code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') lowerCamelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class _UpperCamelCase : snake_case_ = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) snake_case_ = field( default=UpperCamelCase__ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) snake_case_ = field( default=UpperCamelCase__ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) snake_case_ = field( default=UpperCamelCase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) snake_case_ = field( default=UpperCamelCase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) snake_case_ = field( default=UpperCamelCase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) @dataclass class _UpperCamelCase : snake_case_ = field( default=UpperCamelCase__ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) snake_case_ = field( default=UpperCamelCase__ , metadata={"""help""": """Evaluation language. Also train language if `train_language` is set to None."""} ) snake_case_ = field( default=UpperCamelCase__ , metadata={"""help""": """Train language if it is different from the evaluation language."""} ) snake_case_ = field( default=UpperCamelCase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) snake_case_ = field( default=UpperCamelCase__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) snake_case_ = field( default=UpperCamelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) snake_case_ = field( default=UpperCamelCase__ , metadata={"""help""": """arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"""} , ) snake_case_ = field( default=UpperCamelCase__ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) snake_case_ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) snake_case_ = field( default=UpperCamelCase__ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) snake_case_ = field( default=UpperCamelCase__ , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def __lowerCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_xnli" , UpperCamelCase__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __lowerCAmelCase = training_args.get_process_log_level() logger.setLevel(UpperCamelCase__ ) datasets.utils.logging.set_verbosity(UpperCamelCase__ ) transformers.utils.logging.set_verbosity(UpperCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: __lowerCAmelCase = load_dataset( "xnli" , model_args.language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: __lowerCAmelCase = load_dataset( "xnli" , model_args.train_language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __lowerCAmelCase = train_dataset.features["label"].names if training_args.do_eval: __lowerCAmelCase = load_dataset( "xnli" , model_args.language , split="validation" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __lowerCAmelCase = eval_dataset.features["label"].names if training_args.do_predict: __lowerCAmelCase = load_dataset( "xnli" , model_args.language , split="test" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __lowerCAmelCase = predict_dataset.features["label"].names # Labels __lowerCAmelCase = len(UpperCamelCase__ ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCamelCase__ , idalabel={str(UpperCamelCase__ ): label for i, label in enumerate(UpperCamelCase__ )} , labelaid={label: i for i, label in enumerate(UpperCamelCase__ )} , finetuning_task="xnli" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __lowerCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: __lowerCAmelCase = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __lowerCAmelCase = False def preprocess_function(__snake_case ): # Tokenize the texts return tokenizer( examples["premise"] , examples["hypothesis"] , padding=UpperCamelCase__ , max_length=data_args.max_seq_length , truncation=UpperCamelCase__ , ) if training_args.do_train: if data_args.max_train_samples is not None: __lowerCAmelCase = min(len(UpperCamelCase__ ) , data_args.max_train_samples ) __lowerCAmelCase = train_dataset.select(range(UpperCamelCase__ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): __lowerCAmelCase = train_dataset.map( UpperCamelCase__ , batched=UpperCamelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on train dataset" , ) # Log a few random samples from the training set: for index in random.sample(range(len(UpperCamelCase__ ) ) , 3 ): logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" ) if training_args.do_eval: if data_args.max_eval_samples is not None: __lowerCAmelCase = min(len(UpperCamelCase__ ) , data_args.max_eval_samples ) __lowerCAmelCase = eval_dataset.select(range(UpperCamelCase__ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): __lowerCAmelCase = eval_dataset.map( UpperCamelCase__ , batched=UpperCamelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on validation dataset" , ) if training_args.do_predict: if data_args.max_predict_samples is not None: __lowerCAmelCase = min(len(UpperCamelCase__ ) , data_args.max_predict_samples ) __lowerCAmelCase = predict_dataset.select(range(UpperCamelCase__ ) ) with training_args.main_process_first(desc="prediction dataset map pre-processing" ): __lowerCAmelCase = predict_dataset.map( UpperCamelCase__ , batched=UpperCamelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on prediction dataset" , ) # Get the metric function __lowerCAmelCase = evaluate.load("xnli" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__snake_case ): __lowerCAmelCase = p.predictions[0] if isinstance(p.predictions , UpperCamelCase__ ) else p.predictions __lowerCAmelCase = np.argmax(UpperCamelCase__ , axis=1 ) return metric.compute(predictions=UpperCamelCase__ , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __lowerCAmelCase = default_data_collator elif training_args.fpaa: __lowerCAmelCase = DataCollatorWithPadding(UpperCamelCase__ , pad_to_multiple_of=8 ) else: __lowerCAmelCase = None # Initialize our Trainer __lowerCAmelCase = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=UpperCamelCase__ , tokenizer=UpperCamelCase__ , data_collator=UpperCamelCase__ , ) # Training if training_args.do_train: __lowerCAmelCase = None if training_args.resume_from_checkpoint is not None: __lowerCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCAmelCase = last_checkpoint __lowerCAmelCase = trainer.train(resume_from_checkpoint=UpperCamelCase__ ) __lowerCAmelCase = train_result.metrics __lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCamelCase__ ) ) __lowerCAmelCase = min(UpperCamelCase__ , len(UpperCamelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , UpperCamelCase__ ) trainer.save_metrics("train" , UpperCamelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) __lowerCAmelCase = trainer.evaluate(eval_dataset=UpperCamelCase__ ) __lowerCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCamelCase__ ) __lowerCAmelCase = min(UpperCamelCase__ , len(UpperCamelCase__ ) ) trainer.log_metrics("eval" , UpperCamelCase__ ) trainer.save_metrics("eval" , UpperCamelCase__ ) # Prediction if training_args.do_predict: logger.info("*** Predict ***" ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = trainer.predict(UpperCamelCase__ , metric_key_prefix="predict" ) __lowerCAmelCase = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(UpperCamelCase__ ) ) __lowerCAmelCase = min(UpperCamelCase__ , len(UpperCamelCase__ ) ) trainer.log_metrics("predict" , UpperCamelCase__ ) trainer.save_metrics("predict" , UpperCamelCase__ ) __lowerCAmelCase = np.argmax(UpperCamelCase__ , axis=1 ) __lowerCAmelCase = os.path.join(training_args.output_dir , "predictions.txt" ) if trainer.is_world_process_zero(): with open(UpperCamelCase__ , "w" ) as writer: writer.write("index\tprediction\n" ) for index, item in enumerate(UpperCamelCase__ ): __lowerCAmelCase = label_list[item] writer.write(F"""{index}\t{item}\n""" ) if __name__ == "__main__": main()
367
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int = 600_851_475_143 ): try: SCREAMING_SNAKE_CASE__ = int(UpperCamelCase__ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 while i * i <= n: while n % i == 0: SCREAMING_SNAKE_CASE__ = i n //= i i += 1 if n > 1: SCREAMING_SNAKE_CASE__ = n return int(UpperCamelCase__ ) if __name__ == "__main__": print(F'''{solution() = }''')
6
0
'''simple docstring''' from random import randint, random def A_ ( snake_case , snake_case , snake_case , snake_case = False , snake_case = False , snake_case = 5 , ): SCREAMING_SNAKE_CASE:List[str] = [[-1] * number_of_cells] # Create a highway without any car SCREAMING_SNAKE_CASE:str = 0 SCREAMING_SNAKE_CASE:Tuple = max(snake_case , 0 ) while i < number_of_cells: SCREAMING_SNAKE_CASE:Optional[Any] = ( randint(0 , snake_case ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def A_ ( snake_case , snake_case ): SCREAMING_SNAKE_CASE:List[str] = 0 SCREAMING_SNAKE_CASE:Optional[int] = highway_now[car_index + 1 :] for cell in range(len(snake_case ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(snake_case , -1 ) def A_ ( snake_case , snake_case , snake_case ): SCREAMING_SNAKE_CASE:List[Any] = len(snake_case ) # Beforce calculations, the highway is empty SCREAMING_SNAKE_CASE:Optional[Any] = [-1] * number_of_cells for car_index in range(snake_case ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed SCREAMING_SNAKE_CASE:Union[str, Any] = min(highway_now[car_index] + 1 , snake_case ) # Number of empty cell before the next car SCREAMING_SNAKE_CASE:Dict = get_distance(snake_case , snake_case ) - 1 # We can't have the car causing an accident SCREAMING_SNAKE_CASE:List[Any] = min(next_highway[car_index] , snake_case ) if random() < probability: # Randomly, a driver will slow down SCREAMING_SNAKE_CASE:Union[str, Any] = max(next_highway[car_index] - 1 , 0 ) return next_highway def A_ ( snake_case , snake_case , snake_case , snake_case ): SCREAMING_SNAKE_CASE:Any = len(highway[0] ) for i in range(snake_case ): SCREAMING_SNAKE_CASE:Optional[Any] = update(highway[i] , snake_case , snake_case ) SCREAMING_SNAKE_CASE:Any = [-1] * number_of_cells for car_index in range(snake_case ): SCREAMING_SNAKE_CASE:Any = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) SCREAMING_SNAKE_CASE:List[Any] = (car_index + speed) % number_of_cells # Commit the change of position SCREAMING_SNAKE_CASE:Optional[int] = speed highway.append(snake_case ) return highway if __name__ == "__main__": import doctest doctest.testmod()
465
'''simple docstring''' def A_ ( snake_case ): SCREAMING_SNAKE_CASE:Dict = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def A_ ( snake_case = 5000 ): SCREAMING_SNAKE_CASE:int = [(i * (3 * i - 1)) // 2 for i in range(1 , snake_case )] for i, pentagonal_i in enumerate(snake_case ): for j in range(snake_case , len(snake_case ) ): SCREAMING_SNAKE_CASE:int = pentagonal_nums[j] SCREAMING_SNAKE_CASE:Any = pentagonal_i + pentagonal_j SCREAMING_SNAKE_CASE:int = pentagonal_j - pentagonal_i if is_pentagonal(snake_case ) and is_pentagonal(snake_case ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
465
1
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version __a :Optional[int] = { '<': operator.lt, '<=': operator.le, '==': operator.eq, '!=': operator.ne, '>=': operator.ge, '>': operator.gt, } def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Dict ,__UpperCamelCase : Optional[Any] ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Any ,__UpperCamelCase : Any ): """simple docstring""" if got_ver is None or want_ver is None: raise ValueError( f'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' f''' reinstalling {pkg}.''' ) if not ops[op](version.parse(__UpperCamelCase ) ,version.parse(__UpperCamelCase ) ): raise ImportError( f'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" A_ = f'''\n{hint}''' if hint is not None else "" # non-versioned check if re.match(R"^[\w_\-\d]+$" ,__UpperCamelCase ): A_ , A_ , A_ = requirement, None, None else: A_ = re.findall(R"^([^!=<>\s]+)([\s!=<>]{1,2}.+)" ,__UpperCamelCase ) if not match: raise ValueError( "requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but" f''' got {requirement}''' ) A_ , A_ = match[0] A_ = want_full.split("," ) # there could be multiple requirements A_ = {} for w in want_range: A_ = re.findall(R"^([\s!=<>]{1,2})(.+)" ,__UpperCamelCase ) if not match: raise ValueError( "requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23," f''' but got {requirement}''' ) A_ , A_ = match[0] A_ = want_ver if op not in ops: raise ValueError(f'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": A_ = ".".join([str(__UpperCamelCase ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) return # check if any version is installed try: A_ = importlib.metadata.version(__UpperCamelCase ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" A_ = "Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git main" return require_version(__UpperCamelCase ,__UpperCamelCase )
86
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class __UpperCamelCase ( a__ , a__ ): _UpperCAmelCase = "swin" _UpperCAmelCase = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self ,_A=224 ,_A=4 ,_A=3 ,_A=96 ,_A=[2, 2, 6, 2] ,_A=[3, 6, 12, 24] ,_A=7 ,_A=4.0 ,_A=True ,_A=0.0 ,_A=0.0 ,_A=0.1 ,_A="gelu" ,_A=False ,_A=0.0_2 ,_A=1E-5 ,_A=32 ,_A=None ,_A=None ,**_A ,): '''simple docstring''' super().__init__(**_A ) _lowerCAmelCase : List[str] = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : Union[str, Any] = num_channels _lowerCAmelCase : Union[str, Any] = embed_dim _lowerCAmelCase : Dict = depths _lowerCAmelCase : Any = len(_A ) _lowerCAmelCase : Optional[Any] = num_heads _lowerCAmelCase : List[Any] = window_size _lowerCAmelCase : str = mlp_ratio _lowerCAmelCase : Dict = qkv_bias _lowerCAmelCase : Union[str, Any] = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = drop_path_rate _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : Tuple = use_absolute_embeddings _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase : List[Any] = int(embed_dim * 2 ** (len(_A ) - 1) ) _lowerCAmelCase : List[str] = ['stem'] + [F"""stage{idx}""" for idx in range(1 ,len(_A ) + 1 )] _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=_A ,out_indices=_A ,stage_names=self.stage_names ) class __UpperCamelCase ( a__ ): _UpperCAmelCase = version.parse("1.11" ) @property def __lowerCamelCase ( self ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __lowerCamelCase ( self ): '''simple docstring''' return 1E-4
259
0
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") UpperCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class __SCREAMING_SNAKE_CASE : UpperCAmelCase = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCAmelCase = field( default=snake_case__ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) UpperCAmelCase = field( default=snake_case__ , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) UpperCAmelCase = field( default=snake_case__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCAmelCase = field( default=snake_case__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) UpperCAmelCase = field( default=snake_case__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) } , ) @dataclass class __SCREAMING_SNAKE_CASE : UpperCAmelCase = field( default=snake_case__ , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCAmelCase = field( default=snake_case__ , metadata={'''help''': '''Evaluation language. Also train language if `train_language` is set to None.'''} ) UpperCAmelCase = field( default=snake_case__ , metadata={'''help''': '''Train language if it is different from the evaluation language.'''} ) UpperCAmelCase = field( default=snake_case__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCAmelCase = field( default=snake_case__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCAmelCase = field( default=snake_case__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCAmelCase = field( default=snake_case__ , metadata={'''help''': '''arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'''} , ) UpperCAmelCase = field( default=snake_case__ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCAmelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCAmelCase = field( default=snake_case__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) UpperCAmelCase = field( default=snake_case__ , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def __a ( ): """simple docstring""" lowerCamelCase__ : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCamelCase__ : Optional[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_xnli''' , __SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase__ : str = training_args.get_process_log_level() logger.setLevel(__SCREAMING_SNAKE_CASE ) datasets.utils.logging.set_verbosity(__SCREAMING_SNAKE_CASE ) transformers.utils.logging.set_verbosity(__SCREAMING_SNAKE_CASE ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCamelCase__ : Tuple = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase__ : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: lowerCamelCase__ : Dict = load_dataset( '''xnli''' , model_args.language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: lowerCamelCase__ : List[str] = load_dataset( '''xnli''' , model_args.train_language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase__ : Optional[Any] = train_dataset.features["label"].names if training_args.do_eval: lowerCamelCase__ : Optional[Any] = load_dataset( '''xnli''' , model_args.language , split='''validation''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase__ : Dict = eval_dataset.features["label"].names if training_args.do_predict: lowerCamelCase__ : Tuple = load_dataset( '''xnli''' , model_args.language , split='''test''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase__ : int = predict_dataset.features["label"].names # Labels lowerCamelCase__ : Optional[Any] = len(__SCREAMING_SNAKE_CASE ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase__ : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__SCREAMING_SNAKE_CASE , idalabel={str(__SCREAMING_SNAKE_CASE ): label for i, label in enumerate(__SCREAMING_SNAKE_CASE )} , labelaid={label: i for i, label in enumerate(__SCREAMING_SNAKE_CASE )} , finetuning_task='''xnli''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase__ : List[str] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase__ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: lowerCamelCase__ : Tuple = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCamelCase__ : List[str] = False def preprocess_function(_lowercase ): # Tokenize the texts return tokenizer( examples['''premise'''] , examples['''hypothesis'''] , padding=__SCREAMING_SNAKE_CASE , max_length=data_args.max_seq_length , truncation=__SCREAMING_SNAKE_CASE , ) if training_args.do_train: if data_args.max_train_samples is not None: lowerCamelCase__ : str = min(len(__SCREAMING_SNAKE_CASE ) , data_args.max_train_samples ) lowerCamelCase__ : Tuple = train_dataset.select(range(__SCREAMING_SNAKE_CASE ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): lowerCamelCase__ : Any = train_dataset.map( __SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on train dataset''' , ) # Log a few random samples from the training set: for index in random.sample(range(len(__SCREAMING_SNAKE_CASE ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCamelCase__ : int = min(len(__SCREAMING_SNAKE_CASE ) , data_args.max_eval_samples ) lowerCamelCase__ : Any = eval_dataset.select(range(__SCREAMING_SNAKE_CASE ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): lowerCamelCase__ : Union[str, Any] = eval_dataset.map( __SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on validation dataset''' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: lowerCamelCase__ : List[str] = min(len(__SCREAMING_SNAKE_CASE ) , data_args.max_predict_samples ) lowerCamelCase__ : Tuple = predict_dataset.select(range(__SCREAMING_SNAKE_CASE ) ) with training_args.main_process_first(desc='''prediction dataset map pre-processing''' ): lowerCamelCase__ : List[str] = predict_dataset.map( __SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on prediction dataset''' , ) # Get the metric function lowerCamelCase__ : int = evaluate.load('''xnli''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_lowercase ): lowerCamelCase__ : int = p.predictions[0] if isinstance(p.predictions , __SCREAMING_SNAKE_CASE ) else p.predictions lowerCamelCase__ : int = np.argmax(__SCREAMING_SNAKE_CASE , axis=1 ) return metric.compute(predictions=__SCREAMING_SNAKE_CASE , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCamelCase__ : Tuple = default_data_collator elif training_args.fpaa: lowerCamelCase__ : Any = DataCollatorWithPadding(__SCREAMING_SNAKE_CASE , pad_to_multiple_of=8 ) else: lowerCamelCase__ : List[Any] = None # Initialize our Trainer lowerCamelCase__ : List[str] = Trainer( model=__SCREAMING_SNAKE_CASE , args=__SCREAMING_SNAKE_CASE , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , data_collator=__SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: lowerCamelCase__ : Dict = None if training_args.resume_from_checkpoint is not None: lowerCamelCase__ : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase__ : Tuple = last_checkpoint lowerCamelCase__ : Tuple = trainer.train(resume_from_checkpoint=__SCREAMING_SNAKE_CASE ) lowerCamelCase__ : Tuple = train_result.metrics lowerCamelCase__ : str = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__SCREAMING_SNAKE_CASE ) ) lowerCamelCase__ : Dict = min(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , __SCREAMING_SNAKE_CASE ) trainer.save_metrics('''train''' , __SCREAMING_SNAKE_CASE ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCamelCase__ : List[str] = trainer.evaluate(eval_dataset=__SCREAMING_SNAKE_CASE ) lowerCamelCase__ : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__SCREAMING_SNAKE_CASE ) lowerCamelCase__ : str = min(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) ) trainer.log_metrics('''eval''' , __SCREAMING_SNAKE_CASE ) trainer.save_metrics('''eval''' , __SCREAMING_SNAKE_CASE ) # Prediction if training_args.do_predict: logger.info('''*** Predict ***''' ) lowerCamelCase__ : int = trainer.predict(__SCREAMING_SNAKE_CASE , metric_key_prefix='''predict''' ) lowerCamelCase__ : Optional[int] = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(__SCREAMING_SNAKE_CASE ) ) lowerCamelCase__ : Optional[int] = min(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) ) trainer.log_metrics('''predict''' , __SCREAMING_SNAKE_CASE ) trainer.save_metrics('''predict''' , __SCREAMING_SNAKE_CASE ) lowerCamelCase__ : str = np.argmax(__SCREAMING_SNAKE_CASE , axis=1 ) lowerCamelCase__ : Union[str, Any] = os.path.join(training_args.output_dir , '''predictions.txt''' ) if trainer.is_world_process_zero(): with open(__SCREAMING_SNAKE_CASE , '''w''' ) as writer: writer.write('''index\tprediction\n''' ) for index, item in enumerate(__SCREAMING_SNAKE_CASE ): lowerCamelCase__ : Tuple = label_list[item] writer.write(f"""{index}\t{item}\n""" ) if __name__ == "__main__": main()
704
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase : Tuple = logging.get_logger(__name__) UpperCAmelCase : Tuple = {"vocab_file": "spm_char.model"} UpperCAmelCase : Union[str, Any] = { "vocab_file": { "microsoft/speecht5_asr": "https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model", "microsoft/speecht5_tts": "https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model", "microsoft/speecht5_vc": "https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model", } } UpperCAmelCase : Tuple = { "microsoft/speecht5_asr": 1024, "microsoft/speecht5_tts": 1024, "microsoft/speecht5_vc": 1024, } class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = ['''input_ids''', '''attention_mask'''] def __init__( self :Union[str, Any] ,__UpperCAmelCase :Dict ,__UpperCAmelCase :List[Any]="<s>" ,__UpperCAmelCase :Optional[int]="</s>" ,__UpperCAmelCase :List[Any]="<unk>" ,__UpperCAmelCase :Tuple="<pad>" ,__UpperCAmelCase :Optional[Dict[str, Any]] = None ,**__UpperCAmelCase :Optional[int] ,) -> None: """simple docstring""" lowerCamelCase__ : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCAmelCase ,eos_token=__UpperCAmelCase ,unk_token=__UpperCAmelCase ,pad_token=__UpperCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**__UpperCAmelCase ,) lowerCamelCase__ : Union[str, Any] = vocab_file lowerCamelCase__ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) @property def lowercase_ ( self :Optional[int] ) -> Dict: """simple docstring""" return self.sp_model.get_piece_size() def lowercase_ ( self :Optional[int] ) -> Any: """simple docstring""" lowerCamelCase__ : Tuple = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : List[str] = self.__dict__.copy() lowerCamelCase__ : int = None return state def __setstate__( self :Union[str, Any] ,__UpperCAmelCase :Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : Optional[int] = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): lowerCamelCase__ : str = {} lowerCamelCase__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase_ ( self :Any ,__UpperCAmelCase :str ) -> List[str]: """simple docstring""" return self.sp_model.encode(__UpperCAmelCase ,out_type=__UpperCAmelCase ) def lowercase_ ( self :str ,__UpperCAmelCase :List[Any] ) -> int: """simple docstring""" return self.sp_model.piece_to_id(__UpperCAmelCase ) def lowercase_ ( self :Optional[Any] ,__UpperCAmelCase :Optional[Any] ) -> int: """simple docstring""" lowerCamelCase__ : Dict = self.sp_model.IdToPiece(__UpperCAmelCase ) return token def lowercase_ ( self :Union[str, Any] ,__UpperCAmelCase :Union[str, Any] ) -> Any: """simple docstring""" lowerCamelCase__ : Tuple = [] lowerCamelCase__ : List[str] = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__UpperCAmelCase ) + token lowerCamelCase__ : Union[str, Any] = [] else: current_sub_tokens.append(__UpperCAmelCase ) out_string += self.sp_model.decode(__UpperCAmelCase ) return out_string.strip() def lowercase_ ( self :Tuple ,__UpperCAmelCase :int ,__UpperCAmelCase :Optional[Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ ( self :List[Any] ,__UpperCAmelCase :List[int] ,__UpperCAmelCase :Optional[List[int]] = None ,__UpperCAmelCase :bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase ,token_ids_a=__UpperCAmelCase ,already_has_special_tokens=__UpperCAmelCase ) lowerCamelCase__ : Dict = [1] if token_ids_a is None: return ([0] * len(__UpperCAmelCase )) + suffix_ones return ([0] * len(__UpperCAmelCase )) + ([0] * len(__UpperCAmelCase )) + suffix_ones def lowercase_ ( self :List[str] ,__UpperCAmelCase :str ,__UpperCAmelCase :Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase__ : List[Any] = os.path.join( __UpperCAmelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase ,'''wb''' ) as fi: lowerCamelCase__ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
121
0
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowerCamelCase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : str ) -> Any: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def lowerCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple=True ) -> str: '''simple docstring''' model.train() A = model(snake_case__ ) A = F.mse_loss(snake_case__ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(snake_case__ ) def lowerCamelCase_ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict=False ) -> List[str]: '''simple docstring''' set_seed(42 ) A = RegressionModel() A = deepcopy(snake_case__ ) A = RegressionDataset(length=80 ) A = DataLoader(snake_case__ , batch_size=16 ) model.to(accelerator.device ) if sched: A = AdamW(params=model.parameters() , lr=1E-3 ) A = AdamW(params=ddp_model.parameters() , lr=1E-3 ) A = LambdaLR(snake_case__ , lr_lambda=lambda lowerCAmelCase__ : epoch**0.65 ) A = LambdaLR(snake_case__ , lr_lambda=lambda lowerCAmelCase__ : epoch**0.65 ) # Make a copy of `model` if sched: A , A , A , A = accelerator.prepare(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) else: A , A = accelerator.prepare(snake_case__ , snake_case__ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowerCamelCase_ ( lowerCAmelCase__ : Any ) -> List[str]: '''simple docstring''' A , A , A = get_training_setup(snake_case__ ) # Use a single batch A , A = next(iter(snake_case__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model A , A = accelerator.gather((ddp_input, ddp_target) ) A , A = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(snake_case__ ): step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) else: # Sync grads step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) A = ddp_input[torch.randperm(len(snake_case__ ) )] def lowerCamelCase_ ( lowerCAmelCase__ : Dict ) -> List[str]: '''simple docstring''' A , A , A = get_training_setup(snake_case__ ) # Use a single batch A , A = next(iter(snake_case__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model A , A = accelerator.gather((ddp_input, ddp_target) ) A , A = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(snake_case__ ): step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) else: # Sync grads step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) A = ddp_input[torch.randperm(len(snake_case__ ) )] def lowerCamelCase_ ( lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : Any=False ) -> Tuple: '''simple docstring''' A = Accelerator( split_batches=snake_case__ , dispatch_batches=snake_case__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly A , A , A = get_training_setup(snake_case__ ) for iteration, batch in enumerate(snake_case__ ): A , A = batch.values() # Gather the distributed inputs and targs for the base model A , A = accelerator.gather((ddp_input, ddp_target) ) A , A = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(snake_case__ ): step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(snake_case__ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) A = ddp_input[torch.randperm(len(snake_case__ ) )] GradientState._reset_state() def lowerCamelCase_ ( lowerCAmelCase__ : Dict=False , lowerCAmelCase__ : Optional[int]=False ) -> int: '''simple docstring''' A = Accelerator( split_batches=snake_case__ , dispatch_batches=snake_case__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly A , A , A , A , A , A , A = get_training_setup(snake_case__ , snake_case__ ) for iteration, batch in enumerate(snake_case__ ): A , A = batch.values() # Gather the distributed inputs and targs for the base model A , A = accelerator.gather((ddp_input, ddp_target) ) A , A = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(snake_case__ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(snake_case__ ): step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' A = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(snake_case__ )) if accelerator.num_processes > 1: check_model_parameters(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def lowerCamelCase_ ( ) -> str: '''simple docstring''' A = Accelerator() A = RegressionDataset(length=80 ) A = DataLoader(snake_case__ , batch_size=16 ) A = RegressionDataset(length=96 ) A = DataLoader(snake_case__ , batch_size=16 ) A , A = accelerator.prepare(snake_case__ , snake_case__ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(snake_case__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case__ ) if iteration < len(snake_case__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(snake_case__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case__ ) if batch_num < len(snake_case__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowerCamelCase_ ( ) -> Any: '''simple docstring''' A = Accelerator() A = accelerator.state if state.local_process_index == 0: print('**Test `accumulate` gradient accumulation with dataloader break**' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('**Test NOOP `no_sync` context manager**' ) test_noop_sync(snake_case__ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('**Test Distributed `no_sync` context manager**' ) test_distributed_sync(snake_case__ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation, ' , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(snake_case__ , snake_case__ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('<' , '2.0' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , '`split_batches=False`, `dispatch_batches=False`**' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(snake_case__ , snake_case__ ) def lowerCamelCase_ ( lowerCAmelCase__ : Optional[Any] ) -> Tuple: '''simple docstring''' main() if __name__ == "__main__": main()
106
"""simple docstring""" import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : int ): super().__init__() lowerCAmelCase = nn.Linear(3 , 4 ) lowerCAmelCase = nn.BatchNormad(4 ) lowerCAmelCase = nn.Linear(4 , 5 ) def __lowercase ( self : int , lowerCAmelCase : int ): return self.lineara(self.batchnorm(self.lineara(lowerCAmelCase ) ) ) class SCREAMING_SNAKE_CASE__ ( _a ): def __lowercase ( self : int , lowerCAmelCase : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : int ): return (args[0] + 1,) + args[1:], kwargs class SCREAMING_SNAKE_CASE__ ( _a ): def __lowercase ( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : Tuple ): return output + 1 class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowercase ( self : List[str] ): lowerCAmelCase = ModelForTest() lowerCAmelCase = ModelHook() add_hook_to_module(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(test_model._hf_hook , lowerCAmelCase ) self.assertTrue(hasattr(lowerCAmelCase , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(lowerCAmelCase ) self.assertFalse(hasattr(lowerCAmelCase , """_hf_hook""" ) ) self.assertFalse(hasattr(lowerCAmelCase , """_old_forward""" ) ) def __lowercase ( self : int ): lowerCAmelCase = ModelForTest() lowerCAmelCase = ModelHook() add_hook_to_module(lowerCAmelCase , lowerCAmelCase ) add_hook_to_module(lowerCAmelCase , lowerCAmelCase , append=lowerCAmelCase ) self.assertEqual(isinstance(test_model._hf_hook , lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(lowerCAmelCase , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(lowerCAmelCase ) self.assertFalse(hasattr(lowerCAmelCase , """_hf_hook""" ) ) self.assertFalse(hasattr(lowerCAmelCase , """_old_forward""" ) ) def __lowercase ( self : List[str] ): lowerCAmelCase = ModelForTest() lowerCAmelCase = torch.randn(2 , 3 ) lowerCAmelCase = test_model(x + 1 ) lowerCAmelCase = test_model(x + 2 ) lowerCAmelCase = PreForwardHook() add_hook_to_module(lowerCAmelCase , lowerCAmelCase ) lowerCAmelCase = test_model(lowerCAmelCase ) self.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain lowerCAmelCase = PreForwardHook() add_hook_to_module(lowerCAmelCase , lowerCAmelCase ) lowerCAmelCase = test_model(lowerCAmelCase ) self.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks lowerCAmelCase = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(lowerCAmelCase , lowerCAmelCase ) lowerCAmelCase = test_model(lowerCAmelCase ) assert torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1e-5 ) def __lowercase ( self : Tuple ): lowerCAmelCase = ModelForTest() lowerCAmelCase = torch.randn(2 , 3 ) lowerCAmelCase = test_model(lowerCAmelCase ) lowerCAmelCase = PostForwardHook() add_hook_to_module(lowerCAmelCase , lowerCAmelCase ) lowerCAmelCase = test_model(lowerCAmelCase ) self.assertTrue(torch.allclose(lowerCAmelCase , output + 1 , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain lowerCAmelCase = PostForwardHook() add_hook_to_module(lowerCAmelCase , lowerCAmelCase ) lowerCAmelCase = test_model(lowerCAmelCase ) self.assertTrue(torch.allclose(lowerCAmelCase , output + 1 , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks lowerCAmelCase = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(lowerCAmelCase , lowerCAmelCase ) lowerCAmelCase = test_model(lowerCAmelCase ) assert torch.allclose(lowerCAmelCase , output + 2 , atol=1e-5 ) def __lowercase ( self : Union[str, Any] ): lowerCAmelCase = ModelForTest() lowerCAmelCase = torch.randn(2 , 3 ) lowerCAmelCase = test_model(lowerCAmelCase ) lowerCAmelCase = PostForwardHook() add_hook_to_module(lowerCAmelCase , lowerCAmelCase ) lowerCAmelCase = test_model(lowerCAmelCase ) self.assertTrue(torch.allclose(lowerCAmelCase , output + 1 ) ) self.assertTrue(outputa.requires_grad ) lowerCAmelCase = True lowerCAmelCase = test_model(lowerCAmelCase ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def __lowercase ( self : Tuple ): lowerCAmelCase = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device lowerCAmelCase = torch.randn(2 , 3 ) lowerCAmelCase = model(lowerCAmelCase ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(lowerCAmelCase , AlignDevicesHook(io_same_device=lowerCAmelCase ) ) lowerCAmelCase = torch.randn(2 , 3 ).to(0 ) lowerCAmelCase = model(lowerCAmelCase ) self.assertEqual(output.device , torch.device(0 ) ) def __lowercase ( self : int ): lowerCAmelCase = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices lowerCAmelCase = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**lowerCAmelCase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**lowerCAmelCase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**lowerCAmelCase ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device lowerCAmelCase = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , lowerCAmelCase ) lowerCAmelCase = torch.randn(2 , 3 ) lowerCAmelCase = model(lowerCAmelCase ) self.assertEqual(output.device , lowerCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload lowerCAmelCase = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**lowerCAmelCase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**lowerCAmelCase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**lowerCAmelCase ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) lowerCAmelCase = torch.randn(2 , 3 ) lowerCAmelCase = model(lowerCAmelCase ) self.assertEqual(output.device , lowerCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def __lowercase ( self : Tuple ): lowerCAmelCase = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices lowerCAmelCase = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(lowerCAmelCase , execution_device=lowerCAmelCase , offload=lowerCAmelCase ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device lowerCAmelCase = torch.device(lowerCAmelCase ) self.assertEqual(model.batchnorm.running_mean.device , lowerCAmelCase ) lowerCAmelCase = torch.randn(2 , 3 ) lowerCAmelCase = model(lowerCAmelCase ) self.assertEqual(output.device , lowerCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowerCAmelCase ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(lowerCAmelCase , execution_device=lowerCAmelCase , offload=lowerCAmelCase , offload_buffers=lowerCAmelCase ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) lowerCAmelCase = torch.randn(2 , 3 ) lowerCAmelCase = model(lowerCAmelCase ) self.assertEqual(output.device , lowerCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowerCAmelCase ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def __lowercase ( self : str ): lowerCAmelCase = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices lowerCAmelCase = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( lowerCAmelCase , execution_device=lowerCAmelCase , offload=lowerCAmelCase , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device lowerCAmelCase = torch.device(lowerCAmelCase ) self.assertEqual(model.batchnorm.running_mean.device , lowerCAmelCase ) lowerCAmelCase = torch.randn(2 , 3 ) lowerCAmelCase = model(lowerCAmelCase ) self.assertEqual(output.device , lowerCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowerCAmelCase ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( lowerCAmelCase , execution_device=lowerCAmelCase , offload=lowerCAmelCase , weights_map=model.state_dict() , offload_buffers=lowerCAmelCase , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) lowerCAmelCase = torch.randn(2 , 3 ) lowerCAmelCase = model(lowerCAmelCase ) self.assertEqual(output.device , lowerCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowerCAmelCase ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
169
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] A = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] A = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): A = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
234
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @slow @require_torch def _snake_case ( self : int ) -> str: _lowerCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' ) _lowerCamelCase = BertTokenizer.from_pretrained('bert-base-uncased' ) _lowerCamelCase = bertabert.config.encoder.vocab_size _lowerCamelCase = tokenizer.sep_token_id _lowerCamelCase = tokenizer.cls_token_id _lowerCamelCase = 1_2_8 _lowerCamelCase = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' ) _lowerCamelCase = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' ) _lowerCamelCase = train_dataset.select(range(3_2 ) ) _lowerCamelCase = val_dataset.select(range(1_6 ) ) _lowerCamelCase = 4 def _map_to_encoder_decoder_inputs(snake_case__ : Any ): # Tokenizer will automatically set [BOS] <text> [EOS] _lowerCamelCase = tokenizer(batch['article'] , padding='max_length' , truncation=snake_case__ , max_length=5_1_2 ) _lowerCamelCase = tokenizer(batch['highlights'] , padding='max_length' , truncation=snake_case__ , max_length=1_2_8 ) _lowerCamelCase = inputs.input_ids _lowerCamelCase = inputs.attention_mask _lowerCamelCase = outputs.input_ids _lowerCamelCase = outputs.input_ids.copy() _lowerCamelCase = [ [-1_0_0 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] _lowerCamelCase = outputs.attention_mask assert all(len(snake_case__ ) == 5_1_2 for x in inputs.input_ids ) assert all(len(snake_case__ ) == 1_2_8 for x in outputs.input_ids ) return batch def _compute_metrics(snake_case__ : Union[str, Any] ): _lowerCamelCase = pred.label_ids _lowerCamelCase = pred.predictions # all unnecessary tokens are removed _lowerCamelCase = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) _lowerCamelCase = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) _lowerCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(snake_case__ ) )] ) / len(snake_case__ ) return {"accuracy": accuracy} # map train dataset _lowerCamelCase = train_dataset.map( _map_to_encoder_decoder_inputs , batched=snake_case__ , batch_size=snake_case__ , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset _lowerCamelCase = val_dataset.map( _map_to_encoder_decoder_inputs , batched=snake_case__ , batch_size=snake_case__ , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) _lowerCamelCase = self.get_auto_remove_tmp_dir() _lowerCamelCase = SeqaSeqTrainingArguments( output_dir=snake_case__ , per_device_train_batch_size=snake_case__ , per_device_eval_batch_size=snake_case__ , predict_with_generate=snake_case__ , evaluation_strategy='steps' , do_train=snake_case__ , do_eval=snake_case__ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer _lowerCamelCase = SeqaSeqTrainer( model=snake_case__ , args=snake_case__ , compute_metrics=_compute_metrics , train_dataset=snake_case__ , eval_dataset=snake_case__ , tokenizer=snake_case__ , ) # start training trainer.train()
234
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class _lowerCamelCase( _a ): lowercase_ : int = """ctrl""" lowercase_ : List[Any] = ["""past_key_values"""] lowercase_ : Any = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self, lowerCamelCase=24_65_34, lowerCamelCase=2_56, lowerCamelCase=12_80, lowerCamelCase=81_92, lowerCamelCase=48, lowerCamelCase=16, lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=1E-6, lowerCamelCase=0.0_2, lowerCamelCase=True, **lowerCamelCase, ) -> Dict: """simple docstring""" _lowercase : Optional[int] = vocab_size _lowercase : Optional[Any] = n_positions _lowercase : int = n_embd _lowercase : Union[str, Any] = n_layer _lowercase : Tuple = n_head _lowercase : Any = dff _lowercase : Tuple = resid_pdrop _lowercase : List[str] = embd_pdrop _lowercase : Dict = layer_norm_epsilon _lowercase : Optional[int] = initializer_range _lowercase : Tuple = use_cache super().__init__(**lowerCamelCase)
89
def UpperCamelCase_( lowerCamelCase_ ) -> int: if n == 1 or not isinstance(lowerCamelCase_ , lowerCamelCase_ ): return 0 elif n == 2: return 1 else: _lowercase : List[str] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def UpperCamelCase_( lowerCamelCase_ ) -> int: _lowercase : Tuple = 0 _lowercase : List[str] = 2 while digits < n: index += 1 _lowercase : Optional[int] = len(str(fibonacci(lowerCamelCase_ ) ) ) return index def UpperCamelCase_( lowerCamelCase_ = 1000 ) -> int: return fibonacci_digits_index(lowerCamelCase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
89
1
'''simple docstring''' from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCamelCase__ ( __lowerCAmelCase ): def __lt__( self : Dict , lowerCamelCase : Any ): '''simple docstring''' return self[-1] < other[-1] def __eq__( self : str , lowerCamelCase : List[str] ): '''simple docstring''' return self[-1] == other[-1] def _lowerCamelCase (__lowerCamelCase : list ) -> list: a__ = [] # sort into stacks for element in collection: a__ = Stack([element] ) a__ = bisect_left(__lowerCamelCase , __lowerCamelCase ) if i != len(__lowerCamelCase ): stacks[i].append(__lowerCamelCase ) else: stacks.append(__lowerCamelCase ) # use a heap-based merge to merge stack efficiently a__ = merge(*(reversed(__lowerCamelCase ) for stack in stacks) ) return collection if __name__ == "__main__": lowerCAmelCase_ : Optional[Any] = input("Enter numbers separated by a comma:\n").strip() lowerCAmelCase_ : Tuple = [int(item) for item in user_input.split(",")] print(patience_sort(unsorted))
289
'''simple docstring''' def _lowerCamelCase (__lowerCamelCase : int = 400_0000 ) -> int: a__ = [0, 1] a__ = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 a__ = 0 for j in range(len(__lowerCamelCase ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
289
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case , __snake_case ): return (preds == labels).mean() @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) UpperCAmelCase = field(metadata={"help": "Should contain the data files for the task."} ) UpperCAmelCase = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed set_seed(training_args.seed ) try: _UpperCamelCase = processors[data_args.task_name]() _UpperCamelCase = processor.get_labels() _UpperCamelCase = len(__snake_case ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , ) # Get datasets _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(__snake_case ) -> Dict: _UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__snake_case , p.label_ids )} # Data collator _UpperCamelCase = DataCollatorWithPadding(__snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCamelCase = Trainer( model=__snake_case , args=__snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , compute_metrics=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(__snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __snake_case , __snake_case ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__snake_case ) return results def _snake_case ( __snake_case ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
10
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __lowercase (unittest.TestCase ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=9_9 , lowerCAmelCase__=3_2 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=3_7 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=1_6 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=4 , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = parent SCREAMING_SNAKE_CASE_ : List[str] = batch_size SCREAMING_SNAKE_CASE_ : Dict = seq_length SCREAMING_SNAKE_CASE_ : Any = is_training SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_attention_mask SCREAMING_SNAKE_CASE_ : Optional[Any] = use_token_type_ids SCREAMING_SNAKE_CASE_ : List[Any] = use_labels SCREAMING_SNAKE_CASE_ : List[Any] = vocab_size SCREAMING_SNAKE_CASE_ : Dict = hidden_size SCREAMING_SNAKE_CASE_ : Any = num_hidden_layers SCREAMING_SNAKE_CASE_ : List[str] = num_attention_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE_ : int = hidden_act SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE_ : Any = type_vocab_size SCREAMING_SNAKE_CASE_ : str = type_sequence_label_size SCREAMING_SNAKE_CASE_ : str = initializer_range SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_choices def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ : str = None if self.use_attention_mask: SCREAMING_SNAKE_CASE_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : Optional[int] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : Any = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = config_and_inputs SCREAMING_SNAKE_CASE_ : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) SCREAMING_SNAKE_CASE_ : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __lowercase (__SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _UpperCAmelCase = True _UpperCAmelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = FlaxRobertaModelTester(self ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ : List[str] = model_class_name.from_pretrained('roberta-base' , from_pt=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCAmelCase__ )
101
0
'''simple docstring''' import sys a : Dict = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Any = 1 for digit in s: product *= int(__magic_name__ ) return product def lowercase ( __magic_name__ = N ): '''simple docstring''' UpperCAmelCase : Optional[int] = -sys.maxsize - 1 UpperCAmelCase : List[Any] = n[:13] UpperCAmelCase : Optional[int] = 13 while cur_index < len(__magic_name__ ) - 13: if int(n[cur_index] ) >= int(substr[0] ): UpperCAmelCase : Any = substr[1:] + n[cur_index] cur_index += 1 else: UpperCAmelCase : List[Any] = max(__magic_name__ , str_eval(__magic_name__ ) ) UpperCAmelCase : List[Any] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F'{solution() = }')
609
'''simple docstring''' import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class UpperCamelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : str = DownBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : Any = "down" def A_ ( self ): '''simple docstring''' UpperCAmelCase : Tuple = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(snake_case ) class UpperCamelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = ResnetDownsampleBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : Optional[Any] = "down" def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(snake_case ) class UpperCamelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : int = AttnDownBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : Dict = "down" def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(snake_case ) class UpperCamelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = CrossAttnDownBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : List[Any] = "down" def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase : List[str] = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : str = 3_2 return init_dict, inputs_dict def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(snake_case ) class UpperCamelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = SimpleCrossAttnDownBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : Optional[int] = "down" @property def A_ ( self ): '''simple docstring''' return super().get_dummy_input(include_encoder_hidden_states=snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase : int = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : List[str] = 3_2 return init_dict, inputs_dict @unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(snake_case ) class UpperCamelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = SkipDownBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : str = "down" @property def A_ ( self ): '''simple docstring''' return super().get_dummy_input(include_skip_sample=snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(snake_case ) class UpperCamelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : str = AttnSkipDownBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : Tuple = "down" @property def A_ ( self ): '''simple docstring''' return super().get_dummy_input(include_skip_sample=snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[str] = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(snake_case ) class UpperCamelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = DownEncoderBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : List[str] = "down" @property def A_ ( self ): '''simple docstring''' return super().get_dummy_input(include_temb=snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = { "in_channels": 3_2, "out_channels": 3_2, } UpperCAmelCase : Optional[Any] = self.dummy_input return init_dict, inputs_dict def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(snake_case ) class UpperCamelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = AttnDownEncoderBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : str = "down" @property def A_ ( self ): '''simple docstring''' return super().get_dummy_input(include_temb=snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = { "in_channels": 3_2, "out_channels": 3_2, } UpperCAmelCase : str = self.dummy_input return init_dict, inputs_dict def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[int] = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(snake_case ) class UpperCamelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = UNetMidBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : Any = "mid" def A_ ( self ): '''simple docstring''' UpperCAmelCase : int = { "in_channels": 3_2, "temb_channels": 1_2_8, } UpperCAmelCase : str = self.dummy_input return init_dict, inputs_dict def A_ ( self ): '''simple docstring''' UpperCAmelCase : Tuple = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(snake_case ) class UpperCamelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : int = UNetMidBlockaDCrossAttn # noqa F405 SCREAMING_SNAKE_CASE__ : Optional[int] = "mid" def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase : List[Any] = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : Optional[Any] = 3_2 return init_dict, inputs_dict def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(snake_case ) class UpperCamelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = UNetMidBlockaDSimpleCrossAttn # noqa F405 SCREAMING_SNAKE_CASE__ : Dict = "mid" @property def A_ ( self ): '''simple docstring''' return super().get_dummy_input(include_encoder_hidden_states=snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase : List[str] = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : Union[str, Any] = 3_2 return init_dict, inputs_dict def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(snake_case ) class UpperCamelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = UpBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : List[Any] = "up" @property def A_ ( self ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(snake_case ) class UpperCamelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = ResnetUpsampleBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : List[Any] = "up" @property def A_ ( self ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : str = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(snake_case ) class UpperCamelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : int = CrossAttnUpBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : Any = "up" @property def A_ ( self ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Any = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : Any = 3_2 return init_dict, inputs_dict def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[int] = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(snake_case ) class UpperCamelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : str = SimpleCrossAttnUpBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : str = "up" @property def A_ ( self ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=snake_case , include_encoder_hidden_states=snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase : List[Any] = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : Optional[int] = 3_2 return init_dict, inputs_dict def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(snake_case ) class UpperCamelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = AttnUpBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : Any = "up" @property def A_ ( self ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=snake_case ) @unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[int] = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(snake_case ) class UpperCamelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = SkipUpBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : Optional[Any] = "up" @property def A_ ( self ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[str] = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(snake_case ) class UpperCamelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = AttnSkipUpBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : Any = "up" @property def A_ ( self ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(snake_case ) class UpperCamelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = UpDecoderBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : Dict = "up" @property def A_ ( self ): '''simple docstring''' return super().get_dummy_input(include_temb=snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = {"in_channels": 3_2, "out_channels": 3_2} UpperCAmelCase : Any = self.dummy_input return init_dict, inputs_dict def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(snake_case ) class UpperCamelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = AttnUpDecoderBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : Tuple = "up" @property def A_ ( self ): '''simple docstring''' return super().get_dummy_input(include_temb=snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Tuple = {"in_channels": 3_2, "out_channels": 3_2} UpperCAmelCase : int = self.dummy_input return init_dict, inputs_dict def A_ ( self ): '''simple docstring''' UpperCAmelCase : str = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(snake_case )
609
1
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class __magic_name__ : def __init__( self , __magic_name__ , __magic_name__=1_3 , __magic_name__=3_0 , __magic_name__=2 , __magic_name__=3 , __magic_name__=True , __magic_name__=True , __magic_name__=3_2 , __magic_name__=2 , __magic_name__=4 , __magic_name__=3_7 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=1_0 , __magic_name__=0.02 , __magic_name__=3 , __magic_name__=None , __magic_name__=2 , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = scope _lowerCAmelCase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) _lowerCAmelCase = (image_size // patch_size) ** 2 _lowerCAmelCase = num_patches + 2 def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self ): """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__magic_name__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = TFDeiTModel(config=__magic_name__ ) _lowerCAmelCase = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = TFDeiTForMaskedImageModeling(config=__magic_name__ ) _lowerCAmelCase = model(__magic_name__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCAmelCase = 1 _lowerCAmelCase = TFDeiTForMaskedImageModeling(__magic_name__ ) _lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase = model(__magic_name__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = self.type_sequence_label_size _lowerCAmelCase = TFDeiTForImageClassification(__magic_name__ ) _lowerCAmelCase = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase = 1 _lowerCAmelCase = TFDeiTForImageClassification(__magic_name__ ) _lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __magic_name__ ( _UpperCamelCase ,_UpperCamelCase ,unittest.TestCase ): UpperCamelCase : Union[str, Any] = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) UpperCamelCase : Optional[Any] = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) UpperCamelCase : List[str] = False UpperCamelCase : List[str] = False UpperCamelCase : Any = False UpperCamelCase : List[Any] = False def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = TFDeiTModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=3_7 ) def _lowerCamelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def _lowerCamelCase ( self ): """simple docstring""" pass def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) _lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , tf.keras.layers.Dense ) ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(__magic_name__ ) _lowerCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__=False ): """simple docstring""" _lowerCAmelCase = super()._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def _lowerCamelCase ( self ): """simple docstring""" for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = TFDeiTModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def A__ ( ): """simple docstring""" _lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __magic_name__ ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self ): """simple docstring""" return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=__magic_name__ , return_tensors='tf' ) # forward pass _lowerCAmelCase = model(**__magic_name__ ) # verify the logits _lowerCAmelCase = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) _lowerCAmelCase = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1e-4 ) )
589
"""simple docstring""" def A__ ( __lowerCamelCase, __lowerCamelCase ): """simple docstring""" _validate_point(__lowerCamelCase ) _validate_point(__lowerCamelCase ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(a - b ) for a, b in zip(__lowerCamelCase, __lowerCamelCase ) ) ) def A__ ( __lowerCamelCase ): """simple docstring""" if point: if isinstance(__lowerCamelCase, __lowerCamelCase ): for item in point: if not isinstance(__lowerCamelCase, (int, float) ): _lowerCAmelCase = ( 'Expected a list of numbers as input, found ' F'''{type(__lowerCamelCase ).__name__}''' ) raise TypeError(__lowerCamelCase ) else: _lowerCAmelCase = F'''Expected a list of numbers as input, found {type(__lowerCamelCase ).__name__}''' raise TypeError(__lowerCamelCase ) else: raise ValueError('Missing an input' ) def A__ ( __lowerCamelCase, __lowerCamelCase ): """simple docstring""" _validate_point(__lowerCamelCase ) _validate_point(__lowerCamelCase ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(x - y ) for x, y in zip(__lowerCamelCase, __lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
589
1
from datetime import datetime import matplotlib.pyplot as plt import torch def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Optional[int]: for param in module.parameters(): UpperCAmelCase_ = False def snake_case__ ( ) -> Optional[int]: UpperCAmelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCAmelCase_ = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> List[str]: UpperCAmelCase_ = plt.imshow(__lowerCAmelCase ) fig.axes.get_xaxis().set_visible(__lowerCAmelCase ) fig.axes.get_yaxis().set_visible(__lowerCAmelCase ) plt.show() def snake_case__ ( ) -> int: UpperCAmelCase_ = datetime.now() UpperCAmelCase_ = current_time.strftime("%H:%M:%S" ) return timestamp
709
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = [1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 0, 0, 0 UpperCAmelCase_ = ugly_nums[ia] * 2 UpperCAmelCase_ = ugly_nums[ia] * 3 UpperCAmelCase_ = ugly_nums[ia] * 5 for _ in range(1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ugly_nums.append(__SCREAMING_SNAKE_CASE ) if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(200) = }''')
23
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : int = """longformer""" def __init__( self :List[str] , lowerCamelCase__ :Union[List[int], int] = 5_12 , lowerCamelCase__ :int = 2 , lowerCamelCase__ :int = 1 , lowerCamelCase__ :int = 0 , lowerCamelCase__ :int = 2 , lowerCamelCase__ :int = 3_05_22 , lowerCamelCase__ :int = 7_68 , lowerCamelCase__ :int = 12 , lowerCamelCase__ :int = 12 , lowerCamelCase__ :int = 30_72 , lowerCamelCase__ :str = "gelu" , lowerCamelCase__ :float = 0.1 , lowerCamelCase__ :float = 0.1 , lowerCamelCase__ :int = 5_12 , lowerCamelCase__ :int = 2 , lowerCamelCase__ :float = 0.02 , lowerCamelCase__ :float = 1e-12 , lowerCamelCase__ :bool = False , **lowerCamelCase__ :Tuple , ): super().__init__(pad_token_id=lowerCamelCase__ , **lowerCamelCase__ ) UpperCamelCase__ :List[Any] = attention_window UpperCamelCase__ :Union[str, Any] = sep_token_id UpperCamelCase__ :Tuple = bos_token_id UpperCamelCase__ :Optional[Any] = eos_token_id UpperCamelCase__ :Tuple = vocab_size UpperCamelCase__ :str = hidden_size UpperCamelCase__ :str = num_hidden_layers UpperCamelCase__ :Dict = num_attention_heads UpperCamelCase__ :Any = hidden_act UpperCamelCase__ :str = intermediate_size UpperCamelCase__ :str = hidden_dropout_prob UpperCamelCase__ :Any = attention_probs_dropout_prob UpperCamelCase__ :List[str] = max_position_embeddings UpperCamelCase__ :Any = type_vocab_size UpperCamelCase__ :str = initializer_range UpperCamelCase__ :Optional[Any] = layer_norm_eps UpperCamelCase__ :Optional[Any] = onnx_export class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :Optional[Any] , lowerCamelCase__ :"PretrainedConfig" , lowerCamelCase__ :str = "default" , lowerCamelCase__ :"List[PatchingSpec]" = None ): super().__init__(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Any = True @property def __a ( self :Optional[Any] ): if self.task == "multiple-choice": UpperCamelCase__ :List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCamelCase__ :List[str] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""global_attention_mask""", dynamic_axis), ] ) @property def __a ( self :List[str] ): UpperCamelCase__ :int = super().outputs if self.task == "default": UpperCamelCase__ :Tuple = {0: """batch"""} return outputs @property def __a ( self :List[Any] ): return 1e-4 @property def __a ( self :Tuple ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def __a ( self :List[Any] , lowerCamelCase__ :"PreTrainedTokenizerBase" , lowerCamelCase__ :int = -1 , lowerCamelCase__ :int = -1 , lowerCamelCase__ :bool = False , lowerCamelCase__ :Optional[TensorType] = None , ): UpperCamelCase__ :Any = super().generate_dummy_inputs( preprocessor=lowerCamelCase__ , batch_size=lowerCamelCase__ , seq_length=lowerCamelCase__ , is_pair=lowerCamelCase__ , framework=lowerCamelCase__ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly UpperCamelCase__ :Union[str, Any] = torch.zeros_like(inputs["""input_ids"""] ) # make every second token global UpperCamelCase__ :Union[str, Any] = 1 return inputs
45
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :Union[str, Any] , *lowerCamelCase__ :Optional[int] , **lowerCamelCase__ :Dict ): warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , lowerCamelCase__ , ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__ )
45
1
def __lowerCAmelCase ( __magic_name__ , __magic_name__ ): return base * power(__magic_name__ , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('Raise base to the power of exponent using recursion...') _SCREAMING_SNAKE_CASE : int = int(input('Enter the base: ').strip()) _SCREAMING_SNAKE_CASE : List[Any] = int(input('Enter the exponent: ').strip()) _SCREAMING_SNAKE_CASE : Optional[int] = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents _SCREAMING_SNAKE_CASE : Optional[int] = 1 / result print(f'''{base} to the power of {exponent} is {result}''')
206
def __lowerCAmelCase ( __magic_name__ , __magic_name__ ): _lowercase: List[Any] = [0 for i in range(r + 1 )] # nc0 = 1 _lowercase: Dict = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. _lowercase: str = min(__magic_name__ , __magic_name__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
206
1
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase : str ) -> list[int]: return [ord(_lowerCamelCase ) - 96 for elem in plain] def lowerCamelCase__ ( _lowerCamelCase : list[int] ) -> str: return "".join(chr(elem + 96 ) for elem in encoded ) def lowerCamelCase__ ( ) -> None: lowerCamelCase_ = encode(input('-> ' ).strip().lower() ) print('Encoded: ' , _lowerCamelCase ) print('Decoded:' , decode(_lowerCamelCase ) ) if __name__ == "__main__": main()
549
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _lowercase = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model _lowercase = { # fairseq: '''wmt19-ru-en''': {'''length_penalty''': 1.1}, '''wmt19-en-ru''': {'''length_penalty''': 1.15}, '''wmt19-en-de''': {'''length_penalty''': 1.0}, '''wmt19-de-en''': {'''length_penalty''': 1.1}, # allenai: '''wmt16-en-de-dist-12-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-dist-6-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-12-1''': {'''length_penalty''': 0.8}, '''wmt19-de-en-6-6-base''': {'''length_penalty''': 0.6}, '''wmt19-de-en-6-6-big''': {'''length_penalty''': 0.6}, } # this remaps the different models to their organization names _lowercase = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: _lowercase = '''facebook''' for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: _lowercase = '''allenai''' def _A (UpperCamelCase : Tuple ) ->Any: '''simple docstring''' lowerCamelCase__ : str = dict((re.sub(r"""@@$""" , """""" , UpperCamelCase ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""" , """</w>""" , UpperCamelCase ), v) for k, v in d.items() ) lowerCamelCase__ : List[Any] = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[f"{k}</w>"] lowerCamelCase__ : List[str] = d[k] # restore return da def _A (UpperCamelCase : str , UpperCamelCase : List[str] ) ->int: '''simple docstring''' assert os.path.exists(UpperCamelCase ) os.makedirs(UpperCamelCase , exist_ok=UpperCamelCase ) print(f"Writing results to {pytorch_dump_folder_path}" ) # handle various types of models lowerCamelCase__ : str = basename(UpperCamelCase ) lowerCamelCase__ : str = dirname(UpperCamelCase ) lowerCamelCase__ : Any = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCamelCase__ : Tuple = cls.hub_models() lowerCamelCase__ : Optional[int] = {"""bpe""": """fastbpe""", """tokenizer""": """moses"""} lowerCamelCase__ : List[Any] = """.""" # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f"using checkpoint {checkpoint_file}" ) lowerCamelCase__ : List[str] = hub_utils.from_pretrained( UpperCamelCase , UpperCamelCase , UpperCamelCase , archive_map=UpperCamelCase , **UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = vars(chkpt["""args"""]["""model"""] ) lowerCamelCase__ : Union[str, Any] = args["""source_lang"""] lowerCamelCase__ : Dict = args["""target_lang"""] lowerCamelCase__ : List[Any] = dirname(UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = basename(UpperCamelCase ) # dicts lowerCamelCase__ : int = os.path.join(UpperCamelCase , f"dict.{src_lang}.txt" ) lowerCamelCase__ : Optional[Any] = os.path.join(UpperCamelCase , f"dict.{tgt_lang}.txt" ) lowerCamelCase__ : Any = Dictionary.load(UpperCamelCase ) lowerCamelCase__ : List[Any] = rewrite_dict_keys(src_dict.indices ) lowerCamelCase__ : Optional[Any] = len(UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = os.path.join(UpperCamelCase , """vocab-src.json""" ) print(f"Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records" ) with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase , ensure_ascii=UpperCamelCase , indent=UpperCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCamelCase__ : Dict = True for k in src_vocab.keys(): if not k.islower(): lowerCamelCase__ : Tuple = False break lowerCamelCase__ : Union[str, Any] = Dictionary.load(UpperCamelCase ) lowerCamelCase__ : List[str] = rewrite_dict_keys(tgt_dict.indices ) lowerCamelCase__ : str = len(UpperCamelCase ) lowerCamelCase__ : List[str] = os.path.join(UpperCamelCase , """vocab-tgt.json""" ) print(f"Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records" ) with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase , ensure_ascii=UpperCamelCase , indent=UpperCamelCase ) ) # merges_file (bpecodes) lowerCamelCase__ : List[str] = os.path.join(UpperCamelCase , VOCAB_FILES_NAMES["""merges_file"""] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCamelCase__ : Union[str, Any] = os.path.join(UpperCamelCase , UpperCamelCase ) if os.path.exists(UpperCamelCase ): break with open(UpperCamelCase , encoding="""utf-8""" ) as fin: lowerCamelCase__ : Dict = fin.read() lowerCamelCase__ : Tuple = re.sub(r""" \d+$""" , """""" , UpperCamelCase , 0 , re.M ) # remove frequency number print(f"Generating {merges_file}" ) with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as fout: fout.write(UpperCamelCase ) # model config lowerCamelCase__ : Optional[Any] = os.path.join(UpperCamelCase , """config.json""" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f"need to extend tokenizer to support bpe={args['bpe']}" assert args["tokenizer"] == "moses", f"need to extend tokenizer to support bpe={args['tokenizer']}" lowerCamelCase__ : str = { """architectures""": ["""FSMTForConditionalGeneration"""], """model_type""": """fsmt""", """activation_dropout""": args["""activation_dropout"""], """activation_function""": """relu""", """attention_dropout""": args["""attention_dropout"""], """d_model""": args["""decoder_embed_dim"""], """dropout""": args["""dropout"""], """init_std""": 0.02, """max_position_embeddings""": args["""max_source_positions"""], """num_hidden_layers""": args["""encoder_layers"""], """src_vocab_size""": src_vocab_size, """tgt_vocab_size""": tgt_vocab_size, """langs""": [src_lang, tgt_lang], """encoder_attention_heads""": args["""encoder_attention_heads"""], """encoder_ffn_dim""": args["""encoder_ffn_embed_dim"""], """encoder_layerdrop""": args["""encoder_layerdrop"""], """encoder_layers""": args["""encoder_layers"""], """decoder_attention_heads""": args["""decoder_attention_heads"""], """decoder_ffn_dim""": args["""decoder_ffn_embed_dim"""], """decoder_layerdrop""": args["""decoder_layerdrop"""], """decoder_layers""": args["""decoder_layers"""], """bos_token_id""": 0, """pad_token_id""": 1, """eos_token_id""": 2, """is_encoder_decoder""": True, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_all_embeddings"""], } # good hparam defaults to start with lowerCamelCase__ : Dict = 5 lowerCamelCase__ : Optional[Any] = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCamelCase__ : Any = best_score_hparams[model_dir]["""length_penalty"""] else: lowerCamelCase__ : Union[str, Any] = 1.0 print(f"Generating {fsmt_model_config_file}" ) with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase , ensure_ascii=UpperCamelCase , indent=UpperCamelCase ) ) # tokenizer config lowerCamelCase__ : Union[str, Any] = os.path.join(UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Any = { """langs""": [src_lang, tgt_lang], """model_max_length""": 1024, """do_lower_case""": do_lower_case, } print(f"Generating {fsmt_tokenizer_config_file}" ) with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase , ensure_ascii=UpperCamelCase , indent=UpperCamelCase ) ) # model lowerCamelCase__ : Tuple = chkpt["""models"""][0] lowerCamelCase__ : Tuple = model.state_dict() # rename keys to start with 'model.' lowerCamelCase__ : Tuple = OrderedDict(("""model.""" + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCamelCase__ : int = [ """model.model""", """model.encoder.version""", """model.decoder.version""", """model.encoder_embed_tokens.weight""", """model.decoder_embed_tokens.weight""", """model.encoder.embed_positions._float_tensor""", """model.decoder.embed_positions._float_tensor""", ] for k in ignore_keys: model_state_dict.pop(UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Tuple = FSMTConfig.from_pretrained(UpperCamelCase ) lowerCamelCase__ : List[str] = FSMTForConditionalGeneration(UpperCamelCase ) # check that it loads ok model_new.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) # save lowerCamelCase__ : Any = os.path.join(UpperCamelCase , UpperCamelCase ) print(f"Generating {pytorch_weights_dump_path}" ) torch.save(UpperCamelCase , UpperCamelCase ) print("""Conversion is done!""" ) print("""\nLast step is to upload the files to s3""" ) print(f"cd {data_root}" ) print(f"transformers-cli upload {model_dir}" ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fsmt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowercase = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
157
0
"""simple docstring""" def _UpperCAmelCase ( __lowerCamelCase : list[int] , __lowerCamelCase : int ) -> bool: _snake_case = len(__lowerCamelCase ) _snake_case = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _snake_case = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): _snake_case = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: _snake_case = subset[i - 1][j] if arr[i - 1] <= j: _snake_case = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
711
"""simple docstring""" import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) UpperCAmelCase__ = { 'iou_prediction_head.layers.0': 'iou_prediction_head.proj_in', 'iou_prediction_head.layers.1': 'iou_prediction_head.layers.0', 'iou_prediction_head.layers.2': 'iou_prediction_head.proj_out', 'mask_decoder.output_upscaling.0': 'mask_decoder.upscale_conv1', 'mask_decoder.output_upscaling.1': 'mask_decoder.upscale_layer_norm', 'mask_decoder.output_upscaling.3': 'mask_decoder.upscale_conv2', 'mask_downscaling.0': 'mask_embed.conv1', 'mask_downscaling.1': 'mask_embed.layer_norm1', 'mask_downscaling.3': 'mask_embed.conv2', 'mask_downscaling.4': 'mask_embed.layer_norm2', 'mask_downscaling.6': 'mask_embed.conv3', 'point_embeddings': 'point_embed', 'pe_layer.positional_encoding_gaussian_matrix': 'shared_embedding.positional_embedding', 'image_encoder': 'vision_encoder', 'neck.0': 'neck.conv1', 'neck.1': 'neck.layer_norm1', 'neck.2': 'neck.conv2', 'neck.3': 'neck.layer_norm2', 'patch_embed.proj': 'patch_embed.projection', '.norm': '.layer_norm', 'blocks': 'layers', } def _UpperCAmelCase ( __lowerCamelCase : Optional[Any] ) -> List[Any]: _snake_case = {} state_dict.pop('''pixel_mean''' , __lowerCamelCase ) state_dict.pop('''pixel_std''' , __lowerCamelCase ) _snake_case = R'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*''' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _snake_case = key.replace(__lowerCamelCase , __lowerCamelCase ) if re.match(__lowerCamelCase , __lowerCamelCase ): _snake_case = int(re.match(__lowerCamelCase , __lowerCamelCase ).group(2 ) ) if layer_nb == 0: _snake_case = key.replace('''layers.0''' , '''proj_in''' ) elif layer_nb == 1: _snake_case = key.replace('''layers.1''' , '''layers.0''' ) elif layer_nb == 2: _snake_case = key.replace('''layers.2''' , '''proj_out''' ) _snake_case = value _snake_case = model_state_dict[ '''prompt_encoder.shared_embedding.positional_embedding''' ] return model_state_dict def _UpperCAmelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int]="ybelkada/segment-anything" ) -> List[str]: _snake_case = hf_hub_download(__lowerCamelCase , f'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: _snake_case = SamConfig() elif "sam_vit_l" in model_name: _snake_case = SamVisionConfig( hidden_size=10_24 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) _snake_case = SamConfig( vision_config=__lowerCamelCase , ) elif "sam_vit_h" in model_name: _snake_case = SamVisionConfig( hidden_size=12_80 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) _snake_case = SamConfig( vision_config=__lowerCamelCase , ) _snake_case = torch.load(__lowerCamelCase , map_location='''cpu''' ) _snake_case = replace_keys(__lowerCamelCase ) _snake_case = SamImageProcessor() _snake_case = SamProcessor(image_processor=__lowerCamelCase ) _snake_case = SamModel(__lowerCamelCase ) hf_model.load_state_dict(__lowerCamelCase ) _snake_case = hf_model.to('''cuda''' ) _snake_case = '''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png''' _snake_case = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert('''RGB''' ) _snake_case = [[[4_00, 6_50]]] _snake_case = [[1]] _snake_case = processor(images=np.array(__lowerCamelCase ) , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): _snake_case = hf_model(**__lowerCamelCase ) _snake_case = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_890_251_159_668 _snake_case = processor( images=np.array(__lowerCamelCase ) , input_points=__lowerCamelCase , input_labels=__lowerCamelCase , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): _snake_case = hf_model(**__lowerCamelCase ) _snake_case = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_712_603_092_193_604 _snake_case = ((75, 2_75, 17_25, 8_50),) _snake_case = processor(images=np.array(__lowerCamelCase ) , input_boxes=__lowerCamelCase , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): _snake_case = hf_model(**__lowerCamelCase ) _snake_case = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_686_015_605_926_514 # Test with 2 points and 1 image. _snake_case = [[[4_00, 6_50], [8_00, 6_50]]] _snake_case = [[1, 1]] _snake_case = processor( images=np.array(__lowerCamelCase ) , input_points=__lowerCamelCase , input_labels=__lowerCamelCase , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): _snake_case = hf_model(**__lowerCamelCase ) _snake_case = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_936_047_792_434_692 if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() UpperCAmelCase__ = ['sam_vit_b_01ec64', 'sam_vit_h_4b8939', 'sam_vit_l_0b3195'] parser.add_argument( '--model_name', default='sam_vit_h_4b8939', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) parser.add_argument( '--model_hub_id', default='ybelkada/segment-anything', choices=choices, type=str, help='Path to hf config.json of model to convert', ) UpperCAmelCase__ = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
430
0
"""simple docstring""" import enum import shutil import sys snake_case , snake_case = shutil.get_terminal_size() snake_case = {'''UP''': '''A''', '''DOWN''': '''B''', '''RIGHT''': '''C''', '''LEFT''': '''D'''} class UpperCAmelCase ( enum.Enum ): A__ : List[Any] = 0 A__ : List[str] = 1 def snake_case ( lowerCAmelCase_ , lowerCAmelCase_="" ) -> List[Any]: sys.stdout.write(str(lowerCAmelCase_ ) + end ) sys.stdout.flush() def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="" ) -> List[Any]: forceWrite(f"""\u001b[{color}m{content}\u001b[0m""" , lowerCAmelCase_ ) def snake_case ( ) -> Dict: forceWrite('''\r''' ) def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple: forceWrite(f"""\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}""" ) def snake_case ( ) -> Tuple: forceWrite(''' ''' * TERMINAL_WIDTH ) reset_cursor() def snake_case ( ) -> int: reset_cursor() forceWrite('''-''' * TERMINAL_WIDTH )
103
"""simple docstring""" from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class UpperCAmelCase ( yaml.SafeLoader ): def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : List[str] ): """simple docstring""" _snake_case = [self.constructed_objects[key_node] for key_node, _ in node.value] _snake_case = [tuple(__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else key for key in keys] _snake_case = Counter(__lowerCamelCase ) _snake_case = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f"""Got duplicate yaml keys: {duplicate_keys}""" ) def __UpperCAmelCase ( self : str , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any]=False ): """simple docstring""" _snake_case = super().construct_mapping(__lowerCamelCase , deep=__lowerCamelCase ) self._check_no_duplicates_on_constructed_node(__lowerCamelCase ) return mapping def snake_case ( lowerCAmelCase_ ) -> Tuple[Optional[str], str]: _snake_case = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: _snake_case = full_content[1:].index('''---''' ) + 1 _snake_case = '''\n'''.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(lowerCAmelCase_ ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): # class attributes A__ : int = {'''train_eval_index'''} # train-eval-index in the YAML metadata @classmethod def __UpperCAmelCase ( cls : str , __lowerCamelCase : Path ): """simple docstring""" with open(__lowerCamelCase , encoding='''utf-8''' ) as readme_file: _snake_case , _snake_case = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(__lowerCamelCase ) else: return cls() def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : Path ): """simple docstring""" if path.exists(): with open(__lowerCamelCase , encoding='''utf-8''' ) as readme_file: _snake_case = readme_file.read() else: _snake_case = None _snake_case = self._to_readme(__lowerCamelCase ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as readme_file: readme_file.write(__lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[str] = None ): """simple docstring""" if readme_content is not None: _snake_case , _snake_case = _split_yaml_from_readme(__lowerCamelCase ) _snake_case = '''---\n''' + self.to_yaml_string() + '''---\n''' + content else: _snake_case = '''---\n''' + self.to_yaml_string() + '''---\n''' return full_content @classmethod def __UpperCAmelCase ( cls : Tuple , __lowerCamelCase : str ): """simple docstring""" _snake_case = yaml.load(__lowerCamelCase , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields _snake_case = { (key.replace('''-''' , '''_''' ) if key.replace('''-''' , '''_''' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**__lowerCamelCase ) def __UpperCAmelCase ( self : Dict ): """simple docstring""" return yaml.safe_dump( { (key.replace('''_''' , '''-''' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=__lowerCamelCase , allow_unicode=__lowerCamelCase , encoding='''utf-8''' , ).decode('''utf-8''' ) snake_case = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser snake_case = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') snake_case = ap.parse_args() snake_case = Path(args.readme_filepath) snake_case = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
103
1
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers a= [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def _UpperCamelCase ( ): """simple docstring""" __UpperCamelCase : List[str] = os.path.dirname(os.path.realpath(_a ) ) __UpperCamelCase : Optional[int] = os.path.join(_a , 'words.txt' ) __UpperCamelCase : Dict = '' with open(_a ) as f: __UpperCamelCase : int = f.readline() __UpperCamelCase : str = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] __UpperCamelCase : Optional[Any] = [ word for word in [sum(ord(_a ) - 6_4 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_a ) if __name__ == "__main__": print(solution())
719
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva a= '''''' a= '''''' a= '''''' a= 1 # (0 is vertical, 1 is horizontal) def _UpperCamelCase ( ): """simple docstring""" __UpperCamelCase , __UpperCamelCase : str = get_dataset(_a , _a ) print('Processing...' ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[Any] = update_image_and_anno(_a , _a , _a ) for index, image in enumerate(_a ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCamelCase : Tuple = random_chars(3_2 ) __UpperCamelCase : Tuple = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] __UpperCamelCase : List[str] = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , _a , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(f"""Success {index+1}/{len(_a )} with {file_name}""" ) __UpperCamelCase : Tuple = [] for anno in new_annos[index]: __UpperCamelCase : Any = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(_a ) with open(f"""/{file_root}.txt""" , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def _UpperCamelCase ( _a : str , _a : str ): """simple docstring""" __UpperCamelCase : List[str] = [] __UpperCamelCase : Union[str, Any] = [] for label_file in glob.glob(os.path.join(_a , '*.txt' ) ): __UpperCamelCase : Any = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(_a ) as in_file: __UpperCamelCase : Tuple = in_file.readlines() __UpperCamelCase : Dict = os.path.join(_a , f"""{label_name}.jpg""" ) __UpperCamelCase : Optional[Any] = [] for obj_list in obj_lists: __UpperCamelCase : Optional[Any] = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(_a ) labels.append(_a ) return img_paths, labels def _UpperCamelCase ( _a : list , _a : list , _a : int = 1 ): """simple docstring""" __UpperCamelCase : List[str] = [] __UpperCamelCase : str = [] __UpperCamelCase : str = [] for idx in range(len(_a ) ): __UpperCamelCase : Union[str, Any] = [] __UpperCamelCase : List[str] = img_list[idx] path_list.append(_a ) __UpperCamelCase : Dict = anno_list[idx] __UpperCamelCase : List[str] = cva.imread(_a ) if flip_type == 1: __UpperCamelCase : List[Any] = cva.flip(_a , _a ) for bbox in img_annos: __UpperCamelCase : List[str] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __UpperCamelCase : Optional[Any] = cva.flip(_a , _a ) for bbox in img_annos: __UpperCamelCase : List[str] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(_a ) new_imgs_list.append(_a ) return new_imgs_list, new_annos_lists, path_list def _UpperCamelCase ( _a : int = 3_2 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" __UpperCamelCase : Optional[Any] = ascii_lowercase + digits return "".join(random.choice(_a ) for _ in range(_a ) ) if __name__ == "__main__": main() print('''DONE ✅''')
287
0
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def _lowercase ( UpperCAmelCase_): """simple docstring""" assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def _lowercase ( ): """simple docstring""" assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def _lowercase ( ): """simple docstring""" snake_case__ : Optional[Any] = """mock-s3-bucket""" snake_case__ : Tuple = F's3://{mock_bucket}' snake_case__ : Any = extract_path_from_uri(UpperCAmelCase_) assert dataset_path.startswith("""s3://""") is False snake_case__ : List[Any] = """./local/path""" snake_case__ : Tuple = extract_path_from_uri(UpperCAmelCase_) assert dataset_path == new_dataset_path def _lowercase ( UpperCAmelCase_): """simple docstring""" snake_case__ : str = is_remote_filesystem(UpperCAmelCase_) assert is_remote is True snake_case__ : List[Any] = fsspec.filesystem("""file""") snake_case__ : Optional[int] = is_remote_filesystem(UpperCAmelCase_) assert is_remote is False @pytest.mark.parametrize("""compression_fs_class""" , UpperCAmelCase_) def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" snake_case__ : Any = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_file, """bz2""": bza_file, """lz4""": lza_file} snake_case__ : Optional[int] = input_paths[compression_fs_class.protocol] if input_path is None: snake_case__ : List[str] = F'for \'{compression_fs_class.protocol}\' compression protocol, ' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(UpperCAmelCase_) snake_case__ : int = fsspec.filesystem(compression_fs_class.protocol , fo=UpperCAmelCase_) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) snake_case__ : Optional[int] = os.path.basename(UpperCAmelCase_) snake_case__ : str = expected_filename[: expected_filename.rindex(""".""")] assert fs.glob("""*""") == [expected_filename] with fs.open(UpperCAmelCase_ , """r""" , encoding="""utf-8""") as f, open(UpperCAmelCase_ , encoding="""utf-8""") as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("""protocol""" , ["""zip""", """gzip"""]) def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" snake_case__ : Tuple = {"""zip""": zip_jsonl_path, """gzip""": jsonl_gz_path} snake_case__ : List[str] = compressed_file_paths[protocol] snake_case__ : Dict = """dataset.jsonl""" snake_case__ : List[str] = F'{protocol}://{member_file_path}::{compressed_file_path}' snake_case__ , *snake_case__ : Union[str, Any] = fsspec.get_fs_token_paths(UpperCAmelCase_) assert fs.isfile(UpperCAmelCase_) assert not fs.isfile("""non_existing_""" + member_file_path) @pytest.mark.integration def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" snake_case__ : Any = hf_api.dataset_info(UpperCAmelCase_ , token=UpperCAmelCase_) snake_case__ : Tuple = HfFileSystem(repo_info=UpperCAmelCase_ , token=UpperCAmelCase_) assert sorted(hffs.glob("""*""")) == [".gitattributes", "data"] assert hffs.isdir("""data""") assert hffs.isfile(""".gitattributes""") and hffs.isfile("""data/text_data.txt""") with open(UpperCAmelCase_) as f: assert hffs.open("""data/text_data.txt""" , """r""").read() == f.read() def _lowercase ( ): """simple docstring""" snake_case__ : Optional[int] = """bz2""" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(UpperCAmelCase_ , UpperCAmelCase_ , clobber=UpperCAmelCase_) with pytest.warns(UpperCAmelCase_) as warning_info: importlib.reload(datasets.filesystems) assert len(UpperCAmelCase_) == 1 assert ( str(warning_info[0].message) == F'A filesystem protocol was already set for {protocol} and will be overwritten.' )
648
def _lowercase ( UpperCAmelCase_=28_123): """simple docstring""" snake_case__ : Dict = [1] * (limit + 1) for i in range(2 , int(limit**0.5) + 1): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1): sum_divs[k * i] += k + i snake_case__ : Union[str, Any] = set() snake_case__ : Union[str, Any] = 0 for n in range(1 , limit + 1): if sum_divs[n] > n: abundants.add(UpperCAmelCase_) if not any((n - a in abundants) for a in abundants): res += n return res if __name__ == "__main__": print(solution())
648
1
"""simple docstring""" def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" if not nums: # Makes sure that the list is not empty raise ValueError("List is empty" ) UpperCamelCase = sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
544
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) class _lowerCamelCase ( _lowercase ): UpperCAmelCase_ = "upernet" def __init__(self , __a=None , __a=5_12 , __a=0.02 , __a=[1, 2, 3, 6] , __a=True , __a=0.4 , __a=3_84 , __a=2_56 , __a=1 , __a=False , __a=2_55 , **__a , ) -> Tuple: super().__init__(**__a ) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCamelCase = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"] ) elif isinstance(__a , __a ): UpperCamelCase = backbone_config.get("model_type" ) UpperCamelCase = CONFIG_MAPPING[backbone_model_type] UpperCamelCase = config_class.from_dict(__a ) UpperCamelCase = backbone_config UpperCamelCase = hidden_size UpperCamelCase = initializer_range UpperCamelCase = pool_scales UpperCamelCase = use_auxiliary_head UpperCamelCase = auxiliary_loss_weight UpperCamelCase = auxiliary_in_channels UpperCamelCase = auxiliary_channels UpperCamelCase = auxiliary_num_convs UpperCamelCase = auxiliary_concat_input UpperCamelCase = loss_ignore_index def snake_case_ (self ) -> Optional[int]: UpperCamelCase = copy.deepcopy(self.__dict__ ) UpperCamelCase = self.backbone_config.to_dict() UpperCamelCase = self.__class__.model_type return output
544
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
449
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: List[str] , lowerCamelCase_: List[Any]=False ): """simple docstring""" try: snake_case : Optional[int] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. snake_case : List[Any] = default else: # KEY is set, convert it to True or False. try: snake_case : Dict = strtobool(lowerCamelCase_ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''' ) return _value A = parse_flag_from_env('RUN_SLOW', default=False) A = parse_flag_from_env('RUN_REMOTE', default=False) A = parse_flag_from_env('RUN_LOCAL', default=True) A = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression A = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') A = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') A = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio A = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam A = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility A = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows A = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Optional[Any] ): """simple docstring""" try: import faiss # noqa except ImportError: snake_case : Dict = unittest.skip("test requires faiss" )(lowerCamelCase_ ) return test_case def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Any ): """simple docstring""" try: import regex # noqa except ImportError: snake_case : List[Any] = unittest.skip("test requires regex" )(lowerCamelCase_ ) return test_case def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: int ): """simple docstring""" try: import elasticsearch # noqa except ImportError: snake_case : Tuple = unittest.skip("test requires elasticsearch" )(lowerCamelCase_ ) return test_case def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Any ): """simple docstring""" try: import sqlalchemy # noqa except ImportError: snake_case : Dict = unittest.skip("test requires sqlalchemy" )(lowerCamelCase_ ) return test_case def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: List[Any] ): """simple docstring""" if not config.TORCH_AVAILABLE: snake_case : Dict = unittest.skip("test requires PyTorch" )(lowerCamelCase_ ) return test_case def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Optional[Any] ): """simple docstring""" if not config.TF_AVAILABLE: snake_case : Tuple = unittest.skip("test requires TensorFlow" )(lowerCamelCase_ ) return test_case def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: List[str] ): """simple docstring""" if not config.JAX_AVAILABLE: snake_case : str = unittest.skip("test requires JAX" )(lowerCamelCase_ ) return test_case def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Any ): """simple docstring""" if not config.PIL_AVAILABLE: snake_case : Union[str, Any] = unittest.skip("test requires Pillow" )(lowerCamelCase_ ) return test_case def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Union[str, Any] ): """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip("test requires transformers" )(lowerCamelCase_ ) else: return test_case def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Dict ): """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip("test requires tiktoken" )(lowerCamelCase_ ) else: return test_case def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: List[str] ): """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip("test requires spacy" )(lowerCamelCase_ ) else: return test_case def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: str ): """simple docstring""" def _require_spacy_model(lowerCamelCase_: Dict ): try: import spacy # noqa F401 spacy.load(lowerCamelCase_ ) except ImportError: return unittest.skip("test requires spacy" )(lowerCamelCase_ ) except OSError: return unittest.skip("test requires spacy model '{}'".format(lowerCamelCase_ ) )(lowerCamelCase_ ) else: return test_case return _require_spacy_model def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Dict ): """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip("test requires pyspark" )(lowerCamelCase_ ) else: return test_case def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Optional[Any] ): """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip("test requires joblibspark" )(lowerCamelCase_ ) else: return test_case def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Optional[Any] ): """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: snake_case : Dict = unittest.skip("test is slow" )(lowerCamelCase_ ) return test_case def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Any ): """simple docstring""" if not _run_local_tests or _run_local_tests == 0: snake_case : int = unittest.skip("test is local" )(lowerCamelCase_ ) return test_case def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Dict ): """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: snake_case : List[str] = unittest.skip("test is packaged" )(lowerCamelCase_ ) return test_case def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Optional[int] ): """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: snake_case : Union[str, Any] = unittest.skip("test requires remote" )(lowerCamelCase_ ) return test_case def __SCREAMING_SNAKE_CASE ( *lowerCamelCase_: Union[str, Any] ): """simple docstring""" def decorate(cls: int ): for name, fn in cls.__dict__.items(): if callable(lowerCamelCase_ ) and name.startswith("test" ): for decorator in decorators: snake_case : Optional[Any] = decorator(lowerCamelCase_ ) setattr(cls , lowerCamelCase_ , lowerCamelCase_ ) return cls return decorate class _a ( SCREAMING_SNAKE_CASE__): pass class _a ( SCREAMING_SNAKE_CASE__): __magic_name__ = 0 __magic_name__ = 1 __magic_name__ = 2 @contextmanager def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: int=OfflineSimulationMode.CONNECTION_FAILS , lowerCamelCase_: Dict=1e-16 ): """simple docstring""" snake_case : Union[str, Any] = requests.Session().request def timeout_request(lowerCamelCase_: Tuple , lowerCamelCase_: List[Any] , lowerCamelCase_: str , **lowerCamelCase_: List[Any] ): # Change the url to an invalid url so that the connection hangs snake_case : Optional[int] = "https://10.255.255.1" if kwargs.get("timeout" ) is None: raise RequestWouldHangIndefinitelyError( f'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''' ) snake_case : str = timeout try: return online_request(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier snake_case : Dict = url snake_case : Union[str, Any] = e.args[0] snake_case : Any = (max_retry_error.args[0].replace("10.255.255.1" , f'''OfflineMock[{url}]''' ),) snake_case : List[Any] = (max_retry_error,) raise def raise_connection_error(lowerCamelCase_: Tuple , lowerCamelCase_: str , **lowerCamelCase_: int ): raise requests.ConnectionError("Offline mode is enabled." , request=lowerCamelCase_ ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("requests.Session.send" , lowerCamelCase_ ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("requests.Session.request" , lowerCamelCase_ ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("datasets.config.HF_DATASETS_OFFLINE" , lowerCamelCase_ ): yield else: raise ValueError("Please use a value from the OfflineSimulationMode enum." ) @contextmanager def __SCREAMING_SNAKE_CASE ( *lowerCamelCase_: List[str] , **lowerCamelCase_: Any ): """simple docstring""" snake_case : Any = str(Path().resolve() ) with tempfile.TemporaryDirectory(*lowerCamelCase_ , **lowerCamelCase_ ) as tmp_dir: try: os.chdir(lowerCamelCase_ ) yield finally: os.chdir(lowerCamelCase_ ) @contextmanager def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" import gc gc.collect() snake_case : Tuple = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" import gc gc.collect() snake_case : Optional[int] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Tuple , lowerCamelCase_: Dict ): """simple docstring""" return deepcopy(lowerCamelCase_ ).integers(0 , 1_0_0 , 1_0 ).tolist() == deepcopy(lowerCamelCase_ ).integers(0 , 1_0_0 , 1_0 ).tolist() def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: List[Any] ): """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(lowerCamelCase_: Dict , *lowerCamelCase_: Tuple , **lowerCamelCase_: Any ): try: return func(*lowerCamelCase_ , **lowerCamelCase_ ) except HTTPError as err: if str(lowerCamelCase_ ).startswith("500" ) or str(lowerCamelCase_ ).startswith("502" ): pytest.xfail(str(lowerCamelCase_ ) ) raise err return decorator.decorator(_wrapper , lowerCamelCase_ ) class _a : def __init__( self : str , _lowercase : Optional[Any] , _lowercase : str , _lowercase : Optional[Any] ) -> Optional[int]: snake_case : List[Any] = returncode snake_case : Tuple = stdout snake_case : Dict = stderr async def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: str , lowerCamelCase_: Optional[Any] ): """simple docstring""" while True: snake_case : List[Any] = await stream.readline() if line: callback(lowerCamelCase_ ) else: break async def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Any , lowerCamelCase_: Dict=None , lowerCamelCase_: Union[str, Any]=None , lowerCamelCase_: int=None , lowerCamelCase_: str=False , lowerCamelCase_: Optional[Any]=False ): """simple docstring""" if echo: print("\nRunning: " , " ".join(lowerCamelCase_ ) ) snake_case : Any = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=lowerCamelCase_ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowerCamelCase_ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) snake_case : Optional[int] = [] snake_case : Tuple = [] def tee(lowerCamelCase_: Union[str, Any] , lowerCamelCase_: str , lowerCamelCase_: Dict , lowerCamelCase_: Union[str, Any]="" ): snake_case : Optional[Any] = line.decode("utf-8" ).rstrip() sink.append(lowerCamelCase_ ) if not quiet: print(lowerCamelCase_ , lowerCamelCase_ , file=lowerCamelCase_ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda lowerCamelCase_ : tee(lowerCamelCase_ , lowerCamelCase_ , sys.stdout , label="stdout:" ) ), _read_stream(p.stderr , lambda lowerCamelCase_ : tee(lowerCamelCase_ , lowerCamelCase_ , sys.stderr , label="stderr:" ) ), ] , timeout=lowerCamelCase_ , ) return _RunOutput(await p.wait() , lowerCamelCase_ , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Optional[int] , lowerCamelCase_: Union[str, Any]=None , lowerCamelCase_: Any=None , lowerCamelCase_: List[str]=1_8_0 , lowerCamelCase_: Dict=False , lowerCamelCase_: Optional[Any]=True ): """simple docstring""" snake_case : Optional[int] = asyncio.get_event_loop() snake_case : str = loop.run_until_complete( _stream_subprocess(lowerCamelCase_ , env=lowerCamelCase_ , stdin=lowerCamelCase_ , timeout=lowerCamelCase_ , quiet=lowerCamelCase_ , echo=lowerCamelCase_ ) ) snake_case : Union[str, Any] = " ".join(lowerCamelCase_ ) if result.returncode > 0: snake_case : List[Any] = "\n".join(result.stderr ) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'''\'{cmd_str}\' produced no output.''' ) return result def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" snake_case : int = os.environ.get("PYTEST_XDIST_WORKER" , "gw0" ) snake_case : Dict = re.sub(r"^gw" , "" , lowerCamelCase_ , 0 , re.M ) return int(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" snake_case : int = 2_9_5_0_0 snake_case : str = pytest_xdist_worker_id() return port + uniq_delta
449
1
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" assert x is not None assert y is not None UpperCamelCase__ = len(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = len(SCREAMING_SNAKE_CASE ) # declaring the array for storing the dp values UpperCamelCase__ = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): UpperCamelCase__ = 1 if x[i - 1] == y[j - 1] else 0 UpperCamelCase__ = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) UpperCamelCase__ = '' UpperCamelCase__ , UpperCamelCase__ = m, n while i > 0 and j > 0: UpperCamelCase__ = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: UpperCamelCase__ = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": A__ : Optional[Any]= """AGGTAB""" A__ : Dict= """GXTXAYB""" A__ : Any= 4 A__ : Optional[int]= """GTAB""" A__, A__ : List[str]= longest_common_subsequence(a, b) print("""len =""", ln, """, sub-sequence =""", subseq) import doctest doctest.testmod()
20
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : str= logging.get_logger(__name__) A__ : List[Any]= { """nvidia/segformer-b0-finetuned-ade-512-512""": ( """https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json""" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowerCamelCase ( _a ): a : Any ="""segformer""" def __init__( self , snake_case_=3 , snake_case_=4 , snake_case_=[2, 2, 2, 2] , snake_case_=[8, 4, 2, 1] , snake_case_=[32, 64, 160, 256] , snake_case_=[7, 3, 3, 3] , snake_case_=[4, 2, 2, 2] , snake_case_=[1, 2, 5, 8] , snake_case_=[4, 4, 4, 4] , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=256 , snake_case_=255 , **snake_case_ , ) -> Tuple: super().__init__(**snake_case_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , snake_case_ , ) UpperCamelCase__ = num_channels UpperCamelCase__ = num_encoder_blocks UpperCamelCase__ = depths UpperCamelCase__ = sr_ratios UpperCamelCase__ = hidden_sizes UpperCamelCase__ = patch_sizes UpperCamelCase__ = strides UpperCamelCase__ = mlp_ratios UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = classifier_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = drop_path_rate UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = decoder_hidden_size UpperCamelCase__ = kwargs.get('reshape_last_stage' , snake_case_ ) UpperCamelCase__ = semantic_loss_ignore_index class __lowerCamelCase ( _a ): a : Any =version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: return 1E-4 @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return 12
20
1
def _A ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ): return abs(UpperCAmelCase__ ) if a == 0 else greatest_common_divisor(b % a , UpperCAmelCase__ ) def _A ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ): while y: # --> when y=0 then loop will terminate and return x as final GCD. UpperCamelCase , UpperCamelCase :Optional[Any] = y, x % y return abs(UpperCAmelCase__ ) def _A ( ): try: UpperCamelCase :Tuple = input('''Enter two integers separated by comma (,): ''' ).split(''',''' ) UpperCamelCase :Any = int(nums[0] ) UpperCamelCase :str = int(nums[1] ) print( F'''greatest_common_divisor({num_a}, {num_a}) = ''' F'''{greatest_common_divisor(UpperCAmelCase__ , UpperCAmelCase__ )}''' ) print(F'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(UpperCAmelCase__ , UpperCAmelCase__ )}''' ) except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''' ) if __name__ == "__main__": main()
658
def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ): """simple docstring""" if principal <= 0: raise Exception('Principal borrowed must be > 0' ) if rate_per_annum < 0: raise Exception('Rate of interest must be >= 0' ) if years_to_repay <= 0 or not isinstance(UpperCAmelCase__ ,UpperCAmelCase__ ): raise Exception('Years to repay must be an integer > 0' ) # Yearly rate is divided by 12 to get monthly rate _SCREAMING_SNAKE_CASE = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly _SCREAMING_SNAKE_CASE = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
605
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase : str = { "google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = "switch_transformers" lowercase = ["past_key_values"] lowercase = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , __UpperCAmelCase=3_2128 , __UpperCAmelCase=768 , __UpperCAmelCase=64 , __UpperCAmelCase=2048 , __UpperCAmelCase=64 , __UpperCAmelCase=12 , __UpperCAmelCase=3 , __UpperCAmelCase=12 , __UpperCAmelCase=3 , __UpperCAmelCase=12 , __UpperCAmelCase=8 , __UpperCAmelCase=False , __UpperCAmelCase=0.0_1 , __UpperCAmelCase="float32" , __UpperCAmelCase=False , __UpperCAmelCase=32 , __UpperCAmelCase=128 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1E-6 , __UpperCAmelCase=0.0_0_1 , __UpperCAmelCase=0.0_0_1 , __UpperCAmelCase=1.0 , __UpperCAmelCase="relu" , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0 , __UpperCAmelCase=1 , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = d_kv __UpperCamelCase = d_ff __UpperCamelCase = num_sparse_encoder_layers __UpperCamelCase = num_layers __UpperCamelCase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __UpperCamelCase = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: __UpperCamelCase = self.num_layers // self.num_sparse_encoder_layers else: __UpperCamelCase = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: __UpperCamelCase = self.num_decoder_layers // self.num_sparse_decoder_layers else: __UpperCamelCase = self.num_decoder_layers # HACK: this will create 0 sparse layers __UpperCamelCase = num_heads __UpperCamelCase = num_experts __UpperCamelCase = expert_capacity __UpperCamelCase = router_bias __UpperCamelCase = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) __UpperCamelCase = router_dtype __UpperCamelCase = router_ignore_padding_tokens __UpperCamelCase = relative_attention_num_buckets __UpperCamelCase = relative_attention_max_distance __UpperCamelCase = dropout_rate __UpperCamelCase = layer_norm_epsilon __UpperCamelCase = initializer_factor __UpperCamelCase = feed_forward_proj __UpperCamelCase = use_cache __UpperCamelCase = add_router_probs __UpperCamelCase = router_z_loss_coef __UpperCamelCase = router_aux_loss_coef __UpperCamelCase = self.feed_forward_proj.split('-' ) __UpperCamelCase = act_info[-1] __UpperCamelCase = act_info[0] == 'gated' if len(__UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(__UpperCAmelCase ) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __UpperCamelCase = 'gelu_new' super().__init__( pad_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase , )
293
"""simple docstring""" import string import numpy def A ( snake_case :int , snake_case :int ) -> int: return b if a == 0 else greatest_common_divisor(b % a , snake_case ) class __lowerCAmelCase : lowercase = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) lowercase = numpy.vectorize(lambda __SCREAMING_SNAKE_CASE : x % 36 ) lowercase = numpy.vectorize(__SCREAMING_SNAKE_CASE ) def __init__( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.modulus(__UpperCAmelCase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __UpperCamelCase = encrypt_key.shape[0] def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.key_string.index(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.key_string[round(__UpperCAmelCase )] def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __UpperCamelCase = det % len(self.key_string ) __UpperCamelCase = len(self.key_string ) if greatest_common_divisor(__UpperCAmelCase , len(self.key_string ) ) != 1: __UpperCamelCase = ( F'determinant modular {req_l} of encryption key({det}) ' F'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [char for char in text.upper() if char in self.key_string] __UpperCamelCase = chars[-1] while len(__UpperCAmelCase ) % self.break_key != 0: chars.append(__UpperCAmelCase ) return "".join(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.process_text(text.upper() ) __UpperCamelCase = '' for i in range(0 , len(__UpperCAmelCase ) - self.break_key + 1 , self.break_key ): __UpperCamelCase = text[i : i + self.break_key] __UpperCamelCase = [self.replace_letters(__UpperCAmelCase ) for char in batch] __UpperCamelCase = numpy.array([vec] ).T __UpperCamelCase = self.modulus(self.encrypt_key.dot(__UpperCAmelCase ) ).T.tolist()[ 0 ] __UpperCamelCase = ''.join( self.replace_digits(__UpperCAmelCase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __UpperCamelCase = det % len(self.key_string ) __UpperCamelCase = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: __UpperCamelCase = i break __UpperCamelCase = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(__UpperCAmelCase ) ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.make_decrypt_key() __UpperCamelCase = self.process_text(text.upper() ) __UpperCamelCase = '' for i in range(0 , len(__UpperCAmelCase ) - self.break_key + 1 , self.break_key ): __UpperCamelCase = text[i : i + self.break_key] __UpperCamelCase = [self.replace_letters(__UpperCAmelCase ) for char in batch] __UpperCamelCase = numpy.array([vec] ).T __UpperCamelCase = self.modulus(decrypt_key.dot(__UpperCAmelCase ) ).T.tolist()[0] __UpperCamelCase = ''.join( self.replace_digits(__UpperCAmelCase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def A ( ) -> None: __UpperCamelCase = int(input('Enter the order of the encryption key: ' ) ) __UpperCamelCase = [] print('Enter each row of the encryption key with space separated integers' ) for _ in range(snake_case ): __UpperCamelCase = [int(snake_case ) for x in input().split()] hill_matrix.append(snake_case ) __UpperCamelCase = HillCipher(numpy.array(snake_case ) ) print('Would you like to encrypt or decrypt some text? (1 or 2)' ) __UpperCamelCase = input('\n1. Encrypt\n2. Decrypt\n' ) if option == "1": __UpperCamelCase = input('What text would you like to encrypt?: ' ) print('Your encrypted text is:' ) print(hc.encrypt(snake_case ) ) elif option == "2": __UpperCamelCase = input('What text would you like to decrypt?: ' ) print('Your decrypted text is:' ) print(hc.decrypt(snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
293
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule __A : Optional[Any] = {'''tokenization_byt5''': ['''ByT5Tokenizer''']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys __A : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
499
'''simple docstring''' from cva import destroyAllWindows, imread, imshow, waitKey def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Optional[int] = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ : Dict = [2_5_5, 2_5_5, 2_5_5] - img[i][j] return img if __name__ == "__main__": # read original image snake_case_ = imread('image_data/lena.jpg', 1) # convert to its negative snake_case_ = convert_to_negative(img) # show result image imshow('negative of original image', img) waitKey(0) destroyAllWindows()
421
0
def lowercase_ ( __snake_case : int , __snake_case : int ) -> int: '''simple docstring''' return number | (1 << position) def lowercase_ ( __snake_case : int , __snake_case : int ) -> int: '''simple docstring''' return number & ~(1 << position) def lowercase_ ( __snake_case : int , __snake_case : int ) -> int: '''simple docstring''' return number ^ (1 << position) def lowercase_ ( __snake_case : int , __snake_case : int ) -> bool: '''simple docstring''' return ((number >> position) & 1) == 1 def lowercase_ ( __snake_case : int , __snake_case : int ) -> int: '''simple docstring''' return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
57
def lowercase_ ( __snake_case : int = 10_00 ) -> int: '''simple docstring''' snake_case__ :int = 3 snake_case__ :int = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
57
1
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class lowerCAmelCase__ ( lowercase__ ): a__ : Any = ["""image_processor""", """tokenizer"""] a__ : Union[str, Any] = """BlipImageProcessor""" a__ : List[str] = """AutoTokenizer""" def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Dict: super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # add QFormer tokenizer __lowerCamelCase = qformer_tokenizer def __call__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : ImageInput = None , SCREAMING_SNAKE_CASE__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Union[bool, str, PaddingStrategy] = False , SCREAMING_SNAKE_CASE__ : Union[bool, str, TruncationStrategy] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , **SCREAMING_SNAKE_CASE__ : List[Any] , ) -> BatchFeature: if images is None and text is None: raise ValueError('''You have to specify at least images or text.''' ) __lowerCamelCase = BatchFeature() if text is not None: __lowerCamelCase = self.tokenizer( text=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_overflowing_tokens=SCREAMING_SNAKE_CASE_ , return_special_tokens_mask=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_length=SCREAMING_SNAKE_CASE_ , verbose=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) encoding.update(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = self.qformer_tokenizer( text=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_overflowing_tokens=SCREAMING_SNAKE_CASE_ , return_special_tokens_mask=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_length=SCREAMING_SNAKE_CASE_ , verbose=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase = qformer_text_encoding.pop('''input_ids''' ) __lowerCamelCase = qformer_text_encoding.pop('''attention_mask''' ) if images is not None: __lowerCamelCase = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) encoding.update(SCREAMING_SNAKE_CASE_ ) return encoding def __A ( self : Dict , *SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : str ) -> int: return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def __A ( self : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Dict: return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __A ( self : List[Any] ) -> Optional[int]: __lowerCamelCase = self.tokenizer.model_input_names __lowerCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : str ) -> str: if os.path.isfile(SCREAMING_SNAKE_CASE_ ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''qformer_tokenizer''' ) self.qformer_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) return super().save_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @classmethod def __A ( cls : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: __lowerCamelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ , subfolder='''qformer_tokenizer''' ) __lowerCamelCase = cls._get_arguments_from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) args.append(SCREAMING_SNAKE_CASE_ ) return cls(*SCREAMING_SNAKE_CASE_ )
298
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
535
0
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class a__ ( unittest.TestCase ): def UpperCAmelCase( self : int ): a_ : Any = 0 def UpperCAmelCase( self : Dict ): a_ : List[str] = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase( self : int ): with tempfile.TemporaryDirectory() as tmpdirname: a_ : Any = Path(lowerCamelCase_ ) / """preprocessor_config.json""" a_ : Tuple = Path(lowerCamelCase_ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(lowerCamelCase_ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(lowerCamelCase_ , """w""" ) ) a_ : Union[str, Any] = AutoImageProcessor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase( self : List[Any] ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: a_ : Dict = Path(lowerCamelCase_ ) / """preprocessor_config.json""" a_ : List[str] = Path(lowerCamelCase_ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(lowerCamelCase_ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(lowerCamelCase_ , """w""" ) ) a_ : int = AutoImageProcessor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmpdirname: a_ : int = CLIPConfig() # Create a dummy config file with image_proceesor_type a_ : Tuple = Path(lowerCamelCase_ ) / """preprocessor_config.json""" a_ : Tuple = Path(lowerCamelCase_ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(lowerCamelCase_ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(lowerCamelCase_ , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally a_ : Optional[int] = AutoImageProcessor.from_pretrained(lowerCamelCase_ ).to_dict() config_dict.pop("""image_processor_type""" ) a_ : Tuple = CLIPImageProcessor(**lowerCamelCase_ ) # save in new folder model_config.save_pretrained(lowerCamelCase_ ) config.save_pretrained(lowerCamelCase_ ) a_ : Optional[int] = AutoImageProcessor.from_pretrained(lowerCamelCase_ ) # make sure private variable is not incorrectly saved a_ : str = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase( self : Dict ): with tempfile.TemporaryDirectory() as tmpdirname: a_ : Union[str, Any] = Path(lowerCamelCase_ ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(lowerCamelCase_ , """w""" ) , ) a_ : Optional[int] = AutoImageProcessor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase( self : int ): with self.assertRaisesRegex( lowerCamelCase_ , """clip-base is not a local folder and is not a valid model identifier""" ): a_ : Any = AutoImageProcessor.from_pretrained("""clip-base""" ) def UpperCAmelCase( self : Optional[Any] ): with self.assertRaisesRegex( lowerCamelCase_ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): a_ : Dict = AutoImageProcessor.from_pretrained(lowerCamelCase_ , revision="""aaaaaa""" ) def UpperCAmelCase( self : Dict ): with self.assertRaisesRegex( lowerCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): a_ : Any = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def UpperCAmelCase( self : str ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCamelCase_ ): a_ : int = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase_ ): a_ : Tuple = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=lowerCamelCase_ ) a_ : int = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(lowerCamelCase_ ) a_ : int = AutoImageProcessor.from_pretrained(lowerCamelCase_ , trust_remote_code=lowerCamelCase_ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def UpperCAmelCase( self : List[str] ): try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoImageProcessor.register(lowerCamelCase_ , lowerCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase_ ): AutoImageProcessor.register(lowerCamelCase_ , lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: a_ : Dict = Path(lowerCamelCase_ ) / """preprocessor_config.json""" a_ : Union[str, Any] = Path(lowerCamelCase_ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(lowerCamelCase_ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(lowerCamelCase_ , """w""" ) ) a_ : str = CustomImageProcessor.from_pretrained(lowerCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(lowerCamelCase_ ) a_ : Any = AutoImageProcessor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase( self : Union[str, Any] ): class a__ ( lowerCAmelCase_ ): lowerCamelCase__: List[Any] = True try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoImageProcessor.register(lowerCamelCase_ , lowerCamelCase_ ) # If remote code is not set, the default is to use local a_ : Dict = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. a_ : Optional[Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub a_ : Dict = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(lowerCamelCase_ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
478
import numpy as np __lowerCamelCase = [ ['''a''', '''b''', '''c''', '''d''', '''e'''], ['''f''', '''g''', '''h''', '''i''', '''k'''], ['''l''', '''m''', '''n''', '''o''', '''p'''], ['''q''', '''r''', '''s''', '''t''', '''u'''], ['''v''', '''w''', '''x''', '''y''', '''z'''], ] class a__ : def __init__( self : Union[str, Any] ): a_ : List[Any] = np.array(lowerCamelCase_ ) def UpperCAmelCase( self : Union[str, Any] , lowerCamelCase_ : str ): a_ , a_ : Optional[int] = np.where(letter == self.SQUARE ) a_ : Union[str, Any] = np.concatenate([indexa + 1, indexa + 1] ) return indexes def UpperCAmelCase( self : Tuple , lowerCamelCase_ : int , lowerCamelCase_ : int ): a_ : str = self.SQUARE[indexa - 1, indexa - 1] return letter def UpperCAmelCase( self : Optional[Any] , lowerCamelCase_ : str ): a_ : List[str] = message.lower() a_ : str = message.replace(""" """ , """""" ) a_ : Union[str, Any] = message.replace("""j""" , """i""" ) a_ : Optional[Any] = np.empty((2, len(lowerCamelCase_ )) ) for letter_index in range(len(lowerCamelCase_ ) ): a_ : int = self.letter_to_numbers(message[letter_index] ) a_ : str = numbers[0] a_ : int = numbers[1] a_ : int = first_step.reshape(2 * len(lowerCamelCase_ ) ) a_ : Optional[Any] = """""" for numbers_index in range(len(lowerCamelCase_ ) ): a_ : Optional[Any] = int(second_step[numbers_index * 2] ) a_ : Optional[Any] = int(second_step[(numbers_index * 2) + 1] ) a_ : Optional[Any] = self.numbers_to_letter(lowerCamelCase_ , lowerCamelCase_ ) a_ : List[str] = encoded_message + letter return encoded_message def UpperCAmelCase( self : Tuple , lowerCamelCase_ : str ): a_ : Optional[Any] = message.lower() message.replace(""" """ , """""" ) a_ : int = np.empty(2 * len(lowerCamelCase_ ) ) for letter_index in range(len(lowerCamelCase_ ) ): a_ : str = self.letter_to_numbers(message[letter_index] ) a_ : Optional[int] = numbers[0] a_ : Optional[Any] = numbers[1] a_ : Tuple = first_step.reshape((2, len(lowerCamelCase_ )) ) a_ : Optional[int] = """""" for numbers_index in range(len(lowerCamelCase_ ) ): a_ : Dict = int(second_step[0, numbers_index] ) a_ : Tuple = int(second_step[1, numbers_index] ) a_ : Tuple = self.numbers_to_letter(lowerCamelCase_ , lowerCamelCase_ ) a_ : Union[str, Any] = decoded_message + letter return decoded_message
478
1
'''simple docstring''' from bisect import bisect from itertools import accumulate def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = sorted(zip(lowerCAmelCase_ , lowerCAmelCase_ ) , key=lambda lowerCAmelCase_ : x[0] / x[1] , reverse=lowerCAmelCase_ ) lowercase , lowercase = [i[0] for i in r], [i[1] for i in r] lowercase = list(accumulate(lowerCAmelCase_ ) ) lowercase = bisect(lowerCAmelCase_ , lowerCAmelCase_ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
310
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" return 1 / (1 + np.exp(-z )) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return (-y * np.log(lowerCAmelCase_ ) - (1 - y) * np.log(1 - h )).mean() def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = np.dot(lowerCAmelCase_ , lowerCAmelCase_ ) return np.sum(y * scores - np.log(1 + np.exp(lowerCAmelCase_ ) ) ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=7_0000 ): """simple docstring""" lowercase = np.zeros(x.shape[1] ) for iterations in range(lowerCAmelCase_ ): lowercase = np.dot(lowerCAmelCase_ , lowerCAmelCase_ ) lowercase = sigmoid_function(lowerCAmelCase_ ) lowercase = np.dot(x.T , h - y ) / y.size lowercase = theta - alpha * gradient # updating the weights lowercase = np.dot(lowerCAmelCase_ , lowerCAmelCase_ ) lowercase = sigmoid_function(lowerCAmelCase_ ) lowercase = cost_function(lowerCAmelCase_ , lowerCAmelCase_ ) if iterations % 100 == 0: print(f'loss: {j} \t' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": __lowerCamelCase : int = datasets.load_iris() __lowerCamelCase : Any = iris.data[:, :2] __lowerCamelCase : List[Any] = (iris.target != 0) * 1 __lowerCamelCase : Tuple = 0.1 __lowerCamelCase : Dict = logistic_reg(alpha, x, y, max_iterations=7_0000) print("theta: ", theta) # printing the theta i.e our weights vector def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" return sigmoid_function( np.dot(lowerCAmelCase_ , lowerCAmelCase_ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="b", label="0") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="r", label="1") ((__lowerCamelCase) , (__lowerCamelCase)) : int = (x[:, 0].min(), x[:, 0].max()) ((__lowerCamelCase) , (__lowerCamelCase)) : int = (x[:, 1].min(), x[:, 1].max()) ((__lowerCamelCase) , (__lowerCamelCase)) : Optional[int] = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) __lowerCamelCase : Any = np.c_[xxa.ravel(), xxa.ravel()] __lowerCamelCase : Optional[int] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="black") plt.legend() plt.show()
310
1
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase_ ( _UpperCamelCase ): a__ = ['''image_processor''', '''tokenizer'''] a__ = '''Pix2StructImageProcessor''' a__ = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :List[Any] = False super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self , __lowerCAmelCase=None , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = 2_0_4_8 , __lowerCAmelCase = 0 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = True , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None and not self.image_processor.is_vqa: __magic_name__ :int = self.tokenizer __magic_name__ :List[str] = self.tokenizer( text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values __magic_name__ :Optional[Any] = self.image_processor( _UpperCAmelCase , return_tensors=_UpperCAmelCase , max_patches=_UpperCAmelCase , **_UpperCAmelCase ) else: # add pixel_values and bbox __magic_name__ :Dict = self.image_processor( _UpperCAmelCase , return_tensors=_UpperCAmelCase , max_patches=_UpperCAmelCase , header_text=_UpperCAmelCase , **_UpperCAmelCase ) if text is not None and not self.image_processor.is_vqa: __magic_name__ :Dict = self.tokenizer( text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) if "attention_mask" in text_encoding: __magic_name__ :List[str] = text_encoding.pop('''attention_mask''' ) if "input_ids" in text_encoding: __magic_name__ :Dict = text_encoding.pop('''input_ids''' ) else: __magic_name__ :Optional[Any] = None if text_encoding is not None: encoding_image_processor.update(_UpperCAmelCase ) return encoding_image_processor def A ( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def A ( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def A ( self ): """simple docstring""" __magic_name__ :Optional[int] = self.tokenizer.model_input_names __magic_name__ :Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
713
from typing import List from .keymap import KEYMAP, get_character def __lowercase ( snake_case ): """simple docstring""" def decorator(snake_case ): __magic_name__ :int = getattr(snake_case, '''handle_key''', [] ) handle += [key] setattr(snake_case, '''handle_key''', snake_case ) return func return decorator def __lowercase ( *snake_case ): """simple docstring""" def decorator(snake_case ): __magic_name__ :Union[str, Any] = getattr(snake_case, '''handle_key''', [] ) handle += keys setattr(snake_case, '''handle_key''', snake_case ) return func return decorator class lowerCamelCase_ ( lowerCamelCase ): def __new__( cls , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Optional[int] = super().__new__(cls , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not hasattr(__lowerCAmelCase , '''key_handler''' ): setattr(__lowerCAmelCase , '''key_handler''' , {} ) setattr(__lowerCAmelCase , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): __magic_name__ :Dict = getattr(__lowerCAmelCase , '''handle_key''' , [] ) for key in handled_keys: __magic_name__ :List[Any] = value return new_cls @staticmethod def A ( cls ): """simple docstring""" __magic_name__ :Tuple = get_character() if char != KEYMAP["undefined"]: __magic_name__ :Dict = ord(__lowerCAmelCase ) __magic_name__ :str = cls.key_handler.get(__lowerCAmelCase ) if handler: __magic_name__ :Optional[Any] = char return handler(cls ) else: return None def __lowercase ( cls ): """simple docstring""" return KeyHandler(cls.__name__, cls.__bases__, cls.__dict__.copy() )
180
0
"""simple docstring""" import argparse import collections import json import os import re import string import sys import numpy as np __lowerCamelCase = re.compile(r"\b(a|an|the)\b", re.UNICODE) __lowerCamelCase = None def lowercase ( ) -> Optional[int]: __magic_name__ = argparse.ArgumentParser('''Official evaluation script for SQuAD version 2.0.''' ) parser.add_argument('''data_file''' , metavar='''data.json''' , help='''Input data JSON file.''' ) parser.add_argument('''pred_file''' , metavar='''pred.json''' , help='''Model predictions.''' ) parser.add_argument( '''--out-file''' , '''-o''' , metavar='''eval.json''' , help='''Write accuracy metrics to file (default is stdout).''' ) parser.add_argument( '''--na-prob-file''' , '''-n''' , metavar='''na_prob.json''' , help='''Model estimates of probability of no answer.''' ) parser.add_argument( '''--na-prob-thresh''' , '''-t''' , type=__UpperCamelCase , default=1.0 , help='''Predict "" if no-answer probability exceeds this (default = 1.0).''' , ) parser.add_argument( '''--out-image-dir''' , '''-p''' , metavar='''out_images''' , default=__UpperCamelCase , help='''Save precision-recall curves to directory.''' ) parser.add_argument('''--verbose''' , '''-v''' , action='''store_true''' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def lowercase ( __UpperCamelCase ) -> Optional[int]: __magic_name__ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __magic_name__ = bool(qa['''answers''']['''text'''] ) return qid_to_has_ans def lowercase ( __UpperCamelCase ) -> Dict: def remove_articles(__UpperCamelCase ): return ARTICLES_REGEX.sub(''' ''' , __UpperCamelCase ) def white_space_fix(__UpperCamelCase ): return " ".join(text.split() ) def remove_punc(__UpperCamelCase ): __magic_name__ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__UpperCamelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__UpperCamelCase ) ) ) ) def lowercase ( __UpperCamelCase ) -> Any: if not s: return [] return normalize_answer(__UpperCamelCase ).split() def lowercase ( __UpperCamelCase , __UpperCamelCase ) -> List[Any]: return int(normalize_answer(__UpperCamelCase ) == normalize_answer(__UpperCamelCase ) ) def lowercase ( __UpperCamelCase , __UpperCamelCase ) -> List[Any]: __magic_name__ = get_tokens(__UpperCamelCase ) __magic_name__ = get_tokens(__UpperCamelCase ) __magic_name__ = collections.Counter(__UpperCamelCase ) & collections.Counter(__UpperCamelCase ) __magic_name__ = sum(common.values() ) if len(__UpperCamelCase ) == 0 or len(__UpperCamelCase ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 __magic_name__ = 1.0 * num_same / len(__UpperCamelCase ) __magic_name__ = 1.0 * num_same / len(__UpperCamelCase ) __magic_name__ = (2 * precision * recall) / (precision + recall) return fa def lowercase ( __UpperCamelCase , __UpperCamelCase ) -> List[Any]: __magic_name__ = {} __magic_name__ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __magic_name__ = qa['''id'''] __magic_name__ = [t for t in qa['''answers''']['''text'''] if normalize_answer(__UpperCamelCase )] if not gold_answers: # For unanswerable questions, only correct answer is empty string __magic_name__ = [''''''] if qid not in preds: print(f'''Missing prediction for {qid}''' ) continue __magic_name__ = preds[qid] # Take max over all gold answers __magic_name__ = max(compute_exact(__UpperCamelCase , __UpperCamelCase ) for a in gold_answers ) __magic_name__ = max(compute_fa(__UpperCamelCase , __UpperCamelCase ) for a in gold_answers ) return exact_scores, fa_scores def lowercase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[str]: __magic_name__ = {} for qid, s in scores.items(): __magic_name__ = na_probs[qid] > na_prob_thresh if pred_na: __magic_name__ = float(not qid_to_has_ans[qid] ) else: __magic_name__ = s return new_scores def lowercase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None ) -> List[Any]: if not qid_list: __magic_name__ = len(__UpperCamelCase ) return collections.OrderedDict( [ ('''exact''', 100.0 * sum(exact_scores.values() ) / total), ('''f1''', 100.0 * sum(fa_scores.values() ) / total), ('''total''', total), ] ) else: __magic_name__ = len(__UpperCamelCase ) return collections.OrderedDict( [ ('''exact''', 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ('''f1''', 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ('''total''', total), ] ) def lowercase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: for k in new_eval: __magic_name__ = new_eval[k] def lowercase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: plt.step(__UpperCamelCase , __UpperCamelCase , color='''b''' , alpha=0.2 , where='''post''' ) plt.fill_between(__UpperCamelCase , __UpperCamelCase , step='''post''' , alpha=0.2 , color='''b''' ) plt.xlabel('''Recall''' ) plt.ylabel('''Precision''' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(__UpperCamelCase ) plt.savefig(__UpperCamelCase ) plt.clf() def lowercase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None ) -> List[Any]: __magic_name__ = sorted(__UpperCamelCase , key=lambda __UpperCamelCase : na_probs[k] ) __magic_name__ = 0.0 __magic_name__ = 1.0 __magic_name__ = 0.0 __magic_name__ = [1.0] __magic_name__ = [0.0] __magic_name__ = 0.0 for i, qid in enumerate(__UpperCamelCase ): if qid_to_has_ans[qid]: true_pos += scores[qid] __magic_name__ = true_pos / float(i + 1 ) __magic_name__ = true_pos / float(__UpperCamelCase ) if i == len(__UpperCamelCase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(__UpperCamelCase ) recalls.append(__UpperCamelCase ) if out_image: plot_pr_curve(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return {"ap": 100.0 * avg_prec} def lowercase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: if out_image_dir and not os.path.exists(__UpperCamelCase ): os.makedirs(__UpperCamelCase ) __magic_name__ = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return __magic_name__ = make_precision_recall_eval( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , out_image=os.path.join(__UpperCamelCase , '''pr_exact.png''' ) , title='''Precision-Recall curve for Exact Match score''' , ) __magic_name__ = make_precision_recall_eval( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , out_image=os.path.join(__UpperCamelCase , '''pr_f1.png''' ) , title='''Precision-Recall curve for F1 score''' , ) __magic_name__ = {k: float(__UpperCamelCase ) for k, v in qid_to_has_ans.items()} __magic_name__ = make_precision_recall_eval( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , out_image=os.path.join(__UpperCamelCase , '''pr_oracle.png''' ) , title='''Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)''' , ) merge_eval(__UpperCamelCase , __UpperCamelCase , '''pr_exact''' ) merge_eval(__UpperCamelCase , __UpperCamelCase , '''pr_f1''' ) merge_eval(__UpperCamelCase , __UpperCamelCase , '''pr_oracle''' ) def lowercase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: if not qid_list: return __magic_name__ = [na_probs[k] for k in qid_list] __magic_name__ = np.ones_like(__UpperCamelCase ) / float(len(__UpperCamelCase ) ) plt.hist(__UpperCamelCase , weights=__UpperCamelCase , bins=20 , range=(0.0, 1.0) ) plt.xlabel('''Model probability of no-answer''' ) plt.ylabel('''Proportion of dataset''' ) plt.title(f'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(__UpperCamelCase , f'''na_prob_hist_{name}.png''' ) ) plt.clf() def lowercase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Any: __magic_name__ = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) __magic_name__ = num_no_ans __magic_name__ = cur_score __magic_name__ = 0.0 __magic_name__ = sorted(__UpperCamelCase , key=lambda __UpperCamelCase : na_probs[k] ) for i, qid in enumerate(__UpperCamelCase ): if qid not in scores: continue if qid_to_has_ans[qid]: __magic_name__ = scores[qid] else: if preds[qid]: __magic_name__ = -1 else: __magic_name__ = 0 cur_score += diff if cur_score > best_score: __magic_name__ = cur_score __magic_name__ = na_probs[qid] return 100.0 * best_score / len(__UpperCamelCase ), best_thresh def lowercase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Dict: __magic_name__ , __magic_name__ = find_best_thresh(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) __magic_name__ , __magic_name__ = find_best_thresh(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) __magic_name__ = best_exact __magic_name__ = exact_thresh __magic_name__ = best_fa __magic_name__ = fa_thresh def lowercase ( ) -> int: with open(OPTS.data_file ) as f: __magic_name__ = json.load(__UpperCamelCase ) __magic_name__ = dataset_json['''data'''] with open(OPTS.pred_file ) as f: __magic_name__ = json.load(__UpperCamelCase ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: __magic_name__ = json.load(__UpperCamelCase ) else: __magic_name__ = {k: 0.0 for k in preds} __magic_name__ = make_qid_to_has_ans(__UpperCamelCase ) # maps qid to True/False __magic_name__ = [k for k, v in qid_to_has_ans.items() if v] __magic_name__ = [k for k, v in qid_to_has_ans.items() if not v] __magic_name__ , __magic_name__ = get_raw_scores(__UpperCamelCase , __UpperCamelCase ) __magic_name__ = apply_no_ans_threshold(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , OPTS.na_prob_thresh ) __magic_name__ = apply_no_ans_threshold(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , OPTS.na_prob_thresh ) __magic_name__ = make_eval_dict(__UpperCamelCase , __UpperCamelCase ) if has_ans_qids: __magic_name__ = make_eval_dict(__UpperCamelCase , __UpperCamelCase , qid_list=__UpperCamelCase ) merge_eval(__UpperCamelCase , __UpperCamelCase , '''HasAns''' ) if no_ans_qids: __magic_name__ = make_eval_dict(__UpperCamelCase , __UpperCamelCase , qid_list=__UpperCamelCase ) merge_eval(__UpperCamelCase , __UpperCamelCase , '''NoAns''' ) if OPTS.na_prob_file: find_all_best_thresh(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , OPTS.out_image_dir ) histogram_na_prob(__UpperCamelCase , __UpperCamelCase , OPTS.out_image_dir , '''hasAns''' ) histogram_na_prob(__UpperCamelCase , __UpperCamelCase , OPTS.out_image_dir , '''noAns''' ) if OPTS.out_file: with open(OPTS.out_file , '''w''' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) else: print(json.dumps(__UpperCamelCase , indent=2 ) ) if __name__ == "__main__": __lowerCamelCase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt main()
490
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __lowerCamelCase = logging.get_logger(__name__) class _lowercase ( __UpperCAmelCase ): def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ): warnings.warn( '''The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use VideoMAEImageProcessor instead.''' , UpperCamelCase_ , ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
490
1
import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = 42 lowerCAmelCase_ = None def lowerCamelCase__ ( _A , _A=0.9_99 , _A="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_A ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_A ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) snake_case_ = [] for i in range(_lowerCamelCase ): snake_case_ = i / num_diffusion_timesteps snake_case_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCamelCase ) / alpha_bar_fn(_lowerCamelCase ) , _lowerCamelCase ) ) return torch.tensor(_lowerCamelCase , dtype=torch.floataa ) class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = 1 @register_to_config def __init__( self : int , __lowercase : Optional[int] = 10_00 , __lowercase : Optional[Any] = 0.0001 , __lowercase : Optional[int] = 0.02 , __lowercase : Dict = "linear" , __lowercase : Optional[int] = None , __lowercase : Any = True , __lowercase : Tuple = True , __lowercase : int = 0 , __lowercase : Optional[int] = "epsilon" , __lowercase : List[str] = 1.0 , **__lowercase : str , ): """simple docstring""" if kwargs.get("set_alpha_to_one" , UpperCamelCase__ ) is not None: snake_case_ = ( "The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead." ) deprecate("set_alpha_to_one" , "1.0.0" , UpperCamelCase__ , standard_warn=UpperCamelCase__ ) snake_case_ = kwargs["set_alpha_to_one"] if trained_betas is not None: snake_case_ = torch.tensor(UpperCamelCase__ , dtype=torch.floataa ) elif beta_schedule == "linear": snake_case_ = torch.linspace(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. snake_case_ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCamelCase__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule snake_case_ = betas_for_alpha_bar(UpperCamelCase__ ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" ) snake_case_ = 1.0 - self.betas snake_case_ = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. snake_case_ = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution snake_case_ = 1.0 # setable values snake_case_ = None snake_case_ = torch.from_numpy(np.arange(0 , UpperCamelCase__ ).copy().astype(np.intaa ) ) def snake_case__ ( self : Optional[int] , __lowercase : Any , __lowercase : Optional[int] = None ): """simple docstring""" return sample def snake_case__ ( self : List[str] , __lowercase : Optional[int] , __lowercase : Any = None ): """simple docstring""" if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" f" maximal {self.config.num_train_timesteps} timesteps." ) snake_case_ = num_inference_steps snake_case_ = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case_ = (np.arange(0 , UpperCamelCase__ ) * step_ratio).round().copy().astype(np.intaa ) snake_case_ = torch.from_numpy(UpperCamelCase__ ).to(UpperCamelCase__ ) self.timesteps += self.config.steps_offset def snake_case__ ( self : Optional[Any] , __lowercase : Optional[int] , __lowercase : int , __lowercase : Tuple , __lowercase : Union[str, Any] = 0.0 , __lowercase : Tuple = False , __lowercase : str = None , __lowercase : List[Any] = True , ): """simple docstring""" snake_case_ = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process snake_case_ = self.alphas_cumprod[timestep] snake_case_ = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) snake_case_ = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": snake_case_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 snake_case_ = model_output elif self.config.prediction_type == "sample": snake_case_ = model_output snake_case_ = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": snake_case_ = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output snake_case_ = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" " `v_prediction`" ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: snake_case_ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case_ = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case_ = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=UpperCamelCase__ , pred_original_sample=UpperCamelCase__ ) def __len__( self : Optional[int] ): """simple docstring""" return self.config.num_train_timesteps
700
def lowerCamelCase__ ( _A = 600851475143 ): '''simple docstring''' try: snake_case_ = int(_A ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) snake_case_ = 2 snake_case_ = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 snake_case_ = i while n % i == 0: snake_case_ = n // i i += 1 return int(_A ) if __name__ == "__main__": print(f'''{solution() = }''')
139
0
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=2 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_6 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=6 , _lowerCAmelCase=6 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , _lowerCAmelCase=1_0_0_0 , ): _lowercase : Optional[Any] = parent _lowercase : Optional[int] = batch_size _lowercase : List[str] = num_channels _lowercase : Tuple = image_size _lowercase : str = patch_size _lowercase : Union[str, Any] = text_seq_length _lowercase : List[str] = is_training _lowercase : Optional[int] = use_input_mask _lowercase : Dict = use_token_type_ids _lowercase : Any = use_labels _lowercase : Optional[int] = vocab_size _lowercase : int = hidden_size _lowercase : Dict = num_hidden_layers _lowercase : Optional[Any] = num_attention_heads _lowercase : List[Any] = intermediate_size _lowercase : Optional[int] = hidden_act _lowercase : Dict = hidden_dropout_prob _lowercase : List[str] = attention_probs_dropout_prob _lowercase : Union[str, Any] = max_position_embeddings _lowercase : Optional[Any] = type_vocab_size _lowercase : List[str] = type_sequence_label_size _lowercase : Union[str, Any] = initializer_range _lowercase : Optional[Any] = coordinate_size _lowercase : Tuple = shape_size _lowercase : Any = num_labels _lowercase : List[str] = num_choices _lowercase : Optional[Any] = scope _lowercase : str = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _lowercase : Optional[Any] = text_seq_length _lowercase : Dict = (image_size // patch_size) ** 2 + 1 _lowercase : Union[str, Any] = self.text_seq_length + self.image_seq_length def __a ( self ): _lowercase : str = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) _lowercase : Dict = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowercase : Optional[int] = bbox[i, j, 3] _lowercase : Optional[int] = bbox[i, j, 1] _lowercase : str = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowercase : Dict = bbox[i, j, 2] _lowercase : Any = bbox[i, j, 0] _lowercase : int = t _lowercase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase : int = None if self.use_input_mask: _lowercase : Union[str, Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) _lowercase : int = None if self.use_token_type_ids: _lowercase : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) _lowercase : List[Any] = None _lowercase : Union[str, Any] = None if self.use_labels: _lowercase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) _lowercase : List[Any] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = LayoutLMvaModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() # text + image _lowercase : str = model(_lowerCAmelCase , pixel_values=_lowerCAmelCase ) _lowercase : Optional[Any] = model( _lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[str] = model(_lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _lowercase : str = model(pixel_values=_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = self.num_labels _lowercase : str = LayoutLMvaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowercase : Any = model( _lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[Any] = self.num_labels _lowercase : Optional[Any] = LayoutLMvaForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowercase : Tuple = model( _lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : str = LayoutLMvaForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowercase : Union[str, Any] = model( _lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): _lowercase : List[Any] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Union[str, Any] = config_and_inputs _lowercase : Dict = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : List[Any] = False _UpperCamelCase : str = False _UpperCamelCase : Any = False _UpperCamelCase : Dict = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) _UpperCamelCase : Any = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def __a ( self ): _lowercase : List[Any] = LayoutLMvaModelTester(self ) _lowercase : Optional[int] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): _lowercase : Optional[int] = copy.deepcopy(_lowerCAmelCase ) if model_class in get_values(_lowerCAmelCase ): _lowercase : Tuple = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(_lowerCAmelCase , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_lowerCAmelCase ): _lowercase : Tuple = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) elif model_class in get_values(_lowerCAmelCase ): _lowercase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) _lowercase : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) elif model_class in [ *get_values(_lowerCAmelCase ), ]: _lowercase : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) elif model_class in [ *get_values(_lowerCAmelCase ), ]: _lowercase : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=_lowerCAmelCase , ) return inputs_dict def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowercase : Union[str, Any] = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) @slow def __a ( self ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Tuple = LayoutLMvaModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def __magic_name__ ( ) -> Any: _lowercase : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def __a ( self ): return LayoutLMvaImageProcessor(apply_ocr=_lowerCAmelCase ) if is_vision_available() else None @slow def __a ( self ): _lowercase : Tuple = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(_lowerCAmelCase ) _lowercase : List[Any] = self.default_image_processor _lowercase : List[str] = prepare_img() _lowercase : Union[str, Any] = image_processor(images=_lowerCAmelCase , return_tensors='pt' ).pixel_values.to(_lowerCAmelCase ) _lowercase : Tuple = torch.tensor([[1, 2]] ) _lowercase : Any = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass _lowercase : int = model( input_ids=input_ids.to(_lowerCAmelCase ) , bbox=bbox.to(_lowerCAmelCase ) , pixel_values=pixel_values.to(_lowerCAmelCase ) , ) # verify the logits _lowercase : Union[str, Any] = torch.Size((1, 1_9_9, 7_6_8) ) self.assertEqual(outputs.last_hidden_state.shape , _lowerCAmelCase ) _lowercase : int = torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
66
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt') lowerCAmelCase__ = logging.getLogger(__name__) @dataclass class _lowerCAmelCase : SCREAMING_SNAKE_CASE_: Optional[int] = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) SCREAMING_SNAKE_CASE_: bool = field( default=__UpperCAmelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) SCREAMING_SNAKE_CASE_: bool = field( default=__UpperCAmelCase , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) SCREAMING_SNAKE_CASE_: Optional[int] = field( default=__UpperCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE_: Optional[int] = field( default=__UpperCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE_: Optional[int] = field( default=__UpperCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) @dataclass class _lowerCAmelCase : SCREAMING_SNAKE_CASE_: str = field( default=__UpperCAmelCase , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) SCREAMING_SNAKE_CASE_: str = field( default=__UpperCAmelCase , metadata={'help': 'Evaluation language. Also train language if `train_language` is set to None.'} ) SCREAMING_SNAKE_CASE_: Optional[str] = field( default=__UpperCAmelCase , metadata={'help': 'Train language if it is different from the evaluation language.'} ) SCREAMING_SNAKE_CASE_: Optional[str] = field( default=__UpperCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE_: Optional[str] = field( default=__UpperCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE_: Optional[str] = field( default=__UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) SCREAMING_SNAKE_CASE_: Optional[bool] = field( default=__UpperCAmelCase , metadata={'help': 'arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'} , ) SCREAMING_SNAKE_CASE_: bool = field( default=__UpperCAmelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) SCREAMING_SNAKE_CASE_: str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) SCREAMING_SNAKE_CASE_: bool = field( default=__UpperCAmelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) SCREAMING_SNAKE_CASE_: bool = field( default=__UpperCAmelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def lowercase__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _SCREAMING_SNAKE_CASE : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_xnli', lowerCamelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _SCREAMING_SNAKE_CASE : Any = training_args.get_process_log_level() logger.setLevel(lowerCamelCase ) datasets.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _SCREAMING_SNAKE_CASE : Optional[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _SCREAMING_SNAKE_CASE : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: _SCREAMING_SNAKE_CASE : Optional[Any] = load_dataset( 'xnli', model_args.language, split='train', cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) else: _SCREAMING_SNAKE_CASE : int = load_dataset( 'xnli', model_args.train_language, split='train', cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) _SCREAMING_SNAKE_CASE : Dict = train_dataset.features['label'].names if training_args.do_eval: _SCREAMING_SNAKE_CASE : Any = load_dataset( 'xnli', model_args.language, split='validation', cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) _SCREAMING_SNAKE_CASE : List[Any] = eval_dataset.features['label'].names if training_args.do_predict: _SCREAMING_SNAKE_CASE : Optional[int] = load_dataset( 'xnli', model_args.language, split='test', cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) _SCREAMING_SNAKE_CASE : int = predict_dataset.features['label'].names # Labels _SCREAMING_SNAKE_CASE : List[Any] = len(lowerCamelCase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _SCREAMING_SNAKE_CASE : Dict = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=lowerCamelCase, idalabel={str(lowerCamelCase ): label for i, label in enumerate(lowerCamelCase )}, labelaid={label: i for i, label in enumerate(lowerCamelCase )}, finetuning_task='xnli', cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, do_lower_case=model_args.do_lower_case, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool('.ckpt' in model_args.model_name_or_path ), config=lowerCamelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: _SCREAMING_SNAKE_CASE : Tuple = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _SCREAMING_SNAKE_CASE : Tuple = False def preprocess_function(lowerCamelCase ): # Tokenize the texts return tokenizer( examples['premise'], examples['hypothesis'], padding=lowerCamelCase, max_length=data_args.max_seq_length, truncation=lowerCamelCase, ) if training_args.do_train: if data_args.max_train_samples is not None: _SCREAMING_SNAKE_CASE : List[Any] = min(len(lowerCamelCase ), data_args.max_train_samples ) _SCREAMING_SNAKE_CASE : Tuple = train_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): _SCREAMING_SNAKE_CASE : Tuple = train_dataset.map( lowerCamelCase, batched=lowerCamelCase, load_from_cache_file=not data_args.overwrite_cache, desc='Running tokenizer on train dataset', ) # Log a few random samples from the training set: for index in random.sample(range(len(lowerCamelCase ) ), 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) if training_args.do_eval: if data_args.max_eval_samples is not None: _SCREAMING_SNAKE_CASE : Dict = min(len(lowerCamelCase ), data_args.max_eval_samples ) _SCREAMING_SNAKE_CASE : Optional[Any] = eval_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): _SCREAMING_SNAKE_CASE : Tuple = eval_dataset.map( lowerCamelCase, batched=lowerCamelCase, load_from_cache_file=not data_args.overwrite_cache, desc='Running tokenizer on validation dataset', ) if training_args.do_predict: if data_args.max_predict_samples is not None: _SCREAMING_SNAKE_CASE : Tuple = min(len(lowerCamelCase ), data_args.max_predict_samples ) _SCREAMING_SNAKE_CASE : Dict = predict_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc='prediction dataset map pre-processing' ): _SCREAMING_SNAKE_CASE : Tuple = predict_dataset.map( lowerCamelCase, batched=lowerCamelCase, load_from_cache_file=not data_args.overwrite_cache, desc='Running tokenizer on prediction dataset', ) # Get the metric function _SCREAMING_SNAKE_CASE : Tuple = evaluate.load('xnli' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCamelCase ): _SCREAMING_SNAKE_CASE : Dict = p.predictions[0] if isinstance(p.predictions, lowerCamelCase ) else p.predictions _SCREAMING_SNAKE_CASE : int = np.argmax(lowerCamelCase, axis=1 ) return metric.compute(predictions=lowerCamelCase, references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _SCREAMING_SNAKE_CASE : List[str] = default_data_collator elif training_args.fpaa: _SCREAMING_SNAKE_CASE : List[Any] = DataCollatorWithPadding(lowerCamelCase, pad_to_multiple_of=8 ) else: _SCREAMING_SNAKE_CASE : Tuple = None # Initialize our Trainer _SCREAMING_SNAKE_CASE : Optional[Any] = Trainer( model=lowerCamelCase, args=lowerCamelCase, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, compute_metrics=lowerCamelCase, tokenizer=lowerCamelCase, data_collator=lowerCamelCase, ) # Training if training_args.do_train: _SCREAMING_SNAKE_CASE : List[Any] = None if training_args.resume_from_checkpoint is not None: _SCREAMING_SNAKE_CASE : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = last_checkpoint _SCREAMING_SNAKE_CASE : List[Any] = trainer.train(resume_from_checkpoint=lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = train_result.metrics _SCREAMING_SNAKE_CASE : str = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : Tuple = min(lowerCamelCase, len(lowerCamelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train', lowerCamelCase ) trainer.save_metrics('train', lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) _SCREAMING_SNAKE_CASE : Union[str, Any] = trainer.evaluate(eval_dataset=lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = min(lowerCamelCase, len(lowerCamelCase ) ) trainer.log_metrics('eval', lowerCamelCase ) trainer.save_metrics('eval', lowerCamelCase ) # Prediction if training_args.do_predict: logger.info('*** Predict ***' ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = trainer.predict(lowerCamelCase, metric_key_prefix='predict' ) _SCREAMING_SNAKE_CASE : List[Any] = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : Optional[Any] = min(lowerCamelCase, len(lowerCamelCase ) ) trainer.log_metrics('predict', lowerCamelCase ) trainer.save_metrics('predict', lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = np.argmax(lowerCamelCase, axis=1 ) _SCREAMING_SNAKE_CASE : List[str] = os.path.join(training_args.output_dir, 'predictions.txt' ) if trainer.is_world_process_zero(): with open(lowerCamelCase, 'w' ) as writer: writer.write('index\tprediction\n' ) for index, item in enumerate(lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = label_list[item] writer.write(f"""{index}\t{item}\n""" ) if __name__ == "__main__": main()
621
0
from sklearn.metrics import mean_squared_error import datasets __snake_case : str = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' __snake_case : List[str] = '\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n' __snake_case : Tuple = '\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCamelCase__ ( datasets.Metric): '''simple docstring''' def A__ ( self ) ->List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html' ] , ) def A__ ( self ) ->Optional[Any]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('float' ) ), "references": datasets.Sequence(datasets.Value('float' ) ), } else: return { "predictions": datasets.Value('float' ), "references": datasets.Value('float' ), } def A__ ( self , A , A , A=None , A="uniform_average" , A=True ) ->Dict: UpperCAmelCase__ :str = mean_squared_error( _A , _A , sample_weight=_A , multioutput=_A , squared=_A ) return {"mse": mse}
705
from math import factorial def A ( SCREAMING_SNAKE_CASE = 100 ): """simple docstring""" return sum(map(SCREAMING_SNAKE_CASE , str(factorial(SCREAMING_SNAKE_CASE ) ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
433
0
'''simple docstring''' def a__ ( _SCREAMING_SNAKE_CASE : int = 10_00 ) -> int: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : List[str] = 1, 1 UpperCAmelCase_ : Dict = 2 while True: UpperCAmelCase_ : str = 0 UpperCAmelCase_ : List[str] = fa + fa UpperCAmelCase_ , UpperCAmelCase_ : str = fa, f index += 1 for _ in str(_SCREAMING_SNAKE_CASE ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
71
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = ["""image_processor""", """tokenizer"""] __lowerCAmelCase = """LayoutLMv3ImageProcessor""" __lowerCAmelCase = ("""LayoutLMv3Tokenizer""", """LayoutLMv3TokenizerFast""") def __init__( self : Dict , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Dict=None , **lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowerCamelCase_ , ) UpperCamelCase = kwargs.pop("""feature_extractor""" ) UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCamelCase_ , lowerCamelCase_ ) def __call__( self : int , lowerCamelCase_ : str , lowerCamelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCamelCase_ : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , lowerCamelCase_ : Union[List[List[int]], List[List[List[int]]]] = None , lowerCamelCase_ : Optional[Union[List[int], List[List[int]]]] = None , lowerCamelCase_ : bool = True , lowerCamelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCamelCase_ : Union[bool, str, TruncationStrategy] = None , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : int = 0 , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional[Union[str, TensorType]] = None , **lowerCamelCase_ : Optional[int] , ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) # first, apply the image processor UpperCamelCase = self.image_processor(images=lowerCamelCase_ , return_tensors=lowerCamelCase_ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCamelCase_ , lowerCamelCase_ ): UpperCamelCase = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCamelCase = features["""words"""] UpperCamelCase = self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , stride=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , return_special_tokens_mask=lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , return_length=lowerCamelCase_ , verbose=lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ , ) # add pixel values UpperCamelCase = features.pop("""pixel_values""" ) if return_overflowing_tokens is True: UpperCamelCase = self.get_overflowing_images(lowerCamelCase_ , encoded_inputs["""overflow_to_sample_mapping"""] ) UpperCamelCase = images return encoded_inputs def lowerCamelCase_ ( self : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Dict ): """simple docstring""" UpperCamelCase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCamelCase_ ) != len(lowerCamelCase_ ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" f""" {len(lowerCamelCase_ )} and {len(lowerCamelCase_ )}""" ) return images_with_overflow def lowerCamelCase_ ( self : Union[str, Any] , *lowerCamelCase_ : Any , **lowerCamelCase_ : Union[str, Any] ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] , *lowerCamelCase_ : Dict , **lowerCamelCase_ : str ): """simple docstring""" return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_ ) @property def lowerCamelCase_ ( self : int ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowerCamelCase_ , ) return self.image_processor_class @property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , lowerCamelCase_ , ) return self.image_processor
537
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = { 'configuration_xlm_roberta_xl': [ 'XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaXLConfig', 'XLMRobertaXLOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ 'XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaXLForCausalLM', 'XLMRobertaXLForMaskedLM', 'XLMRobertaXLForMultipleChoice', 'XLMRobertaXLForQuestionAnswering', 'XLMRobertaXLForSequenceClassification', 'XLMRobertaXLForTokenClassification', 'XLMRobertaXLModel', 'XLMRobertaXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure)
307
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase ): lowercase = ['''input_features''', '''is_longer'''] def __init__( self , lowercase=64 , lowercase=48_000 , lowercase=480 , lowercase=10 , lowercase=1_024 , lowercase=0.0 , lowercase=False , lowercase = 0 , lowercase = 14_000 , lowercase = None , lowercase = "fusion" , lowercase = "repeatpad" , **lowercase , ) -> str: super().__init__( feature_size=lowercase , sampling_rate=lowercase , padding_value=lowercase , return_attention_mask=lowercase , **lowercase , ) _a : int = top_db _a : Union[str, Any] = truncation _a : Optional[int] = padding _a : List[Any] = fft_window_size _a : str = (fft_window_size >> 1) + 1 _a : Optional[Any] = hop_length _a : Tuple = max_length_s _a : Optional[Any] = max_length_s * sampling_rate _a : Dict = sampling_rate _a : int = frequency_min _a : Union[str, Any] = frequency_max _a : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowercase , min_frequency=lowercase , max_frequency=lowercase , sampling_rate=lowercase , norm=lowercase , mel_scale='''htk''' , ) _a : int = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowercase , min_frequency=lowercase , max_frequency=lowercase , sampling_rate=lowercase , norm='''slaney''' , mel_scale='''slaney''' , ) def snake_case__( self ) -> Dict[str, Any]: _a : int = copy.deepcopy(self.__dict__ ) _a : str = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def snake_case__( self , lowercase , lowercase = None ) -> np.ndarray: _a : List[str] = spectrogram( lowercase , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=lowercase , log_mel='''dB''' , ) return log_mel_spectrogram.T def snake_case__( self , lowercase , lowercase , lowercase ) -> Union[str, Any]: _a : Tuple = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _a : Optional[int] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _a : str = [0] # randomly choose index for each part _a : str = np.random.choice(ranges[0] ) _a : Optional[int] = np.random.choice(ranges[1] ) _a : Tuple = np.random.choice(ranges[2] ) _a : Optional[int] = mel[idx_front : idx_front + chunk_frames, :] _a : List[Any] = mel[idx_middle : idx_middle + chunk_frames, :] _a : Tuple = mel[idx_back : idx_back + chunk_frames, :] _a : List[str] = torch.tensor(mel[None, None, :] ) _a : str = torch.nn.functional.interpolate( lowercase , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=lowercase ) _a : Dict = mel_shrink[0][0].numpy() _a : Any = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def snake_case__( self , lowercase , lowercase , lowercase , lowercase ) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": _a : List[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _a : List[Any] = len(lowercase ) - max_length _a : Union[str, Any] = np.random.randint(0 , overflow + 1 ) _a : Optional[int] = waveform[idx : idx + max_length] _a : Optional[int] = self._np_extract_fbank_features(lowercase , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _a : str = self._np_extract_fbank_features(lowercase , self.mel_filters ) _a : Any = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _a : str = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _a : Dict = np.stack([mel, mel, mel, mel] , axis=0 ) _a : Tuple = False else: _a : List[str] = self._random_mel_fusion(lowercase , lowercase , lowercase ) _a : Tuple = True else: raise NotImplementedError(F'data_truncating {truncation} not implemented' ) else: _a : Optional[Any] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _a : Tuple = int(max_length / len(lowercase ) ) _a : str = np.stack(np.tile(lowercase , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _a : int = int(max_length / len(lowercase ) ) _a : Optional[Any] = np.stack(np.tile(lowercase , lowercase ) ) _a : str = np.pad(lowercase , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": _a : List[Any] = self._np_extract_fbank_features(lowercase , self.mel_filters ) _a : int = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _a : Optional[int] = self._np_extract_fbank_features(lowercase , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , **lowercase , ) -> BatchFeature: _a : str = truncation if truncation is not None else self.truncation _a : Any = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' F' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) _a : List[str] = isinstance(lowercase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) _a : Dict = is_batched_numpy or ( isinstance(lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _a : List[str] = [np.asarray(lowercase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowercase , np.ndarray ): _a : Any = np.asarray(lowercase , dtype=np.floataa ) elif isinstance(lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _a : List[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _a : int = [np.asarray(lowercase )] # convert to mel spectrogram, truncate and pad if needed. _a : Union[str, Any] = [ self._get_input_mel(lowercase , max_length if max_length else self.nb_max_samples , lowercase , lowercase ) for waveform in raw_speech ] _a : Tuple = [] _a : int = [] for mel, longer in padded_inputs: input_mel.append(lowercase ) is_longer.append(lowercase ) if truncation == "fusion" and sum(lowercase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _a : str = np.random.randint(0 , len(lowercase ) ) _a : Optional[int] = True if isinstance(input_mel[0] , lowercase ): _a : Union[str, Any] = [np.asarray(lowercase , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _a : Dict = [[longer] for longer in is_longer] _a : int = {'''input_features''': input_mel, '''is_longer''': is_longer} _a : str = BatchFeature(lowercase ) if return_tensors is not None: _a : Dict = input_features.convert_to_tensors(lowercase ) return input_features
307
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __magic_name__ = { '''configuration_mobilenet_v2''': [ '''MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileNetV2Config''', '''MobileNetV2OnnxConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''MobileNetV2FeatureExtractor'''] __magic_name__ = ['''MobileNetV2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileNetV2ForImageClassification''', '''MobileNetV2ForSemanticSegmentation''', '''MobileNetV2Model''', '''MobileNetV2PreTrainedModel''', '''load_tf_weights_in_mobilenet_v2''', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: lowercase : int = None lowercase : str = logging.get_logger(__name__) lowercase : Any = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase : Dict = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } lowercase : Dict = { '''google/rembert''': 2_56, } lowercase : Dict = '''▁''' class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Union[str, Any] = VOCAB_FILES_NAMES A : Any = PRETRAINED_VOCAB_FILES_MAP A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Optional[Any] = RemBertTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="[CLS]" , _SCREAMING_SNAKE_CASE="[SEP]" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="[SEP]" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="[CLS]" , _SCREAMING_SNAKE_CASE="[MASK]" , **_SCREAMING_SNAKE_CASE , ) -> Optional[Any]: # Mask token behave like a normal word, i.e. include the space before it snake_case_ : Optional[int] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , remove_space=_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) snake_case_ : Any = do_lower_case snake_case_ : Dict = remove_space snake_case_ : Optional[Any] = keep_accents snake_case_ : Tuple = vocab_file snake_case_ : Union[str, Any] = False if not self.vocab_file else True def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: snake_case_ : List[Any] = [self.sep_token_id] snake_case_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: snake_case_ : Dict = [self.sep_token_id] snake_case_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error("Vocabulary path ({}) should be a directory".format(_SCREAMING_SNAKE_CASE ) ) return snake_case_ : str = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
568
0
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCamelCase__ = logging.get_logger(__name__) class __magic_name__ (__lowercase ): def __init__( self , *_a , **_a ) -> None: warnings.warn( "The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use MobileViTImageProcessor instead." , _a , ) super().__init__(*_a , **_a )
226
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'''vocab_file''': '''spiece.model'''} lowerCamelCase__ = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', } } lowerCamelCase__ = { '''albert-base-v1''': 5_12, '''albert-large-v1''': 5_12, '''albert-xlarge-v1''': 5_12, '''albert-xxlarge-v1''': 5_12, '''albert-base-v2''': 5_12, '''albert-large-v2''': 5_12, '''albert-xlarge-v2''': 5_12, '''albert-xxlarge-v2''': 5_12, } lowerCamelCase__ = '''▁''' class __magic_name__ (__lowercase ): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _a , _a=True , _a=True , _a=False , _a="[CLS]" , _a="[SEP]" , _a="<unk>" , _a="[SEP]" , _a="<pad>" , _a="[CLS]" , _a="[MASK]" , _a = None , **_a , ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowerCAmelCase_ = ( AddedToken(_a , lstrip=_a , rstrip=_a , normalized=_a ) if isinstance(_a , _a ) else mask_token ) lowerCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) lowerCAmelCase_ = do_lower_case lowerCAmelCase_ = remove_space lowerCAmelCase_ = keep_accents lowerCAmelCase_ = vocab_file lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_a ) @property def __a ( self ) -> Dict: return len(self.sp_model ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Tuple: lowerCAmelCase_ = self.__dict__.copy() lowerCAmelCase_ = None return state def __setstate__( self , _a ) -> Tuple: lowerCAmelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCAmelCase_ = {} lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __a ( self , _a ) -> str: if self.remove_space: lowerCAmelCase_ = " ".join(inputs.strip().split() ) else: lowerCAmelCase_ = inputs lowerCAmelCase_ = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: lowerCAmelCase_ = unicodedata.normalize("NFKD" , _a ) lowerCAmelCase_ = "".join([c for c in outputs if not unicodedata.combining(_a )] ) if self.do_lower_case: lowerCAmelCase_ = outputs.lower() return outputs def __a ( self , _a ) -> List[str]: lowerCAmelCase_ = self.preprocess_text(_a ) lowerCAmelCase_ = self.sp_model.encode(_a , out_type=_a ) lowerCAmelCase_ = [] for piece in pieces: if len(_a ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): lowerCAmelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_a , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCAmelCase_ = cur_pieces[1:] else: lowerCAmelCase_ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_a ) else: new_pieces.append(_a ) return new_pieces def __a ( self , _a ) -> Optional[Any]: return self.sp_model.PieceToId(_a ) def __a ( self , _a ) -> Optional[int]: return self.sp_model.IdToPiece(_a ) def __a ( self , _a ) -> Optional[int]: lowerCAmelCase_ = [] lowerCAmelCase_ = "" lowerCAmelCase_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_a ) + token lowerCAmelCase_ = True lowerCAmelCase_ = [] else: current_sub_tokens.append(_a ) lowerCAmelCase_ = False out_string += self.sp_model.decode(_a ) return out_string.strip() def __a ( self , _a , _a = None ) -> List[int]: lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __a ( self , _a , _a = None , _a = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is not None: return [1] + ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1] def __a ( self , _a , _a = None ) -> List[int]: lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , _a , _a = None ) -> Tuple[str]: if not os.path.isdir(_a ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase_ = os.path.join( _a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , "wb" ) as fi: lowerCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
226
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
503
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE : Any = {'configuration_timm_backbone': ['TimmBackboneConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[int] = ['TimmBackbone'] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys __SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
348
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. A = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class UpperCAmelCase__ ( unittest.TestCase ): lowerCAmelCase_ : List[Any] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCAmelCase_ : str = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCAmelCase_ : List[str] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCAmelCase_ : str = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def A_ ( self : List[str] , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : int ) -> List[str]: '''simple docstring''' A = ZeroShotClassificationPipeline( model=snake_case , tokenizer=snake_case , candidate_labels=['polics', 'health'] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def A_ ( self : str , snake_case : int , snake_case : str ) -> Dict: '''simple docstring''' A = classifier('Who are you voting for in 2020?' , candidate_labels='politics' ) self.assertEqual(snake_case , {'sequence': ANY(snake_case ), 'labels': [ANY(snake_case )], 'scores': [ANY(snake_case )]} ) # No kwarg A = classifier('Who are you voting for in 2020?' , ['politics'] ) self.assertEqual(snake_case , {'sequence': ANY(snake_case ), 'labels': [ANY(snake_case )], 'scores': [ANY(snake_case )]} ) A = classifier('Who are you voting for in 2020?' , candidate_labels=['politics'] ) self.assertEqual(snake_case , {'sequence': ANY(snake_case ), 'labels': [ANY(snake_case )], 'scores': [ANY(snake_case )]} ) A = classifier('Who are you voting for in 2020?' , candidate_labels='politics, public health' ) self.assertEqual( snake_case , {'sequence': ANY(snake_case ), 'labels': [ANY(snake_case ), ANY(snake_case )], 'scores': [ANY(snake_case ), ANY(snake_case )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) A = classifier('Who are you voting for in 2020?' , candidate_labels=['politics', 'public health'] ) self.assertEqual( snake_case , {'sequence': ANY(snake_case ), 'labels': [ANY(snake_case ), ANY(snake_case )], 'scores': [ANY(snake_case ), ANY(snake_case )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) A = classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='This text is about {}' ) self.assertEqual(snake_case , {'sequence': ANY(snake_case ), 'labels': [ANY(snake_case )], 'scores': [ANY(snake_case )]} ) # https://github.com/huggingface/transformers/issues/13846 A = classifier(['I am happy'] , ['positive', 'negative'] ) self.assertEqual( snake_case , [ {'sequence': ANY(snake_case ), 'labels': [ANY(snake_case ), ANY(snake_case )], 'scores': [ANY(snake_case ), ANY(snake_case )]} for i in range(1 ) ] , ) A = classifier(['I am happy', 'I am sad'] , ['positive', 'negative'] ) self.assertEqual( snake_case , [ {'sequence': ANY(snake_case ), 'labels': [ANY(snake_case ), ANY(snake_case )], 'scores': [ANY(snake_case ), ANY(snake_case )]} for i in range(2 ) ] , ) with self.assertRaises(snake_case ): classifier('' , candidate_labels='politics' ) with self.assertRaises(snake_case ): classifier(snake_case , candidate_labels='politics' ) with self.assertRaises(snake_case ): classifier('Who are you voting for in 2020?' , candidate_labels='' ) with self.assertRaises(snake_case ): classifier('Who are you voting for in 2020?' , candidate_labels=snake_case ) with self.assertRaises(snake_case ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='Not formatting template' , ) with self.assertRaises(snake_case ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template=snake_case , ) self.run_entailment_id(snake_case ) def A_ ( self : Optional[int] , snake_case : Pipeline ) -> Union[str, Any]: '''simple docstring''' A = zero_shot_classifier.model.config A = config.labelaid A = zero_shot_classifier.entailment_id A = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) A = {'entailment': 0, 'neutral': 1, 'contradiction': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) A = {'ENTAIL': 0, 'NON-ENTAIL': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) A = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) A = original_labelaid self.assertEqual(snake_case , zero_shot_classifier.entailment_id ) @require_torch def A_ ( self : List[Any] ) -> Any: '''simple docstring''' A = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( 'Who are you voting for in 2020?' * 100 , candidate_labels=['politics', 'public health', 'science'] ) @require_torch def A_ ( self : int ) -> int: '''simple docstring''' A = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) A = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(snake_case ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.333, 0.333, 0.333], } , ) @require_tf def A_ ( self : str ) -> Optional[int]: '''simple docstring''' A = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='tf' , ) A = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(snake_case ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.333, 0.333, 0.333], } , ) @slow @require_torch def A_ ( self : str ) -> Any: '''simple docstring''' A = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='pt' ) A = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(snake_case ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.976, 0.015, 0.009], } , ) A = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=snake_case , ) self.assertEqual( nested_simplify(snake_case ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def A_ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' A = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='tf' ) A = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(snake_case ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.976, 0.015, 0.009], } , ) A = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=snake_case , ) self.assertEqual( nested_simplify(snake_case ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.817, 0.713, 0.018, 0.018], } , )
109
"""simple docstring""" import re def lowerCAmelCase__ ( lowerCamelCase__ ) -> list: return [char.split() for char in re.split(R'[^ a-z A-Z 0-9 \s]' , str_ )] def lowerCAmelCase__ ( lowerCamelCase__ ) -> str: A = split_input(str_ ) return "".join( [''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def lowerCAmelCase__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: try: A = split_input(lowerCamelCase__ ) if upper: A = ''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: A = ''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def lowerCAmelCase__ ( lowerCamelCase__ ) -> str: return to_simple_case(lowerCamelCase__ ) def lowerCAmelCase__ ( lowerCamelCase__ ) -> str: try: A = to_simple_case(lowerCamelCase__ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def lowerCAmelCase__ ( lowerCamelCase__ , lowerCamelCase__ ) -> str: return to_complex_case(lowerCamelCase__ , lowerCamelCase__ , '_' ) def lowerCAmelCase__ ( lowerCamelCase__ , lowerCamelCase__ ) -> str: return to_complex_case(lowerCamelCase__ , lowerCamelCase__ , '-' ) if __name__ == "__main__": __import__('doctest').testmod()
109
1
"""simple docstring""" import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase_ (unittest.TestCase ): @property def _SCREAMING_SNAKE_CASE ( self : int ) -> Any: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = ort.SessionOptions() UpperCAmelCase_ : int = False return options def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: UpperCAmelCase_ : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) UpperCAmelCase_ : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) UpperCAmelCase_ : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy" ) # using the PNDM scheduler by default UpperCAmelCase_ : Tuple = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) UpperCAmelCase_ : int = "A red cat sitting on a park bench" UpperCAmelCase_ : Any = np.random.RandomState(0 ) UpperCAmelCase_ : Optional[Any] = pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=15 , generator=lowerCAmelCase_ , output_type="np" , ) UpperCAmelCase_ : List[str] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-2
95
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class UpperCamelCase_ (__A ): __magic_name__ = '''informer''' __magic_name__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[Any] , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : str = "student_t" , lowerCAmelCase_ : str = "nll" , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : List[int] = None , lowerCAmelCase_ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : int = 64 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : str = "gelu" , lowerCAmelCase_ : float = 0.0_5 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : int = 100 , lowerCAmelCase_ : float = 0.0_2 , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : str = "prob" , lowerCAmelCase_ : int = 5 , lowerCAmelCase_ : bool = True , **lowerCAmelCase_ : Tuple , ) -> Tuple: # time series specific configuration UpperCAmelCase_ : str = prediction_length UpperCAmelCase_ : Tuple = context_length or prediction_length UpperCAmelCase_ : Any = distribution_output UpperCAmelCase_ : Union[str, Any] = loss UpperCAmelCase_ : Any = input_size UpperCAmelCase_ : int = num_time_features UpperCAmelCase_ : Union[str, Any] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] UpperCAmelCase_ : List[Any] = scaling UpperCAmelCase_ : List[str] = num_dynamic_real_features UpperCAmelCase_ : int = num_static_real_features UpperCAmelCase_ : Any = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase_ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) UpperCAmelCase_ : Optional[Any] = cardinality else: UpperCAmelCase_ : Optional[int] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase_ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) UpperCAmelCase_ : Any = embedding_dimension else: UpperCAmelCase_ : Optional[Any] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase_ : Dict = num_parallel_samples # Transformer architecture configuration UpperCAmelCase_ : Optional[Any] = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase_ : List[Any] = d_model UpperCAmelCase_ : List[str] = encoder_attention_heads UpperCAmelCase_ : List[str] = decoder_attention_heads UpperCAmelCase_ : Union[str, Any] = encoder_ffn_dim UpperCAmelCase_ : Union[str, Any] = decoder_ffn_dim UpperCAmelCase_ : Tuple = encoder_layers UpperCAmelCase_ : List[Any] = decoder_layers UpperCAmelCase_ : List[str] = dropout UpperCAmelCase_ : Optional[Any] = attention_dropout UpperCAmelCase_ : Any = activation_dropout UpperCAmelCase_ : Union[str, Any] = encoder_layerdrop UpperCAmelCase_ : Optional[int] = decoder_layerdrop UpperCAmelCase_ : Union[str, Any] = activation_function UpperCAmelCase_ : int = init_std UpperCAmelCase_ : Optional[Any] = use_cache # Informer UpperCAmelCase_ : int = attention_type UpperCAmelCase_ : List[str] = sampling_factor UpperCAmelCase_ : Union[str, Any] = distil super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
95
1
'''simple docstring''' def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> list: """simple docstring""" snake_case_ : Any = len(__magic_name__ ) snake_case_ : int = [] for i in range(len(__magic_name__ ) - pat_len + 1 ): snake_case_ : List[str] = True for j in range(__magic_name__ ): if s[i + j] != pattern[j]: snake_case_ : List[Any] = False break if match_found: position.append(__magic_name__ ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
656
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :Any ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _A ( self :List[Any] ) -> List[str]: '''simple docstring''' snake_case_ : Any = 1 snake_case_ : Dict = 3 snake_case_ : Union[str, Any] = (32, 32) snake_case_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase__ ) return image @property def _A ( self :Optional[int] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def _A ( self :Dict ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _A ( self :Dict ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : str = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(lowerCAmelCase__ ) @property def _A ( self :Any ) -> str: '''simple docstring''' def extract(*lowerCAmelCase__ :Any , **lowerCAmelCase__ :List[str] ): class A_ : """simple docstring""" def __init__( self :Optional[int] ) -> List[str]: '''simple docstring''' snake_case_ : str = torch.ones([0] ) def _A ( self :int , lowerCAmelCase__ :List[Any] ) -> Tuple: '''simple docstring''' self.pixel_values.to(lowerCAmelCase__ ) return self return Out() return extract def _A ( self :int ) -> Dict: '''simple docstring''' snake_case_ : str = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case_ : str = self.dummy_cond_unet snake_case_ : Optional[int] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) snake_case_ : Dict = self.dummy_vae snake_case_ : Dict = self.dummy_text_encoder snake_case_ : Optional[int] = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) snake_case_ : str = 77 snake_case_ : Any = self.dummy_image.to(lowerCAmelCase__ ) snake_case_ : Tuple = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk snake_case_ : Optional[Any] = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) snake_case_ : Union[str, Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ ) snake_case_ : Optional[Any] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ : Dict = "A painting of a squirrel eating a burger" snake_case_ : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) snake_case_ : Dict = alt_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , ) snake_case_ : Any = output.images snake_case_ : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) snake_case_ : Optional[Any] = alt_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , )[0] snake_case_ : Tuple = image[0, -3:, -3:, -1] snake_case_ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ : int = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _A ( self :int ) -> List[str]: '''simple docstring''' snake_case_ : Union[str, Any] = self.dummy_cond_unet snake_case_ : Union[str, Any] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) snake_case_ : int = self.dummy_vae snake_case_ : List[Any] = self.dummy_text_encoder snake_case_ : int = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) snake_case_ : int = 77 snake_case_ : Dict = self.dummy_image.to(lowerCAmelCase__ ) # put models in fp16 snake_case_ : Optional[Any] = unet.half() snake_case_ : Tuple = vae.half() snake_case_ : List[str] = bert.half() # make sure here that pndm scheduler skips prk snake_case_ : Optional[int] = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) snake_case_ : List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ ) snake_case_ : Optional[Any] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ : List[Any] = "A painting of a squirrel eating a burger" snake_case_ : str = torch.manual_seed(0 ) snake_case_ : Any = alt_pipe( [prompt] , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _A ( self :Optional[int] ) -> Any: '''simple docstring''' snake_case_ : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 snake_case_ : str = init_image.resize((760, 504) ) snake_case_ : Optional[Any] = "BAAI/AltDiffusion" snake_case_ : int = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() snake_case_ : Tuple = "A fantasy landscape, trending on artstation" snake_case_ : int = torch.manual_seed(0 ) snake_case_ : List[str] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type="np" , ) snake_case_ : str = output.images[0] snake_case_ : List[Any] = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) snake_case_ : Tuple = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self :str ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) snake_case_ : List[Any] = init_image.resize((768, 512) ) snake_case_ : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) snake_case_ : Any = "BAAI/AltDiffusion" snake_case_ : List[str] = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() snake_case_ : Tuple = "A fantasy landscape, trending on artstation" snake_case_ : Tuple = torch.manual_seed(0 ) snake_case_ : List[Any] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type="np" , ) snake_case_ : Optional[int] = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
656
1
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def __A ( a_ : Any )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = SwinConfig() SCREAMING_SNAKE_CASE : Optional[int] = swin_name.split('''_''' ) SCREAMING_SNAKE_CASE : int = name_split[1] SCREAMING_SNAKE_CASE : Optional[Any] = int(name_split[4] ) SCREAMING_SNAKE_CASE : List[Any] = int(name_split[3][-1] ) if model_size == "tiny": SCREAMING_SNAKE_CASE : List[str] = 96 SCREAMING_SNAKE_CASE : List[Any] = (2, 2, 6, 2) SCREAMING_SNAKE_CASE : Dict = (3, 6, 12, 24) elif model_size == "small": SCREAMING_SNAKE_CASE : Any = 96 SCREAMING_SNAKE_CASE : int = (2, 2, 18, 2) SCREAMING_SNAKE_CASE : Optional[int] = (3, 6, 12, 24) elif model_size == "base": SCREAMING_SNAKE_CASE : str = 1_28 SCREAMING_SNAKE_CASE : Tuple = (2, 2, 18, 2) SCREAMING_SNAKE_CASE : Tuple = (4, 8, 16, 32) else: SCREAMING_SNAKE_CASE : Optional[Any] = 1_92 SCREAMING_SNAKE_CASE : Any = (2, 2, 18, 2) SCREAMING_SNAKE_CASE : List[Any] = (6, 12, 24, 48) if "in22k" in swin_name: SCREAMING_SNAKE_CASE : int = 2_18_41 else: SCREAMING_SNAKE_CASE : str = 10_00 SCREAMING_SNAKE_CASE : int = """huggingface/label-files""" SCREAMING_SNAKE_CASE : Tuple = """imagenet-1k-id2label.json""" SCREAMING_SNAKE_CASE : Union[str, Any] = json.load(open(hf_hub_download(a__ , a__ , repo_type='''dataset''' ) , '''r''' ) ) SCREAMING_SNAKE_CASE : List[str] = {int(a__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : Any = idalabel SCREAMING_SNAKE_CASE : Union[str, Any] = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : Any = img_size SCREAMING_SNAKE_CASE : Any = num_classes SCREAMING_SNAKE_CASE : str = embed_dim SCREAMING_SNAKE_CASE : Optional[Any] = depths SCREAMING_SNAKE_CASE : Tuple = num_heads SCREAMING_SNAKE_CASE : List[Any] = window_size return config def __A ( a_ : int )-> Dict: '''simple docstring''' if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE : Any = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: SCREAMING_SNAKE_CASE : Optional[int] = """encoder.""" + name if "attn.proj" in name: SCREAMING_SNAKE_CASE : str = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: SCREAMING_SNAKE_CASE : str = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: SCREAMING_SNAKE_CASE : List[str] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: SCREAMING_SNAKE_CASE : Tuple = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE : Optional[int] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE : Optional[Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "norm.weight": SCREAMING_SNAKE_CASE : Tuple = """layernorm.weight""" if name == "norm.bias": SCREAMING_SNAKE_CASE : List[Any] = """layernorm.bias""" if "head" in name: SCREAMING_SNAKE_CASE : Dict = name.replace('''head''' , '''classifier''' ) else: SCREAMING_SNAKE_CASE : Any = """swin.""" + name return name def __A ( a_ : Dict , a_ : int )-> int: '''simple docstring''' for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE : Union[str, Any] = orig_state_dict.pop(a__ ) if "mask" in key: continue elif "qkv" in key: SCREAMING_SNAKE_CASE : Optional[int] = key.split('''.''' ) SCREAMING_SNAKE_CASE : Dict = int(key_split[1] ) SCREAMING_SNAKE_CASE : Optional[int] = int(key_split[3] ) SCREAMING_SNAKE_CASE : Dict = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: SCREAMING_SNAKE_CASE : Union[str, Any] = val[:dim, :] SCREAMING_SNAKE_CASE : Dict = val[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE : int = val[-dim:, :] else: SCREAMING_SNAKE_CASE : Optional[int] = val[ :dim ] SCREAMING_SNAKE_CASE : int = val[ dim : dim * 2 ] SCREAMING_SNAKE_CASE : str = val[ -dim: ] else: SCREAMING_SNAKE_CASE : str = val return orig_state_dict def __A ( a_ : Optional[Any] , a_ : Union[str, Any] )-> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = timm.create_model(a__ , pretrained=a__ ) timm_model.eval() SCREAMING_SNAKE_CASE : Dict = get_swin_config(a__ ) SCREAMING_SNAKE_CASE : List[str] = SwinForImageClassification(a__ ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = convert_state_dict(timm_model.state_dict() , a__ ) model.load_state_dict(a__ ) SCREAMING_SNAKE_CASE : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE : str = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swin_name.replace('''_''' , '''-''' ) ) ) SCREAMING_SNAKE_CASE : str = Image.open(requests.get(a__ , stream=a__ ).raw ) SCREAMING_SNAKE_CASE : Optional[int] = image_processor(images=a__ , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : int = timm_model(inputs['''pixel_values'''] ) SCREAMING_SNAKE_CASE : Tuple = model(**a__ ).logits assert torch.allclose(a__ , a__ , atol=1E-3 ) print(F"Saving model {swin_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(a__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(a__ ) if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swin_name", default="swin_tiny_patch4_window7_224", type=str, help="Name of the Swin timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) lowerCamelCase__ : str = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
698
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class A__: """simple docstring""" def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=False , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.0_2 , _lowercase=3 , _lowercase=4 , _lowercase=None , ) -> Tuple: a_ : Union[str, Any] = parent a_ : int = batch_size a_ : int = seq_length a_ : int = is_training a_ : List[Any] = use_input_mask a_ : str = use_token_type_ids a_ : List[str] = use_labels a_ : List[Any] = vocab_size a_ : Dict = hidden_size a_ : List[Any] = num_hidden_layers a_ : str = num_attention_heads a_ : str = intermediate_size a_ : Optional[int] = hidden_act a_ : Optional[int] = hidden_dropout_prob a_ : int = attention_probs_dropout_prob a_ : List[str] = max_position_embeddings a_ : Optional[Any] = type_vocab_size a_ : Any = type_sequence_label_size a_ : List[Any] = initializer_range a_ : List[str] = num_labels a_ : Union[str, Any] = num_choices a_ : Dict = scope def UpperCamelCase__ ( self ) -> Any: a_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ : Union[str, Any] = None if self.use_input_mask: a_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) a_ : List[Any] = None if self.use_token_type_ids: a_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a_ : Union[str, Any] = None a_ : Dict = None a_ : Any = None if self.use_labels: a_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a_ : int = ids_tensor([self.batch_size] , self.num_choices ) a_ : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ) -> Any: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , use_stable_embedding=_lowercase , ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Dict: a_ : Optional[Any] = OpenLlamaModel(config=_lowercase ) model.to(_lowercase ) model.eval() a_ : List[Any] = model(_lowercase , attention_mask=_lowercase ) a_ : Optional[Any] = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> Union[str, Any]: a_ : int = True a_ : Union[str, Any] = OpenLlamaModel(_lowercase ) model.to(_lowercase ) model.eval() a_ : Optional[int] = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , ) a_ : Any = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , ) a_ : Optional[int] = model(_lowercase , attention_mask=_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> Any: a_ : Dict = OpenLlamaForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() a_ : int = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> List[str]: a_ : Dict = True a_ : Optional[int] = True a_ : Dict = OpenLlamaForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() # first forward pass a_ : List[str] = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , use_cache=_lowercase , ) a_ : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a_ : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) a_ : Union[str, Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and a_ : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) a_ : Any = torch.cat([input_mask, next_mask] , dim=-1 ) a_ : Optional[int] = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , output_hidden_states=_lowercase , )["""hidden_states"""][0] a_ : Dict = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , past_key_values=_lowercase , output_hidden_states=_lowercase , )["""hidden_states"""][0] # select random slice a_ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() a_ : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() a_ : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1e-3 ) ) def UpperCamelCase__ ( self ) -> Optional[Any]: a_ : Any = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) : Union[str, Any] = config_and_inputs a_ : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class A__(a_, a_, a_, unittest.TestCase ): """simple docstring""" _A : Tuple = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) _A : int = (OpenLlamaForCausalLM,) if is_torch_available() else () _A : Optional[int] = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) _A : Tuple = False _A : Any = False def UpperCamelCase__ ( self ) -> List[str]: a_ : Optional[int] = OpenLlamaModelTester(self ) a_ : Optional[int] = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def UpperCamelCase__ ( self ) -> Any: self.config_tester.run_common_tests() def UpperCamelCase__ ( self ) -> Optional[Any]: a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def UpperCamelCase__ ( self ) -> Tuple: a_ : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a_ : Dict = type self.model_tester.create_and_check_model(*_lowercase ) def UpperCamelCase__ ( self ) -> Union[str, Any]: a_ , a_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() a_ : Any = 3 a_ : List[str] = input_dict["""input_ids"""] a_ : List[str] = input_ids.ne(1 ).to(_lowercase ) a_ : int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) a_ : int = OpenLlamaForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() a_ : Tuple = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ) -> Optional[Any]: a_ , a_ : Any = self.model_tester.prepare_config_and_inputs_for_common() a_ : Union[str, Any] = 3 a_ : List[Any] = """single_label_classification""" a_ : Dict = input_dict["""input_ids"""] a_ : int = input_ids.ne(1 ).to(_lowercase ) a_ : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) a_ : Any = OpenLlamaForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() a_ : Any = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ) -> Tuple: a_ , a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() a_ : Any = 3 a_ : List[str] = """multi_label_classification""" a_ : Dict = input_dict["""input_ids"""] a_ : Any = input_ids.ne(1 ).to(_lowercase ) a_ : List[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) a_ : Optional[int] = OpenLlamaForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() a_ : int = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def UpperCamelCase__ ( self ) -> Tuple: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def UpperCamelCase__ ( self , _lowercase ) -> str: a_ , a_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() a_ : List[Any] = ids_tensor([1, 10] , config.vocab_size ) a_ : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a_ : Union[str, Any] = OpenLlamaModel(_lowercase ) original_model.to(_lowercase ) original_model.eval() a_ : Union[str, Any] = original_model(_lowercase ).last_hidden_state a_ : str = original_model(_lowercase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a_ : int = {"""type""": scaling_type, """factor""": 1_0.0} a_ : Union[str, Any] = OpenLlamaModel(_lowercase ) scaled_model.to(_lowercase ) scaled_model.eval() a_ : Optional[int] = scaled_model(_lowercase ).last_hidden_state a_ : Tuple = scaled_model(_lowercase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_lowercase , _lowercase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_lowercase , _lowercase , atol=1e-5 ) )
540
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
704
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowerCamelCase_: '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=9_9 , lowerCamelCase__=1_3 , lowerCamelCase__=1_6 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=2 , lowerCamelCase__=3_2 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=3_0 , lowerCamelCase__=0 , lowerCamelCase__=1 , lowerCamelCase__=2 , lowerCamelCase__=None , ): _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = decoder_seq_length # For common tests _lowerCamelCase = self.decoder_seq_length _lowerCamelCase = is_training _lowerCamelCase = use_attention_mask _lowerCamelCase = use_labels _lowerCamelCase = vocab_size _lowerCamelCase = d_model _lowerCamelCase = d_model _lowerCamelCase = decoder_layers _lowerCamelCase = decoder_layers _lowerCamelCase = decoder_ffn_dim _lowerCamelCase = decoder_attention_heads _lowerCamelCase = decoder_attention_heads _lowerCamelCase = eos_token_id _lowerCamelCase = bos_token_id _lowerCamelCase = pad_token_id _lowerCamelCase = decoder_start_token_id _lowerCamelCase = use_cache _lowerCamelCase = max_position_embeddings _lowerCamelCase = None _lowerCamelCase = decoder_seq_length _lowerCamelCase = 2 _lowerCamelCase = 1 def snake_case__ ( self ): _lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowerCamelCase = None if self.use_attention_mask: _lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) _lowerCamelCase = None if self.use_labels: _lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowerCamelCase = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ): _lowerCamelCase = True _lowerCamelCase = TrOCRDecoder(config=lowerCamelCase__ ).to(lowerCamelCase__ ).eval() _lowerCamelCase = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass _lowerCamelCase = model(lowerCamelCase__ , use_cache=lowerCamelCase__ ) _lowerCamelCase = model(lowerCamelCase__ ) _lowerCamelCase = model(lowerCamelCase__ , use_cache=lowerCamelCase__ ) self.parent.assertTrue(len(lowerCamelCase__ ) == len(lowerCamelCase__ ) ) self.parent.assertTrue(len(lowerCamelCase__ ) == len(lowerCamelCase__ ) + 1 ) _lowerCamelCase = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids _lowerCamelCase = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and _lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCamelCase = model(lowerCamelCase__ )['''last_hidden_state'''] _lowerCamelCase = model(lowerCamelCase__ , past_key_values=lowerCamelCase__ )['''last_hidden_state'''] # select random slice _lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCamelCase = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() _lowerCamelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) def snake_case__ ( self ): _lowerCamelCase = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = config_and_inputs _lowerCamelCase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class lowerCamelCase_( A__, A__, A__, unittest.TestCase ): '''simple docstring''' lowercase__ : int = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowercase__ : List[str] = (TrOCRForCausalLM,) if is_torch_available() else () lowercase__ : Tuple = {'text-generation': TrOCRForCausalLM} if is_torch_available() else {} lowercase__ : Dict = True lowercase__ : Optional[Any] = False def snake_case__ ( self ): _lowerCamelCase = TrOCRStandaloneDecoderModelTester(self , is_training=lowerCamelCase__ ) _lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ ) def snake_case__ ( self ): pass def snake_case__ ( self ): pass def snake_case__ ( self ): pass def snake_case__ ( self ): self.config_tester.run_common_tests() def snake_case__ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*lowerCamelCase__ ) def snake_case__ ( self ): return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def snake_case__ ( self ): pass
623
0
'''simple docstring''' import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def snake_case__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' _UpperCamelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''neck_hidden_sizes''' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''num_attention_heads''' ) ) class __lowerCAmelCase : """simple docstring""" def __init__( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=13 , lowerCAmelCase__ : Any=32 , lowerCAmelCase__ : Tuple=2 , lowerCAmelCase__ : Tuple=3 , lowerCAmelCase__ : List[Any]=640 , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : Optional[Any]="silu" , lowerCAmelCase__ : Optional[int]=3 , lowerCAmelCase__ : Optional[int]=32 , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=10 , lowerCAmelCase__ : List[str]=None , ) -> str: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = last_hidden_size _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = conv_kernel_size _UpperCamelCase = output_stride _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = classifier_dropout_prob _UpperCamelCase = use_labels _UpperCamelCase = is_training _UpperCamelCase = num_labels _UpperCamelCase = initializer_range _UpperCamelCase = scope def snake_case__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def snake_case__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] ) -> Dict: '''simple docstring''' _UpperCamelCase = MobileViTModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase = model(lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] ) -> str: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = MobileViTForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int ) -> Any: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = MobileViTForSemanticSegmentation(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase = model(lowerCAmelCase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _UpperCamelCase = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def snake_case__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : List[str] = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) _snake_case : Any = ( { 'feature-extraction': MobileViTModel, 'image-classification': MobileViTForImageClassification, 'image-segmentation': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) _snake_case : List[Any] = False _snake_case : Tuple = False _snake_case : Dict = False _snake_case : List[str] = False def snake_case__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' _UpperCamelCase = MobileViTModelTester(self ) _UpperCamelCase = MobileViTConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def snake_case__ ( self : Any ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViT does not use inputs_embeds''' ) def snake_case__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''MobileViT does not support input and output embeddings''' ) def snake_case__ ( self : Tuple ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''MobileViT does not output attentions''' ) def snake_case__ ( self : Dict ) -> List[str]: '''simple docstring''' pass def snake_case__ ( self : List[Any] ) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowerCAmelCase__ ) _UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def snake_case__ ( self : str ) -> Any: '''simple docstring''' pass def snake_case__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def snake_case__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' def check_hidden_states_output(lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] ): _UpperCamelCase = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCamelCase = outputs.hidden_states _UpperCamelCase = 5 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _UpperCamelCase = 2 for i in range(len(lowerCAmelCase__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Tuple ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) def snake_case__ ( self : Optional[Any] ) -> Any: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase__ ) @slow def snake_case__ ( self : str ) -> str: '''simple docstring''' for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = MobileViTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def a__ ( ) -> List[str]: """simple docstring""" _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case__ ( self : Any ) -> List[Any]: '''simple docstring''' return MobileViTImageProcessor.from_pretrained('''apple/mobilevit-xx-small''' ) if is_vision_available() else None @slow def snake_case__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = MobileViTForImageClassification.from_pretrained('''apple/mobilevit-xx-small''' ).to(lowerCAmelCase__ ) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): _UpperCamelCase = model(**lowerCAmelCase__ ) # verify the logits _UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) _UpperCamelCase = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) @slow def snake_case__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' _UpperCamelCase = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) _UpperCamelCase = model.to(lowerCAmelCase__ ) _UpperCamelCase = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): _UpperCamelCase = model(**lowerCAmelCase__ ) _UpperCamelCase = outputs.logits # verify the logits _UpperCamelCase = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , lowerCAmelCase__ ) _UpperCamelCase = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=lowerCAmelCase__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) ) @slow def snake_case__ ( self : Optional[Any] ) -> str: '''simple docstring''' _UpperCamelCase = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) _UpperCamelCase = model.to(lowerCAmelCase__ ) _UpperCamelCase = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): _UpperCamelCase = model(**lowerCAmelCase__ ) _UpperCamelCase = outputs.logits.detach().cpu() _UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase__ , target_sizes=[(50, 60)] ) _UpperCamelCase = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , lowerCAmelCase__ ) _UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase__ ) _UpperCamelCase = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , lowerCAmelCase__ )
98
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType lowercase__ : Optional[List[str]] = None lowercase__ : List[Any] = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image lowercase__ : int = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : bool = True _snake_case : Optional[str] = None # Automatically constructed _snake_case : ClassVar[str] = "PIL.Image.Image" _snake_case : ClassVar[Any] = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) _snake_case : str = field(default='Image' , init=__magic_name__ , repr=__magic_name__ ) def __call__( self : Any ) -> str: '''simple docstring''' return self.pa_type def snake_case__ ( self : Dict , lowerCAmelCase__ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ) -> dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = np.array(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return {"path": value, "bytes": None} elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return {"path": None, "bytes": value} elif isinstance(lowerCAmelCase__ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowerCAmelCase__ ) elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( f"""An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def snake_case__ ( self : Tuple , lowerCAmelCase__ : dict , lowerCAmelCase__ : Dict=None ) -> "PIL.Image.Image": '''simple docstring''' if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Image(decode=True) instead.''' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support decoding images, please install \'Pillow\'.''' ) if token_per_repo_id is None: _UpperCamelCase = {} _UpperCamelCase , _UpperCamelCase = value['''path'''], value['''bytes'''] if bytes_ is None: if path is None: raise ValueError(f"""An image should have one of 'path' or 'bytes' but both are None in {value}.""" ) else: if is_local_path(lowerCAmelCase__ ): _UpperCamelCase = PIL.Image.open(lowerCAmelCase__ ) else: _UpperCamelCase = path.split('''::''' )[-1] try: _UpperCamelCase = string_to_dict(lowerCAmelCase__ , config.HUB_DATASETS_URL )['''repo_id'''] _UpperCamelCase = token_per_repo_id.get(lowerCAmelCase__ ) except ValueError: _UpperCamelCase = None with xopen(lowerCAmelCase__ , '''rb''' , use_auth_token=lowerCAmelCase__ ) as f: _UpperCamelCase = BytesIO(f.read() ) _UpperCamelCase = PIL.Image.open(bytes_ ) else: _UpperCamelCase = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def snake_case__ ( self : List[str] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return ( self if self.decode else { "bytes": Value('''binary''' ), "path": Value('''string''' ), } ) def snake_case__ ( self : int , lowerCAmelCase__ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ) -> pa.StructArray: '''simple docstring''' if pa.types.is_string(storage.type ): _UpperCamelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.binary() ) _UpperCamelCase = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _UpperCamelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.string() ) _UpperCamelCase = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: _UpperCamelCase = storage.field('''bytes''' ) else: _UpperCamelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: _UpperCamelCase = storage.field('''path''' ) else: _UpperCamelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.string() ) _UpperCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): _UpperCamelCase = pa.array( [encode_np_array(np.array(lowerCAmelCase__ ) )['''bytes'''] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) _UpperCamelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.string() ) _UpperCamelCase = pa.StructArray.from_arrays( [bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(lowerCAmelCase__ , self.pa_type ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : pa.StructArray ) -> pa.StructArray: '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(lowerCAmelCase__ : Optional[Any] ): with xopen(lowerCAmelCase__ , '''rb''' ) as f: _UpperCamelCase = f.read() return bytes_ _UpperCamelCase = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) _UpperCamelCase = pa.array( [os.path.basename(lowerCAmelCase__ ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , ) _UpperCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(lowerCAmelCase__ , self.pa_type ) def a__ ( ) -> List[str]: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() _UpperCamelCase = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def a__ ( lowercase : "PIL.Image.Image" ) -> bytes: """simple docstring""" _UpperCamelCase = BytesIO() if image.format in list_image_compression_formats(): _UpperCamelCase = image.format else: _UpperCamelCase = '''PNG''' if image.mode in ['''1''', '''L''', '''LA''', '''RGB''', '''RGBA'''] else '''TIFF''' image.save(lowercase, format=lowercase ) return buffer.getvalue() def a__ ( lowercase : "PIL.Image.Image" ) -> dict: """simple docstring""" if hasattr(lowercase, '''filename''' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(lowercase )} def a__ ( lowercase : np.ndarray ) -> dict: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) _UpperCamelCase = array.dtype _UpperCamelCase = dtype.byteorder if dtype.byteorder != '''=''' else _NATIVE_BYTEORDER _UpperCamelCase = dtype.kind _UpperCamelCase = dtype.itemsize _UpperCamelCase = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: _UpperCamelCase = np.dtype('''|u1''' ) if dtype_kind not in ["u", "i"]: raise TypeError( F"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" ) if dtype is not dest_dtype: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: _UpperCamelCase = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: _UpperCamelCase = dtype_byteorder + dtype_kind + str(lowercase ) _UpperCamelCase = np.dtype(lowercase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" ) _UpperCamelCase = PIL.Image.fromarray(array.astype(lowercase ) ) return {"path": None, "bytes": image_to_bytes(lowercase )} def a__ ( lowercase : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if objs: _UpperCamelCase , _UpperCamelCase = first_non_null_value(lowercase ) if isinstance(lowercase, lowercase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(lowercase, np.ndarray ): _UpperCamelCase = no_op_if_value_is_null(lowercase ) return [obj_to_image_dict_func(lowercase ) for obj in objs] elif isinstance(lowercase, PIL.Image.Image ): _UpperCamelCase = no_op_if_value_is_null(lowercase ) return [obj_to_image_dict_func(lowercase ) for obj in objs] else: return objs else: return objs
98
1
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowercase__ ( snake_case_ :int ): # A local function to see if a dot lands in the circle. def is_in_circle(snake_case_ :float , snake_case_ :float ) -> bool: __UpperCAmelCase = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __UpperCAmelCase = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(snake_case_ ) ) # The ratio of the area for circle to square is pi/4. __UpperCAmelCase = proportion * 4 print(F'''The estimated value of pi is {pi_estimate}''' ) print(F'''The numpy value of pi is {pi}''' ) print(F'''The total error is {abs(pi - pi_estimate )}''' ) def lowercase__ ( snake_case_ :int , snake_case_ :Callable[[float], float] , snake_case_ :float = 0.0 , snake_case_ :float = 1.0 , ): return mean( function_to_integrate(uniform(snake_case_ , snake_case_ ) ) for _ in range(snake_case_ ) ) * (max_value - min_value) def lowercase__ ( snake_case_ :int , snake_case_ :float = 0.0 , snake_case_ :float = 1.0 ): def identity_function(snake_case_ :float ) -> float: return x __UpperCAmelCase = area_under_curve_estimator( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) __UpperCAmelCase = (max_value * max_value - min_value * min_value) / 2 print('''******************''' ) print(F'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {expected_value}''' ) print(F'''Total error is {abs(estimated_value - expected_value )}''' ) print('''******************''' ) def lowercase__ ( snake_case_ :int ): def function_to_integrate(snake_case_ :float ) -> float: return sqrt(4.0 - x * x ) __UpperCAmelCase = area_under_curve_estimator( snake_case_ , snake_case_ , 0.0 , 2.0 ) print('''******************''' ) print('''Estimating pi using area_under_curve_estimator''' ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {pi}''' ) print(F'''Total error is {abs(estimated_value - pi )}''' ) print('''******************''' ) if __name__ == "__main__": import doctest doctest.testmod()
397
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : Any = {'vocab_file': 'sentencepiece.model'} _lowercase : Tuple = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } _lowercase : List[str] = { 'google/rembert': 2_56, } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Optional[Any] = VOCAB_FILES_NAMES a__ : List[str] = PRETRAINED_VOCAB_FILES_MAP a__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : int , _lowercase : List[str] , _lowercase : Any=False , _lowercase : int=True , _lowercase : Tuple=True , _lowercase : Dict="[CLS]" , _lowercase : Dict="[SEP]" , _lowercase : Tuple="[UNK]" , _lowercase : int="[SEP]" , _lowercase : Dict="[PAD]" , _lowercase : Optional[Any]="[CLS]" , _lowercase : Optional[int]="[MASK]" , **_lowercase : Union[str, Any] , ): super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) __UpperCAmelCase = do_lower_case __UpperCAmelCase = remove_space __UpperCAmelCase = keep_accents __UpperCAmelCase = vocab_file __UpperCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(_lowercase ) @property def a ( self : List[str] ): return len(self.sp_model ) def a ( self : Tuple ): __UpperCAmelCase = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ): __UpperCAmelCase = self.__dict__.copy() __UpperCAmelCase = None return state def __setstate__( self : Optional[int] , _lowercase : int ): __UpperCAmelCase = d __UpperCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def a ( self : Union[str, Any] , _lowercase : List[str] , _lowercase : Dict=False ): __UpperCAmelCase = self.sp_model.EncodeAsPieces(_lowercase ) return pieces def a ( self : Any , _lowercase : List[Any] ): return self.sp_model.PieceToId(_lowercase ) def a ( self : str , _lowercase : Union[str, Any] ): return self.sp_model.IdToPiece(_lowercase ) def a ( self : List[Any] , _lowercase : str ): __UpperCAmelCase = self.sp_model.decode_pieces(_lowercase ) return out_string def a ( self : List[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a ( self : Optional[int] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] def a ( self : Union[str, Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : List[str] , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowercase ) ) return __UpperCAmelCase = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
397
1
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class A__ ( _snake_case , unittest.TestCase ): lowercase = CpmAntTokenizer lowercase = False def snake_case_ ( self ) -> Tuple: '''simple docstring''' super().setUp() A_ = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) A_ = """今天天气真好!""" A_ = ["""今天""", """天气""", """真""", """好""", """!"""] A_ = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) A_ = """今天天气真好!""" A_ = [tokenizer.bos_token] + tokens A_ = [6, 9802, 14962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) A_ = tokenizer.decode(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
288
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''Salesforce/codegen-350M-nl''': '''https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json''', '''Salesforce/codegen-350M-multi''': '''https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json''', '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json''', '''Salesforce/codegen-2B-nl''': '''https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json''', '''Salesforce/codegen-2B-multi''': '''https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json''', '''Salesforce/codegen-2B-mono''': '''https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json''', '''Salesforce/codegen-6B-nl''': '''https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json''', '''Salesforce/codegen-6B-multi''': '''https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json''', '''Salesforce/codegen-6B-mono''': '''https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json''', '''Salesforce/codegen-16B-nl''': '''https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json''', '''Salesforce/codegen-16B-multi''': '''https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json''', '''Salesforce/codegen-16B-mono''': '''https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json''', } class A__ ( _snake_case ): lowercase = "codegen" lowercase = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , UpperCamelCase__=50400 , UpperCamelCase__=2048 , UpperCamelCase__=2048 , UpperCamelCase__=4096 , UpperCamelCase__=28 , UpperCamelCase__=16 , UpperCamelCase__=64 , UpperCamelCase__=None , UpperCamelCase__="gelu_new" , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=1e-5 , UpperCamelCase__=0.02 , UpperCamelCase__=True , UpperCamelCase__=50256 , UpperCamelCase__=50256 , UpperCamelCase__=False , **UpperCamelCase__ , ) -> Tuple: '''simple docstring''' A_ = vocab_size A_ = n_ctx A_ = n_positions A_ = n_embd A_ = n_layer A_ = n_head A_ = n_inner A_ = rotary_dim A_ = activation_function A_ = resid_pdrop A_ = embd_pdrop A_ = attn_pdrop A_ = layer_norm_epsilon A_ = initializer_range A_ = use_cache A_ = bos_token_id A_ = eos_token_id super().__init__( bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , tie_word_embeddings=UpperCamelCase__ , **UpperCamelCase__ ) class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ = "default" , UpperCamelCase__ = None , UpperCamelCase__ = False , ) -> Tuple: '''simple docstring''' super().__init__(UpperCamelCase__ , task=UpperCamelCase__ , patching_specs=UpperCamelCase__ , use_past=UpperCamelCase__ ) if not getattr(self._config , """pad_token_id""" , UpperCamelCase__ ): # TODO: how to do that better? A_ = 0 @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' A_ = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(UpperCamelCase__ , direction="""inputs""" ) A_ = {0: """batch""", 1: """past_sequence + sequence"""} else: A_ = {0: """batch""", 1: """sequence"""} return common_inputs @property def snake_case_ ( self ) -> int: '''simple docstring''' return self._config.n_layer @property def snake_case_ ( self ) -> int: '''simple docstring''' return self._config.n_head def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = -1 , UpperCamelCase__ = -1 , UpperCamelCase__ = False , UpperCamelCase__ = None , ) -> Mapping[str, Any]: '''simple docstring''' A_ = super(UpperCamelCase__ , self ).generate_dummy_inputs( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) # We need to order the input in the way they appears in the forward() A_ = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch A_ , A_ = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values A_ = seqlen + 2 A_ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) A_ = [ (torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) for _ in range(self.num_layers ) ] A_ = common_inputs["""attention_mask"""] if self.use_past: A_ = ordered_inputs["""attention_mask"""].dtype A_ = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(UpperCamelCase__ , UpperCamelCase__ , dtype=UpperCamelCase__ )] , dim=1 ) return ordered_inputs @property def snake_case_ ( self ) -> int: '''simple docstring''' return 13
288
1
"""simple docstring""" from PIL import Image def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Image: """simple docstring""" UpperCamelCase__ = (2_59 * (level + 2_55)) / (2_55 * (2_59 - level)) def contrast(SCREAMING_SNAKE_CASE ) -> int: return int(1_28 + factor * (c - 1_28) ) return img.point(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change contrast to 170 A__ : List[str]= change_contrast(img, 1_70) cont_img.save("""image_data/lena_high_contrast.png""", format="""png""")
706
"""simple docstring""" A__ : Tuple= """Alexander Joslin""" import operator as op from .stack import Stack def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} UpperCamelCase__ = Stack() UpperCamelCase__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 UpperCamelCase__ = operator_stack.peek() operator_stack.pop() UpperCamelCase__ = operand_stack.peek() operand_stack.pop() UpperCamelCase__ = operand_stack.peek() operand_stack.pop() UpperCamelCase__ = operators[opr](SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) operand_stack.push(SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": A__ : int= """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
20
0
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 lowerCamelCase : str = get_tests_dir('fixtures') class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : str = mock.Mock() snake_case : Dict = 5_0_0 snake_case : Optional[int] = {} snake_case : Dict = HTTPError snake_case : List[str] = {} # Download this model to make sure it's in the cache. snake_case : Dict = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=_SCREAMING_SNAKE_CASE ) as mock_head: snake_case : List[Any] = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase ( self ) -> List[str]: snake_case : Optional[Any] = ViTImageProcessor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json""" ) def UpperCAmelCase ( self ) -> int: with self.assertRaises(_SCREAMING_SNAKE_CASE ): # config is in subfolder, the following should not work without specifying the subfolder snake_case : Dict = AutoImageProcessor.from_pretrained("""hf-internal-testing/stable-diffusion-all-variants""" ) snake_case : Optional[int] = AutoImageProcessor.from_pretrained( """hf-internal-testing/stable-diffusion-all-variants""" , subfolder="""feature_extractor""" ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @is_staging_test class __lowercase (unittest.TestCase ): """simple docstring""" @classmethod def UpperCAmelCase ( cls ) -> Optional[int]: snake_case : str = TOKEN HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @classmethod def UpperCAmelCase ( cls ) -> Optional[Any]: try: delete_repo(token=cls._token , repo_id="""test-image-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-image-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-image-processor""" ) except HTTPError: pass def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : int = ViTImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.push_to_hub("""test-image-processor""" , use_auth_token=self._token ) snake_case : Tuple = ViTImageProcessor.from_pretrained(f"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id="""test-image-processor""" , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) snake_case : List[Any] = ViTImageProcessor.from_pretrained(f"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : List[Any] = ViTImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.push_to_hub("""valid_org/test-image-processor""" , use_auth_token=self._token ) snake_case : int = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id="""valid_org/test-image-processor-org""" , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) snake_case : Union[str, Any] = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor-org""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase ( self ) -> Any: CustomImageProcessor.register_for_auto_class() snake_case : Tuple = CustomImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.push_to_hub("""test-dynamic-image-processor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"""AutoImageProcessor""": """custom_image_processing.CustomImageProcessor"""} , ) snake_case : Dict = AutoImageProcessor.from_pretrained( f"""{USER}/test-dynamic-image-processor""" , trust_remote_code=_SCREAMING_SNAKE_CASE ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , """CustomImageProcessor""" )
587
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _UpperCamelCase : Optional[Any] = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" _UpperCamelCase : Any = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" _UpperCamelCase : Dict = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , ): '''simple docstring''' lowerCAmelCase = len(references[0] ) if any(len(_SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowerCAmelCase = [[refs[i] for refs in references] for i in range(_SCREAMING_SNAKE_CASE )] lowerCAmelCase = TER( normalized=_SCREAMING_SNAKE_CASE , no_punct=_SCREAMING_SNAKE_CASE , asian_support=_SCREAMING_SNAKE_CASE , case_sensitive=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase = sb_ter.corpus_score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
284
0
'''simple docstring''' def SCREAMING_SNAKE_CASE ( a_ : int , a_ : Optional[Any] ): __a = [0 for i in range(r + 1 )] # nc0 = 1 __a = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. __a = min(a_ , a_ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
700
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowercase ( metaclass=__magic_name__ ): _a = ["""onnx"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ) -> str: requires_backends(self , ['onnx'] ) @classmethod def UpperCamelCase__ ( cls , *UpperCamelCase , **UpperCamelCase ) -> Tuple: requires_backends(cls , ['onnx'] ) @classmethod def UpperCamelCase__ ( cls , *UpperCamelCase , **UpperCamelCase ) -> Tuple: requires_backends(cls , ['onnx'] )
490
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class lowerCamelCase : """simple docstring""" UpperCAmelCase_ = PegasusConfig UpperCAmelCase_ = {} UpperCAmelCase_ = "gelu" def __init__( self : Union[str, Any], _UpperCAmelCase : Optional[Any], _UpperCAmelCase : Tuple=1_3, _UpperCAmelCase : int=7, _UpperCAmelCase : Optional[int]=True, _UpperCAmelCase : int=False, _UpperCAmelCase : Union[str, Any]=9_9, _UpperCAmelCase : Optional[Any]=3_2, _UpperCAmelCase : Optional[Any]=2, _UpperCAmelCase : Tuple=4, _UpperCAmelCase : str=3_7, _UpperCAmelCase : List[str]=0.1, _UpperCAmelCase : List[str]=0.1, _UpperCAmelCase : Dict=4_0, _UpperCAmelCase : Any=2, _UpperCAmelCase : int=1, _UpperCAmelCase : str=0, ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = parent SCREAMING_SNAKE_CASE__ : Tuple = batch_size SCREAMING_SNAKE_CASE__ : List[Any] = seq_length SCREAMING_SNAKE_CASE__ : int = is_training SCREAMING_SNAKE_CASE__ : int = use_labels SCREAMING_SNAKE_CASE__ : Tuple = vocab_size SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE__ : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE__ : Dict = intermediate_size SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ : str = eos_token_id SCREAMING_SNAKE_CASE__ : Dict = pad_token_id SCREAMING_SNAKE_CASE__ : Tuple = bos_token_id def A_ ( self : int ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ), 1 ) SCREAMING_SNAKE_CASE__ : Optional[int] = tf.concat([input_ids, eos_tensor], axis=1 ) SCREAMING_SNAKE_CASE__ : Dict = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, ) SCREAMING_SNAKE_CASE__ : List[Any] = prepare_pegasus_inputs_dict(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) return config, inputs_dict def A_ ( self : Union[str, Any], _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : int ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = TFPegasusModel(config=_UpperCAmelCase ).get_decoder() SCREAMING_SNAKE_CASE__ : Optional[int] = inputs_dict["input_ids"] SCREAMING_SNAKE_CASE__ : str = input_ids[:1, :] SCREAMING_SNAKE_CASE__ : Optional[int] = inputs_dict["attention_mask"][:1, :] SCREAMING_SNAKE_CASE__ : Union[str, Any] = inputs_dict["head_mask"] SCREAMING_SNAKE_CASE__ : int = 1 # first forward pass SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_UpperCAmelCase, attention_mask=_UpperCAmelCase, head_mask=_UpperCAmelCase, use_cache=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ : int = ids_tensor((self.batch_size, 3), config.vocab_size ) SCREAMING_SNAKE_CASE__ : str = tf.cast(ids_tensor((self.batch_size, 3), 2 ), tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.concat([input_ids, next_tokens], axis=-1 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.concat([attention_mask, next_attn_mask], axis=-1 ) SCREAMING_SNAKE_CASE__ : Optional[int] = model(_UpperCAmelCase, attention_mask=_UpperCAmelCase )[0] SCREAMING_SNAKE_CASE__ : Optional[int] = model(_UpperCAmelCase, attention_mask=_UpperCAmelCase, past_key_values=_UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE__ : Optional[Any] = int(ids_tensor((1,), output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE__ : List[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_UpperCAmelCase, _UpperCAmelCase, rtol=1E-3 ) def _a ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : List[str]=None , ) -> Any: '''simple docstring''' if attention_mask is None: SCREAMING_SNAKE_CASE__ : List[str] = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE__ : Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: SCREAMING_SNAKE_CASE__ : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE__ : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE__ : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCamelCase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () UpperCAmelCase_ = (TFPegasusForConditionalGeneration,) if is_tf_available() else () UpperCAmelCase_ = ( { "conversational": TFPegasusForConditionalGeneration, "feature-extraction": TFPegasusModel, "summarization": TFPegasusForConditionalGeneration, "text2text-generation": TFPegasusForConditionalGeneration, "translation": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) UpperCAmelCase_ = True UpperCAmelCase_ = False UpperCAmelCase_ = False def A_ ( self : List[str] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = TFPegasusModelTester(self ) SCREAMING_SNAKE_CASE__ : List[Any] = ConfigTester(self, config_class=_UpperCAmelCase ) def A_ ( self : Optional[Any] ) -> int: """simple docstring""" self.config_tester.run_common_tests() def A_ ( self : str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class lowerCamelCase (unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] UpperCAmelCase_ = [ "California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to" " reduce the risk of wildfires.", "N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.", ] # differs slightly from pytorch, likely due to numerical differences in linear layers UpperCAmelCase_ = "google/pegasus-xsum" @cached_property def A_ ( self : Union[str, Any] ) -> int: """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def A_ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def A_ ( self : str, **_UpperCAmelCase : Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.translate_src_text(**_UpperCAmelCase ) assert self.expected_text == generated_words def A_ ( self : Any, **_UpperCAmelCase : Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.tokenizer(self.src_text, **_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors="tf" ) SCREAMING_SNAKE_CASE__ : List[str] = self.model.generate( model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2, use_cache=_UpperCAmelCase, ) SCREAMING_SNAKE_CASE__ : List[Any] = self.tokenizer.batch_decode(generated_ids.numpy(), skip_special_tokens=_UpperCAmelCase ) return generated_words @slow def A_ ( self : List[Any] ) -> Any: """simple docstring""" self._assert_generated_batch_equal_expected()
663
from random import shuffle import tensorflow as tf from numpy import array def _a ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = int(SCREAMING_SNAKE_CASE__ ) assert noofclusters < len(SCREAMING_SNAKE_CASE__ ) # Find out the dimensionality SCREAMING_SNAKE_CASE__ : List[Any] = len(vectors[0] ) # Will help select random centroids from among the available vectors SCREAMING_SNAKE_CASE__ : List[Any] = list(range(len(SCREAMING_SNAKE_CASE__ ) ) ) shuffle(SCREAMING_SNAKE_CASE__ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. SCREAMING_SNAKE_CASE__ : Tuple = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION SCREAMING_SNAKE_CASE__ : List[Any] = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points SCREAMING_SNAKE_CASE__ : Any = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(SCREAMING_SNAKE_CASE__ ) ] ##These nodes will assign the centroid Variables the appropriate ##values SCREAMING_SNAKE_CASE__ : List[Any] = tf.placeholder("float64" , [dim] ) SCREAMING_SNAKE_CASE__ : Dict = [] for centroid in centroids: cent_assigns.append(tf.assign(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) SCREAMING_SNAKE_CASE__ : Tuple = [tf.Variable(0 ) for i in range(len(SCREAMING_SNAKE_CASE__ ) )] ##These nodes will assign an assignment Variable the appropriate ##value SCREAMING_SNAKE_CASE__ : Tuple = tf.placeholder("int32" ) SCREAMING_SNAKE_CASE__ : Tuple = [] for assignment in assignments: cluster_assigns.append(tf.assign(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input SCREAMING_SNAKE_CASE__ : int = tf.placeholder("float" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors SCREAMING_SNAKE_CASE__ : str = tf.reduce_mean(SCREAMING_SNAKE_CASE__ , 0 ) ##Node for computing Euclidean distances # Placeholders for input SCREAMING_SNAKE_CASE__ : Union[str, Any] = tf.placeholder("float" , [dim] ) SCREAMING_SNAKE_CASE__ : List[Any] = tf.placeholder("float" , [dim] ) SCREAMING_SNAKE_CASE__ : Dict = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.placeholder("float" , [noofclusters] ) SCREAMING_SNAKE_CASE__ : Tuple = tf.argmin(SCREAMING_SNAKE_CASE__ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. SCREAMING_SNAKE_CASE__ : Tuple = tf.initialize_all_variables() # Initialize all variables sess.run(SCREAMING_SNAKE_CASE__ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. SCREAMING_SNAKE_CASE__ : Tuple = 1_00 for _ in range(SCREAMING_SNAKE_CASE__ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(SCREAMING_SNAKE_CASE__ ) ): SCREAMING_SNAKE_CASE__ : Any = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. SCREAMING_SNAKE_CASE__ : Tuple = [ sess.run(SCREAMING_SNAKE_CASE__ , feed_dict={va: vect, va: sess.run(SCREAMING_SNAKE_CASE__ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input SCREAMING_SNAKE_CASE__ : Any = sess.run( SCREAMING_SNAKE_CASE__ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(SCREAMING_SNAKE_CASE__ ): # Collect all the vectors assigned to this cluster SCREAMING_SNAKE_CASE__ : Dict = [ vectors[i] for i in range(len(SCREAMING_SNAKE_CASE__ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location SCREAMING_SNAKE_CASE__ : str = sess.run( SCREAMING_SNAKE_CASE__ , feed_dict={mean_input: array(SCREAMING_SNAKE_CASE__ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments SCREAMING_SNAKE_CASE__ : int = sess.run(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = sess.run(SCREAMING_SNAKE_CASE__ ) return centroids, assignments
663
1
"""simple docstring""" import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : List[str] = 3 _lowerCAmelCase : str = 250 _lowerCAmelCase : str = ids_tensor((batch_size, length) ,_A ) _lowerCAmelCase : Optional[int] = torch.ones((batch_size, length) ,device=_A ,dtype=torch.float ) / length return input_ids, scores def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = self._get_tensors(5 ) _lowerCAmelCase : Any = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(_A ,_A ) ) _lowerCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(_A ,_A ) ) _lowerCAmelCase : int = self._get_tensors(10 ) self.assertTrue(criteria(_A ,_A ) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = MaxLengthCriteria(max_length=10 ) _lowerCAmelCase : List[Any] = self._get_tensors(5 ) self.assertFalse(criteria(_A ,_A ) ) _lowerCAmelCase : Any = self._get_tensors(9 ) self.assertFalse(criteria(_A ,_A ) ) _lowerCAmelCase : int = self._get_tensors(10 ) self.assertTrue(criteria(_A ,_A ) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 ,max_new_tokens=5 ) _lowerCAmelCase : str = self._get_tensors(5 ) self.assertFalse(criteria(_A ,_A ) ) _lowerCAmelCase : Union[str, Any] = self._get_tensors(9 ) self.assertFalse(criteria(_A ,_A ) ) _lowerCAmelCase : Dict = self._get_tensors(10 ) self.assertTrue(criteria(_A ,_A ) ) _lowerCAmelCase : List[Any] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length ,10 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self._get_tensors(5 ) _lowerCAmelCase : int = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(_A ,_A ) ) _lowerCAmelCase : Union[str, Any] = MaxTimeCriteria(max_time=0.1 ,initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(_A ,_A ) ) def __lowerCamelCase ( self ): '''simple docstring''' validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) ,10 ) with self.assertWarns(_A ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) ,11 ) _lowerCAmelCase : List[Any] = validate_stopping_criteria(StoppingCriteriaList() ,11 ) self.assertEqual(len(_A ) ,1 )
709
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = inspect.getfile(accelerate.test_utils ) _lowerCAmelCase : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) _lowerCAmelCase : int = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) _lowerCAmelCase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : int = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : str = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(F"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) _lowerCAmelCase : Tuple = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 ,cuda_visible_devices='0,1' ): execute_subprocess_async(_A ,env=os.environ.copy() ) if __name__ == "__main__": _lowerCAmelCase = Accelerator() _lowerCAmelCase = (accelerator.state.process_index + 2, 1_0) _lowerCAmelCase = torch.randint(0, 1_0, shape).to(accelerator.device) _lowerCAmelCase = """""" _lowerCAmelCase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _lowerCAmelCase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _lowerCAmelCase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
16
0
'''simple docstring''' import random def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = num - 1 __lowercase = 0 while s % 2 == 0: __lowercase = s // 2 t += 1 for _ in range(5 ): __lowercase = random.randrange(2 , num - 1 ) __lowercase = pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if v != 1: __lowercase = 0 while v != (num - 1): if i == t - 1: return False else: __lowercase = i + 1 __lowercase = (v**2) % num return True def _lowerCAmelCase ( lowerCamelCase_ : int ): if num < 2: return False __lowercase = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : int = 1_0_2_4 ): while True: __lowercase = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(lowerCamelCase_ ): return num if __name__ == "__main__": _SCREAMING_SNAKE_CASE = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
502
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( '''The `image_to_image.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionImg2ImgPipeline` instead.''' )
502
1
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session') def _snake_case (): UpperCamelCase_ = 10 UpperCamelCase_ = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string')), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'])), 'answers': datasets.Sequence( { 'text': datasets.Value('string'), 'answer_start': datasets.Value('int32'), }), 'id': datasets.Value('int64'), }) UpperCamelCase_ = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(__lowercase)), } , features=__lowercase , ) return dataset @pytest.fixture(scope='session') def _snake_case (__lowercase , __lowercase): UpperCamelCase_ = str(tmp_path_factory.mktemp('data') / 'file.arrow') dataset.map(cache_file_name=__lowercase) return filename # FILE_CONTENT + files snake_case__ : List[Any] = """\ Text data. Second line of data.""" @pytest.fixture(scope='session') def _snake_case (__lowercase): UpperCamelCase_ = tmp_path_factory.mktemp('data') / 'file.txt' UpperCamelCase_ = FILE_CONTENT with open(__lowercase , 'w') as f: f.write(__lowercase) return filename @pytest.fixture(scope='session') def _snake_case (__lowercase): import bza UpperCamelCase_ = tmp_path_factory.mktemp('data') / 'file.txt.bz2' UpperCamelCase_ = bytes(__lowercase , 'utf-8') with bza.open(__lowercase , 'wb') as f: f.write(__lowercase) return path @pytest.fixture(scope='session') def _snake_case (__lowercase): import gzip UpperCamelCase_ = str(tmp_path_factory.mktemp('data') / 'file.txt.gz') UpperCamelCase_ = bytes(__lowercase , 'utf-8') with gzip.open(__lowercase , 'wb') as f: f.write(__lowercase) return path @pytest.fixture(scope='session') def _snake_case (__lowercase): if datasets.config.LZ4_AVAILABLE: import lza.frame UpperCamelCase_ = tmp_path_factory.mktemp('data') / 'file.txt.lz4' UpperCamelCase_ = bytes(__lowercase , 'utf-8') with lza.frame.open(__lowercase , 'wb') as f: f.write(__lowercase) return path @pytest.fixture(scope='session') def _snake_case (__lowercase , __lowercase): if datasets.config.PY7ZR_AVAILABLE: import pyazr UpperCamelCase_ = tmp_path_factory.mktemp('data') / 'file.txt.7z' with pyazr.SevenZipFile(__lowercase , 'w') as archive: archive.write(__lowercase , arcname=os.path.basename(__lowercase)) return path @pytest.fixture(scope='session') def _snake_case (__lowercase , __lowercase): import tarfile UpperCamelCase_ = tmp_path_factory.mktemp('data') / 'file.txt.tar' with tarfile.TarFile(__lowercase , 'w') as f: f.add(__lowercase , arcname=os.path.basename(__lowercase)) return path @pytest.fixture(scope='session') def _snake_case (__lowercase): import lzma UpperCamelCase_ = tmp_path_factory.mktemp('data') / 'file.txt.xz' UpperCamelCase_ = bytes(__lowercase , 'utf-8') with lzma.open(__lowercase , 'wb') as f: f.write(__lowercase) return path @pytest.fixture(scope='session') def _snake_case (__lowercase , __lowercase): import zipfile UpperCamelCase_ = tmp_path_factory.mktemp('data') / 'file.txt.zip' with zipfile.ZipFile(__lowercase , 'w') as f: f.write(__lowercase , arcname=os.path.basename(__lowercase)) return path @pytest.fixture(scope='session') def _snake_case (__lowercase): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd UpperCamelCase_ = tmp_path_factory.mktemp('data') / 'file.txt.zst' UpperCamelCase_ = bytes(__lowercase , 'utf-8') with zstd.open(__lowercase , 'wb') as f: f.write(__lowercase) return path @pytest.fixture(scope='session') def _snake_case (__lowercase): UpperCamelCase_ = tmp_path_factory.mktemp('data') / 'file.xml' UpperCamelCase_ = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>') with open(__lowercase , 'w') as f: f.write(__lowercase) return filename snake_case__ : Dict = [ {"""col_1""": """0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """3""", """col_2""": 3, """col_3""": 3.0}, ] snake_case__ : List[Any] = [ {"""col_1""": """4""", """col_2""": 4, """col_3""": 4.0}, {"""col_1""": """5""", """col_2""": 5, """col_3""": 5.0}, ] snake_case__ : Optional[int] = { """col_1""": ["""0""", """1""", """2""", """3"""], """col_2""": [0, 1, 2, 3], """col_3""": [0.0, 1.0, 2.0, 3.0], } snake_case__ : Optional[int] = [ {"""col_3""": 0.0, """col_1""": """0""", """col_2""": 0}, {"""col_3""": 1.0, """col_1""": """1""", """col_2""": 1}, ] snake_case__ : Tuple = [ {"""col_1""": """s0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """s1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """s2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """s3""", """col_2""": 3, """col_3""": 3.0}, ] @pytest.fixture(scope='session') def _snake_case (): return DATA_DICT_OF_LISTS @pytest.fixture(scope='session') def _snake_case (__lowercase): UpperCamelCase_ = datasets.Dataset.from_dict(__lowercase) UpperCamelCase_ = str(tmp_path_factory.mktemp('data') / 'dataset.arrow') dataset.map(cache_file_name=__lowercase) return path @pytest.fixture(scope='session') def _snake_case (__lowercase): UpperCamelCase_ = str(tmp_path_factory.mktemp('data') / 'dataset.sqlite') with contextlib.closing(sqlitea.connect(__lowercase)) as con: UpperCamelCase_ = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)') for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values())) con.commit() return path @pytest.fixture(scope='session') def _snake_case (__lowercase): UpperCamelCase_ = str(tmp_path_factory.mktemp('data') / 'dataset.csv') with open(__lowercase , 'w' , newline='') as f: UpperCamelCase_ = csv.DictWriter(__lowercase , fieldnames=['col_1', 'col_2', 'col_3']) writer.writeheader() for item in DATA: writer.writerow(__lowercase) return path @pytest.fixture(scope='session') def _snake_case (__lowercase): UpperCamelCase_ = str(tmp_path_factory.mktemp('data') / 'dataset2.csv') with open(__lowercase , 'w' , newline='') as f: UpperCamelCase_ = csv.DictWriter(__lowercase , fieldnames=['col_1', 'col_2', 'col_3']) writer.writeheader() for item in DATA: writer.writerow(__lowercase) return path @pytest.fixture(scope='session') def _snake_case (__lowercase , __lowercase): import bza UpperCamelCase_ = tmp_path_factory.mktemp('data') / 'dataset.csv.bz2' with open(__lowercase , 'rb') as f: UpperCamelCase_ = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__lowercase , 'wb') as f: f.write(__lowercase) return path @pytest.fixture(scope='session') def _snake_case (__lowercase , __lowercase , __lowercase): UpperCamelCase_ = tmp_path_factory.mktemp('data') / 'dataset.csv.zip' with zipfile.ZipFile(__lowercase , 'w') as f: f.write(__lowercase , arcname=os.path.basename(__lowercase)) f.write(__lowercase , arcname=os.path.basename(__lowercase)) return path @pytest.fixture(scope='session') def _snake_case (__lowercase , __lowercase , __lowercase): UpperCamelCase_ = tmp_path_factory.mktemp('data') / 'dataset.csv.zip' with zipfile.ZipFile(__lowercase , 'w') as f: f.write(__lowercase , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV'))) f.write(__lowercase , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV'))) return path @pytest.fixture(scope='session') def _snake_case (__lowercase , __lowercase , __lowercase): UpperCamelCase_ = tmp_path_factory.mktemp('data') / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(__lowercase , 'w') as f: f.write(__lowercase , arcname=os.path.join('main_dir' , os.path.basename(__lowercase))) f.write(__lowercase , arcname=os.path.join('main_dir' , os.path.basename(__lowercase))) return path @pytest.fixture(scope='session') def _snake_case (__lowercase): UpperCamelCase_ = str(tmp_path_factory.mktemp('data') / 'dataset.parquet') UpperCamelCase_ = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), }) with open(__lowercase , 'wb') as f: UpperCamelCase_ = pq.ParquetWriter(__lowercase , schema=__lowercase) UpperCamelCase_ = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__lowercase))] for k in DATA[0]} , schema=__lowercase) writer.write_table(__lowercase) writer.close() return path @pytest.fixture(scope='session') def _snake_case (__lowercase): UpperCamelCase_ = str(tmp_path_factory.mktemp('data') / 'dataset.json') UpperCamelCase_ = {'data': DATA} with open(__lowercase , 'w') as f: json.dump(__lowercase , __lowercase) return path @pytest.fixture(scope='session') def _snake_case (__lowercase): UpperCamelCase_ = str(tmp_path_factory.mktemp('data') / 'dataset.json') UpperCamelCase_ = {'data': DATA_DICT_OF_LISTS} with open(__lowercase , 'w') as f: json.dump(__lowercase , __lowercase) return path @pytest.fixture(scope='session') def _snake_case (__lowercase): UpperCamelCase_ = str(tmp_path_factory.mktemp('data') / 'dataset.jsonl') with open(__lowercase , 'w') as f: for item in DATA: f.write(json.dumps(__lowercase) + '\n') return path @pytest.fixture(scope='session') def _snake_case (__lowercase): UpperCamelCase_ = str(tmp_path_factory.mktemp('data') / 'dataset2.jsonl') with open(__lowercase , 'w') as f: for item in DATA: f.write(json.dumps(__lowercase) + '\n') return path @pytest.fixture(scope='session') def _snake_case (__lowercase): UpperCamelCase_ = str(tmp_path_factory.mktemp('data') / 'dataset_312.jsonl') with open(__lowercase , 'w') as f: for item in DATA_312: f.write(json.dumps(__lowercase) + '\n') return path @pytest.fixture(scope='session') def _snake_case (__lowercase): UpperCamelCase_ = str(tmp_path_factory.mktemp('data') / 'dataset-str.jsonl') with open(__lowercase , 'w') as f: for item in DATA_STR: f.write(json.dumps(__lowercase) + '\n') return path @pytest.fixture(scope='session') def _snake_case (__lowercase , __lowercase): import gzip UpperCamelCase_ = str(tmp_path_factory.mktemp('data') / 'dataset.txt.gz') with open(__lowercase , 'rb') as orig_file: with gzip.open(__lowercase , 'wb') as zipped_file: zipped_file.writelines(__lowercase) return path @pytest.fixture(scope='session') def _snake_case (__lowercase , __lowercase): import gzip UpperCamelCase_ = str(tmp_path_factory.mktemp('data') / 'dataset.jsonl.gz') with open(__lowercase , 'rb') as orig_file: with gzip.open(__lowercase , 'wb') as zipped_file: zipped_file.writelines(__lowercase) return path @pytest.fixture(scope='session') def _snake_case (__lowercase , __lowercase , __lowercase): UpperCamelCase_ = tmp_path_factory.mktemp('data') / 'dataset.jsonl.zip' with zipfile.ZipFile(__lowercase , 'w') as f: f.write(__lowercase , arcname=os.path.basename(__lowercase)) f.write(__lowercase , arcname=os.path.basename(__lowercase)) return path @pytest.fixture(scope='session') def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase): UpperCamelCase_ = tmp_path_factory.mktemp('data') / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(__lowercase , 'w') as f: f.write(__lowercase , arcname=os.path.join('nested' , os.path.basename(__lowercase))) return path @pytest.fixture(scope='session') def _snake_case (__lowercase , __lowercase , __lowercase): UpperCamelCase_ = tmp_path_factory.mktemp('data') / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(__lowercase , 'w') as f: f.write(__lowercase , arcname=os.path.join('main_dir' , os.path.basename(__lowercase))) f.write(__lowercase , arcname=os.path.join('main_dir' , os.path.basename(__lowercase))) return path @pytest.fixture(scope='session') def _snake_case (__lowercase , __lowercase , __lowercase): UpperCamelCase_ = tmp_path_factory.mktemp('data') / 'dataset.jsonl.tar' with tarfile.TarFile(__lowercase , 'w') as f: f.add(__lowercase , arcname=os.path.basename(__lowercase)) f.add(__lowercase , arcname=os.path.basename(__lowercase)) return path @pytest.fixture(scope='session') def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase): UpperCamelCase_ = tmp_path_factory.mktemp('data') / 'dataset_nested.jsonl.tar' with tarfile.TarFile(__lowercase , 'w') as f: f.add(__lowercase , arcname=os.path.join('nested' , os.path.basename(__lowercase))) return path @pytest.fixture(scope='session') def _snake_case (__lowercase): UpperCamelCase_ = ['0', '1', '2', '3'] UpperCamelCase_ = str(tmp_path_factory.mktemp('data') / 'dataset.txt') with open(__lowercase , 'w') as f: for item in data: f.write(item + '\n') return path @pytest.fixture(scope='session') def _snake_case (__lowercase): UpperCamelCase_ = ['0', '1', '2', '3'] UpperCamelCase_ = str(tmp_path_factory.mktemp('data') / 'dataset2.txt') with open(__lowercase , 'w') as f: for item in data: f.write(item + '\n') return path @pytest.fixture(scope='session') def _snake_case (__lowercase): UpperCamelCase_ = ['0', '1', '2', '3'] UpperCamelCase_ = tmp_path_factory.mktemp('data') / 'dataset.abc' with open(__lowercase , 'w') as f: for item in data: f.write(item + '\n') return path @pytest.fixture(scope='session') def _snake_case (__lowercase , __lowercase , __lowercase): UpperCamelCase_ = tmp_path_factory.mktemp('data') / 'dataset.text.zip' with zipfile.ZipFile(__lowercase , 'w') as f: f.write(__lowercase , arcname=os.path.basename(__lowercase)) f.write(__lowercase , arcname=os.path.basename(__lowercase)) return path @pytest.fixture(scope='session') def _snake_case (__lowercase , __lowercase , __lowercase): UpperCamelCase_ = tmp_path_factory.mktemp('data') / 'dataset_with_dir.text.zip' with zipfile.ZipFile(__lowercase , 'w') as f: f.write(__lowercase , arcname=os.path.join('main_dir' , os.path.basename(__lowercase))) f.write(__lowercase , arcname=os.path.join('main_dir' , os.path.basename(__lowercase))) return path @pytest.fixture(scope='session') def _snake_case (__lowercase , __lowercase , __lowercase): UpperCamelCase_ = tmp_path_factory.mktemp('data') / 'dataset.ext.zip' with zipfile.ZipFile(__lowercase , 'w') as f: f.write(__lowercase , arcname=os.path.basename('unsupported.ext')) f.write(__lowercase , arcname=os.path.basename('unsupported_2.ext')) return path @pytest.fixture(scope='session') def _snake_case (__lowercase): UpperCamelCase_ = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third']) UpperCamelCase_ = str(tmp_path_factory.mktemp('data') / 'dataset_with_unicode_new_lines.txt') with open(__lowercase , 'w' , encoding='utf-8') as f: f.write(__lowercase) return path @pytest.fixture(scope='session') def _snake_case (): return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg') @pytest.fixture(scope='session') def _snake_case (): return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav') @pytest.fixture(scope='session') def _snake_case (__lowercase , __lowercase): UpperCamelCase_ = tmp_path_factory.mktemp('data') / 'dataset.img.zip' with zipfile.ZipFile(__lowercase , 'w') as f: f.write(__lowercase , arcname=os.path.basename(__lowercase)) f.write(__lowercase , arcname=os.path.basename(__lowercase).replace('.jpg' , '2.jpg')) return path @pytest.fixture(scope='session') def _snake_case (__lowercase): UpperCamelCase_ = tmp_path_factory.mktemp('data_dir') (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w') as f: f.write('foo\n' * 10) with open(data_dir / 'subdir' / 'test.txt' , 'w') as f: f.write('bar\n' * 10) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w') as f: f.write('bar\n' * 10) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w') as f: f.write('foo\n' * 10) with open(data_dir / '.subdir' / 'test.txt' , 'w') as f: f.write('bar\n' * 10) return data_dir
703
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) snake_case__ : Optional[int] = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv']) def _snake_case (__lowercase , __lowercase): inspect_dataset(__lowercase , __lowercase) UpperCamelCase_ = path + '.py' assert script_name in os.listdir(__lowercase) assert "__pycache__" not in os.listdir(__lowercase) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning') @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning') @pytest.mark.parametrize('path' , ['accuracy']) def _snake_case (__lowercase , __lowercase): inspect_metric(__lowercase , __lowercase) UpperCamelCase_ = path + '.py' assert script_name in os.listdir(__lowercase) assert "__pycache__" not in os.listdir(__lowercase) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def _snake_case (__lowercase , __lowercase , __lowercase): UpperCamelCase_ = get_dataset_config_info(__lowercase , config_name=__lowercase) assert info.config_name == config_name assert list(info.splits.keys()) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def _snake_case (__lowercase , __lowercase , __lowercase): with pytest.raises(__lowercase): get_dataset_config_info(__lowercase , config_name=__lowercase) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def _snake_case (__lowercase , __lowercase): UpperCamelCase_ = get_dataset_config_names(__lowercase) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def _snake_case (__lowercase , __lowercase , __lowercase): UpperCamelCase_ = get_dataset_infos(__lowercase) assert list(infos.keys()) == expected_configs UpperCamelCase_ = expected_configs[0] assert expected_config in infos UpperCamelCase_ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys()) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def _snake_case (__lowercase , __lowercase , __lowercase): UpperCamelCase_ = get_dataset_infos(__lowercase) assert expected_config in infos UpperCamelCase_ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys()) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def _snake_case (__lowercase , __lowercase , __lowercase): with pytest.raises(__lowercase): get_dataset_split_names(__lowercase , config_name=__lowercase)
618
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline _lowercase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCAmelCase ( _lowerCAmelCase ): def __init__( self : List[Any] , _lowercase : List[str] , _lowercase : Optional[Any] ): super().__init__() self.register_modules(unet=_lowercase , scheduler=_lowercase ) @torch.no_grad() def __call__( self : Any , _lowercase : int = 1 , _lowercase : int = 1_00 , _lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowercase : Optional[float] = None , _lowercase : bool = True , ): if audio_length_in_s is None: __UpperCAmelCase = self.unet.config.sample_size / self.unet.config.sample_rate __UpperCAmelCase = audio_length_in_s * self.unet.config.sample_rate __UpperCAmelCase = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' F''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) __UpperCAmelCase = int(_lowercase ) if sample_size % down_scale_factor != 0: __UpperCAmelCase = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' F''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ''' process.''' ) __UpperCAmelCase = int(_lowercase ) __UpperCAmelCase = next(iter(self.unet.parameters() ) ).dtype __UpperCAmelCase = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __UpperCAmelCase = randn_tensor(_lowercase , generator=_lowercase , device=self.device , dtype=_lowercase ) # set step values self.scheduler.set_timesteps(_lowercase , device=audio.device ) __UpperCAmelCase = self.scheduler.timesteps.to(_lowercase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __UpperCAmelCase = self.unet(_lowercase , _lowercase ).sample # 2. compute previous image: x_t -> t_t-1 __UpperCAmelCase = self.scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample __UpperCAmelCase = audio.clamp(-1 , 1 ).float().cpu().numpy() __UpperCAmelCase = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=_lowercase )
49
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a__: Optional[Any] = logging.get_logger(__name__) a__: Any = { 'microsoft/conditional-detr-resnet-50': ( 'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = '''conditional_detr''' __SCREAMING_SNAKE_CASE = ['''past_key_values'''] __SCREAMING_SNAKE_CASE = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self,__lowerCamelCase=True,__lowerCamelCase=None,__lowerCamelCase=3,__lowerCamelCase=300,__lowerCamelCase=6,__lowerCamelCase=2048,__lowerCamelCase=8,__lowerCamelCase=6,__lowerCamelCase=2048,__lowerCamelCase=8,__lowerCamelCase=0.0,__lowerCamelCase=0.0,__lowerCamelCase=True,__lowerCamelCase="relu",__lowerCamelCase=256,__lowerCamelCase=0.1,__lowerCamelCase=0.0,__lowerCamelCase=0.0,__lowerCamelCase=0.02,__lowerCamelCase=1.0,__lowerCamelCase=False,__lowerCamelCase="sine",__lowerCamelCase="resnet50",__lowerCamelCase=True,__lowerCamelCase=False,__lowerCamelCase=2,__lowerCamelCase=5,__lowerCamelCase=2,__lowerCamelCase=1,__lowerCamelCase=1,__lowerCamelCase=2,__lowerCamelCase=5,__lowerCamelCase=2,__lowerCamelCase=0.25,**__lowerCamelCase,): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A__ = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(__lowerCamelCase,__lowerCamelCase ): A__ = backbone_config.get('''model_type''' ) A__ = CONFIG_MAPPING[backbone_model_type] A__ = config_class.from_dict(__lowerCamelCase ) A__ = use_timm_backbone A__ = backbone_config A__ = num_channels A__ = num_queries A__ = d_model A__ = encoder_ffn_dim A__ = encoder_layers A__ = encoder_attention_heads A__ = decoder_ffn_dim A__ = decoder_layers A__ = decoder_attention_heads A__ = dropout A__ = attention_dropout A__ = activation_dropout A__ = activation_function A__ = init_std A__ = init_xavier_std A__ = encoder_layerdrop A__ = decoder_layerdrop A__ = encoder_layers A__ = auxiliary_loss A__ = position_embedding_type A__ = backbone A__ = use_pretrained_backbone A__ = dilation # Hungarian matcher A__ = class_cost A__ = bbox_cost A__ = giou_cost # Loss coefficients A__ = mask_loss_coefficient A__ = dice_loss_coefficient A__ = cls_loss_coefficient A__ = bbox_loss_coefficient A__ = giou_loss_coefficient A__ = focal_alpha super().__init__(is_encoder_decoder=__lowerCamelCase,**__lowerCamelCase ) @property def UpperCamelCase ( self ): return self.encoder_attention_heads @property def UpperCamelCase ( self ): return self.d_model def UpperCamelCase ( self ): A__ = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A__ = self.backbone_config.to_dict() A__ = self.__class__.model_type return output class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = version.parse('''1.11''' ) @property def UpperCamelCase ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def UpperCamelCase ( self ): return 1E-5 @property def UpperCamelCase ( self ): return 12
190
0
'''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def a ( UpperCamelCase_ : bytes ) -> bytes: # Make sure the supplied data is a bytes-like object if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): snake_case__ =f"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(UpperCamelCase_ ) snake_case__ =''.join(bin(UpperCamelCase_ )[2:].zfill(8 ) for byte in data ) snake_case__ =len(UpperCamelCase_ ) % 6 != 0 if padding_needed: # The padding that will be added later snake_case__ =b'=' * ((6 - len(UpperCamelCase_ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(UpperCamelCase_ ) % 6) else: snake_case__ =b'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(UpperCamelCase_ ) , 6 ) ).encode() + padding ) def a ( UpperCamelCase_ : str ) -> bytes: # Make sure encoded_data is either a string or a bytes-like object if not isinstance(UpperCamelCase_ , UpperCamelCase_ ) and not isinstance(UpperCamelCase_ , UpperCamelCase_ ): snake_case__ =( 'argument should be a bytes-like object or ASCII string, ' f"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(UpperCamelCase_ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(UpperCamelCase_ , UpperCamelCase_ ): try: snake_case__ =encoded_data.decode('utf-8' ) except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters' ) snake_case__ =encoded_data.count('=' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(UpperCamelCase_ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one snake_case__ =encoded_data[:-padding] snake_case__ =''.join( bin(B64_CHARSET.index(UpperCamelCase_ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: snake_case__ =''.join( bin(B64_CHARSET.index(UpperCamelCase_ ) )[2:].zfill(6 ) for char in encoded_data ) snake_case__ =[ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(UpperCamelCase_ ) , 8 ) ] return bytes(UpperCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
709
'''simple docstring''' from __future__ import annotations def a ( UpperCamelCase_ : list[float] , UpperCamelCase_ : list[float] ) -> float: snake_case__ =sorted(numsa + numsa ) snake_case__ , snake_case__ =divmod(len(UpperCamelCase_ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE__ : Optional[Any] = [float(x) for x in input('''Enter the elements of first array: ''').split()] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [float(x) for x in input('''Enter the elements of second array: ''').split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
581
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __magic_name__ ( lowercase__ ): _SCREAMING_SNAKE_CASE : int = ['pixel_values'] def __init__( self : Optional[Any] , snake_case_ : bool = True , snake_case_ : Dict[str, int] = None , snake_case_ : PILImageResampling = PILImageResampling.BICUBIC , snake_case_ : bool = True , snake_case_ : Union[int, float] = 1 / 255 , snake_case_ : bool = True , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : bool = True , **snake_case_ : Optional[int] , ): super().__init__(**snake_case_ ) __snake_case = size if size is not None else {"height": 384, "width": 384} __snake_case = get_size_dict(snake_case_ , default_to_square=snake_case_ ) __snake_case = do_resize __snake_case = size __snake_case = resample __snake_case = do_rescale __snake_case = rescale_factor __snake_case = do_normalize __snake_case = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __snake_case = image_std if image_std is not None else OPENAI_CLIP_STD __snake_case = do_convert_rgb def lowerCAmelCase ( self : Optional[int] , snake_case_ : np.ndarray , snake_case_ : Dict[str, int] , snake_case_ : PILImageResampling = PILImageResampling.BICUBIC , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Dict , ): __snake_case = get_size_dict(snake_case_ , default_to_square=snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) __snake_case = (size["height"], size["width"]) return resize(snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCAmelCase ( self : List[str] , snake_case_ : np.ndarray , snake_case_ : Union[int, float] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : int , ): return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCAmelCase ( self : Union[str, Any] , snake_case_ : np.ndarray , snake_case_ : Union[float, List[float]] , snake_case_ : Union[float, List[float]] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : str , ): return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCAmelCase ( self : Dict , snake_case_ : ImageInput , snake_case_ : Optional[bool] = None , snake_case_ : Optional[Dict[str, int]] = None , snake_case_ : PILImageResampling = None , snake_case_ : Optional[bool] = None , snake_case_ : Optional[float] = None , snake_case_ : Optional[bool] = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[str, TensorType]] = None , snake_case_ : bool = None , snake_case_ : ChannelDimension = ChannelDimension.FIRST , **snake_case_ : Any , ): __snake_case = do_resize if do_resize is not None else self.do_resize __snake_case = resample if resample is not None else self.resample __snake_case = do_rescale if do_rescale is not None else self.do_rescale __snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case = do_normalize if do_normalize is not None else self.do_normalize __snake_case = image_mean if image_mean is not None else self.image_mean __snake_case = image_std if image_std is not None else self.image_std __snake_case = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __snake_case = size if size is not None else self.size __snake_case = get_size_dict(snake_case_ , default_to_square=snake_case_ ) __snake_case = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: __snake_case = [convert_to_rgb(snake_case_ ) for image in images] # All transformations expect numpy arrays. __snake_case = [to_numpy_array(snake_case_ ) for image in images] if do_resize: __snake_case = [self.resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ ) for image in images] if do_rescale: __snake_case = [self.rescale(image=snake_case_ , scale=snake_case_ ) for image in images] if do_normalize: __snake_case = [self.normalize(image=snake_case_ , mean=snake_case_ , std=snake_case_ ) for image in images] __snake_case = [to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] __snake_case = BatchFeature(data={"pixel_values": images} , tensor_type=snake_case_ ) return encoded_outputs
163
"""simple docstring""" from __future__ import annotations def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> tuple[str, float]: """simple docstring""" if (stress, tangential_force, area).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif stress < 0: raise ValueError("Stress cannot be negative" ) elif tangential_force < 0: raise ValueError("Tangential Force cannot be negative" ) elif area < 0: raise ValueError("Area cannot be negative" ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
163
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase: Union[str, Any] = logging.get_logger(__name__) _lowercase: Tuple = { '''s-JoL/Open-Llama-V1''': '''https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json''', } class lowerCamelCase__ ( UpperCAmelCase ): UpperCamelCase__ ="open-llama" def __init__( self : List[Any] , lowercase__ : Optional[int]=10_00_00 , lowercase__ : Optional[int]=40_96 , lowercase__ : List[str]=1_10_08 , lowercase__ : Optional[Any]=32 , lowercase__ : Optional[int]=32 , lowercase__ : Dict="silu" , lowercase__ : List[Any]=20_48 , lowercase__ : int=0.0_2 , lowercase__ : Optional[int]=1e-6 , lowercase__ : Optional[Any]=True , lowercase__ : Optional[Any]=0 , lowercase__ : Any=1 , lowercase__ : List[Any]=2 , lowercase__ : Dict=False , lowercase__ : List[str]=True , lowercase__ : Dict=0.1 , lowercase__ : int=0.1 , lowercase__ : Union[str, Any]=True , lowercase__ : Tuple=True , lowercase__ : int=None , **lowercase__ : List[str] , ): _lowerCAmelCase = vocab_size _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = hidden_size _lowerCAmelCase = intermediate_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = initializer_range _lowerCAmelCase = rms_norm_eps _lowerCAmelCase = use_cache _lowerCAmelCase = kwargs.pop( 'use_memorry_efficient_attention' , lowercase__ ) _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_dropout_prob _lowerCAmelCase = use_stable_embedding _lowerCAmelCase = shared_input_output_embedding _lowerCAmelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , tie_word_embeddings=lowercase__ , **lowercase__ , ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase__ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f'got {self.rope_scaling}' ) _lowerCAmelCase = self.rope_scaling.get('type' , lowercase__ ) _lowerCAmelCase = self.rope_scaling.get('factor' , lowercase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(lowercase__ , lowercase__ ) or rope_scaling_factor <= 1.0: raise ValueError(f'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
225
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase__ : def __init__( self : Optional[Any] , lowercase__ : str , lowercase__ : Dict=13 , lowercase__ : Tuple=30 , lowercase__ : Optional[int]=2 , lowercase__ : Tuple=3 , lowercase__ : Dict=True , lowercase__ : Any=True , lowercase__ : int=32 , lowercase__ : int=5 , lowercase__ : Union[str, Any]=4 , lowercase__ : Tuple=37 , lowercase__ : Dict="gelu" , lowercase__ : int=0.1 , lowercase__ : Dict=0.1 , lowercase__ : Any=10 , lowercase__ : Tuple=0.0_2 , lowercase__ : str=3 , lowercase__ : Tuple=0.6 , lowercase__ : Tuple=None , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = mask_ratio _lowerCAmelCase = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _lowerCAmelCase = (image_size // patch_size) ** 2 _lowerCAmelCase = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self : int ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def SCREAMING_SNAKE_CASE__ ( self : Dict , lowercase__ : Any , lowercase__ : Optional[Any] , lowercase__ : Dict ): _lowerCAmelCase = ViTMAEModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : str , lowercase__ : List[Any] , lowercase__ : List[str] , lowercase__ : Union[str, Any] ): _lowerCAmelCase = ViTMAEForPreTraining(lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model(lowercase__ ) _lowerCAmelCase = (self.image_size // self.patch_size) ** 2 _lowerCAmelCase = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _lowerCAmelCase = 1 _lowerCAmelCase = ViTMAEForPreTraining(lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase = model(lowercase__ ) _lowerCAmelCase = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =(ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () UpperCamelCase__ ={"feature-extraction": ViTMAEModel} if is_torch_available() else {} UpperCamelCase__ =False UpperCamelCase__ =False UpperCamelCase__ =False UpperCamelCase__ =False def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase = ViTMAEModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): pass def SCREAMING_SNAKE_CASE__ ( self : int ): _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(lowercase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(lowercase__ ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , lowercase__ : Optional[Any] , lowercase__ : int , lowercase__ : Optional[Any] ): # make masks reproducible np.random.seed(2 ) _lowerCAmelCase = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _lowerCAmelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowerCAmelCase = torch.from_numpy(lowercase__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _lowerCAmelCase = pt_noise super().check_pt_tf_models(lowercase__ , lowercase__ , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : str ): _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) _lowerCAmelCase = outputs[0].cpu().numpy() _lowerCAmelCase = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase__ ) _lowerCAmelCase = model_class.from_pretrained(lowercase__ ) model.to(lowercase__ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) # Make sure we don't have nans _lowerCAmelCase = after_outputs[0].cpu().numpy() _lowerCAmelCase = 0 _lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase__ , 1e-5 ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): pass @slow def SCREAMING_SNAKE_CASE__ ( self : Any ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = ViTMAEModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) def _lowerCamelCase ( ): _lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCamelCase__ ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) _lowerCAmelCase = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ).to(lowercase__ ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=lowercase__ , return_tensors='pt' ).to(lowercase__ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _lowerCAmelCase = ViTMAEConfig() _lowerCAmelCase = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _lowerCAmelCase = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _lowerCAmelCase = model(**lowercase__ , noise=torch.from_numpy(lowercase__ ).to(device=lowercase__ ) ) # verify the logits _lowerCAmelCase = torch.Size((1, 1_96, 7_68) ) self.assertEqual(outputs.logits.shape , lowercase__ ) _lowerCAmelCase = torch.tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowercase__ ) , atol=1e-4 ) )
225
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase = { '''configuration_m2m_100''': ['''M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''M2M100Config''', '''M2M100OnnxConfig'''], '''tokenization_m2m_100''': ['''M2M100Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST''', '''M2M100ForConditionalGeneration''', '''M2M100Model''', '''M2M100PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin UpperCAmelCase__ : Optional[int] = False @skip_mps class UpperCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ = StableDiffusionAttendAndExcitePipeline UpperCamelCase_ = False UpperCamelCase_ = TEXT_TO_IMAGE_PARAMS UpperCamelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS.union({"""token_indices"""} ) UpperCamelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def lowerCAmelCase__ ( cls) -> str: super().setUpClass() torch.use_deterministic_algorithms(UpperCamelCase) @classmethod def lowerCAmelCase__ ( cls) -> Tuple: super().tearDownClass() torch.use_deterministic_algorithms(UpperCamelCase) def lowerCAmelCase__ ( self) -> Any: torch.manual_seed(0) UpperCamelCase__ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase , ) UpperCamelCase__ : Any = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=UpperCamelCase , set_alpha_to_one=UpperCamelCase , ) torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0) UpperCamelCase__ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , ) UpperCamelCase__ : List[Any] = CLIPTextModel(UpperCamelCase) UpperCamelCase__ : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') UpperCamelCase__ : Tuple = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowerCAmelCase__ ( self , UpperCamelCase , UpperCamelCase=0) -> str: if str(UpperCamelCase).startswith('mps'): UpperCamelCase__ : Tuple = torch.manual_seed(UpperCamelCase) else: UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCamelCase).manual_seed(UpperCamelCase) UpperCamelCase__ : List[Any] = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def lowerCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase__ : List[Any] = 'cpu' UpperCamelCase__ : Union[str, Any] = self.get_dummy_components() UpperCamelCase__ : Optional[Any] = self.pipeline_class(**UpperCamelCase) pipe.to(UpperCamelCase) pipe.set_progress_bar_config(disable=UpperCamelCase) UpperCamelCase__ : Tuple = self.get_dummy_inputs(UpperCamelCase) UpperCamelCase__ : Union[str, Any] = pipe(**UpperCamelCase).images UpperCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3)) UpperCamelCase__ : str = np.array( [0.6390_5364, 0.6289_7307, 0.4859_9017, 0.513_3624, 0.555_0048, 0.4576_9516, 0.5032_6973, 0.502_3139, 0.4538_4496]) UpperCamelCase__ : List[str] = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(UpperCamelCase , 1E-3) def lowerCAmelCase__ ( self) -> Dict: super().test_cpu_offload_forward_pass(expected_max_diff=5E-4) def lowerCAmelCase__ ( self) -> str: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def lowerCAmelCase__ ( self) -> List[str]: self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4) def lowerCAmelCase__ ( self) -> List[Any]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3) def lowerCAmelCase__ ( self) -> Optional[Any]: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4) def lowerCAmelCase__ ( self) -> Dict: super().test_save_load_local(expected_max_difference=5E-4) def lowerCAmelCase__ ( self) -> Dict: super().test_save_load_optional_components(expected_max_difference=4E-4) @require_torch_gpu @slow class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCAmelCase__ ( cls) -> Optional[int]: super().setUpClass() torch.use_deterministic_algorithms(UpperCamelCase) @classmethod def lowerCAmelCase__ ( cls) -> str: super().tearDownClass() torch.use_deterministic_algorithms(UpperCamelCase) def lowerCAmelCase__ ( self) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self) -> int: UpperCamelCase__ : Dict = torch.manual_seed(51) UpperCamelCase__ : Dict = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , safety_checker=UpperCamelCase , torch_dtype=torch.floataa) pipe.to('cuda') UpperCamelCase__ : Optional[int] = 'a painting of an elephant with glasses' UpperCamelCase__ : Dict = [5, 7] UpperCamelCase__ : Optional[int] = pipe( prompt=UpperCamelCase , token_indices=UpperCamelCase , guidance_scale=7.5 , generator=UpperCamelCase , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0] UpperCamelCase__ : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy') assert np.abs((expected_image - image).max()) < 5E-1
410
0
'''simple docstring''' import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowerCAmelCase : def __init__( self , UpperCamelCase , UpperCamelCase=13 , UpperCamelCase=64 , UpperCamelCase=2 , UpperCamelCase=3 , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=32 , UpperCamelCase=5 , UpperCamelCase=4 , UpperCamelCase=37 , UpperCamelCase="gelu" , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=10 , UpperCamelCase=0.02 , UpperCamelCase=[1, 16, 4, 4] , UpperCamelCase=None , ): _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = patch_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = scope _SCREAMING_SNAKE_CASE = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size _SCREAMING_SNAKE_CASE = (self.image_size // 32) ** 2 _SCREAMING_SNAKE_CASE = num_patches + 1 def lowercase ( self ): _SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def lowercase ( self ): _SCREAMING_SNAKE_CASE = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [4, 8, 16, 32], "num_groups": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCamelCase_ , ) def lowercase ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): _SCREAMING_SNAKE_CASE = ViTHybridModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): _SCREAMING_SNAKE_CASE = self.type_sequence_label_size _SCREAMING_SNAKE_CASE = ViTHybridForImageClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase ( self ): _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = config_and_inputs _SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): a : Optional[Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () a : List[str] = ( {'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification} if is_torch_available() else {} ) a : Union[str, Any] = False a : List[str] = False a : Tuple = False def lowercase ( self ): _SCREAMING_SNAKE_CASE = ViTHybridModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowercase ( self ): pass def lowercase ( self ): _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , nn.Linear ) ) def lowercase ( self ): _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(UpperCamelCase_ ) _SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] _SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowercase ( self ): _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowercase ( self ): _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ ) def lowercase ( self ): _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE = _config_zero_init(UpperCamelCase_ ) for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(config=UpperCamelCase_ ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": _SCREAMING_SNAKE_CASE = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def lowercase ( self ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = ViTHybridModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def _a ( ): _SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): @cached_property def lowercase ( self ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase ( self ): _SCREAMING_SNAKE_CASE = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( UpperCamelCase_ ) _SCREAMING_SNAKE_CASE = self.default_image_processor _SCREAMING_SNAKE_CASE = prepare_img() _SCREAMING_SNAKE_CASE = image_processor(images=UpperCamelCase_ , return_tensors="pt" ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**UpperCamelCase_ ) # verify the logits _SCREAMING_SNAKE_CASE = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor([-1.90_90, -0.49_93, -0.23_89] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1e-4 ) ) @slow @require_accelerate def lowercase ( self ): _SCREAMING_SNAKE_CASE = ViTHybridImageProcessor.from_pretrained("google/vit-hybrid-base-bit-384" ) _SCREAMING_SNAKE_CASE = ViTHybridForImageClassification.from_pretrained("google/vit-hybrid-base-bit-384" , device_map="auto" ) _SCREAMING_SNAKE_CASE = prepare_img() _SCREAMING_SNAKE_CASE = image_processor(images=UpperCamelCase_ , return_tensors="pt" ) _SCREAMING_SNAKE_CASE = model(**UpperCamelCase_ ) _SCREAMING_SNAKE_CASE = outputs.logits # model predicts one of the 1000 ImageNet classes _SCREAMING_SNAKE_CASE = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , "tabby, tabby cat" )
714
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def _a ( _SCREAMING_SNAKE_CASE : int ): # A local function to see if a dot lands in the circle. def is_in_circle(_SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float ) -> bool: _SCREAMING_SNAKE_CASE = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _SCREAMING_SNAKE_CASE = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(_SCREAMING_SNAKE_CASE ) ) # The ratio of the area for circle to square is pi/4. _SCREAMING_SNAKE_CASE = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def _a ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Callable[[float], float] , _SCREAMING_SNAKE_CASE : float = 0.0 , _SCREAMING_SNAKE_CASE : float = 1.0 , ): return mean( function_to_integrate(uniform(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) for _ in range(_SCREAMING_SNAKE_CASE ) ) * (max_value - min_value) def _a ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float = 0.0 , _SCREAMING_SNAKE_CASE : float = 1.0 ): def identity_function(_SCREAMING_SNAKE_CASE : float ) -> float: return x _SCREAMING_SNAKE_CASE = area_under_curve_estimator( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print("******************" ) def _a ( _SCREAMING_SNAKE_CASE : int ): def function_to_integrate(_SCREAMING_SNAKE_CASE : float ) -> float: return sqrt(4.0 - x * x ) _SCREAMING_SNAKE_CASE = area_under_curve_estimator( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 0.0 , 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
493
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer _snake_case : Dict = logging.get_logger(__name__) _snake_case : List[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _snake_case : List[Any] = { 'vocab_file': {'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'}, 'tokenizer_file': { 'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json' }, } _snake_case : List[Any] = {'mobilebert-uncased': 512} _snake_case : Optional[int] = {} class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_INIT_CONFIGURATION a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = MobileBertTokenizer def __init__( self : Any , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Tuple="[UNK]" , lowerCAmelCase_ : Optional[int]="[SEP]" , lowerCAmelCase_ : Optional[int]="[PAD]" , lowerCAmelCase_ : Tuple="[CLS]" , lowerCAmelCase_ : List[Any]="[MASK]" , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : int , ) -> Optional[Any]: super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(lowerCAmelCase_ , normalizer_state.pop('type' ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**lowerCAmelCase_ ) __lowerCAmelCase = do_lower_case def lowercase ( self : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any=None ) -> List[str]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
53
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("""At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training""") # TF training parameters __lowerCamelCase = False __lowerCamelCase = False def UpperCamelCase ( __lowerCamelCase : Namespace ): return TrainCommand(__lowerCamelCase ) class UpperCAmelCase ( A_ ): @staticmethod def _SCREAMING_SNAKE_CASE (snake_case__ : ArgumentParser ) -> int: '''simple docstring''' snake_case : Any = parser.add_parser("train" , help="CLI tool to train a model on a task." ) train_parser.add_argument( "--train_data" , type=snake_case__ , required=snake_case__ , help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences." , ) train_parser.add_argument( "--column_label" , type=snake_case__ , default=0 , help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text" , type=snake_case__ , default=1 , help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id" , type=snake_case__ , default=2 , help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row" , action="store_true" , help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data" , type=snake_case__ , default="" , help="path to validation dataset." ) train_parser.add_argument( "--validation_split" , type=snake_case__ , default=0.1 , help="if validation dataset is not provided, fraction of train dataset to use as validation dataset." , ) train_parser.add_argument("--output" , type=snake_case__ , default="./" , help="path to saved the trained model." ) train_parser.add_argument( "--task" , type=snake_case__ , default="text_classification" , help="Task to train the model on." ) train_parser.add_argument( "--model" , type=snake_case__ , default="bert-base-uncased" , help="Model's name or path to stored model." ) train_parser.add_argument("--train_batch_size" , type=snake_case__ , default=32 , help="Batch size for training." ) train_parser.add_argument("--valid_batch_size" , type=snake_case__ , default=64 , help="Batch size for validation." ) train_parser.add_argument("--learning_rate" , type=snake_case__ , default=3e-5 , help="Learning rate." ) train_parser.add_argument("--adam_epsilon" , type=snake_case__ , default=1e-08 , help="Epsilon for Adam optimizer." ) train_parser.set_defaults(func=snake_case__ ) def __init__(self : List[Any] , snake_case__ : Namespace ) -> Tuple: '''simple docstring''' snake_case : Any = logging.get_logger("transformers-cli/training" ) snake_case : List[Any] = "tf" if is_tf_available() else "torch" os.makedirs(args.output , exist_ok=snake_case__ ) snake_case : Any = args.output snake_case : List[Any] = args.column_label snake_case : Tuple = args.column_text snake_case : str = args.column_id self.logger.info(f"""Loading {args.task} pipeline for {args.model}""" ) if args.task == "text_classification": snake_case : Optional[int] = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"""Loading dataset from {args.train_data}""" ) snake_case : Tuple = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) snake_case : Optional[Any] = None if args.validation_data: self.logger.info(f"""Loading validation dataset from {args.validation_data}""" ) snake_case : Dict = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) snake_case : Union[str, Any] = args.validation_split snake_case : Optional[Any] = args.train_batch_size snake_case : List[str] = args.valid_batch_size snake_case : List[Any] = args.learning_rate snake_case : List[Any] = args.adam_epsilon def _SCREAMING_SNAKE_CASE (self : int ) -> List[str]: '''simple docstring''' if self.framework == "tf": return self.run_tf() return self.run_torch() def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[Any]: '''simple docstring''' raise NotImplementedError def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Tuple: '''simple docstring''' self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
204
0
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def __UpperCamelCase ( lowerCAmelCase__ : ndarray ): return np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) class UpperCamelCase__ : def __init__(self : List[Any] , *, snake_case_ : float = np.inf , snake_case_ : str = "linear" , snake_case_ : float = 0.0 , ): __a : Optional[Any] = regularization __a : Optional[int] = gamma if kernel == "linear": __a : str = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) __a : str = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: __a : Any = f"Unknown kernel: {kernel}" raise ValueError(snake_case_ ) def lowerCAmelCase (self : int , snake_case_ : ndarray , snake_case_ : ndarray ): return np.dot(snake_case_ , snake_case_ ) def lowerCAmelCase (self : Union[str, Any] , snake_case_ : ndarray , snake_case_ : ndarray ): return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def lowerCAmelCase (self : str , snake_case_ : list[ndarray] , snake_case_ : ndarray ): __a : Tuple = observations __a : Optional[int] = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((__a) , ) : str = np.shape(snake_case_ ) def to_minimize(snake_case_ : ndarray ) -> float: __a : Dict = 0 ((__a) , ) : Union[str, Any] = np.shape(snake_case_ ) for i in range(snake_case_ ): for j in range(snake_case_ ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(snake_case_ ) __a : int = LinearConstraint(snake_case_ , 0 , 0 ) __a : Tuple = Bounds(0 , self.regularization ) __a : Optional[int] = minimize( snake_case_ , np.ones(snake_case_ ) , bounds=snake_case_ , constraints=[ly_contraint] ).x __a : Optional[Any] = l_star # calculating mean offset of separation plane to points __a : Tuple = 0 for i in range(snake_case_ ): for j in range(snake_case_ ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) __a : List[str] = s / n def lowerCAmelCase (self : Any , snake_case_ : ndarray ): __a : Optional[Any] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , snake_case_ ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
326
lowercase__ ={ "joule": 1.0, "kilojoule": 1000, "megajoule": 1000000, "gigajoule": 1000000000, "wattsecond": 1.0, "watthour": 3600, "kilowatthour": 3600000, "newtonmeter": 1.0, "calorie_nutr": 4186.8, "kilocalorie_nutr": 4186800.00, "electronvolt": 1.602176634e-19, "britishthermalunit_it": 1055.05585, "footpound": 1.355_818, } def __UpperCamelCase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : float ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __a : Dict = ( f"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" f"Valid values are: {', '.join(lowerCAmelCase__ )}" ) raise ValueError(lowerCAmelCase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
326
1
import numpy as np from transformers import Pipeline def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] ): '''simple docstring''' lowerCamelCase_ = np.max(lowercase , axis=-1 , keepdims=lowercase ) lowerCamelCase_ = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=lowercase ) class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Tuple , **A_ : str ) -> str: """simple docstring""" lowerCamelCase_ = {} if "second_text" in kwargs: lowerCamelCase_ = kwargs['second_text'] return preprocess_kwargs, {}, {} def a__ ( self : Union[str, Any] , A_ : List[str] , A_ : int=None ) -> str: """simple docstring""" return self.tokenizer(A_ , text_pair=A_ , return_tensors=self.framework ) def a__ ( self : List[str] , A_ : int ) -> Optional[Any]: """simple docstring""" return self.model(**A_ ) def a__ ( self : Optional[Any] , A_ : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = model_outputs.logits[0].numpy() lowerCamelCase_ = softmax(A_ ) lowerCamelCase_ = np.argmax(A_ ) lowerCamelCase_ = self.model.config.idalabel[best_class] lowerCamelCase_ = probabilities[best_class].item() lowerCamelCase_ = logits.tolist() return {"label": label, "score": score, "logits": logits}
70
import argparse import json import subprocess def _SCREAMING_SNAKE_CASE ( lowercase : Dict , lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = [] lowerCamelCase_ = ( f"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"""" ' https://api.github.com/repos/huggingface/transformers/actions/runners' ) lowerCamelCase_ = subprocess.run(lowercase , shell=lowercase , stdout=subprocess.PIPE ) lowerCamelCase_ = output.stdout.decode('utf-8' ) lowerCamelCase_ = json.loads(lowercase ) lowerCamelCase_ = status['runners'] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(lowercase ) # save the result so we can report them on Slack with open('offline_runners.txt' , 'w' ) as fp: fp.write(json.dumps(lowercase ) ) if len(lowercase ) > 0: lowerCamelCase_ = '\n'.join([x['name'] for x in offline_runners] ) raise ValueError(f"""The following runners are offline:\n{failed}""" ) if __name__ == "__main__": def _SCREAMING_SNAKE_CASE ( lowercase : List[str] ): '''simple docstring''' return values.split(',' ) lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--target_runners", default=None, type=list_str, required=True, help="Comma-separated list of runners to check status.", ) parser.add_argument( "--token", default=None, type=str, required=True, help="A token that has actions:read permission." ) lowerCamelCase : Optional[int] = parser.parse_args() get_runner_status(args.target_runners, args.token)
70
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __A = { "configuration_audio_spectrogram_transformer": [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ASTConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["ASTFeatureExtractor"] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
437
from __future__ import annotations def lowerCAmelCase_ ( __a , __a , __a , ) -> tuple: """simple docstring""" if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
437
1
'''simple docstring''' import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def A_ ( snake_case , snake_case=False ): try: SCREAMING_SNAKE_CASE:List[Any] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. SCREAMING_SNAKE_CASE:int = default else: # KEY is set, convert it to True or False. try: SCREAMING_SNAKE_CASE:str = strtobool(snake_case ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'''If set, {key} must be yes or no.''' ) return _value A_ = parse_flag_from_env("RUN_SLOW", default=False) def A_ ( snake_case ): return unittest.skip("Test was skipped" )(snake_case ) def A_ ( snake_case ): return unittest.skipUnless(_run_slow_tests , "test is slow" )(snake_case ) def A_ ( snake_case ): return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU" )(snake_case ) def A_ ( snake_case ): return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU" )(snake_case ) def A_ ( snake_case ): return unittest.skipUnless(is_xpu_available() , "test requires a XPU" )(snake_case ) def A_ ( snake_case ): return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`" )(snake_case ) def A_ ( snake_case ): return unittest.skipUnless( is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite" )(snake_case ) def A_ ( snake_case ): return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library" )(snake_case ) def A_ ( snake_case ): return unittest.skipUnless(is_tpu_available() , "test requires TPU" )(snake_case ) def A_ ( snake_case ): return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU" )(snake_case ) def A_ ( snake_case ): return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU" )(snake_case ) def A_ ( snake_case ): return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs" )(snake_case ) def A_ ( snake_case ): return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs" )(snake_case ) def A_ ( snake_case ): return unittest.skipUnless(is_safetensors_available() , "test requires safetensors" )(snake_case ) def A_ ( snake_case ): return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed" )(snake_case ) def A_ ( snake_case ): return unittest.skipUnless(is_torch_version(">=" , "1.12.0" ) , "test requires torch version >= 1.12.0" )(snake_case ) def A_ ( snake_case=None , snake_case=None ): if test_case is None: return partial(snake_case , version=snake_case ) return unittest.skipUnless(is_torch_version(">=" , snake_case ) , F'''test requires torch version >= {version}''' )(snake_case ) def A_ ( snake_case ): return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard" )(snake_case ) def A_ ( snake_case ): return unittest.skipUnless(is_wandb_available() , "test requires wandb" )(snake_case ) def A_ ( snake_case ): return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml" )(snake_case ) A_ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def A_ ( snake_case ): return unittest.skipUnless( _atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(snake_case ) class _snake_case ( unittest.TestCase ): _A : Dict = True @classmethod def __UpperCamelCase ( cls : Union[str, Any] ): SCREAMING_SNAKE_CASE:List[str] = tempfile.mkdtemp() @classmethod def __UpperCamelCase ( cls : List[str] ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __UpperCamelCase ( self : Optional[Any] ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob("**/*" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(SCREAMING_SNAKE_CASE__ ) class _snake_case ( unittest.TestCase ): def __UpperCamelCase ( self : Dict ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class _snake_case ( unittest.TestCase ): def __UpperCamelCase ( self : str ,SCREAMING_SNAKE_CASE__ : Union[mock.Mock, List[mock.Mock]] ): SCREAMING_SNAKE_CASE:Union[str, Any] = mocks if isinstance(SCREAMING_SNAKE_CASE__ ,(tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def A_ ( snake_case ): SCREAMING_SNAKE_CASE:Dict = AcceleratorState() SCREAMING_SNAKE_CASE:List[Any] = tensor[None].clone().to(state.device ) SCREAMING_SNAKE_CASE:List[Any] = gather(snake_case ).cpu() SCREAMING_SNAKE_CASE:Tuple = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , snake_case ): return False return True class _snake_case : def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : List[Any] ): SCREAMING_SNAKE_CASE:Optional[Any] = returncode SCREAMING_SNAKE_CASE:int = stdout SCREAMING_SNAKE_CASE:str = stderr async def A_ ( snake_case , snake_case ): while True: SCREAMING_SNAKE_CASE:Tuple = await stream.readline() if line: callback(snake_case ) else: break async def A_ ( snake_case , snake_case=None , snake_case=None , snake_case=None , snake_case=False , snake_case=False ): if echo: print("\nRunning: " , " ".join(snake_case ) ) SCREAMING_SNAKE_CASE:Union[str, Any] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=snake_case , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=snake_case , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) SCREAMING_SNAKE_CASE:Optional[Any] = [] SCREAMING_SNAKE_CASE:Optional[int] = [] def tee(snake_case , snake_case , snake_case , snake_case="" ): SCREAMING_SNAKE_CASE:Tuple = line.decode("utf-8" ).rstrip() sink.append(snake_case ) if not quiet: print(snake_case , snake_case , file=snake_case ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda snake_case : tee(snake_case , snake_case , sys.stdout , label="stdout:" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda snake_case : tee(snake_case , snake_case , sys.stderr , label="stderr:" ) ) ), ] , timeout=snake_case , ) return _RunOutput(await p.wait() , snake_case , snake_case ) def A_ ( snake_case , snake_case=None , snake_case=None , snake_case=180 , snake_case=False , snake_case=True ): SCREAMING_SNAKE_CASE:Optional[int] = asyncio.get_event_loop() SCREAMING_SNAKE_CASE:Dict = loop.run_until_complete( _stream_subprocess(snake_case , env=snake_case , stdin=snake_case , timeout=snake_case , quiet=snake_case , echo=snake_case ) ) SCREAMING_SNAKE_CASE:Any = " ".join(snake_case ) if result.returncode > 0: SCREAMING_SNAKE_CASE:int = "\n".join(result.stderr ) raise RuntimeError( F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' F'''The combined stderr from workers follows:\n{stderr}''' ) return result class _snake_case ( _a ): pass def A_ ( snake_case , snake_case=False ): try: SCREAMING_SNAKE_CASE:int = subprocess.check_output(snake_case , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(snake_case , "decode" ): SCREAMING_SNAKE_CASE:Optional[int] = output.decode("utf-8" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F'''Command `{" ".join(snake_case )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
143
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class _snake_case ( _a ): _A : List[str] = '''camembert''' def __init__( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=30_522 ,SCREAMING_SNAKE_CASE__ : int=768 ,SCREAMING_SNAKE_CASE__ : List[Any]=12 ,SCREAMING_SNAKE_CASE__ : Any=12 ,SCREAMING_SNAKE_CASE__ : Tuple=3_072 ,SCREAMING_SNAKE_CASE__ : str="gelu" ,SCREAMING_SNAKE_CASE__ : int=0.1 ,SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 ,SCREAMING_SNAKE_CASE__ : Dict=512 ,SCREAMING_SNAKE_CASE__ : List[str]=2 ,SCREAMING_SNAKE_CASE__ : Tuple=0.02 ,SCREAMING_SNAKE_CASE__ : Any=1e-12 ,SCREAMING_SNAKE_CASE__ : str=1 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=0 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 ,SCREAMING_SNAKE_CASE__ : Any="absolute" ,SCREAMING_SNAKE_CASE__ : Tuple=True ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ,**SCREAMING_SNAKE_CASE__ : Tuple ,): super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ ,bos_token_id=SCREAMING_SNAKE_CASE__ ,eos_token_id=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE:str = hidden_size SCREAMING_SNAKE_CASE:str = num_hidden_layers SCREAMING_SNAKE_CASE:List[str] = num_attention_heads SCREAMING_SNAKE_CASE:Optional[int] = hidden_act SCREAMING_SNAKE_CASE:int = intermediate_size SCREAMING_SNAKE_CASE:List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE:Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE:str = max_position_embeddings SCREAMING_SNAKE_CASE:Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE:Optional[int] = initializer_range SCREAMING_SNAKE_CASE:Tuple = layer_norm_eps SCREAMING_SNAKE_CASE:Optional[Any] = position_embedding_type SCREAMING_SNAKE_CASE:Optional[int] = use_cache SCREAMING_SNAKE_CASE:List[Any] = classifier_dropout class _snake_case ( _a ): @property def __UpperCamelCase ( self : List[str] ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE:Any = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE:str = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
143
1
def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError('''List is empty''' ) lowercase = sum(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
633
import os def UpperCamelCase ( lowerCAmelCase__ = "input.txt" ): '''simple docstring''' with open(os.path.join(os.path.dirname(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) as input_file: lowercase = [ [int(lowerCAmelCase__ ) for element in line.split(''',''' )] for line in input_file.readlines() ] lowercase = len(lowerCAmelCase__ ) lowercase = len(matrix[0] ) lowercase = [[-1 for _ in range(lowerCAmelCase__ )] for _ in range(lowerCAmelCase__ )] for i in range(lowerCAmelCase__ ): lowercase = matrix[i][0] for j in range(1 , lowerCAmelCase__ ): for i in range(lowerCAmelCase__ ): lowercase = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , lowerCAmelCase__ ): lowercase = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowercase = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F'{solution() = }')
633
1
'''simple docstring''' from math import factorial __snake_case : int = {str(d): factorial(d) for d in range(10)} def _lowercase ( lowerCamelCase__ : int ): return sum(DIGIT_FACTORIAL[d] for d in str(lowerCamelCase__ ) ) def _lowercase ( ): _a = 7 * factorial(9 ) + 1 return sum(i for i in range(3, lowerCamelCase__ ) if sum_of_digit_factorial(lowerCamelCase__ ) == i ) if __name__ == "__main__": print(f'''{solution() = }''')
131
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def _UpperCAmelCase ( ): """simple docstring""" __lowerCamelCase : Any = { """repo_name""": ["""test_repo1""", """test_repo2""", """test_repo3"""], """path""": ["""test_1.py""", """test_2.py""", """unit_test.py"""], """content""": ["""a """ * 20, """a """ * 30, """b """ * 7], } __lowerCamelCase : List[str] = Dataset.from_dict(UpperCAmelCase ) return dataset class _UpperCamelCase ( A ): '''simple docstring''' def _snake_case ( self : Any ): '''simple docstring''' __lowerCamelCase : Optional[int] = get_dataset() __lowerCamelCase : Dict = make_duplicate_clusters(_lowerCamelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowerCamelCase : Optional[Any] = get_dataset() __lowerCamelCase , __lowerCamelCase : List[Any] = deduplicate_dataset(_lowerCamelCase ) self.assertEqual(len(_lowerCamelCase ) , 2 ) print(_lowerCamelCase ) self.assertEqual(duplicate_clusters[0][0]["""copies"""] , 2 ) self.assertEqual(duplicate_clusters[0][0]["""is_extreme"""] , _lowerCamelCase )
519
0
"""simple docstring""" from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _A ( _UpperCAmelCase ): """simple docstring""" UpperCamelCase_ : Union[str, Any] = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ : str = '''BridgeTowerImageProcessor''' UpperCamelCase_ : Dict = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self : List[Any] , A_ : str , A_ : str ) -> Union[str, Any]: super().__init__(A_ , A_ ) def __call__( self : Any , A_ : str , A_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , A_ : bool = True , A_ : Union[bool, str, PaddingStrategy] = False , A_ : Union[bool, str, TruncationStrategy] = None , A_ : Optional[int] = None , A_ : int = 0 , A_ : Optional[int] = None , A_ : Optional[bool] = None , A_ : Optional[bool] = None , A_ : bool = False , A_ : bool = False , A_ : bool = False , A_ : bool = False , A_ : bool = True , A_ : Optional[Union[str, TensorType]] = None , **A_ : Union[str, Any] , ) -> BatchEncoding: __snake_case = self.tokenizer( text=A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ , max_length=A_ , stride=A_ , pad_to_multiple_of=A_ , return_token_type_ids=A_ , return_attention_mask=A_ , return_overflowing_tokens=A_ , return_special_tokens_mask=A_ , return_offsets_mapping=A_ , return_length=A_ , verbose=A_ , return_tensors=A_ , **A_ , ) # add pixel_values + pixel_mask __snake_case = self.image_processor( A_ , return_tensors=A_ , do_normalize=A_ , do_center_crop=A_ , **A_ ) encoding.update(A_ ) return encoding def lowercase ( self : Optional[Any] , *A_ : List[str] , **A_ : int ) -> int: return self.tokenizer.batch_decode(*A_ , **A_ ) def lowercase ( self : Optional[Any] , *A_ : Optional[int] , **A_ : Optional[Any] ) -> Any: return self.tokenizer.decode(*A_ , **A_ ) @property def lowercase ( self : str ) -> Dict: __snake_case = self.tokenizer.model_input_names __snake_case = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
712
"""simple docstring""" from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowercase : str = logging.get_logger(__name__) class _A ( _UpperCAmelCase ): """simple docstring""" UpperCamelCase_ : str = ['''pixel_values'''] def __init__( self : Optional[int] , A_ : bool = True , A_ : Dict[str, int] = None , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : bool = True , A_ : Dict[str, int] = None , A_ : bool = True , A_ : Union[int, float] = 1 / 255 , A_ : bool = True , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **A_ : Dict , ) -> None: super().__init__(**A_ ) __snake_case = size if size is not None else {'''shortest_edge''': 224} __snake_case = get_size_dict(A_ , default_to_square=A_ ) __snake_case = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __snake_case = get_size_dict(A_ , param_name='''crop_size''' ) __snake_case = do_resize __snake_case = size __snake_case = resample __snake_case = do_center_crop __snake_case = crop_size __snake_case = do_rescale __snake_case = rescale_factor __snake_case = do_normalize __snake_case = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __snake_case = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowercase ( self : Any , A_ : np.ndarray , A_ : Dict[str, int] , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : int , ) -> np.ndarray: __snake_case = get_size_dict(A_ , default_to_square=A_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __snake_case = int((256 / 224) * size['''shortest_edge'''] ) __snake_case = get_resize_output_image_size(A_ , size=A_ , default_to_square=A_ ) __snake_case = {'''height''': output_size[0], '''width''': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}" ) return resize( A_ , size=(size_dict['''height'''], size_dict['''width''']) , resample=A_ , data_format=A_ , **A_ ) def lowercase ( self : Any , A_ : np.ndarray , A_ : Dict[str, int] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : List[Any] , ) -> np.ndarray: __snake_case = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(f"Size dict must have keys 'height' and 'width'. Got {size.keys()}" ) return center_crop(A_ , size=(size['''height'''], size['''width''']) , data_format=A_ , **A_ ) def lowercase ( self : List[str] , A_ : np.ndarray , A_ : Union[int, float] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Optional[Any] , ) -> np.ndarray: return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def lowercase ( self : Dict , A_ : np.ndarray , A_ : Union[float, List[float]] , A_ : Union[float, List[float]] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Optional[int] , ) -> np.ndarray: return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def lowercase ( self : Union[str, Any] , A_ : ImageInput , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : PILImageResampling = None , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : Optional[bool] = None , A_ : Optional[float] = None , A_ : Optional[bool] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[TensorType] = None , A_ : ChannelDimension = ChannelDimension.FIRST , **A_ : Any , ) -> BatchFeature: __snake_case = do_resize if do_resize is not None else self.do_resize __snake_case = resample if resample is not None else self.resample __snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop __snake_case = do_rescale if do_rescale is not None else self.do_rescale __snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case = do_normalize if do_normalize is not None else self.do_normalize __snake_case = image_mean if image_mean is not None else self.image_mean __snake_case = image_std if image_std is not None else self.image_std __snake_case = size if size is not None else self.size __snake_case = get_size_dict(A_ , default_to_square=A_ ) __snake_case = crop_size if crop_size is not None else self.crop_size __snake_case = get_size_dict(A_ , param_name='''crop_size''' ) __snake_case = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __snake_case = [to_numpy_array(A_ ) for image in images] if do_resize: __snake_case = [self.resize(A_ , A_ , A_ ) for image in images] if do_center_crop: __snake_case = [self.center_crop(A_ , A_ ) for image in images] if do_rescale: __snake_case = [self.rescale(A_ , A_ ) for image in images] if do_normalize: __snake_case = [self.normalize(A_ , A_ , A_ ) for image in images] __snake_case = [to_channel_dimension_format(A_ , A_ ) for image in images] __snake_case = {'''pixel_values''': images} return BatchFeature(data=A_ , tensor_type=A_ )
93
0
def snake_case ( lowerCamelCase ): '''simple docstring''' if not isinstance(_snake_case , _snake_case ): raise ValueError("""Input must be an integer""" ) if input_num <= 0: raise ValueError("""Input must be positive""" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
80
def SCREAMING_SNAKE_CASE_ ( _snake_case :bytes ) -> str: return "".join([hex(_snake_case )[2:].zfill(2 ).upper() for byte in list(_snake_case )] ) def SCREAMING_SNAKE_CASE_ ( _snake_case :str ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(_snake_case ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(_snake_case ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(_snake_case ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
2
0
'''simple docstring''' import numpy # List of input, output pairs UpperCamelCase__ : List[str] = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) UpperCamelCase__ : Tuple = (((515, 22, 13), 555), ((61, 35, 49), 150)) UpperCamelCase__ : Union[str, Any] = [2, 4, 1, 5] UpperCamelCase__ : Dict = len(train_data) UpperCamelCase__ : Optional[int] = 0.0_0_9 def UpperCAmelCase ( a_ , a_="train" ) -> Optional[int]: """simple docstring""" return calculate_hypothesis_value(__snake_case , __snake_case ) - output( __snake_case , __snake_case ) def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" A_ : Union[str, Any] = 0 for i in range(len(__snake_case ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def UpperCAmelCase ( a_ , a_ ) -> List[Any]: """simple docstring""" if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def UpperCAmelCase ( a_ , a_=m ) -> List[str]: """simple docstring""" A_ : Any = 0 for i in range(__snake_case ): if index == -1: summation_value += _error(__snake_case ) else: summation_value += _error(__snake_case ) * train_data[i][0][index] return summation_value def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" A_ : List[str] = summation_of_cost_derivative(__snake_case , __snake_case ) / m return cost_derivative_value def UpperCAmelCase ( ) -> List[str]: """simple docstring""" global parameter_vector # Tune these values to set a tolerance value for predicted output A_ : str = 0.000002 A_ : Union[str, Any] = 0 A_ : List[Any] = 0 while True: j += 1 A_ : Union[str, Any] = [0, 0, 0, 0] for i in range(0 , len(__snake_case ) ): A_ : List[str] = get_cost_derivative(i - 1 ) A_ : int = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __snake_case , __snake_case , atol=__snake_case , rtol=__snake_case , ): break A_ : Optional[Any] = temp_parameter_vector print(("""Number of iterations:""", j) ) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" for i in range(len(__snake_case ) ): print(("""Actual output value:""", output(__snake_case , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(__snake_case , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
707
'''simple docstring''' from __future__ import annotations class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase ) -> Dict: A_ : List[Any] = TypeError( """Matrices must be formed from a list of zero or more lists containing at """ """least one and the same number of values, each of which must be of type """ """int or float.""" ) if len(_lowerCamelCase ) != 0: A_ : List[str] = len(rows[0] ) if cols == 0: raise error for row in rows: if len(_lowerCamelCase ) != cols: raise error for value in row: if not isinstance(_lowerCamelCase , (int, float) ): raise error A_ : str = rows else: A_ : Optional[int] = [] def UpperCAmelCase_ ( self ) -> list[list[int]]: return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def UpperCAmelCase_ ( self ) -> int: return len(self.rows ) @property def UpperCAmelCase_ ( self ) -> int: return len(self.rows[0] ) @property def UpperCAmelCase_ ( self ) -> tuple[int, int]: return (self.num_rows, self.num_columns) @property def UpperCAmelCase_ ( self ) -> bool: return self.order[0] == self.order[1] def UpperCAmelCase_ ( self ) -> Matrix: A_ : Dict = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> int: if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def UpperCAmelCase_ ( self ) -> bool: return bool(self.determinant() ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> int: A_ : List[Any] = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(_lowerCamelCase ).determinant() def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> int: if (row + column) % 2 == 0: return self.get_minor(_lowerCamelCase , _lowerCamelCase ) return -1 * self.get_minor(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Matrix: return Matrix( [ [self.get_minor(_lowerCamelCase , _lowerCamelCase ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def UpperCAmelCase_ ( self ) -> Matrix: return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def UpperCAmelCase_ ( self ) -> Matrix: A_ : Union[str, Any] = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Matrix: A_ : Optional[Any] = self.determinant() if not determinant: raise TypeError("""Only matrices with a non-zero determinant have an inverse""" ) return self.adjugate() * (1 / determinant) def __repr__( self ) -> str: return str(self.rows ) def __str__( self ) -> str: if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ """[""" + """. """.join([str(_lowerCamelCase ) for value in row] ) + """.]""" for row in self.rows ] ) + "]" ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> None: A_ : str = TypeError("""Row must be a list containing all ints and/or floats""" ) if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise type_error for value in row: if not isinstance(_lowerCamelCase , (int, float) ): raise type_error if len(_lowerCamelCase ) != self.num_columns: raise ValueError( """Row must be equal in length to the other rows in the matrix""" ) if position is None: self.rows.append(_lowerCamelCase ) else: A_ : Optional[Any] = self.rows[0:position] + [row] + self.rows[position:] def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> None: A_ : int = TypeError( """Column must be a list containing all ints and/or floats""" ) if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise type_error for value in column: if not isinstance(_lowerCamelCase , (int, float) ): raise type_error if len(_lowerCamelCase ) != self.num_rows: raise ValueError( """Column must be equal in length to the other columns in the matrix""" ) if position is None: A_ : str = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: A_ : str = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self , _lowerCamelCase ) -> bool: if not isinstance(_lowerCamelCase , _lowerCamelCase ): return NotImplemented return self.rows == other.rows def __ne__( self , _lowerCamelCase ) -> bool: return not self == other def __neg__( self ) -> Matrix: return self * -1 def __add__( self , _lowerCamelCase ) -> Matrix: if self.order != other.order: raise ValueError("""Addition requires matrices of the same order""" ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self , _lowerCamelCase ) -> Matrix: if self.order != other.order: raise ValueError("""Subtraction requires matrices of the same order""" ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self , _lowerCamelCase ) -> Matrix: if isinstance(_lowerCamelCase , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): if self.num_columns != other.num_rows: raise ValueError( """The number of columns in the first matrix must """ """be equal to the number of rows in the second""" ) return Matrix( [ [Matrix.dot_product(_lowerCamelCase , _lowerCamelCase ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( """A Matrix can only be multiplied by an int, float, or another matrix""" ) def __pow__( self , _lowerCamelCase ) -> Matrix: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""A Matrix can only be raised to the power of an int""" ) if not self.is_square: raise ValueError("""Only square matrices can be raised to a power""" ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( """Only invertable matrices can be raised to a negative power""" ) A_ : Optional[int] = self for _ in range(other - 1 ): result *= self return result @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , _lowerCamelCase ) -> int: return sum(row[i] * column[i] for i in range(len(_lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
385
0
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''vocab_file''': '''vocab.json''', '''tokenizer_config_file''': '''tokenizer_config.json''', '''merges_file''': '''merges.txt''', } _lowercase = { '''vocab_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json''' ), }, '''tokenizer_config_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json''' ), }, '''merges_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt''' ), }, } _lowercase = '''</w>''' _lowercase = '''@@ ''' def _snake_case ( snake_case__ : Tuple ): A = set() A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A = char return pairs # Speech2Text2 has no max input length _lowercase = {'''facebook/s2t-wav2vec2-large-en-de''': 10_24} class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Dict = VOCAB_FILES_NAMES _lowerCamelCase: Tuple = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase: Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : Any ,A_ : List[str] ,A_ : str="<s>" ,A_ : Optional[int]="<pad>" ,A_ : List[str]="</s>" ,A_ : List[Any]="<unk>" ,A_ : List[str]=False ,A_ : int=None ,**A_ : Union[str, Any] ,) -> Optional[int]: super().__init__( unk_token=A_ ,bos_token=A_ ,eos_token=A_ ,pad_token=A_ ,do_lower_case=A_ ,**A_ ,) A = do_lower_case with open(A_ ,encoding='utf-8' ) as vocab_handle: A = json.load(A_ ) A = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F'No merges files provided. {self.__class__.__name__} can only be used for decoding.' ) A = None A = None else: with open(A_ ,encoding='utf-8' ) as merges_handle: A = merges_handle.read().split('\n' )[:-1] A = [tuple(merge.split()[:2] ) for merge in merges] A = dict(zip(A_ ,range(len(A_ ) ) ) ) A = {} @property def _SCREAMING_SNAKE_CASE ( self : str ) -> int: return len(self.decoder ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: return dict(self.encoder ,**self.added_tokens_encoder ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ) -> Tuple: A = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] A = get_pairs(A_ ) if not pairs: return token while True: A = min(A_ ,key=lambda A_ : self.bpe_ranks.get(A_ ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break A , A = bigram A = [] A = 0 while i < len(A_ ): try: A = word.index(A_ ,A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A = j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A = tuple(A_ ) A = new_word if len(A_ ) == 1: break else: A = get_pairs(A_ ) A = ' '.join(A_ ) if word == "\n " + BPE_TOKEN_MERGES: A = '\n' + BPE_TOKEN_MERGES if word.endswith(A_ ): A = word.replace(A_ ,'' ) A = word.replace(' ' ,A_ ) A = word return word def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : str ) -> List[str]: if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: A = text.lower() A = text.split() A = [] for token in text: if token: split_tokens.extend(list(self.bpe(A_ ).split(' ' ) ) ) return split_tokens def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : str ) -> int: return self.encoder.get(A_ ,self.encoder.get(self.unk_token ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : int ) -> str: A = self.decoder.get(A_ ,self.unk_token ) return result def _SCREAMING_SNAKE_CASE ( self : str ,A_ : List[str] ) -> str: A = ' '.join(A_ ) # make sure @@ tokens are concatenated A = ''.join(string.split(A_ ) ) return string def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ,A_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( A_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) A = os.path.join( A_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A_ ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=A_ ,ensure_ascii=A_ ) + '\n' ) A = 0 if self.bpe_ranks is None: return (vocab_file,) with open(A_ ,'w' ,encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda A_ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) A = token_index writer.write(' '.join(A_ ) + '\n' ) index += 1 return (vocab_file, merges_file)
91
import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class snake_case__ : """simple docstring""" def __init__( self , __lowercase ) -> Optional[Any]: """simple docstring""" if isinstance(__lowercase , __lowercase ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden a__ : int = deepcopy(__lowercase ) elif os.path.exists(__lowercase ): with io.open(__lowercase , """r""" , encoding="""utf-8""" ) as f: a__ : str = json.load(__lowercase ) else: try: a__ : Union[str, Any] = baseaa.urlsafe_baadecode(__lowercase ).decode("""utf-8""" ) a__ : Tuple = json.loads(__lowercase ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( F'''Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}''' ) a__ : Tuple = config self.set_stage_and_offload() def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" a__ : List[Any] = self.get_value("""zero_optimization.stage""" , -1 ) # offload a__ : Tuple = False if self.is_zeroa() or self.is_zeroa(): a__ : Any = set(["""cpu""", """nvme"""] ) a__ : List[str] = set( [ self.get_value("""zero_optimization.offload_optimizer.device""" ), self.get_value("""zero_optimization.offload_param.device""" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: a__ : Tuple = True def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Tuple: """simple docstring""" a__ : Optional[Any] = self.config # find the config node of interest if it exists a__ : Any = ds_key_long.split(""".""" ) a__ : List[Any] = nodes.pop() for node in nodes: a__ : Any = config.get(__lowercase ) if config is None: return None, ds_key return config, ds_key def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase=None ) -> Any: """simple docstring""" a__ , a__ : int = self.find_config_node(__lowercase ) if config is None: return default return config.get(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase=False ) -> Dict: """simple docstring""" a__ : Dict = self.config # find the config node of interest if it exists a__ : Dict = ds_key_long.split(""".""" ) for node in nodes: a__ : Any = config a__ : Optional[Any] = config.get(__lowercase ) if config is None: if must_exist: raise ValueError(F'''Can\'t find {ds_key_long} entry in the config: {self.config}''' ) else: return # if found remove it if parent_config is not None: parent_config.pop(__lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Optional[Any]: """simple docstring""" a__ : Tuple = self.get_value(__lowercase ) return False if value is None else bool(__lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Tuple: """simple docstring""" a__ : int = self.get_value(__lowercase ) return False if value is None else not bool(__lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" return self._stage == 2 def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" return self._stage == 3 def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" return self._offload class snake_case__ : """simple docstring""" def __init__( self , __lowercase ) -> Optional[int]: """simple docstring""" a__ : List[str] = engine def SCREAMING_SNAKE_CASE__( self , __lowercase , **__lowercase ) -> List[str]: """simple docstring""" self.engine.backward(__lowercase , **__lowercase ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class snake_case__ (A__ ): """simple docstring""" def __init__( self , __lowercase ) -> int: """simple docstring""" super().__init__(__lowercase , device_placement=__lowercase , scaler=__lowercase ) a__ : Any = hasattr(self.optimizer , """overflow""" ) def SCREAMING_SNAKE_CASE__( self , __lowercase=None ) -> int: """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" if self.__has_overflow__: return self.optimizer.overflow return False class snake_case__ (A__ ): """simple docstring""" def __init__( self , __lowercase , __lowercase ) -> Dict: """simple docstring""" super().__init__(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class snake_case__ : """simple docstring""" def __init__( self , __lowercase , __lowercase=0.0_0_1 , __lowercase=0 , **__lowercase ) -> List[str]: """simple docstring""" a__ : Optional[int] = params a__ : List[str] = lr a__ : List[str] = weight_decay a__ : Tuple = kwargs class snake_case__ : """simple docstring""" def __init__( self , __lowercase , __lowercase=None , __lowercase=0 , **__lowercase ) -> Optional[int]: """simple docstring""" a__ : List[Any] = optimizer a__ : List[Any] = total_num_steps a__ : Optional[Any] = warmup_num_steps a__ : Optional[int] = kwargs
136
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = torch.device('cpu') def __lowerCamelCase ( ) -> int: __UpperCamelCase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __UpperCamelCase : Dict = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im def __lowerCamelCase ( __lowerCAmelCase : Dict ) -> Any: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.17_03e00, 2.11_07e00, -2.08_11e00, 8.86_85e-01, 2.43_60e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.96_36e-01, 2.34_78e-01, -1.69_63e00, -1.73_81e00, -8.63_37e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.27_68e-01, -4.74_29e-01, -1.08_97e00, -1.02_48e00, 3.55_23e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.53_30e-01, 2.42_11e-01, -6.01_85e-01, -8.27_89e-01, -6.04_46e-02] ) def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] ) -> str: __UpperCamelCase : List[str] = dct.pop(__lowerCAmelCase ) __UpperCamelCase : Tuple = val def __lowerCamelCase ( __lowerCAmelCase : str ) -> int: __UpperCamelCase : Optional[int] = [] for k in state_dict.keys(): __UpperCamelCase : str = k if ".pwconv" in k: __UpperCamelCase : List[Any] = k_new.replace(""".pwconv""" , """.point_wise_conv""" ) if ".dwconv" in k: __UpperCamelCase : Any = k_new.replace(""".dwconv""" , """.depth_wise_conv""" ) if ".Proj." in k: __UpperCamelCase : Tuple = k_new.replace(""".Proj.""" , """.proj.""" ) if "patch_embed" in k_new: __UpperCamelCase : str = k_new.replace("""patch_embed""" , """swiftformer.patch_embed.patch_embedding""" ) if "network" in k_new: __UpperCamelCase : Any = k_new.split(""".""" ) if ls[2].isdigit(): __UpperCamelCase : List[str] = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: __UpperCamelCase : Union[str, Any] = k_new.replace("""network""" , """swiftformer.encoder.network""" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : Dict ) -> str: __UpperCamelCase : Union[str, Any] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __UpperCamelCase : Dict = 1000 __UpperCamelCase : Dict = """huggingface/label-files""" __UpperCamelCase : Tuple = """imagenet-1k-id2label.json""" __UpperCamelCase : Optional[int] = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) __UpperCamelCase : Any = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} __UpperCamelCase : int = idalabel __UpperCamelCase : Optional[int] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __UpperCamelCase : Tuple = [3, 3, 6, 4] __UpperCamelCase : Optional[Any] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": __UpperCamelCase : List[str] = [3, 3, 9, 6] __UpperCamelCase : Union[str, Any] = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": __UpperCamelCase : int = [4, 3, 10, 5] __UpperCamelCase : Any = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": __UpperCamelCase : Union[str, Any] = [4, 4, 12, 6] __UpperCamelCase : Union[str, Any] = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("""https""" ): __UpperCamelCase : str = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="""cpu""" , check_hash=__lowerCAmelCase ) else: __UpperCamelCase : int = torch.load(__lowerCAmelCase , map_location="""cpu""" ) __UpperCamelCase : List[str] = checkpoint __UpperCamelCase : Any = create_rename_keys(__lowerCAmelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model __UpperCamelCase : Dict = SwiftFormerForImageClassification(__lowerCAmelCase ).eval() hf_model.load_state_dict(__lowerCAmelCase ) # prepare test inputs __UpperCamelCase : Dict = prepare_img() __UpperCamelCase : int = ViTImageProcessor.from_pretrained("""preprocessor_config""" ) __UpperCamelCase : Tuple = processor(images=__lowerCAmelCase , return_tensors="""pt""" ) # compare outputs from both models __UpperCamelCase : Optional[int] = get_expected_output(__lowerCAmelCase ) __UpperCamelCase : Any = hf_model(inputs["""pixel_values"""] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , __lowerCAmelCase , atol=1e-3 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(f'Saving model {swiftformer_name} to {pytorch_dump_folder_path}' ) hf_model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') UpperCamelCase = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
713
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase_ ) class _A ( UpperCAmelCase_ ): def __init__( self : Tuple , *lowerCamelCase__ : Union[str, Any] , **lowerCamelCase__ : List[Any] ): """simple docstring""" super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) requires_backends(self , """decord""" ) self.check_model_type(lowerCamelCase__ ) def a ( self : Tuple , lowerCamelCase__ : Optional[int]=None , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : Tuple=None ): """simple docstring""" __UpperCamelCase : Tuple = {} if frame_sampling_rate is not None: __UpperCamelCase : Dict = frame_sampling_rate if num_frames is not None: __UpperCamelCase : Optional[int] = num_frames __UpperCamelCase : Dict = {} if top_k is not None: __UpperCamelCase : Dict = top_k return preprocess_params, {}, postprocess_params def __call__( self : Any , lowerCamelCase__ : Union[str, List[str]] , **lowerCamelCase__ : Any ): """simple docstring""" return super().__call__(lowerCamelCase__ , **lowerCamelCase__ ) def a ( self : int , lowerCamelCase__ : str , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : Tuple=1 ): """simple docstring""" if num_frames is None: __UpperCamelCase : Union[str, Any] = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): __UpperCamelCase : Tuple = BytesIO(requests.get(lowerCamelCase__ ).content ) __UpperCamelCase : Dict = VideoReader(lowerCamelCase__ ) videoreader.seek(0 ) __UpperCamelCase : Optional[int] = 0 __UpperCamelCase : Any = num_frames * frame_sampling_rate - 1 __UpperCamelCase : Dict = np.linspace(lowerCamelCase__ , lowerCamelCase__ , num=lowerCamelCase__ , dtype=np.intaa ) __UpperCamelCase : Any = videoreader.get_batch(lowerCamelCase__ ).asnumpy() __UpperCamelCase : Dict = list(lowerCamelCase__ ) __UpperCamelCase : List[str] = self.image_processor(lowerCamelCase__ , return_tensors=self.framework ) return model_inputs def a ( self : Dict , lowerCamelCase__ : Optional[Any] ): """simple docstring""" __UpperCamelCase : str = self.model(**lowerCamelCase__ ) return model_outputs def a ( self : Tuple , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : int=5 ): """simple docstring""" if top_k > self.model.config.num_labels: __UpperCamelCase : Optional[Any] = self.model.config.num_labels if self.framework == "pt": __UpperCamelCase : str = model_outputs.logits.softmax(-1 )[0] __UpperCamelCase , __UpperCamelCase : Any = probs.topk(lowerCamelCase__ ) else: raise ValueError(f'Unsupported framework: {self.framework}' ) __UpperCamelCase : List[Any] = scores.tolist() __UpperCamelCase : Optional[Any] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCamelCase__ , lowerCamelCase__ )]
515
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() A_ : int =logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( snake_case : Optional[int] , snake_case : Tuple=False )-> List[Any]: _lowerCamelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def SCREAMING_SNAKE_CASE_ ( snake_case : Dict , snake_case : int , snake_case : List[str]=False )-> List[str]: for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase = '' else: _lowerCamelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase = in_proj_bias[: config.hidden_size] _lowerCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE_ ( snake_case : Optional[Any] )-> Union[str, Any]: _lowerCamelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(__A , __A ) def SCREAMING_SNAKE_CASE_ ( snake_case : str , snake_case : List[Any] , snake_case : Dict )-> Optional[int]: _lowerCamelCase = dct.pop(__A ) _lowerCamelCase = val def SCREAMING_SNAKE_CASE_ ( )-> Optional[Any]: _lowerCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCamelCase = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( snake_case : List[Any] , snake_case : int )-> Tuple: _lowerCamelCase = ViTConfig() _lowerCamelCase = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCamelCase = True _lowerCamelCase = int(vit_name[-12:-10] ) _lowerCamelCase = int(vit_name[-9:-6] ) else: _lowerCamelCase = 1_000 _lowerCamelCase = 'huggingface/label-files' _lowerCamelCase = 'imagenet-1k-id2label.json' _lowerCamelCase = json.load(open(hf_hub_download(__A , __A , repo_type='dataset' ) , 'r' ) ) _lowerCamelCase = {int(__A ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} _lowerCamelCase = int(vit_name[-6:-4] ) _lowerCamelCase = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('tiny' ): _lowerCamelCase = 192 _lowerCamelCase = 768 _lowerCamelCase = 12 _lowerCamelCase = 3 elif vit_name[9:].startswith('small' ): _lowerCamelCase = 384 _lowerCamelCase = 1_536 _lowerCamelCase = 12 _lowerCamelCase = 6 else: pass else: if vit_name[4:].startswith('small' ): _lowerCamelCase = 768 _lowerCamelCase = 2_304 _lowerCamelCase = 8 _lowerCamelCase = 8 elif vit_name[4:].startswith('base' ): pass elif vit_name[4:].startswith('large' ): _lowerCamelCase = 1_024 _lowerCamelCase = 4_096 _lowerCamelCase = 24 _lowerCamelCase = 16 elif vit_name[4:].startswith('huge' ): _lowerCamelCase = 1_280 _lowerCamelCase = 5_120 _lowerCamelCase = 32 _lowerCamelCase = 16 # load original model from timm _lowerCamelCase = timm.create_model(__A , pretrained=__A ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase = timm_model.state_dict() if base_model: remove_classification_head_(__A ) _lowerCamelCase = create_rename_keys(__A , __A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) read_in_q_k_v(__A , __A , __A ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCamelCase = ViTModel(__A ).eval() else: _lowerCamelCase = ViTForImageClassification(__A ).eval() model.load_state_dict(__A ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCamelCase = DeiTImageProcessor(size=config.image_size ) else: _lowerCamelCase = ViTImageProcessor(size=config.image_size ) _lowerCamelCase = image_processor(images=prepare_img() , return_tensors='pt' ) _lowerCamelCase = encoding['pixel_values'] _lowerCamelCase = model(__A ) if base_model: _lowerCamelCase = timm_model.forward_features(__A ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__A , outputs.pooler_output , atol=1e-3 ) else: _lowerCamelCase = timm_model(__A ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__A , outputs.logits , atol=1e-3 ) Path(__A ).mkdir(exist_ok=__A ) print(f'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__A ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__A ) if __name__ == "__main__": A_ : Optional[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) A_ : List[str] =parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
650
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter UpperCamelCase__ = '''Create a default config file for Accelerate with only a few flags set.''' def lowerCamelCase__ ( __A :List[Any]="no" ,__A :str = default_json_config_file ,__A :bool = False ): """simple docstring""" __snake_case = Path(__A ) path.parent.mkdir(parents=__A ,exist_ok=__A ) if path.exists(): print( F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' ) return False __snake_case = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' ) __snake_case = { """compute_environment""": """LOCAL_MACHINE""", """mixed_precision""": mixed_precision, } if torch.cuda.is_available(): __snake_case = torch.cuda.device_count() __snake_case = num_gpus __snake_case = False if num_gpus > 1: __snake_case = """MULTI_GPU""" else: __snake_case = """NO""" elif is_xpu_available() and use_xpu: __snake_case = torch.xpu.device_count() __snake_case = num_xpus __snake_case = False if num_xpus > 1: __snake_case = """MULTI_XPU""" else: __snake_case = """NO""" elif is_npu_available(): __snake_case = torch.npu.device_count() __snake_case = num_npus __snake_case = False if num_npus > 1: __snake_case = """MULTI_NPU""" else: __snake_case = """NO""" else: __snake_case = 0 __snake_case = True __snake_case = 1 __snake_case = """NO""" __snake_case = ClusterConfig(**__A ) config.to_json_file(__A ) return path def lowerCamelCase__ ( __A :Dict ,__A :List[Any] ): """simple docstring""" __snake_case = parser.add_parser("""default""" ,parents=__A ,help=__A ,formatter_class=__A ) parser.add_argument( """--config_file""" ,default=__A ,help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) ,dest="""save_location""" ,) parser.add_argument( """--mixed_precision""" ,choices=["""no""", """fp16""", """bf16"""] ,type=__A ,help="""Whether or not to use mixed precision training. """ """Choose between FP16 and BF16 (bfloat16) training. """ """BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" ,default="""no""" ,) parser.set_defaults(func=__A ) return parser def lowerCamelCase__ ( __A :Optional[Any] ): """simple docstring""" __snake_case = write_basic_config(args.mixed_precision ,args.save_location ) if config_file: print(F'accelerate configuration saved at {config_file}' )
268
0
import os import re import shutil import sys import tempfile import unittest import black SCREAMING_SNAKE_CASE_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. SCREAMING_SNAKE_CASE_ = """ def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states """ class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir ,"""models/bert/""" ) ) SCREAMING_SNAKE_CASE = self.transformer_dir shutil.copy( os.path.join(lowerCamelCase__ ,"""src/transformers/models/bert/modeling_bert.py""" ) ,os.path.join(self.transformer_dir ,"""models/bert/modeling_bert.py""" ) ,) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = """src/transformers""" shutil.rmtree(self.transformer_dir ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : int ,lowerCamelCase__ : str ,lowerCamelCase__ : str=None ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: SCREAMING_SNAKE_CASE = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result SCREAMING_SNAKE_CASE = black.Mode(target_versions={black.TargetVersion.PYaa} ,line_length=119 ) SCREAMING_SNAKE_CASE = black.format_str(lowerCamelCase__ ,mode=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = os.path.join(self.transformer_dir ,"""new_code.py""" ) with open(lowerCamelCase__ ,"""w""" ,newline="""\n""" ) as f: f.write(lowerCamelCase__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCamelCase__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name ,overwrite=lowerCamelCase__ ) with open(lowerCamelCase__ ,"""r""" ) as f: self.assertTrue(f.read() ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> List[str]: '''simple docstring''' self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" ,"""BertLMPredictionHead""" ,REFERENCE_CODE + """\n""" ,) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" ,"""BertLMPredictionHead""" ,lowerCamelCase__ ,) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" ,"""TestModelLMPredictionHead""" ,re.sub("""Bert""" ,"""TestModel""" ,lowerCamelCase__ ) ,) # Copy consistency with a really long name SCREAMING_SNAKE_CASE = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" ,F"""{long_class_name}LMPredictionHead""" ,re.sub("""Bert""" ,lowerCamelCase__ ,lowerCamelCase__ ) ,) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" ,"""TestModelLMPredictionHead""" ,lowerCamelCase__ ,overwrite_result=re.sub("""Bert""" ,"""TestModel""" ,lowerCamelCase__ ) ,) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] SCREAMING_SNAKE_CASE = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) SCREAMING_SNAKE_CASE = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) SCREAMING_SNAKE_CASE = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = check_copies.convert_to_localized_md( lowerCamelCase__ ,lowerCamelCase__ ,localized_readme["""format_model_list"""] ) self.assertFalse(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = check_copies.convert_to_localized_md( lowerCamelCase__ ,lowerCamelCase__ ,localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) SCREAMING_SNAKE_CASE = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) SCREAMING_SNAKE_CASE = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = check_copies.convert_to_localized_md( lowerCamelCase__ ,lowerCamelCase__ ,localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(lowerCamelCase__ ,lowerCamelCase__ )
116
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
116
1
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class __SCREAMING_SNAKE_CASE ( _a ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=1024 , __lowerCAmelCase=1024 , __lowerCAmelCase=3.6 ): UpperCamelCase__ = tokenizer UpperCamelCase__ = tokenizer.bos_token_id UpperCamelCase__ = dataset UpperCamelCase__ = seq_length UpperCamelCase__ = seq_length * chars_per_token * num_of_sequences def __iter__( self ): UpperCamelCase__ = iter(self.dataset ) UpperCamelCase__ = True while more_examples: UpperCamelCase__ , UpperCamelCase__ = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(__lowerCAmelCase )["""content"""] ) buffer_len += len(buffer[-1] ) except StopIteration: UpperCamelCase__ = False break UpperCamelCase__ = tokenizer(__lowerCAmelCase , truncation=__lowerCAmelCase )["""input_ids"""] UpperCamelCase__ = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(__lowerCAmelCase ) , self.seq_length ): UpperCamelCase__ = all_token_ids[i : i + self.seq_length] if len(__lowerCAmelCase ) == self.seq_length: yield torch.tensor(__lowerCAmelCase ) def _UpperCamelCase (a__ :Tuple ): """simple docstring""" UpperCamelCase__ = {"""streaming""": True} UpperCamelCase__ = load_dataset(args.dataset_name , split="""train""" , **a__ ) UpperCamelCase__ = ConstantLengthDataset(a__ , a__ , seq_length=args.seq_length ) UpperCamelCase__ = DataLoader(a__ , batch_size=args.batch_size ) return eval_dataloader def _UpperCamelCase (a__ :Any ): """simple docstring""" model.eval() UpperCamelCase__ = [] for step, batch in enumerate(a__ ): with torch.no_grad(): UpperCamelCase__ = model(a__ , labels=a__ ) UpperCamelCase__ = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(a__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break UpperCamelCase__ = torch.mean(torch.cat(a__ ) ) try: UpperCamelCase__ = torch.exp(a__ ) except OverflowError: UpperCamelCase__ = float("""inf""" ) return loss.item(), perplexity.item() # Setup Accelerator UpperCamelCase__ = Accelerator() # Parse configuration UpperCamelCase__ = HfArgumentParser(EvaluationArguments) UpperCamelCase__ = parser.parse_args() set_seed(args.seed) # Logging UpperCamelCase__ = logging.getLogger(__name__) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) # Load model and tokenizer UpperCamelCase__ = AutoModelForCausalLM.from_pretrained(args.model_ckpt) UpperCamelCase__ = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader UpperCamelCase__ = create_dataloader(args) # Prepare everything with our `accelerator`. UpperCamelCase__ , UpperCamelCase__ = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info("Evaluating and saving model after training") UpperCamelCase__ , UpperCamelCase__ = evaluate(args) logger.info(f"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
619
def _UpperCamelCase (a__ :int = 1000 ): """simple docstring""" UpperCamelCase__ = 2**power UpperCamelCase__ = 0 while n: UpperCamelCase__ , UpperCamelCase__ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
619
1
import operator def lowercase_ ( _A : List[str] , _A : Union[str, Any] = False , _A : int = None ): """simple docstring""" lowerCamelCase__ : int = operator.lt if reverse else operator.gt lowerCamelCase__ : Tuple = solution or [] if not arr: return solution lowerCamelCase__ : Union[str, Any] = [arr.pop(0 )] for i, item in enumerate(_lowercase ): if _operator(_lowercase , sublist[-1] ): sublist.append(_lowercase ) arr.pop(_lowercase ) # merging sublist into solution list if not solution: solution.extend(_lowercase ) else: while sublist: lowerCamelCase__ : Tuple = sublist.pop(0 ) for i, xx in enumerate(_lowercase ): if not _operator(_lowercase , _lowercase ): solution.insert(_lowercase , _lowercase ) break else: solution.append(_lowercase ) strand_sort(_lowercase , _lowercase , _lowercase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
711
import os def lowercase_ ( _A : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_A ) , _A ) ) as input_file: lowerCamelCase__ : List[Any] = [ [int(_A ) for element in line.split("," )] for line in input_file.readlines() ] lowerCamelCase__ : Optional[Any] = len(_A ) lowerCamelCase__ : Union[str, Any] = len(matrix[0] ) lowerCamelCase__ : Union[str, Any] = [[-1 for _ in range(_A )] for _ in range(_A )] for i in range(_A ): lowerCamelCase__ : Optional[Any] = matrix[i][0] for j in range(1 , _A ): for i in range(_A ): lowerCamelCase__ : int = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _A ): lowerCamelCase__ : Tuple = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowerCamelCase__ : str = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'{solution() = }')
5
0
import flax.linen as nn import jax import jax.numpy as jnp class lowerCamelCase_ ( nn.Module ): '''simple docstring''' lowercase_ = 42 lowercase_ = jnp.floataa def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : str , _lowerCAmelCase : Dict ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = hidden_states.shape SCREAMING_SNAKE_CASE_ = jax.image.resize( _lowerCAmelCase , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) SCREAMING_SNAKE_CASE_ = self.conv(_lowerCAmelCase ) return hidden_states class lowerCamelCase_ ( nn.Module ): '''simple docstring''' lowercase_ = 42 lowercase_ = jnp.floataa def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Tuple , _lowerCAmelCase : int ): # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) SCREAMING_SNAKE_CASE_ = self.conv(_lowerCAmelCase ) return hidden_states class lowerCamelCase_ ( nn.Module ): '''simple docstring''' lowercase_ = 42 lowercase_ = None lowercase_ = 0.0 lowercase_ = None lowercase_ = jnp.floataa def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = self.in_channels if self.out_channels is None else self.out_channels SCREAMING_SNAKE_CASE_ = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) SCREAMING_SNAKE_CASE_ = nn.Conv( _lowerCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) SCREAMING_SNAKE_CASE_ = nn.Dense(_lowerCAmelCase , dtype=self.dtype ) SCREAMING_SNAKE_CASE_ = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) SCREAMING_SNAKE_CASE_ = nn.Dropout(self.dropout_prob ) SCREAMING_SNAKE_CASE_ = nn.Conv( _lowerCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) SCREAMING_SNAKE_CASE_ = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut SCREAMING_SNAKE_CASE_ = None if use_nin_shortcut: SCREAMING_SNAKE_CASE_ = nn.Conv( _lowerCAmelCase , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any]=True ): SCREAMING_SNAKE_CASE_ = hidden_states SCREAMING_SNAKE_CASE_ = self.norma(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = nn.swish(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.conva(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.time_emb_proj(nn.swish(_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = jnp.expand_dims(jnp.expand_dims(_lowerCAmelCase , 1 ) , 1 ) SCREAMING_SNAKE_CASE_ = hidden_states + temb SCREAMING_SNAKE_CASE_ = self.norma(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = nn.swish(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.dropout(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.conva(_lowerCAmelCase ) if self.conv_shortcut is not None: SCREAMING_SNAKE_CASE_ = self.conv_shortcut(_lowerCAmelCase ) return hidden_states + residual
31
'''simple docstring''' import sys from collections import defaultdict class a : """simple docstring""" def __init__( self : Optional[int] ): '''simple docstring''' snake_case__ : str = [] def __magic_name__ ( self : Any , snake_case_ : List[Any] ): '''simple docstring''' return self.node_position[vertex] def __magic_name__ ( self : Any , snake_case_ : Union[str, Any] , snake_case_ : Any ): '''simple docstring''' snake_case__ : Optional[int] = pos def __magic_name__ ( self : Any , snake_case_ : List[str] , snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : int ): '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: snake_case__ : Optional[Any] = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: snake_case__ : List[str] = 2 * start + 1 else: snake_case__ : Optional[Any] = 2 * start + 2 if heap[smallest_child] < heap[start]: snake_case__ , snake_case__ : Dict = heap[smallest_child], positions[smallest_child] snake_case__ , snake_case__ : Any = ( heap[start], positions[start], ) snake_case__ , snake_case__ : Optional[int] = temp, tempa snake_case__ : Optional[int] = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , snake_case_ ) self.top_to_bottom(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def __magic_name__ ( self : Optional[int] , snake_case_ : Any , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : str ): '''simple docstring''' snake_case__ : Union[str, Any] = position[index] while index != 0: snake_case__ : List[Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: snake_case__ : Optional[Any] = heap[parent] snake_case__ : Union[str, Any] = position[parent] self.set_position(position[parent] , snake_case_ ) else: snake_case__ : Optional[Any] = val snake_case__ : Optional[int] = temp self.set_position(snake_case_ , snake_case_ ) break snake_case__ : Any = parent else: snake_case__ : Any = val snake_case__ : List[Any] = temp self.set_position(snake_case_ , 0 ) def __magic_name__ ( self : List[str] , snake_case_ : Tuple , snake_case_ : Dict ): '''simple docstring''' snake_case__ : List[Any] = len(snake_case_ ) // 2 - 1 for i in range(snake_case_ , -1 , -1 ): self.top_to_bottom(snake_case_ , snake_case_ , len(snake_case_ ) , snake_case_ ) def __magic_name__ ( self : Optional[Any] , snake_case_ : List[str] , snake_case_ : Any ): '''simple docstring''' snake_case__ : Tuple = positions[0] snake_case__ : str = sys.maxsize self.top_to_bottom(snake_case_ , 0 , len(snake_case_ ) , snake_case_ ) return temp def _a ( __lowerCAmelCase : List[Any] ): """simple docstring""" snake_case__ : Optional[int] = Heap() snake_case__ : Optional[int] = [0] * len(__lowerCAmelCase ) snake_case__ : Optional[Any] = [-1] * len(__lowerCAmelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph snake_case__ : Optional[Any] = [] # Heap of Distance of vertices from their neighboring vertex snake_case__ : Tuple = [] for vertex in range(len(__lowerCAmelCase ) ): distance_tv.append(sys.maxsize ) positions.append(__lowerCAmelCase ) heap.node_position.append(__lowerCAmelCase ) snake_case__ : str = [] snake_case__ : Optional[int] = 1 snake_case__ : int = sys.maxsize for neighbor, distance in adjacency_list[0]: snake_case__ : str = 0 snake_case__ : Optional[Any] = distance heap.heapify(__lowerCAmelCase , __lowerCAmelCase ) for _ in range(1 , len(__lowerCAmelCase ) ): snake_case__ : Optional[int] = heap.delete_minimum(__lowerCAmelCase , __lowerCAmelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) snake_case__ : Dict = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__lowerCAmelCase )] ): snake_case__ : Tuple = distance heap.bottom_to_top( __lowerCAmelCase , heap.get_position(__lowerCAmelCase ) , __lowerCAmelCase , __lowerCAmelCase ) snake_case__ : Dict = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > lowerCAmelCase__ : Tuple = int(input("""Enter number of edges: """).strip()) lowerCAmelCase__ : Optional[Any] = defaultdict(list) for _ in range(edges_number): lowerCAmelCase__ : Dict = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
347
0
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class lowercase : @staticmethod def a__ ( *_a , **_a ) -> Union[str, Any]: pass def lowerCAmelCase_ ( snake_case_ ): _A : Dict = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class lowercase ( unittest.TestCase ): _a = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def a__ ( self , _a , _a , _a ) -> Tuple: _A : Any = DepthEstimationPipeline(model=_a , image_processor=_a ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def a__ ( self , _a , _a ) -> str: _A : List[Any] = depth_estimator("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) self.assertEqual({"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )} , _a ) import datasets _A : int = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) _A : str = depth_estimator( [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] ) self.assertEqual( [ {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, ] , _a , ) @require_tf @unittest.skip("""Depth estimation is not implemented in TF""" ) def a__ ( self ) -> str: pass @slow @require_torch def a__ ( self ) -> Optional[Any]: _A : Tuple = """Intel/dpt-large""" _A : Dict = pipeline("""depth-estimation""" , model=_a ) _A : Any = depth_estimator("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) _A : Dict = hashimage(outputs["""depth"""] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["""predicted_depth"""].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs["""predicted_depth"""].min().item() ) , 2.662 ) @require_torch def a__ ( self ) -> int: # This is highly irregular to have no small tests. self.skipTest("""There is not hf-internal-testing tiny model for either GLPN nor DPT""" )
720
from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = list(snake_case_ ) _A : List[Any] = list(snake_case_ ) _A : Tuple = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count += 1 _A : Optional[Any] = """_""" if count > 1: return False else: return "".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : Optional[Any] = [] while True: _A : int = ["""$"""] * len(snake_case_ ) _A : Any = [] for i in range(len(snake_case_ ) ): for j in range(i + 1,len(snake_case_ ) ): _A : Tuple = compare_string(binary[i],binary[j] ) if k is False: _A : str = """*""" _A : str = """*""" temp.append("""X""" ) for i in range(len(snake_case_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case_ ) == 0: return pi _A : Dict = list(set(snake_case_ ) ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = [] for minterm in minterms: _A : Tuple = """""" for _ in range(snake_case_ ): _A : Optional[Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case_ ) return temp def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Dict = list(snake_case_ ) _A : Tuple = list(snake_case_ ) _A : Dict = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[int] = [] _A : str = [0] * len(snake_case_ ) for i in range(len(chart[0] ) ): _A : Union[str, Any] = 0 _A : Optional[Any] = -1 for j in range(len(snake_case_ ) ): if chart[j][i] == 1: count += 1 _A : Dict = j if count == 1: _A : int = 1 for i in range(len(snake_case_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case_ ) ): _A : int = 0 temp.append(prime_implicants[i] ) while True: _A : Optional[Any] = 0 _A : Tuple = -1 _A : List[Any] = 0 for i in range(len(snake_case_ ) ): _A : List[str] = chart[i].count(1 ) if count_n > max_n: _A : Optional[int] = count_n _A : Tuple = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case_ ) ): _A : Optional[int] = 0 def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[int] = [[0 for x in range(len(snake_case_ ) )] for x in range(len(snake_case_ ) )] for i in range(len(snake_case_ ) ): _A : List[Any] = prime_implicants[i].count("""_""" ) for j in range(len(snake_case_ ) ): if is_for_table(prime_implicants[i],binary[j],snake_case_ ): _A : Union[str, Any] = 1 return chart def lowerCAmelCase_ ( ): _A : Dict = int(input("""Enter the no. of variables\n""" ) ) _A : Dict = [ float(snake_case_ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] _A : int = decimal_to_binary(snake_case_,snake_case_ ) _A : Optional[Any] = check(snake_case_ ) print("""Prime Implicants are:""" ) print(snake_case_ ) _A : int = prime_implicant_chart(snake_case_,snake_case_ ) _A : int = selection(snake_case_,snake_case_ ) print("""Essential Prime Implicants are:""" ) print(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
54
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : Optional[int] = "levit" def __init__( self , SCREAMING_SNAKE_CASE__=224 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=[128, 256, 384] , SCREAMING_SNAKE_CASE__=[4, 8, 12] , SCREAMING_SNAKE_CASE__=[4, 4, 4] , SCREAMING_SNAKE_CASE__=[16, 16, 16] , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=[2, 2, 2] , SCREAMING_SNAKE_CASE__=[2, 2, 2] , SCREAMING_SNAKE_CASE__=0.0_2 , **SCREAMING_SNAKE_CASE__ , ) -> Optional[int]: super().__init__(**SCREAMING_SNAKE_CASE__ ) A__ = image_size A__ = num_channels A__ = kernel_size A__ = stride A__ = padding A__ = hidden_sizes A__ = num_attention_heads A__ = depths A__ = key_dim A__ = drop_path_rate A__ = patch_size A__ = attention_ratio A__ = mlp_ratio A__ = initializer_range A__ = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : int = version.parse("1.11" ) @property def snake_case__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def snake_case__ ( self ) -> float: return 1e-4
104
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule _UpperCamelCase : int = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys _UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
599
0
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class _lowercase ( __a ): """simple docstring""" def __init__( self : List[Any] , UpperCamelCase__ : Optional[NestedDataStructureLike[PathLike]] = None , UpperCamelCase__ : Optional[NamedSplit] = None , UpperCamelCase__ : Optional[Features] = None , UpperCamelCase__ : str = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[int] = None , **UpperCamelCase__ : List[Any] , ) -> str: '''simple docstring''' __UpperCamelCase =path_or_paths __UpperCamelCase =split if split or isinstance(UpperCamelCase__ , UpperCamelCase__ ) else '''train''' __UpperCamelCase =features __UpperCamelCase =cache_dir __UpperCamelCase =keep_in_memory __UpperCamelCase =streaming __UpperCamelCase =num_proc __UpperCamelCase =kwargs @abstractmethod def UpperCAmelCase_ ( self : Optional[Any] ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: '''simple docstring''' pass class _lowercase ( __a ): """simple docstring""" def __init__( self : str , UpperCamelCase__ : Optional[Features] = None , UpperCamelCase__ : str = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[int] = None , **UpperCamelCase__ : Optional[int] , ) -> Tuple: '''simple docstring''' __UpperCamelCase =features __UpperCamelCase =cache_dir __UpperCamelCase =keep_in_memory __UpperCamelCase =streaming __UpperCamelCase =num_proc __UpperCamelCase =kwargs @abstractmethod def UpperCAmelCase_ ( self : str ) -> Union[Dataset, IterableDataset]: '''simple docstring''' pass
706
"""simple docstring""" import qiskit def lowerCAmelCase (__UpperCamelCase : int , __UpperCamelCase : int ): """simple docstring""" __UpperCamelCase =qiskit.Aer.get_backend('''aer_simulator''' ) __UpperCamelCase =qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator __UpperCamelCase =qiskit.execute(__UpperCamelCase , __UpperCamelCase , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment return job.result().get_counts(__UpperCamelCase ) if __name__ == "__main__": __lowercase = half_adder(1, 1) print(f'''Half Adder Output Qubit Counts: {counts}''')
296
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self : List[str] ) -> str: __UpperCAmelCase : List[str] = tempfile.mkdtemp() __UpperCAmelCase : Optional[int] = BlipImageProcessor() __UpperCAmelCase : Any = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" ) __UpperCAmelCase : Optional[Any] = BlipProcessor(__lowercase , __lowercase ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self : int , **__lowercase : Optional[Any] ) -> Any: return AutoProcessor.from_pretrained(self.tmpdirname , **__lowercase ).tokenizer def UpperCAmelCase ( self : Optional[Any] , **__lowercase : int ) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **__lowercase ).image_processor def UpperCAmelCase ( self : int ) -> int: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: __UpperCAmelCase : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __UpperCAmelCase : List[Any] = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase ( self : int ) -> Any: __UpperCAmelCase : int = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : str = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __UpperCAmelCase : Optional[Any] = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 ) __UpperCAmelCase : List[str] = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def UpperCAmelCase ( self : List[Any] ) -> int: __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : Dict = self.get_tokenizer() __UpperCAmelCase : Optional[Any] = BlipProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __UpperCAmelCase : Dict = self.prepare_image_inputs() __UpperCAmelCase : str = image_processor(__lowercase , return_tensors="""np""" ) __UpperCAmelCase : Dict = processor(images=__lowercase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : Dict = self.get_tokenizer() __UpperCAmelCase : Union[str, Any] = BlipProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __UpperCAmelCase : str = """lower newer""" __UpperCAmelCase : int = processor(text=__lowercase ) __UpperCAmelCase : Any = tokenizer(__lowercase , return_token_type_ids=__lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase ( self : Dict ) -> Any: __UpperCAmelCase : Tuple = self.get_image_processor() __UpperCAmelCase : Any = self.get_tokenizer() __UpperCAmelCase : Dict = BlipProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __UpperCAmelCase : Union[str, Any] = """lower newer""" __UpperCAmelCase : Tuple = self.prepare_image_inputs() __UpperCAmelCase : int = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def UpperCAmelCase ( self : str ) -> List[Any]: __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : Union[str, Any] = BlipProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __UpperCAmelCase : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCAmelCase : str = processor.batch_decode(__lowercase ) __UpperCAmelCase : Dict = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: __UpperCAmelCase : int = self.get_image_processor() __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : Dict = BlipProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __UpperCAmelCase : List[Any] = """lower newer""" __UpperCAmelCase : List[str] = self.prepare_image_inputs() __UpperCAmelCase : Optional[Any] = processor(text=__lowercase , images=__lowercase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
63
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def lowerCamelCase__ ( ): __UpperCAmelCase : Union[str, Any] = ArgumentParser("""Transformers CLI tool""" , usage="""transformers-cli <command> [<args>]""" ) __UpperCAmelCase : Any = parser.add_subparsers(help="""transformers-cli command helpers""" ) # Register commands ConvertCommand.register_subcommand(__lowerCamelCase ) DownloadCommand.register_subcommand(__lowerCamelCase ) EnvironmentCommand.register_subcommand(__lowerCamelCase ) RunCommand.register_subcommand(__lowerCamelCase ) ServeCommand.register_subcommand(__lowerCamelCase ) UserCommands.register_subcommand(__lowerCamelCase ) AddNewModelCommand.register_subcommand(__lowerCamelCase ) AddNewModelLikeCommand.register_subcommand(__lowerCamelCase ) LfsCommands.register_subcommand(__lowerCamelCase ) PTtoTFCommand.register_subcommand(__lowerCamelCase ) # Let's go __UpperCAmelCase : Optional[Any] = parser.parse_args() if not hasattr(__lowerCamelCase , """func""" ): parser.print_help() exit(1 ) # Run __UpperCAmelCase : Tuple = args.func(__lowerCamelCase ) service.run() if __name__ == "__main__": main()
63
1
"""simple docstring""" def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ): A__ = len(lowerCAmelCase__ ) A__ = len(lowerCAmelCase__ ) A__ = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] A__ = True for i in range(lowerCAmelCase__ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: A__ = True if a[i].islower(): A__ = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
554
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) class snake_case_ ( _lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_: Union[str, Any] = """timm_backbone""" def __init__( self , __a=None , __a=3 , __a=True , __a=True , __a=None , **__a , ): """simple docstring""" super().__init__(**__a ) A__ = backbone A__ = num_channels A__ = features_only A__ = use_pretrained_backbone A__ = True A__ = out_indices if out_indices is not None else (-1,)
554
1
import numpy as np def a ( A__ : np.array ) -> np.array: """simple docstring""" return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
291
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): _a = 42 _a = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
291
1
'''simple docstring''' import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() A__ : Optional[Any] =logging.get_logger(__name__) def A_ ( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]: """simple docstring""" __A : List[Any] = os.path.abspath(__SCREAMING_SNAKE_CASE ) logger.info(F"Converting TensorFlow checkpoint from {tf_path}" ) # Load weights from TF model __A : List[str] = tf.train.list_variables(__SCREAMING_SNAKE_CASE ) __A : Any = [] __A : Dict = [] __A : Dict = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") __A : Union[str, Any] = full_name.split("""/""" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(F"Skipping non-model layer {full_name}" ) continue if "optimizer" in full_name: logger.info(F"Skipping optimization layer {full_name}" ) continue if name[0] == "model": # ignore initial 'model' __A : List[Any] = name[1:] # figure out how many levels deep the name is __A : int = 0 for _name in name: if _name.startswith("""layer_with_weights""" ): depth += 1 else: break layer_depth.append(__SCREAMING_SNAKE_CASE ) # read data __A : Dict = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) names.append("""/""".join(__SCREAMING_SNAKE_CASE ) ) arrays.append(__SCREAMING_SNAKE_CASE ) logger.info(F"Read a total of {len(__SCREAMING_SNAKE_CASE ):,} layers" ) # Sanity check if len(set(__SCREAMING_SNAKE_CASE ) ) != 1: raise ValueError(F"Found layer names with different depths (layer depth {list(set(__SCREAMING_SNAKE_CASE ) )})" ) __A : Optional[int] = list(set(__SCREAMING_SNAKE_CASE ) )[0] if layer_depth != 1: raise ValueError( """The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP""" """ heads.""" ) # convert layers logger.info("""Converting weights...""" ) for full_name, array in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __A : Tuple = full_name.split("""/""" ) __A : str = model __A : List[str] = [] for i, m_name in enumerate(__SCREAMING_SNAKE_CASE ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("""layer_with_weights""" ): __A : str = int(m_name.split("""-""" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["""embeddings""", """LayerNorm"""] ) __A : Dict = getattr(__SCREAMING_SNAKE_CASE , """embeddings""" ) __A : int = getattr(__SCREAMING_SNAKE_CASE , """LayerNorm""" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["""encoder""", """layer""", str(layer_num - 4 )] ) __A : List[str] = getattr(__SCREAMING_SNAKE_CASE , """encoder""" ) __A : Dict = getattr(__SCREAMING_SNAKE_CASE , """layer""" ) __A : List[str] = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["""pooler""", """dense"""] ) __A : List[str] = getattr(__SCREAMING_SNAKE_CASE , """pooler""" ) __A : Any = getattr(__SCREAMING_SNAKE_CASE , """dense""" ) elif m_name == "embeddings": trace.append("""embeddings""" ) __A : List[str] = getattr(__SCREAMING_SNAKE_CASE , """embeddings""" ) if layer_num == 0: trace.append("""word_embeddings""" ) __A : List[str] = getattr(__SCREAMING_SNAKE_CASE , """word_embeddings""" ) elif layer_num == 1: trace.append("""position_embeddings""" ) __A : List[Any] = getattr(__SCREAMING_SNAKE_CASE , """position_embeddings""" ) elif layer_num == 2: trace.append("""token_type_embeddings""" ) __A : List[Any] = getattr(__SCREAMING_SNAKE_CASE , """token_type_embeddings""" ) else: raise ValueError(F"Unknown embedding layer with name {full_name}" ) trace.append("""weight""" ) __A : int = getattr(__SCREAMING_SNAKE_CASE , """weight""" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["""attention""", """self"""] ) __A : List[str] = getattr(__SCREAMING_SNAKE_CASE , """attention""" ) __A : Dict = getattr(__SCREAMING_SNAKE_CASE , """self""" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["""attention""", """output""", """LayerNorm"""] ) __A : Tuple = getattr(__SCREAMING_SNAKE_CASE , """attention""" ) __A : Optional[int] = getattr(__SCREAMING_SNAKE_CASE , """output""" ) __A : Dict = getattr(__SCREAMING_SNAKE_CASE , """LayerNorm""" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["""attention""", """output""", """dense"""] ) __A : Optional[Any] = getattr(__SCREAMING_SNAKE_CASE , """attention""" ) __A : Tuple = getattr(__SCREAMING_SNAKE_CASE , """output""" ) __A : Union[str, Any] = getattr(__SCREAMING_SNAKE_CASE , """dense""" ) elif m_name == "_output_dense": # output dense trace.extend(["""output""", """dense"""] ) __A : Union[str, Any] = getattr(__SCREAMING_SNAKE_CASE , """output""" ) __A : Optional[int] = getattr(__SCREAMING_SNAKE_CASE , """dense""" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["""output""", """LayerNorm"""] ) __A : Optional[Any] = getattr(__SCREAMING_SNAKE_CASE , """output""" ) __A : List[str] = getattr(__SCREAMING_SNAKE_CASE , """LayerNorm""" ) elif m_name == "_key_dense": # attention key trace.append("""key""" ) __A : Union[str, Any] = getattr(__SCREAMING_SNAKE_CASE , """key""" ) elif m_name == "_query_dense": # attention query trace.append("""query""" ) __A : Any = getattr(__SCREAMING_SNAKE_CASE , """query""" ) elif m_name == "_value_dense": # attention value trace.append("""value""" ) __A : str = getattr(__SCREAMING_SNAKE_CASE , """value""" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["""intermediate""", """dense"""] ) __A : int = getattr(__SCREAMING_SNAKE_CASE , """intermediate""" ) __A : str = getattr(__SCREAMING_SNAKE_CASE , """dense""" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("""output""" ) __A : Optional[int] = getattr(__SCREAMING_SNAKE_CASE , """output""" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("""bias""" ) __A : List[str] = getattr(__SCREAMING_SNAKE_CASE , """bias""" ) elif m_name in ["kernel", "gamma"]: trace.append("""weight""" ) __A : str = getattr(__SCREAMING_SNAKE_CASE , """weight""" ) else: logger.warning(F"Ignored {m_name}" ) # for certain layers reshape is necessary __A : int = """.""".join(__SCREAMING_SNAKE_CASE ) if re.match(R"""(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)""" , __SCREAMING_SNAKE_CASE ) or re.match( R"""(\S+)\.attention\.output\.dense\.weight""" , __SCREAMING_SNAKE_CASE ): __A : Tuple = array.reshape(pointer.data.shape ) if "kernel" in full_name: __A : Dict = array.transpose() if pointer.shape == array.shape: __A : Dict = torch.from_numpy(__SCREAMING_SNAKE_CASE ) else: raise ValueError( F"Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:" F" {array.shape}" ) logger.info(F"Successfully set variable {full_name} to PyTorch layer {trace}" ) return model def A_ ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: """simple docstring""" logger.info(F"Loading model based on config from {config_path}..." ) __A : Union[str, Any] = BertConfig.from_json_file(__SCREAMING_SNAKE_CASE ) __A : Tuple = BertModel(__SCREAMING_SNAKE_CASE ) # Load weights from checkpoint logger.info(F"Loading weights from checkpoint {tf_checkpoint_path}..." ) load_tfa_weights_in_bert(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model logger.info(F"Saving PyTorch model to {pytorch_dump_path}..." ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A__ : Union[str, Any] =argparse.ArgumentParser() parser.add_argument( '--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow 2.x checkpoint path.' ) parser.add_argument( '--bert_config_file', type=str, required=True, help='The config json file corresponding to the BERT model. This specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', type=str, required=True, help='Path to the output PyTorch model (must include filename).', ) A__ : str =parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
720
'''simple docstring''' def A_ ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool = False ) -> bool: """simple docstring""" if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3170_4406_4679_8873_8596_1981 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis __A : Optional[int] = [ 2047, 137_3653, 2532_6001, 32_1503_1751, 2_1523_0289_8747, 3_4747_4966_0383, 341_5500_7172_8321, 1, 382_5123_0565_4641_3051, 1, 1, 3186_6585_7834_0311_5116_7461, 3_3170_4406_4679_8873_8596_1981, ] __A : Optional[int] = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(__SCREAMING_SNAKE_CASE , 1 ): if n < _p: # then we have our last prime to check __A : Union[str, Any] = primes[:idx] break __A , __A : int = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: __A : int = False for r in range(__SCREAMING_SNAKE_CASE ): __A : Optional[Any] = pow(__SCREAMING_SNAKE_CASE , d * 2**r , __SCREAMING_SNAKE_CASE ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): __A : Optional[int] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def A_ ( ) -> None: """simple docstring""" assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(83_8201 ) assert miller_rabin(83_8207 ) # 1_373_653 assert not miller_rabin(1731_6001 ) assert miller_rabin(1731_6017 ) # 25_326_001 assert not miller_rabin(30_7838_6641 ) assert miller_rabin(30_7838_6653 ) # 3_215_031_751 assert not miller_rabin(1_7130_4557_4801 ) assert miller_rabin(1_7130_4557_4819 ) # 2_152_302_898_747 assert not miller_rabin(2_7797_9972_8307 ) assert miller_rabin(2_7797_9972_8327 ) # 3_474_749_660_383 assert not miller_rabin(113_8500_2390_9441 ) assert miller_rabin(113_8500_2390_9527 ) # 341_550_071_728_321 assert not miller_rabin(127_5041_0188_4880_4351 ) assert miller_rabin(127_5041_0188_4880_4391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(796_6646_4458_5077_8779_1867 ) assert miller_rabin(796_6646_4458_5077_8779_1951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5528_4067_7446_6478_9766_0333 ) assert miller_rabin(5528_4067_7446_6478_9766_0359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
499
0
"""simple docstring""" from math import sqrt def __a ( A ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __a ( A = 10_001 ) -> int: '''simple docstring''' A__ = 0 A__ = 1 while count != nth and number < 3: number += 1 if is_prime(A ): count += 1 while count != nth: number += 2 if is_prime(A ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
337
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase ={ """configuration_rembert""": ["""REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RemBertConfig""", """RemBertOnnxConfig"""] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =["""RemBertTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =["""RemBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =[ """REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """RemBertForCausalLM""", """RemBertForMaskedLM""", """RemBertForMultipleChoice""", """RemBertForQuestionAnswering""", """RemBertForSequenceClassification""", """RemBertForTokenClassification""", """RemBertLayer""", """RemBertModel""", """RemBertPreTrainedModel""", """load_tf_weights_in_rembert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =[ """TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRemBertForCausalLM""", """TFRemBertForMaskedLM""", """TFRemBertForMultipleChoice""", """TFRemBertForQuestionAnswering""", """TFRemBertForSequenceClassification""", """TFRemBertForTokenClassification""", """TFRemBertLayer""", """TFRemBertModel""", """TFRemBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys __UpperCAmelCase =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
337
1
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def UpperCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : str , **UpperCAmelCase__ : Optional[int]): lowerCamelCase : str = AutoConfig.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__) lowerCamelCase : Dict = AutoModelForSeqaSeqLM.from_config(UpperCAmelCase__) model.save_pretrained(UpperCAmelCase__) AutoTokenizer.from_pretrained(UpperCAmelCase__).save_pretrained(UpperCAmelCase__) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
449
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __snake_case ( unittest.TestCase): def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Any = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(A ) lowerCamelCase : Union[str, Any] = -1 lowerCamelCase : Optional[Any] = ids_tensor((1, 5), vocab_size=model.config.vocab_size ).to(A ) lowerCamelCase : List[Any] = model.generate(A, max_new_tokens=10, do_sample=A ) lowerCamelCase : int = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase : Optional[int] = TextStreamer(A ) model.generate(A, max_new_tokens=10, do_sample=A, streamer=A ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase : int = cs.out[:-1] self.assertEqual(A, A ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[str] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCamelCase : Dict = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(A ) lowerCamelCase : List[Any] = -1 lowerCamelCase : Optional[int] = ids_tensor((1, 5), vocab_size=model.config.vocab_size ).to(A ) lowerCamelCase : Any = model.generate(A, max_new_tokens=10, do_sample=A ) lowerCamelCase : Optional[int] = tokenizer.decode(greedy_ids[0] ) lowerCamelCase : Union[str, Any] = TextIteratorStreamer(A ) lowerCamelCase : Tuple = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} lowerCamelCase : List[Any] = Thread(target=model.generate, kwargs=A ) thread.start() lowerCamelCase : List[Any] = '' for new_text in streamer: streamer_text += new_text self.assertEqual(A, A ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCamelCase : int = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(A ) lowerCamelCase : Optional[Any] = -1 lowerCamelCase : Union[str, Any] = ids_tensor((1, 5), vocab_size=model.config.vocab_size ).to(A ) lowerCamelCase : Union[str, Any] = model.generate(A, max_new_tokens=10, do_sample=A ) lowerCamelCase : int = greedy_ids[:, input_ids.shape[1] :] lowerCamelCase : Dict = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase : Tuple = TextStreamer(A, skip_prompt=A ) model.generate(A, max_new_tokens=10, do_sample=A, streamer=A ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase : Optional[int] = cs.out[:-1] self.assertEqual(A, A ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained('distilgpt2' ) lowerCamelCase : Dict = AutoModelForCausalLM.from_pretrained('distilgpt2' ).to(A ) lowerCamelCase : Dict = -1 lowerCamelCase : Any = torch.ones((1, 5), device=A ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCamelCase : int = TextStreamer(A, skip_special_tokens=A ) model.generate(A, max_new_tokens=1, do_sample=A, streamer=A ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCamelCase : List[str] = cs.out[:-1] # Remove the final "\n" lowerCamelCase : Optional[Any] = tokenizer(A, return_tensors='pt' ) self.assertEqual(streamer_text_tokenized.input_ids.shape, (1, 1) ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCamelCase : List[str] = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(A ) lowerCamelCase : Any = -1 lowerCamelCase : int = ids_tensor((1, 5), vocab_size=model.config.vocab_size ).to(A ) lowerCamelCase : int = TextIteratorStreamer(A, timeout=0.001 ) lowerCamelCase : Any = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} lowerCamelCase : Optional[Any] = Thread(target=model.generate, kwargs=A ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(A ): lowerCamelCase : Dict = '' for new_text in streamer: streamer_text += new_text
449
1
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase = True , _UpperCamelCase = math.inf , _UpperCamelCase = -math.inf , _UpperCamelCase = math.inf , _UpperCamelCase = -math.inf , _UpperCamelCase = False , _UpperCamelCase = 100 , _UpperCamelCase = 0.01 , _UpperCamelCase = 1 , ): """simple docstring""" lowercase_ : Tuple = False lowercase_ : List[Any] = search_prob lowercase_ : Union[str, Any] = start_temperate lowercase_ : Optional[Any] = [] lowercase_ : Optional[int] = 0 lowercase_ : Any = None while not search_end: lowercase_ : Tuple = current_state.score() if best_state is None or current_score > best_state.score(): lowercase_ : str = current_state scores.append(__A ) iterations += 1 lowercase_ : Optional[Any] = None lowercase_ : List[Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to lowercase_ : str = random.randint(0 , len(__A ) - 1 ) # picking a random neighbor lowercase_ : Optional[Any] = neighbors.pop(__A ) lowercase_ : Tuple = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: lowercase_ : List[str] = change * -1 # in case we are finding minimum if change > 0: # improves the solution lowercase_ : Dict = picked_neighbor else: lowercase_ : Tuple = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability lowercase_ : Union[str, Any] = picked_neighbor lowercase_ : Optional[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor lowercase_ : Tuple = True else: lowercase_ : Tuple = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(__A ) , __A ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) UpperCamelCase__ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCamelCase__ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' f"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) UpperCamelCase__ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCamelCase__ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' f"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" return (3 * x**2) - (6 * y) UpperCamelCase__ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCamelCase__ = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' f"""{local_min.score()}""" ) UpperCamelCase__ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCamelCase__ = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' f"""{local_min.score()}""" )
620
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType __lowercase : List[str] = logging.get_logger(__name__) class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : Tuple = '''vision-encoder-decoder''' __lowerCamelCase : List[Any] = True def __init__( self ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F"""A configuraton of type {self.model_type} cannot be instantiated because """ F"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) snake_case : Union[str, Any] = kwargs.pop("""encoder""" ) snake_case : Any = encoder_config.pop("""model_type""" ) snake_case : Optional[Any] = kwargs.pop("""decoder""" ) snake_case : Union[str, Any] = decoder_config.pop("""model_type""" ) snake_case : Any = AutoConfig.for_model(SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) snake_case : Union[str, Any] = AutoConfig.for_model(SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) snake_case : int = True @classmethod def snake_case_ ( cls ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) snake_case : Tuple = True snake_case : Union[str, Any] = True return cls(encoder=encoder_config.to_dict() ,decoder=decoder_config.to_dict() ,**SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ): '''simple docstring''' snake_case : Union[str, Any] = copy.deepcopy(self.__dict__ ) snake_case : Union[str, Any] = self.encoder.to_dict() snake_case : Union[str, Any] = self.decoder.to_dict() snake_case : Dict = self.__class__.model_type return output class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : Optional[Any] = version.parse('''1.11''' ) @property def snake_case_ ( self ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def snake_case_ ( self ): '''simple docstring''' return 1E-4 @property def snake_case_ ( self ): '''simple docstring''' return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class _A ( snake_case ): '''simple docstring''' @property def snake_case_ ( self ): '''simple docstring''' snake_case : Tuple = OrderedDict() snake_case : Optional[int] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} snake_case : Union[str, Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} snake_case : Optional[Any] = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = -1 ,SCREAMING_SNAKE_CASE_ = -1 ,SCREAMING_SNAKE_CASE_ = False ,SCREAMING_SNAKE_CASE_ = None ,): '''simple docstring''' import torch snake_case : Optional[Any] = OrderedDict() snake_case : Tuple = super().generate_dummy_inputs( SCREAMING_SNAKE_CASE_ ,batch_size=SCREAMING_SNAKE_CASE_ ,seq_length=SCREAMING_SNAKE_CASE_ ,is_pair=SCREAMING_SNAKE_CASE_ ,framework=SCREAMING_SNAKE_CASE_ ) snake_case , snake_case : List[Any] = dummy_input["""input_ids"""].shape snake_case : Optional[int] = (batch, encoder_sequence, self._config.encoder_hidden_size) snake_case : List[str] = dummy_input.pop("""input_ids""" ) snake_case : int = dummy_input.pop("""attention_mask""" ) snake_case : Dict = torch.zeros(SCREAMING_SNAKE_CASE_ ) return common_inputs class _A ( snake_case ): '''simple docstring''' @property def snake_case_ ( self ): '''simple docstring''' pass def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return VisionEncoderDecoderEncoderOnnxConfig(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = "default" ): '''simple docstring''' snake_case : int = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ )
36
0
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _a : """simple docstring""" def __init__( self: List[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any]=13 , __lowerCamelCase: Optional[int]=7 , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: int=True , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: List[Any]=99 , __lowerCamelCase: Optional[int]=32 , __lowerCamelCase: Optional[Any]=2 , __lowerCamelCase: Union[str, Any]=4 , __lowerCamelCase: Any=37 , __lowerCamelCase: List[str]="gelu" , __lowerCamelCase: int=0.1 , __lowerCamelCase: int=0.1 , __lowerCamelCase: int=512 , __lowerCamelCase: Union[str, Any]=16 , __lowerCamelCase: List[str]=2 , __lowerCamelCase: Optional[int]=0.02 , __lowerCamelCase: Any=3 , __lowerCamelCase: Any=4 , __lowerCamelCase: str=None , ): '''simple docstring''' UpperCamelCase__: List[Any] = parent UpperCamelCase__: Union[str, Any] = 13 UpperCamelCase__: int = 7 UpperCamelCase__: int = True UpperCamelCase__: int = True UpperCamelCase__: Union[str, Any] = True UpperCamelCase__: str = True UpperCamelCase__: Optional[Any] = 99 UpperCamelCase__: str = 384 UpperCamelCase__: Dict = 2 UpperCamelCase__: Optional[Any] = 4 UpperCamelCase__: Union[str, Any] = 37 UpperCamelCase__: str = "gelu" UpperCamelCase__: Union[str, Any] = 0.1 UpperCamelCase__: Union[str, Any] = 0.1 UpperCamelCase__: List[Any] = 512 UpperCamelCase__: Dict = 16 UpperCamelCase__: Union[str, Any] = 2 UpperCamelCase__: Optional[Any] = 0.02 UpperCamelCase__: Optional[int] = 3 UpperCamelCase__: Optional[Any] = 4 UpperCamelCase__: int = 128 UpperCamelCase__: Union[str, Any] = 2 UpperCamelCase__: Optional[int] = 9 UpperCamelCase__: Any = 1 UpperCamelCase__: Optional[Any] = None def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' UpperCamelCase__: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__: Union[str, Any] = None if self.use_input_mask: UpperCamelCase__: int = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__: str = None if self.use_token_type_ids: UpperCamelCase__: str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__: str = None UpperCamelCase__: str = None UpperCamelCase__: Union[str, Any] = None if self.use_labels: UpperCamelCase__: str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__: Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__: List[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__: Tuple = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__lowerCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self: Optional[int] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: List[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[str] , __lowerCamelCase: List[Any] , __lowerCamelCase: int ): '''simple docstring''' UpperCamelCase__: str = TFConvBertModel(config=__lowerCamelCase ) UpperCamelCase__: Dict = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCamelCase__: str = [input_ids, input_mask] UpperCamelCase__: str = model(__lowerCamelCase ) UpperCamelCase__: Dict = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self: Dict , __lowerCamelCase: int , __lowerCamelCase: List[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: str , __lowerCamelCase: str , __lowerCamelCase: int , __lowerCamelCase: Optional[Any] ): '''simple docstring''' UpperCamelCase__: Optional[Any] = TFConvBertForMaskedLM(config=__lowerCamelCase ) UpperCamelCase__: Tuple = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCamelCase__: Any = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self: Tuple , __lowerCamelCase: Tuple , __lowerCamelCase: Any , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Dict , __lowerCamelCase: List[Any] , __lowerCamelCase: str ): '''simple docstring''' UpperCamelCase__: str = self.num_labels UpperCamelCase__: Any = TFConvBertForSequenceClassification(config=__lowerCamelCase ) UpperCamelCase__: Any = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCamelCase__: Any = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self: Any , __lowerCamelCase: Tuple , __lowerCamelCase: Any , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[int] ): '''simple docstring''' UpperCamelCase__: List[str] = self.num_choices UpperCamelCase__: Dict = TFConvBertForMultipleChoice(config=__lowerCamelCase ) UpperCamelCase__: Union[str, Any] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__: Optional[int] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__: Tuple = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__: Dict = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } UpperCamelCase__: List[Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase_ ( self: Union[str, Any] , __lowerCamelCase: str , __lowerCamelCase: Any , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Dict , __lowerCamelCase: str , __lowerCamelCase: Tuple ): '''simple docstring''' UpperCamelCase__: Optional[Any] = self.num_labels UpperCamelCase__: str = TFConvBertForTokenClassification(config=__lowerCamelCase ) UpperCamelCase__: Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCamelCase__: Dict = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self: Any , __lowerCamelCase: Any , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str] , __lowerCamelCase: str , __lowerCamelCase: List[Any] , __lowerCamelCase: str ): '''simple docstring''' UpperCamelCase__: Union[str, Any] = TFConvBertForQuestionAnswering(config=__lowerCamelCase ) UpperCamelCase__: List[Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCamelCase__: Tuple = model(__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' UpperCamelCase__: int = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ): List[Any] = config_and_inputs UpperCamelCase__: Dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _a ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase__ = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def UpperCAmelCase_ ( self: Any ): '''simple docstring''' UpperCamelCase__: Dict = TFConvBertModelTester(self ) UpperCamelCase__: Any = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' UpperCamelCase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' UpperCamelCase__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def UpperCAmelCase_ ( self: str ): '''simple docstring''' UpperCamelCase__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def UpperCAmelCase_ ( self: Any ): '''simple docstring''' UpperCamelCase__: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def UpperCAmelCase_ ( self: int ): '''simple docstring''' UpperCamelCase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' UpperCamelCase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase ) @slow def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__: Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__: str = True UpperCamelCase__: Union[str, Any] = True if hasattr(__lowerCamelCase , "use_cache" ): UpperCamelCase__: int = True UpperCamelCase__: List[Any] = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) UpperCamelCase__: Optional[Any] = getattr(self.model_tester , "key_length" , __lowerCamelCase ) for model_class in self.all_model_classes: UpperCamelCase__: List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase__: List[str] = model_class(__lowerCamelCase ) UpperCamelCase__: List[str] = len(model(__lowerCamelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase , saved_model=__lowerCamelCase ) UpperCamelCase__: str = os.path.join(__lowerCamelCase , "saved_model" , "1" ) UpperCamelCase__: Optional[Any] = tf.keras.models.load_model(__lowerCamelCase ) UpperCamelCase__: Any = model(__lowerCamelCase ) if self.is_encoder_decoder: UpperCamelCase__: int = outputs["encoder_hidden_states"] UpperCamelCase__: str = outputs["encoder_attentions"] else: UpperCamelCase__: str = outputs["hidden_states"] UpperCamelCase__: Dict = outputs["attentions"] self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) UpperCamelCase__: Optional[Any] = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def UpperCAmelCase_ ( self: str ): '''simple docstring''' UpperCamelCase__: Optional[int] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(__lowerCamelCase ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__: Tuple = True UpperCamelCase__: int = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) UpperCamelCase__: Dict = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) UpperCamelCase__: Union[str, Any] = getattr(self.model_tester , "key_length" , __lowerCamelCase ) UpperCamelCase__: Any = getattr(self.model_tester , "key_length" , __lowerCamelCase ) def check_decoder_attentions_output(__lowerCamelCase: List[Any] ): UpperCamelCase__: Union[str, Any] = len(__lowerCamelCase ) self.assertEqual(out_len % 2 , 0 ) UpperCamelCase__: Optional[Any] = outputs.decoder_attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__lowerCamelCase: List[str] ): UpperCamelCase__: str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCamelCase__: int = True UpperCamelCase__: Tuple = False UpperCamelCase__: Tuple = model_class(__lowerCamelCase ) UpperCamelCase__: List[Any] = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) UpperCamelCase__: Optional[int] = len(__lowerCamelCase ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) if self.is_encoder_decoder: UpperCamelCase__: List[str] = model_class(__lowerCamelCase ) UpperCamelCase__: Union[str, Any] = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_decoder_attentions_output(__lowerCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCamelCase__: List[Any] = True UpperCamelCase__: Tuple = model_class(__lowerCamelCase ) UpperCamelCase__: int = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) # Check attention is always last and order is fine UpperCamelCase__: List[Any] = True UpperCamelCase__: Any = True UpperCamelCase__: int = model_class(__lowerCamelCase ) UpperCamelCase__: Dict = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__lowerCamelCase ) ) self.assertEqual(model.config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) @require_tf class _a ( unittest.TestCase): """simple docstring""" @slow def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' UpperCamelCase__: Optional[int] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) UpperCamelCase__: Optional[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase__: Dict = model(__lowerCamelCase )[0] UpperCamelCase__: Tuple = [1, 6, 768] self.assertEqual(output.shape , __lowerCamelCase ) UpperCamelCase__: Dict = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1e-4 )
221
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class _a ( unittest.TestCase): """simple docstring""" def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' UpperCamelCase__: Union[str, Any] = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(__lowerCamelCase ) ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' UpperCamelCase__: Tuple = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(__lowerCamelCase ) ) def UpperCAmelCase_ ( self: str ): '''simple docstring''' UpperCamelCase__: List[str] = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__lowerCamelCase ) ) def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: Optional[Any] = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] self.assertTrue(is_safetensors_compatible(__lowerCamelCase ) ) def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' UpperCamelCase__: Tuple = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", # Removed: 'text_encoder/model.safetensors', "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertFalse(is_safetensors_compatible(__lowerCamelCase ) ) def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' UpperCamelCase__: List[str] = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] UpperCamelCase__: int = "fp16" self.assertTrue(is_safetensors_compatible(__lowerCamelCase , variant=__lowerCamelCase ) ) def UpperCAmelCase_ ( self: Any ): '''simple docstring''' UpperCamelCase__: List[Any] = [ "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] UpperCamelCase__: Optional[int] = "fp16" self.assertTrue(is_safetensors_compatible(__lowerCamelCase , variant=__lowerCamelCase ) ) def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' UpperCamelCase__: List[Any] = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] UpperCamelCase__: Tuple = "fp16" self.assertTrue(is_safetensors_compatible(__lowerCamelCase , variant=__lowerCamelCase ) ) def UpperCAmelCase_ ( self: str ): '''simple docstring''' UpperCamelCase__: Tuple = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] UpperCamelCase__: Union[str, Any] = "fp16" self.assertFalse(is_safetensors_compatible(__lowerCamelCase , variant=__lowerCamelCase ) ) def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' UpperCamelCase__: str = [ "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", ] UpperCamelCase__: List[Any] = "fp16" self.assertTrue(is_safetensors_compatible(__lowerCamelCase , variant=__lowerCamelCase ) ) def UpperCAmelCase_ ( self: int ): '''simple docstring''' UpperCamelCase__: Dict = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] UpperCamelCase__: Dict = "fp16" self.assertTrue(is_safetensors_compatible(__lowerCamelCase , variant=__lowerCamelCase ) ) def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' UpperCamelCase__: Any = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", # 'text_encoder/model.fp16.safetensors', "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] UpperCamelCase__: Optional[int] = "fp16" self.assertFalse(is_safetensors_compatible(__lowerCamelCase , variant=__lowerCamelCase ) )
221
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { "uclanlp/visualbert-vqa": "https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json", "uclanlp/visualbert-vqa-pre": "https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json", "uclanlp/visualbert-vqa-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-vcr": "https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json", "uclanlp/visualbert-vcr-pre": "https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json", "uclanlp/visualbert-vcr-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-nlvr2": "https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json", "uclanlp/visualbert-nlvr2-pre": "https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json", "uclanlp/visualbert-nlvr2-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class snake_case__ ( _UpperCamelCase ): _SCREAMING_SNAKE_CASE : str = "visual_bert" def __init__( self : Optional[Any] , A__ : Optional[int]=3_05_22 , A__ : Optional[int]=7_68 , A__ : Dict=5_12 , A__ : int=12 , A__ : Union[str, Any]=12 , A__ : Any=30_72 , A__ : Dict="gelu" , A__ : Optional[Any]=0.1 , A__ : Optional[Any]=0.1 , A__ : Tuple=5_12 , A__ : Optional[int]=2 , A__ : int=0.02 , A__ : Optional[int]=1E-12 , A__ : Optional[int]=False , A__ : List[str]=True , A__ : Optional[Any]=1 , A__ : Optional[int]=0 , A__ : int=2 , **A__ : int , ) -> str: '''simple docstring''' super().__init__(pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ , **A__ ) snake_case_ : str = vocab_size snake_case_ : str = max_position_embeddings snake_case_ : Optional[Any] = hidden_size snake_case_ : Any = visual_embedding_dim snake_case_ : List[Any] = num_hidden_layers snake_case_ : Optional[Any] = num_attention_heads snake_case_ : Tuple = intermediate_size snake_case_ : List[Any] = hidden_act snake_case_ : Optional[Any] = hidden_dropout_prob snake_case_ : Union[str, Any] = attention_probs_dropout_prob snake_case_ : List[str] = initializer_range snake_case_ : Tuple = type_vocab_size snake_case_ : Optional[Any] = layer_norm_eps snake_case_ : List[Any] = bypass_transformer snake_case_ : int = special_visual_initialize
666
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: int ): monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set() ) @pytest.fixture def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: Tuple ): class snake_case__ : def __init__( self : Any , A__ : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[Any] = metric_id class snake_case__ : _SCREAMING_SNAKE_CASE : List[str] = [MetricMock(_UpperCamelCase ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def UpperCAmelCase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock() ) @pytest.mark.parametrize( "func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: Tuple , lowerCAmelCase_: int , lowerCAmelCase_: List[Any] , lowerCAmelCase_: Any , lowerCAmelCase_: List[str] ): if "tmp_path" in args: snake_case_ : List[Any] = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(lowerCAmelCase_ , match="https://huggingface.co/docs/evaluate" ): func(*lowerCAmelCase_ )
666
1
def __UpperCamelCase ( _A ): if len(_A ) < 2: return collection def circle_sort_util(_A , _A , _A ) -> bool: lowerCAmelCase_ = False if low == high: return swapped lowerCAmelCase_ = low lowerCAmelCase_ = high while left < right: if collection[left] > collection[right]: lowerCAmelCase_ , lowerCAmelCase_ = ( collection[right], collection[left], ) lowerCAmelCase_ = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: lowerCAmelCase_ , lowerCAmelCase_ = ( collection[right + 1], collection[left], ) lowerCAmelCase_ = True lowerCAmelCase_ = low + int((high - low) / 2 ) lowerCAmelCase_ = circle_sort_util(_A , _A , _A ) lowerCAmelCase_ = circle_sort_util(_A , mid + 1 , _A ) return swapped or left_swap or right_swap lowerCAmelCase_ = True while is_not_sorted is True: lowerCAmelCase_ = circle_sort_util(_A , 0 , len(_A ) - 1 ) return collection if __name__ == "__main__": _A = input('''Enter numbers separated by a comma:\n''').strip() _A = [int(item) for item in user_input.split(''',''')] print(circle_sort(unsorted))
325
from __future__ import annotations _A = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } class A : def __init__( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = graph # mapping node to its parent in resulting breadth first tree lowerCAmelCase_ = {} lowerCAmelCase_ = source_vertex def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = {self.source_vertex} lowerCAmelCase_ = None lowerCAmelCase_ = [self.source_vertex] # first in first out queue while queue: lowerCAmelCase_ = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(UpperCamelCase__ ) lowerCAmelCase_ = vertex queue.append(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" if target_vertex == self.source_vertex: return self.source_vertex lowerCAmelCase_ = self.parent.get(UpperCamelCase__ ) if target_vertex_parent is None: lowerCAmelCase_ = ( f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(UpperCamelCase__ ) return self.shortest_path(UpperCamelCase__ ) + f"->{target_vertex}" if __name__ == "__main__": _A = Graph(graph, '''G''') g.breath_first_search() print(g.shortest_path('''D''')) print(g.shortest_path('''G''')) print(g.shortest_path('''Foo'''))
325
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class a__ : '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : str , ) -> Optional[int]: __A= parent __A= 13 __A= 7 __A= True __A= True __A= False __A= True __A= 99 __A= 32 __A= 2 __A= 4 __A= 37 __A= 'gelu' __A= 0.1 __A= 0.1 __A= 512 __A= 16 __A= 2 __A= 0.02 __A= 3 __A= 4 __A= None def lowerCAmelCase ( self : Optional[Any] ) -> str: __A= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A= None if self.use_input_mask: __A= random_attention_mask([self.batch_size, self.seq_length] ) __A= None __A= None __A= None if self.use_labels: __A= ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A= ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __A= ids_tensor([self.batch_size] , self.num_choices ) __A= DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] ) -> Any: __A= TFDistilBertModel(config=lowerCAmelCase_ ) __A= {'input_ids': input_ids, 'attention_mask': input_mask} __A= model(lowerCAmelCase_ ) __A= [input_ids, input_mask] __A= model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple ) -> Optional[int]: __A= TFDistilBertForMaskedLM(config=lowerCAmelCase_ ) __A= {'input_ids': input_ids, 'attention_mask': input_mask} __A= model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] ) -> int: __A= TFDistilBertForQuestionAnswering(config=lowerCAmelCase_ ) __A= { 'input_ids': input_ids, 'attention_mask': input_mask, } __A= model(lowerCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] ) -> Union[str, Any]: __A= self.num_labels __A= TFDistilBertForSequenceClassification(lowerCAmelCase_ ) __A= {'input_ids': input_ids, 'attention_mask': input_mask} __A= model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int ) -> Optional[Any]: __A= self.num_choices __A= TFDistilBertForMultipleChoice(lowerCAmelCase_ ) __A= tf.tile(tf.expand_dims(lowerCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) __A= tf.tile(tf.expand_dims(lowerCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) __A= { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, } __A= model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] ) -> Dict: __A= self.num_labels __A= TFDistilBertForTokenClassification(lowerCAmelCase_ ) __A= {'input_ids': input_ids, 'attention_mask': input_mask} __A= model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: __A= self.prepare_config_and_inputs() ((__A), (__A), (__A), (__A), (__A), (__A))= config_and_inputs __A= {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class a__ ( a_ , a_ , unittest.TestCase ): '''simple docstring''' A : Optional[Any] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) A : Optional[int] = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) A : str = False A : List[Any] = False def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: __A= TFDistilBertModelTester(self ) __A= ConfigTester(self , config_class=lowerCAmelCase_ , dim=37 ) def lowerCAmelCase ( self : Dict ) -> Tuple: self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __A= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowerCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: __A= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowerCAmelCase_ ) def lowerCAmelCase ( self : str ) -> Any: __A= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowerCAmelCase_ ) def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: __A= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowerCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __A= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowerCAmelCase_ ) def lowerCAmelCase ( self : Any ) -> Optional[int]: __A= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : int ) -> Tuple: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __A= TFDistilBertModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_tf class a__ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Any ) -> List[Any]: __A= TFDistilBertModel.from_pretrained('distilbert-base-uncased' ) __A= tf.constant([[0, 1, 2, 3, 4, 5]] ) __A= model(lowerCAmelCase_ )[0] __A= [1, 6, 768] self.assertEqual(output.shape , lowerCAmelCase_ ) __A= tf.constant( [ [ [0.19_26_18_85, -0.13_73_29_55, 0.4_11_97_99], [0.22_15_01_56, -0.07_42_26_61, 0.39_03_72_04], [0.22_75_60_18, -0.0_89_64_14, 0.3_70_14_67], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase_ , atol=1E-4 )
186
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil UpperCAmelCase__ = 1_0_0 UpperCAmelCase__ = set(range(3, NUM_PRIMES, 2)) primes.add(2) UpperCAmelCase__ = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __A= set() __A= 42 __A= 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : int = 5000 ): """simple docstring""" for number_to_partition in range(1,_SCREAMING_SNAKE_CASE ): if len(partition(_SCREAMING_SNAKE_CASE ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"""{solution() = }""")
186
1
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCamelCase =re.compile(R"\s+") def snake_case ( a_ : List[Any] ) -> str: """simple docstring""" return {"hash": hashlib.mda(re.sub(a_ , """""" , example["""content"""] ).encode("""utf-8""" ) ).hexdigest()} def snake_case ( a_ : int ) -> List[Any]: """simple docstring""" UpperCamelCase_ : Optional[int] = [len(a_ ) for line in example["""content"""].splitlines()] return {"line_mean": np.mean(a_ ), "line_max": max(a_ )} def snake_case ( a_ : List[str] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : List[Any] = np.mean([c.isalnum() for c in example["""content"""]] ) return {"alpha_frac": alpha_frac} def snake_case ( a_ : List[Any] , a_ : str ) -> Tuple: """simple docstring""" if example["hash"] in uniques: uniques.remove(example["""hash"""] ) return True else: return False def snake_case ( a_ : Optional[int] , a_ : Tuple=5 ) -> int: """simple docstring""" UpperCamelCase_ : Optional[Any] = ["""auto-generated""", """autogenerated""", """automatically generated"""] UpperCamelCase_ : Any = example["""content"""].splitlines() for _, line in zip(range(a_ ) , a_ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def snake_case ( a_ : Union[str, Any] , a_ : Any=5 , a_ : List[str]=0.05 ) -> Any: """simple docstring""" UpperCamelCase_ : List[Any] = ["""unit tests""", """test file""", """configuration file"""] UpperCamelCase_ : Union[str, Any] = example["""content"""].splitlines() UpperCamelCase_ : List[str] = 0 UpperCamelCase_ : Optional[int] = 0 # first test for _, line in zip(range(a_ ) , a_ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test UpperCamelCase_ : str = example["""content"""].count("""\n""" ) UpperCamelCase_ : List[Any] = int(coeff * nlines ) for line in lines: count_config += line.lower().count("""config""" ) count_test += line.lower().count("""test""" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def snake_case ( a_ : Dict ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Tuple = ["""def """, """class """, """for """, """while """] UpperCamelCase_ : Optional[Any] = example["""content"""].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def snake_case ( a_ : List[str] , a_ : Tuple=4 ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Optional[Any] = example["""content"""].splitlines() UpperCamelCase_ : Any = 0 for line in lines: counter += line.lower().count("""=""" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def snake_case ( a_ : Optional[Any] ) -> List[Any]: """simple docstring""" UpperCamelCase_ : Any = tokenizer(example["""content"""] , truncation=a_ )["""input_ids"""] UpperCamelCase_ : Any = len(example["""content"""] ) / len(a_ ) return {"ratio": ratio} def snake_case ( a_ : Optional[int] ) -> Any: """simple docstring""" UpperCamelCase_ : Union[str, Any] = {} results.update(get_hash(a_ ) ) results.update(line_stats(a_ ) ) results.update(alpha_stats(a_ ) ) results.update(char_token_ratio(a_ ) ) results.update(is_autogenerated(a_ ) ) results.update(is_config_or_test(a_ ) ) results.update(has_no_keywords(a_ ) ) results.update(has_few_assignments(a_ ) ) return results def snake_case ( a_ : Optional[Any] , a_ : Union[str, Any] , a_ : int ) -> int: """simple docstring""" if not check_uniques(a_ , a_ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def snake_case ( a_ : Optional[int] ) -> int: """simple docstring""" with open(a_ , """rb""" ) as f_in: with gzip.open(str(a_ ) + """.gz""" , """wb""" , compresslevel=6 ) as f_out: shutil.copyfileobj(a_ , a_ ) os.unlink(a_ ) # Settings UpperCamelCase =HfArgumentParser(PreprocessingArguments) UpperCamelCase =parser.parse_args() if args.num_workers is None: UpperCamelCase =multiprocessing.cpu_count() UpperCamelCase =AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCamelCase =time.time() UpperCamelCase =load_dataset(args.dataset_name, split="train") print(f"Time to load dataset: {time.time()-t_start:.2f}") # Run preprocessing UpperCamelCase =time.time() UpperCamelCase =ds.map(preprocess, num_proc=args.num_workers) print(f"Time to preprocess dataset: {time.time()-t_start:.2f}") # Deduplicate hashes UpperCamelCase =set(ds.unique("hash")) UpperCamelCase =len(uniques) / len(ds) print(f"Fraction of duplicates: {1-frac:.2%}") # Deduplicate data and apply heuristics UpperCamelCase =time.time() UpperCamelCase =ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f"Time to filter dataset: {time.time()-t_start:.2f}") print(f"Size of filtered dataset: {len(ds_filter)}") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCamelCase =time.time() UpperCamelCase , UpperCamelCase =deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"Time to deduplicate dataset: {time.time()-t_start:.2f}") print(f"Size of deduplicate dataset: {len(ds_filter)}") # Save data in batches of samples_per_file UpperCamelCase =Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) UpperCamelCase =output_dir / "data" data_dir.mkdir(exist_ok=True) UpperCamelCase =time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCamelCase =str(data_dir / f"file-{file_number+1:012}.json") UpperCamelCase =min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"Time to save dataset: {time.time()-t_start:.2f}")
716
'''simple docstring''' def snake_case ( a_ : int ) -> int: """simple docstring""" assert ( isinstance(a_ , a_ ) and number_of_steps > 0 ), f"number_of_steps needs to be positive integer, your input {number_of_steps}" if number_of_steps == 1: return 1 UpperCamelCase_ , UpperCamelCase_ : str = 1, 1 for _ in range(number_of_steps - 1 ): UpperCamelCase_ , UpperCamelCase_ : Tuple = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
543
0
"""simple docstring""" import os from collections.abc import Iterator def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(_lowerCamelCase ): _lowerCAmelCase : Tuple = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_lowerCamelCase )[1] in (".py", ".ipynb"): yield os.path.join(_lowerCamelCase ,_lowerCamelCase ).lstrip("""./""" ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ) -> Dict: return f"{i * ' '}*" if i else "\n##" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : str ) -> str: _lowerCAmelCase : Optional[int] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_lowerCamelCase ) or old_parts[i] != new_part) and new_part: print(f"{md_prefix(_lowerCamelCase )} {new_part.replace('_' ,' ' ).title()}" ) return new_path def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str = "." ) -> None: _lowerCAmelCase : Any = """""" for filepath in sorted(good_file_paths(_lowerCamelCase ) ): _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = os.path.split(_lowerCamelCase ) if filepath != old_path: _lowerCAmelCase : Union[str, Any] = print_path(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Dict = (filepath.count(os.sep ) + 1) if filepath else 0 _lowerCAmelCase : Tuple = f"{filepath}/{filename}".replace(""" """ ,"""%20""" ) _lowerCAmelCase : Optional[int] = os.path.splitext(filename.replace("""_""" ,""" """ ).title() )[0] print(f"{md_prefix(_lowerCamelCase )} [{filename}]({url})" ) if __name__ == "__main__": print_directory_md('.')
213
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): # TODO: is there an appropriate internal test set? _UpperCamelCase : int = "ssube/stable-diffusion-x4-upscaler-onnx" def __A ( self , a__=0 ): _lowerCAmelCase : Optional[int] = floats_tensor((1, 3, 128, 128) , rng=random.Random(a__ ) ) _lowerCAmelCase : List[Any] = torch.manual_seed(a__ ) _lowerCAmelCase : Any = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def __A ( self ): _lowerCAmelCase : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : List[Any] = self.get_dummy_inputs() _lowerCAmelCase : Any = pipe(**a__ ).images _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : List[Any] = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def __A ( self ): _lowerCAmelCase : List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _lowerCAmelCase : Optional[int] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Dict = self.get_dummy_inputs() _lowerCAmelCase : Any = pipe(**a__ ).images _lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : Any = np.array( [0.6_8_9_8_8_9_2, 0.5_9_2_4_0_5_5_6, 0.5_2_4_9_9_5_2_7, 0.5_8_8_6_6_2_1_5, 0.5_2_2_5_8_2_3_5, 0.5_2_5_7_2_7_1_5, 0.6_2_4_1_4_4_7_3, 0.6_1_7_4_3_8_7, 0.6_2_1_4_9_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __A ( self ): _lowerCAmelCase : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _lowerCAmelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : str = self.get_dummy_inputs() _lowerCAmelCase : str = pipe(**a__ ).images _lowerCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : Any = np.array( [0.7_6_5_9_2_7_8, 0.7_6_4_3_7_6_6_4, 0.7_5_5_7_9_1_0_7, 0.7_6_9_1_1_1_6, 0.7_7_6_6_6_9_8_6, 0.7_7_2_7_6_7_2, 0.7_7_5_8_6_6_4, 0.7_8_1_2_2_2_6, 0.7_6_9_4_2_5_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __A ( self ): _lowerCAmelCase : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _lowerCAmelCase : Union[str, Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Any = self.get_dummy_inputs() _lowerCAmelCase : str = pipe(**a__ ).images _lowerCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : List[str] = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __A ( self ): _lowerCAmelCase : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _lowerCAmelCase : Tuple = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Tuple = self.get_dummy_inputs() _lowerCAmelCase : Any = pipe(**a__ ).images _lowerCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : Dict = np.array( [0.7_7_4_2_4_4_9_6, 0.7_7_3_6_0_1, 0.7_6_4_5_2_8_8, 0.7_7_6_9_5_9_8, 0.7_7_7_2_7_3_9, 0.7_7_3_8_6_8_8, 0.7_8_1_8_7_2_3_3, 0.7_7_8_7_9_5_8_4, 0.7_6_7_0_4_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __A ( unittest.TestCase ): @property def __A ( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __A ( self ): _lowerCAmelCase : str = ort.SessionOptions() _lowerCAmelCase : Tuple = False return options def __A ( self ): _lowerCAmelCase : str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _lowerCAmelCase : Any = init_image.resize((128, 128) ) # using the PNDM scheduler by default _lowerCAmelCase : str = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = """A fantasy landscape, trending on artstation""" _lowerCAmelCase : List[str] = torch.manual_seed(0 ) _lowerCAmelCase : Dict = pipe( prompt=a__ , image=a__ , guidance_scale=7.5 , num_inference_steps=10 , generator=a__ , output_type="""np""" , ) _lowerCAmelCase : List[str] = output.images _lowerCAmelCase : Tuple = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) _lowerCAmelCase : Dict = np.array([0.4_8_8_3, 0.4_9_4_7, 0.4_9_8_0, 0.4_9_7_5, 0.4_9_8_2, 0.4_9_8_0, 0.5_0_0_0, 0.5_0_0_6, 0.4_9_7_2] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def __A ( self ): _lowerCAmelCase : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _lowerCAmelCase : Union[str, Any] = init_image.resize((128, 128) ) _lowerCAmelCase : int = LMSDiscreteScheduler.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , subfolder="""scheduler""" ) _lowerCAmelCase : int = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , scheduler=a__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : List[Any] = """A fantasy landscape, trending on artstation""" _lowerCAmelCase : List[Any] = torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = pipe( prompt=a__ , image=a__ , guidance_scale=7.5 , num_inference_steps=20 , generator=a__ , output_type="""np""" , ) _lowerCAmelCase : List[Any] = output.images _lowerCAmelCase : Optional[Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) _lowerCAmelCase : Optional[Any] = np.array( [0.5_0_1_7_3_7_5_3, 0.5_0_2_2_3_3_5_6, 0.5_0_2_0_3_9, 0.5_0_2_3_3_0_3_6, 0.5_0_2_3_7_2_5, 0.5_0_2_2_6_0_1, 0.5_0_1_8_7_5_8, 0.5_0_2_3_4_0_8_5, 0.5_0_2_4_1_5_6_6] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
213
1
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 __lowercase = get_tests_dir('''fixtures''') __lowercase = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') __lowercase = get_tests_dir('''fixtures/dummy-config.json''') class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :str = 0 def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :Optional[Any] = AutoFeatureExtractor.from_pretrained('''facebook/wav2vec2-base-960h''') self.assertIsInstance(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> str: __UpperCamelCase :Optional[int] = AutoFeatureExtractor.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> int: with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase :Tuple = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally __UpperCamelCase :List[Any] = AutoFeatureExtractor.from_pretrained(__lowercase).to_dict() config_dict.pop('''feature_extractor_type''') __UpperCamelCase :str = WavaVecaFeatureExtractor(**__lowercase) # save in new folder model_config.save_pretrained(__lowercase) config.save_pretrained(__lowercase) __UpperCamelCase :Any = AutoFeatureExtractor.from_pretrained(__lowercase) # make sure private variable is not incorrectly saved __UpperCamelCase :int = json.loads(config.to_json_string()) self.assertTrue('''_processor_class''' not in dict_as_saved) self.assertIsInstance(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> str: __UpperCamelCase :Tuple = AutoFeatureExtractor.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> List[str]: with self.assertRaisesRegex( __lowercase , '''bert-base is not a local folder and is not a valid model identifier'''): __UpperCamelCase :Union[str, Any] = AutoFeatureExtractor.from_pretrained('''bert-base''') def UpperCamelCase__ ( self) -> Any: with self.assertRaisesRegex( __lowercase , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'''): __UpperCamelCase :Any = AutoFeatureExtractor.from_pretrained(__lowercase , revision='''aaaaaa''') def UpperCamelCase__ ( self) -> List[str]: with self.assertRaisesRegex( __lowercase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): __UpperCamelCase :Union[str, Any] = AutoFeatureExtractor.from_pretrained('''hf-internal-testing/config-no-model''') def UpperCamelCase__ ( self) -> List[Any]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__lowercase): __UpperCamelCase :List[Any] = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''') # If remote code is disabled, we can't load this config. with self.assertRaises(__lowercase): __UpperCamelCase :Dict = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=__lowercase) __UpperCamelCase :Tuple = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=__lowercase) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''') # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__lowercase) __UpperCamelCase :Union[str, Any] = AutoFeatureExtractor.from_pretrained(__lowercase , trust_remote_code=__lowercase) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , '''NewFeatureExtractor''') def UpperCamelCase__ ( self) -> Any: try: AutoConfig.register('''custom''' , __lowercase) AutoFeatureExtractor.register(__lowercase , __lowercase) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowercase): AutoFeatureExtractor.register(__lowercase , __lowercase) # Now that the config is registered, it can be used as any other config with the auto-API __UpperCamelCase :Union[str, Any] = CustomFeatureExtractor.from_pretrained(__lowercase) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__lowercase) __UpperCamelCase :Dict = AutoFeatureExtractor.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , __lowercase) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase__ ( self) -> str: class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Any = True try: AutoConfig.register('''custom''' , __lowercase) AutoFeatureExtractor.register(__lowercase , __lowercase) # If remote code is not set, the default is to use local __UpperCamelCase :Union[str, Any] = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''') self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''') self.assertTrue(feature_extractor.is_local) # If remote code is disabled, we load the local one. __UpperCamelCase :Tuple = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=__lowercase) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''') self.assertTrue(feature_extractor.is_local) # If remote is enabled, we load from the Hub __UpperCamelCase :Optional[int] = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=__lowercase) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''') self.assertTrue(not hasattr(__lowercase , '''is_local''')) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
452
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : List[Any] = """wavlm""" def __init__( self , __lowercase=32 , __lowercase=768 , __lowercase=12 , __lowercase=12 , __lowercase=3_072 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.0 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.02 , __lowercase=1E-5 , __lowercase="group" , __lowercase="gelu" , __lowercase=(512, 512, 512, 512, 512, 512, 512) , __lowercase=(5, 2, 2, 2, 2, 2, 2) , __lowercase=(10, 3, 3, 3, 3, 2, 2) , __lowercase=False , __lowercase=128 , __lowercase=16 , __lowercase=320 , __lowercase=800 , __lowercase=False , __lowercase=True , __lowercase=0.05 , __lowercase=10 , __lowercase=2 , __lowercase=0.0 , __lowercase=10 , __lowercase=320 , __lowercase=2 , __lowercase=0.1 , __lowercase=100 , __lowercase=256 , __lowercase=256 , __lowercase=0.1 , __lowercase="mean" , __lowercase=False , __lowercase=False , __lowercase=256 , __lowercase=(512, 512, 512, 512, 1_500) , __lowercase=(5, 3, 3, 1, 1) , __lowercase=(1, 2, 3, 1, 1) , __lowercase=512 , __lowercase=80 , __lowercase=0 , __lowercase=1 , __lowercase=2 , __lowercase=False , __lowercase=3 , __lowercase=2 , __lowercase=3 , __lowercase=None , **__lowercase , ) -> Dict: super().__init__(**__lowercase , pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase) __UpperCamelCase :Any = hidden_size __UpperCamelCase :Tuple = feat_extract_norm __UpperCamelCase :List[str] = feat_extract_activation __UpperCamelCase :int = list(__lowercase) __UpperCamelCase :List[Any] = list(__lowercase) __UpperCamelCase :Union[str, Any] = list(__lowercase) __UpperCamelCase :Optional[Any] = conv_bias __UpperCamelCase :Tuple = num_buckets __UpperCamelCase :Optional[int] = max_bucket_distance __UpperCamelCase :Union[str, Any] = num_conv_pos_embeddings __UpperCamelCase :Optional[Any] = num_conv_pos_embedding_groups __UpperCamelCase :List[Any] = len(self.conv_dim) __UpperCamelCase :Tuple = num_hidden_layers __UpperCamelCase :str = intermediate_size __UpperCamelCase :Union[str, Any] = hidden_act __UpperCamelCase :Optional[int] = num_attention_heads __UpperCamelCase :str = hidden_dropout __UpperCamelCase :int = attention_dropout __UpperCamelCase :Optional[int] = activation_dropout __UpperCamelCase :str = feat_proj_dropout __UpperCamelCase :List[Any] = final_dropout __UpperCamelCase :int = layerdrop __UpperCamelCase :List[Any] = layer_norm_eps __UpperCamelCase :Optional[int] = initializer_range __UpperCamelCase :Any = num_ctc_classes __UpperCamelCase :Optional[int] = vocab_size __UpperCamelCase :List[Any] = do_stable_layer_norm __UpperCamelCase :str = use_weighted_layer_sum __UpperCamelCase :Any = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCamelCase :Union[str, Any] = apply_spec_augment __UpperCamelCase :Optional[Any] = mask_time_prob __UpperCamelCase :Union[str, Any] = mask_time_length __UpperCamelCase :Optional[int] = mask_time_min_masks __UpperCamelCase :str = mask_feature_prob __UpperCamelCase :Tuple = mask_feature_length # parameters for pretraining with codevector quantized representations __UpperCamelCase :Optional[Any] = num_codevectors_per_group __UpperCamelCase :List[Any] = num_codevector_groups __UpperCamelCase :str = contrastive_logits_temperature __UpperCamelCase :Tuple = num_negatives __UpperCamelCase :Any = codevector_dim __UpperCamelCase :Union[str, Any] = proj_codevector_dim __UpperCamelCase :Tuple = diversity_loss_weight # ctc loss __UpperCamelCase :int = ctc_loss_reduction __UpperCamelCase :Any = ctc_zero_infinity # adapter __UpperCamelCase :List[Any] = add_adapter __UpperCamelCase :Dict = adapter_kernel_size __UpperCamelCase :Any = adapter_stride __UpperCamelCase :Optional[int] = num_adapter_layers __UpperCamelCase :Union[str, Any] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __UpperCamelCase :int = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __UpperCamelCase :Optional[Any] = list(__lowercase) __UpperCamelCase :Optional[Any] = list(__lowercase) __UpperCamelCase :List[str] = list(__lowercase) __UpperCamelCase :List[Any] = xvector_output_dim @property def UpperCamelCase__ ( self) -> Any: return functools.reduce(operator.mul , self.conv_stride , 1)
452
1
import sys UpperCAmelCase_ = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def A__ ( SCREAMING_SNAKE_CASE_ : str = N ) -> int: """simple docstring""" _UpperCAmelCase = -sys.maxsize - 1 for i in range(len(SCREAMING_SNAKE_CASE_ ) - 12 ): _UpperCAmelCase = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: _UpperCAmelCase = product return largest_product if __name__ == "__main__": print(f'''{solution() = }''')
32
'''simple docstring''' from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class lowerCAmelCase ( lowerCamelCase__ ): """simple docstring""" def __magic_name__ ( self , _A ) -> float: return 0.0 def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __a : Union[str, Any] = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) __a : List[Any] = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __a : Dict = 512 __a : Dict = [1] + [0] * (size - 1) __a : Optional[int] = [filter_type.process(SCREAMING_SNAKE_CASE__ ) for item in inputs] __a : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler __a : Union[str, Any] = np.abs(np.fft.fft(SCREAMING_SNAKE_CASE__ ) ) __a : Optional[int] = 20 * np.logaa(SCREAMING_SNAKE_CASE__ ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('Frequency (Hz)' ) plt.xscale('log' ) # Display within reasonable bounds __a : Dict = get_bounds(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('Gain (dB)' ) plt.plot(SCREAMING_SNAKE_CASE__ ) plt.show() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __a : Optional[Any] = 512 __a : List[str] = [1] + [0] * (size - 1) __a : List[str] = [filter_type.process(SCREAMING_SNAKE_CASE__ ) for item in inputs] __a : Any = [0] * (samplerate - size) # zero-padding outputs += filler __a : Tuple = np.angle(np.fft.fft(SCREAMING_SNAKE_CASE__ ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('Frequency (Hz)' ) plt.xscale('log' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('Phase shift (Radians)' ) plt.plot(np.unwrap(SCREAMING_SNAKE_CASE__ , -2 * pi ) ) plt.show()
597
0
'''simple docstring''' import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : List[str] ) -> Any: """simple docstring""" assert isinstance(__lowerCAmelCase, __lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""", [False, True] ) def __lowerCamelCase ( __snake_case : int, __snake_case : Dict, __snake_case : Tuple ) -> Any: """simple docstring""" A__ : List[Any] =tmp_path / """cache""" A__ : str ={"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A__ : Optional[int] =ParquetDatasetReader(__lowerCAmelCase, cache_dir=__lowerCAmelCase, keep_in_memory=__lowerCAmelCase ).read() _check_parquet_dataset(__lowerCAmelCase, __lowerCAmelCase ) @pytest.mark.parametrize( """features""", [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ], ) def __lowerCamelCase ( __snake_case : int, __snake_case : List[str], __snake_case : Any ) -> List[Any]: """simple docstring""" A__ : int =tmp_path / """cache""" A__ : List[str] ={"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} A__ : int =features.copy() if features else default_expected_features A__ : List[str] =( Features({feature: Value(__lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A__ : List[Any] =ParquetDatasetReader(__lowerCAmelCase, features=__lowerCAmelCase, cache_dir=__lowerCAmelCase ).read() _check_parquet_dataset(__lowerCAmelCase, __lowerCAmelCase ) @pytest.mark.parametrize("""split""", [None, NamedSplit("""train""" ), """train""", """test"""] ) def __lowerCamelCase ( __snake_case : List[str], __snake_case : Optional[int], __snake_case : Optional[int] ) -> str: """simple docstring""" A__ : Union[str, Any] =tmp_path / """cache""" A__ : Optional[int] ={"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} A__ : Optional[int] =ParquetDatasetReader(__lowerCAmelCase, cache_dir=__lowerCAmelCase, split=__lowerCAmelCase ).read() _check_parquet_dataset(__lowerCAmelCase, __lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""", [str, list] ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Dict, __snake_case : Any ) -> Tuple: """simple docstring""" if issubclass(__lowerCAmelCase, __lowerCAmelCase ): A__ : Dict =parquet_path elif issubclass(__lowerCAmelCase, __lowerCAmelCase ): A__ : int =[parquet_path] A__ : List[str] =tmp_path / """cache""" A__ : List[Any] ={"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} A__ : str =ParquetDatasetReader(__lowerCAmelCase, cache_dir=__lowerCAmelCase ).read() _check_parquet_dataset(__lowerCAmelCase, __lowerCAmelCase ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Optional[int], __snake_case : Tuple=("train",) ) -> Dict: """simple docstring""" assert isinstance(__lowerCAmelCase, __lowerCAmelCase ) for split in splits: A__ : List[Any] =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""", [False, True] ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Optional[int], __snake_case : str ) -> str: """simple docstring""" A__ : List[Any] =tmp_path / """cache""" A__ : int ={"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A__ : str =ParquetDatasetReader( {"""train""": parquet_path}, cache_dir=__lowerCAmelCase, keep_in_memory=__lowerCAmelCase ).read() _check_parquet_datasetdict(__lowerCAmelCase, __lowerCAmelCase ) @pytest.mark.parametrize( """features""", [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ], ) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : str, __snake_case : Any ) -> Union[str, Any]: """simple docstring""" A__ : Dict =tmp_path / """cache""" A__ : List[str] ={"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} A__ : List[Any] =features.copy() if features else default_expected_features A__ : Tuple =( Features({feature: Value(__lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A__ : int =ParquetDatasetReader({"""train""": parquet_path}, features=__lowerCAmelCase, cache_dir=__lowerCAmelCase ).read() _check_parquet_datasetdict(__lowerCAmelCase, __lowerCAmelCase ) @pytest.mark.parametrize("""split""", [None, NamedSplit("""train""" ), """train""", """test"""] ) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : Any, __snake_case : Dict ) -> List[str]: """simple docstring""" if split: A__ : Optional[Any] ={split: parquet_path} else: A__ : Union[str, Any] ="""train""" A__ : str ={"""train""": parquet_path, """test""": parquet_path} A__ : Any =tmp_path / """cache""" A__ : str ={"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} A__ : Optional[Any] =ParquetDatasetReader(__lowerCAmelCase, cache_dir=__lowerCAmelCase ).read() _check_parquet_datasetdict(__lowerCAmelCase, __lowerCAmelCase, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __lowerCamelCase ( __snake_case : Dict, __snake_case : List[str] ) -> int: """simple docstring""" A__ : List[str] =ParquetDatasetWriter(__lowerCAmelCase, tmp_path / """foo.parquet""" ) assert writer.write() > 0 A__ : Tuple =pq.ParquetFile(tmp_path / """foo.parquet""" ) A__ : List[str] =pf.read() assert dataset.data.table == output_table def __lowerCamelCase ( __snake_case : Optional[int], __snake_case : Union[str, Any] ) -> Any: """simple docstring""" A__ : Tuple =str(shared_datadir / """test_image_rgb.jpg""" ) A__ : List[str] ={"""image""": [image_path]} A__ : str =Features({"""image""": Image()} ) A__ : List[Any] =Dataset.from_dict(__lowerCAmelCase, features=__lowerCAmelCase ) A__ : str =ParquetDatasetWriter(__lowerCAmelCase, tmp_path / """foo.parquet""" ) assert writer.write() > 0 A__ : int =Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features A__ : str =ParquetDatasetReader(str(tmp_path / """foo.parquet""" ), streaming=__lowerCAmelCase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""", [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ], ) def __lowerCamelCase ( __snake_case : List[str], __snake_case : Tuple ) -> Optional[Any]: """simple docstring""" assert get_writer_batch_size(__lowerCAmelCase ) == expected
712
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def __lowerCamelCase ( __snake_case : Dict ) -> List[str]: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase_ : nn.Module , lowerCAmelCase_ : int ) -> str: '''simple docstring''' super().__init__() A__ : Union[str, Any] =module A__ : Union[str, Any] =nn.Sequential( nn.Linear(module.in_features , lowerCAmelCase_ , bias=lowerCAmelCase_ ) , nn.Linear(lowerCAmelCase_ , module.out_features , bias=lowerCAmelCase_ ) , ) A__ : Tuple =(2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=lowerCAmelCase_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def lowercase__ ( self : List[str] , lowerCAmelCase_ : Optional[int] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : int ) -> Dict: '''simple docstring''' return self.module(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) + self.adapter(lowerCAmelCase_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' __snake_case = 'bigscience/bloom-1b7' # Constant values __snake_case = 2.109659552692574 __snake_case = 'Hello my name is' __snake_case = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) __snake_case = 10 def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' # Models and tokenizer A__ : List[Any] =AutoTokenizer.from_pretrained(self.model_name ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' super().setUp() # Models and tokenizer A__ : Optional[int] =AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="""auto""" ) A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' A__ : str =self.model_abit.config self.assertTrue(hasattr(lowerCAmelCase_ , """quantization_config""" ) ) A__ : Union[str, Any] =config.to_dict() A__ : Any =config.to_diff_dict() A__ : Optional[Any] =config.to_json_string() def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' from bitsandbytes.nn import Paramsabit A__ : int =self.model_fpaa.get_memory_footprint() A__ : Optional[Any] =self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) A__ : Tuple =get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(lowerCAmelCase_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' A__ : int =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Union[str, Any] =self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def lowercase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' A__ : Tuple =BitsAndBytesConfig() A__ : Tuple =True A__ : Optional[int] =AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , device_map="""auto""" ) A__ : Union[str, Any] =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Optional[Any] =model_abit_from_config.generate( input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' with self.assertRaises(lowerCAmelCase_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> Any: '''simple docstring''' A__ : Tuple =BitsAndBytesConfig() with self.assertRaises(lowerCAmelCase_ ): A__ : Dict =AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , load_in_abit=lowerCAmelCase_ , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , ) def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' with self.assertRaises(lowerCAmelCase_ ): # Tries with `str` self.model_abit.to("""cpu""" ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.to(torch.device("""cuda:0""" ) ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Optional[Any] =self.model_fpaa.to(torch.floataa ) A__ : Dict =self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error A__ : List[str] =self.model_fpaa.to("""cpu""" ) # Check this does not throw an error A__ : List[str] =self.model_fpaa.half() # Check this does not throw an error A__ : int =self.model_fpaa.float() def lowercase__ ( self : int ) -> Dict: '''simple docstring''' A__ : Dict =AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def lowercase__ ( cls : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : Tuple ="""t5-small""" A__ : Optional[Any] ="""google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense A__ : Optional[int] =AutoTokenizer.from_pretrained(cls.model_name ) A__ : Optional[int] ="""Translate in German: Hello, my dog is cute""" def lowercase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' from transformers import TaForConditionalGeneration A__ : Optional[int] =TaForConditionalGeneration._keep_in_fpaa_modules A__ : Optional[Any] =None # test with `t5-small` A__ : str =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : List[str] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Optional[Any] =model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` A__ : List[str] =TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : Tuple =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Union[str, Any] =model.generate(**lowerCAmelCase_ ) A__ : Dict =modules def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` A__ : Optional[int] =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Any =model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` A__ : Union[str, Any] =TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : Optional[int] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Dict =model.generate(**lowerCAmelCase_ ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' super().setUp() # model_name A__ : Any ="""bigscience/bloom-560m""" A__ : List[Any] ="""t5-small""" # Different types of model A__ : Dict =AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # Sequence classification model A__ : List[Any] =AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # CausalLM model A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # Seq2seq model A__ : List[str] =AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' super().setUp() def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' A__ : Dict =pipeline( """text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass A__ : Optional[int] =self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : str ) -> int: '''simple docstring''' super().setUp() def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' A__ : int =AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""balanced""" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model A__ : str =self.tokenizer(self.input_text , return_tensors="""pt""" ) # Second real batch A__ : Any =model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] ="""facebook/opt-350m""" super().setUp() def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ): return # Step 1: freeze all parameters A__ : Optional[Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): A__ : int =False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability A__ : Dict =param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(lowerCAmelCase_ ) ): A__ : int =LoRALayer(module.q_proj , rank=16 ) A__ : Any =LoRALayer(module.k_proj , rank=16 ) A__ : Union[str, Any] =LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch A__ : List[Any] =self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): A__ : Any =model.forward(**lowerCAmelCase_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(lowerCAmelCase_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'gpt2-xl' __snake_case = 3.3191854854152187
687
0
'''simple docstring''' from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker UpperCamelCase_ = "CompVis/stable-diffusion-v1-1" UpperCamelCase_ = "CompVis/stable-diffusion-v1-2" UpperCamelCase_ = "CompVis/stable-diffusion-v1-3" UpperCamelCase_ = "CompVis/stable-diffusion-v1-4" class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self, A, A, A, A, A, A, A, A = True, ): '''simple docstring''' super()._init_() SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionPipeline.from_pretrained(A ) SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionPipeline.from_pretrained(A ) SCREAMING_SNAKE_CASE : int = StableDiffusionPipeline.from_pretrained(A ) SCREAMING_SNAKE_CASE : Tuple = StableDiffusionPipeline( vae=A, text_encoder=A, tokenizer=A, unet=A, scheduler=A, safety_checker=A, feature_extractor=A, requires_safety_checker=A, ) self.register_modules(pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea ) @property def UpperCamelCase_ ( self ): '''simple docstring''' return {k: getattr(self, A ) for k in self.config.keys() if not k.startswith('_' )} def UpperCamelCase_ ( self, A = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE : List[str] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def UpperCamelCase_ ( self ): '''simple docstring''' self.enable_attention_slicing(A ) @torch.no_grad() def UpperCamelCase_ ( self, A, A = 512, A = 512, A = 50, A = 7.5, A = None, A = 1, A = 0.0, A = None, A = None, A = "pil", A = True, A = None, A = 1, **A, ): '''simple docstring''' return self.pipea( prompt=A, height=A, width=A, num_inference_steps=A, guidance_scale=A, negative_prompt=A, num_images_per_prompt=A, eta=A, generator=A, latents=A, output_type=A, return_dict=A, callback=A, callback_steps=A, **A, ) @torch.no_grad() def UpperCamelCase_ ( self, A, A = 512, A = 512, A = 50, A = 7.5, A = None, A = 1, A = 0.0, A = None, A = None, A = "pil", A = True, A = None, A = 1, **A, ): '''simple docstring''' return self.pipea( prompt=A, height=A, width=A, num_inference_steps=A, guidance_scale=A, negative_prompt=A, num_images_per_prompt=A, eta=A, generator=A, latents=A, output_type=A, return_dict=A, callback=A, callback_steps=A, **A, ) @torch.no_grad() def UpperCamelCase_ ( self, A, A = 512, A = 512, A = 50, A = 7.5, A = None, A = 1, A = 0.0, A = None, A = None, A = "pil", A = True, A = None, A = 1, **A, ): '''simple docstring''' return self.pipea( prompt=A, height=A, width=A, num_inference_steps=A, guidance_scale=A, negative_prompt=A, num_images_per_prompt=A, eta=A, generator=A, latents=A, output_type=A, return_dict=A, callback=A, callback_steps=A, **A, ) @torch.no_grad() def UpperCamelCase_ ( self, A, A = 512, A = 512, A = 50, A = 7.5, A = None, A = 1, A = 0.0, A = None, A = None, A = "pil", A = True, A = None, A = 1, **A, ): '''simple docstring''' return self.pipea( prompt=A, height=A, width=A, num_inference_steps=A, guidance_scale=A, negative_prompt=A, num_images_per_prompt=A, eta=A, generator=A, latents=A, output_type=A, return_dict=A, callback=A, callback_steps=A, **A, ) @torch.no_grad() def UpperCamelCase_ ( self, A, A = 512, A = 512, A = 50, A = 7.5, A = None, A = 1, A = 0.0, A = None, A = None, A = "pil", A = True, A = None, A = 1, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = 'cuda' if torch.cuda.is_available() else 'cpu' self.to(A ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` must be divisible by 8 but are {height} and {width}." ) # Get first result from Stable Diffusion Checkpoint v1.1 SCREAMING_SNAKE_CASE : Optional[Any] = self.textaimg_sda_a( prompt=A, height=A, width=A, num_inference_steps=A, guidance_scale=A, negative_prompt=A, num_images_per_prompt=A, eta=A, generator=A, latents=A, output_type=A, return_dict=A, callback=A, callback_steps=A, **A, ) # Get first result from Stable Diffusion Checkpoint v1.2 SCREAMING_SNAKE_CASE : List[Any] = self.textaimg_sda_a( prompt=A, height=A, width=A, num_inference_steps=A, guidance_scale=A, negative_prompt=A, num_images_per_prompt=A, eta=A, generator=A, latents=A, output_type=A, return_dict=A, callback=A, callback_steps=A, **A, ) # Get first result from Stable Diffusion Checkpoint v1.3 SCREAMING_SNAKE_CASE : Any = self.textaimg_sda_a( prompt=A, height=A, width=A, num_inference_steps=A, guidance_scale=A, negative_prompt=A, num_images_per_prompt=A, eta=A, generator=A, latents=A, output_type=A, return_dict=A, callback=A, callback_steps=A, **A, ) # Get first result from Stable Diffusion Checkpoint v1.4 SCREAMING_SNAKE_CASE : Union[str, Any] = self.textaimg_sda_a( prompt=A, height=A, width=A, num_inference_steps=A, guidance_scale=A, negative_prompt=A, num_images_per_prompt=A, eta=A, generator=A, latents=A, output_type=A, return_dict=A, callback=A, callback_steps=A, **A, ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
28
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = {'''vocab_file''': '''vocab.txt'''} snake_case = { '''vocab_file''': { '''openbmb/cpm-ant-10b''': '''https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt''', }, } snake_case = { '''openbmb/cpm-ant-10b''': 1_0_2_4, } def snake_case ( lowerCAmelCase_ ) -> int: _snake_case = collections.OrderedDict() with open(lowerCAmelCase_ , '''r''' , encoding='''utf-8''' ) as reader: _snake_case = reader.readlines() for index, token in enumerate(lowerCAmelCase_ ): _snake_case = token.rstrip('''\n''' ) _snake_case = index return vocab class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : List[str]="<unk>" , __lowerCamelCase : Tuple=2_0_0 ): """simple docstring""" _snake_case = vocab _snake_case = unk_token _snake_case = max_input_chars_per_word def __UpperCAmelCase ( self : Any , __lowerCamelCase : str ): """simple docstring""" _snake_case = list(__lowerCamelCase ) if len(__lowerCamelCase ) > self.max_input_chars_per_word: return [self.unk_token] _snake_case = 0 _snake_case = [] while start < len(__lowerCamelCase ): _snake_case = len(__lowerCamelCase ) _snake_case = None while start < end: _snake_case = ''''''.join(chars[start:end] ) if substr in self.vocab: _snake_case = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__lowerCamelCase ) _snake_case = end return sub_tokens class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): A__ : List[str] = VOCAB_FILES_NAMES A__ : str = PRETRAINED_VOCAB_FILES_MAP A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Union[str, Any] = ['''input_ids''', '''attention_mask'''] A__ : Optional[int] = False def __init__( self : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str="<d>" , __lowerCamelCase : Tuple="</d>" , __lowerCamelCase : Tuple="<s>" , __lowerCamelCase : int="</s>" , __lowerCamelCase : List[str]="<pad>" , __lowerCamelCase : int="<unk>" , __lowerCamelCase : int="</n>" , __lowerCamelCase : Tuple="</_>" , __lowerCamelCase : Optional[Any]="left" , **__lowerCamelCase : str , ): """simple docstring""" requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=__lowerCamelCase , eod_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , pad_token=__lowerCamelCase , unk_token=__lowerCamelCase , line_token=__lowerCamelCase , space_token=__lowerCamelCase , padding_side=__lowerCamelCase , **__lowerCamelCase , ) _snake_case = bod_token _snake_case = eod_token _snake_case = load_vocab(__lowerCamelCase ) _snake_case = self.encoder[space_token] _snake_case = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] _snake_case = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __lowerCamelCase : x[1] ) ) _snake_case = {v: k for k, v in self.encoder.items()} _snake_case = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" return self.encoder[self.bod_token] @property def __UpperCAmelCase ( self : Any ): """simple docstring""" return self.encoder[self.eod_token] @property def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" return self.encoder["\n"] @property def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" return len(self.encoder ) def __UpperCAmelCase ( self : Any ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : Optional[int] ): """simple docstring""" _snake_case = [] for x in jieba.cut(__lowerCamelCase , cut_all=__lowerCamelCase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__lowerCamelCase ) ) return output_tokens def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , **__lowerCamelCase : Optional[Any] ): """simple docstring""" _snake_case = [i for i in token_ids if i >= 0] _snake_case = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__lowerCamelCase , **__lowerCamelCase ) def __UpperCAmelCase ( self : Dict , __lowerCamelCase : Union[str, Any] ): """simple docstring""" return token in self.encoder def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : List[str] ): """simple docstring""" return "".join(__lowerCamelCase ) def __UpperCAmelCase ( self : Dict , __lowerCamelCase : int ): """simple docstring""" return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : int ): """simple docstring""" return self.decoder.get(__lowerCamelCase , self.unk_token ) def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): """simple docstring""" if os.path.isdir(__lowerCamelCase ): _snake_case = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: _snake_case = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory _snake_case = 0 if " " in self.encoder: _snake_case = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: _snake_case = self.encoder['''\n'''] del self.encoder["\n"] _snake_case = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __lowerCamelCase : x[1] ) ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) _snake_case = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : List[int] , __lowerCamelCase : List[int] = None ): """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __UpperCAmelCase ( self : str , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is not None: return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) return [1] + ([0] * len(__lowerCamelCase ))
103
0
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration _SCREAMING_SNAKE_CASE = pytest.mark.integration _SCREAMING_SNAKE_CASE = {'comet'} _SCREAMING_SNAKE_CASE = importlib.util.find_spec("fairseq") is not None _SCREAMING_SNAKE_CASE = {'code_eval'} _SCREAMING_SNAKE_CASE = os.name == 'nt' _SCREAMING_SNAKE_CASE = {'bertscore', 'frugalscore', 'perplexity'} _SCREAMING_SNAKE_CASE = importlib.util.find_spec("transformers") is not None def _snake_case (_snake_case : str) -> str: @wraps(_SCREAMING_SNAKE_CASE) def wrapper(self : str , _snake_case : str): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('\"test requires Fairseq\"') else: test_case(self , _SCREAMING_SNAKE_CASE) return wrapper def _snake_case (_snake_case : Union[str, Any]) -> Optional[int]: @wraps(_SCREAMING_SNAKE_CASE) def wrapper(self : List[Any] , _snake_case : Tuple): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('\"test requires transformers\"') else: test_case(self , _SCREAMING_SNAKE_CASE) return wrapper def _snake_case (_snake_case : Optional[int]) -> str: @wraps(_SCREAMING_SNAKE_CASE) def wrapper(self : Optional[int] , _snake_case : Dict): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('\"test not supported on Windows\"') else: test_case(self , _SCREAMING_SNAKE_CASE) return wrapper def _snake_case () -> List[str]: _lowercase =[metric_dir.split(os.sep)[-2] for metric_dir in glob.glob('./metrics/*/')] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( snake_case__ , snake_case__ , snake_case__ ) @local class SCREAMING_SNAKE_CASE_ ( parameterized.TestCase ): """simple docstring""" __lowerCAmelCase : Tuple ={} __lowerCAmelCase : Tuple =None @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning') @pytest.mark.filterwarnings('ignore:load_metric is deprecated:FutureWarning') def UpperCamelCase__ ( self :Any, snake_case :List[str]): """simple docstring""" _lowercase ='[...]' _lowercase =importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics', UpperCAmelCase_)).module_path) _lowercase =datasets.load.import_main_class(metric_module.__name__, dataset=UpperCAmelCase_) # check parameters _lowercase =inspect.signature(metric._compute).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values())) # no **kwargs # run doctest with self.patch_intensive_calls(UpperCAmelCase_, metric_module.__name__): with self.use_local_metrics(): try: _lowercase =doctest.testmod(UpperCAmelCase_, verbose=UpperCAmelCase_, raise_on_error=UpperCAmelCase_) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed, 0) self.assertGreater(results.attempted, 1) @slow def UpperCamelCase__ ( self :Optional[int], snake_case :List[str]): """simple docstring""" _lowercase ='[...]' _lowercase =importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics', UpperCAmelCase_)).module_path) # run doctest with self.use_local_metrics(): _lowercase =doctest.testmod(UpperCAmelCase_, verbose=UpperCAmelCase_, raise_on_error=UpperCAmelCase_) self.assertEqual(results.failed, 0) self.assertGreater(results.attempted, 1) @contextmanager def UpperCamelCase__ ( self :Union[str, Any], snake_case :str, snake_case :Optional[int]): """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](UpperCAmelCase_): yield else: yield @contextmanager def UpperCamelCase__ ( self :List[Any]): """simple docstring""" def load_local_metric(snake_case :Optional[Any], *snake_case :Optional[Any], **snake_case :str): return load_metric(os.path.join('metrics', UpperCAmelCase_), *UpperCAmelCase_, **UpperCAmelCase_) with patch('datasets.load_metric') as mock_load_metric: _lowercase =load_local_metric yield @classmethod def UpperCamelCase__ ( cls :Any, snake_case :Dict): """simple docstring""" def wrapper(snake_case :Optional[int]): _lowercase =contextmanager(UpperCAmelCase_) _lowercase =patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('bleurt') def _snake_case (_snake_case : List[str]) -> str: import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('sv' , '' , '') # handle pytest cli flags class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" def UpperCamelCase__ ( self :Union[str, Any], snake_case :str): """simple docstring""" assert len(input_dict['input_ids']) == 2 return np.array([1.0_3, 1.0_4]) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('bleurt.score._create_predictor') as mock_create_predictor: _lowercase =MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('bertscore') def _snake_case (_snake_case : Dict) -> Optional[Any]: import torch def bert_cos_score_idf(_snake_case : Any , _snake_case : Optional[int] , *_snake_case : Dict , **_snake_case : Optional[Any]): return torch.tensor([[1.0, 1.0, 1.0]] * len(_SCREAMING_SNAKE_CASE)) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('bert_score.scorer.get_model'), patch( 'bert_score.scorer.bert_cos_score_idf') as mock_bert_cos_score_idf: _lowercase =bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('comet') def _snake_case (_snake_case : Union[str, Any]) -> Any: def load_from_checkpoint(_snake_case : Dict): class SCREAMING_SNAKE_CASE_ : """simple docstring""" def UpperCamelCase__ ( self :Union[str, Any], snake_case :Union[str, Any], *snake_case :Optional[int], **snake_case :str): """simple docstring""" assert len(UpperCAmelCase_) == 2 _lowercase =[0.1_9, 0.9_2] return scores, sum(UpperCAmelCase_) / len(UpperCAmelCase_) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('comet.download_model') as mock_download_model: _lowercase =None with patch('comet.load_from_checkpoint') as mock_load_from_checkpoint: _lowercase =load_from_checkpoint yield def _snake_case () -> List[str]: _lowercase =load_metric(os.path.join('metrics' , 'seqeval')) _lowercase ='ERROR' _lowercase =f'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}''' with pytest.raises(_SCREAMING_SNAKE_CASE , match=re.escape(_SCREAMING_SNAKE_CASE)): metric.compute(predictions=[] , references=[] , scheme=_SCREAMING_SNAKE_CASE)
702
def _snake_case (_snake_case : int = 100_0000) -> int: _lowercase =[i - 1 for i in range(limit + 1)] for i in range(2 , limit + 1): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , _snake_case): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1]) if __name__ == "__main__": print(solution())
557
0
"""simple docstring""" import warnings from .generation import TFGenerationMixin class A_(SCREAMING_SNAKE_CASE_ ): """simple docstring""" warnings.warn( """Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will """ """be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.""" , SCREAMING_SNAKE_CASE_ , )
437
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def UpperCAmelCase_ ( __a : Optional[Any] ): '''simple docstring''' _lowerCamelCase : int = DPTConfig() if "large" in checkpoint_url: _lowerCamelCase : Optional[Any] = 10_24 _lowerCamelCase : List[str] = 40_96 _lowerCamelCase : Union[str, Any] = 24 _lowerCamelCase : Any = 16 _lowerCamelCase : Union[str, Any] = [5, 11, 17, 23] _lowerCamelCase : Optional[int] = [2_56, 5_12, 10_24, 10_24] _lowerCamelCase : List[str] = (1, 3_84, 3_84) if "ade" in checkpoint_url: _lowerCamelCase : Any = True _lowerCamelCase : List[str] = 1_50 _lowerCamelCase : int = 'huggingface/label-files' _lowerCamelCase : Union[str, Any] = 'ade20k-id2label.json' _lowerCamelCase : Union[str, Any] = json.load(open(cached_download(hf_hub_url(__a , __a , repo_type='dataset' ) ) , 'r' ) ) _lowerCamelCase : Optional[Any] = {int(__a ): v for k, v in idalabel.items()} _lowerCamelCase : int = idalabel _lowerCamelCase : Any = {v: k for k, v in idalabel.items()} _lowerCamelCase : List[str] = [1, 1_50, 4_80, 4_80] return config, expected_shape def UpperCAmelCase_ ( __a : Tuple ): '''simple docstring''' _lowerCamelCase : int = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(__a , __a ) def UpperCAmelCase_ ( __a : Dict ): '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _lowerCamelCase : Optional[Any] = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: _lowerCamelCase : Optional[int] = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: _lowerCamelCase : Any = name.replace('patch_embed' , 'patch_embeddings' ) if "pos_embed" in name: _lowerCamelCase : str = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: _lowerCamelCase : int = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: _lowerCamelCase : Tuple = name.replace('proj' , 'projection' ) if "blocks" in name: _lowerCamelCase : Optional[int] = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: _lowerCamelCase : Union[str, Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _lowerCamelCase : Optional[int] = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name: _lowerCamelCase : Optional[Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _lowerCamelCase : str = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: _lowerCamelCase : Optional[int] = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: _lowerCamelCase : Dict = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: _lowerCamelCase : Tuple = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: _lowerCamelCase : Tuple = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: _lowerCamelCase : Tuple = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: _lowerCamelCase : List[Any] = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: _lowerCamelCase : str = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _lowerCamelCase : Union[str, Any] = name.replace(f"refinenet{layer_idx}" , f"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: _lowerCamelCase : Optional[Any] = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: _lowerCamelCase : str = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: _lowerCamelCase : List[str] = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: _lowerCamelCase : List[Any] = name.replace('conv1' , 'convolution1' ) if "conv2" in name: _lowerCamelCase : Optional[Any] = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _lowerCamelCase : Union[str, Any] = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: _lowerCamelCase : Tuple = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: _lowerCamelCase : List[str] = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: _lowerCamelCase : Dict = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: _lowerCamelCase : Optional[int] = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: _lowerCamelCase : List[str] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: _lowerCamelCase : Union[str, Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: _lowerCamelCase : str = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: _lowerCamelCase : List[Any] = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: _lowerCamelCase : List[str] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: _lowerCamelCase : Tuple = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: _lowerCamelCase : Any = name.replace('pretrained' , 'dpt' ) if "bn" in name: _lowerCamelCase : Tuple = name.replace('bn' , 'batch_norm' ) if "head" in name: _lowerCamelCase : str = name.replace('head' , 'head.head' ) if "encoder.norm" in name: _lowerCamelCase : Union[str, Any] = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: _lowerCamelCase : Union[str, Any] = name.replace('auxlayer' , 'auxiliary_head.head' ) return name def UpperCAmelCase_ ( __a : Tuple , __a : Any ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Any = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.weight" ) _lowerCamelCase : Dict = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Tuple = in_proj_weight[: config.hidden_size, :] _lowerCamelCase : Optional[int] = in_proj_bias[: config.hidden_size] _lowerCamelCase : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Any = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : str = in_proj_bias[-config.hidden_size :] def UpperCAmelCase_ ( ): '''simple docstring''' _lowerCamelCase : Optional[int] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCamelCase : Dict = Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( __a : Optional[int] , __a : int , __a : str , __a : List[str] ): '''simple docstring''' _lowerCamelCase , _lowerCamelCase : List[str] = get_dpt_config(__a ) # load original state_dict from URL _lowerCamelCase : List[Any] = torch.hub.load_state_dict_from_url(__a , map_location='cpu' ) # remove certain keys remove_ignore_keys_(__a ) # rename keys for key in state_dict.copy().keys(): _lowerCamelCase : str = state_dict.pop(__a ) _lowerCamelCase : str = val # read in qkv matrices read_in_q_k_v(__a , __a ) # load HuggingFace model _lowerCamelCase : List[str] = DPTForSemanticSegmentation(__a ) if 'ade' in checkpoint_url else DPTForDepthEstimation(__a ) model.load_state_dict(__a ) model.eval() # Check outputs on an image _lowerCamelCase : str = 4_80 if 'ade' in checkpoint_url else 3_84 _lowerCamelCase : Optional[Any] = DPTImageProcessor(size=__a ) _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : str = image_processor(__a , return_tensors='pt' ) # forward pass _lowerCamelCase : Tuple = model(**__a ).logits if 'ade' in checkpoint_url else model(**__a ).predicted_depth # Assert logits _lowerCamelCase : Dict = torch.tensor([[6.3_1_9_9, 6.3_6_2_9, 6.4_1_4_8], [6.3_8_5_0, 6.3_6_1_5, 6.4_1_6_6], [6.3_5_1_9, 6.3_1_7_6, 6.3_5_7_5]] ) if "ade" in checkpoint_url: _lowerCamelCase : List[Any] = torch.tensor([[4.0_4_8_0, 4.2_4_2_0, 4.4_3_6_0], [4.3_1_2_4, 4.5_6_9_3, 4.8_2_6_1], [4.5_7_6_8, 4.8_9_6_5, 5.2_1_6_3]] ) assert outputs.shape == torch.Size(__a ) assert ( torch.allclose(outputs[0, 0, :3, :3] , __a , atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , __a ) ) Path(__a ).mkdir(exist_ok=__a ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(__a ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__a ) if push_to_hub: print('Pushing model to hub...' ) model.push_to_hub( repo_path_or_name=Path(__a , __a ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=__a , ) image_processor.push_to_hub( repo_path_or_name=Path(__a , __a ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=__a , ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) a_ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
437
1
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
714
from __future__ import annotations from typing import TypedDict class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : str __SCREAMING_SNAKE_CASE : int def UpperCAmelCase__ ( lowerCamelCase_ : str ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError('The parameter s type must be str.' ) return [s[i:] + s[:i] for i in range(len(lowerCamelCase_ ) )] def UpperCAmelCase__ ( lowerCamelCase_ : str ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError('The parameter s type must be str.' ) if not s: raise ValueError('The parameter s must not be empty.' ) __a : List[Any] = all_rotations(lowerCamelCase_ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation __a : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(lowerCamelCase_ ), } return response def UpperCAmelCase__ ( lowerCamelCase_ : str , lowerCamelCase_ : int ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError('The parameter bwt_string type must be str.' ) if not bwt_string: raise ValueError('The parameter bwt_string must not be empty.' ) try: __a : Tuple = int(lowerCamelCase_ ) except ValueError: raise TypeError( 'The parameter idx_original_string type must be int or passive' ' of cast to int.' ) if idx_original_string < 0: raise ValueError('The parameter idx_original_string must not be lower than 0.' ) if idx_original_string >= len(lowerCamelCase_ ): raise ValueError( 'The parameter idx_original_string must be lower than' ' len(bwt_string).' ) __a : str = [''] * len(lowerCamelCase_ ) for _ in range(len(lowerCamelCase_ ) ): for i in range(len(lowerCamelCase_ ) ): __a : List[str] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = '''Provide a string that I will generate its BWT transform: ''' SCREAMING_SNAKE_CASE__ = input(entry_msg).strip() SCREAMING_SNAKE_CASE__ = bwt_transform(s) print( F"Burrows Wheeler transform for string '{s}' results " F"in '{result['bwt_string']}'" ) SCREAMING_SNAKE_CASE__ = reverse_bwt(result['''bwt_string'''], result['''idx_original_string''']) print( F"Reversing Burrows Wheeler transform for entry '{result['bwt_string']}' " F"we get original string '{original_string}'" )
577
0