAmelCase = list_of_state_dict + embeddings(UpperCamelCase ) for cnt in range(config.depth[idx] ): __lowerCAmelCase = list_of_state_dict + attention(UpperCamelCase , UpperCamelCase ) __lowerCAmelCase = list_of_state_dict + final() for gg in list_of_state_dict: print(UpperCamelCase ) for i in range(len(UpperCamelCase ) ): __lowerCAmelCase = original_weights[list_of_state_dict[i][1]] model.load_state_dict(UpperCamelCase ) model.save_pretrained(UpperCamelCase ) image_processor.save_pretrained(UpperCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=3_8_4, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=R"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCamelCase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
376
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class a ( __UpperCAmelCase ): lowercase_ : BigBirdConfig lowercase_ : jnp.dtype = jnp.floataa lowercase_ : bool = True def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" super().setup() __lowerCAmelCase = nn.Dense(5 , dtype=self.dtype ) def __call__( self : Optional[Any] , *snake_case__ : List[str] , **snake_case__ : str ): """simple docstring""" __lowerCAmelCase = super().__call__(*snake_case__ , **snake_case__ ) __lowerCAmelCase = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class a ( __UpperCAmelCase ): lowercase_ : List[str] = FlaxBigBirdForNaturalQuestionsModule def _UpperCAmelCase ( UpperCamelCase: Optional[Any] , UpperCamelCase: List[str] , UpperCamelCase: Optional[Any] , UpperCamelCase: List[Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: int ): """simple docstring""" def cross_entropy(UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any] , UpperCamelCase: Optional[int]=None ): __lowerCAmelCase = logits.shape[-1] __lowerCAmelCase = (labels[..., None] == jnp.arange(UpperCamelCase )[None]).astype("f4" ) __lowerCAmelCase = jax.nn.log_softmax(UpperCamelCase , axis=-1 ) __lowerCAmelCase = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: __lowerCAmelCase = reduction(UpperCamelCase ) return loss __lowerCAmelCase = partial(UpperCamelCase , reduction=jnp.mean ) __lowerCAmelCase = cross_entropy(UpperCamelCase , UpperCamelCase ) __lowerCAmelCase = cross_entropy(UpperCamelCase , UpperCamelCase ) __lowerCAmelCase = cross_entropy(UpperCamelCase , UpperCamelCase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class a : lowercase_ : str = "google/bigbird-roberta-base" lowercase_ : int = 3_000 lowercase_ : int = 10_500 lowercase_ : int = 128 lowercase_ : int = 3 lowercase_ : int = 1 lowercase_ : int = 5 # tx_args lowercase_ : float = 3e-5 lowercase_ : float = 0.0 lowercase_ : int = 20_000 lowercase_ : float = 0.0095 lowercase_ : str = "bigbird-roberta-natural-questions" lowercase_ : str = "training-expt" lowercase_ : str = "data/nq-training.jsonl" lowercase_ : str = "data/nq-validation.jsonl" def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" os.makedirs(self.base_dir , exist_ok=snake_case__ ) __lowerCAmelCase = os.path.join(self.base_dir , self.save_dir ) __lowerCAmelCase = self.batch_size_per_device * jax.device_count() @dataclass class a : lowercase_ : int lowercase_ : int = 4_096 # no dynamic padding on TPUs def __call__( self : List[Any] , snake_case__ : Union[str, Any] ): """simple docstring""" __lowerCAmelCase = self.collate_fn(snake_case__ ) __lowerCAmelCase = jax.tree_util.tree_map(snake_case__ , snake_case__ ) return batch def UpperCAmelCase__ ( self : List[Any] , snake_case__ : Dict ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.fetch_inputs(features["input_ids"] ) __lowerCAmelCase = { "input_ids": jnp.array(snake_case__ , dtype=jnp.intaa ), "attention_mask": jnp.array(snake_case__ , dtype=jnp.intaa ), "start_labels": jnp.array(features["start_token"] , dtype=jnp.intaa ), "end_labels": jnp.array(features["end_token"] , dtype=jnp.intaa ), "pooled_labels": jnp.array(features["category"] , dtype=jnp.intaa ), } return batch def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : list ): """simple docstring""" __lowerCAmelCase = [self._fetch_inputs(snake_case__ ) for ids in input_ids] return zip(*snake_case__ ) def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : list ): """simple docstring""" __lowerCAmelCase = [1 for _ in range(len(snake_case__ ) )] while len(snake_case__ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _UpperCAmelCase ( UpperCamelCase: Tuple , UpperCamelCase: Dict , UpperCamelCase: Optional[Any]=None ): """simple docstring""" if seed is not None: __lowerCAmelCase = dataset.shuffle(seed=UpperCamelCase ) for i in range(len(UpperCamelCase ) // batch_size ): __lowerCAmelCase = dataset[i * batch_size : (i + 1) * batch_size] yield dict(UpperCamelCase ) @partial(jax.pmap , axis_name="batch" ) def _UpperCAmelCase ( UpperCamelCase: Optional[int] , UpperCamelCase: Union[str, Any] , **UpperCamelCase: List[str] ): """simple docstring""" def loss_fn(UpperCamelCase: Dict ): __lowerCAmelCase = model_inputs.pop("start_labels" ) __lowerCAmelCase = model_inputs.pop("end_labels" ) __lowerCAmelCase = model_inputs.pop("pooled_labels" ) __lowerCAmelCase = state.apply_fn(**UpperCamelCase , params=UpperCamelCase , dropout_rng=UpperCamelCase , train=UpperCamelCase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = outputs return state.loss_fn( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ) __lowerCAmelCase , __lowerCAmelCase = jax.random.split(UpperCamelCase ) __lowerCAmelCase = jax.value_and_grad(UpperCamelCase ) __lowerCAmelCase , __lowerCAmelCase = grad_fn(state.params ) __lowerCAmelCase = jax.lax.pmean({"loss": loss} , axis_name="batch" ) __lowerCAmelCase = jax.lax.pmean(UpperCamelCase , "batch" ) __lowerCAmelCase = state.apply_gradients(grads=UpperCamelCase ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="batch" ) def _UpperCAmelCase ( UpperCamelCase: Optional[Any] , **UpperCamelCase: List[str] ): """simple docstring""" __lowerCAmelCase = model_inputs.pop("start_labels" ) __lowerCAmelCase = model_inputs.pop("end_labels" ) __lowerCAmelCase = model_inputs.pop("pooled_labels" ) __lowerCAmelCase = state.apply_fn(**UpperCamelCase , params=state.params , train=UpperCamelCase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = outputs __lowerCAmelCase = state.loss_fn(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) __lowerCAmelCase = jax.lax.pmean({"loss": loss} , axis_name="batch" ) return metrics class a ( train_state.TrainState ): lowercase_ : Callable = struct.field(pytree_node=__UpperCAmelCase ) @dataclass class a : lowercase_ : Args lowercase_ : Callable lowercase_ : Callable lowercase_ : Callable lowercase_ : Callable lowercase_ : wandb lowercase_ : Callable = None def UpperCAmelCase__ ( self : Tuple , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : str=None ): """simple docstring""" __lowerCAmelCase = model.params __lowerCAmelCase = TrainState.create( apply_fn=model.__call__ , params=snake_case__ , tx=snake_case__ , loss_fn=snake_case__ , ) if ckpt_dir is not None: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = restore_checkpoint(snake_case__ , snake_case__ ) __lowerCAmelCase = { "lr": args.lr, "init_lr": args.init_lr, "warmup_steps": args.warmup_steps, "num_train_steps": num_train_steps, "weight_decay": args.weight_decay, } __lowerCAmelCase , __lowerCAmelCase = build_tx(**snake_case__ ) __lowerCAmelCase = train_state.TrainState( step=snake_case__ , apply_fn=model.__call__ , params=snake_case__ , tx=snake_case__ , opt_state=snake_case__ , ) __lowerCAmelCase = args __lowerCAmelCase = data_collator __lowerCAmelCase = lr __lowerCAmelCase = params __lowerCAmelCase = jax_utils.replicate(snake_case__ ) return state def UpperCAmelCase__ ( self : str , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Any ): """simple docstring""" __lowerCAmelCase = self.args __lowerCAmelCase = len(snake_case__ ) // args.batch_size __lowerCAmelCase = jax.random.PRNGKey(0 ) __lowerCAmelCase = jax.random.split(snake_case__ , jax.device_count() ) for epoch in range(args.max_epochs ): __lowerCAmelCase = jnp.array(0 , dtype=jnp.floataa ) __lowerCAmelCase = get_batched_dataset(snake_case__ , args.batch_size , seed=snake_case__ ) __lowerCAmelCase = 0 for batch in tqdm(snake_case__ , total=snake_case__ , desc=F"Running EPOCH-{epoch}" ): __lowerCAmelCase = self.data_collator(snake_case__ ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.train_step_fn(snake_case__ , snake_case__ , **snake_case__ ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 if i % args.logging_steps == 0: __lowerCAmelCase = jax_utils.unreplicate(state.step ) __lowerCAmelCase = running_loss.item() / i __lowerCAmelCase = self.scheduler_fn(state_step - 1 ) __lowerCAmelCase = self.evaluate(snake_case__ , snake_case__ ) __lowerCAmelCase = { "step": state_step.item(), "eval_loss": eval_loss.item(), "tr_loss": tr_loss, "lr": lr.item(), } tqdm.write(str(snake_case__ ) ) self.logger.log(snake_case__ , commit=snake_case__ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F"-e{epoch}-s{i}" , state=snake_case__ ) def UpperCAmelCase__ ( self : List[Any] , snake_case__ : Any , snake_case__ : Optional[Any] ): """simple docstring""" __lowerCAmelCase = get_batched_dataset(snake_case__ , self.args.batch_size ) __lowerCAmelCase = len(snake_case__ ) // self.args.batch_size __lowerCAmelCase = jnp.array(0 , dtype=jnp.floataa ) __lowerCAmelCase = 0 for batch in tqdm(snake_case__ , total=snake_case__ , desc="Evaluating ... " ): __lowerCAmelCase = self.data_collator(snake_case__ ) __lowerCAmelCase = self.val_step_fn(snake_case__ , **snake_case__ ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 return running_loss / i def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Any ): """simple docstring""" __lowerCAmelCase = jax_utils.unreplicate(snake_case__ ) print(F"SAVING CHECKPOINT IN {save_dir}" , end=" ... " ) self.model_save_fn(snake_case__ , params=state.params ) with open(os.path.join(snake_case__ , "opt_state.msgpack" ) , "wb" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(snake_case__ , "args.joblib" ) ) joblib.dump(self.data_collator , os.path.join(snake_case__ , "data_collator.joblib" ) ) with open(os.path.join(snake_case__ , "training_state.json" ) , "w" ) as f: json.dump({"step": state.step.item()} , snake_case__ ) print("DONE" ) def _UpperCAmelCase ( UpperCamelCase: str , UpperCamelCase: List[Any] ): """simple docstring""" print(F"RESTORING CHECKPOINT FROM {save_dir}" , end=" ... " ) with open(os.path.join(UpperCamelCase , "flax_model.msgpack" ) , "rb" ) as f: __lowerCAmelCase = from_bytes(state.params , f.read() ) with open(os.path.join(UpperCamelCase , "opt_state.msgpack" ) , "rb" ) as f: __lowerCAmelCase = from_bytes(state.opt_state , f.read() ) __lowerCAmelCase = joblib.load(os.path.join(UpperCamelCase , "args.joblib" ) ) __lowerCAmelCase = joblib.load(os.path.join(UpperCamelCase , "data_collator.joblib" ) ) with open(os.path.join(UpperCamelCase , "training_state.json" ) , "r" ) as f: __lowerCAmelCase = json.load(UpperCamelCase ) __lowerCAmelCase = training_state["step"] print("DONE" ) return params, opt_state, step, args, data_collator def _UpperCAmelCase ( UpperCamelCase: Any , UpperCamelCase: Dict , UpperCamelCase: Tuple , UpperCamelCase: Dict ): """simple docstring""" __lowerCAmelCase = num_train_steps - warmup_steps __lowerCAmelCase = optax.linear_schedule(init_value=UpperCamelCase , end_value=UpperCamelCase , transition_steps=UpperCamelCase ) __lowerCAmelCase = optax.linear_schedule(init_value=UpperCamelCase , end_value=1e-7 , transition_steps=UpperCamelCase ) __lowerCAmelCase = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _UpperCAmelCase ( UpperCamelCase: Union[str, Any] , UpperCamelCase: str , UpperCamelCase: List[Any] , UpperCamelCase: Optional[int] , UpperCamelCase: Union[str, Any] ): """simple docstring""" def weight_decay_mask(UpperCamelCase: int ): __lowerCAmelCase = traverse_util.flatten_dict(UpperCamelCase ) __lowerCAmelCase = {k: (v[-1] != "bias" and v[-2:] != ("LayerNorm", "scale")) for k, v in params.items()} return traverse_util.unflatten_dict(UpperCamelCase ) __lowerCAmelCase = scheduler_fn(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) __lowerCAmelCase = optax.adamw(learning_rate=UpperCamelCase , weight_decay=UpperCamelCase , mask=UpperCamelCase ) return tx, lr
376
1
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): '''simple docstring''' __A =logging.get_logger() # the current default level is logging.WARNING __A =logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(lowercase__ ) def __UpperCamelCase ( self ): '''simple docstring''' __A =logging.get_verbosity() __A =logging.get_logger('''transformers.models.bart.tokenization_bart''' ) __A ='''Testing 1, 2, 3''' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(lowercase__ ) as cl: logger.warning(lowercase__ ) self.assertEqual(cl.out , msg + '''\n''' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(lowercase__ ) as cl: logger.warning(lowercase__ ) self.assertEqual(cl.out , '''''' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(lowercase__ ) as cl: logger.warning(lowercase__ ) self.assertEqual(cl.out , msg + '''\n''' ) # restore to the original level logging.set_verbosity(lowercase__ ) @mockenv(TRANSFORMERS_VERBOSITY='''error''' ) def __UpperCamelCase ( self ): '''simple docstring''' transformers.utils.logging._reset_library_root_logger() # this action activates the env var __A =logging.get_logger('''transformers.models.bart.tokenization_bart''' ) __A =os.getenv('''TRANSFORMERS_VERBOSITY''' , lowercase__ ) __A =logging.log_levels[env_level_str] __A =logging.get_verbosity() self.assertEqual( lowercase__ , lowercase__ , f'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' , ) # restore to the original level __A ='''''' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='''super-error''' ) def __UpperCamelCase ( self ): '''simple docstring''' transformers.utils.logging._reset_library_root_logger() __A =logging.logging.getLogger() with CaptureLogger(lowercase__ ) as cl: # this action activates the env var logging.get_logger('''transformers.models.bart.tokenization_bart''' ) self.assertIn('''Unknown option TRANSFORMERS_VERBOSITY=super-error''' , cl.out ) # no need to restore as nothing was changed def __UpperCamelCase ( self ): '''simple docstring''' transformers.utils.logging._reset_library_root_logger() __A =logging.get_logger('''transformers.models.bart.tokenization_bart''' ) __A ='''Testing 1, 2, 3''' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''1''' ): # nothing should be logged as env var disables this method with CaptureLogger(lowercase__ ) as cl: logger.warning_advice(lowercase__ ) self.assertEqual(cl.out , '''''' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''''' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(lowercase__ ) as cl: logger.warning_advice(lowercase__ ) self.assertEqual(cl.out , msg + '''\n''' ) def A__ ( ) ->Tuple: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
184
from __future__ import annotations from statistics import mean def a ( A__ : list[int] , A__ : list[int] , A__ : int ) -> list[int]: """simple docstring""" _lowercase =[0] * no_of_processes _lowercase =[0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(A__ ): _lowercase =burst_time[i] _lowercase =[] _lowercase =0 _lowercase =0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: _lowercase =[] _lowercase =-1 for i in range(A__ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(A__ ) if len(A__ ) > 0: _lowercase =ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: _lowercase =i total_time += burst_time[target_process] completed += 1 _lowercase =0 _lowercase =( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def a ( A__ : list[int] , A__ : int , A__ : list[int] ) -> list[int]: """simple docstring""" _lowercase =[0] * no_of_processes for i in range(A__ ): _lowercase =burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('[TEST CASE 01]') lowercase_ = 4 lowercase_ = [2, 5, 3, 7] lowercase_ = [0, 0, 0, 0] lowercase_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowercase_ = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time') for i, process_id in enumerate(list(range(1, 5))): print( f"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t" f"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}" ) print(f"\nAverage waiting time = {mean(waiting_time):.5f}") print(f"Average turnaround time = {mean(turn_around_time):.5f}")
291
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowercase_ = logging.get_logger(__name__) if is_vision_available(): import PIL class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''pixel_values'''] def __init__( self : Dict , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : bool = True , **_A : Any , ): """simple docstring""" super().__init__(**_A ) __SCREAMING_SNAKE_CASE : Optional[int] = size if size is not None else {'''shortest_edge''': 224} __SCREAMING_SNAKE_CASE : List[Any] = get_size_dict(_A , default_to_square=_A ) __SCREAMING_SNAKE_CASE : List[str] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __SCREAMING_SNAKE_CASE : List[str] = get_size_dict(_A , default_to_square=_A , param_name='''crop_size''' ) __SCREAMING_SNAKE_CASE : int = do_resize __SCREAMING_SNAKE_CASE : Union[str, Any] = size __SCREAMING_SNAKE_CASE : Any = resample __SCREAMING_SNAKE_CASE : Optional[Any] = do_center_crop __SCREAMING_SNAKE_CASE : Any = crop_size __SCREAMING_SNAKE_CASE : List[str] = do_rescale __SCREAMING_SNAKE_CASE : str = rescale_factor __SCREAMING_SNAKE_CASE : Tuple = do_normalize __SCREAMING_SNAKE_CASE : Optional[int] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __SCREAMING_SNAKE_CASE : Optional[Any] = image_std if image_std is not None else OPENAI_CLIP_STD __SCREAMING_SNAKE_CASE : Dict = do_convert_rgb def UpperCAmelCase__ ( self : Optional[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) __SCREAMING_SNAKE_CASE : int = get_resize_output_image_size(_A , size=size['''shortest_edge'''] , default_to_square=_A ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def UpperCAmelCase__ ( self : Optional[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_A , size=(size['''height'''], size['''width''']) , data_format=_A , **_A ) def UpperCAmelCase__ ( self : Optional[Any] , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ): """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCAmelCase__ ( self : str , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[int] , ): """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCAmelCase__ ( self : int , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : int = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : bool = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[ChannelDimension] = ChannelDimension.FIRST , **_A : Any , ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE : Dict = size if size is not None else self.size __SCREAMING_SNAKE_CASE : Optional[Any] = get_size_dict(_A , param_name='''size''' , default_to_square=_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __SCREAMING_SNAKE_CASE : Optional[Any] = crop_size if crop_size is not None else self.crop_size __SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(_A , param_name='''crop_size''' , default_to_square=_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE : Any = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize __SCREAMING_SNAKE_CASE : Dict = image_mean if image_mean is not None else self.image_mean __SCREAMING_SNAKE_CASE : Union[str, Any] = image_std if image_std is not None else self.image_std __SCREAMING_SNAKE_CASE : Dict = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __SCREAMING_SNAKE_CASE : Union[str, Any] = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __SCREAMING_SNAKE_CASE : Optional[int] = [convert_to_rgb(_A ) for image in images] # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE : Tuple = [to_numpy_array(_A ) for image in images] if do_resize: __SCREAMING_SNAKE_CASE : Optional[Any] = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_center_crop: __SCREAMING_SNAKE_CASE : Tuple = [self.center_crop(image=_A , size=_A ) for image in images] if do_rescale: __SCREAMING_SNAKE_CASE : Any = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: __SCREAMING_SNAKE_CASE : Any = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] __SCREAMING_SNAKE_CASE : Tuple = [to_channel_dimension_format(_A , _A ) for image in images] __SCREAMING_SNAKE_CASE : Optional[Any] = {'''pixel_values''': images} return BatchFeature(data=_A , tensor_type=_A )
706
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """google/switch-base-8""": """https://huggingface.co/google/switch-base-8/blob/main/config.json""", } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''switch_transformers''' lowerCAmelCase_ = ['''past_key_values'''] lowerCAmelCase_ = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : int , _A : Dict=3_2128 , _A : List[Any]=768 , _A : int=64 , _A : List[Any]=2048 , _A : Any=64 , _A : Dict=12 , _A : Dict=3 , _A : Optional[int]=12 , _A : str=3 , _A : int=12 , _A : List[str]=8 , _A : str=False , _A : Optional[Any]=0.01 , _A : Union[str, Any]="float32" , _A : Union[str, Any]=False , _A : str=32 , _A : Any=128 , _A : List[str]=0.1 , _A : List[Any]=1e-6 , _A : Optional[int]=0.0_01 , _A : Optional[Any]=0.0_01 , _A : List[Any]=1.0 , _A : int="relu" , _A : Union[str, Any]=True , _A : str=False , _A : Optional[int]=True , _A : List[str]=0 , _A : Optional[Any]=1 , **_A : int , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size __SCREAMING_SNAKE_CASE : Union[str, Any] = d_model __SCREAMING_SNAKE_CASE : Optional[Any] = d_kv __SCREAMING_SNAKE_CASE : Optional[Any] = d_ff __SCREAMING_SNAKE_CASE : Any = num_sparse_encoder_layers __SCREAMING_SNAKE_CASE : Dict = num_layers __SCREAMING_SNAKE_CASE : Union[str, Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __SCREAMING_SNAKE_CASE : Optional[int] = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: __SCREAMING_SNAKE_CASE : Dict = self.num_layers // self.num_sparse_encoder_layers else: __SCREAMING_SNAKE_CASE : List[str] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: __SCREAMING_SNAKE_CASE : List[str] = self.num_decoder_layers // self.num_sparse_decoder_layers else: __SCREAMING_SNAKE_CASE : Optional[int] = self.num_decoder_layers # HACK: this will create 0 sparse layers __SCREAMING_SNAKE_CASE : Dict = num_heads __SCREAMING_SNAKE_CASE : List[str] = num_experts __SCREAMING_SNAKE_CASE : Optional[int] = expert_capacity __SCREAMING_SNAKE_CASE : Optional[Any] = router_bias __SCREAMING_SNAKE_CASE : Any = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) __SCREAMING_SNAKE_CASE : Dict = router_dtype __SCREAMING_SNAKE_CASE : Tuple = router_ignore_padding_tokens __SCREAMING_SNAKE_CASE : List[str] = relative_attention_num_buckets __SCREAMING_SNAKE_CASE : int = relative_attention_max_distance __SCREAMING_SNAKE_CASE : str = dropout_rate __SCREAMING_SNAKE_CASE : List[Any] = layer_norm_epsilon __SCREAMING_SNAKE_CASE : Optional[Any] = initializer_factor __SCREAMING_SNAKE_CASE : Optional[Any] = feed_forward_proj __SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache __SCREAMING_SNAKE_CASE : Tuple = add_router_probs __SCREAMING_SNAKE_CASE : Tuple = router_z_loss_coef __SCREAMING_SNAKE_CASE : int = router_aux_loss_coef __SCREAMING_SNAKE_CASE : Union[str, Any] = self.feed_forward_proj.split('''-''' ) __SCREAMING_SNAKE_CASE : int = act_info[-1] __SCREAMING_SNAKE_CASE : Union[str, Any] = act_info[0] == '''gated''' if len(_A ) > 1 and act_info[0] != "gated" or len(_A ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __SCREAMING_SNAKE_CASE : Optional[int] = '''gelu_new''' super().__init__( pad_token_id=_A , eos_token_id=_A , is_encoder_decoder=_A , **_A , )
131
0
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) SCREAMING_SNAKE_CASE_ = "hf-internal-testing/tiny-random-bert" SCREAMING_SNAKE_CASE_ = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') SCREAMING_SNAKE_CASE_ = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def A__ ( self ) -> int: __lowerCAmelCase = cached_file(A_ , A_ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(A_ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(A_ , A_ ) ) ) with open(os.path.join(A_ , """refs""" , """main""" ) ) as f: __lowerCAmelCase = f.read() self.assertEqual(A_ , os.path.join(A_ , """snapshots""" , A_ , A_ ) ) self.assertTrue(os.path.isfile(A_ ) ) # File is cached at the same place the second time. __lowerCAmelCase = cached_file(A_ , A_ ) self.assertEqual(A_ , A_ ) # Using a specific revision to test the full commit hash. __lowerCAmelCase = cached_file(A_ , A_ , revision="""9b8c223""" ) self.assertEqual(A_ , os.path.join(A_ , """snapshots""" , A_ , A_ ) ) def A__ ( self ) -> Optional[int]: with self.assertRaisesRegex(A_ , """is not a valid model identifier""" ): __lowerCAmelCase = cached_file("""tiny-random-bert""" , A_ ) with self.assertRaisesRegex(A_ , """is not a valid git identifier""" ): __lowerCAmelCase = cached_file(A_ , A_ , revision="""aaaa""" ) with self.assertRaisesRegex(A_ , """does not appear to have a file named""" ): __lowerCAmelCase = cached_file(A_ , """conf""" ) def A__ ( self ) -> Optional[Any]: with self.assertRaisesRegex(A_ , """does not appear to have a file named""" ): __lowerCAmelCase = cached_file(A_ , """conf""" ) with open(os.path.join(A_ , """refs""" , """main""" ) ) as f: __lowerCAmelCase = f.read() self.assertTrue(os.path.isfile(os.path.join(A_ , """.no_exist""" , A_ , """conf""" ) ) ) __lowerCAmelCase = cached_file(A_ , """conf""" , _raise_exceptions_for_missing_entries=A_ ) self.assertIsNone(A_ ) __lowerCAmelCase = cached_file(A_ , """conf""" , local_files_only=A_ , _raise_exceptions_for_missing_entries=A_ ) self.assertIsNone(A_ ) __lowerCAmelCase = mock.Mock() __lowerCAmelCase = 500 __lowerCAmelCase = {} __lowerCAmelCase = HTTPError __lowerCAmelCase = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=A_ ) as mock_head: __lowerCAmelCase = cached_file(A_ , """conf""" , _raise_exceptions_for_connection_errors=A_ ) self.assertIsNone(A_ ) # This check we did call the fake head request mock_head.assert_called() def A__ ( self ) -> str: self.assertTrue(has_file("""hf-internal-testing/tiny-bert-pt-only""" , A_ ) ) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , A_ ) ) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , A_ ) ) def A__ ( self ) -> str: # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo("""bert-base-cased""" , """ahah.txt""" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(A_ , """is not a valid model identifier""" ): get_file_from_repo("""bert-base-case""" , A_ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(A_ , """is not a valid git identifier""" ): get_file_from_repo("""bert-base-cased""" , A_ , revision="""ahaha""" ) __lowerCAmelCase = get_file_from_repo("""bert-base-cased""" , A_ ) # The name is the cached name which is not very easy to test, so instead we load the content. __lowerCAmelCase = json.loads(open(A_ , """r""" ).read() ) self.assertEqual(config["""hidden_size"""] , 768 ) def A__ ( self ) -> List[str]: with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase = Path(A_ ) / """a.txt""" filename.touch() self.assertEqual(get_file_from_repo(A_ , """a.txt""" ) , str(A_ ) ) self.assertIsNone(get_file_from_repo(A_ , """b.txt""" ) )
465
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch __lowercase : Tuple = logging.get_logger(__name__) class _A ( _UpperCAmelCase ): """simple docstring""" UpperCamelCase_ : List[str] = ['''pixel_values'''] def __init__( self : Optional[int] , A_ : bool = True , A_ : Optional[Dict[str, int]] = None , A_ : PILImageResampling = PILImageResampling.BILINEAR , A_ : bool = True , A_ : Dict[str, int] = None , A_ : bool = True , A_ : Union[int, float] = 1 / 255 , A_ : bool = True , A_ : Optional[Union[float, List[float]]] = None , A_ : Optional[Union[float, List[float]]] = None , **A_ : str , ) -> None: super().__init__(**A_ ) __snake_case = size if size is not None else {'''shortest_edge''': 256} __snake_case = get_size_dict(A_ , default_to_square=A_ ) __snake_case = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __snake_case = get_size_dict(A_ , param_name='''crop_size''' ) __snake_case = do_resize __snake_case = size __snake_case = resample __snake_case = do_center_crop __snake_case = crop_size __snake_case = do_rescale __snake_case = rescale_factor __snake_case = do_normalize __snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase ( self : List[str] , A_ : np.ndarray , A_ : Dict[str, int] , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : List[Any] , ) -> np.ndarray: __snake_case = get_size_dict(A_ , default_to_square=A_ ) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) __snake_case = get_resize_output_image_size(A_ , size=size['''shortest_edge'''] , default_to_square=A_ ) return resize(A_ , size=A_ , resample=A_ , data_format=A_ , **A_ ) def lowercase ( self : Tuple , A_ : np.ndarray , A_ : Dict[str, int] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Union[str, Any] , ) -> np.ndarray: __snake_case = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(A_ , size=(size['''height'''], size['''width''']) , data_format=A_ , **A_ ) def lowercase ( self : Optional[int] , A_ : np.ndarray , A_ : float , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : int ) -> np.ndarray: return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def lowercase ( self : Tuple , A_ : np.ndarray , A_ : Union[float, List[float]] , A_ : Union[float, List[float]] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Tuple , ) -> np.ndarray: return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def lowercase ( self : List[Any] , A_ : ImageInput , A_ : Optional[bool] = None , A_ : Dict[str, int] = None , A_ : PILImageResampling = None , A_ : bool = None , A_ : Dict[str, int] = None , A_ : Optional[bool] = None , A_ : Optional[float] = None , A_ : Optional[bool] = None , A_ : Optional[Union[float, List[float]]] = None , A_ : Optional[Union[float, List[float]]] = None , A_ : Optional[Union[str, TensorType]] = None , A_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A_ : Dict , ) -> Optional[Any]: __snake_case = do_resize if do_resize is not None else self.do_resize __snake_case = size if size is not None else self.size __snake_case = get_size_dict(A_ , default_to_square=A_ ) __snake_case = resample if resample is not None else self.resample __snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop __snake_case = crop_size if crop_size is not None else self.crop_size __snake_case = get_size_dict(A_ , param_name='''crop_size''' ) __snake_case = do_rescale if do_rescale is not None else self.do_rescale __snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case = do_normalize if do_normalize is not None else self.do_normalize __snake_case = image_mean if image_mean is not None else self.image_mean __snake_case = image_std if image_std is not None else self.image_std __snake_case = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __snake_case = [to_numpy_array(A_ ) for image in images] if do_resize: __snake_case = [self.resize(image=A_ , size=A_ , resample=A_ ) for image in images] if do_center_crop: __snake_case = [self.center_crop(image=A_ , size=A_ ) for image in images] if do_rescale: __snake_case = [self.rescale(image=A_ , scale=A_ ) for image in images] if do_normalize: __snake_case = [self.normalize(image=A_ , mean=A_ , std=A_ ) for image in images] __snake_case = [to_channel_dimension_format(A_ , A_ ) for image in images] __snake_case = {'''pixel_values''': images} return BatchFeature(data=A_ , tensor_type=A_ ) def lowercase ( self : List[str] , A_ : Optional[Any] , A_ : List[Tuple] = None ) -> List[Any]: __snake_case = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A_ ) != len(A_ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(A_ ): __snake_case = target_sizes.numpy() __snake_case = [] for idx in range(len(A_ ) ): __snake_case = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=A_ ) __snake_case = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(A_ ) else: __snake_case = logits.argmax(dim=1 ) __snake_case = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
564
0
"""simple docstring""" import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): A__ : Dict = '''naver-clova-ix/donut-base-finetuned-docvqa''' A__ : List[str] = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) A__ : Any = '''document_qa''' A__ : Dict = AutoProcessor A__ : Tuple = VisionEncoderDecoderModel A__ : Optional[int] = ['''image''', '''text'''] A__ : List[str] = ['''text'''] def __init__( self : List[str] , *__lowerCamelCase : Tuple , **__lowerCamelCase : int ): """simple docstring""" if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__lowerCamelCase , **__lowerCamelCase ) def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ): """simple docstring""" _snake_case = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _snake_case = task_prompt.replace('''{user_input}''' , __lowerCamelCase ) _snake_case = self.pre_processor.tokenizer( __lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors='''pt''' ).input_ids _snake_case = self.pre_processor(__lowerCamelCase , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def __UpperCAmelCase ( self : Dict , __lowerCamelCase : List[Any] ): """simple docstring""" return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowerCamelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowerCamelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowerCamelCase , ).sequences def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] ): """simple docstring""" _snake_case = self.pre_processor.batch_decode(__lowerCamelCase )[0] _snake_case = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) _snake_case = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) _snake_case = re.sub(R'''<.*?>''' , '''''' , __lowerCamelCase , count=1 ).strip() # remove first task start token _snake_case = self.pre_processor.tokenajson(__lowerCamelCase ) return sequence["answer"]
708
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) snake_case = ['''model.decoder.embed_positions.weights'''] def snake_case ( lowerCAmelCase_ ) -> List[str]: if "emb" in name: _snake_case = name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: _snake_case = name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: _snake_case = name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: _snake_case = name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: _snake_case = name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: _snake_case = name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: _snake_case = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: _snake_case = name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: _snake_case = name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: _snake_case = name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: _snake_case = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple[Dict, Dict]: _snake_case = list(state_dict.keys() ) _snake_case = {} for key in keys: _snake_case = state_dict.pop(lowerCAmelCase_ ) _snake_case = rename_keys(lowerCAmelCase_ ) if "in_proj_weight" in key: # split fused qkv proj _snake_case = val[:hidden_size, :] _snake_case = val[hidden_size : 2 * hidden_size, :] _snake_case = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: _snake_case = val else: _snake_case = val return state_dict, enc_dec_proj_state_dict def snake_case ( lowerCAmelCase_ ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values _snake_case = 1024 _snake_case = 24 _snake_case = 16 elif checkpoint == "medium": _snake_case = 1536 _snake_case = 48 _snake_case = 24 elif checkpoint == "large": _snake_case = 2048 _snake_case = 48 _snake_case = 32 else: raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) _snake_case = MusicgenDecoderConfig( hidden_size=lowerCAmelCase_ , ffn_dim=hidden_size * 4 , num_hidden_layers=lowerCAmelCase_ , num_attention_heads=lowerCAmelCase_ , ) return config @torch.no_grad() def snake_case ( lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_="cpu" ) -> List[Any]: _snake_case = MusicGen.get_pretrained(lowerCAmelCase_ , device=lowerCAmelCase_ ) _snake_case = decoder_config_from_checkpoint(lowerCAmelCase_ ) _snake_case = fairseq_model.lm.state_dict() _snake_case , _snake_case = rename_state_dict( lowerCAmelCase_ , hidden_size=decoder_config.hidden_size ) _snake_case = TaEncoderModel.from_pretrained('''t5-base''' ) _snake_case = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) _snake_case = MusicgenForCausalLM(lowerCAmelCase_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection _snake_case , _snake_case = decoder.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" ) if len(lowerCAmelCase_ ) > 0: raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model _snake_case = MusicgenForConditionalGeneration(text_encoder=lowerCAmelCase_ , audio_encoder=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowerCAmelCase_ ) # check we can do a forward pass _snake_case = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) _snake_case = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): _snake_case = model(input_ids=lowerCAmelCase_ , decoder_input_ids=lowerCAmelCase_ ).logits if logits.shape != (8, 1, 2048): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor _snake_case = AutoTokenizer.from_pretrained('''t5-base''' ) _snake_case = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) _snake_case = MusicgenProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) # set the appropriate bos/pad token ids _snake_case = 2048 _snake_case = 2048 # set other default generation config params _snake_case = int(30 * audio_encoder.config.frame_rate ) _snake_case = True _snake_case = 3.0 if pytorch_dump_folder is not None: Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) if repo_id: logger.info(f"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(lowerCAmelCase_ ) processor.push_to_hub(lowerCAmelCase_ ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint''', default='''small''', type=str, help='''Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.''', ) parser.add_argument( '''--pytorch_dump_folder''', required=True, default=None, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) parser.add_argument( '''--device''', default='''cpu''', type=str, help='''Torch device to run the conversion, either cpu or cuda.''' ) snake_case = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
404
0
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=1024 ) -> List[Any]: """simple docstring""" snake_case__ , snake_case__ : int = [], [] snake_case__ : Tuple = list(zip(__lowerCAmelCase , __lowerCAmelCase ) ) snake_case__ , snake_case__ : List[str] = sorted_examples[0] def is_too_big(__lowerCAmelCase ): return tok(__lowerCAmelCase , return_tensors='''pt''' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): snake_case__ : str = new_src + ''' ''' + src snake_case__ : Optional[Any] = new_tgt + ''' ''' + tgt if is_too_big(__lowerCAmelCase ) or is_too_big(__lowerCAmelCase ): # cant fit, finalize example finished_src.append(__lowerCAmelCase ) finished_tgt.append(__lowerCAmelCase ) snake_case__ , snake_case__ : Union[str, Any] = src, tgt else: # can fit, keep adding snake_case__ , snake_case__ : Tuple = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(__lowerCAmelCase ) finished_tgt.append(__lowerCAmelCase ) return finished_src, finished_tgt def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: """simple docstring""" snake_case__ : Optional[int] = Path(__lowerCAmelCase ) save_path.mkdir(exist_ok=__lowerCAmelCase ) for split in ["train"]: snake_case__ , snake_case__ : str = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" snake_case__ : Any = [x.rstrip() for x in Path(__lowerCAmelCase ).open().readlines()] snake_case__ : str = [x.rstrip() for x in Path(__lowerCAmelCase ).open().readlines()] snake_case__ , snake_case__ : Dict = pack_examples(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) print(f"""packed {split} split from {len(__lowerCAmelCase )} examples -> {len(__lowerCAmelCase )}.""" ) Path(save_path / f"""{split}.source""" ).open('''w''' ).write('''\n'''.join(__lowerCAmelCase ) ) Path(save_path / f"""{split}.target""" ).open('''w''' ).write('''\n'''.join(__lowerCAmelCase ) ) for split in ["val", "test"]: snake_case__ , snake_case__ : List[Any] = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" shutil.copyfile(__lowerCAmelCase , save_path / f"""{split}.source""" ) shutil.copyfile(__lowerCAmelCase , save_path / f"""{split}.target""" ) def _lowerCAmelCase ( ) -> Union[str, Any]: """simple docstring""" snake_case__ : str = argparse.ArgumentParser() parser.add_argument('''--tok_name''' , type=__lowerCAmelCase , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''--max_seq_len''' , type=__lowerCAmelCase , default=128 ) parser.add_argument('''--data_dir''' , type=__lowerCAmelCase ) parser.add_argument('''--save_path''' , type=__lowerCAmelCase ) snake_case__ : List[Any] = parser.parse_args() snake_case__ : str = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(__lowerCAmelCase , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
252
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer A__ = logging.get_logger(__name__) A__ = {'''vocab_file''': '''vocab.txt'''} A__ = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } A__ = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } A__ = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class a ( __lowerCamelCase ): __lowerCAmelCase : List[str] = VOCAB_FILES_NAMES __lowerCAmelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : List[str] = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Optional[Any] = ConvBertTokenizer def __init__( self :Any ,__lowercase :Optional[int]=None ,__lowercase :str=None ,__lowercase :Union[str, Any]=True ,__lowercase :Dict="[UNK]" ,__lowercase :List[Any]="[SEP]" ,__lowercase :int="[PAD]" ,__lowercase :Union[str, Any]="[CLS]" ,__lowercase :List[str]="[MASK]" ,__lowercase :List[Any]=True ,__lowercase :List[str]=None ,**__lowercase :List[str] ,): super().__init__( __lowercase ,tokenizer_file=__lowercase ,do_lower_case=__lowercase ,unk_token=__lowercase ,sep_token=__lowercase ,pad_token=__lowercase ,cls_token=__lowercase ,mask_token=__lowercase ,tokenize_chinese_chars=__lowercase ,strip_accents=__lowercase ,**__lowercase ,) snake_case__ : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' ,__lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' ,__lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' ,__lowercase ) != tokenize_chinese_chars ): snake_case__ : Union[str, Any] = getattr(__lowercase ,normalizer_state.pop('''type''' ) ) snake_case__ : int = do_lower_case snake_case__ : Union[str, Any] = strip_accents snake_case__ : List[str] = tokenize_chinese_chars snake_case__ : Tuple = normalizer_class(**__lowercase ) snake_case__ : Any = do_lower_case def __lowerCamelCase ( self :int ,__lowercase :Union[str, Any] ,__lowercase :List[Any]=None ): snake_case__ : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self :List[Any] ,__lowercase :List[int] ,__lowercase :Optional[List[int]] = None ): snake_case__ : str = [self.sep_token_id] snake_case__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self :Optional[Any] ,__lowercase :str ,__lowercase :Optional[str] = None ): snake_case__ : Optional[int] = self._tokenizer.model.save(__lowercase ,name=__lowercase ) return tuple(__lowercase )
252
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = { '''configuration_bert''': ['''BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BertConfig''', '''BertOnnxConfig'''], '''tokenization_bert''': ['''BasicTokenizer''', '''BertTokenizer''', '''WordpieceTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''BertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BertForMaskedLM''', '''BertForMultipleChoice''', '''BertForNextSentencePrediction''', '''BertForPreTraining''', '''BertForQuestionAnswering''', '''BertForSequenceClassification''', '''BertForTokenClassification''', '''BertLayer''', '''BertLMHeadModel''', '''BertModel''', '''BertPreTrainedModel''', '''load_tf_weights_in_bert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBertEmbeddings''', '''TFBertForMaskedLM''', '''TFBertForMultipleChoice''', '''TFBertForNextSentencePrediction''', '''TFBertForPreTraining''', '''TFBertForQuestionAnswering''', '''TFBertForSequenceClassification''', '''TFBertForTokenClassification''', '''TFBertLMHeadModel''', '''TFBertMainLayer''', '''TFBertModel''', '''TFBertPreTrainedModel''', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''TFBertTokenizer'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''FlaxBertForCausalLM''', '''FlaxBertForMaskedLM''', '''FlaxBertForMultipleChoice''', '''FlaxBertForNextSentencePrediction''', '''FlaxBertForPreTraining''', '''FlaxBertForQuestionAnswering''', '''FlaxBertForSequenceClassification''', '''FlaxBertForTokenClassification''', '''FlaxBertModel''', '''FlaxBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
719
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class snake_case__: """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : int=13 , SCREAMING_SNAKE_CASE : Union[str, Any]=30 , SCREAMING_SNAKE_CASE : Any=2 , SCREAMING_SNAKE_CASE : Optional[Any]=3 , SCREAMING_SNAKE_CASE : Dict=True , SCREAMING_SNAKE_CASE : Optional[Any]=True , SCREAMING_SNAKE_CASE : List[str]=32 , SCREAMING_SNAKE_CASE : Optional[int]=2 , SCREAMING_SNAKE_CASE : str=4 , SCREAMING_SNAKE_CASE : List[Any]=37 , SCREAMING_SNAKE_CASE : Tuple="gelu" , SCREAMING_SNAKE_CASE : List[str]=0.1 , SCREAMING_SNAKE_CASE : List[Any]=0.1 , SCREAMING_SNAKE_CASE : int=10 , SCREAMING_SNAKE_CASE : List[str]=0.02 , SCREAMING_SNAKE_CASE : Tuple=3 , SCREAMING_SNAKE_CASE : str=0.6 , SCREAMING_SNAKE_CASE : Optional[Any]=None , ): lowercase__ : Union[str, Any] = parent lowercase__ : Optional[int] = batch_size lowercase__ : Union[str, Any] = image_size lowercase__ : List[Any] = patch_size lowercase__ : Any = num_channels lowercase__ : Optional[int] = is_training lowercase__ : Dict = use_labels lowercase__ : Any = hidden_size lowercase__ : List[Any] = num_hidden_layers lowercase__ : Union[str, Any] = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : Union[str, Any] = hidden_dropout_prob lowercase__ : Union[str, Any] = attention_probs_dropout_prob lowercase__ : List[Any] = type_sequence_label_size lowercase__ : Any = initializer_range lowercase__ : Optional[int] = mask_ratio lowercase__ : Union[str, Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowercase__ : List[Any] = (image_size // patch_size) ** 2 lowercase__ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def snake_case ( self : int ): lowercase__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : str = None if self.use_labels: lowercase__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Optional[Any] = self.get_config() return config, pixel_values, labels def snake_case ( self : Tuple ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def snake_case ( self : str , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple ): lowercase__ : Tuple = TFViTMAEModel(config=SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : List[str] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] ): lowercase__ : Union[str, Any] = TFViTMAEForPreTraining(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = model(SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) # expected sequence length = num_patches lowercase__ : List[str] = (self.image_size // self.patch_size) ** 2 lowercase__ : List[Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowercase__ : Dict = 1 lowercase__ : List[Any] = TFViTMAEForPreTraining(SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ : Optional[Any] = model(SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def snake_case ( self : Optional[int] ): lowercase__ : int = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__)) : Dict = config_and_inputs lowercase__ : str = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class snake_case__(_UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" lowercase_ = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () lowercase_ = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def snake_case ( self : List[str] ): lowercase__ : List[Any] = TFViTMAEModelTester(self ) lowercase__ : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37 ) def snake_case ( self : Tuple ): self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def snake_case ( self : Union[str, Any] ): pass def snake_case ( self : Optional[int] ): lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[Any] = model_class(SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowercase__ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , tf.keras.layers.Layer ) ) def snake_case ( self : Optional[Any] ): lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE ) lowercase__ : Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Union[str, Any] = [*signature.parameters.keys()] lowercase__ : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[Any] ): lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[int] ): lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[Any] ): # make the mask reproducible np.random.seed(2 ) lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = int((config.image_size // config.patch_size) ** 2 ) lowercase__ : List[str] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ : Optional[Any] = model_class(SCREAMING_SNAKE_CASE ) lowercase__ : int = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = model(SCREAMING_SNAKE_CASE , noise=SCREAMING_SNAKE_CASE ) lowercase__ : Any = copy.deepcopy(self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) lowercase__ : Tuple = model(**SCREAMING_SNAKE_CASE , noise=SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = outputs_dict[0].numpy() lowercase__ : Optional[int] = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def snake_case ( self : str ): # make the mask reproducible np.random.seed(2 ) lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Optional[Any] = int((config.image_size // config.patch_size) ** 2 ) lowercase__ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(SCREAMING_SNAKE_CASE : Optional[int] ): lowercase__ : Tuple = {} for k, v in inputs_dict.items(): if tf.is_tensor(SCREAMING_SNAKE_CASE ): lowercase__ : Any = v.numpy() else: lowercase__ : List[Any] = np.array(SCREAMING_SNAKE_CASE ) return inputs_np_dict for model_class in self.all_model_classes: lowercase__ : Any = model_class(SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Any = prepare_numpy_arrays(SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = model(SCREAMING_SNAKE_CASE , noise=SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = model(**SCREAMING_SNAKE_CASE , noise=SCREAMING_SNAKE_CASE ) self.assert_outputs_same(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any] ): # make masks reproducible np.random.seed(2 ) lowercase__ : Optional[int] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) lowercase__ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ : Union[str, Any] = tf.constant(SCREAMING_SNAKE_CASE ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowercase__ : Optional[int] = tf_noise super().check_pt_tf_models(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def snake_case ( self : str ): # make mask reproducible np.random.seed(2 ) lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : int = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(SCREAMING_SNAKE_CASE ) if module_member_name.endswith("MainLayer" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("MainLayer" )] == model_class.__name__[: -len("Model" )] for module_member in (getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ),) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(SCREAMING_SNAKE_CASE , "_keras_serializable" , SCREAMING_SNAKE_CASE ) } lowercase__ : List[str] = int((config.image_size // config.patch_size) ** 2 ) lowercase__ : Dict = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ : str = tf.convert_to_tensor(SCREAMING_SNAKE_CASE ) inputs_dict.update({"noise": noise} ) for main_layer_class in tf_main_layer_classes: lowercase__ : Tuple = main_layer_class(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } lowercase__ : Tuple = tf.keras.Model(SCREAMING_SNAKE_CASE , outputs=main_layer(SCREAMING_SNAKE_CASE ) ) lowercase__ : str = model(SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ : str = os.path.join(SCREAMING_SNAKE_CASE , "keras_model.h5" ) model.save(SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = tf.keras.models.load_model( SCREAMING_SNAKE_CASE , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(SCREAMING_SNAKE_CASE , tf.keras.Model ) lowercase__ : Dict = model(SCREAMING_SNAKE_CASE ) self.assert_outputs_same(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @slow def snake_case ( self : Optional[int] ): # make mask reproducible np.random.seed(2 ) lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Union[str, Any] = int((config.image_size // config.patch_size) ** 2 ) lowercase__ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ : Any = model_class(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = model(SCREAMING_SNAKE_CASE , noise=SCREAMING_SNAKE_CASE ) if model_class.__name__ == "TFViTMAEModel": lowercase__ : str = outputs.last_hidden_state.numpy() lowercase__ : Optional[Any] = 0 else: lowercase__ : Optional[Any] = outputs.logits.numpy() lowercase__ : Optional[int] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(SCREAMING_SNAKE_CASE , saved_model=SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = model_class.from_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = model(SCREAMING_SNAKE_CASE , noise=SCREAMING_SNAKE_CASE ) if model_class.__name__ == "TFViTMAEModel": lowercase__ : Optional[int] = after_outputs["last_hidden_state"].numpy() lowercase__ : Optional[int] = 0 else: lowercase__ : str = after_outputs["logits"].numpy() lowercase__ : Tuple = 0 lowercase__ : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(SCREAMING_SNAKE_CASE , 1E-5 ) def snake_case ( self : List[Any] ): # make mask reproducible np.random.seed(2 ) lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[str] = int((config.image_size // config.patch_size) ** 2 ) lowercase__ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ : Tuple = model_class(SCREAMING_SNAKE_CASE ) lowercase__ : Dict = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : int = model(SCREAMING_SNAKE_CASE , noise=SCREAMING_SNAKE_CASE ) lowercase__ : str = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(SCREAMING_SNAKE_CASE ) lowercase__ : int = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config lowercase__ : Any = model_class.from_config(model.config ) lowercase__ : Tuple = new_model(SCREAMING_SNAKE_CASE ) # Build model new_model.set_weights(model.get_weights() ) lowercase__ : Union[str, Any] = new_model(SCREAMING_SNAKE_CASE , noise=SCREAMING_SNAKE_CASE ) self.assert_outputs_same(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def snake_case ( self : List[Any] ): pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def snake_case ( self : str ): pass @slow def snake_case ( self : List[Any] ): lowercase__ : List[Any] = TFViTMAEModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class snake_case__(unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self : Any ): return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def snake_case ( self : Union[str, Any] ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) lowercase__ : Optional[Any] = TFViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ) lowercase__ : Optional[Any] = self.default_image_processor lowercase__ : Union[str, Any] = prepare_img() lowercase__ : Tuple = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="tf" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowercase__ : Union[str, Any] = ViTMAEConfig() lowercase__ : str = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowercase__ : List[str] = np.random.uniform(size=(1, num_patches) ) # forward pass lowercase__ : Optional[Any] = model(**SCREAMING_SNAKE_CASE , noise=SCREAMING_SNAKE_CASE ) # verify the logits lowercase__ : List[str] = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = tf.convert_to_tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 )
81
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _snake_case ( unittest.TestCase ): @slow def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""") lowercase__ : Optional[int] = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" lowercase__ : Optional[Any] = model(SCREAMING_SNAKE_CASE_)["""last_hidden_state"""] lowercase__ : Tuple = tf.TensorShape((1, 10, 7_68)) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_) # compare the actual values for a slice. lowercase__ : Optional[Any] = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4))
12
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case ( *__snake_case , __snake_case = None , __snake_case=True , __snake_case=2 ): from .. import __version__ _UpperCamelCase = take_from _UpperCamelCase = () if not isinstance(args[0] , __snake_case ): _UpperCamelCase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__snake_case ).base_version ) >= version.parse(__snake_case ): raise ValueError( f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" f""" version {__version__} is >= {version_name}""" ) _UpperCamelCase = None if isinstance(__snake_case , __snake_case ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__snake_case ),) _UpperCamelCase = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(__snake_case , __snake_case ): values += (getattr(__snake_case , __snake_case ),) _UpperCamelCase = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: _UpperCamelCase = f"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: _UpperCamelCase = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , __snake_case , stacklevel=__snake_case ) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) > 0: _UpperCamelCase = inspect.getouterframes(inspect.currentframe() )[1] _UpperCamelCase = call_frame.filename _UpperCamelCase = call_frame.lineno _UpperCamelCase = call_frame.function _UpperCamelCase , _UpperCamelCase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(__snake_case ) == 0: return elif len(__snake_case ) == 1: return values[0] return values
10
0
"""simple docstring""" import functools def _snake_case ( lowerCamelCase__ : list[int] , lowerCamelCase__ : list[int] ) -> int: # Validation if not isinstance(lowerCamelCase__ , lowerCamelCase__ ) or not all(isinstance(lowerCamelCase__ , lowerCamelCase__ ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(lowerCamelCase__ ) != 3 or not all(isinstance(lowerCamelCase__ , lowerCamelCase__ ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(lowerCamelCase__ ) == 0: return 0 if min(lowerCamelCase__ ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(lowerCamelCase__ ) >= 366: raise ValueError("All days elements should be less than 366" ) lowerCamelCase_ : List[Any] =set(lowerCamelCase__ ) @functools.cache def dynamic_programming(lowerCamelCase__ : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
244
"""simple docstring""" from datetime import datetime as dt import os from github import Github A__ : int = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def _snake_case ( ) -> List[Any]: lowerCamelCase_ : Optional[Any] =Github(os.environ["GITHUB_TOKEN"] ) lowerCamelCase_ : Any =g.get_repo("huggingface/transformers" ) lowerCamelCase_ : Tuple =repo.get_issues(state="open" ) for issue in open_issues: lowerCamelCase_ : Optional[Any] =sorted([comment for comment in issue.get_comments()] , key=lambda lowerCamelCase__ : i.created_at , reverse=lowerCamelCase__ ) lowerCamelCase_ : Optional[Any] =comments[0] if len(lowerCamelCase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="closed" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
244
1
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A : '''simple docstring''' def __init__( self : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any]=2 , __lowerCAmelCase : Any=3 , __lowerCAmelCase : Dict=4 , __lowerCAmelCase : Dict=2 , __lowerCAmelCase : List[Any]=7 , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : int=True , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : int=99 , __lowerCAmelCase : Dict=36 , __lowerCAmelCase : Tuple=3 , __lowerCAmelCase : Dict=4 , __lowerCAmelCase : Dict=37 , __lowerCAmelCase : Optional[Any]="gelu" , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : Optional[int]=5_12 , __lowerCAmelCase : List[Any]=16 , __lowerCAmelCase : str=2 , __lowerCAmelCase : Union[str, Any]=0.0_2 , __lowerCAmelCase : Optional[int]=6 , __lowerCAmelCase : Union[str, Any]=6 , __lowerCAmelCase : Optional[int]=3 , __lowerCAmelCase : Union[str, Any]=4 , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : List[Any]=10_00 , ) -> Optional[int]: """simple docstring""" A__ = parent A__ = batch_size A__ = num_channels A__ = image_size A__ = patch_size A__ = text_seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = coordinate_size A__ = shape_size A__ = num_labels A__ = num_choices A__ = scope A__ = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) A__ = text_seq_length A__ = (image_size // patch_size) ** 2 + 1 A__ = self.text_seq_length + self.image_seq_length def a_ ( self : str ) -> Optional[int]: """simple docstring""" A__ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) A__ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A__ = bbox[i, j, 3] A__ = bbox[i, j, 1] A__ = t if bbox[i, j, 2] < bbox[i, j, 0]: A__ = bbox[i, j, 2] A__ = bbox[i, j, 0] A__ = t A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.text_seq_length] ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) A__ = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def a_ ( self : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any ) -> int: """simple docstring""" A__ = LayoutLMvaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() # text + image A__ = model(lowerCamelCase_ , pixel_values=lowerCamelCase_ ) A__ = model( lowerCamelCase_ , bbox=lowerCamelCase_ , pixel_values=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) A__ = model(lowerCamelCase_ , bbox=lowerCamelCase_ , pixel_values=lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) A__ = model(lowerCamelCase_ , bbox=lowerCamelCase_ , pixel_values=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only A__ = model(lowerCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only A__ = model(pixel_values=lowerCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def a_ ( self : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str ) -> Optional[Any]: """simple docstring""" A__ = self.num_labels A__ = LayoutLMvaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() A__ = model( lowerCamelCase_ , bbox=lowerCamelCase_ , pixel_values=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a_ ( self : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : str ) -> Optional[int]: """simple docstring""" A__ = self.num_labels A__ = LayoutLMvaForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() A__ = model( lowerCamelCase_ , bbox=lowerCamelCase_ , pixel_values=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def a_ ( self : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" A__ = LayoutLMvaForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() A__ = model( lowerCamelCase_ , bbox=lowerCamelCase_ , pixel_values=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a_ ( self : int ) -> str: """simple docstring""" A__ = self.prepare_config_and_inputs() ( A__ ) = config_and_inputs A__ = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class A (_UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Dict = False __lowerCamelCase : List[Any] = False __lowerCamelCase : Dict = False __lowerCamelCase : List[Any] = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) __lowerCamelCase : List[Any] = ( {'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel} if is_torch_available() else {} ) def a_ ( self : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict ) -> List[Any]: """simple docstring""" return True def a_ ( self : Tuple ) -> List[Any]: """simple docstring""" A__ = LayoutLMvaModelTester(self ) A__ = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def a_ ( self : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int=False ) -> Optional[Any]: """simple docstring""" A__ = copy.deepcopy(lowerCamelCase_ ) if model_class in get_values(lowerCamelCase_ ): A__ = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(lowerCamelCase_ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowerCamelCase_ ): A__ = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) elif model_class in get_values(lowerCamelCase_ ): A__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) A__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) elif model_class in [ *get_values(lowerCamelCase_ ), ]: A__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) elif model_class in [ *get_values(lowerCamelCase_ ), ]: A__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=lowerCamelCase_ , ) return inputs_dict def a_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def a_ ( self : Tuple ) -> Any: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def a_ ( self : List[str] ) -> Tuple: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ = type self.model_tester.create_and_check_model(*lowerCamelCase_ ) def a_ ( self : str ) -> Optional[Any]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def a_ ( self : Any ) -> Optional[Any]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) def a_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) @slow def a_ ( self : Tuple ) -> List[Any]: """simple docstring""" for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = LayoutLMvaModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" A__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class A (unittest.TestCase ): '''simple docstring''' @cached_property def a_ ( self : Tuple ) -> List[Any]: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=lowerCamelCase_ ) if is_vision_available() else None @slow def a_ ( self : Dict ) -> Any: """simple docstring""" A__ = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(lowerCamelCase_ ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=lowerCamelCase_ , return_tensors="""pt""" ).pixel_values.to(lowerCamelCase_ ) A__ = torch.tensor([[1, 2]] ) A__ = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass A__ = model( input_ids=input_ids.to(lowerCamelCase_ ) , bbox=bbox.to(lowerCamelCase_ ) , pixel_values=pixel_values.to(lowerCamelCase_ ) , ) # verify the logits A__ = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape , lowerCamelCase_ ) A__ = torch.tensor( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase_ , atol=1e-4 ) )
176
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class __lowerCAmelCase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' _A = PriorTransformer _A = "hidden_states" @property def snake_case__( self: Union[str, Any] ): lowercase__ : List[Any] = 4 lowercase__ : Optional[int] = 8 lowercase__ : List[str] = 7 lowercase__ : Optional[Any] = floats_tensor((batch_size, embedding_dim) ).to(lowerCamelCase_ ) lowercase__ : Union[str, Any] = floats_tensor((batch_size, embedding_dim) ).to(lowerCamelCase_ ) lowercase__ : Any = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(lowerCamelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__( self: int, lowerCamelCase_: Dict=0 ): torch.manual_seed(lowerCamelCase_ ) lowercase__ : Tuple = 4 lowercase__ : List[Any] = 8 lowercase__ : List[str] = 7 lowercase__ : Union[str, Any] = torch.randn((batch_size, embedding_dim) ).to(lowerCamelCase_ ) lowercase__ : Optional[int] = torch.randn((batch_size, embedding_dim) ).to(lowerCamelCase_ ) lowercase__ : List[str] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCamelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def snake_case__( self: str ): return (4, 8) @property def snake_case__( self: List[str] ): return (4, 8) def snake_case__( self: Dict ): lowercase__ : int = { 'num_attention_heads': 2, 'attention_head_dim': 4, 'num_layers': 2, 'embedding_dim': 8, 'num_embeddings': 7, 'additional_embeddings': 4, } lowercase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def snake_case__( self: int ): lowercase__ , lowercase__ : Dict = PriorTransformer.from_pretrained( 'hf-internal-testing/prior-dummy', output_loading_info=lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) self.assertEqual(len(loading_info['missing_keys'] ), 0 ) model.to(lowerCamelCase_ ) lowercase__ : Tuple = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def snake_case__( self: str ): lowercase__ , lowercase__ : List[Any] = self.prepare_init_args_and_inputs_for_common() lowercase__ : Optional[int] = self.model_class(**lowerCamelCase_ ) lowercase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Dict = [*signature.parameters.keys()] lowercase__ : List[str] = ['hidden_states', 'timestep'] self.assertListEqual(arg_names[:2], lowerCamelCase_ ) def snake_case__( self: Union[str, Any] ): lowercase__ : str = PriorTransformer.from_pretrained('hf-internal-testing/prior-dummy' ) lowercase__ : Optional[int] = model.to(lowerCamelCase_ ) if hasattr(lowerCamelCase_, 'set_default_attn_processor' ): model.set_default_attn_processor() lowercase__ : List[str] = self.get_dummy_seed_input() with torch.no_grad(): lowercase__ : str = model(**lowerCamelCase_ )[0] lowercase__ : int = output[0, :5].flatten().cpu() print(lowerCamelCase_ ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. lowercase__ : List[str] = torch.tensor([-1.3_4_3_6, -0.2_8_7_0, 0.7_5_3_8, 0.4_3_6_8, -0.0_2_3_9] ) self.assertTrue(torch_all_close(lowerCamelCase_, lowerCamelCase_, rtol=1E-2 ) ) @slow class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def snake_case__( self: Tuple, lowerCamelCase_: Union[str, Any]=1, lowerCamelCase_: Tuple=768, lowerCamelCase_: Dict=77, lowerCamelCase_: Union[str, Any]=0 ): torch.manual_seed(lowerCamelCase_ ) lowercase__ : Dict = batch_size lowercase__ : Dict = embedding_dim lowercase__ : Dict = num_embeddings lowercase__ : int = torch.randn((batch_size, embedding_dim) ).to(lowerCamelCase_ ) lowercase__ : str = torch.randn((batch_size, embedding_dim) ).to(lowerCamelCase_ ) lowercase__ : List[str] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCamelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__( self: str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5_8_6_1, 0.1_2_8_3, -0.0_9_3_1, 0.0_8_8_2, 0.4_4_7_6, 0.1_3_2_9, -0.0_4_9_8, 0.0_6_4_0]], [37, [-0.4_9_1_3, 0.0_1_1_0, -0.0_4_8_3, 0.0_5_4_1, 0.4_9_5_4, -0.0_1_7_0, 0.0_3_5_4, 0.1_6_5_1]], # fmt: on ] ) def snake_case__( self: Optional[Any], lowerCamelCase_: List[str], lowerCamelCase_: str ): lowercase__ : List[Any] = PriorTransformer.from_pretrained('kandinsky-community/kandinsky-2-1-prior', subfolder='prior' ) model.to(lowerCamelCase_ ) lowercase__ : Optional[int] = self.get_dummy_seed_input(seed=lowerCamelCase_ ) with torch.no_grad(): lowercase__ : List[str] = model(**lowerCamelCase_ )[0] assert list(sample.shape ) == [1, 768] lowercase__ : Union[str, Any] = sample[0, :8].flatten().cpu() print(lowerCamelCase_ ) lowercase__ : Optional[Any] = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_, lowerCamelCase_, atol=1E-3 )
266
0
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('0.12.2'): raise Exception('requires fairseq >= 0.12.2') if version.parse(fairseq.__version__) > version.parse('2'): raise Exception('requires fairseq < v2') logging.set_verbosity_info() lowerCAmelCase : str =logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] ='Hello, World!' lowerCAmelCase : Tuple ='en_XX' def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[str] = Path("""data_bin""" ) lowerCAmelCase : Optional[Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(SCREAMING_SNAKE_CASE__ ).parent ) ,checkpoint_file=Path(SCREAMING_SNAKE_CASE__ ).name ,_name="""xmod_base""" ,arch="""xmod_base""" ,task="""multilingual_masked_lm""" ,data_name_or_path=str(SCREAMING_SNAKE_CASE__ ) ,bpe="""sentencepiece""" ,sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE__ ).parent / """sentencepiece.bpe.model""" ) ,src_dict=str(data_dir / """dict.txt""" ) ,) xmod.eval() # disable dropout print(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = xmod.model.encoder.sentence_encoder lowerCAmelCase : int = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings ,hidden_size=xmod.cfg.model.encoder_embed_dim ,num_hidden_layers=xmod.cfg.model.encoder_layers ,num_attention_heads=xmod.cfg.model.encoder_attention_heads ,intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=5_1_4 ,type_vocab_size=1 ,layer_norm_eps=1e-5 ,pre_norm=xmod.cfg.model.encoder_normalize_before ,adapter_reduction_factor=getattr(xmod.cfg.model ,"""bottleneck""" ,2 ) ,adapter_layer_norm=xmod.cfg.model.adapter_layer_norm ,adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm ,ln_before_adapter=xmod.cfg.model.ln_before_adapter ,languages=xmod.cfg.model.languages ,) if classification_head: lowerCAmelCase : Any = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : str = XmodForSequenceClassification(SCREAMING_SNAKE_CASE__ ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE__ ) model.eval() # Now let's copy all the weights. # Embeddings lowerCAmelCase : str = xmod_sent_encoder.embed_tokens.weight lowerCAmelCase : Any = xmod_sent_encoder.embed_positions.weight lowerCAmelCase : Union[str, Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. lowerCAmelCase : List[Any] = xmod_sent_encoder.layernorm_embedding.weight lowerCAmelCase : int = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCAmelCase : List[Any] = model.roberta.encoder.layer[i] lowerCAmelCase : Dict = xmod_sent_encoder.layers[i] # self attention lowerCAmelCase : Tuple = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) lowerCAmelCase : str = xmod_layer.self_attn.q_proj.weight lowerCAmelCase : Any = xmod_layer.self_attn.q_proj.bias lowerCAmelCase : Tuple = xmod_layer.self_attn.k_proj.weight lowerCAmelCase : Dict = xmod_layer.self_attn.k_proj.bias lowerCAmelCase : Dict = xmod_layer.self_attn.v_proj.weight lowerCAmelCase : int = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCAmelCase : List[str] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) lowerCAmelCase : Union[str, Any] = xmod_layer.self_attn.out_proj.weight lowerCAmelCase : str = xmod_layer.self_attn.out_proj.bias lowerCAmelCase : Optional[int] = xmod_layer.self_attn_layer_norm.weight lowerCAmelCase : int = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCAmelCase : int = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) lowerCAmelCase : Tuple = xmod_layer.fca.weight lowerCAmelCase : str = xmod_layer.fca.bias # output lowerCAmelCase : Any = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) lowerCAmelCase : Any = xmod_layer.fca.weight lowerCAmelCase : Optional[int] = xmod_layer.fca.bias lowerCAmelCase : Tuple = xmod_layer.final_layer_norm.weight lowerCAmelCase : Tuple = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCAmelCase : Union[str, Any] = xmod_layer.adapter_layer_norm.weight lowerCAmelCase : int = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCAmelCase : Any = bert_output.adapter_modules[lang_code] lowerCAmelCase : str = xmod_layer.adapter_modules[lang_code] lowerCAmelCase : Tuple = from_adapter.fca.weight lowerCAmelCase : Optional[int] = from_adapter.fca.bias lowerCAmelCase : List[Any] = from_adapter.fca.weight lowerCAmelCase : Any = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCAmelCase : Union[str, Any] = xmod_sent_encoder.layer_norm.weight lowerCAmelCase : Tuple = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].dense.weight lowerCAmelCase : Any = xmod.model.classification_heads["""mnli"""].dense.bias lowerCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""].out_proj.weight lowerCAmelCase : int = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head lowerCAmelCase : Any = xmod.model.encoder.lm_head.dense.weight lowerCAmelCase : Union[str, Any] = xmod.model.encoder.lm_head.dense.bias lowerCAmelCase : int = xmod.model.encoder.lm_head.layer_norm.weight lowerCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias lowerCAmelCase : Optional[int] = xmod.model.encoder.lm_head.weight lowerCAmelCase : Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCAmelCase : Any = xmod.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Tuple = model(SCREAMING_SNAKE_CASE__ )[0] if classification_head: lowerCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""](xmod.extract_features(SCREAMING_SNAKE_CASE__ ) ) else: lowerCAmelCase : Optional[Any] = xmod.model(SCREAMING_SNAKE_CASE__ ,lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape ,their_output.shape ) lowerCAmelCase : List[Any] = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 lowerCAmelCase : Tuple = torch.allclose(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=1e-3 ) print("""Do both models output the same tensors?""" ,"""🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(parents=SCREAMING_SNAKE_CASE__ ,exist_ok=SCREAMING_SNAKE_CASE__ ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '--xmod_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) lowerCAmelCase : int =parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
711
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Optional[int] ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _a ( snake_case_ ): _UpperCamelCase: Tuple = "transfo-xl" _UpperCamelCase: str = ["mems"] _UpperCamelCase: Dict = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , lowercase_=267735 , lowercase_=[20000, 40000, 200000] , lowercase_=1024 , lowercase_=1024 , lowercase_=16 , lowercase_=64 , lowercase_=4096 , lowercase_=4 , lowercase_=False , lowercase_=18 , lowercase_=1600 , lowercase_=1000 , lowercase_=True , lowercase_=True , lowercase_=0 , lowercase_=-1 , lowercase_=True , lowercase_=0.1 , lowercase_=0.0 , lowercase_=True , lowercase_="normal" , lowercase_=0.0_1 , lowercase_=0.0_1 , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=0 , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Union[str, Any] = [] self.cutoffs.extend(lowercase_ ) if proj_share_all_but_first: lowerCAmelCase : Optional[int] = [False] + [True] * len(self.cutoffs ) else: lowerCAmelCase : List[str] = [False] + [False] * len(self.cutoffs ) lowerCAmelCase : Optional[int] = d_model lowerCAmelCase : List[Any] = d_embed lowerCAmelCase : Union[str, Any] = d_head lowerCAmelCase : List[Any] = d_inner lowerCAmelCase : Optional[int] = div_val lowerCAmelCase : List[Any] = pre_lnorm lowerCAmelCase : Dict = n_layer lowerCAmelCase : Tuple = n_head lowerCAmelCase : Any = mem_len lowerCAmelCase : Union[str, Any] = same_length lowerCAmelCase : List[Any] = attn_type lowerCAmelCase : int = clamp_len lowerCAmelCase : List[str] = sample_softmax lowerCAmelCase : Optional[int] = adaptive lowerCAmelCase : Dict = dropout lowerCAmelCase : Optional[Any] = dropatt lowerCAmelCase : List[str] = untie_r lowerCAmelCase : List[str] = init lowerCAmelCase : Tuple = init_range lowerCAmelCase : str = proj_init_std lowerCAmelCase : str = init_std lowerCAmelCase : Optional[int] = layer_norm_epsilon super().__init__(eos_token_id=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> Optional[Any]: # Message copied from Transformer-XL documentation logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _snake_case ( self , lowercase_ ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
693
0
"""simple docstring""" import os import sys import unittest UpperCAmelCase__ : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) UpperCAmelCase__ : str = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py') UpperCAmelCase__ : Optional[Any] = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py') class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" def __magic_name__ (self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = {"""BertModelTest""": """BertModelTester"""} SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """BlipModelTest""": """BlipModelTester""", """BlipTextImageModelTest""": """BlipTextImageModelsModelTester""", """BlipTextModelTest""": """BlipTextModelTester""", """BlipTextRetrievalModelTest""": """BlipTextRetrievalModelTester""", """BlipVQAModelTest""": """BlipVQAModelTester""", """BlipVisionModelTest""": """BlipVisionModelTester""", } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = get_model_to_test_mapping(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_model_to_test_mapping(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = { """BertForMaskedLM""": ["""BertModelTest"""], """BertForMultipleChoice""": ["""BertModelTest"""], """BertForNextSentencePrediction""": ["""BertModelTest"""], """BertForPreTraining""": ["""BertModelTest"""], """BertForQuestionAnswering""": ["""BertModelTest"""], """BertForSequenceClassification""": ["""BertModelTest"""], """BertForTokenClassification""": ["""BertModelTest"""], """BertLMHeadModel""": ["""BertModelTest"""], """BertModel""": ["""BertModelTest"""], } SCREAMING_SNAKE_CASE__ : int = { """BlipForConditionalGeneration""": ["""BlipTextImageModelTest"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTest"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTest"""], """BlipModel""": ["""BlipModelTest"""], """BlipTextModel""": ["""BlipTextModelTest"""], """BlipVisionModel""": ["""BlipVisionModelTest"""], } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = { """BertForMaskedLM""": ["""BertModelTester"""], """BertForMultipleChoice""": ["""BertModelTester"""], """BertForNextSentencePrediction""": ["""BertModelTester"""], """BertForPreTraining""": ["""BertModelTester"""], """BertForQuestionAnswering""": ["""BertModelTester"""], """BertForSequenceClassification""": ["""BertModelTester"""], """BertForTokenClassification""": ["""BertModelTester"""], """BertLMHeadModel""": ["""BertModelTester"""], """BertModel""": ["""BertModelTester"""], } SCREAMING_SNAKE_CASE__ : Optional[int] = { """BlipForConditionalGeneration""": ["""BlipTextImageModelsModelTester"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTester"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTester"""], """BlipModel""": ["""BlipModelTester"""], """BlipTextModel""": ["""BlipTextModelTester"""], """BlipVisionModel""": ["""BlipVisionModelTester"""], } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
223
"""simple docstring""" import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor UpperCAmelCase__ : List[str] = logging.get_logger(__name__) class lowerCAmelCase_ (a__ ): """simple docstring""" def __init__(self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> None: """simple docstring""" warnings.warn( """The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PoolFormerImageProcessor instead.""" , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
223
1
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): __a : Optional[Any] = True from torch.cuda.amp import autocast __a : Any = logging.getLogger(__name__) def _SCREAMING_SNAKE_CASE ( __lowercase : List[str]=None , __lowercase : Tuple=None ) -> Dict: """simple docstring""" return field(default_factory=lambda: default , metadata=__lowercase ) @dataclass class __lowercase : '''simple docstring''' SCREAMING_SNAKE_CASE = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) SCREAMING_SNAKE_CASE = field( default=lowercase_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) SCREAMING_SNAKE_CASE = field( default=lowercase_ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) SCREAMING_SNAKE_CASE = field( default=0.1 , metadata={"help": "The dropout ratio for the attention probabilities."} ) SCREAMING_SNAKE_CASE = field( default=0.1 , metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) SCREAMING_SNAKE_CASE = field( default=0.1 , metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." } , ) SCREAMING_SNAKE_CASE = field( default=0.1 , metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."} , ) SCREAMING_SNAKE_CASE = field( default=0.05 , metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) } , ) SCREAMING_SNAKE_CASE = field(default=0.0 , metadata={"help": "The LayerDrop probability."} ) @dataclass class __lowercase : '''simple docstring''' SCREAMING_SNAKE_CASE = field( default=lowercase_ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) SCREAMING_SNAKE_CASE = field( default="train+validation" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) SCREAMING_SNAKE_CASE = field( default=lowercase_ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) SCREAMING_SNAKE_CASE = field( default=lowercase_ , metadata={"help": "The number of processes to use for the preprocessing."} , ) SCREAMING_SNAKE_CASE = field( default=lowercase_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) SCREAMING_SNAKE_CASE = field( default=lowercase_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) } , ) SCREAMING_SNAKE_CASE = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"] , metadata={"help": "A list of characters to remove from the transcripts."} , ) @dataclass class __lowercase : '''simple docstring''' SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None def __call__( self : Optional[Any] , UpperCamelCase_ : List[Dict[str, Union[List[int], torch.Tensor]]] ): """simple docstring""" __A = [{"""input_values""": feature["""input_values"""]} for feature in features] __A = [{"""input_ids""": feature["""labels"""]} for feature in features] __A = self.processor.pad( UpperCamelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) __A = self.processor.pad( labels=UpperCamelCase_ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors="""pt""" , ) # replace padding with -100 to ignore loss correctly __A = labels_batch["""input_ids"""].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) __A = labels return batch class __lowercase ( lowercase_ ): '''simple docstring''' def lowerCAmelCase_ ( self : List[str] , UpperCamelCase_ : nn.Module , UpperCamelCase_ : Dict[str, Union[torch.Tensor, Any]] ): """simple docstring""" model.train() __A = self._prepare_inputs(UpperCamelCase_ ) if self.use_amp: with autocast(): __A = self.compute_loss(UpperCamelCase_ , UpperCamelCase_ ) else: __A = self.compute_loss(UpperCamelCase_ , UpperCamelCase_ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": __A = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __A = loss.sum() / (inputs["""labels"""] >= 0).sum() else: raise ValueError(F"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']" ) if self.args.gradient_accumulation_steps > 1: __A = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(UpperCamelCase_ ).backward() elif self.use_apex: with amp.scale_loss(UpperCamelCase_ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(UpperCamelCase_ ) else: loss.backward() return loss.detach() def _SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" __A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __A , __A , __A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __A , __A , __A = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , __lowercase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: __A = datasets.load_dataset( """common_voice""" , data_args.dataset_config_name , split=data_args.train_split_name ) __A = datasets.load_dataset("""common_voice""" , data_args.dataset_config_name , split="""test""" ) # Create and save tokenizer __A = f"[{''.join(data_args.chars_to_ignore )}]" def remove_special_characters(__lowercase : Any ): __A = re.sub(__lowercase , """""" , batch["""sentence"""] ).lower() + """ """ return batch __A = train_dataset.map(__lowercase , remove_columns=["""sentence"""] ) __A = eval_dataset.map(__lowercase , remove_columns=["""sentence"""] ) def extract_all_chars(__lowercase : Tuple ): __A = """ """.join(batch["""text"""] ) __A = list(set(__lowercase ) ) return {"vocab": [vocab], "all_text": [all_text]} __A = train_dataset.map( __lowercase , batched=__lowercase , batch_size=-1 , keep_in_memory=__lowercase , remove_columns=train_dataset.column_names , ) __A = train_dataset.map( __lowercase , batched=__lowercase , batch_size=-1 , keep_in_memory=__lowercase , remove_columns=eval_dataset.column_names , ) __A = list(set(vocab_train["""vocab"""][0] ) | set(vocab_test["""vocab"""][0] ) ) __A = {v: k for k, v in enumerate(__lowercase )} __A = vocab_dict[""" """] del vocab_dict[" "] __A = len(__lowercase ) __A = len(__lowercase ) with open("""vocab.json""" , """w""" ) as vocab_file: json.dump(__lowercase , __lowercase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __A = WavaVecaCTCTokenizer( """vocab.json""" , unk_token="""[UNK]""" , pad_token="""[PAD]""" , word_delimiter_token="""|""" , ) __A = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0.0 , do_normalize=__lowercase , return_attention_mask=__lowercase ) __A = WavaVecaProcessor(feature_extractor=__lowercase , tokenizer=__lowercase ) __A = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction="""mean""" , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: __A = min(len(__lowercase ) , data_args.max_train_samples ) __A = train_dataset.select(range(__lowercase ) ) if data_args.max_val_samples is not None: __A = eval_dataset.select(range(data_args.max_val_samples ) ) __A = torchaudio.transforms.Resample(4_8_0_0_0 , 1_6_0_0_0 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(__lowercase : Tuple ): __A , __A = torchaudio.load(batch["""path"""] ) __A = resampler(__lowercase ).squeeze().numpy() __A = 1_6_0_0_0 __A = batch["""text"""] return batch __A = train_dataset.map( __lowercase , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) __A = eval_dataset.map( __lowercase , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(__lowercase : List[Any] ): # check that all files have the correct sampling rate assert ( len(set(batch["""sampling_rate"""] ) ) == 1 ), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}." __A = processor( audio=batch["""speech"""] , text=batch["""target_text"""] , sampling_rate=batch["""sampling_rate"""][0] ) batch.update(__lowercase ) return batch __A = train_dataset.map( __lowercase , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__lowercase , num_proc=data_args.preprocessing_num_workers , ) __A = eval_dataset.map( __lowercase , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__lowercase , num_proc=data_args.preprocessing_num_workers , ) # Metric __A = datasets.load_metric("""wer""" ) def compute_metrics(__lowercase : Union[str, Any] ): __A = pred.predictions __A = np.argmax(__lowercase , axis=-1 ) __A = processor.tokenizer.pad_token_id __A = processor.batch_decode(__lowercase ) # we do not want to group tokens when computing the metrics __A = processor.batch_decode(pred.label_ids , group_tokens=__lowercase ) __A = wer_metric.compute(predictions=__lowercase , references=__lowercase ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator __A = DataCollatorCTCWithPadding(processor=__lowercase , padding=__lowercase ) # Initialize our Trainer __A = CTCTrainer( model=__lowercase , data_collator=__lowercase , args=__lowercase , compute_metrics=__lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: __A = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): __A = model_args.model_name_or_path else: __A = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) __A = trainer.train(resume_from_checkpoint=__lowercase ) trainer.save_model() __A = train_result.metrics __A = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__lowercase ) ) __A = min(__lowercase , len(__lowercase ) ) trainer.log_metrics("""train""" , __lowercase ) trainer.save_metrics("""train""" , __lowercase ) trainer.save_state() # Evaluation __A = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __A = trainer.evaluate() __A = data_args.max_val_samples if data_args.max_val_samples is not None else len(__lowercase ) __A = min(__lowercase , len(__lowercase ) ) trainer.log_metrics("""eval""" , __lowercase ) trainer.save_metrics("""eval""" , __lowercase ) return results if __name__ == "__main__": main()
199
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def _SCREAMING_SNAKE_CASE ( __lowercase : str ) -> str: """simple docstring""" if "cls_token" in name: __A = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: __A = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: __A = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: __A = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __A = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __A = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: __A = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: __A = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: __A = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: __A = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: __A = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __A = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __A = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __A = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: __A = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: __A = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: __A = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: __A = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: __A = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def _SCREAMING_SNAKE_CASE ( __lowercase : Any , __lowercase : Dict ) -> str: """simple docstring""" for key in orig_state_dict.copy().keys(): __A = orig_state_dict.pop(__lowercase ) if "qkv" in key: __A = key.split(""".""" ) __A = int(key_split[1] ) if "decoder_blocks" in key: __A = config.decoder_hidden_size __A = """decoder.decoder_layers.""" if "weight" in key: __A = val[:dim, :] __A = val[dim : dim * 2, :] __A = val[-dim:, :] elif "bias" in key: __A = val[:dim] __A = val[dim : dim * 2] __A = val[-dim:] else: __A = config.hidden_size __A = """vit.encoder.layer.""" if "weight" in key: __A = val[:dim, :] __A = val[dim : dim * 2, :] __A = val[-dim:, :] elif "bias" in key: __A = val[:dim] __A = val[dim : dim * 2] __A = val[-dim:] else: __A = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( __lowercase : Tuple , __lowercase : str ) -> Optional[Any]: """simple docstring""" __A = ViTMAEConfig() if "large" in checkpoint_url: __A = 1_0_2_4 __A = 4_0_9_6 __A = 2_4 __A = 1_6 elif "huge" in checkpoint_url: __A = 1_4 __A = 1_2_8_0 __A = 5_1_2_0 __A = 3_2 __A = 1_6 __A = ViTMAEForPreTraining(__lowercase ) __A = torch.hub.load_state_dict_from_url(__lowercase , map_location="""cpu""" )["""model"""] __A = ViTMAEImageProcessor(size=config.image_size ) __A = convert_state_dict(__lowercase , __lowercase ) model.load_state_dict(__lowercase ) model.eval() __A = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" __A = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) __A = ViTMAEImageProcessor(size=config.image_size ) __A = image_processor(images=__lowercase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) __A = model(**__lowercase ) __A = outputs.logits if "large" in checkpoint_url: __A = torch.tensor( [[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] ) elif "huge" in checkpoint_url: __A = torch.tensor( [[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] ) else: __A = torch.tensor( [[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , __lowercase , atol=1E-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(__lowercase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__lowercase ) if __name__ == "__main__": __a : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __a : List[str] = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
199
1
'''simple docstring''' import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict __UpperCamelCase = namedtuple( "_TestCommandArgs", [ "dataset", "name", "cache_dir", "data_dir", "all_configs", "save_infos", "ignore_verifications", "force_redownload", "clear_cache", ], defaults=[None, None, None, False, False, False, False, False], ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def _a ( _lowerCamelCase ) -> int: """simple docstring""" __snake_case : Optional[int] = _TestCommandArgs(dataset=_lowerCamelCase , all_configs=_lowerCamelCase , save_infos=_lowerCamelCase ) __snake_case : Any = TestCommand(*_lowerCamelCase ) test_command.run() __snake_case : Tuple = os.path.join(_lowerCamelCase , """README.md""" ) assert os.path.exists(_lowerCamelCase ) __snake_case : Optional[int] = DatasetInfosDict.from_directory(_lowerCamelCase ) __snake_case : Dict = DatasetInfosDict( { """default""": DatasetInfo( features=Features( { """tokens""": Sequence(Value("""string""" ) ), """ner_tags""": Sequence( ClassLabel(names=["""O""", """B-PER""", """I-PER""", """B-ORG""", """I-ORG""", """B-LOC""", """I-LOC"""] ) ), """langs""": Sequence(Value("""string""" ) ), """spans""": Sequence(Value("""string""" ) ), } ) , splits=[ { """name""": """train""", """num_bytes""": 235_1563, """num_examples""": 1_0000, }, { """name""": """validation""", """num_bytes""": 23_8418, """num_examples""": 1000, }, ] , download_size=394_0680 , dataset_size=258_9981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: __snake_case , __snake_case : Dict = getattr(dataset_infos["""default"""] , _lowerCamelCase ), getattr(expected_dataset_infos["""default"""] , _lowerCamelCase ) if key == "num_bytes": assert is_apercent_close(_lowerCamelCase , _lowerCamelCase ) elif key == "splits": assert list(_lowerCamelCase ) == list(_lowerCamelCase ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
26
import requests def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> None: _snake_case : Union[str, Any] = {"""Content-Type""": """application/json"""} _snake_case : Tuple = requests.post(SCREAMING_SNAKE_CASE__ , json={"""text""": message_body} , headers=SCREAMING_SNAKE_CASE__ ) if response.status_code != 200: _snake_case : Any = ( """Request to slack returned an error """ F'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
477
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class a__ ( __SCREAMING_SNAKE_CASE ): _A = (DEISMultistepScheduler,) _A = (("num_inference_steps", 25),) def lowerCAmelCase ( self : int , **A_ : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_: Tuple = { """num_train_timesteps""": 10_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """solver_order""": 2, } config.update(**A_ ) return config def lowerCAmelCase ( self : Dict , A_ : int=0 , **A_ : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_: List[str] = dict(self.forward_default_kwargs ) lowerCamelCase_: Union[str, Any] = kwargs.pop("""num_inference_steps""" , A_ ) lowerCamelCase_: List[Any] = self.dummy_sample lowerCamelCase_: Union[str, Any] = 0.1 * sample lowerCamelCase_: Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCamelCase_: Dict = self.get_scheduler_config(**A_ ) lowerCamelCase_: List[Any] = scheduler_class(**A_ ) scheduler.set_timesteps(A_ ) # copy over dummy past residuals lowerCamelCase_: Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A_ ) lowerCamelCase_: str = scheduler_class.from_pretrained(A_ ) new_scheduler.set_timesteps(A_ ) # copy over dummy past residuals lowerCamelCase_: Tuple = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCamelCase_ , lowerCamelCase_: Optional[Any] = sample, sample for t in range(A_ , time_step + scheduler.config.solver_order + 1 ): lowerCamelCase_: str = scheduler.step(A_ , A_ , A_ , **A_ ).prev_sample lowerCamelCase_: Any = new_scheduler.step(A_ , A_ , A_ , **A_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" pass def lowerCAmelCase ( self : Optional[int] , A_ : Dict=0 , **A_ : List[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_: Any = dict(self.forward_default_kwargs ) lowerCamelCase_: Optional[Any] = kwargs.pop("""num_inference_steps""" , A_ ) lowerCamelCase_: Tuple = self.dummy_sample lowerCamelCase_: Optional[int] = 0.1 * sample lowerCamelCase_: List[str] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCamelCase_: List[Any] = self.get_scheduler_config() lowerCamelCase_: Dict = scheduler_class(**A_ ) scheduler.set_timesteps(A_ ) # copy over dummy past residuals (must be after setting timesteps) lowerCamelCase_: Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A_ ) lowerCamelCase_: Union[str, Any] = scheduler_class.from_pretrained(A_ ) # copy over dummy past residuals new_scheduler.set_timesteps(A_ ) # copy over dummy past residual (must be after setting timesteps) lowerCamelCase_: Dict = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCamelCase_: Any = scheduler.step(A_ , A_ , A_ , **A_ ).prev_sample lowerCamelCase_: List[Any] = new_scheduler.step(A_ , A_ , A_ , **A_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowerCAmelCase ( self : Union[str, Any] , A_ : Optional[Any]=None , **A_ : Dict ) -> Dict: """simple docstring""" if scheduler is None: lowerCamelCase_: str = self.scheduler_classes[0] lowerCamelCase_: str = self.get_scheduler_config(**A_ ) lowerCamelCase_: Dict = scheduler_class(**A_ ) lowerCamelCase_: int = self.scheduler_classes[0] lowerCamelCase_: int = self.get_scheduler_config(**A_ ) lowerCamelCase_: Tuple = scheduler_class(**A_ ) lowerCamelCase_: List[str] = 10 lowerCamelCase_: Optional[int] = self.dummy_model() lowerCamelCase_: List[Any] = self.dummy_sample_deter scheduler.set_timesteps(A_ ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase_: Optional[Any] = model(A_ , A_ ) lowerCamelCase_: Tuple = scheduler.step(A_ , A_ , A_ ).prev_sample return sample def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" lowerCamelCase_: Union[str, Any] = dict(self.forward_default_kwargs ) lowerCamelCase_: Optional[Any] = kwargs.pop("""num_inference_steps""" , A_ ) for scheduler_class in self.scheduler_classes: lowerCamelCase_: Optional[int] = self.get_scheduler_config() lowerCamelCase_: List[str] = scheduler_class(**A_ ) lowerCamelCase_: Optional[int] = self.dummy_sample lowerCamelCase_: Optional[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(A_ , """set_timesteps""" ): scheduler.set_timesteps(A_ ) elif num_inference_steps is not None and not hasattr(A_ , """set_timesteps""" ): lowerCamelCase_: Optional[int] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCamelCase_: Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] lowerCamelCase_: List[str] = dummy_past_residuals[: scheduler.config.solver_order] lowerCamelCase_: Optional[int] = scheduler.timesteps[5] lowerCamelCase_: int = scheduler.timesteps[6] lowerCamelCase_: Optional[int] = scheduler.step(A_ , A_ , A_ , **A_ ).prev_sample lowerCamelCase_: str = scheduler.step(A_ , A_ , A_ , **A_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_: Union[str, Any] = DEISMultistepScheduler(**self.get_scheduler_config() ) lowerCamelCase_: Dict = self.full_loop(scheduler=A_ ) lowerCamelCase_: int = torch.mean(torch.abs(A_ ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 lowerCamelCase_: Optional[Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowerCamelCase_: str = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowerCamelCase_: Tuple = UniPCMultistepScheduler.from_config(scheduler.config ) lowerCamelCase_: Union[str, Any] = DEISMultistepScheduler.from_config(scheduler.config ) lowerCamelCase_: str = self.full_loop(scheduler=A_ ) lowerCamelCase_: Optional[int] = torch.mean(torch.abs(A_ ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=A_ ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" self.check_over_configs(thresholding=A_ ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=A_ , prediction_type=A_ , sample_max_value=A_ , algorithm_type="""deis""" , solver_order=A_ , solver_type=A_ , ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A_ ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=A_ , solver_type=A_ , prediction_type=A_ , algorithm_type=A_ , ) lowerCamelCase_: List[str] = self.full_loop( solver_order=A_ , solver_type=A_ , prediction_type=A_ , algorithm_type=A_ , ) assert not torch.isnan(A_ ).any(), "Samples have nan numbers" def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" self.check_over_configs(lower_order_final=A_ ) self.check_over_configs(lower_order_final=A_ ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=A_ , time_step=0 ) def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_: Optional[int] = self.full_loop() lowerCamelCase_: Any = torch.mean(torch.abs(A_ ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" lowerCamelCase_: List[str] = self.full_loop(prediction_type="""v_prediction""" ) lowerCamelCase_: List[str] = torch.mean(torch.abs(A_ ) ) assert abs(result_mean.item() - 0.091 ) < 1e-3 def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" lowerCamelCase_: Optional[int] = self.scheduler_classes[0] lowerCamelCase_: Optional[Any] = self.get_scheduler_config(thresholding=A_ , dynamic_thresholding_ratio=0 ) lowerCamelCase_: Tuple = scheduler_class(**A_ ) lowerCamelCase_: Union[str, Any] = 10 lowerCamelCase_: List[Any] = self.dummy_model() lowerCamelCase_: Optional[Any] = self.dummy_sample_deter.half() scheduler.set_timesteps(A_ ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase_: Any = model(A_ , A_ ) lowerCamelCase_: List[Any] = scheduler.step(A_ , A_ , A_ ).prev_sample assert sample.dtype == torch.floataa
706
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : int = logging.get_logger(__name__) lowercase : Optional[Any] = { """google/canine-s""": """https://huggingface.co/google/canine-s/resolve/main/config.json""", # See all CANINE models at https://huggingface.co/models?filter=canine } class a__ ( __SCREAMING_SNAKE_CASE ): _A = "canine" def __init__( self : List[str] , A_ : str=7_68 , A_ : List[str]=12 , A_ : Optional[int]=12 , A_ : Any=30_72 , A_ : Dict="gelu" , A_ : Optional[Any]=0.1 , A_ : Dict=0.1 , A_ : str=1_63_84 , A_ : Dict=16 , A_ : Tuple=0.02 , A_ : int=1e-12 , A_ : Any=0 , A_ : Optional[int]=0XE000 , A_ : str=0XE001 , A_ : Any=4 , A_ : List[Any]=4 , A_ : Optional[Any]=8 , A_ : Dict=1_63_84 , A_ : Optional[int]=1_28 , **A_ : List[Any] , ) -> Any: """simple docstring""" super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) lowerCamelCase_: Dict = max_position_embeddings lowerCamelCase_: List[str] = hidden_size lowerCamelCase_: Tuple = num_hidden_layers lowerCamelCase_: List[Any] = num_attention_heads lowerCamelCase_: List[Any] = intermediate_size lowerCamelCase_: Tuple = hidden_act lowerCamelCase_: List[Any] = hidden_dropout_prob lowerCamelCase_: List[Any] = attention_probs_dropout_prob lowerCamelCase_: Union[str, Any] = initializer_range lowerCamelCase_: str = type_vocab_size lowerCamelCase_: List[Any] = layer_norm_eps # Character config: lowerCamelCase_: List[str] = downsampling_rate lowerCamelCase_: List[str] = upsampling_kernel_size lowerCamelCase_: Tuple = num_hash_functions lowerCamelCase_: Dict = num_hash_buckets lowerCamelCase_: Optional[Any] = local_transformer_stride
584
0
from functools import lru_cache @lru_cache def lowerCamelCase_(lowerCamelCase_ ) -> Optional[Any]: if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
323
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = False while is_sorted is False: # Until all the indices are traversed keep looping __lowerCAmelCase = True for i in range(0 , len(_UpperCamelCase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: __lowerCAmelCase , __lowerCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order __lowerCAmelCase = False for i in range(1 , len(_UpperCamelCase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: __lowerCAmelCase , __lowerCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order __lowerCAmelCase = False return input_list if __name__ == "__main__": print("Enter list to be sorted") A : Tuple = [int(x) for x in input().split()] # inputing elements of the list in one line A : Dict = odd_even_sort(input_list) print("The sorted list is") print(sorted_list)
636
0
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline UpperCamelCase_ = datasets.utils.logging.get_logger(__name__) @dataclass class a ( datasets.BuilderConfig ): lowercase_ : Optional[datasets.Features] = None lowercase_ : str = "utf-8" lowercase_ : Optional[str] = None lowercase_ : Optional[str] = None lowercase_ : bool = True # deprecated lowercase_ : Optional[int] = None # deprecated lowercase_ : int = 10 << 20 # 10MB lowercase_ : Optional[bool] = None class a ( datasets.ArrowBasedBuilder ): lowercase_ : Union[str, Any] = JsonConfig def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" if self.config.block_size is not None: logger.warning("The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead" ) __lowerCAmelCase = self.config.block_size if self.config.use_threads is not True: logger.warning( "The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore." ) if self.config.newlines_in_values is not None: raise ValueError("The JSON loader parameter `newlines_in_values` is no longer supported" ) return datasets.DatasetInfo(features=self.config.features ) def UpperCAmelCase__ ( self : List[str] , snake_case__ : List[Any] ): """simple docstring""" if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) __lowerCAmelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(snake_case__ , (str, list, tuple) ): __lowerCAmelCase = data_files if isinstance(snake_case__ , snake_case__ ): __lowerCAmelCase = [files] __lowerCAmelCase = [dl_manager.iter_files(snake_case__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] __lowerCAmelCase = [] for split_name, files in data_files.items(): if isinstance(snake_case__ , snake_case__ ): __lowerCAmelCase = [files] __lowerCAmelCase = [dl_manager.iter_files(snake_case__ ) for file in files] splits.append(datasets.SplitGenerator(name=snake_case__ , gen_kwargs={"files": files} ) ) return splits def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : pa.Table ): """simple docstring""" if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): __lowerCAmelCase = self.config.features.arrow_schema.field(snake_case__ ).type __lowerCAmelCase = pa_table.append_column(snake_case__ , pa.array([None] * len(snake_case__ ) , type=snake_case__ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example __lowerCAmelCase = table_cast(snake_case__ , self.config.features.arrow_schema ) return pa_table def UpperCAmelCase__ ( self : int , snake_case__ : Tuple ): """simple docstring""" for file_idx, file in enumerate(itertools.chain.from_iterable(snake_case__ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(snake_case__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: __lowerCAmelCase = json.load(snake_case__ ) # We keep only the field we are interested in __lowerCAmelCase = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(snake_case__ , (list, tuple) ): __lowerCAmelCase = set().union(*[row.keys() for row in dataset] ) __lowerCAmelCase = {col: [row.get(snake_case__ ) for row in dataset] for col in keys} else: __lowerCAmelCase = dataset __lowerCAmelCase = pa.Table.from_pydict(snake_case__ ) yield file_idx, self._cast_table(snake_case__ ) # If the file has one json object per line else: with open(snake_case__ , "rb" ) as f: __lowerCAmelCase = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small __lowerCAmelCase = max(self.config.chunksize // 32 , 16 << 10 ) __lowerCAmelCase = ( self.config.encoding_errors if self.config.encoding_errors is not None else "strict" ) while True: __lowerCAmelCase = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(snake_case__ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": __lowerCAmelCase = batch.decode(self.config.encoding , errors=snake_case__ ).encode("utf-8" ) try: while True: try: __lowerCAmelCase = paj.read_json( io.BytesIO(snake_case__ ) , read_options=paj.ReadOptions(block_size=snake_case__ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(snake_case__ , pa.ArrowInvalid ) and "straddling" not in str(snake_case__ ) or block_size > len(snake_case__ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"Batch of {len(snake_case__ )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}." ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( snake_case__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: __lowerCAmelCase = json.load(snake_case__ ) except json.JSONDecodeError: logger.error(F"Failed to read file '{file}' with error {type(snake_case__ )}: {e}" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(snake_case__ , snake_case__ ): # list is the only sequence type supported in JSON try: __lowerCAmelCase = set().union(*[row.keys() for row in dataset] ) __lowerCAmelCase = {col: [row.get(snake_case__ ) for row in dataset] for col in keys} __lowerCAmelCase = pa.Table.from_pydict(snake_case__ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"Failed to read file '{file}' with error {type(snake_case__ )}: {e}" ) raise ValueError(F"Not able to read records in the JSON file at {file}." ) from None yield file_idx, self._cast_table(snake_case__ ) break else: logger.error(F"Failed to read file '{file}' with error {type(snake_case__ )}: {e}" ) raise ValueError( F"Not able to read records in the JSON file at {file}. " F"You should probably indicate the field of the JSON file containing your records. " F"This JSON file contain the following fields: {str(list(dataset.keys() ) )}. " F"Select the correct one and provide it as `field='XXX'` to the dataset loading method. " ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(snake_case__ ) batch_idx += 1
376
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class a ( __UpperCAmelCase ): lowercase_ : BigBirdConfig lowercase_ : jnp.dtype = jnp.floataa lowercase_ : bool = True def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" super().setup() __lowerCAmelCase = nn.Dense(5 , dtype=self.dtype ) def __call__( self : Optional[Any] , *snake_case__ : List[str] , **snake_case__ : str ): """simple docstring""" __lowerCAmelCase = super().__call__(*snake_case__ , **snake_case__ ) __lowerCAmelCase = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class a ( __UpperCAmelCase ): lowercase_ : List[str] = FlaxBigBirdForNaturalQuestionsModule def _UpperCAmelCase ( UpperCamelCase: Optional[Any] , UpperCamelCase: List[str] , UpperCamelCase: Optional[Any] , UpperCamelCase: List[Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: int ): """simple docstring""" def cross_entropy(UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any] , UpperCamelCase: Optional[int]=None ): __lowerCAmelCase = logits.shape[-1] __lowerCAmelCase = (labels[..., None] == jnp.arange(UpperCamelCase )[None]).astype("f4" ) __lowerCAmelCase = jax.nn.log_softmax(UpperCamelCase , axis=-1 ) __lowerCAmelCase = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: __lowerCAmelCase = reduction(UpperCamelCase ) return loss __lowerCAmelCase = partial(UpperCamelCase , reduction=jnp.mean ) __lowerCAmelCase = cross_entropy(UpperCamelCase , UpperCamelCase ) __lowerCAmelCase = cross_entropy(UpperCamelCase , UpperCamelCase ) __lowerCAmelCase = cross_entropy(UpperCamelCase , UpperCamelCase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class a : lowercase_ : str = "google/bigbird-roberta-base" lowercase_ : int = 3_000 lowercase_ : int = 10_500 lowercase_ : int = 128 lowercase_ : int = 3 lowercase_ : int = 1 lowercase_ : int = 5 # tx_args lowercase_ : float = 3e-5 lowercase_ : float = 0.0 lowercase_ : int = 20_000 lowercase_ : float = 0.0095 lowercase_ : str = "bigbird-roberta-natural-questions" lowercase_ : str = "training-expt" lowercase_ : str = "data/nq-training.jsonl" lowercase_ : str = "data/nq-validation.jsonl" def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" os.makedirs(self.base_dir , exist_ok=snake_case__ ) __lowerCAmelCase = os.path.join(self.base_dir , self.save_dir ) __lowerCAmelCase = self.batch_size_per_device * jax.device_count() @dataclass class a : lowercase_ : int lowercase_ : int = 4_096 # no dynamic padding on TPUs def __call__( self : List[Any] , snake_case__ : Union[str, Any] ): """simple docstring""" __lowerCAmelCase = self.collate_fn(snake_case__ ) __lowerCAmelCase = jax.tree_util.tree_map(snake_case__ , snake_case__ ) return batch def UpperCAmelCase__ ( self : List[Any] , snake_case__ : Dict ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.fetch_inputs(features["input_ids"] ) __lowerCAmelCase = { "input_ids": jnp.array(snake_case__ , dtype=jnp.intaa ), "attention_mask": jnp.array(snake_case__ , dtype=jnp.intaa ), "start_labels": jnp.array(features["start_token"] , dtype=jnp.intaa ), "end_labels": jnp.array(features["end_token"] , dtype=jnp.intaa ), "pooled_labels": jnp.array(features["category"] , dtype=jnp.intaa ), } return batch def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : list ): """simple docstring""" __lowerCAmelCase = [self._fetch_inputs(snake_case__ ) for ids in input_ids] return zip(*snake_case__ ) def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : list ): """simple docstring""" __lowerCAmelCase = [1 for _ in range(len(snake_case__ ) )] while len(snake_case__ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _UpperCAmelCase ( UpperCamelCase: Tuple , UpperCamelCase: Dict , UpperCamelCase: Optional[Any]=None ): """simple docstring""" if seed is not None: __lowerCAmelCase = dataset.shuffle(seed=UpperCamelCase ) for i in range(len(UpperCamelCase ) // batch_size ): __lowerCAmelCase = dataset[i * batch_size : (i + 1) * batch_size] yield dict(UpperCamelCase ) @partial(jax.pmap , axis_name="batch" ) def _UpperCAmelCase ( UpperCamelCase: Optional[int] , UpperCamelCase: Union[str, Any] , **UpperCamelCase: List[str] ): """simple docstring""" def loss_fn(UpperCamelCase: Dict ): __lowerCAmelCase = model_inputs.pop("start_labels" ) __lowerCAmelCase = model_inputs.pop("end_labels" ) __lowerCAmelCase = model_inputs.pop("pooled_labels" ) __lowerCAmelCase = state.apply_fn(**UpperCamelCase , params=UpperCamelCase , dropout_rng=UpperCamelCase , train=UpperCamelCase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = outputs return state.loss_fn( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ) __lowerCAmelCase , __lowerCAmelCase = jax.random.split(UpperCamelCase ) __lowerCAmelCase = jax.value_and_grad(UpperCamelCase ) __lowerCAmelCase , __lowerCAmelCase = grad_fn(state.params ) __lowerCAmelCase = jax.lax.pmean({"loss": loss} , axis_name="batch" ) __lowerCAmelCase = jax.lax.pmean(UpperCamelCase , "batch" ) __lowerCAmelCase = state.apply_gradients(grads=UpperCamelCase ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="batch" ) def _UpperCAmelCase ( UpperCamelCase: Optional[Any] , **UpperCamelCase: List[str] ): """simple docstring""" __lowerCAmelCase = model_inputs.pop("start_labels" ) __lowerCAmelCase = model_inputs.pop("end_labels" ) __lowerCAmelCase = model_inputs.pop("pooled_labels" ) __lowerCAmelCase = state.apply_fn(**UpperCamelCase , params=state.params , train=UpperCamelCase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = outputs __lowerCAmelCase = state.loss_fn(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) __lowerCAmelCase = jax.lax.pmean({"loss": loss} , axis_name="batch" ) return metrics class a ( train_state.TrainState ): lowercase_ : Callable = struct.field(pytree_node=__UpperCAmelCase ) @dataclass class a : lowercase_ : Args lowercase_ : Callable lowercase_ : Callable lowercase_ : Callable lowercase_ : Callable lowercase_ : wandb lowercase_ : Callable = None def UpperCAmelCase__ ( self : Tuple , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : str=None ): """simple docstring""" __lowerCAmelCase = model.params __lowerCAmelCase = TrainState.create( apply_fn=model.__call__ , params=snake_case__ , tx=snake_case__ , loss_fn=snake_case__ , ) if ckpt_dir is not None: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = restore_checkpoint(snake_case__ , snake_case__ ) __lowerCAmelCase = { "lr": args.lr, "init_lr": args.init_lr, "warmup_steps": args.warmup_steps, "num_train_steps": num_train_steps, "weight_decay": args.weight_decay, } __lowerCAmelCase , __lowerCAmelCase = build_tx(**snake_case__ ) __lowerCAmelCase = train_state.TrainState( step=snake_case__ , apply_fn=model.__call__ , params=snake_case__ , tx=snake_case__ , opt_state=snake_case__ , ) __lowerCAmelCase = args __lowerCAmelCase = data_collator __lowerCAmelCase = lr __lowerCAmelCase = params __lowerCAmelCase = jax_utils.replicate(snake_case__ ) return state def UpperCAmelCase__ ( self : str , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Any ): """simple docstring""" __lowerCAmelCase = self.args __lowerCAmelCase = len(snake_case__ ) // args.batch_size __lowerCAmelCase = jax.random.PRNGKey(0 ) __lowerCAmelCase = jax.random.split(snake_case__ , jax.device_count() ) for epoch in range(args.max_epochs ): __lowerCAmelCase = jnp.array(0 , dtype=jnp.floataa ) __lowerCAmelCase = get_batched_dataset(snake_case__ , args.batch_size , seed=snake_case__ ) __lowerCAmelCase = 0 for batch in tqdm(snake_case__ , total=snake_case__ , desc=F"Running EPOCH-{epoch}" ): __lowerCAmelCase = self.data_collator(snake_case__ ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.train_step_fn(snake_case__ , snake_case__ , **snake_case__ ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 if i % args.logging_steps == 0: __lowerCAmelCase = jax_utils.unreplicate(state.step ) __lowerCAmelCase = running_loss.item() / i __lowerCAmelCase = self.scheduler_fn(state_step - 1 ) __lowerCAmelCase = self.evaluate(snake_case__ , snake_case__ ) __lowerCAmelCase = { "step": state_step.item(), "eval_loss": eval_loss.item(), "tr_loss": tr_loss, "lr": lr.item(), } tqdm.write(str(snake_case__ ) ) self.logger.log(snake_case__ , commit=snake_case__ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F"-e{epoch}-s{i}" , state=snake_case__ ) def UpperCAmelCase__ ( self : List[Any] , snake_case__ : Any , snake_case__ : Optional[Any] ): """simple docstring""" __lowerCAmelCase = get_batched_dataset(snake_case__ , self.args.batch_size ) __lowerCAmelCase = len(snake_case__ ) // self.args.batch_size __lowerCAmelCase = jnp.array(0 , dtype=jnp.floataa ) __lowerCAmelCase = 0 for batch in tqdm(snake_case__ , total=snake_case__ , desc="Evaluating ... " ): __lowerCAmelCase = self.data_collator(snake_case__ ) __lowerCAmelCase = self.val_step_fn(snake_case__ , **snake_case__ ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 return running_loss / i def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Any ): """simple docstring""" __lowerCAmelCase = jax_utils.unreplicate(snake_case__ ) print(F"SAVING CHECKPOINT IN {save_dir}" , end=" ... " ) self.model_save_fn(snake_case__ , params=state.params ) with open(os.path.join(snake_case__ , "opt_state.msgpack" ) , "wb" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(snake_case__ , "args.joblib" ) ) joblib.dump(self.data_collator , os.path.join(snake_case__ , "data_collator.joblib" ) ) with open(os.path.join(snake_case__ , "training_state.json" ) , "w" ) as f: json.dump({"step": state.step.item()} , snake_case__ ) print("DONE" ) def _UpperCAmelCase ( UpperCamelCase: str , UpperCamelCase: List[Any] ): """simple docstring""" print(F"RESTORING CHECKPOINT FROM {save_dir}" , end=" ... " ) with open(os.path.join(UpperCamelCase , "flax_model.msgpack" ) , "rb" ) as f: __lowerCAmelCase = from_bytes(state.params , f.read() ) with open(os.path.join(UpperCamelCase , "opt_state.msgpack" ) , "rb" ) as f: __lowerCAmelCase = from_bytes(state.opt_state , f.read() ) __lowerCAmelCase = joblib.load(os.path.join(UpperCamelCase , "args.joblib" ) ) __lowerCAmelCase = joblib.load(os.path.join(UpperCamelCase , "data_collator.joblib" ) ) with open(os.path.join(UpperCamelCase , "training_state.json" ) , "r" ) as f: __lowerCAmelCase = json.load(UpperCamelCase ) __lowerCAmelCase = training_state["step"] print("DONE" ) return params, opt_state, step, args, data_collator def _UpperCAmelCase ( UpperCamelCase: Any , UpperCamelCase: Dict , UpperCamelCase: Tuple , UpperCamelCase: Dict ): """simple docstring""" __lowerCAmelCase = num_train_steps - warmup_steps __lowerCAmelCase = optax.linear_schedule(init_value=UpperCamelCase , end_value=UpperCamelCase , transition_steps=UpperCamelCase ) __lowerCAmelCase = optax.linear_schedule(init_value=UpperCamelCase , end_value=1e-7 , transition_steps=UpperCamelCase ) __lowerCAmelCase = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _UpperCAmelCase ( UpperCamelCase: Union[str, Any] , UpperCamelCase: str , UpperCamelCase: List[Any] , UpperCamelCase: Optional[int] , UpperCamelCase: Union[str, Any] ): """simple docstring""" def weight_decay_mask(UpperCamelCase: int ): __lowerCAmelCase = traverse_util.flatten_dict(UpperCamelCase ) __lowerCAmelCase = {k: (v[-1] != "bias" and v[-2:] != ("LayerNorm", "scale")) for k, v in params.items()} return traverse_util.unflatten_dict(UpperCamelCase ) __lowerCAmelCase = scheduler_fn(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) __lowerCAmelCase = optax.adamw(learning_rate=UpperCamelCase , weight_decay=UpperCamelCase , mask=UpperCamelCase ) return tx, lr
376
1
"""simple docstring""" def lowerCAmelCase_ ( snake_case_ : int = 1_0 ) ->str: if not isinstance(snake_case_ , snake_case_ ) or n < 0: raise ValueError('Invalid input' ) lowerCamelCase__ : List[str] =1_0**n lowerCamelCase__ : List[Any] =2_8_4_3_3 * (pow(2 , 7_8_3_0_4_5_7 , snake_case_ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f"""{solution(10) = }""")
174
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class A_ ( A__ , A__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = StableDiffusionPanoramaPipeline SCREAMING_SNAKE_CASE_ = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE_ = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE_ = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE_ = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase__ ( self :int ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase__ : int =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCamelCase__ : Optional[int] =DDIMScheduler() torch.manual_seed(0 ) lowerCamelCase__ : Any =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase__ : Union[str, Any] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowerCamelCase__ : Union[str, Any] =CLIPTextModel(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCamelCase__ : Optional[int] ={ 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCAmelCase__ ( self :Dict , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[str]=0 ): """simple docstring""" lowerCamelCase__ : Optional[int] =torch.manual_seed(lowerCamelCase_ ) lowerCamelCase__ : int ={ 'prompt': 'a photo of the dolomites', 'generator': generator, # Setting height and width to None to prevent OOMs on CPU. 'height': None, 'width': None, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCAmelCase__ ( self :int ): """simple docstring""" lowerCamelCase__ : List[Any] ='cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ : Optional[Any] =self.get_dummy_components() lowerCamelCase__ : int =StableDiffusionPanoramaPipeline(**lowerCamelCase_ ) lowerCamelCase__ : List[str] =sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] =self.get_dummy_inputs(lowerCamelCase_ ) lowerCamelCase__ : Tuple =sd_pipe(**lowerCamelCase_ ).images lowerCamelCase__ : Optional[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase__ : List[str] =np.array([0.61_86, 0.53_74, 0.49_15, 0.41_35, 0.41_14, 0.45_63, 0.51_28, 0.49_77, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCAmelCase__ ( self :str ): """simple docstring""" super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3 ) def UpperCAmelCase__ ( self :Optional[int] ): """simple docstring""" lowerCamelCase__ : Union[str, Any] ='cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ : str =self.get_dummy_components() lowerCamelCase__ : int =StableDiffusionPanoramaPipeline(**lowerCamelCase_ ) lowerCamelCase__ : int =sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] =self.get_dummy_inputs(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] ='french fries' lowerCamelCase__ : Optional[Any] =sd_pipe(**lowerCamelCase_ , negative_prompt=lowerCamelCase_ ) lowerCamelCase__ : Any =output.images lowerCamelCase__ : Optional[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase__ : List[str] =np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase__ ( self :Optional[Any] ): """simple docstring""" lowerCamelCase__ : Optional[int] ='cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ : int =self.get_dummy_components() lowerCamelCase__ : Any =StableDiffusionPanoramaPipeline(**lowerCamelCase_ ) lowerCamelCase__ : int =sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Any =self.get_dummy_inputs(lowerCamelCase_ ) lowerCamelCase__ : int =sd_pipe(**lowerCamelCase_ , view_batch_size=2 ) lowerCamelCase__ : Dict =output.images lowerCamelCase__ : List[str] =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase__ : List[str] =np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : Optional[Any] ='cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ : List[Any] =self.get_dummy_components() lowerCamelCase__ : Any =EulerAncestralDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' ) lowerCamelCase__ : Optional[Any] =StableDiffusionPanoramaPipeline(**lowerCamelCase_ ) lowerCamelCase__ : Tuple =sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Dict =self.get_dummy_inputs(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] =sd_pipe(**lowerCamelCase_ ).images lowerCamelCase__ : Any =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase__ : Optional[int] =np.array([0.40_24, 0.65_10, 0.49_01, 0.53_78, 0.58_13, 0.56_22, 0.47_95, 0.44_67, 0.49_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase__ ( self :List[Any] ): """simple docstring""" lowerCamelCase__ : Optional[Any] ='cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ : List[Any] =self.get_dummy_components() lowerCamelCase__ : Union[str, Any] =PNDMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , skip_prk_steps=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] =StableDiffusionPanoramaPipeline(**lowerCamelCase_ ) lowerCamelCase__ : int =sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Dict =self.get_dummy_inputs(lowerCamelCase_ ) lowerCamelCase__ : Any =sd_pipe(**lowerCamelCase_ ).images lowerCamelCase__ : List[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase__ : str =np.array([0.63_91, 0.62_91, 0.48_61, 0.51_34, 0.55_52, 0.45_78, 0.50_32, 0.50_23, 0.45_39] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class A_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self :Tuple ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self :List[Any] , lowerCamelCase_ :Tuple=0 ): """simple docstring""" lowerCamelCase__ : Any =torch.manual_seed(lowerCamelCase_ ) lowerCamelCase__ : Dict ={ 'prompt': 'a photo of the dolomites', 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCAmelCase__ ( self :str ): """simple docstring""" lowerCamelCase__ : Optional[Any] ='stabilityai/stable-diffusion-2-base' lowerCamelCase__ : Tuple =DDIMScheduler.from_pretrained(lowerCamelCase_ , subfolder='scheduler' ) lowerCamelCase__ : Dict =StableDiffusionPanoramaPipeline.from_pretrained(lowerCamelCase_ , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() lowerCamelCase__ : List[Any] =self.get_inputs() lowerCamelCase__ : List[Any] =pipe(**lowerCamelCase_ ).images lowerCamelCase__ : int =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2_048, 3) lowerCamelCase__ : Dict =np.array( [ 0.36_96_83_92, 0.27_02_53_72, 0.32_44_67_66, 0.28_37_93_87, 0.36_36_32_74, 0.30_73_33_47, 0.27_10_00_27, 0.27_05_41_25, 0.25_53_60_96, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def UpperCAmelCase__ ( self :Dict ): """simple docstring""" lowerCamelCase__ : Tuple =StableDiffusionPanoramaPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-base' , safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Dict =LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() lowerCamelCase__ : Optional[int] =self.get_inputs() lowerCamelCase__ : Optional[Any] =pipe(**lowerCamelCase_ ).images lowerCamelCase__ : Optional[Any] =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2_048, 3) lowerCamelCase__ : int =np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def UpperCAmelCase__ ( self :List[str] ): """simple docstring""" lowerCamelCase__ : str =0 def callback_fn(lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :torch.FloatTensor ) -> None: lowerCamelCase__ : int =True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowerCamelCase__ : Any =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowerCamelCase__ : Optional[Any] =latents[0, -3:, -3:, -1] lowerCamelCase__ : Union[str, Any] =np.array( [ 0.18_68_18_69, 0.33_90_78_16, 0.5_36_12_76, 0.14_43_28_65, -0.02_85_66_11, -0.73_94_11_23, 0.23_39_79_87, 0.47_32_26_82, -0.37_82_31_64, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowerCamelCase__ : Union[str, Any] =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowerCamelCase__ : int =latents[0, -3:, -3:, -1] lowerCamelCase__ : List[Any] =np.array( [ 0.18_53_96_45, 0.33_98_72_48, 0.5_37_85_59, 0.14_43_71_42, -0.02_45_52_61, -0.7_33_83_17, 0.23_99_07_55, 0.47_35_62_72, -0.3_78_65_05, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowerCamelCase__ : Optional[int] =False lowerCamelCase__ : Optional[int] ='stabilityai/stable-diffusion-2-base' lowerCamelCase__ : Union[str, Any] =DDIMScheduler.from_pretrained(lowerCamelCase_ , subfolder='scheduler' ) lowerCamelCase__ : int =StableDiffusionPanoramaPipeline.from_pretrained(lowerCamelCase_ , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Any =pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() lowerCamelCase__ : Optional[int] =self.get_inputs() pipe(**lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def UpperCAmelCase__ ( self :Dict ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase__ : Dict ='stabilityai/stable-diffusion-2-base' lowerCamelCase__ : Optional[int] =DDIMScheduler.from_pretrained(lowerCamelCase_ , subfolder='scheduler' ) lowerCamelCase__ : str =StableDiffusionPanoramaPipeline.from_pretrained(lowerCamelCase_ , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Dict =pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCamelCase__ : Any =self.get_inputs() lowerCamelCase__ : Optional[Any] =pipe(**lowerCamelCase_ ) lowerCamelCase__ : int =torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
174
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCamelCase : str = logging.get_logger(__name__) __lowerCamelCase : Any = {"vocab_file": "sentencepiece.bpe.model"} __lowerCamelCase : Dict = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } __lowerCamelCase : List[str] = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } __lowerCamelCase : int = "▁" class UpperCAmelCase ( _UpperCAmelCase ): UpperCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES UpperCAmelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : Any = ['''input_ids''', '''attention_mask'''] def __init__(self : str , A__ : Any , A__ : Optional[int]="<s>" , A__ : Any="</s>" , A__ : Optional[int]="</s>" , A__ : Tuple="<s>" , A__ : str="<unk>" , A__ : int="<pad>" , A__ : Any="<mask>" , A__ : Optional[Dict[str, Any]] = None , **A__ : str , ) -> None: # Mask token behave like a normal word, i.e. include the space before it lowercase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , sp_model_kwargs=self.sp_model_kwargs , **A_ , ) lowercase = vocab_file lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A_ ) ) lowercase = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} lowercase = len(self.sp_model ) - 1 lowercase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCAmelCase__ (self : List[Any] , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase = [self.cls_token_id] lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase__ (self : Optional[Any] , A__ : List[int] , A__ : Optional[List[int]] = None , A__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def UpperCAmelCase__ (self : Union[str, Any] , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: lowercase = [self.sep_token_id] lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase__ (self : int ) -> Union[str, Any]: return len(self.sp_model ) def UpperCAmelCase__ (self : List[str] ) -> List[str]: lowercase = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase__ (self : Any , A__ : str ) -> List[str]: return self.sp_model.encode(A_ , out_type=A_ ) def UpperCAmelCase__ (self : str , A__ : Union[str, Any] ) -> List[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase = self.sp_model.PieceToId(A_ ) return spm_id if spm_id else self.unk_token_id def UpperCAmelCase__ (self : Any , A__ : str ) -> Dict: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(A_ ) def UpperCAmelCase__ (self : str , A__ : int ) -> Union[str, Any]: lowercase = [] lowercase = "" lowercase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A_ ) + token lowercase = True lowercase = [] else: current_sub_tokens.append(A_ ) lowercase = False out_string += self.sp_model.decode(A_ ) return out_string.strip() def __getstate__(self : Dict ) -> int: lowercase = self.__dict__.copy() lowercase = None return state def __setstate__(self : Union[str, Any] , A__ : List[str] ) -> List[Any]: lowercase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase__ (self : Tuple , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase = os.path.join( A_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ , "wb" ) as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
705
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : str = { "facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json", } class UpperCAmelCase ( _lowercase ): UpperCAmelCase : List[str] = '''data2vec-text''' def __init__(self : List[str] , A__ : str=3_0_5_2_2 , A__ : Tuple=7_6_8 , A__ : Any=1_2 , A__ : Optional[int]=1_2 , A__ : str=3_0_7_2 , A__ : List[str]="gelu" , A__ : List[Any]=0.1 , A__ : Optional[int]=0.1 , A__ : Union[str, Any]=5_1_2 , A__ : Any=2 , A__ : str=0.0_2 , A__ : int=1e-12 , A__ : Union[str, Any]=1 , A__ : Optional[int]=0 , A__ : Union[str, Any]=2 , A__ : Optional[int]="absolute" , A__ : Tuple=True , A__ : int=None , **A__ : Any , ) -> Any: super().__init__(pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ , **A__ ) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = initializer_range lowercase = layer_norm_eps lowercase = position_embedding_type lowercase = use_cache lowercase = classifier_dropout class UpperCAmelCase ( _lowercase ): @property def UpperCAmelCase__ (self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowercase = {0: "batch", 1: "choice", 2: "sequence"} else: lowercase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
459
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: UpperCAmelCase = None UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} UpperCAmelCase = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } UpperCAmelCase = { """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } UpperCAmelCase = """▁""" class lowercase ( lowercase__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['''input_ids''', '''attention_mask'''] lowercase = BarthezTokenizer def __init__(self : int ,SCREAMING_SNAKE_CASE_ : List[Any]=None ,SCREAMING_SNAKE_CASE_ : List[str]=None ,SCREAMING_SNAKE_CASE_ : List[str]="<s>" ,SCREAMING_SNAKE_CASE_ : List[str]="</s>" ,SCREAMING_SNAKE_CASE_ : Optional[Any]="</s>" ,SCREAMING_SNAKE_CASE_ : List[str]="<s>" ,SCREAMING_SNAKE_CASE_ : List[Any]="<unk>" ,SCREAMING_SNAKE_CASE_ : Union[str, Any]="<pad>" ,SCREAMING_SNAKE_CASE_ : Dict="<mask>" ,**SCREAMING_SNAKE_CASE_ : Optional[Any] ,) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = AddedToken(SCREAMING_SNAKE_CASE_ ,lstrip=SCREAMING_SNAKE_CASE_ ,rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( SCREAMING_SNAKE_CASE_ ,tokenizer_file=SCREAMING_SNAKE_CASE_ ,bos_token=SCREAMING_SNAKE_CASE_ ,eos_token=SCREAMING_SNAKE_CASE_ ,unk_token=SCREAMING_SNAKE_CASE_ ,sep_token=SCREAMING_SNAKE_CASE_ ,cls_token=SCREAMING_SNAKE_CASE_ ,pad_token=SCREAMING_SNAKE_CASE_ ,mask_token=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ,) lowerCAmelCase = vocab_file lowerCAmelCase = False if not self.vocab_file else True def UpperCAmelCase (self : Union[str, Any] ,SCREAMING_SNAKE_CASE_ : List[int] ,SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase (self : Optional[int] ,SCREAMING_SNAKE_CASE_ : List[int] ,SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase (self : str ,SCREAMING_SNAKE_CASE_ : str ,SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase = os.path.join( SCREAMING_SNAKE_CASE_ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ): copyfile(self.vocab_file ,SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
535
"""simple docstring""" import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class lowercase ( lowercase__ ): def __get__(self : str ,SCREAMING_SNAKE_CASE_ : List[Any] ,SCREAMING_SNAKE_CASE_ : Optional[Any]=None ) -> int: """simple docstring""" if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) lowerCAmelCase = '''__cached_''' + self.fget.__name__ lowerCAmelCase = getattr(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if cached is None: lowerCAmelCase = self.fget(SCREAMING_SNAKE_CASE_ ) setattr(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) return cached def __magic_name__ ( _lowerCamelCase: Union[str, Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F"""invalid truth value {val!r}""" ) def __magic_name__ ( _lowerCamelCase: int ) -> Union[str, Any]: '''simple docstring''' if is_torch_fx_proxy(_lowerCamelCase ): return True if is_torch_available(): import torch if isinstance(_lowerCamelCase, torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(_lowerCamelCase, tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(_lowerCamelCase, (jnp.ndarray, Tracer) ): return True return isinstance(_lowerCamelCase, np.ndarray ) def __magic_name__ ( _lowerCamelCase: Optional[Any] ) -> Tuple: '''simple docstring''' return isinstance(_lowerCamelCase, np.ndarray ) def __magic_name__ ( _lowerCamelCase: str ) -> List[Any]: '''simple docstring''' return _is_numpy(_lowerCamelCase ) def __magic_name__ ( _lowerCamelCase: Dict ) -> Optional[int]: '''simple docstring''' import torch return isinstance(_lowerCamelCase, torch.Tensor ) def __magic_name__ ( _lowerCamelCase: List[Any] ) -> Union[str, Any]: '''simple docstring''' return False if not is_torch_available() else _is_torch(_lowerCamelCase ) def __magic_name__ ( _lowerCamelCase: Optional[Any] ) -> List[Any]: '''simple docstring''' import torch return isinstance(_lowerCamelCase, torch.device ) def __magic_name__ ( _lowerCamelCase: List[Any] ) -> int: '''simple docstring''' return False if not is_torch_available() else _is_torch_device(_lowerCamelCase ) def __magic_name__ ( _lowerCamelCase: str ) -> Dict: '''simple docstring''' import torch if isinstance(_lowerCamelCase, _lowerCamelCase ): if hasattr(_lowerCamelCase, _lowerCamelCase ): lowerCAmelCase = getattr(_lowerCamelCase, _lowerCamelCase ) else: return False return isinstance(_lowerCamelCase, torch.dtype ) def __magic_name__ ( _lowerCamelCase: Optional[Any] ) -> Tuple: '''simple docstring''' return False if not is_torch_available() else _is_torch_dtype(_lowerCamelCase ) def __magic_name__ ( _lowerCamelCase: Tuple ) -> Tuple: '''simple docstring''' import tensorflow as tf return isinstance(_lowerCamelCase, tf.Tensor ) def __magic_name__ ( _lowerCamelCase: int ) -> Tuple: '''simple docstring''' return False if not is_tf_available() else _is_tensorflow(_lowerCamelCase ) def __magic_name__ ( _lowerCamelCase: List[Any] ) -> Union[str, Any]: '''simple docstring''' import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(_lowerCamelCase, '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(_lowerCamelCase ) return type(_lowerCamelCase ) == tf.Tensor def __magic_name__ ( _lowerCamelCase: Union[str, Any] ) -> str: '''simple docstring''' return False if not is_tf_available() else _is_tf_symbolic_tensor(_lowerCamelCase ) def __magic_name__ ( _lowerCamelCase: List[Any] ) -> List[Any]: '''simple docstring''' import jax.numpy as jnp # noqa: F811 return isinstance(_lowerCamelCase, jnp.ndarray ) def __magic_name__ ( _lowerCamelCase: Optional[Any] ) -> Optional[int]: '''simple docstring''' return False if not is_flax_available() else _is_jax(_lowerCamelCase ) def __magic_name__ ( _lowerCamelCase: List[str] ) -> Any: '''simple docstring''' if isinstance(_lowerCamelCase, (dict, UserDict) ): return {k: to_py_obj(_lowerCamelCase ) for k, v in obj.items()} elif isinstance(_lowerCamelCase, (list, tuple) ): return [to_py_obj(_lowerCamelCase ) for o in obj] elif is_tf_tensor(_lowerCamelCase ): return obj.numpy().tolist() elif is_torch_tensor(_lowerCamelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(_lowerCamelCase ): return np.asarray(_lowerCamelCase ).tolist() elif isinstance(_lowerCamelCase, (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def __magic_name__ ( _lowerCamelCase: Optional[int] ) -> Any: '''simple docstring''' if isinstance(_lowerCamelCase, (dict, UserDict) ): return {k: to_numpy(_lowerCamelCase ) for k, v in obj.items()} elif isinstance(_lowerCamelCase, (list, tuple) ): return np.array(_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): return obj.numpy() elif is_torch_tensor(_lowerCamelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(_lowerCamelCase ): return np.asarray(_lowerCamelCase ) else: return obj class lowercase ( lowercase__ ): def UpperCAmelCase (self : Any ) -> List[Any]: """simple docstring""" lowerCAmelCase = fields(self ) # Safety and consistency checks if not len(SCREAMING_SNAKE_CASE_ ): raise ValueError(F"""{self.__class__.__name__} has no fields.""" ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F"""{self.__class__.__name__} should not have more than one required field.""" ) lowerCAmelCase = getattr(self ,class_fields[0].name ) lowerCAmelCase = all(getattr(self ,field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): lowerCAmelCase = first_field.items() lowerCAmelCase = True else: try: lowerCAmelCase = iter(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = True except TypeError: lowerCAmelCase = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(SCREAMING_SNAKE_CASE_ ): if ( not isinstance(SCREAMING_SNAKE_CASE_ ,(list, tuple) ) or not len(SCREAMING_SNAKE_CASE_ ) == 2 or not isinstance(element[0] ,SCREAMING_SNAKE_CASE_ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute lowerCAmelCase = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F"""Cannot set key/value for {element}. It needs to be a tuple (key, value).""" ) break setattr(self ,element[0] ,element[1] ) if element[1] is not None: lowerCAmelCase = element[1] elif first_field is not None: lowerCAmelCase = first_field else: for field in class_fields: lowerCAmelCase = getattr(self ,field.name ) if v is not None: lowerCAmelCase = v def __delitem__(self : Optional[Any] ,*SCREAMING_SNAKE_CASE_ : Tuple ,**SCREAMING_SNAKE_CASE_ : Dict ) -> Tuple: """simple docstring""" raise Exception(F"""You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.""" ) def UpperCAmelCase (self : List[Any] ,*SCREAMING_SNAKE_CASE_ : Any ,**SCREAMING_SNAKE_CASE_ : int ) -> List[Any]: """simple docstring""" raise Exception(F"""You cannot use ``setdefault`` on a {self.__class__.__name__} instance.""" ) def UpperCAmelCase (self : Union[str, Any] ,*SCREAMING_SNAKE_CASE_ : List[Any] ,**SCREAMING_SNAKE_CASE_ : Dict ) -> Union[str, Any]: """simple docstring""" raise Exception(F"""You cannot use ``pop`` on a {self.__class__.__name__} instance.""" ) def UpperCAmelCase (self : Any ,*SCREAMING_SNAKE_CASE_ : Optional[Any] ,**SCREAMING_SNAKE_CASE_ : Dict ) -> Any: """simple docstring""" raise Exception(F"""You cannot use ``update`` on a {self.__class__.__name__} instance.""" ) def __getitem__(self : int ,SCREAMING_SNAKE_CASE_ : Tuple ) -> Optional[int]: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): lowerCAmelCase = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__(self : int ,SCREAMING_SNAKE_CASE_ : Any ,SCREAMING_SNAKE_CASE_ : int ) -> List[str]: """simple docstring""" if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) super().__setattr__(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) def __setitem__(self : List[str] ,SCREAMING_SNAKE_CASE_ : str ,SCREAMING_SNAKE_CASE_ : Tuple ) -> List[Any]: """simple docstring""" super().__setitem__(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase (self : List[str] ) -> Tuple[Any]: """simple docstring""" return tuple(self[k] for k in self.keys() ) class lowercase ( lowercase__ ,lowercase__ ): @classmethod def UpperCAmelCase (cls : int ,SCREAMING_SNAKE_CASE_ : Any ) -> Dict: """simple docstring""" raise ValueError( F"""{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}""" ) class lowercase ( lowercase__ ): lowercase = '''longest''' lowercase = '''max_length''' lowercase = '''do_not_pad''' class lowercase ( lowercase__ ): lowercase = '''pt''' lowercase = '''tf''' lowercase = '''np''' lowercase = '''jax''' class lowercase : def __init__(self : Optional[Any] ,SCREAMING_SNAKE_CASE_ : List[ContextManager] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = context_managers lowerCAmelCase = ExitStack() def __enter__(self : int ) -> Dict: """simple docstring""" for context_manager in self.context_managers: self.stack.enter_context(SCREAMING_SNAKE_CASE_ ) def __exit__(self : Tuple ,*SCREAMING_SNAKE_CASE_ : Tuple ,**SCREAMING_SNAKE_CASE_ : int ) -> str: """simple docstring""" self.stack.__exit__(*SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) def __magic_name__ ( _lowerCamelCase: str ) -> List[Any]: '''simple docstring''' lowerCAmelCase = infer_framework(_lowerCamelCase ) if framework == "tf": lowerCAmelCase = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowerCAmelCase = inspect.signature(model_class.forward ) # PyTorch models else: lowerCAmelCase = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def __magic_name__ ( _lowerCamelCase: Any ) -> List[str]: '''simple docstring''' lowerCAmelCase = model_class.__name__ lowerCAmelCase = infer_framework(_lowerCamelCase ) if framework == "tf": lowerCAmelCase = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowerCAmelCase = inspect.signature(model_class.forward ) # PyTorch models else: lowerCAmelCase = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def __magic_name__ ( _lowerCamelCase: MutableMapping, _lowerCamelCase: str = "", _lowerCamelCase: str = "." ) -> Optional[int]: '''simple docstring''' def _flatten_dict(_lowerCamelCase: Any, _lowerCamelCase: Optional[int]="", _lowerCamelCase: Union[str, Any]="." ): for k, v in d.items(): lowerCAmelCase = str(_lowerCamelCase ) + delimiter + str(_lowerCamelCase ) if parent_key else k if v and isinstance(_lowerCamelCase, _lowerCamelCase ): yield from flatten_dict(_lowerCamelCase, _lowerCamelCase, delimiter=_lowerCamelCase ).items() else: yield key, v return dict(_flatten_dict(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) ) @contextmanager def __magic_name__ ( _lowerCamelCase: Union[str, Any], _lowerCamelCase: bool = False ) -> Tuple: '''simple docstring''' if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def __magic_name__ ( _lowerCamelCase: Optional[int], _lowerCamelCase: int=None ) -> List[Any]: '''simple docstring''' if is_numpy_array(_lowerCamelCase ): return np.transpose(_lowerCamelCase, axes=_lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.T if axes is None else array.permute(*_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.transpose(_lowerCamelCase, perm=_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.transpose(_lowerCamelCase, axes=_lowerCamelCase ) else: raise ValueError(F"""Type not supported for transpose: {type(_lowerCamelCase )}.""" ) def __magic_name__ ( _lowerCamelCase: List[Any], _lowerCamelCase: Any ) -> List[str]: '''simple docstring''' if is_numpy_array(_lowerCamelCase ): return np.reshape(_lowerCamelCase, _lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.reshape(*_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.reshape(_lowerCamelCase, _lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.reshape(_lowerCamelCase, _lowerCamelCase ) else: raise ValueError(F"""Type not supported for reshape: {type(_lowerCamelCase )}.""" ) def __magic_name__ ( _lowerCamelCase: int, _lowerCamelCase: Tuple=None ) -> List[str]: '''simple docstring''' if is_numpy_array(_lowerCamelCase ): return np.squeeze(_lowerCamelCase, axis=_lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.squeeze() if axis is None else array.squeeze(dim=_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.squeeze(_lowerCamelCase, axis=_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.squeeze(_lowerCamelCase, axis=_lowerCamelCase ) else: raise ValueError(F"""Type not supported for squeeze: {type(_lowerCamelCase )}.""" ) def __magic_name__ ( _lowerCamelCase: List[str], _lowerCamelCase: int ) -> List[Any]: '''simple docstring''' if is_numpy_array(_lowerCamelCase ): return np.expand_dims(_lowerCamelCase, _lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.unsqueeze(dim=_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.expand_dims(_lowerCamelCase, axis=_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.expand_dims(_lowerCamelCase, axis=_lowerCamelCase ) else: raise ValueError(F"""Type not supported for expand_dims: {type(_lowerCamelCase )}.""" ) def __magic_name__ ( _lowerCamelCase: Any ) -> Dict: '''simple docstring''' if is_numpy_array(_lowerCamelCase ): return np.size(_lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.numel() elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.size(_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return array.size else: raise ValueError(F"""Type not supported for expand_dims: {type(_lowerCamelCase )}.""" ) def __magic_name__ ( _lowerCamelCase: Optional[Any], _lowerCamelCase: Optional[int] ) -> Optional[int]: '''simple docstring''' for key, value in auto_map.items(): if isinstance(_lowerCamelCase, (tuple, list) ): lowerCAmelCase = [F"""{repo_id}--{v}""" if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: lowerCAmelCase = F"""{repo_id}--{value}""" return auto_map def __magic_name__ ( _lowerCamelCase: str ) -> Any: '''simple docstring''' for base_class in inspect.getmro(_lowerCamelCase ): lowerCAmelCase = base_class.__module__ lowerCAmelCase = base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F"""Could not infer framework from class {model_class}.""" )
535
1
'''simple docstring''' from collections.abc import Iterable from typing import Generic, TypeVar lowercase : Optional[Any] = TypeVar("_T") class __UpperCAmelCase ( Generic[_T] ): def __init__( self , lowerCAmelCase_ = None ): """simple docstring""" _snake_case = list(iterable or [] ) _snake_case = [] def __len__( self ): """simple docstring""" return len(self._stacka ) + len(self._stacka ) def __repr__( self ): """simple docstring""" return F'Queue({tuple(self._stacka[::-1] + self._stacka )})' def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" self._stacka.append(lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self._stacka.pop _snake_case = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError('Queue is empty' ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
713
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=7 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=99 , lowerCAmelCase_=32 , lowerCAmelCase_=5 , lowerCAmelCase_=4 , lowerCAmelCase_=37 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=5_12 , lowerCAmelCase_=16 , lowerCAmelCase_=2 , lowerCAmelCase_=0.02 , lowerCAmelCase_=3 , lowerCAmelCase_=4 , lowerCAmelCase_=None , ): """simple docstring""" _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_token_type_ids _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_labels _snake_case = num_choices _snake_case = scope _snake_case = self.vocab_size - 1 def lowerCamelCase ( self ): """simple docstring""" _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = None if self.use_token_type_ids: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case = None _snake_case = None _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case = ids_tensor([self.batch_size] , self.num_choices ) _snake_case = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) _snake_case = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ): """simple docstring""" _snake_case = OpenAIGPTModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ): """simple docstring""" _snake_case = OpenAIGPTLMHeadModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ): """simple docstring""" _snake_case = OpenAIGPTDoubleHeadsModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ): """simple docstring""" _snake_case = self.num_labels _snake_case = OpenAIGPTForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) = config_and_inputs _snake_case = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class __UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): __lowercase = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) __lowercase = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly __lowercase = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ): """simple docstring""" _snake_case = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": _snake_case = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase_ , ) _snake_case = inputs_dict['labels'] _snake_case = inputs_dict['labels'] _snake_case = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowerCAmelCase_ , ) _snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def lowerCamelCase ( self ): """simple docstring""" _snake_case = OpenAIGPTModelTester(self ) _snake_case = ConfigTester(self , config_class=lowerCAmelCase_ , n_embd=37 ) def lowerCamelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCAmelCase_ ) @slow def lowerCamelCase ( self ): """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = OpenAIGPTModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_torch class __UpperCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(lowerCAmelCase_ ) _snake_case = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=lowerCAmelCase_ ) # the president is _snake_case = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the _snake_case = model.generate(lowerCAmelCase_ , do_sample=lowerCAmelCase_ ) self.assertListEqual(output_ids[0].tolist() , lowerCAmelCase_ )
542
0
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params lowercase_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): for pegasus_name, hf_name in PATTERNS: __lowerCamelCase : Any = k.replace(lowerCamelCase__ , lowerCamelCase__ ) return k def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Any = DEFAULTS.copy() cfg_kwargs.update(lowerCamelCase__ ) __lowerCamelCase : str = PegasusConfig(**lowerCamelCase__ ) __lowerCamelCase : List[str] = PegasusForConditionalGeneration(lowerCamelCase__ ) __lowerCamelCase : List[Any] = torch_model.model.state_dict() __lowerCamelCase : List[str] = {} for k, v in tf_weights.items(): __lowerCamelCase : Optional[int] = rename_state_dict_key(lowerCamelCase__ ) if new_k not in sd: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if "dense" in k or "proj" in new_k: __lowerCamelCase : Union[str, Any] = v.T __lowerCamelCase : List[str] = torch.tensor(lowerCamelCase__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f'{new_k}, {k}, {v.shape}, {sd[new_k].shape}' # make sure embedding.padding_idx is respected __lowerCamelCase : Any = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) __lowerCamelCase : Optional[Any] = mapping['shared.weight'] __lowerCamelCase : int = mapping['shared.weight'] __lowerCamelCase : Optional[int] = {k: torch.zeros_like(lowerCamelCase__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase : Any = torch_model.model.load_state_dict(lowerCamelCase__ , strict=lowerCamelCase__ ) __lowerCamelCase : List[str] = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__="./ckpt/aeslc/model.ckpt-32000" ): __lowerCamelCase : Optional[Any] = tf.train.list_variables(lowerCamelCase__ ) __lowerCamelCase : List[Any] = {} __lowerCamelCase : Union[str, Any] = ['Adafactor', 'global_step'] for name, shape in tqdm(lowerCamelCase__ , desc='converting tf checkpoint to dict' ): __lowerCamelCase : Optional[int] = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase : Tuple = tf.train.load_variable(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase : Any = array return tf_weights def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # save tokenizer first __lowerCamelCase : List[str] = Path(lowerCamelCase__ ).parent.name __lowerCamelCase : Union[str, Any] = task_specific_params[f'summarization_{dataset}']['max_position_embeddings'] __lowerCamelCase : Dict = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=lowerCamelCase__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(lowerCamelCase__ ) # convert model __lowerCamelCase : Union[str, Any] = get_tf_weights_as_numpy(lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] = task_specific_params[f'summarization_{dataset}'] if dataset == "large": __lowerCamelCase : Optional[Any] = task_specific_params __lowerCamelCase : Optional[int] = convert_pegasus(lowerCamelCase__ , lowerCamelCase__ ) torch_model.save_pretrained(lowerCamelCase__ ) __lowerCamelCase : str = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(lowerCamelCase__ , Path(lowerCamelCase__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') lowercase_ = parser.parse_args() if args.save_dir is None: lowercase_ = Path(args.tf_ckpt_path).parent.name lowercase_ = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
669
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A : def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=False , snake_case_=False , snake_case_=False , snake_case_=2 , snake_case_=9_9 , snake_case_=0 , snake_case_=3_2 , snake_case_=5 , snake_case_=4 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_1_2 , snake_case_=2 , snake_case_=0.02 , snake_case_=2 , snake_case_=4 , snake_case_="last" , snake_case_=True , snake_case_=None , snake_case_=0 , ) -> Any: _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_lengths _a = use_token_type_ids _a = use_labels _a = gelu_activation _a = sinusoidal_embeddings _a = causal _a = asm _a = n_langs _a = vocab_size _a = n_special _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = summary_type _a = use_proj _a = scope _a = bos_token_id def __lowerCAmelCase ( self ) -> Tuple: _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_input_lengths: _a = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , 2 ).float() _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __lowerCAmelCase ( self ) -> str: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> Optional[int]: _a = XLMModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ , lengths=snake_case_ , langs=snake_case_ ) _a = model(snake_case_ , langs=snake_case_ ) _a = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> Union[str, Any]: _a = XLMWithLMHeadModel(snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> str: _a = XLMForQuestionAnsweringSimple(snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ ) _a = model(snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ ) _a = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> Optional[int]: _a = XLMForQuestionAnswering(snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ ) _a = model( snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , cls_index=snake_case_ , is_impossible=snake_case_ , p_mask=snake_case_ , ) _a = model( snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , cls_index=snake_case_ , is_impossible=snake_case_ , ) ((_a) , ) = result_with_labels.to_tuple() _a = model(snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ ) ((_a) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> Tuple: _a = XLMForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ ) _a = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> Union[str, Any]: _a = self.num_labels _a = XLMForTokenClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> str: _a = self.num_choices _a = XLMForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() _a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths} return config, inputs_dict @require_torch class A ( a , a , a , unittest.TestCase ): __UpperCAmelCase : str = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __UpperCAmelCase : int = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __UpperCAmelCase : List[Any] = ( { """feature-extraction""": XLMModel, """fill-mask""": XLMWithLMHeadModel, """question-answering""": XLMForQuestionAnsweringSimple, """text-classification""": XLMForSequenceClassification, """text-generation""": XLMWithLMHeadModel, """token-classification""": XLMForTokenClassification, """zero-shot""": XLMForSequenceClassification, } if is_torch_available() else {} ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_=False ) -> List[Any]: _a = super()._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) return inputs_dict def __lowerCAmelCase ( self ) -> Dict: _a = XLMModelTester(self ) _a = ConfigTester(self , config_class=snake_case_ , emb_dim=3_7 ) def __lowerCAmelCase ( self ) -> Dict: self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> Optional[Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*snake_case_ ) def __lowerCAmelCase ( self ) -> List[str]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*snake_case_ ) def __lowerCAmelCase ( self ) -> Dict: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*snake_case_ ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*snake_case_ ) def __lowerCAmelCase ( self ) -> List[str]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*snake_case_ ) def __lowerCAmelCase ( self ) -> List[Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*snake_case_ ) def __lowerCAmelCase ( self ) -> List[str]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_=False , snake_case_=1 ) -> Dict: self.assertIsInstance(snake_case_ , snake_case_ ) self.assertListEqual( [isinstance(snake_case_ , snake_case_ ) for iter_attentions in attentions] , [True] * len(snake_case_ ) ) self.assertEqual(len(snake_case_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(snake_case_ ): # adds PAD dummy token _a = min_length + idx + 1 _a = min_length + idx + 1 _a = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(snake_case_ ) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_=False , snake_case_=1 ) -> Dict: self.assertIsInstance(snake_case_ , snake_case_ ) self.assertListEqual( [isinstance(snake_case_ , snake_case_ ) for iter_hidden_states in hidden_states] , [True] * len(snake_case_ ) , ) self.assertEqual(len(snake_case_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(snake_case_ ): # adds PAD dummy token _a = min_length + idx + 1 _a = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(snake_case_ ) , ) pass @slow def __lowerCAmelCase ( self ) -> Optional[Any]: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = XLMModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048" ) model.to(snake_case_ ) _a = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=snake_case_ ) # the president _a = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference _a = model.generate(snake_case_ , do_sample=snake_case_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , snake_case_ )
131
0
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __snake_case (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: '''simple docstring''' _lowerCAmelCase : Dict = 10 def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: '''simple docstring''' _lowerCAmelCase : Dict = [1, 2, 3, 4] _lowerCAmelCase : Optional[int] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: '''simple docstring''' _lowerCAmelCase : int = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] _lowerCAmelCase : Any = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: '''simple docstring''' _lowerCAmelCase : List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] _lowerCAmelCase : Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: '''simple docstring''' _lowerCAmelCase : Optional[int] = """It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.""" _lowerCAmelCase : int = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: '''simple docstring''' _lowerCAmelCase : Optional[Any] = """""" _lowerCAmelCase : Union[str, Any] = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : List[str] = ( """It was the year of Our Lord one thousand seven hundred and """ """seventy-five\n\nSpiritual revelations were conceded to England """ """at that favoured period, as at this.\n@highlight\n\nIt was the best of times""" ) _lowerCAmelCase : Any = process_story(_UpperCAmelCase ) _lowerCAmelCase : int = [ """It was the year of Our Lord one thousand seven hundred and seventy-five.""", """Spiritual revelations were conceded to England at that favoured period, as at this.""", ] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase : Optional[int] = ["""It was the best of times."""] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: '''simple docstring''' _lowerCAmelCase : List[str] = torch.tensor([1, 2, 3, 4] ) _lowerCAmelCase : int = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 0 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) _lowerCAmelCase : List[str] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 23 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: '''simple docstring''' _lowerCAmelCase : Optional[Any] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _lowerCAmelCase : int = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 1 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: '''simple docstring''' _lowerCAmelCase : Dict = 101 _lowerCAmelCase : Union[str, Any] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) _lowerCAmelCase : Union[str, Any] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _lowerCAmelCase : str = compute_token_type_ids(_UpperCAmelCase , _UpperCAmelCase ) np.testing.assert_array_equal(_UpperCAmelCase , _UpperCAmelCase )
720
from math import loga def _UpperCAmelCase (UpperCamelCase_ : int ): '''simple docstring''' if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError("""Input value must be a 'int' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
196
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowercase : Optional[Any] = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Union[str, Any] = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[Any] = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys __lowercase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
476
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __lowercase : List[str] = logging.get_logger(__name__) if is_vision_available(): import PIL class __UpperCamelCase ( lowerCAmelCase_ ): A_ = ["pixel_values"] def __init__( self , __a = True , __a = None , __a = PILImageResampling.BICUBIC , __a = True , __a = None , __a = True , __a = 1 / 255 , __a = True , __a = None , __a = None , __a = True , **__a , ): '''simple docstring''' super().__init__(**__a ) __a : Dict = size if size is not None else {'shortest_edge': 224} __a : Optional[Any] = get_size_dict(__a , default_to_square=__a ) __a : str = crop_size if crop_size is not None else {'height': 224, 'width': 224} __a : Dict = get_size_dict(__a , default_to_square=__a , param_name='crop_size' ) __a : int = do_resize __a : Tuple = size __a : Optional[int] = resample __a : List[str] = do_center_crop __a : int = crop_size __a : int = do_rescale __a : List[Any] = rescale_factor __a : Dict = do_normalize __a : Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __a : Union[str, Any] = image_std if image_std is not None else OPENAI_CLIP_STD __a : Tuple = do_convert_rgb def __UpperCAmelCase ( self , __a , __a , __a = PILImageResampling.BICUBIC , __a = None , **__a , ): '''simple docstring''' __a : Optional[Any] = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __a : Tuple = get_resize_output_image_size(__a , size=size['shortest_edge'] , default_to_square=__a ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def __UpperCAmelCase ( self , __a , __a , __a = None , **__a , ): '''simple docstring''' __a : Tuple = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__a , size=(size['height'], size['width']) , data_format=__a , **__a ) def __UpperCAmelCase ( self , __a , __a , __a = None , **__a , ): '''simple docstring''' return rescale(__a , scale=__a , data_format=__a , **__a ) def __UpperCAmelCase ( self , __a , __a , __a , __a = None , **__a , ): '''simple docstring''' return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def __UpperCAmelCase ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ): '''simple docstring''' __a : str = do_resize if do_resize is not None else self.do_resize __a : Dict = size if size is not None else self.size __a : Dict = get_size_dict(__a , param_name='size' , default_to_square=__a ) __a : Optional[Any] = resample if resample is not None else self.resample __a : str = do_center_crop if do_center_crop is not None else self.do_center_crop __a : Optional[Any] = crop_size if crop_size is not None else self.crop_size __a : int = get_size_dict(__a , param_name='crop_size' , default_to_square=__a ) __a : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale __a : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor __a : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize __a : List[str] = image_mean if image_mean is not None else self.image_mean __a : List[str] = image_std if image_std is not None else self.image_std __a : Tuple = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __a : int = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __a : Dict = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. __a : int = [to_numpy_array(__a ) for image in images] if do_resize: __a : Tuple = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: __a : List[Any] = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: __a : Tuple = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: __a : Optional[Any] = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] __a : Optional[Any] = [to_channel_dimension_format(__a , __a ) for image in images] __a : int = {'pixel_values': images} return BatchFeature(data=__a , tensor_type=__a )
476
1
'''simple docstring''' from __future__ import annotations from collections import namedtuple def lowerCamelCase__ ( a , a , a ): __snake_case = namedtuple('result' , 'name value' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('Only one argument must be 0' ) elif power < 0: raise ValueError( 'Power cannot be negative in any electrical/electronics system' ) elif voltage == 0: return result('voltage' , power / current ) elif current == 0: return result('current' , power / voltage ) elif power == 0: return result('power' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
721
'''simple docstring''' import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCamelCase__ ( a , a , a ): # Construct model if openai_config_file == "": __snake_case = OpenAIGPTConfig() else: __snake_case = OpenAIGPTConfig.from_json_file(a ) __snake_case = OpenAIGPTModel(a ) # Load weights from numpy load_tf_weights_in_openai_gpt(a , a , a ) # Save pytorch-model __snake_case = pytorch_dump_folder_path + '/' + WEIGHTS_NAME __snake_case = pytorch_dump_folder_path + '/' + CONFIG_NAME print(f'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , a ) print(f'Save configuration file to {pytorch_config_dump_path}' ) with open(a , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--openai_checkpoint_folder_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--openai_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) _lowercase = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
427
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple=7 , UpperCAmelCase__ : str=3 , UpperCAmelCase__ : Union[str, Any]=10 , UpperCAmelCase__ : int=18 , UpperCAmelCase__ : Optional[int]=30 , UpperCAmelCase__ : Dict=400 , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : str=[0.5, 0.5, 0.5] , UpperCAmelCase__ : Optional[Any]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : List[Any]=None , ): '''simple docstring''' lowercase : Optional[Any] =size if size is not None else {'''shortest_edge''': 18} lowercase : Union[str, Any] =crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowercase : List[Any] =parent lowercase : Optional[Any] =batch_size lowercase : str =num_channels lowercase : Any =num_frames lowercase : Any =image_size lowercase : Optional[Any] =min_resolution lowercase : Tuple =max_resolution lowercase : Any =do_resize lowercase : Optional[int] =size lowercase : int =do_normalize lowercase : List[str] =image_mean lowercase : Union[str, Any] =image_std lowercase : int =crop_size def lowerCamelCase_ ( self : int ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( lowercase__ , unittest.TestCase ): lowerCamelCase_ = VivitImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : Optional[int] =VivitImageProcessingTester(self ) @property def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : int =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , '''size''' ) ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' lowercase : Dict =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) lowercase : Dict =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def lowerCamelCase_ ( self : int ): '''simple docstring''' # Initialize image_processing lowercase : Optional[int] =self.image_processing_class(**self.image_processor_dict ) # create random PIL videos lowercase : Tuple =prepare_video_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for video in video_inputs: self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input lowercase : Union[str, Any] =image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase : Optional[int] =image_processing(UpperCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' # Initialize image_processing lowercase : List[str] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase : List[Any] =prepare_video_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for video in video_inputs: self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input lowercase : Tuple =image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase : str =image_processing(UpperCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' # Initialize image_processing lowercase : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase : Optional[int] =prepare_video_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for video in video_inputs: self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input lowercase : str =image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase : Any =image_processing(UpperCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
92
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase = get_tests_dir('fixtures/test_sentencepiece.model') __UpperCAmelCase = {'target_lang': 'fi', 'source_lang': 'en'} __UpperCAmelCase = '>>zh<<' __UpperCAmelCase = 'Helsinki-NLP/' if is_torch_available(): __UpperCAmelCase = 'pt' elif is_tf_available(): __UpperCAmelCase = 'tf' else: __UpperCAmelCase = 'jax' @require_sentencepiece class __lowercase ( __lowerCamelCase , unittest.TestCase ): snake_case_ = MarianTokenizer snake_case_ = False snake_case_ = True def __lowercase ( self : Optional[int] ): '''simple docstring''' super().setUp() UpperCAmelCase__ : Optional[Any] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] UpperCAmelCase__ : int = dict(zip(A ,range(len(A ) ) ) ) UpperCAmelCase__ : Optional[int] = Path(self.tmpdirname ) save_json(A ,save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(A ,save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(A ,save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(A ,save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) UpperCAmelCase__ : Dict = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self : List[Any] ,**A : List[Any] ): '''simple docstring''' return MarianTokenizer.from_pretrained(self.tmpdirname ,**A ) def __lowercase ( self : Union[str, Any] ,A : Tuple ): '''simple docstring''' return ( "This is a test", "This is a test", ) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = """</s>""" UpperCAmelCase__ : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) ,A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) ,A ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""</s>""" ) self.assertEqual(vocab_keys[1] ,"""<unk>""" ) self.assertEqual(vocab_keys[-1] ,"""<pad>""" ) self.assertEqual(len(A ) ,9 ) def __lowercase ( self : Dict ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,9 ) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = MarianTokenizer.from_pretrained(f"{ORG_NAME}opus-mt-en-de" ) UpperCAmelCase__ : List[str] = en_de_tokenizer(["""I am a small frog"""] ,return_tensors=A ) self.assertIsInstance(A ,A ) UpperCAmelCase__ : str = [38, 121, 14, 697, 38_848, 0] self.assertListEqual(A ,batch.input_ids[0] ) UpperCAmelCase__ : Optional[Any] = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(A ) UpperCAmelCase__ : Tuple = [x.name for x in Path(A ).glob("""*""" )] self.assertIn("""source.spm""" ,A ) MarianTokenizer.from_pretrained(A ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_tokenizer() UpperCAmelCase__ : Any = tok( ["""I am a small frog""" * 1_000, """I am a small frog"""] ,padding=A ,truncation=A ,return_tensors=A ) self.assertIsInstance(A ,A ) self.assertEqual(batch.input_ids.shape ,(2, 512) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = self.get_tokenizer() UpperCAmelCase__ : Tuple = tok(["""I am a tiny frog""", """I am a small frog"""] ,padding=A ,return_tensors=A ) self.assertIsInstance(A ,A ) self.assertEqual(batch_smaller.input_ids.shape ,(2, 10) ) @slow def __lowercase ( self : Dict ): '''simple docstring''' # fmt: off UpperCAmelCase__ : Optional[int] = {"""input_ids""": [[43_495, 462, 20, 42_164, 1_369, 52, 464, 132, 1_703, 492, 13, 7_491, 38_999, 6, 8, 464, 132, 1_703, 492, 13, 4_669, 37_867, 13, 7_525, 27, 1_593, 988, 13, 33_972, 7_029, 6, 20, 8_251, 383, 2, 270, 5_866, 3_788, 2, 2_353, 8_251, 12_338, 2, 13_958, 387, 2, 3_629, 6_953, 188, 2_900, 2, 13_958, 8_011, 11_501, 23, 8_460, 4_073, 34_009, 20, 435, 11_439, 27, 8, 8_460, 4_073, 6_004, 20, 9_988, 375, 27, 33, 266, 1_945, 1_076, 1_350, 37_867, 3_288, 5, 577, 1_076, 4_374, 8, 5_082, 5, 26_453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10_767, 6, 316, 304, 4_239, 3, 0], [148, 15_722, 19, 1_839, 12, 1_350, 13, 22_327, 5_082, 5_418, 47_567, 35_938, 59, 318, 19_552, 108, 2_183, 54, 14_976, 4_835, 32, 547, 1_114, 8, 315, 2_417, 5, 92, 19_088, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100], [36, 6_395, 12_570, 39_147, 11_597, 6, 266, 4, 45_405, 7_296, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A ,model_name="""Helsinki-NLP/opus-mt-en-de""" ,revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" ,decode_kwargs={"""use_source_tokenizer""": True} ,) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) UpperCAmelCase__ : Any = """Tämä on testi""" UpperCAmelCase__ : int = """This is a test""" UpperCAmelCase__ : List[str] = [76, 7, 2_047, 2] UpperCAmelCase__ : Optional[Any] = [69, 12, 11, 940, 2] UpperCAmelCase__ : List[str] = tokenizer(A ).input_ids self.assertListEqual(A ,A ) UpperCAmelCase__ : Optional[int] = tokenizer(text_target=A ).input_ids self.assertListEqual(A ,A ) UpperCAmelCase__ : int = tokenizer.decode(A ,skip_special_tokens=A ) self.assertEqual(A ,A )
65
0
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _SCREAMING_SNAKE_CASE ( snake_case_ : int ): __magic_name__ = prime_factors(snake_case_ ) if is_square_free(snake_case_ ): return -1 if len(snake_case_ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
678
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch a_ : str = True except ImportError: a_ : Optional[int] = False try: from torch.hub import _get_torch_home a_ : Optional[Any] = _get_torch_home() except ImportError: a_ : List[Any] = os.path.expanduser( os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')) ) a_ : Any = os.path.join(torch_cache_home, 'transformers') a_ : Any = 'https://cdn.huggingface.co' a_ : Any = 'https://s3.amazonaws.com/models.huggingface.co/bert' a_ : int = '/'.join(str(Path(__file__).resolve()).split('/')[:-1]) a_ : Any = os.path.join(PATH, 'config.yaml') a_ : Any = os.path.join(PATH, 'attributes.txt') a_ : Any = os.path.join(PATH, 'objects.txt') a_ : List[Any] = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path) a_ : Any = os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE) a_ : Optional[int] = os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE) a_ : int = 'pytorch_model.bin' a_ : Union[str, Any] = 'config.yaml' def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any]=OBJECTS , snake_case_ : str=ATTRIBUTES ): __magic_name__ = [] with open(snake_case_ ) as f: for object in f.readlines(): vg_classes.append(object.split(''',''' )[0].lower().strip() ) __magic_name__ = [] with open(snake_case_ ) as f: for object in f.readlines(): vg_attrs.append(object.split(''',''' )[0].lower().strip() ) return vg_classes, vg_attrs def _SCREAMING_SNAKE_CASE ( snake_case_ : int ): __magic_name__ = OrderedDict() with open(snake_case_ , '''rb''' ) as f: __magic_name__ = pkl.load(snake_case_ )['''model'''] for k in copy.deepcopy(list(ckp.keys() ) ): __magic_name__ = ckp.pop(snake_case_ ) if isinstance(snake_case_ , np.ndarray ): __magic_name__ = torch.tensor(snake_case_ ) else: assert isinstance(snake_case_ , torch.tensor ), type(snake_case_ ) __magic_name__ = v return r class SCREAMING_SNAKE_CASE_ : """simple docstring""" _a = {} def __init__( self , A , A = "root" , A=0 ) -> List[str]: '''simple docstring''' __magic_name__ = name __magic_name__ = level __magic_name__ = {} for k, v in dictionary.items(): if v is None: raise ValueError() __magic_name__ = copy.deepcopy(A ) __magic_name__ = copy.deepcopy(A ) if isinstance(A , A ): __magic_name__ = Config(A , name=A , level=level + 1 ) __magic_name__ = v setattr(self , A , A ) __magic_name__ = d def __repr__( self ) -> Union[str, Any]: '''simple docstring''' return str(list((self._pointer.keys()) ) ) def __setattr__( self , A , A ) -> Tuple: '''simple docstring''' __magic_name__ = val __magic_name__ = val __magic_name__ = key.split('''.''' ) __magic_name__ = len(A ) - 1 __magic_name__ = self._pointer if len(A ) > 1: for i, l in enumerate(A ): if hasattr(self , A ) and isinstance(getattr(self , A ) , A ): setattr(getattr(self , A ) , '''.'''.join(levels[i:] ) , A ) if l == last_level: __magic_name__ = val else: __magic_name__ = pointer[l] def __A ( self ) -> List[Any]: '''simple docstring''' return self._pointer def __A ( self , A , A ) -> Any: '''simple docstring''' with open(F'{file_name}' , '''w''' ) as stream: dump(A , A ) def __A ( self , A , A ) -> List[Any]: '''simple docstring''' with open(F'{file_name}' , '''w''' ) as stream: json.dump(A , A ) @staticmethod def __A ( A ) -> Optional[Any]: '''simple docstring''' with open(A ) as stream: __magic_name__ = load(A , Loader=A ) return data def __str__( self ) -> List[Any]: '''simple docstring''' __magic_name__ = ''' ''' if self._name != "root": __magic_name__ = F'{t * (self._level-1)}{self._name}:\n' else: __magic_name__ = '''''' __magic_name__ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(A , A ): r += F'{t * (self._level)}{v}\n' self._level += 1 else: r += F'{t * (self._level)}{k}: {v} ({type(A ).__name__})\n' __magic_name__ = level return r[:-1] @classmethod def __A ( cls , A , **A ) -> int: '''simple docstring''' __magic_name__ , __magic_name__ = cls.get_config_dict(A , **A ) return cls(A ) @classmethod def __A ( cls , A , **A ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = kwargs.pop('''cache_dir''' , A ) __magic_name__ = kwargs.pop('''force_download''' , A ) __magic_name__ = kwargs.pop('''resume_download''' , A ) __magic_name__ = kwargs.pop('''proxies''' , A ) __magic_name__ = kwargs.pop('''local_files_only''' , A ) if os.path.isdir(A ): __magic_name__ = os.path.join(A , A ) elif os.path.isfile(A ) or is_remote_url(A ): __magic_name__ = pretrained_model_name_or_path else: __magic_name__ = hf_bucket_url(A , filename=A , use_cdn=A ) try: # Load from URL or cache if already cached __magic_name__ = cached_path( A , cache_dir=A , force_download=A , proxies=A , resume_download=A , local_files_only=A , ) # Load config dict if resolved_config_file is None: raise EnvironmentError __magic_name__ = Config.load_yaml(A ) except EnvironmentError: __magic_name__ = '''Can\'t load config for''' raise EnvironmentError(A ) if resolved_config_file == config_file: print('''loading configuration file from path''' ) else: print('''loading configuration file cache''' ) return Config.load_yaml(A ), kwargs def _SCREAMING_SNAKE_CASE ( snake_case_ : Tuple ): __magic_name__ = torch.load('''dump.pt''' , map_location=in_tensor.device ) __magic_name__ = in_tensor.numpy() __magic_name__ = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(snake_case_ , snake_case_ , rtol=0.01 , atol=0.1 ), ( f'{sum([1 for x in np.isclose(snake_case_ , snake_case_ , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %' " element-wise mismatch" ) raise Exception('''tensors are all good''' ) # Hugging face functions below def _SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): __magic_name__ = urlparse(snake_case_ ) return parsed.scheme in ("http", "https") def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str , snake_case_ : Optional[Any]=True ): __magic_name__ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX __magic_name__ = '''/''' not in model_id if legacy_format: return f'{endpoint}/{model_id}-{filename}' else: return f'{endpoint}/{model_id}/{filename}' def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Tuple , snake_case_ : List[str]=None , snake_case_ : Dict=0 , snake_case_ : Tuple=None , ): __magic_name__ = '''python/{}'''.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(snake_case_ , snake_case_ ): ua += "; " + "; ".join('''{}/{}'''.format(snake_case_ , snake_case_ ) for k, v in user_agent.items() ) elif isinstance(snake_case_ , snake_case_ ): ua += "; " + user_agent __magic_name__ = {'''user-agent''': ua} if resume_size > 0: __magic_name__ = '''bytes=%d-''' % (resume_size,) __magic_name__ = requests.get(snake_case_ , stream=snake_case_ , proxies=snake_case_ , headers=snake_case_ ) if response.status_code == 416: # Range not satisfiable return __magic_name__ = response.headers.get('''Content-Length''' ) __magic_name__ = resume_size + int(snake_case_ ) if content_length is not None else None __magic_name__ = tqdm( unit='''B''' , unit_scale=snake_case_ , total=snake_case_ , initial=snake_case_ , desc='''Downloading''' , ) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(snake_case_ ) ) temp_file.write(snake_case_ ) progress.close() def _SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Dict=None , snake_case_ : int=False , snake_case_ : List[Any]=None , snake_case_ : Tuple=10 , snake_case_ : int=False , snake_case_ : Any=None , snake_case_ : Tuple=False , ): if cache_dir is None: __magic_name__ = TRANSFORMERS_CACHE if isinstance(snake_case_ , snake_case_ ): __magic_name__ = str(snake_case_ ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) __magic_name__ = None if not local_files_only: try: __magic_name__ = requests.head(snake_case_ , allow_redirects=snake_case_ , proxies=snake_case_ , timeout=snake_case_ ) if response.status_code == 200: __magic_name__ = response.headers.get('''ETag''' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass __magic_name__ = url_to_filename(snake_case_ , snake_case_ ) # get cache path to put the file __magic_name__ = os.path.join(snake_case_ , snake_case_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(snake_case_ ): return cache_path else: __magic_name__ = [ file for file in fnmatch.filter(os.listdir(snake_case_ ) , filename + '''.*''' ) if not file.endswith('''.json''' ) and not file.endswith('''.lock''' ) ] if len(snake_case_ ) > 0: return os.path.join(snake_case_ , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( '''Cannot find the requested files in the cached path and outgoing traffic has been''' ''' disabled. To enable model look-ups and downloads online, set \'local_files_only\'''' ''' to False.''' ) return None # From now on, etag is not None. if os.path.exists(snake_case_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. __magic_name__ = cache_path + '''.lock''' with FileLock(snake_case_ ): # If the download just completed while the lock was activated. if os.path.exists(snake_case_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: __magic_name__ = cache_path + '''.incomplete''' @contextmanager def _resumable_file_manager(): with open(snake_case_ , '''a+b''' ) as f: yield f __magic_name__ = _resumable_file_manager if os.path.exists(snake_case_ ): __magic_name__ = os.stat(snake_case_ ).st_size else: __magic_name__ = 0 else: __magic_name__ = partial(tempfile.NamedTemporaryFile , dir=snake_case_ , delete=snake_case_ ) __magic_name__ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '''%s not found in cache or force_download set to True, downloading to %s''' , snake_case_ , temp_file.name , ) http_get( snake_case_ , snake_case_ , proxies=snake_case_ , resume_size=snake_case_ , user_agent=snake_case_ , ) os.replace(temp_file.name , snake_case_ ) __magic_name__ = {'''url''': url, '''etag''': etag} __magic_name__ = cache_path + '''.json''' with open(snake_case_ , '''w''' ) as meta_file: json.dump(snake_case_ , snake_case_ ) return cache_path def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : List[Any]=None ): __magic_name__ = url.encode('''utf-8''' ) __magic_name__ = shaaaa(snake_case_ ) __magic_name__ = url_hash.hexdigest() if etag: __magic_name__ = etag.encode('''utf-8''' ) __magic_name__ = shaaaa(snake_case_ ) filename += "." + etag_hash.hexdigest() if url.endswith('''.h5''' ): filename += ".h5" return filename def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str=None , snake_case_ : Tuple=False , snake_case_ : Union[str, Any]=None , snake_case_ : List[Any]=False , snake_case_ : Union[str, Any]=None , snake_case_ : List[str]=False , snake_case_ : Optional[int]=False , snake_case_ : Optional[int]=False , ): if cache_dir is None: __magic_name__ = TRANSFORMERS_CACHE if isinstance(snake_case_ , snake_case_ ): __magic_name__ = str(snake_case_ ) if isinstance(snake_case_ , snake_case_ ): __magic_name__ = str(snake_case_ ) if is_remote_url(snake_case_ ): # URL, so get it from the cache (downloading if necessary) __magic_name__ = get_from_cache( snake_case_ , cache_dir=snake_case_ , force_download=snake_case_ , proxies=snake_case_ , resume_download=snake_case_ , user_agent=snake_case_ , local_files_only=snake_case_ , ) elif os.path.exists(snake_case_ ): # File, and it exists. __magic_name__ = url_or_filename elif urlparse(snake_case_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('''file {} not found'''.format(snake_case_ ) ) else: # Something unknown raise ValueError('''unable to parse {} as a URL or as a local path'''.format(snake_case_ ) ) if extract_compressed_file: if not is_zipfile(snake_case_ ) and not tarfile.is_tarfile(snake_case_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" __magic_name__ , __magic_name__ = os.path.split(snake_case_ ) __magic_name__ = output_file.replace('''.''' , '''-''' ) + '''-extracted''' __magic_name__ = os.path.join(snake_case_ , snake_case_ ) if os.path.isdir(snake_case_ ) and os.listdir(snake_case_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions __magic_name__ = output_path + '''.lock''' with FileLock(snake_case_ ): shutil.rmtree(snake_case_ , ignore_errors=snake_case_ ) os.makedirs(snake_case_ ) if is_zipfile(snake_case_ ): with ZipFile(snake_case_ , '''r''' ) as zip_file: zip_file.extractall(snake_case_ ) zip_file.close() elif tarfile.is_tarfile(snake_case_ ): __magic_name__ = tarfile.open(snake_case_ ) tar_file.extractall(snake_case_ ) tar_file.close() else: raise EnvironmentError('''Archive format of {} could not be identified'''.format(snake_case_ ) ) return output_path_extracted return output_path def _SCREAMING_SNAKE_CASE ( snake_case_ : Dict , snake_case_ : int="," ): assert isinstance(snake_case_ , snake_case_ ) if os.path.isfile(snake_case_ ): with open(snake_case_ ) as f: __magic_name__ = eval(f.read() ) else: __magic_name__ = requests.get(snake_case_ ) try: __magic_name__ = requests.json() except Exception: __magic_name__ = req.content.decode() assert data is not None, "could not connect" try: __magic_name__ = eval(snake_case_ ) except Exception: __magic_name__ = data.split('''\n''' ) req.close() return data def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] ): __magic_name__ = requests.get(snake_case_ ) __magic_name__ = np.array(Image.open(BytesIO(response.content ) ) ) return img def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] ): __magic_name__ = url.split('''/''' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(snake_case_ ) with open(snake_case_ , '''rb''' ) as stream: __magic_name__ = pkl.load(snake_case_ ) __magic_name__ = weights.pop('''model''' ) __magic_name__ = {} for k, v in model.items(): __magic_name__ = torch.from_numpy(snake_case_ ) if "running_var" in k: __magic_name__ = torch.tensor([0] ) __magic_name__ = k.replace('''running_var''' , '''num_batches_tracked''' ) __magic_name__ = zero return new def _SCREAMING_SNAKE_CASE ( ): print(f'{os.path.abspath(os.path.join(snake_case_ , os.pardir ) )}/demo.ipynb' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Tuple="RGB" ): assert isinstance(snake_case_ , snake_case_ ) if os.path.isfile(snake_case_ ): __magic_name__ = cva.imread(snake_case_ ) else: __magic_name__ = get_image_from_url(snake_case_ ) assert img is not None, f'could not connect to: {im}' __magic_name__ = cva.cvtColor(snake_case_ , cva.COLOR_BGR2RGB ) if input_format == "RGB": __magic_name__ = img[:, :, ::-1] return img def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Dict=1 ): return (images[i : i + batch] for i in range(0 , len(snake_case_ ) , snake_case_ ))
678
1