code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : str = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowercase_ : str = { 'vocab_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/vocab.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/vocab.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/vocab.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/vocab.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/vocab.json', }, 'merges_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/merges.txt', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/merges.txt', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/merges.txt', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/merges.txt', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/merges.txt', }, 'tokenizer_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/tokenizer.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/tokenizer.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/tokenizer.json', }, } lowercase_ : int = { 'gpt2': 1_0_2_4, 'gpt2-medium': 1_0_2_4, 'gpt2-large': 1_0_2_4, 'gpt2-xl': 1_0_2_4, 'distilgpt2': 1_0_2_4, } class _lowerCamelCase ( UpperCamelCase_ ): __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = ["input_ids", "attention_mask"] __a = GPTaTokenizer def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase="<|endoftext|>" , lowerCAmelCase="<|endoftext|>" , lowerCAmelCase="<|endoftext|>" , lowerCAmelCase=False , **lowerCAmelCase , ) -> Union[str, Any]: super().__init__( lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , **lowerCAmelCase , ) SCREAMING_SNAKE_CASE__: Dict= kwargs.pop('''add_bos_token''' , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[Any]= json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowerCAmelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE__: Optional[Any]= getattr(lowerCAmelCase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE__: Optional[Any]= add_prefix_space SCREAMING_SNAKE_CASE__: Any= pre_tok_class(**lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[Any]= add_prefix_space def UpperCamelCase_ ( self , *lowerCAmelCase , **lowerCAmelCase ) -> BatchEncoding: SCREAMING_SNAKE_CASE__: int= kwargs.get('''is_split_into_words''' , lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase ) def UpperCamelCase_ ( self , *lowerCAmelCase , **lowerCAmelCase ) -> BatchEncoding: SCREAMING_SNAKE_CASE__: Optional[int]= kwargs.get('''is_split_into_words''' , lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase ) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE__: str= self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase ) def UpperCamelCase_ ( self , lowerCAmelCase ) -> List[int]: SCREAMING_SNAKE_CASE__: List[str]= [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) + [self.eos_token_id] ) if len(lowerCAmelCase ) > self.model_max_length: SCREAMING_SNAKE_CASE__: Dict= input_ids[-self.model_max_length :] return input_ids
64
"""simple docstring""" from __future__ import annotations lowerCamelCase__ : Optional[int] = [True] * 1_00_00_01 lowerCamelCase__ : List[Any] = 2 while i * i <= 1_00_00_00: if seive[i]: for j in range(i * i, 1_00_00_01, i): lowerCamelCase__ : Optional[Any] = False i += 1 def UpperCamelCase ( _lowerCAmelCase : int ) -> bool: return seive[n] def UpperCamelCase ( _lowerCAmelCase : int ) -> bool: return any(digit in """02468""" for digit in str(_lowerCAmelCase ) ) def UpperCamelCase ( _lowerCAmelCase : int = 1000000 ) -> list[int]: _UpperCAmelCase : List[Any] = [2] # result already includes the number 2. for num in range(3, limit + 1, 2 ): if is_prime(_lowerCAmelCase ) and not contains_an_even_digit(_lowerCAmelCase ): _UpperCAmelCase : List[Any] = str(_lowerCAmelCase ) _UpperCAmelCase : Optional[int] = [int(str_num[j:] + str_num[:j] ) for j in range(len(_lowerCAmelCase ) )] if all(is_prime(_lowerCAmelCase ) for i in list_nums ): result.append(_lowerCAmelCase ) return result def UpperCamelCase ( ) -> int: return len(find_circular_primes() ) if __name__ == "__main__": print(F'''{len(find_circular_primes()) = }''')
238
0
"""simple docstring""" import requests from bsa import BeautifulSoup def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Tuple = BeautifulSoup(requests.get(__UpperCamelCase , params=__UpperCamelCase ).content , """html.parser""" ) UpperCAmelCase__ : Any = soup.find("""div""" , attrs={"""class""": """gs_ri"""} ) UpperCAmelCase__ : List[Any] = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" ) return anchors[2].get_text() if __name__ == "__main__": __UpperCAmelCase = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 30, 'pages': '3979-3990', 'year': 2018, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
194
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED __UpperCAmelCase = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } __UpperCAmelCase = { 'allenai/led-base-16384': 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : Tuple = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) UpperCAmelCase__ : int = bs[:] UpperCAmelCase__ : Union[str, Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(__UpperCamelCase ) cs.append(2**8 + n ) n += 1 UpperCAmelCase__ : Tuple = [chr(__UpperCamelCase ) for n in cs] return dict(zip(__UpperCamelCase , __UpperCamelCase ) ) def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : int = set() UpperCAmelCase__ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase__ : Optional[Any] = char return pairs class __lowercase ( __lowerCamelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["""input_ids""", """attention_mask"""] def __init__( self : Union[str, Any] ,A : Any ,A : Dict ,A : Optional[Any]="replace" ,A : Dict="<s>" ,A : str="</s>" ,A : str="</s>" ,A : Dict="<s>" ,A : List[str]="<unk>" ,A : Union[str, Any]="<pad>" ,A : Any="<mask>" ,A : str=False ,**A : Optional[Any] ,): '''simple docstring''' UpperCAmelCase__ : List[str] = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else bos_token UpperCAmelCase__ : Any = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else eos_token UpperCAmelCase__ : List[str] = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else sep_token UpperCAmelCase__ : Tuple = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else cls_token UpperCAmelCase__ : Tuple = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else unk_token UpperCAmelCase__ : List[str] = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase__ : Union[str, Any] = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token super().__init__( errors=A ,bos_token=A ,eos_token=A ,unk_token=A ,sep_token=A ,cls_token=A ,pad_token=A ,mask_token=A ,add_prefix_space=A ,**A ,) with open(A ,encoding="""utf-8""" ) as vocab_handle: UpperCAmelCase__ : Tuple = json.load(A ) UpperCAmelCase__ : Any = {v: k for k, v in self.encoder.items()} UpperCAmelCase__ : List[Any] = errors # how to handle errors in decoding UpperCAmelCase__ : List[str] = bytes_to_unicode() UpperCAmelCase__ : int = {v: k for k, v in self.byte_encoder.items()} with open(A ,encoding="""utf-8""" ) as merges_handle: UpperCAmelCase__ : List[Any] = merges_handle.read().split("""\n""" )[1:-1] UpperCAmelCase__ : Tuple = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase__ : Any = dict(zip(A ,range(len(A ) ) ) ) UpperCAmelCase__ : Optional[Any] = {} UpperCAmelCase__ : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase__ : Union[str, Any] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def __lowercase ( self : List[Any] ): '''simple docstring''' return len(self.encoder ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def __lowercase ( self : Optional[int] ,A : Union[str, Any] ): '''simple docstring''' if token in self.cache: return self.cache[token] UpperCAmelCase__ : Optional[Any] = tuple(A ) UpperCAmelCase__ : int = get_pairs(A ) if not pairs: return token while True: UpperCAmelCase__ : str = min(A ,key=lambda A : self.bpe_ranks.get(A ,float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase__ , UpperCAmelCase__ : Tuple = bigram UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : Any = 0 while i < len(A ): try: UpperCAmelCase__ : Optional[Any] = word.index(A ,A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase__ : int = j if word[i] == first and i < len(A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase__ : List[str] = tuple(A ) UpperCAmelCase__ : str = new_word if len(A ) == 1: break else: UpperCAmelCase__ : str = get_pairs(A ) UpperCAmelCase__ : int = """ """.join(A ) UpperCAmelCase__ : List[str] = word return word def __lowercase ( self : Optional[Any] ,A : Any ): '''simple docstring''' UpperCAmelCase__ : Any = [] for token in re.findall(self.pat ,A ): UpperCAmelCase__ : Any = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A ).split(""" """ ) ) return bpe_tokens def __lowercase ( self : Dict ,A : int ): '''simple docstring''' return self.encoder.get(A ,self.encoder.get(self.unk_token ) ) def __lowercase ( self : Dict ,A : Optional[Any] ): '''simple docstring''' return self.decoder.get(A ) def __lowercase ( self : Optional[Any] ,A : int ): '''simple docstring''' UpperCAmelCase__ : int = """""".join(A ) UpperCAmelCase__ : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" ,errors=self.errors ) return text def __lowercase ( self : Optional[int] ,A : str ,A : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(A ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase__ : Any = os.path.join( A ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase__ : List[str] = os.path.join( A ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(A ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=A ,ensure_ascii=A ) + """\n""" ) UpperCAmelCase__ : Any = 0 with open(A ,"""w""" ,encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda A : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) UpperCAmelCase__ : Optional[int] = token_index writer.write(""" """.join(A ) + """\n""" ) index += 1 return vocab_file, merge_file def __lowercase ( self : Union[str, Any] ,A : List[int] ,A : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ : Dict = [self.cls_token_id] UpperCAmelCase__ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowercase ( self : int ,A : List[int] ,A : Optional[List[int]] = None ,A : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def __lowercase ( self : Tuple ,A : List[int] ,A : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : str = [self.sep_token_id] UpperCAmelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowercase ( self : Any ,A : str ,A : List[Any]=False ,**A : Tuple ): '''simple docstring''' UpperCAmelCase__ : Any = kwargs.pop("""add_prefix_space""" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A ) > 0 and not text[0].isspace()): UpperCAmelCase__ : Dict = """ """ + text return (text, kwargs) def __lowercase ( self : Dict ,A : Union[Dict[str, EncodedInput], BatchEncoding] ,A : Optional[int] = None ,A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD ,A : Optional[int] = None ,A : Optional[bool] = None ,): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = super()._pad( encoded_inputs=A ,max_length=A ,padding_strategy=A ,pad_to_multiple_of=A ,return_attention_mask=A ,) # Load from model defaults if return_attention_mask is None: UpperCAmelCase__ : str = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCAmelCase__ : Optional[int] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCAmelCase__ : Tuple = len(encoded_inputs["""global_attention_mask"""] ) != len(A ) if needs_to_be_padded: UpperCAmelCase__ : List[Any] = len(A ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCAmelCase__ : Tuple = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": UpperCAmelCase__ : Dict = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
194
1
"""simple docstring""" import requests def __magic_name__ ( __snake_case : str , __snake_case : str ) -> None: lowercase : Optional[int] = {"Content-Type": "application/json"} lowercase : Optional[int] = requests.post(__snake_case , json={"text": message_body} , headers=__snake_case ) if response.status_code != 200: lowercase : List[Any] = ( "Request to slack returned an error " f"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(__snake_case ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
361
"""simple docstring""" def __magic_name__ ( __snake_case : int , __snake_case : int ) -> Any: if b == 0: return 1 if (b % 2) == 0: return actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) else: return a * actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) def __magic_name__ ( __snake_case : int , __snake_case : int ) -> float: if b < 0: return 1 / actual_power(__snake_case , __snake_case ) return actual_power(__snake_case , __snake_case ) if __name__ == "__main__": print(power(-2, -3))
361
1
import numpy as np def a (_lowerCAmelCase , _lowerCAmelCase ): return np.where(vector > 0 , _lowerCAmelCase , (alpha * (np.exp(_lowerCAmelCase ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
712
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __magic_name__ ( __UpperCAmelCase): '''simple docstring''' def __init__( self: List[Any] , *_lowerCamelCase: Tuple , _lowerCamelCase: Optional[Any]=None , _lowerCamelCase: Dict=None , **_lowerCamelCase: Dict ): super().__init__(*_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = eval_examples SCREAMING_SNAKE_CASE_ = post_process_function def _A ( self: Tuple , _lowerCamelCase: Optional[Dataset] = None , _lowerCamelCase: List[str]=None , _lowerCamelCase: Optional[List[str]] = None , _lowerCamelCase: str = "eval" , **_lowerCamelCase: Union[str, Any] , ): SCREAMING_SNAKE_CASE_ = gen_kwargs.copy() SCREAMING_SNAKE_CASE_ = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) SCREAMING_SNAKE_CASE_ = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) SCREAMING_SNAKE_CASE_ = gen_kwargs SCREAMING_SNAKE_CASE_ = self.eval_dataset if eval_dataset is None else eval_dataset SCREAMING_SNAKE_CASE_ = self.get_eval_dataloader(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE_ = self.compute_metrics SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = time.time() SCREAMING_SNAKE_CASE_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE_ = eval_loop( _lowerCamelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE_ = compute_metrics SCREAMING_SNAKE_CASE_ = self.args.eval_batch_size * self.args.world_size if f"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default SCREAMING_SNAKE_CASE_ = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE_ = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"{metric_key_prefix}_" ): SCREAMING_SNAKE_CASE_ = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) else: SCREAMING_SNAKE_CASE_ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowerCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) SCREAMING_SNAKE_CASE_ = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCamelCase ) return metrics def _A ( self: List[str] , _lowerCamelCase: int , _lowerCamelCase: List[str] , _lowerCamelCase: Optional[int]=None , _lowerCamelCase: str = "test" , **_lowerCamelCase: str ): SCREAMING_SNAKE_CASE_ = gen_kwargs.copy() SCREAMING_SNAKE_CASE_ = self.get_test_dataloader(_lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE_ = self.compute_metrics SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = time.time() SCREAMING_SNAKE_CASE_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE_ = eval_loop( _lowerCamelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE_ = compute_metrics SCREAMING_SNAKE_CASE_ = self.args.eval_batch_size * self.args.world_size if f"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output SCREAMING_SNAKE_CASE_ = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , '''predict''' ) SCREAMING_SNAKE_CASE_ = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"{metric_key_prefix}_" ): SCREAMING_SNAKE_CASE_ = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCamelCase )
89
0
from manim import * class __A ( A_ ): def _snake_case (self ): lowerCamelCase__ : Any = Rectangle(height=0.5 , width=0.5 ) lowerCamelCase__ : Dict = Rectangle(height=0.25 , width=0.25 ) lowerCamelCase__ : Optional[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCamelCase__ : List[Any] = [mem.copy() for i in range(6 )] lowerCamelCase__ : Any = [mem.copy() for i in range(6 )] lowerCamelCase__ : Optional[int] = VGroup(*__magic_name__ ).arrange(__magic_name__ , buff=0 ) lowerCamelCase__ : Optional[Any] = VGroup(*__magic_name__ ).arrange(__magic_name__ , buff=0 ) lowerCamelCase__ : int = VGroup(__magic_name__ , __magic_name__ ).arrange(__magic_name__ , buff=0 ) lowerCamelCase__ : str = Text("""CPU""" , font_size=24 ) lowerCamelCase__ : List[str] = Group(__magic_name__ , __magic_name__ ).arrange(__magic_name__ , buff=0.5 , aligned_edge=__magic_name__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__magic_name__ ) lowerCamelCase__ : str = [mem.copy() for i in range(4 )] lowerCamelCase__ : int = VGroup(*__magic_name__ ).arrange(__magic_name__ , buff=0 ) lowerCamelCase__ : int = Text("""GPU""" , font_size=24 ) lowerCamelCase__ : Any = Group(__magic_name__ , __magic_name__ ).arrange(__magic_name__ , buff=0.5 , aligned_edge=__magic_name__ ) gpu.move_to([-1, -1, 0] ) self.add(__magic_name__ ) lowerCamelCase__ : List[Any] = [mem.copy() for i in range(6 )] lowerCamelCase__ : Optional[Any] = VGroup(*__magic_name__ ).arrange(__magic_name__ , buff=0 ) lowerCamelCase__ : int = Text("""Model""" , font_size=24 ) lowerCamelCase__ : Tuple = Group(__magic_name__ , __magic_name__ ).arrange(__magic_name__ , buff=0.5 , aligned_edge=__magic_name__ ) model.move_to([3, -1.0, 0] ) self.add(__magic_name__ ) lowerCamelCase__ : Optional[int] = [] lowerCamelCase__ : int = [] lowerCamelCase__ : Any = [] for i, rect in enumerate(__magic_name__ ): rect.set_stroke(__magic_name__ ) lowerCamelCase__ : Tuple = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__magic_name__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__magic_name__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=__magic_name__ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=__magic_name__ , buff=0.0 ) self.add(__magic_name__ ) model_cpu_arr.append(__magic_name__ ) self.add(*__magic_name__ , *__magic_name__ , *__magic_name__ ) lowerCamelCase__ : Tuple = [mem.copy() for i in range(6 )] lowerCamelCase__ : List[str] = VGroup(*__magic_name__ ).arrange(__magic_name__ , buff=0 ) lowerCamelCase__ : Dict = Text("""Loaded Checkpoint""" , font_size=24 ) lowerCamelCase__ : Any = Group(__magic_name__ , __magic_name__ ).arrange(__magic_name__ , buff=0.5 , aligned_edge=__magic_name__ ) checkpoint.move_to([3, 0.5, 0] ) self.add(__magic_name__ ) lowerCamelCase__ : int = [] lowerCamelCase__ : Union[str, Any] = [] for i, rect in enumerate(__magic_name__ ): lowerCamelCase__ : Optional[int] = fill.copy().set_fill(__magic_name__ , opacity=0.7 ) target.move_to(__magic_name__ ) ckpt_arr.append(__magic_name__ ) lowerCamelCase__ : Optional[Any] = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(__magic_name__ ) self.add(*__magic_name__ , *__magic_name__ ) lowerCamelCase__ : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase__ : Union[str, Any] = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__magic_name__ , __magic_name__ ) lowerCamelCase__ : List[str] = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(__magic_name__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(__magic_name__ ) lowerCamelCase__ : Union[str, Any] = MarkupText( f"Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device." , font_size=24 , ) step_a.move_to([2, 2, 0] ) lowerCamelCase__ : Tuple = [meta_mem.copy() for i in range(6 )] lowerCamelCase__ : List[str] = [meta_mem.copy() for i in range(6 )] lowerCamelCase__ : List[Any] = VGroup(*__magic_name__ ).arrange(__magic_name__ , buff=0 ) lowerCamelCase__ : List[str] = VGroup(*__magic_name__ ).arrange(__magic_name__ , buff=0 ) lowerCamelCase__ : int = VGroup(__magic_name__ , __magic_name__ ).arrange(__magic_name__ , buff=0 ) lowerCamelCase__ : Optional[int] = Text("""Disk""" , font_size=24 ) lowerCamelCase__ : Dict = Group(__magic_name__ , __magic_name__ ).arrange(__magic_name__ , buff=0.5 , aligned_edge=__magic_name__ ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(__magic_name__ , run_time=3 ) , Write(__magic_name__ , run_time=1 ) , Create(__magic_name__ , run_time=1 ) ) lowerCamelCase__ : Union[str, Any] = [] for i, rect in enumerate(__magic_name__ ): lowerCamelCase__ : Optional[Any] = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(__magic_name__ , run_time=1.5 ) ) self.play(*__magic_name__ ) self.play(FadeOut(__magic_name__ ) ) lowerCamelCase__ : List[Any] = MarkupText(f"Then, the checkpoint is removed from memory\nthrough garbage collection." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__magic_name__ , run_time=3 ) ) self.play( FadeOut(__magic_name__ , __magic_name__ , *__magic_name__ , *__magic_name__ ) , ) self.wait()
157
from collections.abc import Generator from math import sin def _A (UpperCamelCase : bytes ) ->bytes: '''simple docstring''' if len(UpperCamelCase ) != 32: raise ValueError("""Input must be of length 32""" ) lowerCamelCase__ : Tuple = B"""""" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _A (UpperCamelCase : int ) ->bytes: '''simple docstring''' if i < 0: raise ValueError("""Input must be non-negative""" ) lowerCamelCase__ : Union[str, Any] = format(UpperCamelCase , """08x""" )[-8:] lowerCamelCase__ : Optional[Any] = B"""""" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" ) return little_endian_hex def _A (UpperCamelCase : bytes ) ->bytes: '''simple docstring''' lowerCamelCase__ : Any = B"""""" for char in message: bit_string += format(UpperCamelCase , """08b""" ).encode("""utf-8""" ) lowerCamelCase__ : Tuple = format(len(UpperCamelCase ) , """064b""" ).encode("""utf-8""" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(UpperCamelCase ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def _A (UpperCamelCase : bytes ) ->Generator[list[int], None, None]: '''simple docstring''' if len(UpperCamelCase ) % 512 != 0: raise ValueError("""Input must have length that's a multiple of 512""" ) for pos in range(0 , len(UpperCamelCase ) , 512 ): lowerCamelCase__ : Optional[Any] = bit_string[pos : pos + 512] lowerCamelCase__ : Tuple = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def _A (UpperCamelCase : int ) ->int: '''simple docstring''' if i < 0: raise ValueError("""Input must be non-negative""" ) lowerCamelCase__ : str = format(UpperCamelCase , """032b""" ) lowerCamelCase__ : Union[str, Any] = """""" for c in i_str: new_str += "1" if c == "0" else "0" return int(UpperCamelCase , 2 ) def _A (UpperCamelCase : int , UpperCamelCase : int ) ->int: '''simple docstring''' return (a + b) % 2**32 def _A (UpperCamelCase : int , UpperCamelCase : int ) ->int: '''simple docstring''' if i < 0: raise ValueError("""Input must be non-negative""" ) if shift < 0: raise ValueError("""Shift must be non-negative""" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def _A (UpperCamelCase : bytes ) ->bytes: '''simple docstring''' lowerCamelCase__ : Optional[int] = preprocess(UpperCamelCase ) lowerCamelCase__ : int = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states lowerCamelCase__ : Optional[Any] = 0x6745_2301 lowerCamelCase__ : Optional[Any] = 0xEFCD_AB89 lowerCamelCase__ : str = 0x98BA_DCFE lowerCamelCase__ : Dict = 0x1032_5476 lowerCamelCase__ : str = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(UpperCamelCase ): lowerCamelCase__ : Any = aa lowerCamelCase__ : List[Any] = ba lowerCamelCase__ : Optional[int] = ca lowerCamelCase__ : Any = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f lowerCamelCase__ : Dict = d ^ (b & (c ^ d)) lowerCamelCase__ : Union[str, Any] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f lowerCamelCase__ : Union[str, Any] = c ^ (d & (b ^ c)) lowerCamelCase__ : Tuple = (5 * i + 1) % 16 elif i <= 47: lowerCamelCase__ : Dict = b ^ c ^ d lowerCamelCase__ : str = (3 * i + 5) % 16 else: lowerCamelCase__ : int = c ^ (b | not_aa(UpperCamelCase )) lowerCamelCase__ : Any = (7 * i) % 16 lowerCamelCase__ : Tuple = (f + a + added_consts[i] + block_words[g]) % 2**32 lowerCamelCase__ : str = d lowerCamelCase__ : str = c lowerCamelCase__ : Dict = b lowerCamelCase__ : Optional[Any] = sum_aa(UpperCamelCase , left_rotate_aa(UpperCamelCase , shift_amounts[i] ) ) # Add hashed chunk to running total lowerCamelCase__ : Optional[Any] = sum_aa(UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Optional[Any] = sum_aa(UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : int = sum_aa(UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : List[Any] = sum_aa(UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Optional[Any] = reformat_hex(UpperCamelCase ) + reformat_hex(UpperCamelCase ) + reformat_hex(UpperCamelCase ) + reformat_hex(UpperCamelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
157
1
def A ( __UpperCAmelCase ) -> int: '''simple docstring''' UpperCAmelCase_ = abs(__UpperCAmelCase ) UpperCAmelCase_ = 0 while n > 0: res += n % 10 n //= 10 return res def A ( __UpperCAmelCase ) -> int: '''simple docstring''' UpperCAmelCase_ = abs(__UpperCAmelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def A ( __UpperCAmelCase ) -> int: '''simple docstring''' return sum(int(__UpperCAmelCase ) for c in str(abs(__UpperCAmelCase ) ) ) def A ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(__UpperCAmelCase , __UpperCAmelCase ) -> None: UpperCAmelCase_ = f"{func.__name__}({value})" UpperCAmelCase_ = timeit(f"__main__.{call}" , setup='''import __main__''' ) print(f"{call:56} = {func(__UpperCAmelCase )} -- {timing:.4f} seconds" ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__UpperCAmelCase , __UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
561
def A ( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' return x if y == 0 else greatest_common_divisor(__UpperCAmelCase , x % y ) def A ( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' return (x * y) // greatest_common_divisor(__UpperCAmelCase , __UpperCAmelCase ) def A ( __UpperCAmelCase = 20 ) -> int: '''simple docstring''' UpperCAmelCase_ = 1 for i in range(1 , n + 1 ): UpperCAmelCase_ = lcm(__UpperCAmelCase , __UpperCAmelCase ) return g if __name__ == "__main__": print(f"{solution() = }")
561
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
666
from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: tuple[int, int] , lowerCAmelCase_: int ): snake_case_ ,snake_case_ : Dict = position snake_case_ : int = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] snake_case_ : Union[str, Any] = [] for position in positions: snake_case_ ,snake_case_ : Union[str, Any] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(lowerCAmelCase_ ) return permissible_positions def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: list[list[int]] ): return not any(elem == 0 for row in board for elem in row ) def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: list[list[int]] , lowerCAmelCase_: tuple[int, int] , lowerCAmelCase_: int ): if is_complete(lowerCAmelCase_ ): return True for position in get_valid_pos(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): snake_case_ ,snake_case_ : Dict = position if board[y][x] == 0: snake_case_ : List[str] = curr + 1 if open_knight_tour_helper(lowerCAmelCase_ , lowerCAmelCase_ , curr + 1 ): return True snake_case_ : Dict = 0 return False def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: int ): snake_case_ : Any = [[0 for i in range(lowerCAmelCase_ )] for j in range(lowerCAmelCase_ )] for i in range(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ ): snake_case_ : Optional[Any] = 1 if open_knight_tour_helper(lowerCAmelCase_ , (i, j) , 1 ): return board snake_case_ : Dict = 0 snake_case_ : str = f"Open Kight Tour cannot be performed on a board of size {n}" raise ValueError(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
666
1
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__: List[str] = logging.get_logger(__name__) UpperCamelCase__: Any = { "b0": efficientnet.EfficientNetBa, "b1": efficientnet.EfficientNetBa, "b2": efficientnet.EfficientNetBa, "b3": efficientnet.EfficientNetBa, "b4": efficientnet.EfficientNetBa, "b5": efficientnet.EfficientNetBa, "b6": efficientnet.EfficientNetBa, "b7": efficientnet.EfficientNetBa, } UpperCamelCase__: List[Any] = { "b0": { "hidden_dim": 1280, "width_coef": 1.0, "depth_coef": 1.0, "image_size": 224, "dropout_rate": 0.2, "dw_padding": [], }, "b1": { "hidden_dim": 1280, "width_coef": 1.0, "depth_coef": 1.1, "image_size": 240, "dropout_rate": 0.2, "dw_padding": [16], }, "b2": { "hidden_dim": 1408, "width_coef": 1.1, "depth_coef": 1.2, "image_size": 260, "dropout_rate": 0.3, "dw_padding": [5, 8, 16], }, "b3": { "hidden_dim": 1536, "width_coef": 1.2, "depth_coef": 1.4, "image_size": 300, "dropout_rate": 0.3, "dw_padding": [5, 18], }, "b4": { "hidden_dim": 1792, "width_coef": 1.4, "depth_coef": 1.8, "image_size": 380, "dropout_rate": 0.4, "dw_padding": [6], }, "b5": { "hidden_dim": 2048, "width_coef": 1.6, "depth_coef": 2.2, "image_size": 456, "dropout_rate": 0.4, "dw_padding": [13, 27], }, "b6": { "hidden_dim": 2304, "width_coef": 1.8, "depth_coef": 2.6, "image_size": 528, "dropout_rate": 0.5, "dw_padding": [31], }, "b7": { "hidden_dim": 2560, "width_coef": 2.0, "depth_coef": 3.1, "image_size": 600, "dropout_rate": 0.5, "dw_padding": [18], }, } def snake_case_ ( _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = EfficientNetConfig() UpperCAmelCase : str = CONFIG_MAP[model_name]['''hidden_dim'''] UpperCAmelCase : Union[str, Any] = CONFIG_MAP[model_name]['''width_coef'''] UpperCAmelCase : Any = CONFIG_MAP[model_name]['''depth_coef'''] UpperCAmelCase : Optional[Any] = CONFIG_MAP[model_name]['''image_size'''] UpperCAmelCase : Tuple = CONFIG_MAP[model_name]['''dropout_rate'''] UpperCAmelCase : Union[str, Any] = CONFIG_MAP[model_name]['''dw_padding'''] UpperCAmelCase : Tuple = '''huggingface/label-files''' UpperCAmelCase : List[str] = '''imagenet-1k-id2label.json''' UpperCAmelCase : int = 1000 UpperCAmelCase : Dict = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase : List[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : List[Any] = idalabel UpperCAmelCase : Any = {v: k for k, v in idalabel.items()} return config def snake_case_ ( ) -> Any: UpperCAmelCase : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase : Tuple = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im def snake_case_ ( _lowerCAmelCase : List[Any] ) -> Optional[int]: UpperCAmelCase : List[Any] = CONFIG_MAP[model_name]['''image_size'''] UpperCAmelCase : Any = EfficientNetImageProcessor( size={'''height''': size, '''width''': size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=_lowerCAmelCase , ) return preprocessor def snake_case_ ( _lowerCAmelCase : Optional[Any] ) -> Optional[int]: UpperCAmelCase : Optional[int] = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )] UpperCAmelCase : List[str] = sorted(set(_lowerCAmelCase ) ) UpperCAmelCase : List[str] = len(_lowerCAmelCase ) UpperCAmelCase : List[str] = {b: str(_lowerCAmelCase ) for b, i in zip(_lowerCAmelCase , range(_lowerCAmelCase ) )} UpperCAmelCase : Any = [] rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') ) rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') ) rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') ) rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') ) rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') ) for b in block_names: UpperCAmelCase : Optional[Any] = block_name_mapping[b] rename_keys.append((f"""block{b}_expand_conv/kernel:0""", f"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((f"""block{b}_expand_bn/gamma:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((f"""block{b}_expand_bn/beta:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (f"""block{b}_expand_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (f"""block{b}_expand_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (f"""block{b}_dwconv/depthwise_kernel:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((f"""block{b}_bn/gamma:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((f"""block{b}_bn/beta:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (f"""block{b}_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (f"""block{b}_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((f"""block{b}_se_reduce/kernel:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((f"""block{b}_se_reduce/bias:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((f"""block{b}_se_expand/kernel:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((f"""block{b}_se_expand/bias:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (f"""block{b}_project_conv/kernel:0""", f"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((f"""block{b}_project_bn/gamma:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((f"""block{b}_project_bn/beta:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (f"""block{b}_project_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (f"""block{b}_project_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') ) rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') ) rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') ) rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') ) rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') ) UpperCAmelCase : Dict = {} for item in rename_keys: if item[0] in original_param_names: UpperCAmelCase : Union[str, Any] = '''efficientnet.''' + item[1] UpperCAmelCase : int = '''classifier.weight''' UpperCAmelCase : List[str] = '''classifier.bias''' return key_mapping def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ) -> Optional[Any]: for key, value in tf_params.items(): if "normalization" in key: continue UpperCAmelCase : List[Any] = key_mapping[key] if "_conv" in key and "kernel" in key: UpperCAmelCase : Any = torch.from_numpy(_lowerCAmelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: UpperCAmelCase : Optional[Any] = torch.from_numpy(_lowerCAmelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: UpperCAmelCase : Tuple = torch.from_numpy(np.transpose(_lowerCAmelCase ) ) else: UpperCAmelCase : Union[str, Any] = torch.from_numpy(_lowerCAmelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_lowerCAmelCase ) @torch.no_grad() def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict ) -> int: UpperCAmelCase : Union[str, Any] = model_classes[model_name]( include_top=_lowerCAmelCase , weights='''imagenet''' , input_tensor=_lowerCAmelCase , input_shape=_lowerCAmelCase , pooling=_lowerCAmelCase , classes=1000 , classifier_activation='''softmax''' , ) UpperCAmelCase : Tuple = original_model.trainable_variables UpperCAmelCase : int = original_model.non_trainable_variables UpperCAmelCase : List[Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: UpperCAmelCase : Union[str, Any] = param.numpy() UpperCAmelCase : Tuple = list(tf_params.keys() ) # Load HuggingFace model UpperCAmelCase : str = get_efficientnet_config(_lowerCAmelCase ) UpperCAmelCase : Tuple = EfficientNetForImageClassification(_lowerCAmelCase ).eval() UpperCAmelCase : List[str] = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('''Converting parameters...''' ) UpperCAmelCase : List[Any] = rename_keys(_lowerCAmelCase ) replace_params(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Initialize preprocessor and preprocess input image UpperCAmelCase : List[Any] = convert_image_processor(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = preprocessor(images=prepare_img() , return_tensors='''pt''' ) # HF model inference hf_model.eval() with torch.no_grad(): UpperCAmelCase : List[str] = hf_model(**_lowerCAmelCase ) UpperCAmelCase : List[Any] = outputs.logits.detach().numpy() # Original model inference UpperCAmelCase : Union[str, Any] = False UpperCAmelCase : List[Any] = CONFIG_MAP[model_name]['''image_size'''] UpperCAmelCase : Any = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) UpperCAmelCase : str = image.img_to_array(_lowerCAmelCase ) UpperCAmelCase : List[Any] = np.expand_dims(_lowerCAmelCase , axis=0 ) UpperCAmelCase : Union[str, Any] = original_model.predict(_lowerCAmelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ), "The predicted logits are not the same." print('''Model outputs match!''' ) if save_model: # Create folder to save model if not os.path.isdir(_lowerCAmelCase ): os.mkdir(_lowerCAmelCase ) # Save converted model and image processor hf_model.save_pretrained(_lowerCAmelCase ) preprocessor.save_pretrained(_lowerCAmelCase ) if push_to_hub: # Push model and image processor to hub print(f"""Pushing converted {model_name} to the hub...""" ) UpperCAmelCase : List[Any] = f"""efficientnet-{model_name}""" preprocessor.push_to_hub(_lowerCAmelCase ) hf_model.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase__: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="b0", type=str, help="Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].", ) parser.add_argument( "--pytorch_dump_folder_path", default="hf_model", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--save_model", action="store_true", help="Save model to local") parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") UpperCamelCase__: Dict = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
710
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def snake_case_ ( ) -> Optional[int]: UpperCAmelCase : Any = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=_lowerCAmelCase , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=_lowerCAmelCase , default=5 ) parser.add_argument('''--batch_size''' , type=_lowerCAmelCase , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=_lowerCAmelCase , default=1 ) parser.add_argument('''--freeze''' , type=_lowerCAmelCase , default=_lowerCAmelCase ) parser.add_argument('''--learning_rate''' , type=_lowerCAmelCase , default=5e-4 ) parser.add_argument('''--seed''' , type=_lowerCAmelCase , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=_lowerCAmelCase , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=_lowerCAmelCase , default=10 ) parser.add_argument('''--weight_decay''' , type=_lowerCAmelCase , default=0.0_1 ) parser.add_argument('''--output_dir''' , type=_lowerCAmelCase , default='''./results''' ) return parser.parse_args() UpperCamelCase__: Any = load("accuracy") def snake_case_ ( _lowerCAmelCase : int ) -> int: UpperCAmelCase , UpperCAmelCase : Dict = eval_pred UpperCAmelCase : Optional[Any] = np.argmax(_lowerCAmelCase , axis=1 ) return metric.compute(predictions=_lowerCAmelCase , references=_lowerCAmelCase ) class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def __init__( self : List[Any] , __snake_case : Optional[int] ) -> None: super().__init__() UpperCAmelCase : Dict = trainer def A ( self : str , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Any , **__snake_case : List[Any] ) -> Dict: if control.should_evaluate: UpperCAmelCase : Optional[int] = deepcopy(__snake_case ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def snake_case_ ( ) -> List[Any]: UpperCAmelCase : Tuple = get_args() set_seed(args.seed ) UpperCAmelCase : List[str] = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) UpperCAmelCase : Dict = dataset.train_test_split(test_size=0.2 ) UpperCAmelCase : Dict = train_test['''test'''].train_test_split(test_size=0.5 ) UpperCAmelCase : List[Any] = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained(args.model_ckpt ) UpperCAmelCase : Optional[int] = tokenizer.eos_token UpperCAmelCase : Optional[int] = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) UpperCAmelCase : List[Any] = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): UpperCAmelCase : Any = False UpperCAmelCase : Optional[Any] = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(_lowerCAmelCase : Any ): UpperCAmelCase : List[Any] = tokenizer(example['''src'''] , truncation=_lowerCAmelCase , max_length=1024 ) UpperCAmelCase : Optional[Any] = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } UpperCAmelCase : List[str] = train_test_validation.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=train_test_validation['''train'''].column_names , ) UpperCAmelCase : int = DataCollatorWithPadding(tokenizer=_lowerCAmelCase ) UpperCAmelCase : Tuple = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.0_1 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) UpperCAmelCase : int = Trainer( model=_lowerCAmelCase , args=_lowerCAmelCase , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=_lowerCAmelCase , data_collator=_lowerCAmelCase , compute_metrics=_lowerCAmelCase , ) print('''Training...''' ) trainer.add_callback(CustomCallback(_lowerCAmelCase ) ) trainer.train() if __name__ == "__main__": main()
528
0
import itertools import string from collections.abc import Generator, Iterable def SCREAMING_SNAKE_CASE__ ( _lowercase : Iterable[str] , _lowercase : int ) -> Generator[tuple[str, ...], None, None]: '''simple docstring''' lowercase__ : Union[str, Any] = iter(_UpperCamelCase ) while True: lowercase__ : str = tuple(itertools.islice(_UpperCamelCase , _UpperCamelCase ) ) if not chunk: return yield chunk def SCREAMING_SNAKE_CASE__ ( _lowercase : str ) -> str: '''simple docstring''' lowercase__ : Tuple = ''.join([c.upper() for c in dirty if c in string.ascii_letters] ) lowercase__ : Union[str, Any] = '' if len(_UpperCamelCase ) < 2: return dirty for i in range(len(_UpperCamelCase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(_UpperCamelCase ) & 1: clean += "X" return clean def SCREAMING_SNAKE_CASE__ ( _lowercase : str ) -> list[str]: '''simple docstring''' lowercase__ : List[Any] = 'ABCDEFGHIKLMNOPQRSTUVWXYZ' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler lowercase__ : Any = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(_UpperCamelCase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(_UpperCamelCase ) return table def SCREAMING_SNAKE_CASE__ ( _lowercase : str , _lowercase : str ) -> str: '''simple docstring''' lowercase__ : Dict = generate_table(_UpperCamelCase ) lowercase__ : Optional[int] = prepare_input(_UpperCamelCase ) lowercase__ : Any = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_UpperCamelCase , 2 ): lowercase__ , lowercase__ : Dict = divmod(table.index(_UpperCamelCase ) , 5 ) lowercase__ , lowercase__ : Optional[int] = divmod(table.index(_UpperCamelCase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def SCREAMING_SNAKE_CASE__ ( _lowercase : str , _lowercase : str ) -> str: '''simple docstring''' lowercase__ : Tuple = generate_table(_UpperCamelCase ) lowercase__ : Optional[int] = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_UpperCamelCase , 2 ): lowercase__ , lowercase__ : str = divmod(table.index(_UpperCamelCase ) , 5 ) lowercase__ , lowercase__ : Dict = divmod(table.index(_UpperCamelCase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
266
import baseaa def __lowerCAmelCase ( _UpperCamelCase : str ) -> bytes: '''simple docstring''' return baseaa.aaaencode(string.encode('utf-8' ) ) def __lowerCAmelCase ( _UpperCamelCase : bytes ) -> str: '''simple docstring''' return baseaa.aaadecode(_UpperCamelCase ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
439
0
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _UpperCAmelCase ( unittest.TestCase , UpperCamelCase_): def lowerCamelCase__ ( self ): _snake_case : int = load_tool("text-classification" ) self.tool.setup() _snake_case : Union[str, Any] = load_tool("text-classification" , remote=snake_case_ ) def lowerCamelCase__ ( self ): _snake_case : int = self.tool("That\'s quite cool" , ["positive", "negative"] ) self.assertEqual(snake_case_ , "positive" ) def lowerCamelCase__ ( self ): _snake_case : int = self.remote_tool("That\'s quite cool" , ["positive", "negative"] ) self.assertEqual(snake_case_ , "positive" ) def lowerCamelCase__ ( self ): _snake_case : str = self.tool(text="That\'s quite cool" , labels=["positive", "negative"] ) self.assertEqual(snake_case_ , "positive" ) def lowerCamelCase__ ( self ): _snake_case : str = self.remote_tool(text="That\'s quite cool" , labels=["positive", "negative"] ) self.assertEqual(snake_case_ , "positive" )
718
"""simple docstring""" from __future__ import annotations class _UpperCAmelCase : def __init__( self , snake_case_ , snake_case_ ): _snake_case , _snake_case : Dict = text, pattern _snake_case , _snake_case : int = len(snake_case_ ), len(snake_case_ ) def lowerCamelCase__ ( self , snake_case_ ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def lowerCamelCase__ ( self , snake_case_ ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def lowerCamelCase__ ( self ): # searches pattern in text and returns index positions _snake_case : List[str] = [] for i in range(self.textLen - self.patLen + 1 ): _snake_case : Union[str, Any] = self.mismatch_in_text(snake_case_ ) if mismatch_index == -1: positions.append(snake_case_ ) else: _snake_case : Tuple = self.match_in_pattern(self.text[mismatch_index] ) _snake_case : Tuple = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _a : List[Any] = """ABAABA""" _a : str = """AB""" _a : List[Any] = BoyerMooreSearch(text, pattern) _a : Any = bms.bad_character_heuristic() if len(positions) == 0: print("""No match found""") else: print("""Pattern found in following positions: """) print(positions)
87
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ : Any = logging.get_logger(__name__) lowercase__ : str = { '''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''', '''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''', '''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''', '''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''', '''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''', '''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''', '''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''', '''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''', '''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''xmod''' def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=2 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=("en_XX",) , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase) __A : Optional[int] = vocab_size __A : List[Any] = hidden_size __A : Tuple = num_hidden_layers __A : List[Any] = num_attention_heads __A : Optional[Any] = hidden_act __A : Optional[int] = intermediate_size __A : Dict = hidden_dropout_prob __A : Union[str, Any] = attention_probs_dropout_prob __A : List[Any] = max_position_embeddings __A : Optional[int] = type_vocab_size __A : int = initializer_range __A : Optional[Any] = layer_norm_eps __A : Any = position_embedding_type __A : Tuple = use_cache __A : Dict = classifier_dropout __A : Union[str, Any] = pre_norm __A : str = adapter_reduction_factor __A : Tuple = adapter_layer_norm __A : str = adapter_reuse_layer_norm __A : Dict = ln_before_adapter __A : str = list(_UpperCAmelCase) __A : Optional[int] = default_language class SCREAMING_SNAKE_CASE (a__ ): @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' if self.task == "multiple-choice": __A : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __A : List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
8
import numpy as np _SCREAMING_SNAKE_CASE : Union[str, Any] = [ ['''a''', '''b''', '''c''', '''d''', '''e'''], ['''f''', '''g''', '''h''', '''i''', '''k'''], ['''l''', '''m''', '''n''', '''o''', '''p'''], ['''q''', '''r''', '''s''', '''t''', '''u'''], ['''v''', '''w''', '''x''', '''y''', '''z'''], ] class UpperCAmelCase__ : """simple docstring""" def __init__( self : int ) -> None: SCREAMING_SNAKE_CASE__ = np.array(__lowerCamelCase ) def lowercase_ ( self : List[str] , __lowerCamelCase : str ) -> np.ndarray: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = np.where(letter == self.SQUARE ) SCREAMING_SNAKE_CASE__ = np.concatenate([indexa + 1, indexa + 1] ) return indexes def lowercase_ ( self : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : int ) -> str: SCREAMING_SNAKE_CASE__ = self.SQUARE[indexa - 1, indexa - 1] return letter def lowercase_ ( self : List[Any] , __lowerCamelCase : str ) -> str: SCREAMING_SNAKE_CASE__ = message.lower() SCREAMING_SNAKE_CASE__ = message.replace(''' ''' , '''''' ) SCREAMING_SNAKE_CASE__ = message.replace('''j''' , '''i''' ) SCREAMING_SNAKE_CASE__ = np.empty((2, len(__lowerCamelCase )) ) for letter_index in range(len(__lowerCamelCase ) ): SCREAMING_SNAKE_CASE__ = self.letter_to_numbers(message[letter_index] ) SCREAMING_SNAKE_CASE__ = numbers[0] SCREAMING_SNAKE_CASE__ = numbers[1] SCREAMING_SNAKE_CASE__ = first_step.reshape(2 * len(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = '''''' for numbers_index in range(len(__lowerCamelCase ) ): SCREAMING_SNAKE_CASE__ = int(second_step[numbers_index * 2] ) SCREAMING_SNAKE_CASE__ = int(second_step[(numbers_index * 2) + 1] ) SCREAMING_SNAKE_CASE__ = self.numbers_to_letter(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = encoded_message + letter return encoded_message def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : str ) -> str: SCREAMING_SNAKE_CASE__ = message.lower() message.replace(''' ''' , '''''' ) SCREAMING_SNAKE_CASE__ = np.empty(2 * len(__lowerCamelCase ) ) for letter_index in range(len(__lowerCamelCase ) ): SCREAMING_SNAKE_CASE__ = self.letter_to_numbers(message[letter_index] ) SCREAMING_SNAKE_CASE__ = numbers[0] SCREAMING_SNAKE_CASE__ = numbers[1] SCREAMING_SNAKE_CASE__ = first_step.reshape((2, len(__lowerCamelCase )) ) SCREAMING_SNAKE_CASE__ = '''''' for numbers_index in range(len(__lowerCamelCase ) ): SCREAMING_SNAKE_CASE__ = int(second_step[0, numbers_index] ) SCREAMING_SNAKE_CASE__ = int(second_step[1, numbers_index] ) SCREAMING_SNAKE_CASE__ = self.numbers_to_letter(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = decoded_message + letter return decoded_message
493
0
def a__ ( _UpperCamelCase : int = 10**9 ): __lowerCamelCase = 1 __lowerCamelCase = 2 __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __lowerCamelCase = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"{solution() = }")
622
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=[1, 1, 2] , __UpperCAmelCase=1 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=8 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=3 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , __UpperCAmelCase=False , ): '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = block_sizes __lowerCamelCase = num_decoder_layers __lowerCamelCase = d_model __lowerCamelCase = n_head __lowerCamelCase = d_head __lowerCamelCase = d_inner __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = 2 __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = scope __lowerCamelCase = initializer_std # Used in the tests to check the size of the first attention layer __lowerCamelCase = n_head # Used in the tests to check the size of the first hidden state __lowerCamelCase = self.d_model # Used in the tests to check the number of output hidden states/attentions __lowerCamelCase = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: __lowerCamelCase = self.num_hidden_layers + 2 def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = TFFunnelModel(config=__UpperCAmelCase ) __lowerCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowerCamelCase = model(__UpperCAmelCase ) __lowerCamelCase = [input_ids, input_mask] __lowerCamelCase = model(__UpperCAmelCase ) __lowerCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __lowerCamelCase = False __lowerCamelCase = TFFunnelModel(config=__UpperCAmelCase ) __lowerCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __lowerCamelCase = False __lowerCamelCase = TFFunnelModel(config=__UpperCAmelCase ) __lowerCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = TFFunnelBaseModel(config=__UpperCAmelCase ) __lowerCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowerCamelCase = model(__UpperCAmelCase ) __lowerCamelCase = [input_ids, input_mask] __lowerCamelCase = model(__UpperCAmelCase ) __lowerCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) __lowerCamelCase = False __lowerCamelCase = TFFunnelBaseModel(config=__UpperCAmelCase ) __lowerCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) __lowerCamelCase = False __lowerCamelCase = TFFunnelBaseModel(config=__UpperCAmelCase ) __lowerCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = TFFunnelForPreTraining(config=__UpperCAmelCase ) __lowerCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowerCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = TFFunnelForMaskedLM(config=__UpperCAmelCase ) __lowerCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowerCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = TFFunnelForSequenceClassification(config=__UpperCAmelCase ) __lowerCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowerCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = self.num_choices __lowerCamelCase = TFFunnelForMultipleChoice(config=__UpperCAmelCase ) __lowerCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowerCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowerCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowerCamelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } __lowerCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = TFFunnelForTokenClassification(config=__UpperCAmelCase ) __lowerCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowerCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = TFFunnelForQuestionAnswering(config=__UpperCAmelCase ) __lowerCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowerCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) , ) = config_and_inputs __lowerCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __lowerCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase__ = ( { """feature-extraction""": (TFFunnelBaseModel, TFFunnelModel), """fill-mask""": TFFunnelForMaskedLM, """question-answering""": TFFunnelForQuestionAnswering, """text-classification""": TFFunnelForSequenceClassification, """token-classification""": TFFunnelForTokenClassification, """zero-shot""": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = TFFunnelModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) @require_tf class __lowerCAmelCase ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) lowerCAmelCase__ = False lowerCAmelCase__ = False def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = TFFunnelModelTester(self , base=__UpperCAmelCase ) __lowerCamelCase = ConfigTester(self , config_class=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase )
622
1
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = TypeVar("DatasetType", Dataset, IterableDataset) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "first_exhausted" , ) -> DatasetType: from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("Unable to interleave an empty list of datasets." ) for i, dataset in enumerate(__SCREAMING_SNAKE_CASE ): if not isinstance(__SCREAMING_SNAKE_CASE , (Dataset, IterableDataset) ): if isinstance(__SCREAMING_SNAKE_CASE , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' "is an empty dataset dictionary." ) raise ValueError( f'''Dataset at position {i} has at least one split: {list(__SCREAMING_SNAKE_CASE )}\n''' f'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(__SCREAMING_SNAKE_CASE ) )}\']''' ) raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__SCREAMING_SNAKE_CASE ).__name__}.''' ) if i == 0: UpperCAmelCase_ , UpperCAmelCase_ = ( (Dataset, IterableDataset) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else (IterableDataset, Dataset) ) elif not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise ValueError( f'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'''{stopping_strategy} is not supported. Please enter a valid stopping_strategy.''' ) if dataset_type is Dataset: return _interleave_map_style_datasets( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , info=__SCREAMING_SNAKE_CASE , split=__SCREAMING_SNAKE_CASE , stopping_strategy=__SCREAMING_SNAKE_CASE ) else: return _interleave_iterable_datasets( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , info=__SCREAMING_SNAKE_CASE , split=__SCREAMING_SNAKE_CASE , stopping_strategy=__SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 0 , ) -> DatasetType: if not dsets: raise ValueError("Unable to concatenate an empty list of datasets." ) for i, dataset in enumerate(__SCREAMING_SNAKE_CASE ): if not isinstance(__SCREAMING_SNAKE_CASE , (Dataset, IterableDataset) ): if isinstance(__SCREAMING_SNAKE_CASE , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' "is an empty dataset dictionary." ) raise ValueError( f'''Dataset at position {i} has at least one split: {list(__SCREAMING_SNAKE_CASE )}\n''' f'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(__SCREAMING_SNAKE_CASE ) )}\']''' ) raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__SCREAMING_SNAKE_CASE ).__name__}.''' ) if i == 0: UpperCAmelCase_ , UpperCAmelCase_ = ( (Dataset, IterableDataset) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else (IterableDataset, Dataset) ) elif not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise ValueError( f'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(__SCREAMING_SNAKE_CASE , info=__SCREAMING_SNAKE_CASE , split=__SCREAMING_SNAKE_CASE , axis=__SCREAMING_SNAKE_CASE ) else: return _concatenate_iterable_datasets(__SCREAMING_SNAKE_CASE , info=__SCREAMING_SNAKE_CASE , split=__SCREAMING_SNAKE_CASE , axis=__SCREAMING_SNAKE_CASE )
579
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE: Optional[int] = { '''configuration_roformer''': ['''ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoFormerConfig''', '''RoFormerOnnxConfig'''], '''tokenization_roformer''': ['''RoFormerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE: Tuple = ['''RoFormerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE: Any = [ '''ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoFormerForCausalLM''', '''RoFormerForMaskedLM''', '''RoFormerForMultipleChoice''', '''RoFormerForQuestionAnswering''', '''RoFormerForSequenceClassification''', '''RoFormerForTokenClassification''', '''RoFormerLayer''', '''RoFormerModel''', '''RoFormerPreTrainedModel''', '''load_tf_weights_in_roformer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE: Dict = [ '''TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRoFormerForCausalLM''', '''TFRoFormerForMaskedLM''', '''TFRoFormerForMultipleChoice''', '''TFRoFormerForQuestionAnswering''', '''TFRoFormerForSequenceClassification''', '''TFRoFormerForTokenClassification''', '''TFRoFormerLayer''', '''TFRoFormerModel''', '''TFRoFormerPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE: str = [ '''FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxRoFormerForMaskedLM''', '''FlaxRoFormerForMultipleChoice''', '''FlaxRoFormerForQuestionAnswering''', '''FlaxRoFormerForSequenceClassification''', '''FlaxRoFormerForTokenClassification''', '''FlaxRoFormerModel''', '''FlaxRoFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE: Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
360
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a : Dict = logging.get_logger(__name__) class a_ ( __lowercase ): a : Union[str, Any] = 'timm_backbone' def __init__( self : int , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : int=3 , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : str=True , __UpperCamelCase : List[str]=None , **__UpperCamelCase : Union[str, Any] , ) ->List[str]: '''simple docstring''' super().__init__(**_A ) _UpperCAmelCase = backbone _UpperCAmelCase = num_channels _UpperCAmelCase = features_only _UpperCAmelCase = use_pretrained_backbone _UpperCAmelCase = True _UpperCAmelCase = out_indices if out_indices is not None else (-1,)
704
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class a_ ( nn.Module ): def __init__( self : List[str] , __UpperCamelCase : int = 16 , __UpperCamelCase : int = 88 , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : int = 1 , __UpperCamelCase : float = 0.0 , __UpperCamelCase : int = 32 , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : str = "geglu" , __UpperCamelCase : Optional[int] = None , ) ->Dict: '''simple docstring''' super().__init__() _UpperCAmelCase = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__UpperCamelCase , attention_head_dim=__UpperCamelCase , in_channels=__UpperCamelCase , num_layers=__UpperCamelCase , dropout=__UpperCamelCase , norm_num_groups=__UpperCamelCase , cross_attention_dim=__UpperCamelCase , attention_bias=__UpperCamelCase , sample_size=__UpperCamelCase , num_vector_embeds=__UpperCamelCase , activation_fn=__UpperCamelCase , num_embeds_ada_norm=__UpperCamelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _UpperCAmelCase = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _UpperCAmelCase = [77, 2_57] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _UpperCAmelCase = [1, 0] def _snake_case ( self : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : bool = True , ) ->Tuple: '''simple docstring''' _UpperCAmelCase = hidden_states _UpperCAmelCase = [] _UpperCAmelCase = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _UpperCAmelCase = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _UpperCAmelCase = self.transformer_index_for_condition[i] _UpperCAmelCase = self.transformers[transformer_index]( __UpperCamelCase , encoder_hidden_states=__UpperCamelCase , timestep=__UpperCamelCase , cross_attention_kwargs=__UpperCamelCase , return_dict=__UpperCamelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _UpperCAmelCase = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _UpperCAmelCase = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__UpperCamelCase )
19
0
"""simple docstring""" class _UpperCAmelCase : def __init__( self : Any , _lowercase : int , _lowercase : Optional[Any]=None , _lowercase : Optional[Any]=None ): __UpperCAmelCase = data __UpperCAmelCase = previous __UpperCAmelCase = next_node def __str__( self : Optional[int] ): return F'''{self.data}''' def a ( self : Tuple ): return self.data def a ( self : Any ): return self.next def a ( self : Any ): return self.previous class _UpperCAmelCase : def __init__( self : int , _lowercase : List[Any] ): __UpperCAmelCase = head def __iter__( self : str ): return self def a ( self : Optional[int] ): if not self.current: raise StopIteration else: __UpperCAmelCase = self.current.get_data() __UpperCAmelCase = self.current.get_next() return value class _UpperCAmelCase : def __init__( self : int ): __UpperCAmelCase = None # First node in list __UpperCAmelCase = None # Last node in list def __str__( self : List[str] ): __UpperCAmelCase = self.head __UpperCAmelCase = [] while current is not None: nodes.append(current.get_data() ) __UpperCAmelCase = current.get_next() return " ".join(str(_lowercase ) for node in nodes ) def __contains__( self : int , _lowercase : int ): __UpperCAmelCase = self.head while current: if current.get_data() == value: return True __UpperCAmelCase = current.get_next() return False def __iter__( self : Union[str, Any] ): return LinkedListIterator(self.head ) def a ( self : Optional[Any] ): if self.head: return self.head.get_data() return None def a ( self : Union[str, Any] ): if self.tail: return self.tail.get_data() return None def a ( self : Optional[int] , _lowercase : Node ): if self.head is None: __UpperCAmelCase = node __UpperCAmelCase = node else: self.insert_before_node(self.head , _lowercase ) def a ( self : Optional[Any] , _lowercase : Node ): if self.head is None: self.set_head(_lowercase ) else: self.insert_after_node(self.tail , _lowercase ) def a ( self : Optional[int] , _lowercase : int ): __UpperCAmelCase = Node(_lowercase ) if self.head is None: self.set_head(_lowercase ) else: self.set_tail(_lowercase ) def a ( self : Optional[Any] , _lowercase : Node , _lowercase : Node ): __UpperCAmelCase = node __UpperCAmelCase = node.previous if node.get_previous() is None: __UpperCAmelCase = node_to_insert else: __UpperCAmelCase = node_to_insert __UpperCAmelCase = node_to_insert def a ( self : Optional[Any] , _lowercase : Node , _lowercase : Node ): __UpperCAmelCase = node __UpperCAmelCase = node.next if node.get_next() is None: __UpperCAmelCase = node_to_insert else: __UpperCAmelCase = node_to_insert __UpperCAmelCase = node_to_insert def a ( self : str , _lowercase : int , _lowercase : int ): __UpperCAmelCase = 1 __UpperCAmelCase = Node(_lowercase ) __UpperCAmelCase = self.head while node: if current_position == position: self.insert_before_node(_lowercase , _lowercase ) return current_position += 1 __UpperCAmelCase = node.next self.insert_after_node(self.tail , _lowercase ) def a ( self : Optional[int] , _lowercase : int ): __UpperCAmelCase = self.head while node: if node.get_data() == item: return node __UpperCAmelCase = node.get_next() raise Exception('''Node not found''' ) def a ( self : Any , _lowercase : str ): if (node := self.get_node(_lowercase )) is not None: if node == self.head: __UpperCAmelCase = self.head.get_next() if node == self.tail: __UpperCAmelCase = self.tail.get_previous() self.remove_node_pointers(_lowercase ) @staticmethod def a ( _lowercase : Node ): if node.get_next(): __UpperCAmelCase = node.previous if node.get_previous(): __UpperCAmelCase = node.next __UpperCAmelCase = None __UpperCAmelCase = None def a ( self : str ): return self.head is None def lowercase__ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
49
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class A__ ( unittest.TestCase ): UpperCAmelCase = ViTImageProcessor if is_vision_available() else None @property def __UpperCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : str ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =(3, 32, 128) _SCREAMING_SNAKE_CASE =tempfile.mkdtemp() # fmt: off _SCREAMING_SNAKE_CASE =['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on _SCREAMING_SNAKE_CASE =dict(zip(_a , range(len(_a ) ) ) ) _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) _SCREAMING_SNAKE_CASE ={ '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_a , _a ) def __UpperCamelCase ( self : Optional[Any] , **_a : str ) -> int: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_a ) def __UpperCamelCase ( self : Optional[int] , **_a : Tuple ) -> List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_a ) def __UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) _SCREAMING_SNAKE_CASE =Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) return image_input def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_a ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _SCREAMING_SNAKE_CASE =self.get_image_processor(do_normalize=_a , padding_value=1.0 ) _SCREAMING_SNAKE_CASE =MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =image_processor(_a , return_tensors='''np''' ) _SCREAMING_SNAKE_CASE =processor(images=_a , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE ='''test''' _SCREAMING_SNAKE_CASE =processor(text=_a ) _SCREAMING_SNAKE_CASE =tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE ='''test''' _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] _SCREAMING_SNAKE_CASE =processor.char_decode(_a ) _SCREAMING_SNAKE_CASE =tokenizer.batch_decode(_a ) _SCREAMING_SNAKE_CASE =[seq.replace(''' ''' , '''''' ) for seq in decoded_tok] self.assertListEqual(_a , _a ) def __UpperCamelCase ( self : Any ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE =torch.randn(1 , 27 , 38 ) _SCREAMING_SNAKE_CASE =torch.randn(1 , 27 , 5_0257 ) _SCREAMING_SNAKE_CASE =torch.randn(1 , 27 , 3_0522 ) _SCREAMING_SNAKE_CASE =processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
691
0
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __UpperCamelCase : int = 16 __UpperCamelCase : str = 32 def A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = 16 ): SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) SCREAMING_SNAKE_CASE : Any = DatasetDict( { '''train''': dataset['''train'''].select(_lowercase ), '''validation''': dataset['''train'''].select(_lowercase ), '''test''': dataset['''validation'''], } ) def tokenize_function(_lowercase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_lowercase , max_length=_lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE : Union[str, Any] = datasets.map( _lowercase , batched=_lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE : Tuple = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE : Dict = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE : Optional[Any] = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE : str = 8 else: SCREAMING_SNAKE_CASE : Any = None return tokenizer.pad( _lowercase , padding='''longest''' , max_length=_lowercase , pad_to_multiple_of=_lowercase , return_tensors='''pt''' , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE : Optional[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) SCREAMING_SNAKE_CASE : int = DataLoader( tokenized_datasets['''validation'''] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) SCREAMING_SNAKE_CASE : str = DataLoader( tokenized_datasets['''test'''] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) return train_dataloader, eval_dataloader, test_dataloader def A ( _lowercase , _lowercase ): # New Code # SCREAMING_SNAKE_CASE : Union[str, Any] = [] # Download the dataset SCREAMING_SNAKE_CASE : Dict = load_dataset('''glue''' , '''mrpc''' ) # Create our splits SCREAMING_SNAKE_CASE : Union[str, Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator SCREAMING_SNAKE_CASE : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE : Optional[Any] = config['''lr'''] SCREAMING_SNAKE_CASE : Optional[int] = int(config['''num_epochs'''] ) SCREAMING_SNAKE_CASE : Dict = int(config['''seed'''] ) SCREAMING_SNAKE_CASE : int = int(config['''batch_size'''] ) SCREAMING_SNAKE_CASE : str = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE : Optional[int] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE : Optional[Any] = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE : int = MAX_GPU_BATCH_SIZE set_seed(_lowercase ) # New Code # # Create our folds: SCREAMING_SNAKE_CASE : Dict = kfold.split(np.zeros(datasets['''train'''].num_rows ) , datasets['''train''']['''label'''] ) SCREAMING_SNAKE_CASE : List[Any] = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(_lowercase ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = get_fold_dataloaders( _lowercase , _lowercase , _lowercase , _lowercase , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE : Tuple = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=_lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE : List[Any] = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE : Any = AdamW(params=model.parameters() , lr=_lowercase ) # Instantiate scheduler SCREAMING_SNAKE_CASE : int = get_linear_schedule_with_warmup( optimizer=_lowercase , num_warmup_steps=100 , num_training_steps=(len(_lowercase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # Now we train the model for epoch in range(_lowercase ): model.train() for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(**_lowercase ) SCREAMING_SNAKE_CASE : List[Any] = outputs.loss SCREAMING_SNAKE_CASE : str = loss / gradient_accumulation_steps accelerator.backward(_lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model(**_lowercase ) SCREAMING_SNAKE_CASE : Tuple = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_lowercase , references=_lowercase , ) SCREAMING_SNAKE_CASE : Dict = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , _lowercase ) # New Code # # We also run predictions on the test set at the very end SCREAMING_SNAKE_CASE : Dict = [] for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(**_lowercase ) SCREAMING_SNAKE_CASE : List[str] = outputs.logits SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(_lowercase , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat(_lowercase , dim=0 ) SCREAMING_SNAKE_CASE : int = torch.stack(_lowercase , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) SCREAMING_SNAKE_CASE : Optional[Any] = metric.compute(predictions=_lowercase , references=_lowercase ) accelerator.print('''Average test metrics from all folds:''' , _lowercase ) def A ( ): SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=_lowercase , default=_lowercase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) # New Code # parser.add_argument('''--num_folds''' , type=_lowercase , default=3 , help='''The number of splits to perform across the dataset''' ) SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() SCREAMING_SNAKE_CASE : Optional[int] = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_lowercase , _lowercase ) if __name__ == "__main__": main()
34
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __UpperCamelCase : Dict = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __UpperCamelCase : Tuple = [file for file in filepaths if file != file.lower()] if upper_files: print(f"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') __UpperCamelCase : List[Any] = [file for file in filepaths if ' ' in file] if space_files: print(f"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') __UpperCamelCase : List[Any] = [file for file in filepaths if '-' in file] if hyphen_files: print(f"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') __UpperCamelCase : List[Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(f"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') __UpperCamelCase : Optional[Any] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
34
1
"""simple docstring""" from functools import lru_cache def lowerCAmelCase__ ( __magic_name__ ) ->set: __lowercase = 2 __lowercase = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__magic_name__ ) if n > 1: factors.add(__magic_name__ ) return factors @lru_cache def lowerCAmelCase__ ( __magic_name__ ) ->int: return len(unique_prime_factors(__magic_name__ ) ) def lowerCAmelCase__ ( __magic_name__ ) ->bool: return len(set(__magic_name__ ) ) in (0, 1) def lowerCAmelCase__ ( __magic_name__ ) ->list: __lowercase = 2 while True: # Increment each value of a generated range __lowercase = [base + i for i in range(__magic_name__ )] # Run elements through out unique_prime_factors function # Append our target number to the end. __lowercase = [upf_len(__magic_name__ ) for x in group] checker.append(__magic_name__ ) # If all numbers in the list are equal, return the group variable. if equality(__magic_name__ ): return group # Increment our base variable by 1 base += 1 def lowerCAmelCase__ ( __magic_name__ = 4 ) ->int: __lowercase = run(__magic_name__ ) return results[0] if len(__magic_name__ ) else None if __name__ == "__main__": print(solution())
118
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) ->float: __lowercase = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__magic_name__ )] ) __lowercase = np.array(__magic_name__ ) __lowercase = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __magic_name__ ) ) , x.transpose() ) , __magic_name__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ ) ->float: __lowercase = (1, 2, 1) __lowercase = (1, 1, 0, 7) __lowercase = SARIMAX( __magic_name__ , exog=__magic_name__ , order=__magic_name__ , seasonal_order=__magic_name__ ) __lowercase = model.fit(disp=__magic_name__ , maxiter=6_0_0 , method="nm" ) __lowercase = model_fit.predict(1 , len(__magic_name__ ) , exog=[test_match] ) return result[0] def lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ ) ->float: __lowercase = SVR(kernel="rbf" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__magic_name__ , __magic_name__ ) __lowercase = regressor.predict(__magic_name__ ) return y_pred[0] def lowerCAmelCase__ ( __magic_name__ ) ->float: train_user.sort() __lowercase = np.percentile(__magic_name__ , 2_5 ) __lowercase = np.percentile(__magic_name__ , 7_5 ) __lowercase = qa - qa __lowercase = qa - (iqr * 0.1) return low_lim def lowerCAmelCase__ ( __magic_name__ , __magic_name__ ) ->bool: __lowercase = 0 __lowercase = 0 for i in list_vote: if i > actual_result: __lowercase = not_safe + 1 else: if abs(abs(__magic_name__ ) - abs(__magic_name__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) _lowercase = [[18_231, 0.0, 1], [22_621, 1.0, 2], [15_675, 0.0, 3], [23_583, 1.0, 4]] _lowercase = pd.DataFrame( data_input, columns=['''total_user''', '''total_even''', '''days'''] ) _lowercase = Normalizer().fit_transform(data_input_df.values) # split data _lowercase = normalize_df[:, 2].tolist() _lowercase = normalize_df[:, 0].tolist() _lowercase = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) _lowercase = normalize_df[:, [1, 2]].tolist() _lowercase = x[: len(x) - 1] _lowercase = x[len(x) - 1 :] # for linear regression & sarimax _lowercase = total_date[: len(total_date) - 1] _lowercase = total_user[: len(total_user) - 1] _lowercase = total_match[: len(total_match) - 1] _lowercase = total_date[len(total_date) - 1 :] _lowercase = total_user[len(total_user) - 1 :] _lowercase = total_match[len(total_match) - 1 :] # voting system with forecasting _lowercase = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data _lowercase = '''''' if data_safety_checker(res_vote, tst_user) else '''not ''' print('''Today\'s data is {not_str}safe.''')
118
1
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( lowercase__ : Dict , lowercase__ : Any , lowercase__ : Tuple , lowercase__ : Tuple="attention" ): '''simple docstring''' _lowerCAmelCase =params[f"{prefix}/layers_{i}/{layer_name}/key/kernel"] _lowerCAmelCase =params[f"{prefix}/layers_{i}/{layer_name}/out/kernel"] _lowerCAmelCase =params[f"{prefix}/layers_{i}/{layer_name}/query/kernel"] _lowerCAmelCase =params[f"{prefix}/layers_{i}/{layer_name}/value/kernel"] return k, o, q, v def snake_case_ ( lowercase__ : Optional[int] , lowercase__ : Optional[Any] , lowercase__ : List[str] , lowercase__ : List[Any]=False ): '''simple docstring''' if split_mlp_wi: _lowerCAmelCase =params[f"{prefix}/layers_{i}/mlp/wi_0/kernel"] _lowerCAmelCase =params[f"{prefix}/layers_{i}/mlp/wi_1/kernel"] _lowerCAmelCase =(wi_a, wi_a) else: _lowerCAmelCase =params[f"{prefix}/layers_{i}/mlp/wi/kernel"] _lowerCAmelCase =params[f"{prefix}/layers_{i}/mlp/wo/kernel"] return wi, wo def snake_case_ ( lowercase__ : int , lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Any ): '''simple docstring''' return params[f"{prefix}/layers_{i}/{layer_name}/scale"] def snake_case_ ( lowercase__ : dict , *, lowercase__ : int , lowercase__ : bool ): '''simple docstring''' _lowerCAmelCase =traverse_util.flatten_dict(variables["""target"""] ) _lowerCAmelCase ={"""/""".join(lowercase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _lowerCAmelCase ="""encoder/layers_0/mlp/wi_0/kernel""" in old print("""Split MLP:""" , lowercase__ ) _lowerCAmelCase =collections.OrderedDict() # Shared embeddings. _lowerCAmelCase =old["""token_embedder/embedding"""] # Encoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). _lowerCAmelCase =tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_attention_layer_norm""" ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =tax_attention_lookup(lowercase__ , lowercase__ , """encoder""" , """attention""" ) _lowerCAmelCase =layer_norm _lowerCAmelCase =k.T _lowerCAmelCase =o.T _lowerCAmelCase =q.T _lowerCAmelCase =v.T # Block i, layer 1 (MLP). _lowerCAmelCase =tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_mlp_layer_norm""" ) _lowerCAmelCase , _lowerCAmelCase =tax_mlp_lookup(lowercase__ , lowercase__ , """encoder""" , lowercase__ ) _lowerCAmelCase =layer_norm if split_mlp_wi: _lowerCAmelCase =wi[0].T _lowerCAmelCase =wi[1].T else: _lowerCAmelCase =wi.T _lowerCAmelCase =wo.T _lowerCAmelCase =old[ """encoder/relpos_bias/rel_embedding""" ].T _lowerCAmelCase =old["""encoder/encoder_norm/scale"""] if not is_encoder_only: # Decoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). _lowerCAmelCase =tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_self_attention_layer_norm""" ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """self_attention""" ) _lowerCAmelCase =layer_norm _lowerCAmelCase =k.T _lowerCAmelCase =o.T _lowerCAmelCase =q.T _lowerCAmelCase =v.T # Block i, layer 1 (Cross Attention). _lowerCAmelCase =tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_cross_attention_layer_norm""" ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """encoder_decoder_attention""" ) _lowerCAmelCase =layer_norm _lowerCAmelCase =k.T _lowerCAmelCase =o.T _lowerCAmelCase =q.T _lowerCAmelCase =v.T # Block i, layer 2 (MLP). _lowerCAmelCase =tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_mlp_layer_norm""" ) _lowerCAmelCase , _lowerCAmelCase =tax_mlp_lookup(lowercase__ , lowercase__ , """decoder""" , lowercase__ ) _lowerCAmelCase =layer_norm if split_mlp_wi: _lowerCAmelCase =wi[0].T _lowerCAmelCase =wi[1].T else: _lowerCAmelCase =wi.T _lowerCAmelCase =wo.T _lowerCAmelCase =old["""decoder/decoder_norm/scale"""] _lowerCAmelCase =old[ """decoder/relpos_bias/rel_embedding""" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _lowerCAmelCase =old["""decoder/logits_dense/kernel"""].T return new def snake_case_ ( lowercase__ : Optional[int] , lowercase__ : bool ): '''simple docstring''' _lowerCAmelCase =collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _lowerCAmelCase =state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _lowerCAmelCase =state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) _lowerCAmelCase =state_dict["""shared.weight"""] return state_dict def snake_case_ ( lowercase__ : Union[str, Any] , lowercase__ : List[str] , lowercase__ : Union[str, Any] , lowercase__ : Tuple ): '''simple docstring''' _lowerCAmelCase =checkpoints.load_tax_checkpoint(lowercase__ ) _lowerCAmelCase =convert_tax_to_pytorch(lowercase__ , num_layers=config.num_layers , is_encoder_only=lowercase__ ) _lowerCAmelCase =make_state_dict(lowercase__ , lowercase__ ) model.load_state_dict(lowercase__ , strict=lowercase__ ) def snake_case_ ( lowercase__ : int , lowercase__ : Tuple , lowercase__ : Optional[int] , lowercase__ : bool = False ): '''simple docstring''' _lowerCAmelCase =TaConfig.from_json_file(lowercase__ ) print(f"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _lowerCAmelCase =TaEncoderModel(lowercase__ ) else: _lowerCAmelCase =TaForConditionalGeneration(lowercase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(lowercase__ ) # Verify that we can load the checkpoint. model.from_pretrained(lowercase__ ) print("""Done""" ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) __SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
149
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : str = '''tiny-wmt19-en-ru''' # Build # borrowed from a test __SCREAMING_SNAKE_CASE : Any = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __SCREAMING_SNAKE_CASE : Optional[int] = dict(zip(vocab, range(len(vocab)))) __SCREAMING_SNAKE_CASE : int = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE : Optional[Any] = Path(tmpdirname) __SCREAMING_SNAKE_CASE : Any = build_dir / VOCAB_FILES_NAMES['''src_vocab_file'''] __SCREAMING_SNAKE_CASE : Optional[Any] = build_dir / VOCAB_FILES_NAMES['''tgt_vocab_file'''] __SCREAMING_SNAKE_CASE : Tuple = build_dir / VOCAB_FILES_NAMES['''merges_file'''] with open(src_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, '''w''') as fp: fp.write('''\n'''.join(merges)) __SCREAMING_SNAKE_CASE : List[Any] = FSMTTokenizer( langs=['''en''', '''ru'''], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) __SCREAMING_SNAKE_CASE : List[Any] = FSMTConfig( langs=['''ru''', '''en'''], src_vocab_size=1_000, tgt_vocab_size=1_000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) __SCREAMING_SNAKE_CASE : Optional[Any] = FSMTForConditionalGeneration(config) print(F'num of params {tiny_model.num_parameters()}') # Test __SCREAMING_SNAKE_CASE : Tuple = tokenizer(['''Making tiny model'''], return_tensors='''pt''') __SCREAMING_SNAKE_CASE : Optional[Any] = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'Generated {mname_tiny}') # Upload # transformers-cli upload tiny-wmt19-en-ru
149
1
"""simple docstring""" from collections import defaultdict from math import gcd def lowercase__ ( snake_case_ :int = 1_500_000 ): __UpperCAmelCase = defaultdict(snake_case_ ) __UpperCAmelCase = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , snake_case_ , 2 ): if gcd(snake_case_ , snake_case_ ) > 1: continue __UpperCAmelCase = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(snake_case_ , limit + 1 , snake_case_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f"""{solution() = }""")
49
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.linear_k': 'encoder.layers.*.self_attn.linear_k', 'self_attn.linear_v': 'encoder.layers.*.self_attn.linear_v', 'self_attn.linear_q': 'encoder.layers.*.self_attn.linear_q', 'self_attn.pos_bias_u': 'encoder.layers.*.self_attn.pos_bias_u', 'self_attn.pos_bias_v': 'encoder.layers.*.self_attn.pos_bias_v', 'self_attn.linear_out': 'encoder.layers.*.self_attn.linear_out', 'self_attn.linear_pos': 'encoder.layers.*.self_attn.linear_pos', 'self_attn.rotary_emb': 'encoder.embed_positions', 'self_attn_layer_norm': 'encoder.layers.*.self_attn_layer_norm', 'conv_module.pointwise_conv1': 'encoder.layers.*.conv_module.pointwise_conv1', 'conv_module.pointwise_conv2': 'encoder.layers.*.conv_module.pointwise_conv2', 'conv_module.depthwise_conv': 'encoder.layers.*.conv_module.depthwise_conv', 'conv_module.batch_norm': 'encoder.layers.*.conv_module.batch_norm', 'conv_module.layer_norm': 'encoder.layers.*.conv_module.layer_norm', 'ffn1.w_1': 'encoder.layers.*.ffn1.intermediate_dense', 'ffn1.w_2': 'encoder.layers.*.ffn1.output_dense', 'ffn1.layer_norm': 'encoder.layers.*.ffn1_layer_norm', 'ffn2.w_1': 'encoder.layers.*.ffn2.intermediate_dense', 'ffn2.w_2': 'encoder.layers.*.ffn2.output_dense', 'ffn2.layer_norm': 'encoder.layers.*.ffn2_layer_norm', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } UpperCamelCase__ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def lowerCAmelCase_ ( __A, __A, __A, __A, __A ) -> Union[str, Any]: '''simple docstring''' for attribute in key.split("." ): UpperCAmelCase__ = getattr(__A, __A ) if weight_type is not None: UpperCAmelCase__ = getattr(__A, __A ).shape else: UpperCAmelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase__ = value elif weight_type == "weight_g": UpperCAmelCase__ = value elif weight_type == "weight_v": UpperCAmelCase__ = value elif weight_type == "bias": UpperCAmelCase__ = value elif weight_type == "running_mean": UpperCAmelCase__ = value elif weight_type == "running_var": UpperCAmelCase__ = value elif weight_type == "num_batches_tracked": UpperCAmelCase__ = value elif weight_type == "inv_freq": UpperCAmelCase__ = value else: UpperCAmelCase__ = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __A, __A, __A ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ = [] UpperCAmelCase__ = fairseq_model.state_dict() UpperCAmelCase__ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase__ = False if "conv_layers" in name: load_conv_layer( __A, __A, __A, __A, hf_model.config.feat_extract_norm == "group", ) UpperCAmelCase__ = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase__ = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase__ = True if "*" in mapped_key: UpperCAmelCase__ = name.split(__A )[0].split("." )[-2] UpperCAmelCase__ = mapped_key.replace("*", __A ) if "pos_bias_u" in name: UpperCAmelCase__ = None elif "pos_bias_v" in name: UpperCAmelCase__ = None elif "weight_g" in name: UpperCAmelCase__ = "weight_g" elif "weight_v" in name: UpperCAmelCase__ = "weight_v" elif "bias" in name: UpperCAmelCase__ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase__ = "weight" elif "running_mean" in name: UpperCAmelCase__ = "running_mean" elif "inv_freq" in name: UpperCAmelCase__ = "inv_freq" elif "running_var" in name: UpperCAmelCase__ = "running_var" elif "num_batches_tracked" in name: UpperCAmelCase__ = "num_batches_tracked" else: UpperCAmelCase__ = None set_recursively(__A, __A, __A, __A, __A ) continue if not is_used: unused_weights.append(__A ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowerCAmelCase_ ( __A, __A, __A, __A, __A ) -> Any: '''simple docstring''' UpperCAmelCase__ = full_name.split("conv_layers." )[-1] UpperCAmelCase__ = name.split("." ) UpperCAmelCase__ = int(items[0] ) UpperCAmelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__A ) @torch.no_grad() def lowerCAmelCase_ ( __A, __A, __A=None, __A=None, __A=True ) -> Optional[Any]: '''simple docstring''' if config_path is not None: UpperCAmelCase__ = WavaVecaConformerConfig.from_pretrained(__A, hidden_act="swish" ) else: UpperCAmelCase__ = WavaVecaConformerConfig() if "rope" in checkpoint_path: UpperCAmelCase__ = "rotary" if is_finetuned: if dict_path: UpperCAmelCase__ = Dictionary.load(__A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase__ = target_dict.pad_index UpperCAmelCase__ = target_dict.bos_index UpperCAmelCase__ = target_dict.eos_index UpperCAmelCase__ = len(target_dict.symbols ) UpperCAmelCase__ = os.path.join(__A, "vocab.json" ) if not os.path.isdir(__A ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__A ) ) return os.makedirs(__A, exist_ok=__A ) UpperCAmelCase__ = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 with open(__A, "w", encoding="utf-8" ) as vocab_handle: json.dump(__A, __A ) UpperCAmelCase__ = WavaVecaCTCTokenizer( __A, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token="|", do_lower_case=__A, ) UpperCAmelCase__ = True if config.feat_extract_norm == "layer" else False UpperCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=16_000, padding_value=0, do_normalize=__A, return_attention_mask=__A, ) UpperCAmelCase__ = WavaVecaProcessor(feature_extractor=__A, tokenizer=__A ) processor.save_pretrained(__A ) UpperCAmelCase__ = WavaVecaConformerForCTC(__A ) else: UpperCAmelCase__ = WavaVecaConformerForPreTraining(__A ) if is_finetuned: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: UpperCAmelCase__ = argparse.Namespace(task="audio_pretraining" ) UpperCAmelCase__ = fairseq.tasks.setup_task(__A ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path], task=__A ) UpperCAmelCase__ = model[0].eval() recursively_load_weights(__A, __A, not is_finetuned ) hf_wavavec.save_pretrained(__A ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) UpperCamelCase__ = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
486
0
"""simple docstring""" import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging _lowercase : Tuple = logging.get_logger(__name__) def lowercase__ ( snake_case_ :nn.ModuleList , snake_case_ :nn.ModuleList , snake_case_ :List[int] ): __UpperCAmelCase = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(snake_case_ ) == len(snake_case_ ), F'''{len(snake_case_ )} != {len(snake_case_ )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) _lowercase : str = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } _lowercase : str = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def lowercase__ ( snake_case_ :Tuple , snake_case_ :Tuple ): try: __UpperCAmelCase = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' F''' {n_student}''' ) return list(range(snake_case_ ) ) def lowercase__ ( snake_case_ :Optional[Any] , snake_case_ :List[str] ): if n_student > n_teacher: raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(snake_case_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def lowercase__ ( snake_case_ :Union[str, PreTrainedModel] , snake_case_ :Union[str, Path] = "student" , snake_case_ :Union[int, None] = None , snake_case_ :Union[int, None] = None , snake_case_ :List[Any]=False , snake_case_ :Optional[int]=None , snake_case_ :List[str]=None , **snake_case_ :List[str] , ): __UpperCAmelCase = '''encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.''' assert (e is not None) or (d is not None), _msg if isinstance(snake_case_ , snake_case_ ): AutoTokenizer.from_pretrained(snake_case_ ).save_pretrained(snake_case_ ) # purely for convenience __UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ).eval() else: assert isinstance(snake_case_ , snake_case_ ), F'''teacher must be a model or string got type {type(snake_case_ )}''' __UpperCAmelCase = teacher.config.to_diff_dict() try: __UpperCAmelCase , __UpperCAmelCase = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: __UpperCAmelCase = teacher_e if d is None: __UpperCAmelCase = teacher_d init_kwargs.update({'''encoder_layers''': e, '''decoder_layers''': d} ) except AttributeError: # T5 if hasattr(teacher.config , '''num_encoder_layers''' ): __UpperCAmelCase , __UpperCAmelCase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: __UpperCAmelCase , __UpperCAmelCase = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: __UpperCAmelCase = teacher_e if d is None: __UpperCAmelCase = teacher_d if hasattr(teacher.config , '''num_encoder_layers''' ): init_kwargs.update({'''num_encoder_layers''': e, '''num_decoder_layers''': d} ) else: init_kwargs.update({'''num_layers''': e, '''num_decoder_layers''': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(snake_case_ ) # Copy weights __UpperCAmelCase = teacher.config_class(**snake_case_ ) __UpperCAmelCase = AutoModelForSeqaSeqLM.from_config(snake_case_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. __UpperCAmelCase = student.load_state_dict(teacher.state_dict() , strict=snake_case_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save __UpperCAmelCase , __UpperCAmelCase = list(range(snake_case_ ) ), list(range(snake_case_ ) ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' F''' {save_path}''' ) student.save_pretrained(snake_case_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: __UpperCAmelCase = pick_layers_to_copy(snake_case_ , snake_case_ ) if d_layers_to_copy is None: __UpperCAmelCase = pick_layers_to_copy(snake_case_ , snake_case_ ) try: if hasattr( snake_case_ , '''prophetnet''' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , snake_case_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , snake_case_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , snake_case_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , snake_case_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , snake_case_ ) copy_layers(teacher.decoder.block , student.decoder.block , snake_case_ ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) __UpperCAmelCase = { '''teacher_type''': teacher.config.model_type, '''copied_encoder_layers''': e_layers_to_copy, '''copied_decoder_layers''': d_layers_to_copy, } student.save_pretrained(snake_case_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
397
"""simple docstring""" import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging _lowercase : Tuple = logging.get_logger(__name__) def lowercase__ ( snake_case_ :nn.ModuleList , snake_case_ :nn.ModuleList , snake_case_ :List[int] ): __UpperCAmelCase = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(snake_case_ ) == len(snake_case_ ), F'''{len(snake_case_ )} != {len(snake_case_ )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) _lowercase : str = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } _lowercase : str = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def lowercase__ ( snake_case_ :Tuple , snake_case_ :Tuple ): try: __UpperCAmelCase = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' F''' {n_student}''' ) return list(range(snake_case_ ) ) def lowercase__ ( snake_case_ :Optional[Any] , snake_case_ :List[str] ): if n_student > n_teacher: raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(snake_case_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def lowercase__ ( snake_case_ :Union[str, PreTrainedModel] , snake_case_ :Union[str, Path] = "student" , snake_case_ :Union[int, None] = None , snake_case_ :Union[int, None] = None , snake_case_ :List[Any]=False , snake_case_ :Optional[int]=None , snake_case_ :List[str]=None , **snake_case_ :List[str] , ): __UpperCAmelCase = '''encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.''' assert (e is not None) or (d is not None), _msg if isinstance(snake_case_ , snake_case_ ): AutoTokenizer.from_pretrained(snake_case_ ).save_pretrained(snake_case_ ) # purely for convenience __UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ).eval() else: assert isinstance(snake_case_ , snake_case_ ), F'''teacher must be a model or string got type {type(snake_case_ )}''' __UpperCAmelCase = teacher.config.to_diff_dict() try: __UpperCAmelCase , __UpperCAmelCase = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: __UpperCAmelCase = teacher_e if d is None: __UpperCAmelCase = teacher_d init_kwargs.update({'''encoder_layers''': e, '''decoder_layers''': d} ) except AttributeError: # T5 if hasattr(teacher.config , '''num_encoder_layers''' ): __UpperCAmelCase , __UpperCAmelCase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: __UpperCAmelCase , __UpperCAmelCase = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: __UpperCAmelCase = teacher_e if d is None: __UpperCAmelCase = teacher_d if hasattr(teacher.config , '''num_encoder_layers''' ): init_kwargs.update({'''num_encoder_layers''': e, '''num_decoder_layers''': d} ) else: init_kwargs.update({'''num_layers''': e, '''num_decoder_layers''': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(snake_case_ ) # Copy weights __UpperCAmelCase = teacher.config_class(**snake_case_ ) __UpperCAmelCase = AutoModelForSeqaSeqLM.from_config(snake_case_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. __UpperCAmelCase = student.load_state_dict(teacher.state_dict() , strict=snake_case_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save __UpperCAmelCase , __UpperCAmelCase = list(range(snake_case_ ) ), list(range(snake_case_ ) ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' F''' {save_path}''' ) student.save_pretrained(snake_case_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: __UpperCAmelCase = pick_layers_to_copy(snake_case_ , snake_case_ ) if d_layers_to_copy is None: __UpperCAmelCase = pick_layers_to_copy(snake_case_ , snake_case_ ) try: if hasattr( snake_case_ , '''prophetnet''' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , snake_case_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , snake_case_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , snake_case_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , snake_case_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , snake_case_ ) copy_layers(teacher.decoder.block , student.decoder.block , snake_case_ ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) __UpperCAmelCase = { '''teacher_type''': teacher.config.model_type, '''copied_encoder_layers''': e_layers_to_copy, '''copied_decoder_layers''': d_layers_to_copy, } student.save_pretrained(snake_case_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
397
1
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowerCamelCase__ ( _lowerCamelCase : str = "laptop" ) -> DataFrame: lowerCamelCase_ = F'''https://www.amazon.in/laptop/s?k={product}''' lowerCamelCase_ = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36', 'Accept-Language': 'en-US, en;q=0.5', } lowerCamelCase_ = BeautifulSoup(requests.get(_lowerCamelCase , headers=_lowerCamelCase ).text ) # Initialize a Pandas dataframe with the column titles lowerCamelCase_ = DataFrame( columns=[ 'Product Title', 'Product Link', 'Current Price of the product', 'Product Rating', 'MRP of the product', 'Discount', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( 'div' , attrs={'class': 's-result-item', 'data-component-type': 's-search-result'} , ) , soup.find_all('div' , attrs={'class': 'a-row a-size-base a-color-base'} ) , ): try: lowerCamelCase_ = item.ha.text lowerCamelCase_ = 'https://www.amazon.in/' + item.ha.a['href'] lowerCamelCase_ = item.find('span' , attrs={'class': 'a-offscreen'} ).text try: lowerCamelCase_ = item.find('span' , attrs={'class': 'a-icon-alt'} ).text except AttributeError: lowerCamelCase_ = 'Not available' try: lowerCamelCase_ = ( '₹' + item.find( 'span' , attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1] ) except AttributeError: lowerCamelCase_ = '' try: lowerCamelCase_ = float( ( ( float(product_mrp.strip('₹' ).replace(',' , '' ) ) - float(product_price.strip('₹' ).replace(',' , '' ) ) ) / float(product_mrp.strip('₹' ).replace(',' , '' ) ) ) * 100 ) except ValueError: lowerCamelCase_ = float('nan' ) except AttributeError: pass lowerCamelCase_ = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] lowerCamelCase_ = ' ' lowerCamelCase_ = ' ' data_frame.index += 1 return data_frame if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[Any] = '''headphones''' get_amazon_product_data(product).to_csv(F'''Amazon Product Data for {product}.csv''')
549
"""simple docstring""" from scipy.stats import pearsonr import datasets _SCREAMING_SNAKE_CASE : List[str] = ''' Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. ''' _SCREAMING_SNAKE_CASE : int = ''' Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results[\'pearsonr\'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) [\'p-value\', \'pearsonr\'] >>> print(round(results[\'pearsonr\'], 2)) -0.74 >>> print(round(results[\'p-value\'], 2)) 0.15 ''' _SCREAMING_SNAKE_CASE : Dict = ''' @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def UpperCamelCase ( self : Dict ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'] , ) def UpperCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple=False ) -> Tuple: if return_pvalue: lowerCamelCase_ = pearsonr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )[0] )}
549
1
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase__ = 1_6 UpperCamelCase__ = 3_2 def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = 16 ) -> Optional[Any]: UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase__ : Optional[int] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowerCAmelCase__ ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase__ : List[Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase__ : Dict = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase__ : Optional[int] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase__ : Union[str, Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase__ : Any = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase__ : Optional[Any] = 8 else: UpperCAmelCase__ : int = None return tokenizer.pad( lowerCAmelCase__ , padding='''longest''' , max_length=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase__ : List[str] = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) UpperCAmelCase__ : str = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCamelCase__ = mocked_dataloaders # noqa: F811 def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , lowerCAmelCase__ ) == "1": UpperCAmelCase__ : List[Any] = 2 # Initialize accelerator UpperCAmelCase__ : List[str] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase__ : str = config['''lr'''] UpperCAmelCase__ : Dict = int(config['''num_epochs'''] ) UpperCAmelCase__ : Optional[Any] = int(config['''seed'''] ) UpperCAmelCase__ : Optional[int] = int(config['''batch_size'''] ) UpperCAmelCase__ : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowerCAmelCase__ ) def inner_training_loop(lowerCAmelCase__ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase__ : List[str] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowerCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase__ : List[str] = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase__ : Dict = AdamW(params=model.parameters() , lr=lowerCAmelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate scheduler UpperCAmelCase__ : List[Any] = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=1_00 , num_training_steps=(len(lowerCAmelCase__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Now we train the model for epoch in range(lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase__ : Optional[Any] = model(**lowerCAmelCase__ ) UpperCAmelCase__ : Tuple = outputs.loss accelerator.backward(lowerCAmelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ : str = model(**lowerCAmelCase__ ) UpperCAmelCase__ : int = outputs.logits.argmax(dim=-1 ) UpperCAmelCase__ , UpperCAmelCase__ : int = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) UpperCAmelCase__ : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , lowerCAmelCase__ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def a__ ( ) -> Any: UpperCAmelCase__ : List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) UpperCAmelCase__ : str = parser.parse_args() UpperCAmelCase__ : Any = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
312
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'wavlm' def __init__( self : Optional[Any] , _A : Union[str, Any]=32 , _A : Any=768 , _A : Dict=12 , _A : Optional[Any]=12 , _A : Optional[Any]=3_072 , _A : Any="gelu" , _A : Union[str, Any]=0.1 , _A : Any=0.1 , _A : Optional[Any]=0.1 , _A : Dict=0.0 , _A : Tuple=0.1 , _A : str=0.1 , _A : Union[str, Any]=0.0_2 , _A : Optional[Any]=1e-5 , _A : str="group" , _A : int="gelu" , _A : Tuple=(512, 512, 512, 512, 512, 512, 512) , _A : Tuple=(5, 2, 2, 2, 2, 2, 2) , _A : int=(10, 3, 3, 3, 3, 2, 2) , _A : Optional[int]=False , _A : str=128 , _A : str=16 , _A : Optional[int]=320 , _A : Any=800 , _A : Any=False , _A : Tuple=True , _A : Optional[Any]=0.0_5 , _A : str=10 , _A : int=2 , _A : Optional[int]=0.0 , _A : int=10 , _A : List[str]=320 , _A : Tuple=2 , _A : Dict=0.1 , _A : Union[str, Any]=100 , _A : Tuple=256 , _A : Dict=256 , _A : List[str]=0.1 , _A : str="mean" , _A : Optional[int]=False , _A : Optional[Any]=False , _A : Any=256 , _A : Union[str, Any]=(512, 512, 512, 512, 1_500) , _A : str=(5, 3, 3, 1, 1) , _A : Union[str, Any]=(1, 2, 3, 1, 1) , _A : str=512 , _A : Optional[int]=80 , _A : List[Any]=0 , _A : Optional[int]=1 , _A : List[str]=2 , _A : Optional[int]=False , _A : str=3 , _A : Dict=2 , _A : List[str]=3 , _A : Optional[Any]=None , **_A : Tuple , ): '''simple docstring''' super().__init__(**_A , pad_token_id=_A , bos_token_id=_A , eos_token_id=_A ) UpperCAmelCase__ : Dict = hidden_size UpperCAmelCase__ : Optional[Any] = feat_extract_norm UpperCAmelCase__ : str = feat_extract_activation UpperCAmelCase__ : Tuple = list(_A ) UpperCAmelCase__ : Union[str, Any] = list(_A ) UpperCAmelCase__ : Optional[Any] = list(_A ) UpperCAmelCase__ : Optional[Any] = conv_bias UpperCAmelCase__ : List[Any] = num_buckets UpperCAmelCase__ : Optional[Any] = max_bucket_distance UpperCAmelCase__ : int = num_conv_pos_embeddings UpperCAmelCase__ : Optional[Any] = num_conv_pos_embedding_groups UpperCAmelCase__ : Any = len(self.conv_dim ) UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : str = hidden_act UpperCAmelCase__ : Union[str, Any] = num_attention_heads UpperCAmelCase__ : List[Any] = hidden_dropout UpperCAmelCase__ : Tuple = attention_dropout UpperCAmelCase__ : str = activation_dropout UpperCAmelCase__ : str = feat_proj_dropout UpperCAmelCase__ : Tuple = final_dropout UpperCAmelCase__ : List[str] = layerdrop UpperCAmelCase__ : int = layer_norm_eps UpperCAmelCase__ : Tuple = initializer_range UpperCAmelCase__ : Any = num_ctc_classes UpperCAmelCase__ : Dict = vocab_size UpperCAmelCase__ : Optional[int] = do_stable_layer_norm UpperCAmelCase__ : Union[str, Any] = use_weighted_layer_sum UpperCAmelCase__ : List[str] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase__ : List[str] = apply_spec_augment UpperCAmelCase__ : str = mask_time_prob UpperCAmelCase__ : int = mask_time_length UpperCAmelCase__ : Optional[int] = mask_time_min_masks UpperCAmelCase__ : int = mask_feature_prob UpperCAmelCase__ : Optional[int] = mask_feature_length # parameters for pretraining with codevector quantized representations UpperCAmelCase__ : Union[str, Any] = num_codevectors_per_group UpperCAmelCase__ : List[str] = num_codevector_groups UpperCAmelCase__ : Optional[int] = contrastive_logits_temperature UpperCAmelCase__ : Optional[int] = num_negatives UpperCAmelCase__ : List[Any] = codevector_dim UpperCAmelCase__ : Union[str, Any] = proj_codevector_dim UpperCAmelCase__ : str = diversity_loss_weight # ctc loss UpperCAmelCase__ : str = ctc_loss_reduction UpperCAmelCase__ : Optional[Any] = ctc_zero_infinity # adapter UpperCAmelCase__ : Union[str, Any] = add_adapter UpperCAmelCase__ : List[Any] = adapter_kernel_size UpperCAmelCase__ : Union[str, Any] = adapter_stride UpperCAmelCase__ : Tuple = num_adapter_layers UpperCAmelCase__ : Optional[int] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase__ : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase__ : Optional[int] = list(_A ) UpperCAmelCase__ : str = list(_A ) UpperCAmelCase__ : Any = list(_A ) UpperCAmelCase__ : List[Any] = xvector_output_dim @property def lowercase_ ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
312
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json", "funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json", "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json", "funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json", } class _SCREAMING_SNAKE_CASE ( snake_case ): lowerCamelCase_ = 'funnel' lowerCamelCase_ = { 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', } def __init__( self : Union[str, Any] , snake_case_ : List[Any]=3_0522 , snake_case_ : List[str]=[4, 4, 4] , snake_case_ : int=None , snake_case_ : Optional[int]=2 , snake_case_ : Union[str, Any]=768 , snake_case_ : Union[str, Any]=12 , snake_case_ : List[Any]=64 , snake_case_ : List[str]=3072 , snake_case_ : List[Any]="gelu_new" , snake_case_ : List[str]=0.1 , snake_case_ : Any=0.1 , snake_case_ : str=0.0 , snake_case_ : Any=0.1 , snake_case_ : List[Any]=None , snake_case_ : Optional[int]=1E-9 , snake_case_ : str="mean" , snake_case_ : Tuple="relative_shift" , snake_case_ : Optional[Any]=True , snake_case_ : List[str]=True , snake_case_ : int=True , **snake_case_ : Optional[int] , ): """simple docstring""" A : List[Any] = vocab_size A : int = block_sizes A : Dict = [1] * len(snake_case_ ) if block_repeats is None else block_repeats assert len(snake_case_ ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." A : Any = num_decoder_layers A : Any = d_model A : Union[str, Any] = n_head A : Any = d_head A : List[Any] = d_inner A : str = hidden_act A : Tuple = hidden_dropout A : int = attention_dropout A : Union[str, Any] = activation_dropout A : Dict = initializer_range A : Any = initializer_std A : Union[str, Any] = layer_norm_eps assert pooling_type in [ "mean", "max", ], f"""Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported.""" A : Union[str, Any] = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f"""Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported.""" A : str = attention_type A : Optional[int] = separate_cls A : Dict = truncate_seq A : Any = pool_q_only super().__init__(**snake_case_ ) @property def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" return sum(self.block_sizes ) @num_hidden_layers.setter def _UpperCAmelCase ( self : Optional[int] , snake_case_ : List[Any] ): """simple docstring""" raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def _UpperCAmelCase ( self : Dict ): """simple docstring""" return len(self.block_sizes ) @num_blocks.setter def _UpperCAmelCase ( self : Optional[int] , snake_case_ : Tuple ): """simple docstring""" raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
256
def _lowerCamelCase ( lowerCamelCase_: int ): '''simple docstring''' A : Any = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def _lowerCamelCase ( lowerCamelCase_: int = 100 ): '''simple docstring''' A : Dict = 1 A : Union[str, Any] = 2 for i in range(2 , max_n + 1 ): A : List[Any] = pre_numerator A : Tuple = 2 * i // 3 if i % 3 == 0 else 1 A : str = cur_numerator A : str = e_cont * pre_numerator + temp return sum_digits(lowerCamelCase_ ) if __name__ == "__main__": print(F'''{solution() = }''')
256
1
'''simple docstring''' import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def __UpperCamelCase ( a : Optional[Any] ) ->str: snake_case = torch.exp(a ) snake_case = torch.sum(a , dim=1 ) # sum of exp(x_i) snake_case = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(a ) - B / A class _lowercase ( nn.Module ): def __init__( self , A__ ) -> Any: super().__init__() snake_case = config.output_attentions snake_case = config.output_hidden_states snake_case = nn.ModuleList([BertLayer(A__ ) for _ in range(config.num_hidden_layers )] ) snake_case = nn.ModuleList([BertHighway(A__ ) for _ in range(config.num_hidden_layers )] ) snake_case = [-1 for _ in range(config.num_hidden_layers )] def UpperCamelCase ( self , A__ ) -> Union[str, Any]: if (type(A__ ) is float) or (type(A__ ) is int): for i in range(len(self.early_exit_entropy ) ): snake_case = x else: snake_case = x def UpperCamelCase ( self , A__ ) -> Optional[Any]: snake_case = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def UpperCamelCase ( self , A__ , A__=None , A__=None , A__=None , A__=None , ) -> int: snake_case = () snake_case = () snake_case = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: snake_case = all_hidden_states + (hidden_states,) snake_case = layer_module( A__ , A__ , head_mask[i] , A__ , A__ ) snake_case = layer_outputs[0] if self.output_attentions: snake_case = all_attentions + (layer_outputs[1],) snake_case = (hidden_states,) if self.output_hidden_states: snake_case = current_outputs + (all_hidden_states,) if self.output_attentions: snake_case = current_outputs + (all_attentions,) snake_case = self.highway[i](A__ ) # logits, pooled_output if not self.training: snake_case = highway_exit[0] snake_case = entropy(A__ ) snake_case = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy snake_case = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: snake_case = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(A__ , i + 1 ) else: snake_case = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: snake_case = all_hidden_states + (hidden_states,) snake_case = (hidden_states,) if self.output_hidden_states: snake_case = outputs + (all_hidden_states,) if self.output_attentions: snake_case = outputs + (all_attentions,) snake_case = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( '''The Bert Model transformer with early exiting (DeeBERT). ''' , __a , ) class _lowercase ( __a ): def __init__( self , A__ ) -> str: super().__init__(A__ ) snake_case = config snake_case = BertEmbeddings(A__ ) snake_case = DeeBertEncoder(A__ ) snake_case = BertPooler(A__ ) self.init_weights() def UpperCamelCase ( self ) -> Dict: self.encoder.init_highway_pooler(self.pooler ) def UpperCamelCase ( self ) -> str: return self.embeddings.word_embeddings def UpperCamelCase ( self , A__ ) -> Any: snake_case = value def UpperCamelCase ( self , A__ ) -> Union[str, Any]: for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(A__ ) @add_start_docstrings_to_model_forward(A__ ) def UpperCamelCase ( self , A__=None , A__=None , A__=None , A__=None , A__=None , A__=None , A__=None , A__=None , ) -> str: if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: snake_case = input_ids.size() elif inputs_embeds is not None: snake_case = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) snake_case = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: snake_case = torch.ones(A__ , device=A__ ) if encoder_attention_mask is None: snake_case = torch.ones(A__ , device=A__ ) if token_type_ids is None: snake_case = torch.zeros(A__ , dtype=torch.long , device=A__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. snake_case = self.get_extended_attention_mask(A__ , A__ , A__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: snake_case = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: snake_case = encoder_attention_mask[:, None, None, :] snake_case = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility snake_case = (1.0 - encoder_extended_attention_mask) * -1_00_00.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] snake_case = self.get_head_mask(A__ , self.config.num_hidden_layers ) snake_case = self.embeddings( input_ids=A__ , position_ids=A__ , token_type_ids=A__ , inputs_embeds=A__ ) snake_case = self.encoder( A__ , attention_mask=A__ , head_mask=A__ , encoder_hidden_states=A__ , encoder_attention_mask=A__ , ) snake_case = encoder_outputs[0] snake_case = self.pooler(A__ ) snake_case = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class _lowercase ( __a ): def __init__( self , A__ , A__ ) -> Any: snake_case = message snake_case = exit_layer # start from 1! class _lowercase ( nn.Module ): def __init__( self , A__ ) -> str: super().__init__() snake_case = BertPooler(A__ ) snake_case = nn.Dropout(config.hidden_dropout_prob ) snake_case = nn.Linear(config.hidden_size , config.num_labels ) def UpperCamelCase ( self , A__ ) -> Optional[Any]: # Pooler snake_case = encoder_outputs[0] snake_case = self.pooler(A__ ) # "return" pooler_output # BertModel snake_case = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification snake_case = bmodel_output[1] snake_case = self.dropout(A__ ) snake_case = self.classifier(A__ ) return logits, pooled_output @add_start_docstrings( '''Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. ''' , __a , ) class _lowercase ( __a ): def __init__( self , A__ ) -> Union[str, Any]: super().__init__(A__ ) snake_case = config.num_labels snake_case = config.num_hidden_layers snake_case = DeeBertModel(A__ ) snake_case = nn.Dropout(config.hidden_dropout_prob ) snake_case = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(A__ ) def UpperCamelCase ( self , A__=None , A__=None , A__=None , A__=None , A__=None , A__=None , A__=None , A__=-1 , A__=False , ) -> Tuple: snake_case = self.num_layers try: snake_case = self.bert( A__ , attention_mask=A__ , token_type_ids=A__ , position_ids=A__ , head_mask=A__ , inputs_embeds=A__ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits snake_case = outputs[1] snake_case = self.dropout(A__ ) snake_case = self.classifier(A__ ) snake_case = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: snake_case = e.message snake_case = e.exit_layer snake_case = outputs[0] if not self.training: snake_case = entropy(A__ ) snake_case = [] snake_case = [] if labels is not None: if self.num_labels == 1: # We are doing regression snake_case = MSELoss() snake_case = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: snake_case = CrossEntropyLoss() snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits snake_case = [] for highway_exit in outputs[-1]: snake_case = highway_exit[0] if not self.training: highway_logits_all.append(A__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression snake_case = MSELoss() snake_case = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: snake_case = CrossEntropyLoss() snake_case = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(A__ ) if train_highway: snake_case = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: snake_case = (loss,) + outputs if not self.training: snake_case = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: snake_case = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
711
'''simple docstring''' from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
44
0
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline lowercase = { "n_samples": 64, "horizon": 32, "num_inference_steps": 20, "n_guide_steps": 2, # can set to 0 for faster sampling, does not use value network "scale_grad_by_std": True, "scale": 0.1, "eta": 0.0, "t_grad_cutoff": 2, "device": "cpu", } if __name__ == "__main__": lowercase = "hopper-medium-v2" lowercase = gym.make(env_name) lowercase = ValueGuidedRLPipeline.from_pretrained( "bglick13/hopper-medium-v2-value-function-hor32", env=env, ) env.seed(0) lowercase = env.reset() lowercase = 0 lowercase = 0 lowercase = 1000 lowercase = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy lowercase = pipeline(obs, planning_horizon=32) # execute action in environment lowercase , lowercase , lowercase , lowercase = env.step(denorm_actions) lowercase = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f'Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:' f' {total_score}' ) # save observations for rendering rollout.append(next_observation.copy()) lowercase = next_observation except KeyboardInterrupt: pass print(f'Total reward: {total_reward}')
198
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : int = 2_00 ): lowercase_ : str = [1, 2, 5, 10, 20, 50, 1_00, 2_00] lowercase_ : Dict = [0] * (pence + 1) lowercase_ : List[Any] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__SCREAMING_SNAKE_CASE , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
425
0
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets lowerCamelCase_ : List[Any] = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' lowerCamelCase_ : int = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' lowerCamelCase_ : str = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __magic_name__( _A , _A ): '''simple docstring''' return float((preds == labels).mean() ) def __magic_name__( _A , _A ): '''simple docstring''' UpperCamelCase__ = simple_accuracy(_A , _A ) UpperCamelCase__ = float(fa_score(y_true=_A , y_pred=_A ) ) return { "accuracy": acc, "f1": fa, } def __magic_name__( _A , _A ): '''simple docstring''' UpperCamelCase__ = float(pearsonr(_A , _A )[0] ) UpperCamelCase__ = float(spearmanr(_A , _A )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def A ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , ) def A ( self : List[str] , lowercase : Dict , lowercase : Optional[Any] ) -> List[str]: '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(lowercase , lowercase )} elif self.config_name == "stsb": return pearson_and_spearman(lowercase , lowercase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(lowercase , lowercase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(lowercase , lowercase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" )
704
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __a : Dict = (DPMSolverSinglestepScheduler,) __a : List[Any] = (("num_inference_steps", 25),) def A ( self : List[Any] , **lowercase : Any ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = { """num_train_timesteps""": 1_0_0_0, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """solver_order""": 2, """prediction_type""": """epsilon""", """thresholding""": False, """sample_max_value""": 1.0, """algorithm_type""": """dpmsolver++""", """solver_type""": """midpoint""", """lambda_min_clipped""": -float("""inf""" ), """variance_type""": None, } config.update(**lowercase ) return config def A ( self : List[Any] , lowercase : Tuple=0 , **lowercase : Optional[Any] ) -> Any: '''simple docstring''' UpperCamelCase__ = dict(self.forward_default_kwargs ) UpperCamelCase__ = kwargs.pop("""num_inference_steps""" , lowercase ) UpperCamelCase__ = self.dummy_sample UpperCamelCase__ = 0.1 * sample UpperCamelCase__ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCamelCase__ = self.get_scheduler_config(**lowercase ) UpperCamelCase__ = scheduler_class(**lowercase ) scheduler.set_timesteps(lowercase ) # copy over dummy past residuals UpperCamelCase__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase ) UpperCamelCase__ = scheduler_class.from_pretrained(lowercase ) new_scheduler.set_timesteps(lowercase ) # copy over dummy past residuals UpperCamelCase__ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCamelCase__ , UpperCamelCase__ = sample, sample for t in range(lowercase , time_step + scheduler.config.solver_order + 1 ): UpperCamelCase__ = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample UpperCamelCase__ = new_scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def A ( self : List[str] ) -> Any: '''simple docstring''' pass def A ( self : Any , lowercase : List[Any]=0 , **lowercase : Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = dict(self.forward_default_kwargs ) UpperCamelCase__ = kwargs.pop("""num_inference_steps""" , lowercase ) UpperCamelCase__ = self.dummy_sample UpperCamelCase__ = 0.1 * sample UpperCamelCase__ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**lowercase ) scheduler.set_timesteps(lowercase ) # copy over dummy past residuals (must be after setting timesteps) UpperCamelCase__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase ) UpperCamelCase__ = scheduler_class.from_pretrained(lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase ) # copy over dummy past residual (must be after setting timesteps) UpperCamelCase__ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCamelCase__ = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample UpperCamelCase__ = new_scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def A ( self : Union[str, Any] , lowercase : Any=None , **lowercase : List[Any] ) -> Dict: '''simple docstring''' if scheduler is None: UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config(**lowercase ) UpperCamelCase__ = scheduler_class(**lowercase ) UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config(**lowercase ) UpperCamelCase__ = scheduler_class(**lowercase ) UpperCamelCase__ = 1_0 UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter scheduler.set_timesteps(lowercase ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase__ = model(lowercase , lowercase ) UpperCamelCase__ = scheduler.step(lowercase , lowercase , lowercase ).prev_sample return sample def A ( self : Any ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) UpperCamelCase__ = 5_0 UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter scheduler.set_timesteps(lowercase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): UpperCamelCase__ = model(lowercase , lowercase ) UpperCamelCase__ = scheduler.step(lowercase , lowercase , lowercase ).prev_sample UpperCamelCase__ = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.2_5_7_4 ) < 1e-3 def A ( self : int ) -> Union[str, Any]: '''simple docstring''' for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowercase ) def A ( self : Optional[int] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) UpperCamelCase__ = self.full_loop(scheduler=lowercase ) UpperCamelCase__ = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1e-3 UpperCamelCase__ = DEISMultistepScheduler.from_config(scheduler.config ) UpperCamelCase__ = DPMSolverMultistepScheduler.from_config(scheduler.config ) UpperCamelCase__ = UniPCMultistepScheduler.from_config(scheduler.config ) UpperCamelCase__ = DPMSolverSinglestepScheduler.from_config(scheduler.config ) UpperCamelCase__ = self.full_loop(scheduler=lowercase ) UpperCamelCase__ = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1e-3 def A ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' self.check_over_configs(thresholding=lowercase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowercase , prediction_type=lowercase , sample_max_value=lowercase , algorithm_type="""dpmsolver++""" , solver_order=lowercase , solver_type=lowercase , ) def A ( self : Optional[int] ) -> Tuple: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase ) def A ( self : Optional[int] ) -> int: '''simple docstring''' for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowercase , solver_type=lowercase , prediction_type=lowercase , algorithm_type=lowercase , ) UpperCamelCase__ = self.full_loop( solver_order=lowercase , solver_type=lowercase , prediction_type=lowercase , algorithm_type=lowercase , ) assert not torch.isnan(lowercase ).any(), "Samples have nan numbers" def A ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' self.check_over_configs(lower_order_final=lowercase ) self.check_over_configs(lower_order_final=lowercase ) def A ( self : Tuple ) -> Optional[int]: '''simple docstring''' self.check_over_configs(lambda_min_clipped=-float("""inf""" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def A ( self : List[Any] ) -> int: '''simple docstring''' self.check_over_configs(variance_type=lowercase ) self.check_over_configs(variance_type="""learned_range""" ) def A ( self : Tuple ) -> int: '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=lowercase , time_step=0 ) def A ( self : List[str] ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = self.full_loop() UpperCamelCase__ = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1e-3 def A ( self : str ) -> int: '''simple docstring''' UpperCamelCase__ = self.full_loop(use_karras_sigmas=lowercase ) UpperCamelCase__ = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.2_2_4_8 ) < 1e-3 def A ( self : List[Any] ) -> List[str]: '''simple docstring''' UpperCamelCase__ = self.full_loop(prediction_type="""v_prediction""" ) UpperCamelCase__ = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.1_4_5_3 ) < 1e-3 def A ( self : int ) -> int: '''simple docstring''' UpperCamelCase__ = self.full_loop(prediction_type="""v_prediction""" , use_karras_sigmas=lowercase ) UpperCamelCase__ = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.0_6_4_9 ) < 1e-3 def A ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config(thresholding=lowercase , dynamic_thresholding_ratio=0 ) UpperCamelCase__ = scheduler_class(**lowercase ) UpperCamelCase__ = 1_0 UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter.half() scheduler.set_timesteps(lowercase ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase__ = model(lowercase , lowercase ) UpperCamelCase__ = scheduler.step(lowercase , lowercase , lowercase ).prev_sample assert sample.dtype == torch.floataa
265
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : Optional[int] = logging.get_logger(__name__) class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : List[str] = '''timm_backbone''' def __init__( self ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_=3 ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=None ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) snake_case : Union[str, Any] = backbone snake_case : Dict = num_channels snake_case : Optional[int] = features_only snake_case : Any = use_pretrained_backbone snake_case : Union[str, Any] = True snake_case : Optional[int] = out_indices if out_indices is not None else (-1,)
36
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def UpperCamelCase__ ( __magic_name__ : str = "laptop" ) -> DataFrame: '''simple docstring''' snake_case__ : Union[str, Any] = f"https://www.amazon.in/laptop/s?k={product}" snake_case__ : List[str] = { """User-Agent""": """Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36""", """Accept-Language""": """en-US, en;q=0.5""", } snake_case__ : int = BeautifulSoup(requests.get(__magic_name__ , headers=__magic_name__ ).text ) # Initialize a Pandas dataframe with the column titles snake_case__ : Optional[Any] = DataFrame( columns=[ """Product Title""", """Product Link""", """Current Price of the product""", """Product Rating""", """MRP of the product""", """Discount""", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( """div""" , attrs={"""class""": """s-result-item""", """data-component-type""": """s-search-result"""} , ) , soup.find_all("""div""" , attrs={"""class""": """a-row a-size-base a-color-base"""} ) , ): try: snake_case__ : Optional[int] = item.ha.text snake_case__ : Any = """https://www.amazon.in/""" + item.ha.a["""href"""] snake_case__ : List[str] = item.find("""span""" , attrs={"""class""": """a-offscreen"""} ).text try: snake_case__ : Dict = item.find("""span""" , attrs={"""class""": """a-icon-alt"""} ).text except AttributeError: snake_case__ : Optional[int] = """Not available""" try: snake_case__ : Tuple = ( """₹""" + item.find( """span""" , attrs={"""class""": """a-price a-text-price"""} ).text.split("""₹""" )[1] ) except AttributeError: snake_case__ : Optional[Any] = """""" try: snake_case__ : str = float( ( ( float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) - float(product_price.strip("""₹""" ).replace(""",""" , """""" ) ) ) / float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) ) * 1_00 ) except ValueError: snake_case__ : List[Any] = float("""nan""" ) except AttributeError: pass snake_case__ : str = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] snake_case__ : List[Any] = """ """ snake_case__ : Union[str, Any] = """ """ data_frame.index += 1 return data_frame if __name__ == "__main__": A_ : int = "headphones" get_amazon_product_data(product).to_csv(F'Amazon Product Data for {product}.csv')
38
0
import numpy as np from PIL import Image def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = np.array(_lowercase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) UpperCAmelCase_ : str = 0 UpperCAmelCase_ : Optional[int] = 0 UpperCAmelCase_ : int = 0 UpperCAmelCase_ : Any = 0 # compute the shape of the output matrix UpperCAmelCase_ : Dict = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape UpperCAmelCase_ : Union[str, Any] = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix UpperCAmelCase_ : str = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCAmelCase_ : Optional[int] = 0 UpperCAmelCase_ : str = 0 return updated_arr def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = np.array(_lowercase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) UpperCAmelCase_ : int = 0 UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Any = 0 # compute the shape of the output matrix UpperCAmelCase_ : Union[str, Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape UpperCAmelCase_ : Tuple = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix UpperCAmelCase_ : Union[str, Any] = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : int = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image __a = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
702
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __a( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = '''hf-internal-testing/tiny-random-t5''' UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = tokenizer('''This is me''' ,return_tensors='''pt''' ) UpperCAmelCase_ : int = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) UpperCAmelCase_ : List[str] = model.generate(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = AutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) UpperCAmelCase_ : Optional[Any] = model_reloaded.generate(**_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Dict = '''hf-internal-testing/tiny-random-t5''' UpperCAmelCase_ : Any = AutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_SCREAMING_SNAKE_CASE ): model.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = model.reverse_bettertransformer() model.save_pretrained(_SCREAMING_SNAKE_CASE )
300
0
_SCREAMING_SNAKE_CASE : Union[str, Any] = 8.3144598 def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" if temperature < 0: raise Exception('''Temperature cannot be less than 0 K''' ) if molar_mass <= 0: raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _SCREAMING_SNAKE_CASE : List[str] = 3_00 _SCREAMING_SNAKE_CASE : Tuple = 28 _SCREAMING_SNAKE_CASE : List[Any] = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
550
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { "facebook/deit-base-distilled-patch16-224": ( "https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = 'deit' def __init__( self , __snake_case=7_6_8 , __snake_case=1_2 , __snake_case=1_2 , __snake_case=3_0_7_2 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=1E-12 , __snake_case=2_2_4 , __snake_case=1_6 , __snake_case=3 , __snake_case=True , __snake_case=1_6 , **__snake_case , ): super().__init__(**__snake_case ) snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = initializer_range snake_case = layer_norm_eps snake_case = image_size snake_case = patch_size snake_case = num_channels snake_case = qkv_bias snake_case = encoder_stride class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = version.parse('1.11' ) @property def a_ ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def a_ ( self ): return 1E-4
550
1
A = 'Tobias Carryer' from time import time class __a : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=int(time() ) ): # noqa: B008 SCREAMING_SNAKE_CASE_ : List[str] = multiplier SCREAMING_SNAKE_CASE_ : Dict = increment SCREAMING_SNAKE_CASE_ : Optional[Any] = modulo SCREAMING_SNAKE_CASE_ : List[Any] = seed def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. A = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
715
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def _lowerCamelCase( lowerCAmelCase__ : Optional[Any] ): '''simple docstring''' if "cls_token" in name: SCREAMING_SNAKE_CASE_ : Optional[int] = name.replace('cls_token' , 'vit.embeddings.cls_token' ) if "mask_token" in name: SCREAMING_SNAKE_CASE_ : Optional[int] = name.replace('mask_token' , 'decoder.mask_token' ) if "decoder_pos_embed" in name: SCREAMING_SNAKE_CASE_ : Any = name.replace('decoder_pos_embed' , 'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_ : Optional[Any] = name.replace('pos_embed' , 'vit.embeddings.position_embeddings' ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE_ : Optional[Any] = name.replace('patch_embed.proj' , 'vit.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE_ : Tuple = name.replace('patch_embed.norm' , 'vit.embeddings.norm' ) if "decoder_blocks" in name: SCREAMING_SNAKE_CASE_ : Tuple = name.replace('decoder_blocks' , 'decoder.decoder_layers' ) if "blocks" in name: SCREAMING_SNAKE_CASE_ : Any = name.replace('blocks' , 'vit.encoder.layer' ) if "attn.proj" in name: SCREAMING_SNAKE_CASE_ : Tuple = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: SCREAMING_SNAKE_CASE_ : Any = name.replace('attn' , 'attention.self' ) if "norm1" in name: SCREAMING_SNAKE_CASE_ : List[Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: SCREAMING_SNAKE_CASE_ : Any = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE_ : Dict = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE_ : Tuple = name.replace('mlp.fc2' , 'output.dense' ) if "decoder_embed" in name: SCREAMING_SNAKE_CASE_ : Optional[Any] = name.replace('decoder_embed' , 'decoder.decoder_embed' ) if "decoder_norm" in name: SCREAMING_SNAKE_CASE_ : Optional[Any] = name.replace('decoder_norm' , 'decoder.decoder_norm' ) if "decoder_pred" in name: SCREAMING_SNAKE_CASE_ : str = name.replace('decoder_pred' , 'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_ : Tuple = name.replace('norm.weight' , 'vit.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_ : List[str] = name.replace('norm.bias' , 'vit.layernorm.bias' ) return name def _lowerCamelCase( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] ): '''simple docstring''' for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE_ : Tuple = orig_state_dict.pop(lowerCAmelCase__ ) if "qkv" in key: SCREAMING_SNAKE_CASE_ : Optional[int] = key.split('.' ) SCREAMING_SNAKE_CASE_ : List[Any] = int(key_split[1] ) if "decoder_blocks" in key: SCREAMING_SNAKE_CASE_ : Any = config.decoder_hidden_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'decoder.decoder_layers.' if "weight" in key: SCREAMING_SNAKE_CASE_ : Optional[Any] = val[:dim, :] SCREAMING_SNAKE_CASE_ : List[str] = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_ : Any = val[-dim:, :] elif "bias" in key: SCREAMING_SNAKE_CASE_ : str = val[:dim] SCREAMING_SNAKE_CASE_ : List[Any] = val[dim : dim * 2] SCREAMING_SNAKE_CASE_ : List[Any] = val[-dim:] else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = config.hidden_size SCREAMING_SNAKE_CASE_ : str = 'vit.encoder.layer.' if "weight" in key: SCREAMING_SNAKE_CASE_ : Any = val[:dim, :] SCREAMING_SNAKE_CASE_ : Tuple = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_ : int = val[-dim:, :] elif "bias" in key: SCREAMING_SNAKE_CASE_ : List[Any] = val[:dim] SCREAMING_SNAKE_CASE_ : Dict = val[dim : dim * 2] SCREAMING_SNAKE_CASE_ : str = val[-dim:] else: SCREAMING_SNAKE_CASE_ : Optional[int] = val return orig_state_dict def _lowerCamelCase( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = ViTMAEConfig() if "large" in checkpoint_url: SCREAMING_SNAKE_CASE_ : Any = 1024 SCREAMING_SNAKE_CASE_ : Any = 4096 SCREAMING_SNAKE_CASE_ : List[str] = 24 SCREAMING_SNAKE_CASE_ : List[str] = 16 elif "huge" in checkpoint_url: SCREAMING_SNAKE_CASE_ : str = 14 SCREAMING_SNAKE_CASE_ : List[str] = 1280 SCREAMING_SNAKE_CASE_ : int = 5120 SCREAMING_SNAKE_CASE_ : Optional[int] = 32 SCREAMING_SNAKE_CASE_ : List[str] = 16 SCREAMING_SNAKE_CASE_ : Optional[int] = ViTMAEForPreTraining(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='cpu' )['model'] SCREAMING_SNAKE_CASE_ : Union[str, Any] = ViTMAEImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE_ : int = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : Any = 'https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg' SCREAMING_SNAKE_CASE_ : Dict = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ViTMAEImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors='pt' ) # forward pass torch.manual_seed(2 ) SCREAMING_SNAKE_CASE_ : Any = model(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = outputs.logits if "large" in checkpoint_url: SCREAMING_SNAKE_CASE_ : Any = torch.tensor( [[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] ) elif "huge" in checkpoint_url: SCREAMING_SNAKE_CASE_ : Dict = torch.tensor( [[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] ) else: SCREAMING_SNAKE_CASE_ : int = torch.tensor( [[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) A = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
97
0
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def a_ ( lowerCAmelCase_ : str=None, lowerCAmelCase_ : Any=None ): return field(default_factory=lambda: default, metadata=lowerCAmelCase_ ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( metadata={"""help""": """The csv file to plot."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to plot along batch size or sequence length. Defaults to sequence length."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether the csv file has time results or memory results. Defaults to memory results."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Disable logarithmic scale when plotting"""} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": """Whether the csv file has training results or inference results. Defaults to inference results.""" } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Filename under which the plot will be saved. If unused no plot is saved."""} , ) a_ = list_field( default=_UpperCamelCase , metadata={"""help""": """List of model names that are used instead of the ones in the csv file."""} ) def a_ ( lowerCAmelCase_ : Tuple ): try: int(lowerCAmelCase_ ) return True except ValueError: return False def a_ ( lowerCAmelCase_ : Dict ): try: float(lowerCAmelCase_ ) return True except ValueError: return False class _UpperCAmelCase : """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase_ : List[Any] ) -> Union[str, Any]: __lowerCAmelCase = args __lowerCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='' ) as csv_file: __lowerCAmelCase = csv.DictReader(lowerCAmelCase_ ) for row in reader: __lowerCAmelCase = row['model'] self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) ) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) ) if can_convert_to_int(row['result'] ): # value is not None __lowerCAmelCase = int(row['result'] ) elif can_convert_to_float(row['result'] ): # value is not None __lowerCAmelCase = float(row['result'] ) def lowercase ( self : List[Any] ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase = plt.subplots() __lowerCAmelCase = 'Time usage' if self.args.is_time else 'Memory usage' __lowerCAmelCase = title_str + ' for training' if self.args.is_train else title_str + ' for inference' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log' ) ax.set_yscale('log' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): __lowerCAmelCase = sorted(set(self.result_dict[model_name]['bsz'] ) ) __lowerCAmelCase = sorted(set(self.result_dict[model_name]['seq_len'] ) ) __lowerCAmelCase = self.result_dict[model_name]['result'] ((__lowerCAmelCase) , (__lowerCAmelCase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) __lowerCAmelCase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: __lowerCAmelCase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=lowerCAmelCase_ , ) else: __lowerCAmelCase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = ( ('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz') ) __lowerCAmelCase = np.asarray(lowerCAmelCase_ , lowerCAmelCase_ )[: len(lowerCAmelCase_ )] plt.scatter( lowerCAmelCase_ , lowerCAmelCase_ , label=f"""{label_model_name} - {inner_loop_label}: {inner_loop_value}""" ) plt.plot(lowerCAmelCase_ , lowerCAmelCase_ , '--' ) title_str += f""" {label_model_name} vs.""" __lowerCAmelCase = title_str[:-4] __lowerCAmelCase = 'Time in s' if self.args.is_time else 'Memory in MB' # plot plt.title(lowerCAmelCase_ ) plt.xlabel(lowerCAmelCase_ ) plt.ylabel(lowerCAmelCase_ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def a_ ( ): __lowerCAmelCase = HfArgumentParser(lowerCAmelCase_ ) __lowerCAmelCase = parser.parse_args_into_dataclasses()[0] __lowerCAmelCase = Plot(args=lowerCAmelCase_ ) plot.plot() if __name__ == "__main__": main()
53
"""simple docstring""" import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class __a (unittest.TestCase): '''simple docstring''' def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ : Tuple = SamImageProcessor() SCREAMING_SNAKE_CASE__ : List[str] = SamProcessor(_a ) processor.save_pretrained(self.tmpdirname ) def _a ( self , **_a ) -> Union[str, Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_a ).image_processor def _a ( self ) -> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE__ : Tuple = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : Dict = self.get_image_processor(do_normalize=_a , padding_value=1.0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.get_image_processor() SCREAMING_SNAKE_CASE__ : Any = SamProcessor(image_processor=_a ) SCREAMING_SNAKE_CASE__ : List[str] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ : Optional[Any] = image_processor(_a , return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ : Dict = processor(images=_a , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_torch def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.get_image_processor() SCREAMING_SNAKE_CASE__ : Any = SamProcessor(image_processor=_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = [torch.ones((1, 3, 5, 5) )] SCREAMING_SNAKE_CASE__ : str = [[1_764, 2_646]] SCREAMING_SNAKE_CASE__ : List[Any] = [[683, 1_024]] SCREAMING_SNAKE_CASE__ : Any = processor.post_process_masks(_a , _a , _a ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) SCREAMING_SNAKE_CASE__ : Dict = processor.post_process_masks( _a , torch.tensor(_a ) , torch.tensor(_a ) ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) # should also work with np SCREAMING_SNAKE_CASE__ : Dict = [np.ones((1, 3, 5, 5) )] SCREAMING_SNAKE_CASE__ : Tuple = processor.post_process_masks(_a , np.array(_a ) , np.array(_a ) ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) SCREAMING_SNAKE_CASE__ : Dict = [[1, 0], [0, 1]] with self.assertRaises(_a ): SCREAMING_SNAKE_CASE__ : Tuple = processor.post_process_masks(_a , np.array(_a ) , np.array(_a ) ) @require_vision @require_tf class __a (unittest.TestCase): '''simple docstring''' def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ : Optional[int] = SamImageProcessor() SCREAMING_SNAKE_CASE__ : Dict = SamProcessor(_a ) processor.save_pretrained(self.tmpdirname ) def _a ( self , **_a ) -> List[str]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_a ).image_processor def _a ( self ) -> int: """simple docstring""" shutil.rmtree(self.tmpdirname ) def _a ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE__ : Any = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : int = self.get_image_processor(do_normalize=_a , padding_value=1.0 ) SCREAMING_SNAKE_CASE__ : Tuple = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.get_image_processor() SCREAMING_SNAKE_CASE__ : List[Any] = SamProcessor(image_processor=_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ : Any = image_processor(_a , return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ : Any = processor(images=_a , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_tf def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.get_image_processor() SCREAMING_SNAKE_CASE__ : Union[str, Any] = SamProcessor(image_processor=_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [tf.ones((1, 3, 5, 5) )] SCREAMING_SNAKE_CASE__ : Optional[int] = [[1_764, 2_646]] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [[683, 1_024]] SCREAMING_SNAKE_CASE__ : Optional[Any] = processor.post_process_masks(_a , _a , _a , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = processor.post_process_masks( _a , tf.convert_to_tensor(_a ) , tf.convert_to_tensor(_a ) , return_tensors="""tf""" , ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) # should also work with np SCREAMING_SNAKE_CASE__ : Optional[int] = [np.ones((1, 3, 5, 5) )] SCREAMING_SNAKE_CASE__ : Optional[Any] = processor.post_process_masks( _a , np.array(_a ) , np.array(_a ) , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) SCREAMING_SNAKE_CASE__ : Any = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): SCREAMING_SNAKE_CASE__ : str = processor.post_process_masks( _a , np.array(_a ) , np.array(_a ) , return_tensors="""tf""" ) @require_vision @require_torchvision class __a (unittest.TestCase): '''simple docstring''' def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ : Dict = SamImageProcessor() SCREAMING_SNAKE_CASE__ : Dict = SamProcessor(_a ) processor.save_pretrained(self.tmpdirname ) def _a ( self , **_a ) -> Any: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_a ).image_processor def _a ( self ) -> Union[str, Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.get_image_processor() SCREAMING_SNAKE_CASE__ : int = SamProcessor(image_processor=_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) SCREAMING_SNAKE_CASE__ : List[Any] = [tf.convert_to_tensor(_a )] SCREAMING_SNAKE_CASE__ : Dict = [torch.tensor(_a )] SCREAMING_SNAKE_CASE__ : Optional[int] = [[1_764, 2_646]] SCREAMING_SNAKE_CASE__ : List[str] = [[683, 1_024]] SCREAMING_SNAKE_CASE__ : List[Any] = processor.post_process_masks( _a , _a , _a , return_tensors="""tf""" ) SCREAMING_SNAKE_CASE__ : List[str] = processor.post_process_masks( _a , _a , _a , return_tensors="""pt""" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.get_image_processor() SCREAMING_SNAKE_CASE__ : List[Any] = SamProcessor(image_processor=_a ) SCREAMING_SNAKE_CASE__ : str = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ : int = image_processor(_a , return_tensors="""pt""" )["""pixel_values"""].numpy() SCREAMING_SNAKE_CASE__ : Any = processor(images=_a , return_tensors="""pt""" )["""pixel_values"""].numpy() SCREAMING_SNAKE_CASE__ : Optional[Any] = image_processor(_a , return_tensors="""tf""" )["""pixel_values"""].numpy() SCREAMING_SNAKE_CASE__ : str = processor(images=_a , return_tensors="""tf""" )["""pixel_values"""].numpy() self.assertTrue(np.allclose(_a , _a ) ) self.assertTrue(np.allclose(_a , _a ) ) self.assertTrue(np.allclose(_a , _a ) )
680
0
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __A ( _A ): """simple docstring""" __a = [] embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", f"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", f"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", f"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", f"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def __A ( _A , _A ): """simple docstring""" __a = [] attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", f"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", f"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", f"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", f"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def __A ( _A ): """simple docstring""" __a = [] token.append((f"""cvt.encoder.stages.{idx}.cls_token""", "stage2.cls_token") ) return token def __A ( ): """simple docstring""" __a = [] head.append(("layernorm.weight", "norm.weight") ) head.append(("layernorm.bias", "norm.bias") ) head.append(("classifier.weight", "head.weight") ) head.append(("classifier.bias", "head.bias") ) return head def __A ( _A , _A , _A , _A ): """simple docstring""" __a = "imagenet-1k-id2label.json" __a = 1000 __a = "huggingface/label-files" __a = num_labels __a = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type="dataset" ) ) , "r" ) ) __a = {int(_A ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} __a = __a = CvtConfig(num_labels=_A , idalabel=_A , labelaid=_A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("/" , 1 )[-1][4:6] == "13": __a = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("/" , 1 )[-1][4:6] == "21": __a = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __a = [2, 2, 20] __a = [3, 12, 16] __a = [192, 768, 1024] __a = CvtForImageClassification(_A ) __a = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) __a = image_size __a = torch.load(_A , map_location=torch.device("cpu" ) ) __a = OrderedDict() __a = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: __a = list_of_state_dict + cls_token(_A ) __a = list_of_state_dict + embeddings(_A ) for cnt in range(config.depth[idx] ): __a = list_of_state_dict + attention(_A , _A ) __a = list_of_state_dict + final() for gg in list_of_state_dict: print(_A ) for i in range(len(_A ) ): __a = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() parser.add_argument( """--cvt_model""", default="""cvt-w24""", type=str, help="""Name of the cvt model you'd like to convert.""", ) parser.add_argument( """--image_size""", default=384, type=int, help="""Input Image Size""", ) parser.add_argument( """--cvt_file_name""", default=R"""cvtmodels\CvT-w24-384x384-IN-22k.pth""", type=str, help="""Input Image Size""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) SCREAMING_SNAKE_CASE : Dict = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
714
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html SCREAMING_SNAKE_CASE : List[Any] = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class A_ : _SCREAMING_SNAKE_CASE = PegasusConfig _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = """gelu""" def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any=13 , __SCREAMING_SNAKE_CASE : Any=7 , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Optional[int]=99 , __SCREAMING_SNAKE_CASE : Optional[int]=32 , __SCREAMING_SNAKE_CASE : List[str]=5 , __SCREAMING_SNAKE_CASE : Tuple=4 , __SCREAMING_SNAKE_CASE : int=37 , __SCREAMING_SNAKE_CASE : str=0.1 , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Tuple=20 , __SCREAMING_SNAKE_CASE : List[str]=2 , __SCREAMING_SNAKE_CASE : Dict=1 , __SCREAMING_SNAKE_CASE : List[Any]=0 , ): __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = eos_token_id __a = pad_token_id __a = bos_token_id def _UpperCAmelCase ( self : Optional[int] ): __a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) __a = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) __a = np.concatenate([input_ids, eos_tensor] , axis=1 ) __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __a = prepare_pegasus_inputs_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return config, inputs_dict def _UpperCAmelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str ): __a = 20 __a = model_class_name(__SCREAMING_SNAKE_CASE ) __a = model.encode(inputs_dict["input_ids"] ) __a , __a = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) __a = model.init_cache(decoder_input_ids.shape[0] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __a = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) __a = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __a = model.decode( decoder_input_ids[:, :-1] , __SCREAMING_SNAKE_CASE , decoder_attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE , decoder_position_ids=__SCREAMING_SNAKE_CASE , ) __a = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) __a = model.decode( decoder_input_ids[:, -1:] , __SCREAMING_SNAKE_CASE , decoder_attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__SCREAMING_SNAKE_CASE , ) __a = model.decode(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __a = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) def _UpperCAmelCase ( self : str , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] ): __a = 20 __a = model_class_name(__SCREAMING_SNAKE_CASE ) __a = model.encode(inputs_dict["input_ids"] ) __a , __a = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) __a = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __a = model.init_cache(decoder_input_ids.shape[0] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __a = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __a = model.decode( decoder_input_ids[:, :-1] , __SCREAMING_SNAKE_CASE , decoder_attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE , decoder_position_ids=__SCREAMING_SNAKE_CASE , ) __a = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) __a = model.decode( decoder_input_ids[:, -1:] , __SCREAMING_SNAKE_CASE , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__SCREAMING_SNAKE_CASE , decoder_position_ids=__SCREAMING_SNAKE_CASE , ) __a = model.decode(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , decoder_attention_mask=__SCREAMING_SNAKE_CASE ) __a = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) def __A ( _A , _A , _A , _A=None , _A=None , ): """simple docstring""" if attention_mask is None: __a = np.not_equal(_A , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: __a = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class A_ ( a_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) _SCREAMING_SNAKE_CASE = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def _UpperCAmelCase ( self : int ): __a = FlaxPegasusModelTester(self ) __a = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Tuple ): self.config_tester.run_common_tests() def _UpperCAmelCase ( self : Optional[int] ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : str ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Dict ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __a = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __a = model_class(__SCREAMING_SNAKE_CASE ) @jax.jit def encode_jitted(__SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple=None , **__SCREAMING_SNAKE_CASE : Optional[Any] ): return model.encode(input_ids=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) with self.subTest("JIT Enabled" ): __a = encode_jitted(**__SCREAMING_SNAKE_CASE ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __a = encode_jitted(**__SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) ) for jitted_output, output in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(jitted_output.shape , output.shape ) def _UpperCAmelCase ( self : List[str] ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __a = model_class(__SCREAMING_SNAKE_CASE ) __a = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) __a = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(__SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple ): return model.decode( decoder_input_ids=__SCREAMING_SNAKE_CASE , decoder_attention_mask=__SCREAMING_SNAKE_CASE , encoder_outputs=__SCREAMING_SNAKE_CASE , ) with self.subTest("JIT Enabled" ): __a = decode_jitted(**__SCREAMING_SNAKE_CASE ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __a = decode_jitted(**__SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) ) for jitted_output, output in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _UpperCAmelCase ( self : Tuple ): for model_class_name in self.all_model_classes: __a = model_class_name.from_pretrained("google/pegasus-large" , from_pt=__SCREAMING_SNAKE_CASE ) __a = np.ones((1, 1) ) __a = model(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @slow def _UpperCAmelCase ( self : str ): __a = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" ) __a = PegasusTokenizer.from_pretrained("google/pegasus-xsum" ) __a = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] __a = [ "California's largest electricity provider has turned off power to hundreds of thousands of customers.", "Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.", ] __a = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors="np" , truncation=__SCREAMING_SNAKE_CASE , max_length=5_12 , padding=__SCREAMING_SNAKE_CASE ) __a = model.generate(**__SCREAMING_SNAKE_CASE , num_beams=2 ).sequences __a = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) assert tgt_text == decoded
525
0
import sys __SCREAMING_SNAKE_CASE : Optional[int] =( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def UpperCamelCase__ ( lowerCAmelCase__ = N ): lowercase = -sys.maxsize - 1 for i in range(len(lowerCAmelCase__ ) - 12 ): lowercase = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: lowercase = product return largest_product if __name__ == "__main__": print(f'''{solution() = }''')
428
def UpperCamelCase__ ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowercase = f"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCAmelCase__ ) if number < 1: lowercase = f"""Input value of [number={number}] must be > 0""" raise ValueError(lowerCAmelCase__ ) lowercase = 1 for i in range(1 ,lowerCAmelCase__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
428
1
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __magic_name__ (SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowercase : Dict = 42 class __magic_name__ (nn.Module ): '''simple docstring''' def __init__( self:Dict , _a:Optional[int]=3 , _a:Dict=3 , _a:Tuple=("DownEncoderBlock2D",) , _a:List[str]=(64,) , _a:List[Any]=2 , _a:Optional[int]=32 , _a:List[str]="silu" , _a:Tuple=True , ): super().__init__() snake_case__ = layers_per_block snake_case__ = torch.nn.Convad( snake_case__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) snake_case__ = None snake_case__ = nn.ModuleList([] ) # down snake_case__ = block_out_channels[0] for i, down_block_type in enumerate(snake_case__ ): snake_case__ = output_channel snake_case__ = block_out_channels[i] snake_case__ = i == len(snake_case__ ) - 1 snake_case__ = get_down_block( snake_case__ , num_layers=self.layers_per_block , in_channels=snake_case__ , out_channels=snake_case__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=snake_case__ , resnet_groups=snake_case__ , attention_head_dim=snake_case__ , temb_channels=snake_case__ , ) self.down_blocks.append(snake_case__ ) # mid snake_case__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=snake_case__ , output_scale_factor=1 , resnet_time_scale_shift='''default''' , attention_head_dim=block_out_channels[-1] , resnet_groups=snake_case__ , temb_channels=snake_case__ , ) # out snake_case__ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=snake_case__ , eps=1e-6 ) snake_case__ = nn.SiLU() snake_case__ = 2 * out_channels if double_z else out_channels snake_case__ = nn.Convad(block_out_channels[-1] , snake_case__ , 3 , padding=1 ) snake_case__ = False def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Dict ): snake_case__ = x snake_case__ = self.conv_in(snake_case__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(_a:Any ): def custom_forward(*_a:Dict ): return module(*snake_case__ ) return custom_forward # down if is_torch_version('''>=''' , '''1.11.0''' ): for down_block in self.down_blocks: snake_case__ = torch.utils.checkpoint.checkpoint( create_custom_forward(snake_case__ ) , snake_case__ , use_reentrant=snake_case__ ) # middle snake_case__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , snake_case__ , use_reentrant=snake_case__ ) else: for down_block in self.down_blocks: snake_case__ = torch.utils.checkpoint.checkpoint(create_custom_forward(snake_case__ ) , snake_case__ ) # middle snake_case__ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , snake_case__ ) else: # down for down_block in self.down_blocks: snake_case__ = down_block(snake_case__ ) # middle snake_case__ = self.mid_block(snake_case__ ) # post-process snake_case__ = self.conv_norm_out(snake_case__ ) snake_case__ = self.conv_act(snake_case__ ) snake_case__ = self.conv_out(snake_case__ ) return sample class __magic_name__ (nn.Module ): '''simple docstring''' def __init__( self:Optional[Any] , _a:List[Any]=3 , _a:Tuple=3 , _a:Any=("UpDecoderBlock2D",) , _a:Union[str, Any]=(64,) , _a:int=2 , _a:str=32 , _a:List[str]="silu" , _a:Optional[int]="group" , ): super().__init__() snake_case__ = layers_per_block snake_case__ = nn.Convad( snake_case__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) snake_case__ = None snake_case__ = nn.ModuleList([] ) snake_case__ = in_channels if norm_type == "spatial" else None # mid snake_case__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=snake_case__ , output_scale_factor=1 , resnet_time_scale_shift='''default''' if norm_type == '''group''' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=snake_case__ , temb_channels=snake_case__ , ) # up snake_case__ = list(reversed(snake_case__ ) ) snake_case__ = reversed_block_out_channels[0] for i, up_block_type in enumerate(snake_case__ ): snake_case__ = output_channel snake_case__ = reversed_block_out_channels[i] snake_case__ = i == len(snake_case__ ) - 1 snake_case__ = get_up_block( snake_case__ , num_layers=self.layers_per_block + 1 , in_channels=snake_case__ , out_channels=snake_case__ , prev_output_channel=snake_case__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=snake_case__ , resnet_groups=snake_case__ , attention_head_dim=snake_case__ , temb_channels=snake_case__ , resnet_time_scale_shift=snake_case__ , ) self.up_blocks.append(snake_case__ ) snake_case__ = output_channel # out if norm_type == "spatial": snake_case__ = SpatialNorm(block_out_channels[0] , snake_case__ ) else: snake_case__ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=snake_case__ , eps=1e-6 ) snake_case__ = nn.SiLU() snake_case__ = nn.Convad(block_out_channels[0] , snake_case__ , 3 , padding=1 ) snake_case__ = False def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:Dict=None ): snake_case__ = z snake_case__ = self.conv_in(snake_case__ ) snake_case__ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(_a:Tuple ): def custom_forward(*_a:Dict ): return module(*snake_case__ ) return custom_forward if is_torch_version('''>=''' , '''1.11.0''' ): # middle snake_case__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , snake_case__ , snake_case__ , use_reentrant=snake_case__ ) snake_case__ = sample.to(snake_case__ ) # up for up_block in self.up_blocks: snake_case__ = torch.utils.checkpoint.checkpoint( create_custom_forward(snake_case__ ) , snake_case__ , snake_case__ , use_reentrant=snake_case__ ) else: # middle snake_case__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , snake_case__ , snake_case__ ) snake_case__ = sample.to(snake_case__ ) # up for up_block in self.up_blocks: snake_case__ = torch.utils.checkpoint.checkpoint(create_custom_forward(snake_case__ ) , snake_case__ , snake_case__ ) else: # middle snake_case__ = self.mid_block(snake_case__ , snake_case__ ) snake_case__ = sample.to(snake_case__ ) # up for up_block in self.up_blocks: snake_case__ = up_block(snake_case__ , snake_case__ ) # post-process if latent_embeds is None: snake_case__ = self.conv_norm_out(snake_case__ ) else: snake_case__ = self.conv_norm_out(snake_case__ , snake_case__ ) snake_case__ = self.conv_act(snake_case__ ) snake_case__ = self.conv_out(snake_case__ ) return sample class __magic_name__ (nn.Module ): '''simple docstring''' def __init__( self:Any , _a:int , _a:List[str] , _a:List[Any] , _a:List[Any]=None , _a:Any="random" , _a:Optional[Any]=False , _a:Optional[int]=True ): super().__init__() snake_case__ = n_e snake_case__ = vq_embed_dim snake_case__ = beta snake_case__ = legacy snake_case__ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) snake_case__ = remap if self.remap is not None: self.register_buffer('''used''' , torch.tensor(np.load(self.remap ) ) ) snake_case__ = self.used.shape[0] snake_case__ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": snake_case__ = self.re_embed snake_case__ = self.re_embed + 1 print( F"""Remapping {self.n_e} indices to {self.re_embed} indices. """ F"""Using {self.unknown_index} for unknown indices.""" ) else: snake_case__ = n_e snake_case__ = sane_index_shape def SCREAMING_SNAKE_CASE__ ( self:int , _a:Optional[int] ): snake_case__ = inds.shape assert len(snake_case__ ) > 1 snake_case__ = inds.reshape(ishape[0] , -1 ) snake_case__ = self.used.to(snake_case__ ) snake_case__ = (inds[:, :, None] == used[None, None, ...]).long() snake_case__ = match.argmax(-1 ) snake_case__ = match.sum(2 ) < 1 if self.unknown_index == "random": snake_case__ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: snake_case__ = self.unknown_index return new.reshape(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:Optional[Any] ): snake_case__ = inds.shape assert len(snake_case__ ) > 1 snake_case__ = inds.reshape(ishape[0] , -1 ) snake_case__ = self.used.to(snake_case__ ) if self.re_embed > self.used.shape[0]: # extra token snake_case__ = 0 # simply set to zero snake_case__ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , snake_case__ ) return back.reshape(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:List[Any] ): snake_case__ = z.permute(0 , 2 , 3 , 1 ).contiguous() snake_case__ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z snake_case__ = torch.argmin(torch.cdist(snake_case__ , self.embedding.weight ) , dim=1 ) snake_case__ = self.embedding(snake_case__ ).view(z.shape ) snake_case__ = None snake_case__ = None # compute loss for embedding if not self.legacy: snake_case__ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: snake_case__ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients snake_case__ = z + (z_q - z).detach() # reshape back to match original input shape snake_case__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: snake_case__ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis snake_case__ = self.remap_to_used(snake_case__ ) snake_case__ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: snake_case__ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:List[str] , _a:Union[str, Any] ): # shape specifying (batch, height, width, channel) if self.remap is not None: snake_case__ = indices.reshape(shape[0] , -1 ) # add batch axis snake_case__ = self.unmap_to_all(snake_case__ ) snake_case__ = indices.reshape(-1 ) # flatten again # get quantized latent vectors snake_case__ = self.embedding(snake_case__ ) if shape is not None: snake_case__ = z_q.view(snake_case__ ) # reshape back to match original input shape snake_case__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __magic_name__ (SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self:Union[str, Any] , _a:Optional[int] , _a:Any=False ): snake_case__ = parameters snake_case__ = torch.chunk(snake_case__ , 2 , dim=1 ) snake_case__ = torch.clamp(self.logvar , -30.0 , 20.0 ) snake_case__ = deterministic snake_case__ = torch.exp(0.5 * self.logvar ) snake_case__ = torch.exp(self.logvar ) if self.deterministic: snake_case__ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int = None ): snake_case__ = randn_tensor( self.mean.shape , generator=snake_case__ , device=self.parameters.device , dtype=self.parameters.dtype ) snake_case__ = self.mean + self.std * sample return x def SCREAMING_SNAKE_CASE__ ( self:str , _a:Dict=None ): if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:List[str] , _a:Optional[int]=[1, 2, 3] ): if self.deterministic: return torch.Tensor([0.0] ) snake_case__ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): return self.mean
719
from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCamelCase__ : Any = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : int = 'trajectory_transformer' __lowercase : int = ['past_key_values'] __lowercase : Optional[Any] = { 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self:List[str] , _a:Any=1_00 , _a:List[str]=5 , _a:Union[str, Any]=1 , _a:Any=1 , _a:Union[str, Any]=2_49 , _a:List[Any]=6 , _a:Tuple=17 , _a:str=25 , _a:List[str]=4 , _a:str=4 , _a:Dict=1_28 , _a:str=0.1 , _a:str=0.1 , _a:Dict=0.1 , _a:str=0.0006 , _a:Tuple=5_12 , _a:Any=0.02 , _a:Optional[int]=1e-12 , _a:List[str]=1 , _a:Any=True , _a:List[Any]=1 , _a:Dict=5_02_56 , _a:List[Any]=5_02_56 , **_a:Optional[Any] , ): snake_case__ = vocab_size snake_case__ = action_weight snake_case__ = reward_weight snake_case__ = value_weight snake_case__ = max_position_embeddings snake_case__ = block_size snake_case__ = action_dim snake_case__ = observation_dim snake_case__ = transition_dim snake_case__ = learning_rate snake_case__ = n_layer snake_case__ = n_head snake_case__ = n_embd snake_case__ = embd_pdrop snake_case__ = attn_pdrop snake_case__ = resid_pdrop snake_case__ = initializer_range snake_case__ = layer_norm_eps snake_case__ = kaiming_initializer_range snake_case__ = use_cache super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a )
208
0
"""simple docstring""" def A_ ( __lowercase , __lowercase ): return int((input_a, input_a).count(0 ) == 0 ) def A_ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
357
"""simple docstring""" from collections.abc import Callable class a__ : def __init__( self :Tuple , _lowerCamelCase :Callable | None = None ): '''simple docstring''' UpperCamelCase_ : list =[] # Stores indexes of each item for supporting updates and deletion. UpperCamelCase_ : dict ={} # Stores current size of heap. UpperCamelCase_ : Any =0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. UpperCamelCase_ : List[str] =key or (lambda _lowerCamelCase : x) def lowerCamelCase_ ( self :Tuple , _lowerCamelCase :int ): '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def lowerCamelCase_ ( self :Optional[Any] , _lowerCamelCase :int ): '''simple docstring''' UpperCamelCase_ : List[str] =int(2 * i + 1 ) return left if 0 < left < self.size else None def lowerCamelCase_ ( self :Tuple , _lowerCamelCase :int ): '''simple docstring''' UpperCamelCase_ : Optional[Any] =int(2 * i + 2 ) return right if 0 < right < self.size else None def lowerCamelCase_ ( self :Dict , _lowerCamelCase :int , _lowerCamelCase :int ): '''simple docstring''' UpperCamelCase_ , UpperCamelCase_ : Optional[int] =( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. UpperCamelCase_ , UpperCamelCase_ : Union[str, Any] =self.arr[j], self.arr[i] def lowerCamelCase_ ( self :Optional[Any] , _lowerCamelCase :int , _lowerCamelCase :int ): '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def lowerCamelCase_ ( self :Any , _lowerCamelCase :int ): '''simple docstring''' UpperCamelCase_ : int =self._left(_lowerCamelCase ) UpperCamelCase_ : List[Any] =self._right(_lowerCamelCase ) UpperCamelCase_ : Optional[Any] =i if left is not None and not self._cmp(_lowerCamelCase , _lowerCamelCase ): UpperCamelCase_ : Optional[int] =left if right is not None and not self._cmp(_lowerCamelCase , _lowerCamelCase ): UpperCamelCase_ : List[Any] =right return valid_parent def lowerCamelCase_ ( self :Any , _lowerCamelCase :int ): '''simple docstring''' UpperCamelCase_ : Dict =self._parent(_lowerCamelCase ) while parent is not None and not self._cmp(_lowerCamelCase , _lowerCamelCase ): self._swap(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_ , UpperCamelCase_ : Dict =parent, self._parent(_lowerCamelCase ) def lowerCamelCase_ ( self :List[str] , _lowerCamelCase :int ): '''simple docstring''' UpperCamelCase_ : Optional[Any] =self._get_valid_parent(_lowerCamelCase ) while valid_parent != index: self._swap(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_ , UpperCamelCase_ : int =valid_parent, self._get_valid_parent(_lowerCamelCase ) def lowerCamelCase_ ( self :Optional[Any] , _lowerCamelCase :int , _lowerCamelCase :int ): '''simple docstring''' if item not in self.pos_map: return UpperCamelCase_ : List[Any] =self.pos_map[item] UpperCamelCase_ : int =[item, self.key(_lowerCamelCase )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_lowerCamelCase ) self._heapify_down(_lowerCamelCase ) def lowerCamelCase_ ( self :Tuple , _lowerCamelCase :int ): '''simple docstring''' if item not in self.pos_map: return UpperCamelCase_ : Any =self.pos_map[item] del self.pos_map[item] UpperCamelCase_ : Dict =self.arr[self.size - 1] UpperCamelCase_ : Optional[int] =index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_lowerCamelCase ) self._heapify_down(_lowerCamelCase ) def lowerCamelCase_ ( self :Optional[int] , _lowerCamelCase :int , _lowerCamelCase :int ): '''simple docstring''' UpperCamelCase_ : Optional[int] =len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_lowerCamelCase )] ) else: UpperCamelCase_ : str =[item, self.key(_lowerCamelCase )] UpperCamelCase_ : Optional[int] =self.size self.size += 1 self._heapify_up(self.size - 1 ) def lowerCamelCase_ ( self :List[Any] ): '''simple docstring''' return self.arr[0] if self.size else None def lowerCamelCase_ ( self :Tuple ): '''simple docstring''' UpperCamelCase_ : int =self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def A_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
357
1
"""simple docstring""" import sys import turtle def lowercase__ ( lowerCAmelCase : tuple[float, float] , lowerCAmelCase : tuple[float, float] ) -> tuple[float, float]: """simple docstring""" return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowercase__ ( lowerCAmelCase : tuple[float, float] , lowerCAmelCase : tuple[float, float] , lowerCAmelCase : tuple[float, float] , lowerCAmelCase : int , ) -> None: """simple docstring""" my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(lowerCAmelCase , get_mid(lowerCAmelCase , lowerCAmelCase ) , get_mid(lowerCAmelCase , lowerCAmelCase ) , depth - 1 ) triangle(lowerCAmelCase , get_mid(lowerCAmelCase , lowerCAmelCase ) , get_mid(lowerCAmelCase , lowerCAmelCase ) , depth - 1 ) triangle(lowerCAmelCase , get_mid(lowerCAmelCase , lowerCAmelCase ) , get_mid(lowerCAmelCase , lowerCAmelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) SCREAMING_SNAKE_CASE_ = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') SCREAMING_SNAKE_CASE_ = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
715
"""simple docstring""" import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', } SCREAMING_SNAKE_CASE_ = { '''vocab_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'''}, '''merges_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'''}, } SCREAMING_SNAKE_CASE_ = { '''ctrl''': 256, } SCREAMING_SNAKE_CASE_ = { '''Pregnancy''': 16_8629, '''Christianity''': 7675, '''Explain''': 10_6423, '''Fitness''': 6_3440, '''Saving''': 6_3163, '''Ask''': 2_7171, '''Ass''': 9_5985, '''Joke''': 16_3509, '''Questions''': 4_5622, '''Thoughts''': 4_9605, '''Retail''': 5_2342, '''Feminism''': 16_4338, '''Writing''': 1_1992, '''Atheism''': 19_2263, '''Netflix''': 4_8616, '''Computing''': 3_9639, '''Opinion''': 4_3213, '''Alone''': 4_4967, '''Funny''': 5_8917, '''Gaming''': 4_0358, '''Human''': 4088, '''India''': 1331, '''Joker''': 7_7138, '''Diet''': 3_6206, '''Legal''': 1_1859, '''Norman''': 4939, '''Tip''': 7_2689, '''Weight''': 5_2343, '''Movies''': 4_6273, '''Running''': 2_3425, '''Science''': 2090, '''Horror''': 3_7793, '''Confession''': 6_0572, '''Finance''': 1_2250, '''Politics''': 1_6360, '''Scary''': 19_1985, '''Support''': 1_2654, '''Technologies''': 3_2516, '''Teenage''': 6_6160, '''Event''': 3_2769, '''Learned''': 6_7460, '''Notion''': 18_2770, '''Wikipedia''': 3_7583, '''Books''': 6665, '''Extract''': 7_6050, '''Confessions''': 10_2701, '''Conspiracy''': 7_5932, '''Links''': 6_3674, '''Narcissus''': 15_0425, '''Relationship''': 5_4766, '''Relationships''': 13_4796, '''Reviews''': 4_1671, '''News''': 4256, '''Translation''': 2_6820, '''multilingual''': 12_8406, } def lowercase__ ( lowerCAmelCase : int ) -> int: """simple docstring""" UpperCAmelCase = set() UpperCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase = char UpperCAmelCase = set(lowerCAmelCase ) return pairs class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): __SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Union[str, Any] = CONTROL_CODES def __init__( self , lowercase_ , lowercase_ , lowercase_="<unk>" , **lowercase_ ) -> Optional[int]: super().__init__(unk_token=lowercase_ , **lowercase_ ) with open(lowercase_ , encoding='utf-8' ) as vocab_handle: UpperCAmelCase = json.load(lowercase_ ) UpperCAmelCase = {v: k for k, v in self.encoder.items()} with open(lowercase_ , encoding='utf-8' ) as merges_handle: UpperCAmelCase = merges_handle.read().split('\n' )[1:-1] UpperCAmelCase = [tuple(merge.split() ) for merge in merges] UpperCAmelCase = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) UpperCAmelCase = {} @property def a_ ( self ) -> Union[str, Any]: return len(self.encoder ) def a_ ( self ) -> Optional[Any]: return dict(self.encoder , **self.added_tokens_encoder ) def a_ ( self , lowercase_ ) -> int: if token in self.cache: return self.cache[token] UpperCAmelCase = tuple(lowercase_ ) UpperCAmelCase = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) UpperCAmelCase = get_pairs(lowercase_ ) if not pairs: return token while True: UpperCAmelCase = min(lowercase_ , key=lambda lowercase_ : self.bpe_ranks.get(lowercase_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase , UpperCAmelCase = bigram UpperCAmelCase = [] UpperCAmelCase = 0 while i < len(lowercase_ ): try: UpperCAmelCase = word.index(lowercase_ , lowercase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase = j if word[i] == first and i < len(lowercase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase = tuple(lowercase_ ) UpperCAmelCase = new_word if len(lowercase_ ) == 1: break else: UpperCAmelCase = get_pairs(lowercase_ ) UpperCAmelCase = '@@ '.join(lowercase_ ) UpperCAmelCase = word[:-4] UpperCAmelCase = word return word def a_ ( self , lowercase_ ) -> List[Any]: UpperCAmelCase = [] UpperCAmelCase = re.findall(R'\S+\n?' , lowercase_ ) for token in words: split_tokens.extend(list(self.bpe(lowercase_ ).split(' ' ) ) ) return split_tokens def a_ ( self , lowercase_ ) -> Tuple: return self.encoder.get(lowercase_ , self.encoder.get(self.unk_token ) ) def a_ ( self , lowercase_ ) -> Optional[Any]: return self.decoder.get(lowercase_ , self.unk_token ) def a_ ( self , lowercase_ ) -> str: UpperCAmelCase = ' '.join(lowercase_ ).replace('@@ ' , '' ).strip() return out_string def a_ ( self , lowercase_ , lowercase_ = None ) -> Tuple[str]: if not os.path.isdir(lowercase_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowercase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + '\n' ) UpperCAmelCase = 0 with open(lowercase_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase_ : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ' Please check that the tokenizer is not corrupted!' ) UpperCAmelCase = token_index writer.write(' '.join(lowercase_ ) + '\n' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
183
0
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> int: UpperCamelCase__ : Any = [] for i in range(encoder_config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'encoder.deit.blocks.{i}.norm1.weight', f'encoder.encoder.layer.{i}.layernorm_before.weight')) rename_keys.append((f'encoder.deit.blocks.{i}.norm1.bias', f'encoder.encoder.layer.{i}.layernorm_before.bias')) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.weight', f'encoder.encoder.layer.{i}.attention.output.dense.weight')) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.bias', f'encoder.encoder.layer.{i}.attention.output.dense.bias')) rename_keys.append( (f'encoder.deit.blocks.{i}.norm2.weight', f'encoder.encoder.layer.{i}.layernorm_after.weight')) rename_keys.append((f'encoder.deit.blocks.{i}.norm2.bias', f'encoder.encoder.layer.{i}.layernorm_after.bias')) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.weight', f'encoder.encoder.layer.{i}.intermediate.dense.weight')) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.bias', f'encoder.encoder.layer.{i}.intermediate.dense.bias')) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc2.weight', f'encoder.encoder.layer.{i}.output.dense.weight')) rename_keys.append((f'encoder.deit.blocks.{i}.mlp.fc2.bias', f'encoder.encoder.layer.{i}.output.dense.bias')) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('encoder.deit.cls_token', 'encoder.embeddings.cls_token'), ('encoder.deit.pos_embed', 'encoder.embeddings.position_embeddings'), ('encoder.deit.patch_embed.proj.weight', 'encoder.embeddings.patch_embeddings.projection.weight'), ('encoder.deit.patch_embed.proj.bias', 'encoder.embeddings.patch_embeddings.projection.bias'), ('encoder.deit.norm.weight', 'encoder.layernorm.weight'), ('encoder.deit.norm.bias', 'encoder.layernorm.bias'), ]) return rename_keys def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Any: for i in range(encoder_config.num_hidden_layers): # queries, keys and values (only weights, no biases) UpperCamelCase__ : Dict = state_dict.pop(f'encoder.deit.blocks.{i}.attn.qkv.weight') UpperCamelCase__ : Union[str, Any] = in_proj_weight[ : encoder_config.hidden_size, : ] UpperCamelCase__ : Any = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] UpperCamelCase__ : Optional[Any] = in_proj_weight[ -encoder_config.hidden_size :, : ] def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Any: UpperCamelCase__ : Union[str, Any] = dct.pop(lowerCamelCase_) UpperCamelCase__ : List[Any] = val def __UpperCAmelCase ( lowerCamelCase_) -> List[str]: if "handwritten" in checkpoint_url: UpperCamelCase__ : Any = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: UpperCamelCase__ : List[Any] = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' UpperCamelCase__ : List[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_).raw).convert('RGB') return im @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : Any = ViTConfig(image_size=384 , qkv_bias=lowerCamelCase_) UpperCamelCase__ : Optional[Any] = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: UpperCamelCase__ : Optional[int] = 768 elif "large" in checkpoint_url: # use ViT-large encoder UpperCamelCase__ : Union[str, Any] = 1_024 UpperCamelCase__ : Union[str, Any] = 4_096 UpperCamelCase__ : Any = 24 UpperCamelCase__ : List[Any] = 16 UpperCamelCase__ : Union[str, Any] = 1_024 else: raise ValueError('Should either find \'base\' or \'large\' in checkpoint URL') # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: UpperCamelCase__ : List[str] = False UpperCamelCase__ : int = '''relu''' UpperCamelCase__ : int = 1_024 UpperCamelCase__ : Tuple = True UpperCamelCase__ : Dict = False UpperCamelCase__ : Dict = False # load HuggingFace model UpperCamelCase__ : Union[str, Any] = ViTModel(lowerCamelCase_ , add_pooling_layer=lowerCamelCase_) UpperCamelCase__ : Dict = TrOCRForCausalLM(lowerCamelCase_) UpperCamelCase__ : Any = VisionEncoderDecoderModel(encoder=lowerCamelCase_ , decoder=lowerCamelCase_) model.eval() # load state_dict of original model, rename some keys UpperCamelCase__ : List[str] = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu' , check_hash=lowerCamelCase_)['''model'''] UpperCamelCase__ : int = create_rename_keys(lowerCamelCase_ , lowerCamelCase_) for src, dest in rename_keys: rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): UpperCamelCase__ : Union[str, Any] = state_dict.pop(lowerCamelCase_) if key.startswith('decoder') and "output_projection" not in key: UpperCamelCase__ : List[str] = val else: UpperCamelCase__ : Dict = val # load state dict model.load_state_dict(lowerCamelCase_) # Check outputs on an image UpperCamelCase__ : int = ViTImageProcessor(size=encoder_config.image_size) UpperCamelCase__ : Union[str, Any] = RobertaTokenizer.from_pretrained('roberta-large') UpperCamelCase__ : Tuple = TrOCRProcessor(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Dict = processor(images=prepare_img(lowerCamelCase_) , return_tensors='pt').pixel_values # verify logits UpperCamelCase__ : Optional[int] = torch.tensor([[model.config.decoder.decoder_start_token_id]]) UpperCamelCase__ : Any = model(pixel_values=lowerCamelCase_ , decoder_input_ids=lowerCamelCase_) UpperCamelCase__ : List[Any] = outputs.logits UpperCamelCase__ : Union[str, Any] = torch.Size([1, 1, 50_265]) if "trocr-base-handwritten" in checkpoint_url: UpperCamelCase__ : Optional[int] = torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311]) elif "trocr-large-handwritten" in checkpoint_url: UpperCamelCase__ : Any = torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170]) elif "trocr-base-printed" in checkpoint_url: UpperCamelCase__ : Any = torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210]) elif "trocr-large-printed" in checkpoint_url: UpperCamelCase__ : Union[str, Any] = torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535]) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , lowerCamelCase_ , atol=1e-3), "First elements of logits not as expected" Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_) print(f'Saving model to {pytorch_dump_folder_path}') model.save_pretrained(lowerCamelCase_) print(f'Saving processor to {pytorch_dump_folder_path}') processor.save_pretrained(lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt', type=str, help='URL to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) lowerCAmelCase__ = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
596
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class a_ ( unittest.TestCase ): def __init__( self : Any , UpperCAmelCase__ : Optional[Any] ): """simple docstring""" snake_case : Union[str, Any] = parent def lowerCAmelCase( self : Optional[int] ): """simple docstring""" return {} def a_ ( ) -> int: """simple docstring""" snake_case : Any = '''<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR="FFFFFF"> <HR> <a href="http://google.com">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style="color:#0000FF"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>''' snake_case : Tuple = ''' <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> ''' return [html_string_a, html_string_a] @require_bsa class a_ ( a , unittest.TestCase ): A__ : List[Any] = MarkupLMFeatureExtractor if is_bsa_available() else None def lowerCAmelCase( self : Dict ): """simple docstring""" snake_case : int = MarkupLMFeatureExtractionTester(self ) @property def lowerCAmelCase( self : Tuple ): """simple docstring""" return self.feature_extract_tester.prepare_feat_extract_dict() def lowerCAmelCase( self : Optional[Any] ): """simple docstring""" # Initialize feature_extractor snake_case : List[Any] = self.feature_extraction_class() # Test not batched input snake_case : List[str] = get_html_strings()[0] snake_case : Any = feature_extractor(UpperCAmelCase__ ) # fmt: off snake_case : List[Any] = [['''sample document''', '''Goog''', '''This is one header''', '''This is a another Header''', '''Travel from''', '''SFO to JFK''', '''on May 2, 2015 at 2:00 pm. For details go to confirm.com''', '''Traveler''', '''name''', '''is''', '''John Doe''']] snake_case : List[str] = [['''/html/head/title''', '''/html/body/a''', '''/html/body/h1''', '''/html/body/h2''', '''/html/body/p''', '''/html/body/p/p/b[1]''', '''/html/body/p/p/b[2]/i''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/b''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/p''']] # fmt: on self.assertEqual(encoding.nodes , UpperCAmelCase__ ) self.assertEqual(encoding.xpaths , UpperCAmelCase__ ) # Test batched snake_case : List[str] = get_html_strings() snake_case : Optional[Any] = feature_extractor(UpperCAmelCase__ ) # fmt: off snake_case : List[Any] = expected_nodes + [['''My First Heading''', '''My first paragraph.''']] snake_case : Union[str, Any] = expected_xpaths + [['''/html/body/h1''', '''/html/body/p''']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , UpperCAmelCase__ ) self.assertEqual(encoding.xpaths , UpperCAmelCase__ )
598
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=_lowercase ) class _lowerCAmelCase ( _lowercase ): A__ = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) A__ = Features({'audio': Audio()} ) A__ = Features({'labels': ClassLabel} ) A__ = 'audio' A__ = 'labels' def __magic_name__( self , __UpperCAmelCase ): if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , __UpperCAmelCase ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) lowerCAmelCase__ : Optional[Any] = copy.deepcopy(self ) lowerCAmelCase__ : Optional[int] = self.label_schema.copy() lowerCAmelCase__ : int = features[self.label_column] lowerCAmelCase__ : Any = label_schema return task_template @property def __magic_name__( self ): return { self.audio_column: "audio", self.label_column: "labels", }
713
from collections import Counter from timeit import timeit def __lowerCAmelCase ( UpperCamelCase = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(''' ''' , '''''' ).lower() ).values() ) < 2 def __lowerCAmelCase ( UpperCamelCase = "" ) -> bool: if len(UpperCamelCase ) == 0: return True lowerCAmelCase__ : str = input_str.replace(''' ''' , '''''' ).lower() # character_freq_dict: Stores the frequency of every character in the input string lowerCAmelCase__ : dict[str, int] = {} for character in lower_case_input_str: lowerCAmelCase__ : int = character_freq_dict.get(UpperCamelCase , 0 ) + 1 lowerCAmelCase__ : Any = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def __lowerCAmelCase ( UpperCamelCase = "" ) -> None: print('''\nFor string = ''' , UpperCamelCase , ''':''' ) print( '''> can_string_be_rearranged_as_palindrome_counter()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome_counter(UpperCamelCase ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome_counter(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) print( '''> can_string_be_rearranged_as_palindrome()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome(UpperCamelCase ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) if __name__ == "__main__": lowerCAmelCase_ = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) lowerCAmelCase_ = can_string_be_rearranged_as_palindrome_counter(check_str) print(F"""{check_str} can {"" if status else "not "}be rearranged as a palindrome""")
470
0
"""simple docstring""" import math def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : int ): lowerCAmelCase = len(_UpperCAmelCase ) lowerCAmelCase = int(math.floor(math.sqrt(_UpperCAmelCase ) ) ) lowerCAmelCase = 0 while arr[min(_UpperCAmelCase , _UpperCAmelCase ) - 1] < x: lowerCAmelCase = step step += int(math.floor(math.sqrt(_UpperCAmelCase ) ) ) if prev >= n: return -1 while arr[prev] < x: lowerCAmelCase = prev + 1 if prev == min(_UpperCAmelCase , _UpperCAmelCase ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": __UpperCamelCase : str = input('''Enter numbers separated by a comma:\n''').strip() __UpperCamelCase : Any = [int(item) for item in user_input.split(''',''')] __UpperCamelCase : Dict = int(input('''Enter the number to be searched:\n''')) __UpperCamelCase : List[str] = jump_search(arr, x) if res == -1: print('''Number not found!''') else: print(f'''Number {x} is at index {res}''')
4
import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any]=1 ) -> Any: if n_shave_prefix_segments >= 0: return ".".join(path.split("." )[n_shave_prefix_segments:] ) else: return ".".join(path.split("." )[:n_shave_prefix_segments] ) def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any]=0 ) -> int: A_ : Union[str, Any] = [] for old_item in old_list: A_ : Tuple = old_item.replace("in_layers.0" , "norm1" ) A_ : str = new_item.replace("in_layers.2" , "conv1" ) A_ : List[str] = new_item.replace("out_layers.0" , "norm2" ) A_ : Optional[int] = new_item.replace("out_layers.3" , "conv2" ) A_ : Union[str, Any] = new_item.replace("emb_layers.1" , "time_emb_proj" ) A_ : Tuple = new_item.replace("skip_connection" , "conv_shortcut" ) A_ : Any = shave_segments(_lowerCAmelCase , n_shave_prefix_segments=_lowerCAmelCase ) mapping.append({"old": old_item, "new": new_item} ) return mapping def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str]=0 ) -> Tuple: A_ : Any = [] for old_item in old_list: A_ : int = old_item A_ : Dict = new_item.replace("norm.weight" , "group_norm.weight" ) A_ : Any = new_item.replace("norm.bias" , "group_norm.bias" ) A_ : Any = new_item.replace("proj_out.weight" , "proj_attn.weight" ) A_ : List[str] = new_item.replace("proj_out.bias" , "proj_attn.bias" ) A_ : List[Any] = shave_segments(_lowerCAmelCase , n_shave_prefix_segments=_lowerCAmelCase ) mapping.append({"old": old_item, "new": new_item} ) return mapping def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : List[str]=None ) -> Optional[Any]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): A_ : Any = old_checkpoint[path] A_ : Tuple = old_tensor.shape[0] // 3 A_ : Union[str, Any] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) A_ : Optional[Any] = old_tensor.shape[0] // config["num_head_channels"] // 3 A_ : int = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) A_ , A_ , A_ : Optional[int] = old_tensor.split(channels // num_heads , dim=1 ) A_ : Tuple = query.reshape(_lowerCAmelCase ) A_ : List[Any] = key.reshape(_lowerCAmelCase ) A_ : Union[str, Any] = value.reshape(_lowerCAmelCase ) for path in paths: A_ : Any = path["new"] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here A_ : List[str] = new_path.replace("middle_block.0" , "mid_block.resnets.0" ) A_ : int = new_path.replace("middle_block.1" , "mid_block.attentions.0" ) A_ : Tuple = new_path.replace("middle_block.2" , "mid_block.resnets.1" ) if additional_replacements is not None: for replacement in additional_replacements: A_ : Tuple = new_path.replace(replacement["old"] , replacement["new"] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: A_ : Tuple = old_checkpoint[path["old"]][:, :, 0] else: A_ : str = old_checkpoint[path["old"]] def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ) -> Optional[int]: A_ : Any = {} A_ : Union[str, Any] = checkpoint["time_embed.0.weight"] A_ : List[Any] = checkpoint["time_embed.0.bias"] A_ : Any = checkpoint["time_embed.2.weight"] A_ : Optional[Any] = checkpoint["time_embed.2.bias"] A_ : List[str] = checkpoint["input_blocks.0.0.weight"] A_ : Union[str, Any] = checkpoint["input_blocks.0.0.bias"] A_ : str = checkpoint["out.0.weight"] A_ : Optional[int] = checkpoint["out.0.bias"] A_ : Optional[int] = checkpoint["out.2.weight"] A_ : Optional[int] = checkpoint["out.2.bias"] # Retrieves the keys for the input blocks only A_ : List[str] = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "input_blocks" in layer} ) A_ : Union[str, Any] = { layer_id: [key for key in checkpoint if f"input_blocks.{layer_id}" in key] for layer_id in range(_lowerCAmelCase ) } # Retrieves the keys for the middle blocks only A_ : Union[str, Any] = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "middle_block" in layer} ) A_ : Tuple = { layer_id: [key for key in checkpoint if f"middle_block.{layer_id}" in key] for layer_id in range(_lowerCAmelCase ) } # Retrieves the keys for the output blocks only A_ : Dict = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "output_blocks" in layer} ) A_ : Optional[Any] = { layer_id: [key for key in checkpoint if f"output_blocks.{layer_id}" in key] for layer_id in range(_lowerCAmelCase ) } for i in range(1 , _lowerCAmelCase ): A_ : Union[str, Any] = (i - 1) // (config["num_res_blocks"] + 1) A_ : Optional[int] = (i - 1) % (config["num_res_blocks"] + 1) A_ : str = [key for key in input_blocks[i] if f"input_blocks.{i}.0" in key] A_ : List[Any] = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] if f"input_blocks.{i}.0.op.weight" in checkpoint: A_ : Tuple = checkpoint[ f"input_blocks.{i}.0.op.weight" ] A_ : List[Any] = checkpoint[ f"input_blocks.{i}.0.op.bias" ] continue A_ : List[Any] = renew_resnet_paths(_lowerCAmelCase ) A_ : Any = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} A_ : Any = {"old": "resnets.2.op", "new": "downsamplers.0.op"} assign_to_checkpoint( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , additional_replacements=[meta_path, resnet_op] , config=_lowerCAmelCase ) if len(_lowerCAmelCase ): A_ : Tuple = renew_attention_paths(_lowerCAmelCase ) A_ : List[str] = { "old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}", } A_ : Any = { f"input_blocks.{i}.1.qkv.bias": { "key": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", "query": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", "value": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, f"input_blocks.{i}.1.qkv.weight": { "key": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", "query": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", "value": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=_lowerCAmelCase , config=_lowerCAmelCase , ) A_ : List[Any] = middle_blocks[0] A_ : Tuple = middle_blocks[1] A_ : Dict = middle_blocks[2] A_ : str = renew_resnet_paths(_lowerCAmelCase ) assign_to_checkpoint(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , config=_lowerCAmelCase ) A_ : Tuple = renew_resnet_paths(_lowerCAmelCase ) assign_to_checkpoint(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , config=_lowerCAmelCase ) A_ : Any = renew_attention_paths(_lowerCAmelCase ) A_ : Optional[int] = { "middle_block.1.qkv.bias": { "key": "mid_block.attentions.0.key.bias", "query": "mid_block.attentions.0.query.bias", "value": "mid_block.attentions.0.value.bias", }, "middle_block.1.qkv.weight": { "key": "mid_block.attentions.0.key.weight", "query": "mid_block.attentions.0.query.weight", "value": "mid_block.attentions.0.value.weight", }, } assign_to_checkpoint( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , attention_paths_to_split=_lowerCAmelCase , config=_lowerCAmelCase ) for i in range(_lowerCAmelCase ): A_ : Optional[int] = i // (config["num_res_blocks"] + 1) A_ : Optional[Any] = i % (config["num_res_blocks"] + 1) A_ : Optional[Any] = [shave_segments(_lowerCAmelCase , 2 ) for name in output_blocks[i]] A_ : Union[str, Any] = {} for layer in output_block_layers: A_ , A_ : str = layer.split("." )[0], shave_segments(_lowerCAmelCase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(_lowerCAmelCase ) else: A_ : List[str] = [layer_name] if len(_lowerCAmelCase ) > 1: A_ : Dict = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] A_ : List[Any] = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] A_ : Optional[Any] = renew_resnet_paths(_lowerCAmelCase ) A_ : Any = renew_resnet_paths(_lowerCAmelCase ) A_ : Optional[Any] = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} assign_to_checkpoint(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , additional_replacements=[meta_path] , config=_lowerCAmelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): A_ : int = list(output_block_list.values() ).index(["conv.weight", "conv.bias"] ) A_ : Union[str, Any] = checkpoint[ f"output_blocks.{i}.{index}.conv.weight" ] A_ : int = checkpoint[ f"output_blocks.{i}.{index}.conv.bias" ] # Clear attentions as they have been attributed above. if len(_lowerCAmelCase ) == 2: A_ : Union[str, Any] = [] if len(_lowerCAmelCase ): A_ : Dict = renew_attention_paths(_lowerCAmelCase ) A_ : Union[str, Any] = { "old": f"output_blocks.{i}.1", "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", } A_ : Any = { f"output_blocks.{i}.1.qkv.bias": { "key": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", "query": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", "value": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, f"output_blocks.{i}.1.qkv.weight": { "key": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", "query": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", "value": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("qkv" in key for key in attentions ) else None , config=_lowerCAmelCase , ) else: A_ : Optional[int] = renew_resnet_paths(_lowerCAmelCase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: A_ : List[Any] = ".".join(["output_blocks", str(_lowerCAmelCase ), path["old"]] ) A_ : Optional[Any] = ".".join(["up_blocks", str(_lowerCAmelCase ), "resnets", str(_lowerCAmelCase ), path["new"]] ) A_ : Optional[int] = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') _lowerCAmelCase : Optional[Any] = parser.parse_args() _lowerCAmelCase : Optional[Any] = torch.load(args.checkpoint_path) with open(args.config_file) as f: _lowerCAmelCase : str = json.loads(f.read()) _lowerCAmelCase : Tuple = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] _lowerCAmelCase : Optional[Any] = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: _lowerCAmelCase : List[str] = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) _lowerCAmelCase : List[str] = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) _lowerCAmelCase : Optional[Any] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
454
0
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig a = { '''facebook/maskformer-swin-base-ade''': ( '''https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json''' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } a = logging.get_logger(__name__) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Optional[int] = '''maskformer''' UpperCAmelCase : Tuple = {'''hidden_size''': '''mask_feature_size'''} UpperCAmelCase : Union[str, Any] = ['''resnet''', '''swin'''] UpperCAmelCase : int = ['''detr'''] def __init__( self : Union[str, Any] , _UpperCAmelCase : int = 256 , _UpperCAmelCase : int = 256 , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[Dict] = None , _UpperCAmelCase : Optional[Dict] = None , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : float = 20.0 , _UpperCAmelCase : Optional[bool] = None , **_UpperCAmelCase : List[str] , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k _A = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _A = backbone_config.pop('model_type' ) _A = CONFIG_MAPPING[backbone_model_type] _A = config_class.from_dict(_UpperCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' F'''Supported model types: {",".join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 _A = DetrConfig() else: # verify that the decoder is supported _A = ( decoder_config.pop('model_type' ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F'''Transformer Decoder {decoder_type} not supported, please use one of''' F''' {",".join(self.decoders_supported )}''' ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _A = CONFIG_MAPPING[decoder_type] _A = config_class.from_dict(_UpperCAmelCase ) _A = backbone_config _A = decoder_config # main feature dimension for the model _A = fpn_feature_size _A = mask_feature_size # initializer _A = init_std _A = init_xavier_std # Hungarian matcher && loss _A = cross_entropy_weight _A = dice_weight _A = mask_weight _A = use_auxiliary_loss _A = no_object_weight _A = output_auxiliary_logits _A = self.decoder_config.encoder_attention_heads _A = self.decoder_config.num_hidden_layers super().__init__(**_UpperCAmelCase ) @classmethod def lowerCAmelCase_ ( cls : Tuple , _UpperCAmelCase : PretrainedConfig , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : str ): return cls( backbone_config=_UpperCAmelCase , decoder_config=_UpperCAmelCase , **_UpperCAmelCase , ) def lowerCAmelCase_ ( self : List[str] ): _A = copy.deepcopy(self.__dict__ ) _A = self.backbone_config.to_dict() _A = self.decoder_config.to_dict() _A = self.__class__.model_type return output
505
"""simple docstring""" import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer a = logging.get_logger(__name__) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Optional[int] = '''AutoTokenizer''' UpperCAmelCase : Optional[Any] = ['''tokenizer'''] UpperCAmelCase : List[str] = { '''semantic_prompt''': 1, '''coarse_prompt''': 2, '''fine_prompt''': 2, } def __init__( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple=None ): super().__init__(_UpperCAmelCase ) _A = speaker_embeddings @classmethod def lowerCAmelCase_ ( cls : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int="speaker_embeddings_path.json" , **_UpperCAmelCase : int ): if speaker_embeddings_dict_path is not None: _A = get_file_from_repo( _UpperCAmelCase , _UpperCAmelCase , subfolder=kwargs.pop('subfolder' , _UpperCAmelCase ) , cache_dir=kwargs.pop('cache_dir' , _UpperCAmelCase ) , force_download=kwargs.pop('force_download' , _UpperCAmelCase ) , proxies=kwargs.pop('proxies' , _UpperCAmelCase ) , resume_download=kwargs.pop('resume_download' , _UpperCAmelCase ) , local_files_only=kwargs.pop('local_files_only' , _UpperCAmelCase ) , use_auth_token=kwargs.pop('use_auth_token' , _UpperCAmelCase ) , revision=kwargs.pop('revision' , _UpperCAmelCase ) , ) if speaker_embeddings_path is None: logger.warning( F'''`{os.path.join(_UpperCAmelCase , _UpperCAmelCase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) _A = None else: with open(_UpperCAmelCase ) as speaker_embeddings_json: _A = json.load(_UpperCAmelCase ) else: _A = None _A = AutoTokenizer.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) return cls(tokenizer=_UpperCAmelCase , speaker_embeddings=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : int="speaker_embeddings_path.json" , _UpperCAmelCase : Union[str, Any]="speaker_embeddings" , _UpperCAmelCase : bool = False , **_UpperCAmelCase : Tuple , ): if self.speaker_embeddings is not None: os.makedirs(os.path.join(_UpperCAmelCase , _UpperCAmelCase , 'v2' ) , exist_ok=_UpperCAmelCase ) _A = {} _A = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _A = self._load_voice_preset(_UpperCAmelCase ) _A = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , _UpperCAmelCase , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=_UpperCAmelCase , ) _A = os.path.join(_UpperCAmelCase , F'''{prompt_key}_{key}.npy''' ) _A = tmp_dict with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , 'w' ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) super().save_pretrained(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) def lowerCAmelCase_ ( self : str , _UpperCAmelCase : str = None , **_UpperCAmelCase : Optional[int] ): _A = self.speaker_embeddings[voice_preset] _A = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) _A = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , _UpperCAmelCase ) , cache_dir=kwargs.pop('cache_dir' , _UpperCAmelCase ) , force_download=kwargs.pop('force_download' , _UpperCAmelCase ) , proxies=kwargs.pop('proxies' , _UpperCAmelCase ) , resume_download=kwargs.pop('resume_download' , _UpperCAmelCase ) , local_files_only=kwargs.pop('local_files_only' , _UpperCAmelCase ) , use_auth_token=kwargs.pop('use_auth_token' , _UpperCAmelCase ) , revision=kwargs.pop('revision' , _UpperCAmelCase ) , ) if path is None: raise ValueError( F'''`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) _A = np.load(_UpperCAmelCase ) return voice_preset_dict def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Optional[dict] = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self : List[Any] , _UpperCAmelCase : int=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : List[str]="pt" , _UpperCAmelCase : Union[str, Any]=256 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Any=False , **_UpperCAmelCase : Any , ): if voice_preset is not None and not isinstance(_UpperCAmelCase , _UpperCAmelCase ): if ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _A = self._load_voice_preset(_UpperCAmelCase ) else: if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not voice_preset.endswith('.npz' ): _A = voice_preset + '.npz' _A = np.load(_UpperCAmelCase ) if voice_preset is not None: self._validate_voice_preset_dict(_UpperCAmelCase , **_UpperCAmelCase ) _A = BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase ) _A = self.tokenizer( _UpperCAmelCase , return_tensors=_UpperCAmelCase , padding='max_length' , max_length=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) if voice_preset is not None: _A = voice_preset return encoded_text
505
1
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCamelCase = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Union[str, Any] , **_UpperCAmelCase : Optional[int] ) -> str: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , "vision" ) self.check_model_type(_UpperCAmelCase ) def __call__( self : int , _UpperCAmelCase : Union[str, "Image.Image", List[Dict[str, Any]]] , _UpperCAmelCase : Union[str, List[str]] = None , **_UpperCAmelCase : Optional[int] , ) -> List[Any]: '''simple docstring''' if "text_queries" in kwargs: UpperCAmelCase_ = kwargs.pop("text_queries" ) if isinstance(_UpperCAmelCase , (str, Image.Image) ): UpperCAmelCase_ = {"image": image, "candidate_labels": candidate_labels} else: UpperCAmelCase_ = image UpperCAmelCase_ = super().__call__(_UpperCAmelCase , **_UpperCAmelCase ) return results def lowercase__ ( self : str , **_UpperCAmelCase : List[Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = {} if "threshold" in kwargs: UpperCAmelCase_ = kwargs["threshold"] if "top_k" in kwargs: UpperCAmelCase_ = kwargs["top_k"] return {}, {}, postprocess_params def lowercase__ ( self : int , _UpperCAmelCase : int ) -> Any: '''simple docstring''' UpperCAmelCase_ = load_image(inputs["image"] ) UpperCAmelCase_ = inputs["candidate_labels"] if isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase_ = candidate_labels.split("," ) UpperCAmelCase_ = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(_UpperCAmelCase ): UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , return_tensors=self.framework ) UpperCAmelCase_ = self.image_processor(_UpperCAmelCase , return_tensors=self.framework ) yield { "is_last": i == len(_UpperCAmelCase ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowercase__ ( self : int , _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = model_inputs.pop("target_size" ) UpperCAmelCase_ = model_inputs.pop("candidate_label" ) UpperCAmelCase_ = model_inputs.pop("is_last" ) UpperCAmelCase_ = self.model(**_UpperCAmelCase ) UpperCAmelCase_ = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def lowercase__ ( self : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : List[str]=None ) -> int: '''simple docstring''' UpperCAmelCase_ = [] for model_output in model_outputs: UpperCAmelCase_ = model_output["candidate_label"] UpperCAmelCase_ = BaseModelOutput(_UpperCAmelCase ) UpperCAmelCase_ = self.image_processor.post_process_object_detection( outputs=_UpperCAmelCase , threshold=_UpperCAmelCase , target_sizes=model_output["target_size"] )[0] for index in outputs["scores"].nonzero(): UpperCAmelCase_ = outputs["scores"][index].item() UpperCAmelCase_ = self._get_bounding_box(outputs["boxes"][index][0] ) UpperCAmelCase_ = {"score": score, "label": label, "box": box} results.append(_UpperCAmelCase ) UpperCAmelCase_ = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x["score"] , reverse=_UpperCAmelCase ) if top_k: UpperCAmelCase_ = results[:top_k] return results def lowercase__ ( self : str , _UpperCAmelCase : "torch.Tensor" ) -> Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch." ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = box.int().tolist() UpperCAmelCase_ = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
82
"""simple docstring""" def _snake_case ( lowerCamelCase__ : int = 1_000_000 ) -> int: lowerCamelCase_ : Optional[int] =set(range(3 , lowerCamelCase__ , 2 ) ) primes.add(2 ) for p in range(3 , lowerCamelCase__ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , lowerCamelCase__ , lowerCamelCase__ ) ) ) lowerCamelCase_ : Any =[float(lowerCamelCase__ ) for n in range(limit + 1 )] for p in primes: for n in range(lowerCamelCase__ , limit + 1 , lowerCamelCase__ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'{solution() = }')
153
0
from typing import Any class lowercase__: '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE) -> int: """simple docstring""" UpperCamelCase__ : Optional[Any] =data UpperCamelCase__ : Optional[Any] =None def __repr__( self) -> str: """simple docstring""" return F'''Node({self.data})''' class lowercase__: '''simple docstring''' def __init__( self) -> List[str]: """simple docstring""" UpperCamelCase__ : Any =None def __iter__( self) -> Any: """simple docstring""" UpperCamelCase__ : List[str] =self.head while node: yield node.data UpperCamelCase__ : Optional[Any] =node.next def __len__( self) -> int: """simple docstring""" return sum(1 for _ in self) def __repr__( self) -> str: """simple docstring""" return "->".join([str(lowerCAmelCase__) for item in self]) def __getitem__( self , __SCREAMING_SNAKE_CASE) -> Any: """simple docstring""" if not 0 <= index < len(self): raise ValueError("list index out of range.") for i, node in enumerate(self): if i == index: return node return None def __setitem__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> None: """simple docstring""" if not 0 <= index < len(self): raise ValueError("list index out of range.") UpperCamelCase__ : Tuple =self.head for _ in range(lowerCAmelCase__): UpperCamelCase__ : Union[str, Any] =current.next UpperCamelCase__ : str =data def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE) -> None: """simple docstring""" self.insert_nth(len(self) , lowerCAmelCase__) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE) -> None: """simple docstring""" self.insert_nth(0 , lowerCAmelCase__) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> None: """simple docstring""" if not 0 <= index <= len(self): raise IndexError("list index out of range") UpperCamelCase__ : str =Node(lowerCAmelCase__) if self.head is None: UpperCamelCase__ : Optional[Any] =new_node elif index == 0: UpperCamelCase__ : Dict =self.head # link new_node to head UpperCamelCase__ : Optional[int] =new_node else: UpperCamelCase__ : Any =self.head for _ in range(index - 1): UpperCamelCase__ : List[Any] =temp.next UpperCamelCase__ : List[Any] =temp.next UpperCamelCase__ : List[Any] =new_node def UpperCAmelCase ( self) -> None: # print every node data """simple docstring""" print(self) def UpperCAmelCase ( self) -> Any: """simple docstring""" return self.delete_nth(0) def UpperCAmelCase ( self) -> Any: # delete from tail """simple docstring""" return self.delete_nth(len(self) - 1) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE = 0) -> Any: """simple docstring""" if not 0 <= index <= len(self) - 1: # test if index is valid raise IndexError("List index out of range.") UpperCamelCase__ : List[str] =self.head # default first node if index == 0: UpperCamelCase__ : Any =self.head.next else: UpperCamelCase__ : Dict =self.head for _ in range(index - 1): UpperCamelCase__ : List[Any] =temp.next UpperCamelCase__ : Dict =temp.next UpperCamelCase__ : Optional[Any] =temp.next.next return delete_node.data def UpperCAmelCase ( self) -> bool: """simple docstring""" return self.head is None def UpperCAmelCase ( self) -> None: """simple docstring""" UpperCamelCase__ : Dict =None UpperCamelCase__ : Tuple =self.head while current: # Store the current node's next node. UpperCamelCase__ : Tuple =current.next # Make the current node's next point backwards UpperCamelCase__ : Any =prev # Make the previous node be the current node UpperCamelCase__ : Any =current # Make the current node the next node (to progress iteration) UpperCamelCase__ : str =next_node # Return prev in order to put the head at the end UpperCamelCase__ : Optional[int] =prev def _lowerCamelCase ( ) -> int: '''simple docstring''' UpperCamelCase__ : List[Any] =LinkedList() assert linked_list.is_empty() is True assert str(__A ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(1_0 ): assert len(__A ) == i linked_list.insert_nth(__A , i + 1 ) assert str(__A ) == "->".join(str(__A ) for i in range(1 , 1_1 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(1_1 ) assert str(__A ) == "->".join(str(__A ) for i in range(0 , 1_2 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 1_0 assert linked_list.delete_tail() == 1_1 assert len(__A ) == 9 assert str(__A ) == "->".join(str(__A ) for i in range(1 , 1_0 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): UpperCamelCase__ : Optional[int] =-i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(__A ) == "->".join(str(__A ) for i in range(-8 , 1 ) ) def _lowerCamelCase ( ) -> Dict: '''simple docstring''' UpperCamelCase__ : Optional[Any] =[ -9, 1_0_0, Node(7_7_3_4_5_1_1_2 ), "dlrow olleH", 7, 5_5_5_5, 0, -192.55555, "Hello, world!", 77.9, Node(1_0 ), None, None, 12.20, ] UpperCamelCase__ : Any =LinkedList() for i in test_input: linked_list.insert_tail(__A ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(__A ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head UpperCamelCase__ : Any =linked_list.delete_head() assert result == -9 assert ( str(__A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail UpperCamelCase__ : Optional[int] =linked_list.delete_tail() assert result == 12.2 assert ( str(__A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list UpperCamelCase__ : Any =linked_list.delete_nth(1_0 ) assert result is None assert ( str(__A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!" ) ) assert ( str(__A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(__A ) assert ( str(__A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(__A ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _lowerCamelCase ( ) -> Tuple: '''simple docstring''' from doctest import testmod testmod() UpperCamelCase__ : Any =LinkedList() linked_list.insert_head(input("Inserting 1st at head " ).strip() ) linked_list.insert_head(input("Inserting 2nd at head " ).strip() ) print("\nPrint list:" ) linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() ) linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() ) print("\nPrint list:" ) linked_list.print_list() print("\nDelete head" ) linked_list.delete_head() print("Delete tail" ) linked_list.delete_tail() print("\nPrint list:" ) linked_list.print_list() print("\nReverse linked list" ) linked_list.reverse() print("\nPrint list:" ) linked_list.print_list() print("\nString representation of linked list:" ) print(__A ) print("\nReading/changing Node data using indexing:" ) print(f'''Element at Position 1: {linked_list[1]}''' ) UpperCamelCase__ : List[str] =input("Enter New Value: " ).strip() print("New list:" ) print(__A ) print(f'''length of linked_list is : {len(__A )}''' ) if __name__ == "__main__": main()
701
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class lowercase__( tf.keras.optimizers.schedules.LearningRateSchedule ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1.0 , __SCREAMING_SNAKE_CASE = None , ) -> Optional[Any]: """simple docstring""" super().__init__() UpperCamelCase__ : Tuple =initial_learning_rate UpperCamelCase__ : List[str] =warmup_steps UpperCamelCase__ : List[Any] =power UpperCamelCase__ : Optional[Any] =decay_schedule_fn UpperCamelCase__ : List[str] =name def __call__( self , __SCREAMING_SNAKE_CASE) -> List[str]: """simple docstring""" with tf.name_scope(self.name or "WarmUp") as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. UpperCamelCase__ : Optional[Any] =tf.cast(__SCREAMING_SNAKE_CASE , tf.floataa) UpperCamelCase__ : Tuple =tf.cast(self.warmup_steps , tf.floataa) UpperCamelCase__ : Optional[int] =global_step_float / warmup_steps_float UpperCamelCase__ : List[Any] =self.initial_learning_rate * tf.math.pow(__SCREAMING_SNAKE_CASE , self.power) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps) , name=__SCREAMING_SNAKE_CASE , ) def UpperCAmelCase ( self) -> Optional[Any]: """simple docstring""" return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _lowerCamelCase ( A_ : float , A_ : int , A_ : int , A_ : float = 0.0 , A_ : float = 0.9 , A_ : float = 0.999 , A_ : float = 1E-8 , A_ : Optional[float] = None , A_ : Optional[float] = None , A_ : float = 0.0 , A_ : float = 1.0 , A_ : Optional[List[str]] = None , ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Dict =tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=A_ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=A_ , ) if num_warmup_steps: UpperCamelCase__ : Dict =WarmUp( initial_learning_rate=A_ , decay_schedule_fn=A_ , warmup_steps=A_ , ) if weight_decay_rate > 0.0: UpperCamelCase__ : Union[str, Any] =AdamWeightDecay( learning_rate=A_ , weight_decay_rate=A_ , beta_a=A_ , beta_a=A_ , epsilon=A_ , clipnorm=A_ , global_clipnorm=A_ , exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"] , include_in_weight_decay=A_ , ) else: UpperCamelCase__ : List[Any] =tf.keras.optimizers.Adam( learning_rate=A_ , beta_a=A_ , beta_a=A_ , epsilon=A_ , clipnorm=A_ , global_clipnorm=A_ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class lowercase__( snake_case__ ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE = 0.0_01 , __SCREAMING_SNAKE_CASE = 0.9 , __SCREAMING_SNAKE_CASE = 0.9_99 , __SCREAMING_SNAKE_CASE = 1E-7 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = 0.0 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "AdamWeightDecay" , **__SCREAMING_SNAKE_CASE , ) -> Dict: """simple docstring""" super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Optional[Any] =weight_decay_rate UpperCamelCase__ : Dict =include_in_weight_decay UpperCamelCase__ : int =exclude_from_weight_decay @classmethod def UpperCAmelCase ( cls , __SCREAMING_SNAKE_CASE) -> List[Any]: """simple docstring""" UpperCamelCase__ : Optional[int] ={"WarmUp": WarmUp} return super(__SCREAMING_SNAKE_CASE , cls).from_config(__SCREAMING_SNAKE_CASE , custom_objects=__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> Optional[int]: """simple docstring""" super(__SCREAMING_SNAKE_CASE , self)._prepare_local(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) UpperCamelCase__ : Any =tf.constant( self.weight_decay_rate , name="adam_weight_decay_rate") def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> Any: """simple docstring""" UpperCamelCase__ : List[str] =self._do_use_weight_decay(var.name) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["weight_decay_rate"] , use_locking=self._use_locking , ) return tf.no_op() def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE) -> Optional[int]: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ : List[str] =list(zip(*__SCREAMING_SNAKE_CASE)) return super(__SCREAMING_SNAKE_CASE , self).apply_gradients(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) , name=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> Tuple: """simple docstring""" if apply_state is None: return self._decayed_lr_t[var_dtype], {} UpperCamelCase__ : Optional[int] =apply_state or {} UpperCamelCase__ : Optional[Any] =apply_state.get((var_device, var_dtype)) if coefficients is None: UpperCamelCase__ : Any =self._fallback_apply_state(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) UpperCamelCase__ : int =coefficients return coefficients["lr_t"], {"apply_state": apply_state} def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None) -> Optional[int]: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ : List[Any] =self._get_lr(var.device , var.dtype.base_dtype , __SCREAMING_SNAKE_CASE) UpperCamelCase__ : str =self._decay_weights_op(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) with tf.control_dependencies([decay]): return super(__SCREAMING_SNAKE_CASE , self)._resource_apply_dense(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None) -> Dict: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ : Any =self._get_lr(var.device , var.dtype.base_dtype , __SCREAMING_SNAKE_CASE) UpperCamelCase__ : List[Any] =self._decay_weights_op(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) with tf.control_dependencies([decay]): return super(__SCREAMING_SNAKE_CASE , self)._resource_apply_sparse(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self) -> Optional[int]: """simple docstring""" UpperCamelCase__ : Any =super().get_config() config.update({"weight_decay_rate": self.weight_decay_rate}) return config def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE) -> Optional[Any]: """simple docstring""" if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) is not None: return False return True class lowercase__( snake_case__ ): '''simple docstring''' def __init__( self) -> int: """simple docstring""" UpperCamelCase__ : str =[] UpperCamelCase__ : List[str] =None @property def UpperCAmelCase ( self) -> List[str]: """simple docstring""" if self._accum_steps is None: UpperCamelCase__ : Any =tf.Variable( tf.constant(0 , dtype=tf.intaa) , trainable=__SCREAMING_SNAKE_CASE , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def UpperCAmelCase ( self) -> Optional[int]: """simple docstring""" if not self._gradients: raise ValueError("The accumulator should be called first to initialize the gradients") return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , __SCREAMING_SNAKE_CASE) -> Any: """simple docstring""" if not self._gradients: UpperCamelCase__ : Any =self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(__SCREAMING_SNAKE_CASE) , trainable=__SCREAMING_SNAKE_CASE , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ]) if len(__SCREAMING_SNAKE_CASE) != len(self._gradients): raise ValueError(F'''Expected {len(self._gradients)} gradients, but got {len(__SCREAMING_SNAKE_CASE)}''') for accum_gradient, gradient in zip(self._gradients , __SCREAMING_SNAKE_CASE): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(__SCREAMING_SNAKE_CASE) self._accum_steps.assign_add(1) def UpperCAmelCase ( self) -> Tuple: """simple docstring""" if not self._gradients: return self._accum_steps.assign(0) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(__SCREAMING_SNAKE_CASE))
582
0
"""simple docstring""" from __future__ import annotations import os from typing import Any import requests _SCREAMING_SNAKE_CASE = 'https://api.github.com' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user _SCREAMING_SNAKE_CASE = BASE_URL + '/user' # https://github.com/settings/tokens _SCREAMING_SNAKE_CASE = os.environ.get("""USER_TOKEN""", """""") def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> dict[Any, Any]: """simple docstring""" __snake_case = { "Authorization": F'''token {auth_token}''', "Accept": "application/vnd.github.v3+json", } return requests.get(_lowerCamelCase , headers=_lowerCamelCase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F"""{key}: {value}""") else: raise ValueError("""\'USER_TOKEN\' field cannot be empty.""")
163
"""simple docstring""" import socket def snake_case__ ( ) ->Optional[Any]: """simple docstring""" __lowercase : Dict = socket.socket(socket.AF_INET, socket.SOCK_STREAM ) __lowercase : List[Any] = socket.gethostname() __lowercase : List[str] = 1_23_12 sock.connect((host, port) ) sock.send(b"Hello server!" ) with open("Received_file", "wb" ) as out_file: print("File opened" ) print("Receiving data..." ) while True: __lowercase : Optional[Any] = sock.recv(10_24 ) if not data: break out_file.write(_lowerCamelCase ) print("Successfully received the file" ) sock.close() print("Connection closed" ) if __name__ == "__main__": main()
575
0
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" def __init__( self : int , snake_case__ : Dict=0.01 , snake_case__ : Optional[Any]=10_00 ): """simple docstring""" A =p_stop A =max_length def __iter__( self : Optional[Any] ): """simple docstring""" A =0 A =False while not stop and count < self.max_length: yield count count += 1 A =random.random() < self.p_stop class UpperCamelCase__( unittest.TestCase ): """simple docstring""" def _a ( self : str , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : List[Any]=False , snake_case__ : Any=True ): """simple docstring""" A =[ BatchSamplerShard(snake_case__ , 2 , snake_case__ , split_batches=snake_case__ , even_batches=snake_case__ ) for i in range(2 ) ] A =[list(snake_case__ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(snake_case__ ) for shard in batch_sampler_shards] , [len(snake_case__ ) for e in expected] ) self.assertListEqual(snake_case__ , snake_case__ ) def _a ( self : List[str] ): """simple docstring""" A =BatchSampler(range(24 ) , batch_size=3 , drop_last=snake_case__ ) A =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ ) A =BatchSampler(range(24 ) , batch_size=3 , drop_last=snake_case__ ) # Expected shouldn't change self.check_batch_sampler_shards(snake_case__ , snake_case__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. A =BatchSampler(range(21 ) , batch_size=3 , drop_last=snake_case__ ) A =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ ) A =BatchSampler(range(21 ) , batch_size=3 , drop_last=snake_case__ ) A =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. A =BatchSampler(range(22 ) , batch_size=3 , drop_last=snake_case__ ) A =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ ) A =BatchSampler(range(22 ) , batch_size=3 , drop_last=snake_case__ ) A =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. A =BatchSampler(range(20 ) , batch_size=3 , drop_last=snake_case__ ) A =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ ) A =BatchSampler(range(20 ) , batch_size=3 , drop_last=snake_case__ ) A =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ ) # Check the shards when the dataset is very small. A =BatchSampler(range(2 ) , batch_size=3 , drop_last=snake_case__ ) A =[[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(snake_case__ , snake_case__ ) A =BatchSampler(range(2 ) , batch_size=3 , drop_last=snake_case__ ) A =[[], []] self.check_batch_sampler_shards(snake_case__ , snake_case__ ) def _a ( self : Union[str, Any] ): """simple docstring""" A =BatchSampler(range(24 ) , batch_size=4 , drop_last=snake_case__ ) A =[ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ ) A =BatchSampler(range(24 ) , batch_size=4 , drop_last=snake_case__ ) # Expected shouldn't change self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ ) # Check the shards when the dataset is not a round multiple of batch size. A =BatchSampler(range(22 ) , batch_size=4 , drop_last=snake_case__ ) A =[ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ ) A =BatchSampler(range(22 ) , batch_size=4 , drop_last=snake_case__ ) A =[ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. A =BatchSampler(range(21 ) , batch_size=4 , drop_last=snake_case__ ) A =[ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ ) A =BatchSampler(range(21 ) , batch_size=4 , drop_last=snake_case__ ) A =[ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ ) # Check the shards when the dataset is very small. A =BatchSampler(range(2 ) , batch_size=4 , drop_last=snake_case__ ) A =[[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ ) A =BatchSampler(range(2 ) , batch_size=4 , drop_last=snake_case__ ) A =[[], []] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ ) def _a ( self : Any ): """simple docstring""" A =BatchSampler(range(24 ) , batch_size=3 , drop_last=snake_case__ ) A =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , even_batches=snake_case__ ) A =BatchSampler(range(24 ) , batch_size=3 , drop_last=snake_case__ ) # Expected shouldn't change self.check_batch_sampler_shards(snake_case__ , snake_case__ , even_batches=snake_case__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. A =BatchSampler(range(21 ) , batch_size=3 , drop_last=snake_case__ ) A =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , even_batches=snake_case__ ) A =BatchSampler(range(21 ) , batch_size=3 , drop_last=snake_case__ ) A =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , even_batches=snake_case__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. A =BatchSampler(range(22 ) , batch_size=3 , drop_last=snake_case__ ) A =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , even_batches=snake_case__ ) A =BatchSampler(range(22 ) , batch_size=3 , drop_last=snake_case__ ) A =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , even_batches=snake_case__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. A =BatchSampler(range(20 ) , batch_size=3 , drop_last=snake_case__ ) A =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , even_batches=snake_case__ ) A =BatchSampler(range(20 ) , batch_size=3 , drop_last=snake_case__ ) A =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , even_batches=snake_case__ ) # Check the shards when the dataset is very small. A =BatchSampler(range(2 ) , batch_size=3 , drop_last=snake_case__ ) A =[[[0, 1]], []] self.check_batch_sampler_shards(snake_case__ , snake_case__ , even_batches=snake_case__ ) A =BatchSampler(range(2 ) , batch_size=3 , drop_last=snake_case__ ) A =[[], []] self.check_batch_sampler_shards(snake_case__ , snake_case__ , even_batches=snake_case__ ) def _a ( self : int ): """simple docstring""" A =BatchSampler(range(24 ) , batch_size=4 , drop_last=snake_case__ ) A =[ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ , even_batches=snake_case__ ) A =BatchSampler(range(24 ) , batch_size=4 , drop_last=snake_case__ ) # Expected shouldn't change self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ , even_batches=snake_case__ ) # Check the shards when the dataset is not a round multiple of batch size. A =BatchSampler(range(22 ) , batch_size=4 , drop_last=snake_case__ ) A =[ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ , even_batches=snake_case__ ) A =BatchSampler(range(22 ) , batch_size=4 , drop_last=snake_case__ ) A =[ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ , even_batches=snake_case__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. A =BatchSampler(range(21 ) , batch_size=4 , drop_last=snake_case__ ) A =[ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ , even_batches=snake_case__ ) A =BatchSampler(range(21 ) , batch_size=4 , drop_last=snake_case__ ) A =[ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ , even_batches=snake_case__ ) # Check the shards when the dataset is very small. A =BatchSampler(range(2 ) , batch_size=4 , drop_last=snake_case__ ) A =[[[0, 1]], []] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ , even_batches=snake_case__ ) A =BatchSampler(range(2 ) , batch_size=4 , drop_last=snake_case__ ) A =[[], []] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ , even_batches=snake_case__ ) def _a ( self : List[str] ): """simple docstring""" A =[[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] A =[BatchSamplerShard(snake_case__ , 2 , snake_case__ , even_batches=snake_case__ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _a ( self : Dict , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : str , snake_case__ : Optional[int]=False , snake_case__ : Union[str, Any]=2 , snake_case__ : Dict=False ): """simple docstring""" random.seed(snake_case__ ) A =list(snake_case__ ) A =[ IterableDatasetShard( snake_case__ , batch_size=snake_case__ , drop_last=snake_case__ , num_processes=snake_case__ , process_index=snake_case__ , split_batches=snake_case__ , ) for i in range(snake_case__ ) ] A =[] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(snake_case__ ) iterable_dataset_lists.append(list(snake_case__ ) ) A =batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size A =iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(snake_case__ ) , len(snake_case__ ) ) self.assertTrue(len(snake_case__ ) % shard_batch_size == 0 ) A =[] for idx in range(0 , len(snake_case__ ) , snake_case__ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(snake_case__ ) < len(snake_case__ ): reference += reference self.assertListEqual(snake_case__ , reference[: len(snake_case__ )] ) def _a ( self : int ): """simple docstring""" A =42 A =RandomIterableDataset() self.check_iterable_dataset_shards(snake_case__ , snake_case__ , batch_size=4 , drop_last=snake_case__ , split_batches=snake_case__ ) self.check_iterable_dataset_shards(snake_case__ , snake_case__ , batch_size=4 , drop_last=snake_case__ , split_batches=snake_case__ ) self.check_iterable_dataset_shards(snake_case__ , snake_case__ , batch_size=4 , drop_last=snake_case__ , split_batches=snake_case__ ) self.check_iterable_dataset_shards(snake_case__ , snake_case__ , batch_size=4 , drop_last=snake_case__ , split_batches=snake_case__ ) # Edge case with a very small dataset A =RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(snake_case__ , snake_case__ , batch_size=4 , drop_last=snake_case__ , split_batches=snake_case__ ) self.check_iterable_dataset_shards(snake_case__ , snake_case__ , batch_size=4 , drop_last=snake_case__ , split_batches=snake_case__ ) self.check_iterable_dataset_shards(snake_case__ , snake_case__ , batch_size=4 , drop_last=snake_case__ , split_batches=snake_case__ ) self.check_iterable_dataset_shards(snake_case__ , snake_case__ , batch_size=4 , drop_last=snake_case__ , split_batches=snake_case__ ) def _a ( self : int ): """simple docstring""" A =BatchSampler(range(16 ) , batch_size=4 , drop_last=snake_case__ ) A =SkipBatchSampler(snake_case__ , 2 ) self.assertListEqual(list(snake_case__ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _a ( self : str ): """simple docstring""" A =SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _a ( self : List[Any] ): """simple docstring""" A =DataLoader(list(range(16 ) ) , batch_size=4 ) A =skip_first_batches(snake_case__ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _a ( self : int ): """simple docstring""" A =DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(snake_case__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(snake_case__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _a ( self : List[Any] ): """simple docstring""" Accelerator() A =DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(snake_case__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(snake_case__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
689
def UpperCamelCase_ ( a_ , a_ , a_ ) ->int: def count_of_possible_combinations(a_ ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(a_ ) def UpperCamelCase_ ( a_ , a_ , a_ ) ->int: def count_of_possible_combinations_with_dp_array( a_ , a_ ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] A =sum( count_of_possible_combinations_with_dp_array(target - item , a_ ) for item in array ) A =answer return answer A =[-1] * (target + 1) return count_of_possible_combinations_with_dp_array(a_ , a_ ) def UpperCamelCase_ ( a_ , a_ , a_ ) ->int: A =[0] * (target + 1) A =1 for i in range(1 , target + 1 ): for j in range(a_ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() __a = 3 __a = 5 __a = [1, 2, 5] print(combination_sum_iv(n, array, target))
689
1
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _lowercase ( __a ): _UpperCAmelCase = (DDPMScheduler,) def UpperCamelCase ( self , **A__ ) -> str: snake_case = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**A__ ) return config def UpperCamelCase ( self ) -> Optional[Any]: for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=A__ ) def UpperCamelCase ( self ) -> str: for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=A__ , beta_end=A__ ) def UpperCamelCase ( self ) -> Union[str, Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=A__ ) def UpperCamelCase ( self ) -> Dict: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=A__ ) def UpperCamelCase ( self ) -> List[str]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=A__ ) def UpperCamelCase ( self ) -> List[str]: self.check_over_configs(thresholding=A__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=A__ , prediction_type=A__ , sample_max_value=A__ , ) def UpperCamelCase ( self ) -> Dict: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=A__ ) def UpperCamelCase ( self ) -> List[Any]: for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=A__ ) def UpperCamelCase ( self ) -> Tuple: snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config() snake_case = scheduler_class(**A__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.0_2 ) ) < 1e-5 def UpperCamelCase ( self ) -> Optional[Any]: snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config() snake_case = scheduler_class(**A__ ) snake_case = len(A__ ) snake_case = self.dummy_model() snake_case = self.dummy_sample_deter snake_case = torch.manual_seed(0 ) for t in reversed(range(A__ ) ): # 1. predict noise residual snake_case = model(A__ , A__ ) # 2. predict previous mean of sample x_t-1 snake_case = scheduler.step(A__ , A__ , A__ , generator=A__ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance snake_case = pred_prev_sample snake_case = torch.sum(torch.abs(A__ ) ) snake_case = torch.mean(torch.abs(A__ ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def UpperCamelCase ( self ) -> Any: snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config(prediction_type='''v_prediction''' ) snake_case = scheduler_class(**A__ ) snake_case = len(A__ ) snake_case = self.dummy_model() snake_case = self.dummy_sample_deter snake_case = torch.manual_seed(0 ) for t in reversed(range(A__ ) ): # 1. predict noise residual snake_case = model(A__ , A__ ) # 2. predict previous mean of sample x_t-1 snake_case = scheduler.step(A__ , A__ , A__ , generator=A__ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance snake_case = pred_prev_sample snake_case = torch.sum(torch.abs(A__ ) ) snake_case = torch.mean(torch.abs(A__ ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def UpperCamelCase ( self ) -> int: snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config() snake_case = scheduler_class(**A__ ) snake_case = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=A__ ) snake_case = scheduler.timesteps for i, timestep in enumerate(A__ ): if i == len(A__ ) - 1: snake_case = -1 else: snake_case = timesteps[i + 1] snake_case = scheduler.previous_timestep(A__ ) snake_case = prev_t.item() self.assertEqual(A__ , A__ ) def UpperCamelCase ( self ) -> Dict: snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config() snake_case = scheduler_class(**A__ ) snake_case = [1_00, 87, 50, 51, 0] with self.assertRaises(A__ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=A__ ) def UpperCamelCase ( self ) -> Dict: snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config() snake_case = scheduler_class(**A__ ) snake_case = [1_00, 87, 50, 1, 0] snake_case = len(A__ ) with self.assertRaises(A__ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=A__ , timesteps=A__ ) def UpperCamelCase ( self ) -> Tuple: snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config() snake_case = scheduler_class(**A__ ) snake_case = [scheduler.config.num_train_timesteps] with self.assertRaises( A__ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=A__ )
342
'''simple docstring''' import math def __UpperCamelCase ( a : int ) ->list[int]: snake_case = [] snake_case = 2 snake_case = int(math.sqrt(a ) ) # Size of every segment snake_case = [True] * (end + 1) snake_case = [] while start <= end: if temp[start] is True: in_prime.append(a ) for i in range(start * start , end + 1 , a ): snake_case = False start += 1 prime += in_prime snake_case = end + 1 snake_case = min(2 * end , a ) while low <= n: snake_case = [True] * (high - low + 1) for each in in_prime: snake_case = math.floor(low / each ) * each if t < low: t += each for j in range(a , high + 1 , a ): snake_case = False for j in range(len(a ) ): if temp[j] is True: prime.append(j + low ) snake_case = high + 1 snake_case = min(high + end , a ) return prime print(sieve(10**6))
342
1
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : List[Any] = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys __lowerCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
704
"""simple docstring""" from __future__ import annotations from math import gcd def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 2 , lowerCamelCase__ = 1 , lowerCamelCase__ = 3 , ): """simple docstring""" if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: return (pow(lowerCamelCase__ , 2 ) + step) % modulus for _ in range(lowerCamelCase__ ): # These track the position within the cycle detection logic. lowerCAmelCase__ = seed lowerCAmelCase__ = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. lowerCAmelCase__ = gcd(hare - tortoise , lowerCamelCase__ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. lowerCAmelCase__ = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) __lowerCAmelCase : List[str] = parser.parse_args() __lowerCAmelCase : Dict = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F"{args.num} is probably prime") else: __lowerCAmelCase : List[str] = args.num // divisor print(F"{args.num} = {divisor} * {quotient}")
674
0
"""simple docstring""" def A__ ( __lowerCamelCase ): """simple docstring""" assert column_title.isupper() _lowerCAmelCase = 0 _lowerCAmelCase = len(__lowerCamelCase ) - 1 _lowerCAmelCase = 0 while index >= 0: _lowerCAmelCase = (ord(column_title[index] ) - 6_4) * pow(2_6, __lowerCamelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
589
"""simple docstring""" import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): """simple docstring""" # Initialise PyTorch model _lowerCAmelCase = BigBirdConfig.from_json_file(__lowerCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) if is_trivia_qa: _lowerCAmelCase = BigBirdForQuestionAnswering(__lowerCamelCase ) else: _lowerCAmelCase = BigBirdForPreTraining(__lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(__lowerCamelCase, __lowerCamelCase, is_trivia_qa=__lowerCamelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": a__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) a__ : List[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
589
1
'''simple docstring''' import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase__ ( __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : str ) -> Tuple: '''simple docstring''' snake_case__ : Union[str, Any] = RemBertConfig.from_json_file(__magic_name__ ) print("""Building PyTorch model from configuration: {}""".format(str(__magic_name__ ) ) ) snake_case__ : Optional[int] = RemBertModel(__magic_name__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(__magic_name__ , __magic_name__ , __magic_name__ ) # Save pytorch-model print("""Save PyTorch model to {}""".format(__magic_name__ ) ) torch.save(model.state_dict() , __magic_name__ ) if __name__ == "__main__": A_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ : Optional[Any] = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
419
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = StableDiffusionInstructPixaPixPipeline lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''} lowerCamelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCamelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def __UpperCamelCase ( self ): torch.manual_seed(0 ) snake_case__ : Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , ) snake_case__ : Any = PNDMScheduler(skip_prk_steps=__SCREAMING_SNAKE_CASE ) torch.manual_seed(0 ) snake_case__ : List[str] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case__ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) snake_case__ : Optional[Any] = CLIPTextModel(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case__ : Tuple = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ): snake_case__ : List[str] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case__ : Any = Image.fromarray(np.uinta(__SCREAMING_SNAKE_CASE ) ).convert("""RGB""" ) if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): snake_case__ : List[str] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: snake_case__ : List[Any] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def __UpperCamelCase ( self ): snake_case__ : Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case__ : str = self.get_dummy_components() snake_case__ : Union[str, Any] = StableDiffusionInstructPixaPixPipeline(**__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) snake_case__ : int = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = sd_pipe(**__SCREAMING_SNAKE_CASE ).images snake_case__ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) snake_case__ : Tuple = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase ( self ): snake_case__ : Tuple = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case__ : Tuple = self.get_dummy_components() snake_case__ : Optional[int] = StableDiffusionInstructPixaPixPipeline(**__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) snake_case__ : Any = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = """french fries""" snake_case__ : Union[str, Any] = sd_pipe(**__SCREAMING_SNAKE_CASE , negative_prompt=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = output.images snake_case__ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) snake_case__ : str = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case__ : str = self.get_dummy_components() snake_case__ : List[Any] = StableDiffusionInstructPixaPixPipeline(**__SCREAMING_SNAKE_CASE ) snake_case__ : int = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = [inputs["""prompt"""]] * 2 snake_case__ : List[str] = np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0 snake_case__ : int = torch.from_numpy(__SCREAMING_SNAKE_CASE ).unsqueeze(0 ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = image / 2 + 0.5 snake_case__ : str = image.permute(0 , 3 , 1 , 2 ) snake_case__ : List[str] = image.repeat(2 , 1 , 1 , 1 ) snake_case__ : Optional[int] = sd_pipe(**__SCREAMING_SNAKE_CASE ).images snake_case__ : Union[str, Any] = image[-1, -3:, -3:, -1] assert image.shape == (2, 3_2, 3_2, 3) snake_case__ : Optional[Any] = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase ( self ): snake_case__ : List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case__ : Optional[Any] = self.get_dummy_components() snake_case__ : int = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) snake_case__ : List[str] = StableDiffusionInstructPixaPixPipeline(**__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) snake_case__ : int = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = sd_pipe(**__SCREAMING_SNAKE_CASE ).images snake_case__ : List[Any] = image[0, -3:, -3:, -1] snake_case__ : List[str] = [round(__SCREAMING_SNAKE_CASE , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(__SCREAMING_SNAKE_CASE ) for x in slice] ) ) assert image.shape == (1, 3_2, 3_2, 3) snake_case__ : List[str] = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def __UpperCamelCase ( self ): snake_case__ : Any = self.get_dummy_components() snake_case__ : Any = StableDiffusionInstructPixaPixPipeline(**__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = VaeImageProcessor(do_resize=__SCREAMING_SNAKE_CASE , do_normalize=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = pipe(**self.get_dummy_inputs_by_type(__SCREAMING_SNAKE_CASE , input_image_type="""pt""" ) )[0] snake_case__ : Optional[int] = components["""vae"""] snake_case__ : int = self.get_dummy_inputs_by_type(__SCREAMING_SNAKE_CASE , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): snake_case__ : Optional[Any] = vae.encode(inputs[image_param] ).latent_dist.mode() snake_case__ : Union[str, Any] = pipe(**__SCREAMING_SNAKE_CASE )[0] snake_case__ : Union[str, Any] = np.abs(out - out_latents_inputs ).max() self.assertLess(__SCREAMING_SNAKE_CASE , 1e-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE=0 ): snake_case__ : Optional[Any] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) snake_case__ : Tuple = { """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def __UpperCamelCase ( self ): snake_case__ : List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() snake_case__ : Dict = self.get_inputs() snake_case__ : Tuple = pipe(**__SCREAMING_SNAKE_CASE ).images snake_case__ : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case__ : Dict = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __UpperCamelCase ( self ): snake_case__ : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() snake_case__ : Tuple = self.get_inputs() snake_case__ : Union[str, Any] = pipe(**__SCREAMING_SNAKE_CASE ).images snake_case__ : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case__ : int = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __UpperCamelCase ( self ): snake_case__ : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() snake_case__ : Dict = self.get_inputs() snake_case__ : Tuple = pipe(**__SCREAMING_SNAKE_CASE ).images snake_case__ : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case__ : Optional[int] = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __UpperCamelCase ( self ): snake_case__ : List[str] = 0 def callback_fn(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> None: snake_case__ : Tuple = True nonlocal number_of_steps number_of_steps += 1 if step == 1: snake_case__ : Optional[int] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) snake_case__ : Optional[Any] = latents[0, -3:, -3:, -1] snake_case__ : Optional[int] = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: snake_case__ : Optional[int] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) snake_case__ : List[str] = latents[0, -3:, -3:, -1] snake_case__ : int = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 snake_case__ : List[str] = False snake_case__ : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa ) snake_case__ : Tuple = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() snake_case__ : Tuple = self.get_inputs() pipe(**__SCREAMING_SNAKE_CASE , callback=__SCREAMING_SNAKE_CASE , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __UpperCamelCase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case__ : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa ) snake_case__ : str = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case__ : str = self.get_inputs() snake_case__ : Any = pipe(**__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 1_0**9 def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 snake_case__ : Tuple = inputs["""image"""].resize((5_0_4, 5_0_4) ) snake_case__ : Dict = """timbrooks/instruct-pix2pix""" snake_case__ : Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( __SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() snake_case__ : Tuple = pipe(**__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = output.images[0] snake_case__ : Union[str, Any] = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 5_0_4, 3) snake_case__ : int = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
419
1
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig __a : Tuple = logging.get_logger(__name__) __a : Optional[int] = '''T5Config''' def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: lowercase__ : str = jnp.zeros_like(SCREAMING_SNAKE_CASE_ ) lowercase__ : Tuple = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) lowercase__ : Union[str, Any] = shifted_input_ids.at[:, 0].set(SCREAMING_SNAKE_CASE_ ) lowercase__ : int = jnp.where(shifted_input_ids == -1_00 ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) return shifted_input_ids class UpperCAmelCase( snake_case_ ): """simple docstring""" a : Dict = """mt5""" a : str = MTaConfig class UpperCAmelCase( snake_case_ ): """simple docstring""" a : Any = """mt5""" a : str = MTaConfig class UpperCAmelCase( snake_case_ ): """simple docstring""" a : Dict = """mt5""" a : Union[str, Any] = MTaConfig
397
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='''%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s''', datefmt='''%Y-%m-%d %H:%M:%S''', level=os.environ.get('''LOGLEVEL''', '''INFO''').upper(), stream=sys.stdout, ) __a : List[Any] = logging.getLogger(__name__) __a : int = {'''facebook/bart-base''': BartForConditionalGeneration} __a : List[str] = {'''facebook/bart-base''': BartTokenizer} def snake_case_ ( ) -> List[Any]: lowercase__ : Any = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." ) parser.add_argument( "--validation_file" ,type=SCREAMING_SNAKE_CASE_ ,default=SCREAMING_SNAKE_CASE_ ,help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length" ,type=SCREAMING_SNAKE_CASE_ ,default=5 ,help="The maximum total input sequence length after tokenization." ,) parser.add_argument( "--num_beams" ,type=SCREAMING_SNAKE_CASE_ ,default=SCREAMING_SNAKE_CASE_ ,help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ) ,) parser.add_argument( "--model_name_or_path" ,type=SCREAMING_SNAKE_CASE_ ,help="Path to pretrained model or model identifier from huggingface.co/models." ,required=SCREAMING_SNAKE_CASE_ ,) parser.add_argument( "--config_name" ,type=SCREAMING_SNAKE_CASE_ ,default=SCREAMING_SNAKE_CASE_ ,help="Pretrained config name or path if not the same as model_name" ,) parser.add_argument( "--device" ,type=SCREAMING_SNAKE_CASE_ ,default="cpu" ,help="Device where the model will be run" ,) parser.add_argument("--output_file_path" ,type=SCREAMING_SNAKE_CASE_ ,default=SCREAMING_SNAKE_CASE_ ,help="Where to store the final ONNX file." ) lowercase__ : str = parser.parse_args() return args def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_="cpu" ) -> str: lowercase__ : int = model_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) lowercase__ : List[str] = tokenizer_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE_ ) if model_name in ["facebook/bart-base"]: lowercase__ : Any = 0 lowercase__ : List[str] = None lowercase__ : int = 0 return huggingface_model, tokenizer def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> Any: model.eval() lowercase__ : List[Any] = None lowercase__ : Optional[Any] = torch.jit.script(BARTBeamSearchGenerator(SCREAMING_SNAKE_CASE_ ) ) with torch.no_grad(): lowercase__ : str = "My friends are cool but they eat too many carbs." lowercase__ : Optional[Any] = tokenizer([ARTICLE_TO_SUMMARIZE] ,max_length=10_24 ,return_tensors="pt" ).to(model.device ) lowercase__ : Optional[int] = model.generate( inputs["input_ids"] ,attention_mask=inputs["attention_mask"] ,num_beams=SCREAMING_SNAKE_CASE_ ,max_length=SCREAMING_SNAKE_CASE_ ,early_stopping=SCREAMING_SNAKE_CASE_ ,decoder_start_token_id=model.config.decoder_start_token_id ,) torch.onnx.export( SCREAMING_SNAKE_CASE_ ,( inputs["input_ids"], inputs["attention_mask"], num_beams, max_length, model.config.decoder_start_token_id, ) ,SCREAMING_SNAKE_CASE_ ,opset_version=14 ,input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] ,output_names=["output_ids"] ,dynamic_axes={ "input_ids": {0: "batch", 1: "seq"}, "output_ids": {0: "batch", 1: "seq_out"}, } ,example_outputs=SCREAMING_SNAKE_CASE_ ,) logger.info("Model exported to {}".format(SCREAMING_SNAKE_CASE_ ) ) lowercase__ : Tuple = remove_dup_initializers(os.path.abspath(SCREAMING_SNAKE_CASE_ ) ) logger.info("Deduplicated and optimized model written to {}".format(SCREAMING_SNAKE_CASE_ ) ) lowercase__ : int = onnxruntime.InferenceSession(SCREAMING_SNAKE_CASE_ ) lowercase__ : Tuple = ort_sess.run( SCREAMING_SNAKE_CASE_ ,{ "input_ids": inputs["input_ids"].cpu().numpy(), "attention_mask": inputs["attention_mask"].cpu().numpy(), "num_beams": np.array(SCREAMING_SNAKE_CASE_ ), "max_length": np.array(SCREAMING_SNAKE_CASE_ ), "decoder_start_token_id": np.array(model.config.decoder_start_token_id ), } ,) np.testing.assert_allclose(summary_ids.cpu().numpy() ,ort_out[0] ,rtol=1E-3 ,atol=1E-3 ) logger.info("Model outputs from torch and ONNX Runtime are similar." ) logger.info("Success." ) def snake_case_ ( ) -> List[Any]: lowercase__ : Optional[Any] = parse_args() lowercase__ : List[Any] = 5 lowercase__ : List[Any] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" ,datefmt="%m/%d/%Y %H:%M:%S" ,level=logging.INFO ,) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() lowercase__ : Optional[int] = torch.device(args.device ) lowercase__ , lowercase__ : Any = load_model_tokenizer(args.model_name_or_path ,SCREAMING_SNAKE_CASE_ ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" ) model.to(SCREAMING_SNAKE_CASE_ ) if args.max_length: lowercase__ : Tuple = args.max_length if args.num_beams: lowercase__ : str = args.num_beams if args.output_file_path: lowercase__ : str = args.output_file_path else: lowercase__ : Tuple = "BART.onnx" logger.info("Exporting model to ONNX" ) export_and_validate_model(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
397
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class lowercase ( __lowerCamelCase ): _lowerCamelCase : Optional[int]= '''longformer''' def __init__( self , _snake_case = 512 , _snake_case = 2 , _snake_case = 1 , _snake_case = 0 , _snake_case = 2 , _snake_case = 3_0522 , _snake_case = 768 , _snake_case = 12 , _snake_case = 12 , _snake_case = 3072 , _snake_case = "gelu" , _snake_case = 0.1 , _snake_case = 0.1 , _snake_case = 512 , _snake_case = 2 , _snake_case = 0.02 , _snake_case = 1e-12 , _snake_case = False , **_snake_case , ) -> Any: super().__init__(pad_token_id=a_ , **a_) UpperCAmelCase_ : str = attention_window UpperCAmelCase_ : Union[str, Any] = sep_token_id UpperCAmelCase_ : Dict = bos_token_id UpperCAmelCase_ : List[Any] = eos_token_id UpperCAmelCase_ : str = vocab_size UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : List[str] = intermediate_size UpperCAmelCase_ : Optional[int] = hidden_dropout_prob UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = max_position_embeddings UpperCAmelCase_ : Any = type_vocab_size UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Any = layer_norm_eps UpperCAmelCase_ : Optional[int] = onnx_export class lowercase ( __lowerCamelCase ): def __init__( self , _snake_case , _snake_case = "default" , _snake_case = None) -> Any: super().__init__(a_ , a_ , a_) UpperCAmelCase_ : Union[str, Any] = True @property def _snake_case ( self) -> List[str]: if self.task == "multiple-choice": UpperCAmelCase_ : str = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ : Dict = {0: "batch", 1: "sequence"} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ]) @property def _snake_case ( self) -> List[str]: UpperCAmelCase_ : List[str] = super().outputs if self.task == "default": UpperCAmelCase_ : Optional[int] = {0: "batch"} return outputs @property def _snake_case ( self) -> Any: return 1e-4 @property def _snake_case ( self) -> Dict: # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14) def _snake_case ( self , _snake_case , _snake_case = -1 , _snake_case = -1 , _snake_case = False , _snake_case = None , ) -> str: UpperCAmelCase_ : int = super().generate_dummy_inputs( preprocessor=a_ , batch_size=a_ , seq_length=a_ , is_pair=a_ , framework=a_) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly UpperCAmelCase_ : int = torch.zeros_like(inputs['input_ids']) # make every second token global UpperCAmelCase_ : List[str] = 1 return inputs
707
'''simple docstring''' import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) lowerCAmelCase__ = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase ) -> Union[str, Any]: UpperCAmelCase_ : Any = np.argmax(UpperCamelCase ,axis=1 ) return np.sum(outputs == labels ) def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> List[str]: with open(UpperCamelCase ,encoding='utf_8' ) as f: UpperCAmelCase_ : int = csv.reader(UpperCamelCase ) UpperCAmelCase_ : Tuple = [] next(UpperCamelCase ) # skip the first line for line in tqdm(UpperCamelCase ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Optional[int]: UpperCAmelCase_ : str = [] for dataset in encoded_datasets: UpperCAmelCase_ : str = len(UpperCamelCase ) UpperCAmelCase_ : str = np.zeros((n_batch, 2, input_len) ,dtype=np.intaa ) UpperCAmelCase_ : List[Any] = np.zeros((n_batch, 2) ,dtype=np.intaa ) UpperCAmelCase_ : Any = np.full((n_batch, 2, input_len) ,fill_value=-1_0_0 ,dtype=np.intaa ) UpperCAmelCase_ : List[Any] = np.zeros((n_batch,) ,dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(UpperCamelCase ): UpperCAmelCase_ : Union[str, Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] UpperCAmelCase_ : List[Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] UpperCAmelCase_ : Any = with_conta UpperCAmelCase_ : Tuple = with_conta UpperCAmelCase_ : Union[str, Any] = len(UpperCamelCase ) - 1 UpperCAmelCase_ : int = len(UpperCamelCase ) - 1 UpperCAmelCase_ : Any = with_conta UpperCAmelCase_ : Any = with_conta UpperCAmelCase_ : Optional[int] = mc_label UpperCAmelCase_ : Tuple = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(UpperCamelCase ) for t in all_inputs ) ) return tensor_datasets def SCREAMING_SNAKE_CASE( ) -> str: UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--model_name' ,type=UpperCamelCase ,default='openai-gpt' ,help='pretrained model name' ) parser.add_argument('--do_train' ,action='store_true' ,help='Whether to run training.' ) parser.add_argument('--do_eval' ,action='store_true' ,help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' ,default=UpperCamelCase ,type=UpperCamelCase ,required=UpperCamelCase ,help='The output directory where the model predictions and checkpoints will be written.' ,) parser.add_argument('--train_dataset' ,type=UpperCamelCase ,default='' ) parser.add_argument('--eval_dataset' ,type=UpperCamelCase ,default='' ) parser.add_argument('--seed' ,type=UpperCamelCase ,default=4_2 ) parser.add_argument('--num_train_epochs' ,type=UpperCamelCase ,default=3 ) parser.add_argument('--train_batch_size' ,type=UpperCamelCase ,default=8 ) parser.add_argument('--eval_batch_size' ,type=UpperCamelCase ,default=1_6 ) parser.add_argument('--adam_epsilon' ,default=1e-8 ,type=UpperCamelCase ,help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' ,type=UpperCamelCase ,default=1 ) parser.add_argument( '--max_steps' ,default=-1 ,type=UpperCamelCase ,help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) ,) parser.add_argument( '--gradient_accumulation_steps' ,type=UpperCamelCase ,default=1 ,help='Number of updates steps to accumulate before performing a backward/update pass.' ,) parser.add_argument('--learning_rate' ,type=UpperCamelCase ,default=6.25e-5 ) parser.add_argument('--warmup_steps' ,default=0 ,type=UpperCamelCase ,help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' ,type=UpperCamelCase ,default='warmup_linear' ) parser.add_argument('--weight_decay' ,type=UpperCamelCase ,default=0.01 ) parser.add_argument('--lm_coef' ,type=UpperCamelCase ,default=0.9 ) parser.add_argument('--n_valid' ,type=UpperCamelCase ,default=3_7_4 ) parser.add_argument('--server_ip' ,type=UpperCamelCase ,default='' ,help='Can be used for distant debugging.' ) parser.add_argument('--server_port' ,type=UpperCamelCase ,default='' ,help='Can be used for distant debugging.' ) UpperCAmelCase_ : Optional[Any] = parser.parse_args() print(UpperCamelCase ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) ,redirect_output=UpperCamelCase ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) UpperCAmelCase_ : Union[str, Any] = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) UpperCAmelCase_ : Dict = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(UpperCamelCase ,UpperCamelCase ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset UpperCAmelCase_ : Optional[int] = ['_start_', '_delimiter_', '_classify_'] UpperCAmelCase_ : Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = tokenizer.convert_tokens_to_ids(UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(UpperCamelCase ) ) model.to(UpperCamelCase ) # Load and encode the datasets def tokenize_and_encode(UpperCamelCase ): if isinstance(UpperCamelCase ,UpperCamelCase ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(UpperCamelCase ) ) elif isinstance(UpperCamelCase ,UpperCamelCase ): return obj return [tokenize_and_encode(UpperCamelCase ) for o in obj] logger.info('Encoding dataset...' ) UpperCAmelCase_ : List[str] = load_rocstories_dataset(args.train_dataset ) UpperCAmelCase_ : Optional[Any] = load_rocstories_dataset(args.eval_dataset ) UpperCAmelCase_ : Dict = (train_dataset, eval_dataset) UpperCAmelCase_ : Union[str, Any] = tokenize_and_encode(UpperCamelCase ) # Compute the max input length for the Transformer UpperCAmelCase_ : Dict = model.config.n_positions // 2 - 2 UpperCAmelCase_ : int = max( len(story[:max_length] ) + max(len(conta[:max_length] ) ,len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) UpperCAmelCase_ : Dict = min(UpperCamelCase ,model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders UpperCAmelCase_ : Optional[int] = pre_process_datasets(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,*UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = tensor_datasets[0], tensor_datasets[1] UpperCAmelCase_ : Optional[int] = TensorDataset(*UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = RandomSampler(UpperCamelCase ) UpperCAmelCase_ : int = DataLoader(UpperCamelCase ,sampler=UpperCamelCase ,batch_size=args.train_batch_size ) UpperCAmelCase_ : int = TensorDataset(*UpperCamelCase ) UpperCAmelCase_ : Optional[int] = SequentialSampler(UpperCamelCase ) UpperCAmelCase_ : Tuple = DataLoader(UpperCamelCase ,sampler=UpperCamelCase ,batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: UpperCAmelCase_ : List[str] = args.max_steps UpperCAmelCase_ : List[str] = args.max_steps // (len(UpperCamelCase ) // args.gradient_accumulation_steps) + 1 else: UpperCAmelCase_ : List[str] = len(UpperCamelCase ) // args.gradient_accumulation_steps * args.num_train_epochs UpperCAmelCase_ : Any = list(model.named_parameters() ) UpperCAmelCase_ : Any = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] UpperCAmelCase_ : Dict = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] UpperCAmelCase_ : Any = AdamW(UpperCamelCase ,lr=args.learning_rate ,eps=args.adam_epsilon ) UpperCAmelCase_ : List[str] = get_linear_schedule_with_warmup( UpperCamelCase ,num_warmup_steps=args.warmup_steps ,num_training_steps=UpperCamelCase ) if args.do_train: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) ,desc='Epoch' ): UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : List[Any] = tqdm(UpperCamelCase ,desc='Training' ) for step, batch in enumerate(UpperCamelCase ): UpperCAmelCase_ : Optional[Any] = tuple(t.to(UpperCamelCase ) for t in batch ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = batch UpperCAmelCase_ : Dict = model(UpperCamelCase ,mc_token_ids=UpperCamelCase ,lm_labels=UpperCamelCase ,mc_labels=UpperCamelCase ) UpperCAmelCase_ : int = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() UpperCAmelCase_ : Dict = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 UpperCAmelCase_ : List[Any] = 'Training loss: {:.2e} lr: {:.2e}'.format(UpperCamelCase ,scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer UpperCAmelCase_ : int = model.module if hasattr(UpperCamelCase ,'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` UpperCAmelCase_ : int = os.path.join(args.output_dir ,UpperCamelCase ) UpperCAmelCase_ : Any = os.path.join(args.output_dir ,UpperCamelCase ) torch.save(model_to_save.state_dict() ,UpperCamelCase ) model_to_save.config.to_json_file(UpperCamelCase ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned UpperCAmelCase_ : int = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) UpperCAmelCase_ : Dict = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(UpperCamelCase ) if args.do_eval: model.eval() UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = 0, 0 UpperCAmelCase_ , UpperCAmelCase_ : Any = 0, 0 for batch in tqdm(UpperCamelCase ,desc='Evaluating' ): UpperCAmelCase_ : Union[str, Any] = tuple(t.to(UpperCamelCase ) for t in batch ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = batch with torch.no_grad(): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = model( UpperCamelCase ,mc_token_ids=UpperCamelCase ,lm_labels=UpperCamelCase ,mc_labels=UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = mc_logits.detach().cpu().numpy() UpperCAmelCase_ : int = mc_labels.to('cpu' ).numpy() UpperCAmelCase_ : Optional[int] = accuracy(UpperCamelCase ,UpperCamelCase ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 UpperCAmelCase_ : str = eval_loss / nb_eval_steps UpperCAmelCase_ : str = eval_accuracy / nb_eval_examples UpperCAmelCase_ : List[Any] = tr_loss / nb_tr_steps if args.do_train else None UpperCAmelCase_ : Dict = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} UpperCAmelCase_ : Union[str, Any] = os.path.join(args.output_dir ,'eval_results.txt' ) with open(UpperCamelCase ,'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' ,UpperCamelCase ,str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
471
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase : Any = logging.get_logger(__name__) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: lowercase : Optional[Any] = original_name.split(""".""" )[0] lowercase : List[Any] = key.split(""".""" ) lowercase : Dict = int(key_list[key_list.index(snake_case__ ) - 2] ) lowercase : str = int(key_list[key_list.index(snake_case__ ) - 1] ) lowercase : Any = orig_block_num - offset lowercase : List[Any] = key.replace(f"{orig_block_num}.{layer_num}.{original_name}" , f"block.{new_block_num}.{layer_num}.{new_name}" ) return key def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Dict: lowercase : List[Any] = OrderedDict() lowercase , lowercase : Tuple = 0, 0 for key, value in state_dict.items(): if key.startswith("""network""" ): lowercase : Dict = key.replace("""network""" , """poolformer.encoder""" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("""bias""" ) and "patch_embed" not in key: patch_emb_offset += 1 lowercase : Optional[Any] = key[: key.find("""proj""" )] lowercase : Union[str, Any] = key.replace(snake_case__ , f"patch_embeddings.{total_embed_found}." ) lowercase : Any = key.replace("""proj""" , """projection""" ) if key.endswith("""bias""" ): total_embed_found += 1 if "patch_embeddings" in key: lowercase : Union[str, Any] = """poolformer.encoder.""" + key if "mlp.fc1" in key: lowercase : Any = replace_key_with_offset(snake_case__ , snake_case__ , """mlp.fc1""" , """output.conv1""" ) if "mlp.fc2" in key: lowercase : Optional[Any] = replace_key_with_offset(snake_case__ , snake_case__ , """mlp.fc2""" , """output.conv2""" ) if "norm1" in key: lowercase : Tuple = replace_key_with_offset(snake_case__ , snake_case__ , """norm1""" , """before_norm""" ) if "norm2" in key: lowercase : str = replace_key_with_offset(snake_case__ , snake_case__ , """norm2""" , """after_norm""" ) if "layer_scale_1" in key: lowercase : List[str] = replace_key_with_offset(snake_case__ , snake_case__ , """layer_scale_1""" , """layer_scale_1""" ) if "layer_scale_2" in key: lowercase : List[Any] = replace_key_with_offset(snake_case__ , snake_case__ , """layer_scale_2""" , """layer_scale_2""" ) if "head" in key: lowercase : int = key.replace("""head""" , """classifier""" ) lowercase : int = value return new_state_dict def _snake_case( ) -> Optional[Any]: lowercase : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase : Optional[int] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return image @torch.no_grad() def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : List[str] = PoolFormerConfig() # set attributes based on model_name lowercase : int = """huggingface/label-files""" lowercase : Optional[int] = model_name[-3:] lowercase : str = 1_000 lowercase : List[str] = """imagenet-1k-id2label.json""" lowercase : Tuple = (1, 1_000) # set config attributes lowercase : Tuple = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""" ) , """r""" ) ) lowercase : Optional[Any] = {int(snake_case__ ): v for k, v in idalabel.items()} lowercase : Optional[int] = idalabel lowercase : Optional[int] = {v: k for k, v in idalabel.items()} if size == "s12": lowercase : Union[str, Any] = [2, 2, 6, 2] lowercase : Optional[Any] = [64, 128, 320, 512] lowercase : Tuple = 4.0 lowercase : Optional[int] = 0.9 elif size == "s24": lowercase : Optional[Any] = [4, 4, 12, 4] lowercase : List[str] = [64, 128, 320, 512] lowercase : List[Any] = 4.0 lowercase : int = 0.9 elif size == "s36": lowercase : Dict = [6, 6, 18, 6] lowercase : str = [64, 128, 320, 512] lowercase : List[Any] = 4.0 lowercase : Union[str, Any] = 1e-6 lowercase : Any = 0.9 elif size == "m36": lowercase : int = [6, 6, 18, 6] lowercase : Any = [96, 192, 384, 768] lowercase : Any = 4.0 lowercase : Dict = 1e-6 lowercase : Optional[int] = 0.95 elif size == "m48": lowercase : Dict = [8, 8, 24, 8] lowercase : Optional[Any] = [96, 192, 384, 768] lowercase : str = 4.0 lowercase : List[str] = 1e-6 lowercase : List[str] = 0.95 else: raise ValueError(f"Size {size} not supported" ) # load image processor lowercase : Any = PoolFormerImageProcessor(crop_pct=snake_case__ ) # Prepare image lowercase : Optional[Any] = prepare_img() lowercase : Tuple = image_processor(images=snake_case__ , return_tensors="""pt""" ).pixel_values logger.info(f"Converting model {model_name}..." ) # load original state dict lowercase : Any = torch.load(snake_case__ , map_location=torch.device("""cpu""" ) ) # rename keys lowercase : List[Any] = rename_keys(snake_case__ ) # create HuggingFace model and load state dict lowercase : List[Any] = PoolFormerForImageClassification(snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() # Define image processor lowercase : List[str] = PoolFormerImageProcessor(crop_pct=snake_case__ ) lowercase : Optional[int] = image_processor(images=prepare_img() , return_tensors="""pt""" ).pixel_values # forward pass lowercase : Optional[Any] = model(snake_case__ ) lowercase : Optional[int] = outputs.logits # define expected logit slices for different models if size == "s12": lowercase : Dict = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": lowercase : Tuple = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": lowercase : int = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": lowercase : Any = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": lowercase : Any = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(f"Size {size} not supported" ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , snake_case__ , atol=1e-2 ) # finally, save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": lowercase : int = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""poolformer_s12""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) lowercase : Tuple = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
336
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __lowercase ( unittest.TestCase ): @parameterized.expand([(None,), ('foo.json',)]) def _a ( self , lowercase_) -> int: __snake_case = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ , config_name=lowercase_) __snake_case = GenerationConfig.from_pretrained(lowercase_ , config_name=lowercase_) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , lowercase_) self.assertEqual(loaded_config.temperature , 0.7) self.assertEqual(loaded_config.length_penalty , 1.0) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]]) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0) self.assertEqual(loaded_config.max_length , 2_0) self.assertEqual(loaded_config.max_time , lowercase_) def _a ( self) -> Optional[int]: __snake_case = AutoConfig.from_pretrained('gpt2') __snake_case = GenerationConfig.from_model_config(lowercase_) __snake_case = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(lowercase_ , lowercase_) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id) def _a ( self) -> str: __snake_case = GenerationConfig() __snake_case = { 'max_new_tokens': 1_0_2_4, 'foo': 'bar', } __snake_case = copy.deepcopy(lowercase_) __snake_case = generation_config.update(**lowercase_) # update_kwargs was not modified (no side effects) self.assertEqual(lowercase_ , lowercase_) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4) # `.update()` returns a dictionary of unused kwargs self.assertEqual(lowercase_ , {'foo': 'bar'}) def _a ( self) -> Optional[Any]: __snake_case = GenerationConfig() __snake_case = 'bar' with tempfile.TemporaryDirectory('test-generation-config') as tmp_dir: generation_config.save_pretrained(lowercase_) __snake_case = GenerationConfig.from_pretrained(lowercase_) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , 'bar') __snake_case = GenerationConfig.from_model_config(lowercase_) assert not hasattr(lowercase_ , 'foo') # no new kwargs should be initialized if from config def _a ( self) -> Optional[Any]: __snake_case = GenerationConfig() self.assertEqual(default_config.temperature , 1.0) self.assertEqual(default_config.do_sample , lowercase_) self.assertEqual(default_config.num_beams , 1) __snake_case = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7) self.assertEqual(config.do_sample , lowercase_) self.assertEqual(config.num_beams , 1) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_) __snake_case = GenerationConfig.from_pretrained(lowercase_ , temperature=1.0) self.assertEqual(loaded_config.temperature , 1.0) self.assertEqual(loaded_config.do_sample , lowercase_) self.assertEqual(loaded_config.num_beams , 1) # default value @is_staging_test class __lowercase ( unittest.TestCase ): @classmethod def _a ( cls) -> List[str]: __snake_case = TOKEN HfFolder.save_token(lowercase_) @classmethod def _a ( cls) -> Dict: try: delete_repo(token=cls._token , repo_id='test-generation-config') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-generation-config-org') except HTTPError: pass def _a ( self) -> List[Any]: __snake_case = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('test-generation-config' , use_auth_token=self._token) __snake_case = GenerationConfig.from_pretrained(F"{USER}/test-generation-config") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_)) # Reset repo delete_repo(token=self._token , repo_id='test-generation-config') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id='test-generation-config' , push_to_hub=lowercase_ , use_auth_token=self._token) __snake_case = GenerationConfig.from_pretrained(F"{USER}/test-generation-config") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_)) def _a ( self) -> str: __snake_case = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('valid_org/test-generation-config-org' , use_auth_token=self._token) __snake_case = GenerationConfig.from_pretrained('valid_org/test-generation-config-org') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_)) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-generation-config-org') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id='valid_org/test-generation-config-org' , push_to_hub=lowercase_ , use_auth_token=self._token) __snake_case = GenerationConfig.from_pretrained('valid_org/test-generation-config-org') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_))
313
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def __UpperCAmelCase ( __A=None ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ = argparse.ArgumentParser(add_help=__A , allow_abbrev=__A ) # The main config parser UpperCAmelCase__ = config_command_parser(__A ) # The subparser to add commands to UpperCAmelCase__ = config_parser.add_subparsers(title="subcommands" , dest="subcommand" ) # Then add other parsers with the parent parser default_command_parser(__A , parents=[parent_parser] ) update_command_parser(__A , parents=[parent_parser] ) return config_parser def __UpperCAmelCase ( ) -> List[str]: '''simple docstring''' UpperCAmelCase__ = get_config_parser() UpperCAmelCase__ = config_parser.parse_args() if not hasattr(__A , "func" ): config_parser.print_help() exit(1 ) # Run args.func(__A ) if __name__ == "__main__": main()
711
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin A = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class lowercase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__= BartphoTokenizer A__= False A__= True def _UpperCAmelCase ( self : Dict ): """simple docstring""" super().setUp() UpperCAmelCase__ = ["▁This", "▁is", "▁a", "▁t", "est"] UpperCAmelCase__ = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) UpperCAmelCase__ = {"unk_token": "<unk>"} UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] ) with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""" ) UpperCAmelCase__ = BartphoTokenizer(_lowercase , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCAmelCase ( self : Dict , **_lowercase : Optional[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def _UpperCAmelCase ( self : List[Any] , _lowercase : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = "This is a là test" UpperCAmelCase__ = "This is a<unk><unk> test" return input_text, output_text def _UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = BartphoTokenizer(_lowercase , self.monolingual_vocab_file , **self.special_tokens_map ) UpperCAmelCase__ = "This is a là test" UpperCAmelCase__ = "▁This ▁is ▁a ▁l à ▁t est".split() UpperCAmelCase__ = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) UpperCAmelCase__ = tokens + [tokenizer.unk_token] UpperCAmelCase__ = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase )
277
0
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ = BlipImageProcessor() SCREAMING_SNAKE_CASE__ = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) SCREAMING_SNAKE_CASE__ = BlipaProcessor(_snake_case , _snake_case ) processor.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ ( self : Union[str, Any] , **_snake_case : List[Any] ) -> List[Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **_snake_case ).tokenizer def lowerCAmelCase_ ( self : Optional[Any] , **_snake_case : Any ) -> Any: return AutoProcessor.from_pretrained(self.tmpdirname , **_snake_case ).image_processor def lowerCAmelCase_ ( self : str ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def lowerCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE__ = [Image.fromarray(np.moveaxis(_snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase_ ( self : str ) -> Dict: SCREAMING_SNAKE_CASE__ = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) SCREAMING_SNAKE_CASE__ = self.get_image_processor(do_normalize=_snake_case , padding_value=1.0 ) SCREAMING_SNAKE_CASE__ = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_snake_case , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _snake_case ) def lowerCAmelCase_ ( self : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = BlipaProcessor(tokenizer=_snake_case , image_processor=_snake_case ) SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = image_processor(_snake_case , return_tensors="np" ) SCREAMING_SNAKE_CASE__ = processor(images=_snake_case , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase_ ( self : int ) -> Any: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = BlipaProcessor(tokenizer=_snake_case , image_processor=_snake_case ) SCREAMING_SNAKE_CASE__ = "lower newer" SCREAMING_SNAKE_CASE__ = processor(text=_snake_case ) SCREAMING_SNAKE_CASE__ = tokenizer(_snake_case , return_token_type_ids=_snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase_ ( self : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = BlipaProcessor(tokenizer=_snake_case , image_processor=_snake_case ) SCREAMING_SNAKE_CASE__ = "lower newer" SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=_snake_case , images=_snake_case ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(_snake_case ): processor() def lowerCAmelCase_ ( self : List[str] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = BlipaProcessor(tokenizer=_snake_case , image_processor=_snake_case ) SCREAMING_SNAKE_CASE__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE__ = processor.batch_decode(_snake_case ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) def lowerCAmelCase_ ( self : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = BlipaProcessor(tokenizer=_snake_case , image_processor=_snake_case ) SCREAMING_SNAKE_CASE__ = "lower newer" SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=_snake_case , images=_snake_case ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
159
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = {} class lowerCamelCase (_SCREAMING_SNAKE_CASE ): '''simple docstring''' a = "llama" a = ["past_key_values"] def __init__( self : str , _snake_case : str=32000 , _snake_case : Any=4096 , _snake_case : int=11008 , _snake_case : List[str]=32 , _snake_case : Optional[int]=32 , _snake_case : Dict=None , _snake_case : Any="silu" , _snake_case : Optional[int]=2048 , _snake_case : Any=0.02 , _snake_case : List[str]=1e-6 , _snake_case : Union[str, Any]=True , _snake_case : List[Any]=0 , _snake_case : List[Any]=1 , _snake_case : Dict=2 , _snake_case : Tuple=1 , _snake_case : str=False , _snake_case : List[str]=None , **_snake_case : Tuple , ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads # for backward compatibility if num_key_value_heads is None: SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = num_key_value_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = rms_norm_eps SCREAMING_SNAKE_CASE__ = pretraining_tp SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , tie_word_embeddings=_snake_case , **_snake_case , ) def lowerCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _snake_case ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " F"""got {self.rope_scaling}""" ) SCREAMING_SNAKE_CASE__ = self.rope_scaling.get("type" , _snake_case ) SCREAMING_SNAKE_CASE__ = self.rope_scaling.get("factor" , _snake_case ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(_snake_case , _snake_case ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
159
1
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets __A : str = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' __A : Dict = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' __A : Dict = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def _snake_case ( self : Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[ "https://arxiv.org/abs/2102.01454", "https://github.com/krishnap25/mauve", ] , ) def _snake_case ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : str=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : Optional[int]="auto" , __lowerCamelCase : Union[str, Any]=-1 , __lowerCamelCase : Any=0.9 , __lowerCamelCase : int=5 , __lowerCamelCase : List[str]=500 , __lowerCamelCase : Optional[int]="gpt2-large" , __lowerCamelCase : Union[str, Any]=-1 , __lowerCamelCase : List[Any]=1024 , __lowerCamelCase : List[str]=25 , __lowerCamelCase : Tuple=5 , __lowerCamelCase : int=True , __lowerCamelCase : Dict=25 , ): SCREAMING_SNAKE_CASE = compute_mauve( p_text=__lowerCamelCase , q_text=__lowerCamelCase , p_features=__lowerCamelCase , q_features=__lowerCamelCase , p_tokens=__lowerCamelCase , q_tokens=__lowerCamelCase , num_buckets=__lowerCamelCase , pca_max_data=__lowerCamelCase , kmeans_explained_var=__lowerCamelCase , kmeans_num_redo=__lowerCamelCase , kmeans_max_iter=__lowerCamelCase , featurize_model_name=__lowerCamelCase , device_id=__lowerCamelCase , max_text_length=__lowerCamelCase , divergence_curve_discretization_size=__lowerCamelCase , mauve_scaling_factor=__lowerCamelCase , verbose=__lowerCamelCase , seed=__lowerCamelCase , ) return out
698
__A : dict[str, float] = { "joule": 1.0, "kilojoule": 1_0_0_0, "megajoule": 1_0_0_0_0_0_0, "gigajoule": 1_0_0_0_0_0_0_0_0_0, "wattsecond": 1.0, "watthour": 3_6_0_0, "kilowatthour": 3_6_0_0_0_0_0, "newtonmeter": 1.0, "calorie_nutr": 4_1_8_6.8, "kilocalorie_nutr": 4_1_8_6_8_0_0.0_0, "electronvolt": 1.6_0217_6634e-19, "britishthermalunit_it": 1_0_5_5.0_5_5_8_5, "footpound": 1.355_818, } def __a ( A__ : str , A__ : str , A__ : float ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: SCREAMING_SNAKE_CASE = ( F"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" F"Valid values are: {', '.join(A__ )}" ) raise ValueError(A__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
698
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } lowerCamelCase : Union[str, Any] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _SCREAMING_SNAKE_CASE (A ) -> int: """simple docstring""" lowercase__ = {} with open(A , '''r''' ) as file: for line_number, line in enumerate(A ): lowercase__ = line.strip() if line: lowercase__ = line.split() lowercase__ = line_number lowercase__ = words[0] lowercase__ = value return result def _SCREAMING_SNAKE_CASE (A , A , A , A , A ) -> Union[str, Any]: """simple docstring""" for attribute in key.split('''.''' ): lowercase__ = getattr(A , A ) lowercase__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(A ): lowercase__ = PARAM_MAPPING[full_name.split('''.''' )[-1]] lowercase__ = '''param''' if weight_type is not None and weight_type != "param": lowercase__ = getattr(A , A ).shape elif weight_type is not None and weight_type == "param": lowercase__ = hf_pointer for attribute in hf_param_name.split('''.''' ): lowercase__ = getattr(A , A ) lowercase__ = shape_pointer.shape # let's reduce dimension lowercase__ = value[0] else: lowercase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": lowercase__ = value elif weight_type == "weight_g": lowercase__ = value elif weight_type == "weight_v": lowercase__ = value elif weight_type == "bias": lowercase__ = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): lowercase__ = getattr(A , A ) lowercase__ = value else: lowercase__ = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _SCREAMING_SNAKE_CASE (A , A , A , A , A ) -> Any: """simple docstring""" lowercase__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(A ): lowercase__ = PARAM_MAPPING[full_name.split('''.''' )[-1]] lowercase__ = '''param''' if weight_type is not None and weight_type != "param": lowercase__ = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": lowercase__ = '''.'''.join([key, hf_param_name] ) else: lowercase__ = key lowercase__ = value if '''lm_head''' in full_key else value[0] lowerCamelCase : List[Any] = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _SCREAMING_SNAKE_CASE (A , A , A=None , A=None ) -> int: """simple docstring""" lowercase__ = False for key, mapped_key in MAPPING.items(): lowercase__ = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowercase__ = True if "*" in mapped_key: lowercase__ = name.split(A )[0].split('''.''' )[-2] lowercase__ = mapped_key.replace('''*''' , A ) if "weight_g" in name: lowercase__ = '''weight_g''' elif "weight_v" in name: lowercase__ = '''weight_v''' elif "bias" in name: lowercase__ = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ = '''weight''' else: lowercase__ = None if hf_dict is not None: rename_dict(A , A , A , A , A ) else: set_recursively(A , A , A , A , A ) return is_used return is_used def _SCREAMING_SNAKE_CASE (A , A , A ) -> List[str]: """simple docstring""" lowercase__ = [] lowercase__ = fairseq_model.state_dict() lowercase__ = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): lowercase__ = False if "conv_layers" in name: load_conv_layer( A , A , A , A , hf_model.config.feat_extract_norm == '''group''' , ) lowercase__ = True else: lowercase__ = load_wavaveca_layer(A , A , A ) if not is_used: unused_weights.append(A ) logger.warning(f"Unused weights: {unused_weights}" ) def _SCREAMING_SNAKE_CASE (A , A , A , A , A ) -> Optional[int]: """simple docstring""" lowercase__ = full_name.split('''conv_layers.''' )[-1] lowercase__ = name.split('''.''' ) lowercase__ = int(items[0] ) lowercase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) lowercase__ = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) lowercase__ = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) lowercase__ = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) lowercase__ = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(A ) @torch.no_grad() def _SCREAMING_SNAKE_CASE (A , A , A=None , A=None , A=True , A=False ) -> Optional[int]: """simple docstring""" if config_path is not None: lowercase__ = WavaVecaConfig.from_pretrained(A ) else: lowercase__ = WavaVecaConfig() if is_seq_class: lowercase__ = read_txt_into_dict(A ) lowercase__ = idalabel lowercase__ = WavaVecaForSequenceClassification(A ) lowercase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=A , return_attention_mask=A , ) feature_extractor.save_pretrained(A ) elif is_finetuned: if dict_path: lowercase__ = Dictionary.load(A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase__ = target_dict.pad_index lowercase__ = target_dict.bos_index lowercase__ = target_dict.eos_index lowercase__ = len(target_dict.symbols ) lowercase__ = os.path.join(A , '''vocab.json''' ) if not os.path.isdir(A ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(A ) ) return os.makedirs(A , exist_ok=A ) lowercase__ = target_dict.indices # fairseq has the <pad> and <s> switched lowercase__ = 0 lowercase__ = 1 with open(A , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(A , A ) lowercase__ = WavaVecaCTCTokenizer( A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=A , ) lowercase__ = True if config.feat_extract_norm == '''layer''' else False lowercase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=A , return_attention_mask=A , ) lowercase__ = WavaVecaProcessor(feature_extractor=A , tokenizer=A ) processor.save_pretrained(A ) lowercase__ = WavaVecaForCTC(A ) else: lowercase__ = WavaVecaForPreTraining(A ) if is_finetuned or is_seq_class: lowercase__ ,lowercase__ ,lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: lowercase__ = argparse.Namespace(task='''audio_pretraining''' ) lowercase__ = fairseq.tasks.setup_task(A ) lowercase__ ,lowercase__ ,lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=A ) lowercase__ = model[0].eval() recursively_load_weights(A , A , not is_finetuned ) hf_wavavec.save_pretrained(A ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) lowerCamelCase : Optional[int] = parser.parse_args() lowerCamelCase : Optional[Any] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
460
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class __lowerCAmelCase : '''simple docstring''' def __init__(self : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : str=13 , UpperCamelCase : Optional[int]=7 , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Dict=True , UpperCamelCase : Optional[int]=False , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Union[str, Any]=33 , UpperCamelCase : List[Any]=32 , UpperCamelCase : Dict=5 , UpperCamelCase : str=4 , UpperCamelCase : str=37 , UpperCamelCase : List[Any]="gelu" , UpperCamelCase : List[str]=0.1 , UpperCamelCase : Dict=0.1 , UpperCamelCase : Dict=512 , UpperCamelCase : Any=16 , UpperCamelCase : List[Any]=2 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : Tuple=3 , UpperCamelCase : Optional[Any]=4 , UpperCamelCase : int=None , ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope def UpperCamelCase__ (self : str ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : List[Any] , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : Dict ): '''simple docstring''' lowercase__ = EsmModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowercase__ = model(UpperCamelCase , attention_mask=UpperCamelCase ) lowercase__ = model(UpperCamelCase ) lowercase__ = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__ (self : str , UpperCamelCase : Any , UpperCamelCase : Tuple , UpperCamelCase : Any , UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = EsmForMaskedLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowercase__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ (self : Any , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : Tuple , UpperCamelCase : int , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any] ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = EsmForTokenClassification(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowercase__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) ,( lowercase__ ) ,( lowercase__ ) ,( lowercase__ ) ,( lowercase__ ) ,( lowercase__ ) , ) = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase (lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : Dict = False lowerCAmelCase__ : Optional[Any] = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase__ : Optional[int] = () lowerCAmelCase__ : Any = ( { """feature-extraction""": EsmModel, """fill-mask""": EsmForMaskedLM, """text-classification""": EsmForSequenceClassification, """token-classification""": EsmForTokenClassification, """zero-shot""": EsmForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ : Any = True def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' lowercase__ = EsmModelTester(self ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase , hidden_size=37 ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def UpperCamelCase__ (self : Any ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase__ = type self.model_tester.create_and_check_model(*UpperCamelCase ) def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase ) def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase ) @slow def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = EsmModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs()[0] lowercase__ = EsmEmbeddings(config=UpperCamelCase ) lowercase__ = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) lowercase__ = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) lowercase__ = create_position_ids_from_input_ids(UpperCamelCase , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCamelCase , UpperCamelCase ) ) ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs()[0] lowercase__ = EsmEmbeddings(config=UpperCamelCase ) lowercase__ = torch.empty(2 , 4 , 30 ) lowercase__ = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] lowercase__ = torch.as_tensor([expected_single_positions, expected_single_positions] ) lowercase__ = embeddings.create_position_ids_from_inputs_embeds(UpperCamelCase ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCamelCase , UpperCamelCase ) ) ) @unittest.skip('''Esm does not support embedding resizing''' ) def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' pass @unittest.skip('''Esm does not support embedding resizing''' ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' pass @require_torch class __lowerCAmelCase (lowercase_ ): '''simple docstring''' @slow def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' with torch.no_grad(): lowercase__ = EsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) model.eval() lowercase__ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase__ = model(UpperCamelCase )[0] lowercase__ = 33 lowercase__ = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , UpperCamelCase ) lowercase__ = torch.tensor( [[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase , atol=1E-4 ) ) @slow def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' with torch.no_grad(): lowercase__ = EsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) model.eval() lowercase__ = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowercase__ = model(UpperCamelCase )[0] # compare the actual values for a slice. lowercase__ = torch.tensor( [[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase , atol=1E-4 ) )
460
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_nllb_moe': [ 'NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NllbMoeConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST', 'NllbMoeForConditionalGeneration', 'NllbMoeModel', 'NllbMoePreTrainedModel', 'NllbMoeTop2Router', 'NllbMoeSparseMLP', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
283
"""simple docstring""" def __lowerCAmelCase( __UpperCAmelCase ): """simple docstring""" _lowercase : str = [0 for i in range(len(__UpperCAmelCase ) )] # initialize interval's left pointer and right pointer _lowercase , _lowercase : str = 0, 0 for i in range(1 ,len(__UpperCAmelCase ) ): # case when current index is inside the interval if i <= right_pointer: _lowercase : Union[str, Any] = min(right_pointer - i + 1 ,z_result[i - left_pointer] ) _lowercase : Any = min_edge while go_next(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: _lowercase , _lowercase : Optional[int] = i, i + z_result[i] - 1 return z_result def __lowerCAmelCase( __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ): """simple docstring""" return i + z_result[i] < len(__UpperCAmelCase ) and s[z_result[i]] == s[i + z_result[i]] def __lowerCAmelCase( __UpperCAmelCase ,__UpperCAmelCase ): """simple docstring""" _lowercase : Union[str, Any] = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string _lowercase : List[str] = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(__UpperCAmelCase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
283
1
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def _snake_case ( ): _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=__snake_case , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=__snake_case , default=5 ) parser.add_argument('''--batch_size''' , type=__snake_case , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=__snake_case , default=1 ) parser.add_argument('''--freeze''' , type=__snake_case , default=__snake_case ) parser.add_argument('''--learning_rate''' , type=__snake_case , default=5E-4 ) parser.add_argument('''--seed''' , type=__snake_case , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=__snake_case , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=__snake_case , default=10 ) parser.add_argument('''--weight_decay''' , type=__snake_case , default=0.01 ) parser.add_argument('''--output_dir''' , type=__snake_case , default='''./results''' ) return parser.parse_args() _lowerCAmelCase = load("accuracy") def _snake_case ( __snake_case ): _UpperCamelCase , _UpperCamelCase = eval_pred _UpperCamelCase = np.argmax(__snake_case , axis=1 ) return metric.compute(predictions=__snake_case , references=__snake_case ) class lowerCAmelCase_ ( __lowercase ): def __init__( self : Optional[int] , _A : Any ): super().__init__() _UpperCamelCase = trainer def UpperCamelCase_ ( self : int , _A : List[str] , _A : List[str] , _A : Union[str, Any] , **_A : Tuple ): if control.should_evaluate: _UpperCamelCase = deepcopy(_A ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def _snake_case ( ): _UpperCamelCase = get_args() set_seed(args.seed ) _UpperCamelCase = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) _UpperCamelCase = dataset.train_test_split(test_size=0.2 ) _UpperCamelCase = train_test['''test'''].train_test_split(test_size=0.5 ) _UpperCamelCase = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) _UpperCamelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) _UpperCamelCase = tokenizer.eos_token _UpperCamelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) _UpperCamelCase = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _UpperCamelCase = False _UpperCamelCase = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(__snake_case ): _UpperCamelCase = tokenizer(example['''src'''] , truncation=__snake_case , max_length=1024 ) _UpperCamelCase = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _UpperCamelCase = train_test_validation.map( __snake_case , batched=__snake_case , remove_columns=train_test_validation['''train'''].column_names , ) _UpperCamelCase = DataCollatorWithPadding(tokenizer=__snake_case ) _UpperCamelCase = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) _UpperCamelCase = Trainer( model=__snake_case , args=__snake_case , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=__snake_case , data_collator=__snake_case , compute_metrics=__snake_case , ) print('''Training...''' ) trainer.add_callback(CustomCallback(__snake_case ) ) trainer.train() if __name__ == "__main__": main()
10
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = list_field( default=[], metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) }, ) UpperCAmelCase = list_field( default=[8], metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) UpperCAmelCase = list_field( default=[8, 32, 128, 512], metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Use FP16 to accelerate inference."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Benchmark training of model"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Verbose memory tracing"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" }, ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Trace memory line by line"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save result to a CSV file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save all print statements in a log file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Whether to print environment information"} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) }, ) UpperCAmelCase = field( default=F"""inference_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv."}, ) UpperCAmelCase = field( default=F"""inference_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv."}, ) UpperCAmelCase = field( default=F"""train_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv for training."}, ) UpperCAmelCase = field( default=F"""train_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv for training."}, ) UpperCAmelCase = field( default=F"""env_info_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving environment information."}, ) UpperCAmelCase = field( default=F"""log_{round(time() )}.csv""", metadata={"help": "Log filename used if print statements are saved in log."}, ) UpperCAmelCase = field(default=3, metadata={"help": "Times an experiment will be run."} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) }, ) def UpperCamelCase_ ( self : Union[str, Any] ): warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , _A , ) def UpperCamelCase_ ( self : str ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def UpperCamelCase_ ( self : List[Any] ): if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def UpperCamelCase_ ( self : Optional[int] ): if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
10
1
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowerCAmelCase_ = logging.getLogger() def A__ ( ): '''simple docstring''' UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("-f") UpperCamelCase : Dict = parser.parse_args() return args.f def A__ ( A : Tuple): '''simple docstring''' UpperCamelCase : Tuple = {} UpperCamelCase : Union[str, Any] = os.path.join(A , "all_results.json") if os.path.exists(A): with open(A , "r") as f: UpperCamelCase : Optional[Any] = json.load(A) else: raise ValueError(F'''can\'t find {path}''') return results def A__ ( ): '''simple docstring''' UpperCamelCase : Tuple = torch.cuda.is_available() and torch_device == "cuda" return is_using_cuda and is_apex_available() lowerCAmelCase_ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" @classmethod def SCREAMING_SNAKE_CASE__ ( cls ) -> Any: '''simple docstring''' UpperCamelCase : List[Any] = tempfile.mkdtemp() UpperCamelCase : List[str] = os.path.join(cls.tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) UpperCamelCase : Tuple = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def SCREAMING_SNAKE_CASE__ ( cls ) -> Optional[int]: '''simple docstring''' shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCamelCase : Union[str, Any] = self.get_auto_remove_tmp_dir() UpperCamelCase : Any = f''' {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking '''.split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) UpperCamelCase : List[str] = get_results(lowerCamelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase , "glue_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase : List[str] = self.get_auto_remove_tmp_dir() UpperCamelCase : Tuple = f''' {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking '''.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) UpperCamelCase : str = get_results(lowerCamelCase ) self.assertLess(result["perplexity"] , 1_00 ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase , "clm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' UpperCamelCase : Optional[int] = self.get_auto_remove_tmp_dir() UpperCamelCase : Optional[int] = f''' {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) UpperCamelCase : Optional[Any] = get_results(lowerCamelCase ) self.assertLess(result["perplexity"] , 42 ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase , "mlm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCamelCase : str = 7 if get_gpu_count() > 1 else 2 UpperCamelCase : Union[str, Any] = self.get_auto_remove_tmp_dir() UpperCamelCase : Union[str, Any] = f''' {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) UpperCamelCase : List[str] = get_results(lowerCamelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertLess(result["train_loss"] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase , "ner_no_trainer" ) ) ) @unittest.skip(reason="Fix me @muellerzr" ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' UpperCamelCase : int = self.get_auto_remove_tmp_dir() UpperCamelCase : str = f''' {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) UpperCamelCase : Optional[int] = get_results(lowerCamelCase ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["eval_f1"] , 28 ) self.assertGreaterEqual(result["eval_exact"] , 28 ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase , "qa_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' UpperCamelCase : Tuple = self.get_auto_remove_tmp_dir() UpperCamelCase : Tuple = f''' {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking '''.split() run_command(self._launch_args + testargs ) UpperCamelCase : Tuple = get_results(lowerCamelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase , "swag_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' UpperCamelCase : Optional[int] = self.get_auto_remove_tmp_dir() UpperCamelCase : Union[str, Any] = f''' {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) UpperCamelCase : List[str] = get_results(lowerCamelCase ) self.assertGreaterEqual(result["eval_rouge1"] , 10 ) self.assertGreaterEqual(result["eval_rouge2"] , 2 ) self.assertGreaterEqual(result["eval_rougeL"] , 7 ) self.assertGreaterEqual(result["eval_rougeLsum"] , 7 ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase , "summarization_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' UpperCamelCase : int = self.get_auto_remove_tmp_dir() UpperCamelCase : Optional[Any] = f''' {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) UpperCamelCase : str = get_results(lowerCamelCase ) self.assertGreaterEqual(result["eval_bleu"] , 30 ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase , "translation_no_trainer" ) ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' UpperCamelCase : Tuple = logging.StreamHandler(sys.stdout ) logger.addHandler(lowerCamelCase ) UpperCamelCase : Any = self.get_auto_remove_tmp_dir() UpperCamelCase : Dict = f''' {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch '''.split() run_command(self._launch_args + testargs ) UpperCamelCase : Optional[Any] = get_results(lowerCamelCase ) self.assertGreaterEqual(result["eval_overall_accuracy"] , 0.10 ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' UpperCamelCase : Optional[int] = self.get_auto_remove_tmp_dir() UpperCamelCase : Tuple = f''' {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 '''.split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) UpperCamelCase : str = get_results(lowerCamelCase ) # The base model scores a 25% self.assertGreaterEqual(result["eval_accuracy"] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase , "step_1" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase , "image_classification_no_trainer" ) ) )
435
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def A__ ( A : int): '''simple docstring''' UpperCamelCase : int = int(number**0.5) return number == sq * sq def A__ ( A : int , A : int , A : int , A : int , A : int , A : int): '''simple docstring''' UpperCamelCase : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den UpperCamelCase : int = x_den * y_den * z_den UpperCamelCase : int = gcd(A , A) top //= hcf bottom //= hcf return top, bottom def A__ ( A : int = 35): '''simple docstring''' UpperCamelCase : set = set() UpperCamelCase : int UpperCamelCase : Fraction = Fraction(0) UpperCamelCase : tuple[int, int] for x_num in range(1 , order + 1): for x_den in range(x_num + 1 , order + 1): for y_num in range(1 , order + 1): for y_den in range(y_num + 1 , order + 1): # n=1 UpperCamelCase : Optional[int] = x_num * y_den + x_den * y_num UpperCamelCase : str = x_den * y_den UpperCamelCase : Dict = gcd(A , A) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase : Dict = add_three( A , A , A , A , A , A) unique_s.add(A) # n=2 UpperCamelCase : Optional[Any] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) UpperCamelCase : List[str] = x_den * x_den * y_den * y_den if is_sq(A) and is_sq(A): UpperCamelCase : Dict = int(sqrt(A)) UpperCamelCase : Union[str, Any] = int(sqrt(A)) UpperCamelCase : Union[str, Any] = gcd(A , A) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase : List[str] = add_three( A , A , A , A , A , A) unique_s.add(A) # n=-1 UpperCamelCase : Union[str, Any] = x_num * y_num UpperCamelCase : List[str] = x_den * y_num + x_num * y_den UpperCamelCase : List[str] = gcd(A , A) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase : List[str] = add_three( A , A , A , A , A , A) unique_s.add(A) # n=2 UpperCamelCase : int = x_num * x_num * y_num * y_num UpperCamelCase : Any = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(A) and is_sq(A): UpperCamelCase : Optional[int] = int(sqrt(A)) UpperCamelCase : Union[str, Any] = int(sqrt(A)) UpperCamelCase : str = gcd(A , A) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase : Union[str, Any] = add_three( A , A , A , A , A , A) unique_s.add(A) for num, den in unique_s: total += Fraction(A , A) return total.denominator + total.numerator if __name__ == "__main__": print(f"""{solution() = }""")
435
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case :Optional[Any] =logging.get_logger(__name__) class lowerCAmelCase__ ( _lowerCamelCase ): A_ : List[str] = 'encoder-decoder' A_ : Dict = True def __init__( self : Dict , **__UpperCamelCase : str ) -> Any: super().__init__(**__UpperCamelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" A = kwargs.pop('encoder' ) A = encoder_config.pop('model_type' ) A = kwargs.pop('decoder' ) A = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig A = AutoConfig.for_model(__UpperCamelCase , **__UpperCamelCase ) A = AutoConfig.for_model(__UpperCamelCase , **__UpperCamelCase ) A = True @classmethod def __UpperCamelCase ( cls : Optional[int] , __UpperCamelCase : PretrainedConfig , __UpperCamelCase : PretrainedConfig , **__UpperCamelCase : List[str] ) -> PretrainedConfig: logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) A = True A = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__UpperCamelCase ) def __UpperCamelCase ( self : Dict ) -> List[str]: A = copy.deepcopy(self.__dict__ ) A = self.encoder.to_dict() A = self.decoder.to_dict() A = self.__class__.model_type return output
106
import argparse from collections import defaultdict def lowerCamelCase_ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' A = F'''{file}_{class_name}_{test_name}''' done_test[_id] += 1 with open(lowerCAmelCase__ , 'r' ) as f: A = f.readlines() A = F'''class {class_name}(''' A = F'''{4 * " "}def {test_name}(''' A = F'''{8 * " "}{correct_line.split()[0]}''' A = F'''{16 * " "}{correct_line.split()[0]}''' A = False A = False A = False A = False A = 0 A = 0 A = [] for line in lines: if line.startswith(lowerCAmelCase__ ): A = True elif in_class and line.startswith(lowerCAmelCase__ ): A = True elif in_class and in_func and (line.startswith(lowerCAmelCase__ ) or line.startswith(lowerCAmelCase__ )): A = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: A = True if in_class and in_func and in_line: if ")" not in line: continue else: A = True if in_class and in_func and in_line and insert_line: new_lines.append(F'''{spaces * " "}{correct_line}''' ) A = A = A = A = False else: new_lines.append(lowerCAmelCase__ ) with open(lowerCAmelCase__ , 'w' ) as f: for line in new_lines: f.write(lowerCAmelCase__ ) def lowerCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple=None ) -> Union[str, Any]: '''simple docstring''' if fail is not None: with open(lowerCAmelCase__ , 'r' ) as f: A = {l.strip() for l in f.readlines()} else: A = None with open(lowerCAmelCase__ , 'r' ) as f: A = f.readlines() A = defaultdict(lowerCAmelCase__ ) for line in correct_lines: A , A , A , A = line.split(';' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": __snake_case :List[Any] =argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) __snake_case :Optional[int] =parser.parse_args() main(args.correct_filename, args.fail_filename)
106
1
def A__ ( __lowerCamelCase, __lowerCamelCase ): if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) SCREAMING_SNAKE_CASE_ = str(bin(lowerCamelCase_ ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE_ = str(bin(lowerCamelCase_ ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE_ = max(len(lowerCamelCase_ ), len(lowerCamelCase_ ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(lowerCamelCase_ ), b_binary.zfill(lowerCamelCase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
712
from math import factorial def A__ ( __lowerCamelCase = 20 ): SCREAMING_SNAKE_CASE_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... SCREAMING_SNAKE_CASE_ = n // 2 return int(factorial(__lowerCamelCase ) / (factorial(__lowerCamelCase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: __UpperCAmelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number.")
597
0
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file UpperCamelCase_ = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def _UpperCAmelCase ( UpperCamelCase: str=None ): """simple docstring""" if subparsers is not None: __lowerCAmelCase = subparsers.add_parser("tpu-config" , description=_description ) else: __lowerCAmelCase = argparse.ArgumentParser("Accelerate tpu-config command" , description=_description ) # Core arguments __lowerCAmelCase = parser.add_argument_group( "Config Arguments" , "Arguments that can be configured through `accelerate config`." ) config_args.add_argument( "--config_file" , type=UpperCamelCase , default=UpperCamelCase , help="Path to the config file to use for accelerate." , ) config_args.add_argument( "--tpu_name" , default=UpperCamelCase , help="The name of the TPU to use. If not specified, will use the TPU specified in the config file." , ) config_args.add_argument( "--tpu_zone" , default=UpperCamelCase , help="The zone of the TPU to use. If not specified, will use the zone specified in the config file." , ) __lowerCAmelCase = parser.add_argument_group("TPU Arguments" , "Arguments for options ran inside the TPU." ) pod_args.add_argument( "--use_alpha" , action="store_true" , help="Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`." , ) pod_args.add_argument( "--command_file" , default=UpperCamelCase , help="The path to the file containing the commands to run on the pod on startup." , ) pod_args.add_argument( "--command" , action="append" , nargs="+" , help="A command to run on the pod. Can be passed multiple times." , ) pod_args.add_argument( "--install_accelerate" , action="store_true" , help="Whether to install accelerate on the pod. Defaults to False." , ) pod_args.add_argument( "--accelerate_version" , default="latest" , help="The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub." , ) pod_args.add_argument( "--debug" , action="store_true" , help="If set, will print the command that would be run instead of running it." ) if subparsers is not None: parser.set_defaults(func=UpperCamelCase ) return parser def _UpperCAmelCase ( UpperCamelCase: List[Any] ): """simple docstring""" __lowerCAmelCase = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(UpperCamelCase ): __lowerCAmelCase = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: __lowerCAmelCase = defaults.command_file if not args.command and defaults.commands is not None: __lowerCAmelCase = defaults.commands if not args.tpu_name: __lowerCAmelCase = defaults.tpu_name if not args.tpu_zone: __lowerCAmelCase = defaults.tpu_zone if args.accelerate_version == "dev": __lowerCAmelCase = "git+https://github.com/huggingface/accelerate.git" elif args.accelerate_version == "latest": __lowerCAmelCase = "accelerate -U" elif isinstance(parse(args.accelerate_version ) , UpperCamelCase ): __lowerCAmelCase = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError("You must specify either a command file or a command to run on the pod." ) if args.command_file: with open(args.command_file , "r" ) as f: __lowerCAmelCase = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , UpperCamelCase ): __lowerCAmelCase = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate __lowerCAmelCase = ["cd /usr/share"] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command __lowerCAmelCase = "; ".join(UpperCamelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess __lowerCAmelCase = ["gcloud"] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(UpperCamelCase )}" ) return subprocess.run(UpperCamelCase ) print("Successfully setup pod." ) def _UpperCAmelCase ( ): """simple docstring""" __lowerCAmelCase = tpu_command_parser() __lowerCAmelCase = parser.parse_args() tpu_command_launcher(UpperCamelCase )
611
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "microsoft/wavlm-base": "https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class a ( __UpperCAmelCase ): lowercase_ : Any = 'wavlm' def __init__( self : List[Any] , snake_case__ : int=32 , snake_case__ : Optional[int]=768 , snake_case__ : int=12 , snake_case__ : Optional[Any]=12 , snake_case__ : Union[str, Any]=3_072 , snake_case__ : Optional[Any]="gelu" , snake_case__ : Optional[int]=0.1 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : List[Any]=0.1 , snake_case__ : Dict=0.0 , snake_case__ : Optional[Any]=0.1 , snake_case__ : Any=0.1 , snake_case__ : str=0.0_2 , snake_case__ : Dict=1E-5 , snake_case__ : Union[str, Any]="group" , snake_case__ : List[Any]="gelu" , snake_case__ : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , snake_case__ : List[str]=(5, 2, 2, 2, 2, 2, 2) , snake_case__ : str=(10, 3, 3, 3, 3, 2, 2) , snake_case__ : str=False , snake_case__ : Dict=128 , snake_case__ : List[str]=16 , snake_case__ : Union[str, Any]=320 , snake_case__ : int=800 , snake_case__ : Optional[int]=False , snake_case__ : int=True , snake_case__ : Tuple=0.0_5 , snake_case__ : Any=10 , snake_case__ : Union[str, Any]=2 , snake_case__ : List[Any]=0.0 , snake_case__ : Dict=10 , snake_case__ : Any=320 , snake_case__ : str=2 , snake_case__ : Any=0.1 , snake_case__ : int=100 , snake_case__ : str=256 , snake_case__ : Dict=256 , snake_case__ : List[Any]=0.1 , snake_case__ : Optional[Any]="mean" , snake_case__ : Tuple=False , snake_case__ : Dict=False , snake_case__ : Dict=256 , snake_case__ : Tuple=(512, 512, 512, 512, 1_500) , snake_case__ : Tuple=(5, 3, 3, 1, 1) , snake_case__ : str=(1, 2, 3, 1, 1) , snake_case__ : Any=512 , snake_case__ : List[Any]=80 , snake_case__ : Any=0 , snake_case__ : Tuple=1 , snake_case__ : List[str]=2 , snake_case__ : int=False , snake_case__ : List[str]=3 , snake_case__ : List[str]=2 , snake_case__ : Dict=3 , snake_case__ : Tuple=None , **snake_case__ : Tuple , ): """simple docstring""" super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ ) __lowerCAmelCase = hidden_size __lowerCAmelCase = feat_extract_norm __lowerCAmelCase = feat_extract_activation __lowerCAmelCase = list(snake_case__ ) __lowerCAmelCase = list(snake_case__ ) __lowerCAmelCase = list(snake_case__ ) __lowerCAmelCase = conv_bias __lowerCAmelCase = num_buckets __lowerCAmelCase = max_bucket_distance __lowerCAmelCase = num_conv_pos_embeddings __lowerCAmelCase = num_conv_pos_embedding_groups __lowerCAmelCase = len(self.conv_dim ) __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = feat_proj_dropout __lowerCAmelCase = final_dropout __lowerCAmelCase = layerdrop __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = initializer_range __lowerCAmelCase = num_ctc_classes __lowerCAmelCase = vocab_size __lowerCAmelCase = do_stable_layer_norm __lowerCAmelCase = use_weighted_layer_sum __lowerCAmelCase = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCAmelCase = apply_spec_augment __lowerCAmelCase = mask_time_prob __lowerCAmelCase = mask_time_length __lowerCAmelCase = mask_time_min_masks __lowerCAmelCase = mask_feature_prob __lowerCAmelCase = mask_feature_length # parameters for pretraining with codevector quantized representations __lowerCAmelCase = num_codevectors_per_group __lowerCAmelCase = num_codevector_groups __lowerCAmelCase = contrastive_logits_temperature __lowerCAmelCase = num_negatives __lowerCAmelCase = codevector_dim __lowerCAmelCase = proj_codevector_dim __lowerCAmelCase = diversity_loss_weight # ctc loss __lowerCAmelCase = ctc_loss_reduction __lowerCAmelCase = ctc_zero_infinity # adapter __lowerCAmelCase = add_adapter __lowerCAmelCase = adapter_kernel_size __lowerCAmelCase = adapter_stride __lowerCAmelCase = num_adapter_layers __lowerCAmelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowerCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowerCAmelCase = list(snake_case__ ) __lowerCAmelCase = list(snake_case__ ) __lowerCAmelCase = list(snake_case__ ) __lowerCAmelCase = xvector_output_dim @property def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
611
1
"""simple docstring""" import math __SCREAMING_SNAKE_CASE =10 __SCREAMING_SNAKE_CASE =7 __SCREAMING_SNAKE_CASE =BALLS_PER_COLOUR * NUM_COLOURS def lowercase__( __SCREAMING_SNAKE_CASE : int = 20 ): lowercase_ : Dict = math.comb(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = math.comb(NUM_BALLS - BALLS_PER_COLOUR , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
721
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def lowercase__( ): lowercase_ : List[Any] = argparse.ArgumentParser() parser.add_argument('--model_ckpt' , type=__SCREAMING_SNAKE_CASE , default='microsoft/unixcoder-base-nine' ) parser.add_argument('--num_epochs' , type=__SCREAMING_SNAKE_CASE , default=5 ) parser.add_argument('--batch_size' , type=__SCREAMING_SNAKE_CASE , default=6 ) parser.add_argument('--gradient_accumulation_steps' , type=__SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument('--freeze' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE ) parser.add_argument('--learning_rate' , type=__SCREAMING_SNAKE_CASE , default=5E-4 ) parser.add_argument('--seed' , type=__SCREAMING_SNAKE_CASE , default=0 ) parser.add_argument('--lr_scheduler_type' , type=__SCREAMING_SNAKE_CASE , default='cosine' ) parser.add_argument('--num_warmup_steps' , type=__SCREAMING_SNAKE_CASE , default=10 ) parser.add_argument('--weight_decay' , type=__SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument('--output_dir' , type=__SCREAMING_SNAKE_CASE , default='./results' ) return parser.parse_args() __SCREAMING_SNAKE_CASE =load("accuracy") def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] ): lowercase_ , lowercase_ : Any = eval_pred lowercase_ : Optional[Any] = np.argmax(__SCREAMING_SNAKE_CASE , axis=1 ) return metric.compute(predictions=__SCREAMING_SNAKE_CASE , references=__SCREAMING_SNAKE_CASE ) class UpperCamelCase ( lowercase_ ): def __init__( self ,__UpperCamelCase ) -> None: '''simple docstring''' super().__init__() lowercase_ : str = trainer def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' if control.should_evaluate: lowercase_ : List[str] = deepcopy(__UpperCamelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset ,metric_key_prefix='train' ) return control_copy def lowercase__( ): lowercase_ : Dict = get_args() set_seed(args.seed ) lowercase_ : str = load_dataset('codeparrot/codecomplex' , split='train' ) lowercase_ : Optional[int] = dataset.train_test_split(test_size=0.2 ) lowercase_ : str = train_test['test'].train_test_split(test_size=0.5 ) lowercase_ : Any = DatasetDict( { 'train': train_test['train'], 'test': test_validation['train'], 'valid': test_validation['test'], } ) print('Loading tokenizer and model' ) lowercase_ : int = AutoTokenizer.from_pretrained(args.model_ckpt ) lowercase_ : Optional[int] = tokenizer.eos_token lowercase_ : int = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) lowercase_ : Union[str, Any] = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): lowercase_ : str = False lowercase_ : Tuple = ClassLabel(num_classes=7 , names=list(set(train_test_validation['train']['complexity'] ) ) ) def tokenize(__SCREAMING_SNAKE_CASE : str ): lowercase_ : Dict = tokenizer(example['src'] , truncation=__SCREAMING_SNAKE_CASE , max_length=10_24 ) lowercase_ : int = labels.straint(example['complexity'] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } lowercase_ : Optional[int] = train_test_validation.map( __SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE , remove_columns=train_test_validation['train'].column_names , ) lowercase_ : Any = DataCollatorWithPadding(tokenizer=__SCREAMING_SNAKE_CASE ) lowercase_ : int = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='epoch' , save_strategy='epoch' , logging_strategy='epoch' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='accuracy' , run_name='complexity-java' , report_to='wandb' , ) lowercase_ : Optional[int] = Trainer( model=__SCREAMING_SNAKE_CASE , args=__SCREAMING_SNAKE_CASE , train_dataset=tokenized_datasets['train'] , eval_dataset=tokenized_datasets['valid'] , tokenizer=__SCREAMING_SNAKE_CASE , data_collator=__SCREAMING_SNAKE_CASE , compute_metrics=__SCREAMING_SNAKE_CASE , ) print('Training...' ) trainer.add_callback(CustomCallback(__SCREAMING_SNAKE_CASE ) ) trainer.train() if __name__ == "__main__": main()
477
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : torch.FloatTensor class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' @register_to_config def __init__( self, A = 3, A = 3, A = ("DownEncoderBlock2D",), A = ("UpDecoderBlock2D",), A = (64,), A = 1, A = "silu", A = 3, A = 32, A = 256, A = 32, A = None, A = 0.1_82_15, A = "group", ): '''simple docstring''' super().__init__() # pass init params to Encoder SCREAMING_SNAKE_CASE : Optional[int] = Encoder( in_channels=A, out_channels=A, down_block_types=A, block_out_channels=A, layers_per_block=A, act_fn=A, norm_num_groups=A, double_z=A, ) SCREAMING_SNAKE_CASE : Any = vq_embed_dim if vq_embed_dim is not None else latent_channels SCREAMING_SNAKE_CASE : str = nn.Convad(A, A, 1 ) SCREAMING_SNAKE_CASE : List[str] = VectorQuantizer(A, A, beta=0.25, remap=A, sane_index_shape=A ) SCREAMING_SNAKE_CASE : List[Any] = nn.Convad(A, A, 1 ) # pass init params to Decoder SCREAMING_SNAKE_CASE : str = Decoder( in_channels=A, out_channels=A, up_block_types=A, block_out_channels=A, layers_per_block=A, act_fn=A, norm_num_groups=A, norm_type=A, ) @apply_forward_hook def UpperCamelCase_ ( self, A, A = True ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.encoder(A ) SCREAMING_SNAKE_CASE : Dict = self.quant_conv(A ) if not return_dict: return (h,) return VQEncoderOutput(latents=A ) @apply_forward_hook def UpperCamelCase_ ( self, A, A = False, A = True ): '''simple docstring''' if not force_not_quantize: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.quantize(A ) else: SCREAMING_SNAKE_CASE : List[Any] = h SCREAMING_SNAKE_CASE : List[Any] = self.post_quant_conv(A ) SCREAMING_SNAKE_CASE : Tuple = self.decoder(A, quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=A ) def UpperCamelCase_ ( self, A, A = True ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = sample SCREAMING_SNAKE_CASE : List[str] = self.encode(A ).latents SCREAMING_SNAKE_CASE : str = self.decode(A ).sample if not return_dict: return (dec,) return DecoderOutput(sample=A )
28
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : str = logging.get_logger(__name__) __lowerCamelCase : Union[str, Any] = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class UpperCAmelCase ( _lowercase ): UpperCAmelCase : Union[str, Any] = '''sew-d''' def __init__(self : Tuple , A__ : str=3_2 , A__ : str=7_6_8 , A__ : Union[str, Any]=1_2 , A__ : List[str]=1_2 , A__ : List[Any]=3_0_7_2 , A__ : List[Any]=2 , A__ : Dict=5_1_2 , A__ : Any=2_5_6 , A__ : str=True , A__ : Dict=True , A__ : str=("p2c", "c2p") , A__ : Optional[int]="layer_norm" , A__ : Optional[int]="gelu_python" , A__ : List[Any]=0.1 , A__ : List[str]=0.1 , A__ : Optional[Any]=0.1 , A__ : Optional[Any]=0.0 , A__ : str=0.1 , A__ : Optional[int]=0.0_2 , A__ : Union[str, Any]=1e-7 , A__ : List[str]=1e-5 , A__ : Union[str, Any]="group" , A__ : List[Any]="gelu" , A__ : Dict=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , A__ : Optional[Any]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , A__ : Optional[Any]=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , A__ : Optional[Any]=False , A__ : List[str]=1_2_8 , A__ : int=1_6 , A__ : List[str]=True , A__ : Dict=0.0_5 , A__ : Any=1_0 , A__ : str=2 , A__ : Optional[int]=0.0 , A__ : str=1_0 , A__ : List[Any]=0 , A__ : Tuple="mean" , A__ : Union[str, Any]=False , A__ : Optional[Any]=False , A__ : Optional[int]=2_5_6 , A__ : Dict=0 , A__ : List[str]=1 , A__ : str=2 , **A__ : Tuple , ) -> List[Any]: super().__init__(**A__ , pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ ) lowercase = hidden_size lowercase = feat_extract_norm lowercase = feat_extract_activation lowercase = list(A__ ) lowercase = list(A__ ) lowercase = list(A__ ) lowercase = conv_bias lowercase = num_conv_pos_embeddings lowercase = num_conv_pos_embedding_groups lowercase = len(self.conv_dim ) lowercase = num_hidden_layers lowercase = intermediate_size lowercase = squeeze_factor lowercase = max_position_embeddings lowercase = position_buckets lowercase = share_att_key lowercase = relative_attention lowercase = norm_rel_ebd lowercase = list(A__ ) lowercase = hidden_act lowercase = num_attention_heads lowercase = hidden_dropout lowercase = attention_dropout lowercase = activation_dropout lowercase = feat_proj_dropout lowercase = final_dropout lowercase = layer_norm_eps lowercase = feature_layer_norm_eps lowercase = initializer_range lowercase = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," f'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)' f'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase = apply_spec_augment lowercase = mask_time_prob lowercase = mask_time_length lowercase = mask_time_min_masks lowercase = mask_feature_prob lowercase = mask_feature_length lowercase = mask_feature_min_masks # ctc loss lowercase = ctc_loss_reduction lowercase = ctc_zero_infinity # sequence classification lowercase = use_weighted_layer_sum lowercase = classifier_proj_size @property def UpperCAmelCase__ (self : str ) -> Optional[int]: return functools.reduce(operator.mul , self.conv_stride , 1 )
310
0
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class _lowerCamelCase : def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=99 , lowerCAmelCase=32 , lowerCAmelCase=2 , lowerCAmelCase=4 , lowerCAmelCase=37 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=512 , lowerCAmelCase=16 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase="None" , lowerCAmelCase=3 , lowerCAmelCase=4 , lowerCAmelCase=None , ) -> List[str]: SCREAMING_SNAKE_CASE__: Tuple= parent SCREAMING_SNAKE_CASE__: List[Any]= batch_size SCREAMING_SNAKE_CASE__: Union[str, Any]= seq_length SCREAMING_SNAKE_CASE__: Dict= is_training SCREAMING_SNAKE_CASE__: Any= use_input_mask SCREAMING_SNAKE_CASE__: int= use_token_type_ids SCREAMING_SNAKE_CASE__: Tuple= use_labels SCREAMING_SNAKE_CASE__: str= vocab_size SCREAMING_SNAKE_CASE__: Optional[Any]= hidden_size SCREAMING_SNAKE_CASE__: Any= num_hidden_layers SCREAMING_SNAKE_CASE__: Tuple= num_attention_heads SCREAMING_SNAKE_CASE__: List[str]= intermediate_size SCREAMING_SNAKE_CASE__: Optional[int]= hidden_act SCREAMING_SNAKE_CASE__: Tuple= hidden_dropout_prob SCREAMING_SNAKE_CASE__: int= attention_probs_dropout_prob SCREAMING_SNAKE_CASE__: Union[str, Any]= max_position_embeddings SCREAMING_SNAKE_CASE__: str= type_vocab_size SCREAMING_SNAKE_CASE__: Union[str, Any]= type_sequence_label_size SCREAMING_SNAKE_CASE__: List[Any]= initializer_range SCREAMING_SNAKE_CASE__: List[str]= num_labels SCREAMING_SNAKE_CASE__: List[Any]= num_choices SCREAMING_SNAKE_CASE__: Any= relative_attention SCREAMING_SNAKE_CASE__: Tuple= position_biased_input SCREAMING_SNAKE_CASE__: Dict= pos_att_type SCREAMING_SNAKE_CASE__: str= scope def UpperCamelCase_ ( self ) -> List[str]: SCREAMING_SNAKE_CASE__: Optional[Any]= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__: List[Any]= None if self.use_input_mask: SCREAMING_SNAKE_CASE__: Optional[int]= random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__: Union[str, Any]= None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__: str= ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__: List[str]= None SCREAMING_SNAKE_CASE__: List[str]= None SCREAMING_SNAKE_CASE__: Any= None if self.use_labels: SCREAMING_SNAKE_CASE__: int= ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__: str= ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__: str= DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=lowerCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> List[str]: SCREAMING_SNAKE_CASE__: Dict= TFDebertaVaModel(config=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Any= {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE__: Dict= [input_ids, input_mask] SCREAMING_SNAKE_CASE__: str= model(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: str= model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Optional[Any]: SCREAMING_SNAKE_CASE__: Optional[int]= TFDebertaVaForMaskedLM(config=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[str]= { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE__: Optional[Any]= model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> int: SCREAMING_SNAKE_CASE__: str= self.num_labels SCREAMING_SNAKE_CASE__: Tuple= TFDebertaVaForSequenceClassification(config=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[str]= { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE__: Union[str, Any]= model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Any: SCREAMING_SNAKE_CASE__: Any= self.num_labels SCREAMING_SNAKE_CASE__: Any= TFDebertaVaForTokenClassification(config=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Union[str, Any]= { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE__: Dict= model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: SCREAMING_SNAKE_CASE__: Any= TFDebertaVaForQuestionAnswering(config=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[Any]= { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE__: Optional[int]= model(lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self ) -> Any: SCREAMING_SNAKE_CASE__: List[Any]= self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ), ( SCREAMING_SNAKE_CASE__ ), ( SCREAMING_SNAKE_CASE__ ), ( SCREAMING_SNAKE_CASE__ ), ( SCREAMING_SNAKE_CASE__ ), ( SCREAMING_SNAKE_CASE__ ), ( SCREAMING_SNAKE_CASE__ ), ): Any= config_and_inputs SCREAMING_SNAKE_CASE__: List[Any]= {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _lowerCamelCase ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): __a = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) __a = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) __a = False __a = False def UpperCamelCase_ ( self ) -> Tuple: SCREAMING_SNAKE_CASE__: List[str]= TFDebertaVaModelTester(self ) SCREAMING_SNAKE_CASE__: str= ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37 ) def UpperCamelCase_ ( self ) -> Tuple: self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE__: Dict= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def UpperCamelCase_ ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE__: str= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase ) def UpperCamelCase_ ( self ) -> List[Any]: SCREAMING_SNAKE_CASE__: Any= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase ) def UpperCamelCase_ ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__: Tuple= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase ) def UpperCamelCase_ ( self ) -> List[str]: SCREAMING_SNAKE_CASE__: Optional[Any]= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase ) @slow def UpperCamelCase_ ( self ) -> str: SCREAMING_SNAKE_CASE__: Optional[Any]= TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' ) self.assertIsNotNone(lowerCAmelCase ) @require_tf class _lowerCamelCase ( unittest.TestCase ): @unittest.skip(reason='''Model not available yet''' ) def UpperCamelCase_ ( self ) -> Tuple: pass @slow def UpperCamelCase_ ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE__: Any= TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' ) SCREAMING_SNAKE_CASE__: Optional[int]= tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) SCREAMING_SNAKE_CASE__: List[Any]= tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) SCREAMING_SNAKE_CASE__: Dict= model(lowerCAmelCase , attention_mask=lowerCAmelCase )[0] SCREAMING_SNAKE_CASE__: Any= tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , lowerCAmelCase , atol=1e-4 )
107
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ : List[str] = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[Any] = ['MaskFormerFeatureExtractor'] lowercase_ : Dict = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : str = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] lowercase_ : Optional[Any] = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys lowercase_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure)
107
1
def UpperCamelCase ( _A : int , _A : int )-> bool: """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
491
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer a_ = logging.get_logger(__name__) a_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} a_ = { """vocab_file""": { """allegro/herbert-base-cased""": """https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json""" }, """merges_file""": { """allegro/herbert-base-cased""": """https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt""" }, } a_ = {"""allegro/herbert-base-cased""": 514} a_ = {} class UpperCAmelCase__ ( snake_case ): """simple docstring""" lowerCAmelCase__ : List[str] = VOCAB_FILES_NAMES lowerCAmelCase__ : int = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Tuple = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ : Tuple = HerbertTokenizer def __init__( self: Optional[Any] , __lowerCAmelCase: List[str]=None , __lowerCAmelCase: Optional[int]=None , __lowerCAmelCase: List[str]=None , __lowerCAmelCase: str="<s>" , __lowerCAmelCase: List[str]="<unk>" , __lowerCAmelCase: Optional[int]="<pad>" , __lowerCAmelCase: Optional[Any]="<mask>" , __lowerCAmelCase: Union[str, Any]="</s>" , **__lowerCAmelCase: List[Any] , ) -> Tuple: '''simple docstring''' super().__init__( __lowerCAmelCase , __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , cls_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , **__lowerCAmelCase , ) def _UpperCAmelCase ( self: Tuple , __lowerCAmelCase: List[int] , __lowerCAmelCase: Optional[List[int]] = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase = [self.cls_token_id] __UpperCAmelCase = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _UpperCAmelCase ( self: Optional[int] , __lowerCAmelCase: List[int] , __lowerCAmelCase: Optional[List[int]] = None , __lowerCAmelCase: bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCAmelCase )) + [1] return [1] + ([0] * len(__lowerCAmelCase )) + [1] + ([0] * len(__lowerCAmelCase )) + [1] def _UpperCAmelCase ( self: int , __lowerCAmelCase: List[int] , __lowerCAmelCase: Optional[List[int]] = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self: Dict , __lowerCAmelCase: str , __lowerCAmelCase: Optional[str] = None ) -> Tuple[str]: '''simple docstring''' __UpperCAmelCase = self._tokenizer.model.save(__lowerCAmelCase , name=__lowerCAmelCase ) return tuple(__lowerCAmelCase )
221
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = "git_vision_model" def __init__( self : int , UpperCAmelCase_ : Optional[Any]=768 , UpperCAmelCase_ : Any=3072 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : List[str]=12 , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : List[Any]=224 , UpperCAmelCase_ : List[Any]=16 , UpperCAmelCase_ : str="quick_gelu" , UpperCAmelCase_ : List[Any]=1E-5 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : Any=0.02 , **UpperCAmelCase_ : str , ): super().__init__(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : List[str] = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : List[Any] = patch_size SCREAMING_SNAKE_CASE : Dict = image_size SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : List[str] = attention_dropout SCREAMING_SNAKE_CASE : Dict = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = hidden_act @classmethod def _A ( cls : Dict , UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : str ): cls._set_token_in_kwargs(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = cls.get_config_dict(_lowerCamelCase , **_lowerCamelCase ) # get the vision config dict if we are loading from GITConfig if config_dict.get("model_type" ) == "git": SCREAMING_SNAKE_CASE : Tuple = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_lowerCamelCase , **_lowerCamelCase ) class SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): '''simple docstring''' UpperCamelCase_ : Dict = "git" def __init__( self : List[Any] , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : int=3_0522 , UpperCAmelCase_ : Tuple=768 , UpperCAmelCase_ : Dict=6 , UpperCAmelCase_ : int=12 , UpperCAmelCase_ : int=3072 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : List[str]=1024 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : List[str]=1E-12 , UpperCAmelCase_ : Dict=0 , UpperCAmelCase_ : List[Any]="absolute" , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : List[Any]=101 , UpperCAmelCase_ : Optional[Any]=102 , UpperCAmelCase_ : List[str]=None , **UpperCAmelCase_ : Tuple , ): super().__init__(bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , pad_token_id=_lowerCamelCase , **_lowerCamelCase ) if vision_config is None: SCREAMING_SNAKE_CASE : Any = {} logger.info("vision_config is None. initializing the GitVisionConfig with default values." ) SCREAMING_SNAKE_CASE : Any = GitVisionConfig(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : Any = num_hidden_layers SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Dict = max_position_embeddings SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Any = layer_norm_eps SCREAMING_SNAKE_CASE : str = position_embedding_type SCREAMING_SNAKE_CASE : int = use_cache SCREAMING_SNAKE_CASE : Optional[Any] = tie_word_embeddings SCREAMING_SNAKE_CASE : int = num_image_with_embedding SCREAMING_SNAKE_CASE : Optional[Any] = bos_token_id SCREAMING_SNAKE_CASE : List[Any] = eos_token_id def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : Tuple = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.vision_config.to_dict() SCREAMING_SNAKE_CASE : List[str] = self.__class__.model_type return output
712
import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging snake_case = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = CLIPConfig UpperCamelCase_ : Optional[int] = ['''CLIPEncoderLayer'''] def __init__( self : List[Any] , UpperCAmelCase_ : CLIPConfig ): super().__init__(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = CLIPVisionModelWithProjection(config.vision_config ) SCREAMING_SNAKE_CASE : List[Any] = nn.Linear(config.vision_config.projection_dim , 1 ) SCREAMING_SNAKE_CASE : List[str] = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def _A ( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any]=0.5 , UpperCAmelCase_ : Optional[Any]=0.5 ): SCREAMING_SNAKE_CASE : str = self.vision_model(UpperCAmelCase_ )[0] SCREAMING_SNAKE_CASE : Union[str, Any] = self.p_head(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = nsfw_detected.flatten() SCREAMING_SNAKE_CASE : List[str] = nsfw_detected > p_threshold SCREAMING_SNAKE_CASE : List[Any] = nsfw_detected.tolist() if any(UpperCAmelCase_ ): logger.warning( "Potential NSFW content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, nsfw_detected_ in enumerate(UpperCAmelCase_ ): if nsfw_detected_: SCREAMING_SNAKE_CASE : Dict = np.zeros(images[idx].shape ) SCREAMING_SNAKE_CASE : Any = self.w_head(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = watermark_detected.flatten() SCREAMING_SNAKE_CASE : Union[str, Any] = watermark_detected > w_threshold SCREAMING_SNAKE_CASE : Optional[int] = watermark_detected.tolist() if any(UpperCAmelCase_ ): logger.warning( "Potential watermarked content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, watermark_detected_ in enumerate(UpperCAmelCase_ ): if watermark_detected_: SCREAMING_SNAKE_CASE : Optional[int] = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
488
0
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCAmelCase = '''pt''' elif is_tf_available(): __UpperCAmelCase = '''tf''' else: __UpperCAmelCase = '''jax''' class a__ ( a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : List[Any] = ByTaTokenizer lowercase__ : Optional[Any] = False def __SCREAMING_SNAKE_CASE ( self ) -> Dict: super().setUp() lowerCAmelCase__ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: return ByTaTokenizer.from_pretrained('''google/byt5-small''' ) def __SCREAMING_SNAKE_CASE ( self , **lowerCamelCase_ ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=20 , lowerCamelCase_=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. lowerCAmelCase__ = [] for i in range(len(lowerCamelCase_ ) ): try: lowerCAmelCase__ = tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCamelCase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCAmelCase__ = list(filter(lambda lowerCamelCase_ : re.match(r'''^[ a-zA-Z]+$''' , t[1] ) , lowerCamelCase_ ) ) lowerCAmelCase__ = list(filter(lambda lowerCamelCase_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowerCamelCase_ ) , lowerCamelCase_ ) ) if max_length is not None and len(lowerCamelCase_ ) > max_length: lowerCAmelCase__ = toks[:max_length] if min_length is not None and len(lowerCamelCase_ ) < min_length and len(lowerCamelCase_ ) > 0: while len(lowerCamelCase_ ) < min_length: lowerCAmelCase__ = toks + toks # toks_str = [t[1] for t in toks] lowerCAmelCase__ = [t[0] for t in toks] # Ensure consistency lowerCAmelCase__ = tokenizer.decode(lowerCamelCase_ , clean_up_tokenization_spaces=lowerCamelCase_ ) if " " not in output_txt and len(lowerCamelCase_ ) > 1: lowerCAmelCase__ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCamelCase_ ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCamelCase_ ) ) if with_prefix_space: lowerCAmelCase__ = ''' ''' + output_txt lowerCAmelCase__ = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) return output_txt, output_ids def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = self.ta_base_tokenizer lowerCAmelCase__ = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>'''] ) lowerCAmelCase__ = tokenizer(['''hi''', '''I went to the gym''', ''''''] ) self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids'''] ) def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ = self.ta_base_tokenizer lowerCAmelCase__ = '''Unicode €.''' lowerCAmelCase__ = tokenizer(lowerCamelCase_ ) lowerCAmelCase__ = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1] self.assertEqual(encoded['''input_ids'''] , lowerCamelCase_ ) # decoding lowerCAmelCase__ = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , '''Unicode €.</s>''' ) lowerCAmelCase__ = tokenizer('''e è é ê ë''' ) lowerCAmelCase__ = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1] self.assertEqual(encoded['''input_ids'''] , lowerCamelCase_ ) # decoding lowerCAmelCase__ = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , '''e è é ê ë</s>''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''e è é ê ë</s>''' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ = self.ta_base_tokenizer lowerCAmelCase__ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off lowerCAmelCase__ = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0] # fmt: on lowerCAmelCase__ = tokenizer(lowerCamelCase_ , padding=lowerCamelCase_ , return_tensors=lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) if FRAMEWORK != "jax": lowerCAmelCase__ = list(batch.input_ids.numpy()[0] ) else: lowerCAmelCase__ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ = self.ta_base_tokenizer lowerCAmelCase__ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowerCAmelCase__ = tokenizer(lowerCamelCase_ , padding=lowerCamelCase_ , return_tensors=lowerCamelCase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , lowerCamelCase_ ) self.assertIn('''attention_mask''' , lowerCamelCase_ ) self.assertNotIn('''decoder_input_ids''' , lowerCamelCase_ ) self.assertNotIn('''decoder_attention_mask''' , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = self.ta_base_tokenizer lowerCAmelCase__ = [ '''Summary of the text.''', '''Another summary.''', ] lowerCAmelCase__ = tokenizer( text_target=lowerCamelCase_ , max_length=32 , padding='''max_length''' , truncation=lowerCamelCase_ , return_tensors=lowerCamelCase_ ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = self.ta_base_tokenizer lowerCAmelCase__ = ['''A long paragraph for summarization. </s>'''] lowerCAmelCase__ = ['''Summary of the text. </s>'''] # fmt: off lowerCAmelCase__ = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1] lowerCAmelCase__ = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1] # fmt: on lowerCAmelCase__ = tokenizer(lowerCamelCase_ , text_target=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , batch['''input_ids'''][0] ) self.assertEqual(lowerCamelCase_ , batch['''labels'''][0] ) def __SCREAMING_SNAKE_CASE ( self ) -> str: # safety check on max_len default value so we are sure the test works lowerCAmelCase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowerCAmelCase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase__ = tempfile.mkdtemp() lowerCAmelCase__ = ''' He is very happy, UNwant\u00E9d,running''' lowerCAmelCase__ = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = after_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) shutil.rmtree(lowerCamelCase_ ) lowerCAmelCase__ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase__ = tempfile.mkdtemp() lowerCAmelCase__ = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) lowerCAmelCase__ = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) lowerCAmelCase__ = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = after_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowerCAmelCase__ = tokenizer.__class__.from_pretrained(lowerCamelCase_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_ , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: lowerCAmelCase__ = json.load(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_ , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: lowerCAmelCase__ = json.load(lowerCamelCase_ ) lowerCAmelCase__ = [F"""<extra_id_{i}>""" for i in range(1_25 )] lowerCAmelCase__ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] lowerCAmelCase__ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(lowerCamelCase_ , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowerCamelCase_ , lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_ , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowerCamelCase_ , lowerCamelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCAmelCase__ = tokenizer_class.from_pretrained( lowerCamelCase_ , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCAmelCase__ = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=lowerCamelCase_ )] lowerCAmelCase__ = tokenizer_class.from_pretrained( lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_class.from_pretrained(lowerCamelCase_ ) self.assertTrue(tokenizer.decode([2_55] ) == '''''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: pass def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: pass def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: pass def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens lowerCAmelCase__ = self.get_tokenizers(fast=lowerCamelCase_ , do_lower_case=lowerCamelCase_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCAmelCase__ = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] lowerCAmelCase__ = tokenizer.convert_tokens_to_string(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCAmelCase__ = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] lowerCAmelCase__ = 0 lowerCAmelCase__ = tokenizer.convert_ids_to_tokens( lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) for attr in attributes_list: setattr(lowerCamelCase_ , attr + '''_id''' , lowerCamelCase_ ) self.assertEqual(getattr(lowerCamelCase_ , lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(getattr(lowerCamelCase_ , attr + '''_id''' ) , lowerCamelCase_ ) setattr(lowerCamelCase_ , attr + '''_id''' , lowerCamelCase_ ) self.assertEqual(getattr(lowerCamelCase_ , lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(getattr(lowerCamelCase_ , attr + '''_id''' ) , lowerCamelCase_ ) setattr(lowerCamelCase_ , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(lowerCamelCase_ , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(lowerCamelCase_ , '''additional_special_tokens_ids''' ) , [] ) setattr(lowerCamelCase_ , '''additional_special_tokens_ids''' , [token_id_to_test_setters] ) self.assertListEqual(getattr(lowerCamelCase_ , '''additional_special_tokens''' ) , [token_to_test_setters] ) self.assertListEqual(getattr(lowerCamelCase_ , '''additional_special_tokens_ids''' ) , [token_id_to_test_setters] )
90
__snake_case : str ='\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __snake_case : Optional[Any] =[{'type': 'code', 'content': INSTALL_CONTENT}] __snake_case : List[str] ={ '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
647
0
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> List[str]: # Initialise PyTorch model _SCREAMING_SNAKE_CASE : Union[str, Any] = BertConfig.from_json_file(__SCREAMING_SNAKE_CASE ) print(F"""Building PyTorch model from configuration: {config}""" ) _SCREAMING_SNAKE_CASE : List[Any] = BertForPreTraining(__SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_bert(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
713
"""simple docstring""" from typing import Any import numpy as np def lowerCamelCase_(__SCREAMING_SNAKE_CASE )-> bool: return np.array_equal(__SCREAMING_SNAKE_CASE , matrix.conjugate().T ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Any: _SCREAMING_SNAKE_CASE : Optional[int] = v.conjugate().T _SCREAMING_SNAKE_CASE : Optional[int] = v_star.dot(__SCREAMING_SNAKE_CASE ) assert isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) return (v_star_dot.dot(__SCREAMING_SNAKE_CASE )) / (v_star.dot(__SCREAMING_SNAKE_CASE )) def lowerCamelCase_()-> None: _SCREAMING_SNAKE_CASE : Optional[Any] = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) _SCREAMING_SNAKE_CASE : int = np.array([[1], [2], [3]] ) assert is_hermitian(__SCREAMING_SNAKE_CASE ), F"""{a} is not hermitian.""" print(rayleigh_quotient(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) _SCREAMING_SNAKE_CASE : int = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(__SCREAMING_SNAKE_CASE ), F"""{a} is not hermitian.""" assert rayleigh_quotient(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
635
0
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'encoder.layer_norm_for_extract': 'layer_norm_for_extract', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'label_embs_concat': 'label_embeddings_concat', 'mask_emb': 'masked_spec_embed', 'spk_proj': 'speaker_proj', } a_ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'label_embeddings_concat', 'speaker_proj', 'layer_norm_for_extract', ] def lowerCamelCase__ ( _a , _a , _a , _a , _a): for attribute in key.split("."): SCREAMING_SNAKE_CASE : List[Any] = getattr(_a , _a) if weight_type is not None: SCREAMING_SNAKE_CASE : str = getattr(_a , _a).shape else: SCREAMING_SNAKE_CASE : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}") if weight_type == "weight": SCREAMING_SNAKE_CASE : Any = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE : List[Any] = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE : List[Any] = value elif weight_type == "bias": SCREAMING_SNAKE_CASE : List[Any] = value else: SCREAMING_SNAKE_CASE : Any = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.") def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : int = fairseq_model.state_dict() SCREAMING_SNAKE_CASE : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE : Optional[int] = False if "conv_layers" in name: load_conv_layer( _a , _a , _a , _a , hf_model.config.feat_extract_norm == "group" , ) SCREAMING_SNAKE_CASE : Optional[int] = True else: for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE : str = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if "layer_norm_for_extract" in name and (".".join(name.split(".")[:-1]) != key): # special case since naming is very similar continue SCREAMING_SNAKE_CASE : Optional[int] = True if "*" in mapped_key: SCREAMING_SNAKE_CASE : Union[str, Any] = name.split(_a)[0].split(".")[-2] SCREAMING_SNAKE_CASE : Dict = mapped_key.replace("*" , _a) if "weight_g" in name: SCREAMING_SNAKE_CASE : Any = "weight_g" elif "weight_v" in name: SCREAMING_SNAKE_CASE : List[str] = "weight_v" elif "bias" in name: SCREAMING_SNAKE_CASE : str = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj SCREAMING_SNAKE_CASE : Any = "weight" else: SCREAMING_SNAKE_CASE : Optional[Any] = None set_recursively(_a , _a , _a , _a , _a) continue if not is_used: unused_weights.append(_a) logger.warning(f"Unused weights: {unused_weights}") def lowerCamelCase__ ( _a , _a , _a , _a , _a): SCREAMING_SNAKE_CASE : Optional[Any] = full_name.split("conv_layers.")[-1] SCREAMING_SNAKE_CASE : Optional[Any] = name.split(".") SCREAMING_SNAKE_CASE : Any = int(items[0]) SCREAMING_SNAKE_CASE : Any = int(items[1]) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.") SCREAMING_SNAKE_CASE : Tuple = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.") SCREAMING_SNAKE_CASE : int = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.") SCREAMING_SNAKE_CASE : Tuple = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.") SCREAMING_SNAKE_CASE : Tuple = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") else: unused_weights.append(_a) @torch.no_grad() def lowerCamelCase__ ( _a , _a , _a=None , _a=None , _a=True): if config_path is not None: SCREAMING_SNAKE_CASE : Tuple = UniSpeechSatConfig.from_pretrained(_a) else: SCREAMING_SNAKE_CASE : List[Any] = UniSpeechSatConfig() SCREAMING_SNAKE_CASE : List[str] = "" if is_finetuned: SCREAMING_SNAKE_CASE : Dict = UniSpeechSatForCTC(_a) else: SCREAMING_SNAKE_CASE : str = UniSpeechSatForPreTraining(_a) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/")[:-1])}) SCREAMING_SNAKE_CASE : Union[str, Any] = model[0].eval() recursively_load_weights(_a , _a) hf_wavavec.save_pretrained(_a) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) a_ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
25
from __future__ import annotations import numpy as np def __magic_name__ ( lowercase ) -> Tuple: """simple docstring""" return np.maximum(0 , lowercase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
458
0
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow lowerCAmelCase__ = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class _A ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , lowerCamelCase : Path , lowerCamelCase : Union[str, None] = None , lowerCamelCase : Union[List[str], None] = None , lowerCamelCase : Union[str, List[str], None] = None , lowerCamelCase : bool = True , )-> Dict: snake_case__ : int = [file for file in os.listdir(lowerCamelCase ) if os.path.isfile(os.path.join(lowerCamelCase , lowerCamelCase ) )] if identifier is not None: snake_case__ : List[Any] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowerCamelCase , lowerCamelCase ): for n_ in n_identifier: snake_case__ : Union[str, Any] = [file for file in files if n_ not in file] else: snake_case__ : Optional[Any] = [file for file in files if n_identifier not in file] snake_case__ : Tuple = ignore_files or [] ignore_files.append("""__init__.py""" ) snake_case__ : int = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , lowerCamelCase ) if only_modules: snake_case__ : Union[str, Any] = file.split(""".""" )[0] try: snake_case__ : Any = getattr(lowerCamelCase , lowerCamelCase ) snake_case__ : Optional[Any] = doctest.DocTestSuite(lowerCamelCase ) snake_case__ : int = unittest.TextTestRunner().run(lowerCamelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F"""{module_identifier} is not a module.""" ) else: snake_case__ : List[Any] = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def __lowerCAmelCase ( self : Tuple )-> List[str]: snake_case__ : Optional[int] = Path("""src/transformers""" ) snake_case__ : Optional[Any] = """modeling""" snake_case__ : Optional[Any] = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(lowerCamelCase , identifier=lowerCamelCase , ignore_files=lowerCamelCase ) def __lowerCAmelCase ( self : List[str] )-> Union[str, Any]: snake_case__ : Optional[Any] = Path("""src/transformers""" ) snake_case__ : Any = """tokenization""" self.analyze_directory(lowerCamelCase , identifier=lowerCamelCase ) def __lowerCAmelCase ( self : Dict )-> Dict: snake_case__ : Any = Path("""src/transformers""" ) snake_case__ : List[Any] = """configuration""" self.analyze_directory(lowerCamelCase , identifier=lowerCamelCase ) def __lowerCAmelCase ( self : Dict )-> Tuple: snake_case__ : int = Path("""src/transformers""" ) snake_case__ : int = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(lowerCamelCase , n_identifier=lowerCamelCase ) def __lowerCAmelCase ( self : Union[str, Any] )-> Tuple: snake_case__ : List[Any] = Path("""docs/source""" ) snake_case__ : Optional[int] = ["""favicon.ico"""] self.analyze_directory(lowerCamelCase , ignore_files=lowerCamelCase , only_modules=lowerCamelCase )
172
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class _A ( UpperCamelCase ): '''simple docstring''' _lowercase = 42 _lowercase = 42 class _A ( nn.Module ): '''simple docstring''' _lowercase = 42 _lowercase = (16, 32, 96, 256) _lowercase = jnp.floataa def __lowerCAmelCase ( self : Tuple )-> Any: snake_case__ : Union[str, Any] = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) snake_case__ : List[str] = [] for i in range(len(self.block_out_channels ) - 1 ): snake_case__ : List[str] = self.block_out_channels[i] snake_case__ : Union[str, Any] = self.block_out_channels[i + 1] snake_case__ : Optional[int] = nn.Conv( lowerCamelCase , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(lowerCamelCase ) snake_case__ : int = nn.Conv( lowerCamelCase , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(lowerCamelCase ) snake_case__ : Any = blocks snake_case__ : Union[str, Any] = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Union[str, Any] , lowerCamelCase : Any )-> Tuple: snake_case__ : int = self.conv_in(lowerCamelCase ) snake_case__ : Dict = nn.silu(lowerCamelCase ) for block in self.blocks: snake_case__ : Dict = block(lowerCamelCase ) snake_case__ : str = nn.silu(lowerCamelCase ) snake_case__ : Union[str, Any] = self.conv_out(lowerCamelCase ) return embedding @flax_register_to_config class _A ( nn.Module , UpperCamelCase , UpperCamelCase ): '''simple docstring''' _lowercase = 32 _lowercase = 4 _lowercase = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _lowercase = False _lowercase = (320, 640, 1280, 1280) _lowercase = 2 _lowercase = 8 _lowercase = None _lowercase = 1280 _lowercase = 0.0 _lowercase = False _lowercase = jnp.floataa _lowercase = True _lowercase = 0 _lowercase = "rgb" _lowercase = (16, 32, 96, 256) def __lowerCAmelCase ( self : Optional[int] , lowerCamelCase : jax.random.KeyArray )-> FrozenDict: # init input tensors snake_case__ : Union[str, Any] = (1, self.in_channels, self.sample_size, self.sample_size) snake_case__ : Dict = jnp.zeros(lowerCamelCase , dtype=jnp.floataa ) snake_case__ : str = jnp.ones((1,) , dtype=jnp.intaa ) snake_case__ : str = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) snake_case__ : Dict = (1, 3, self.sample_size * 8, self.sample_size * 8) snake_case__ : Optional[Any] = jnp.zeros(lowerCamelCase , dtype=jnp.floataa ) snake_case__ , snake_case__ : List[Any] = jax.random.split(lowerCamelCase ) snake_case__ : Optional[Any] = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )["params"] def __lowerCAmelCase ( self : int )-> int: snake_case__ : List[Any] = self.block_out_channels snake_case__ : Union[str, Any] = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. snake_case__ : Any = self.num_attention_heads or self.attention_head_dim # input snake_case__ : Any = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time snake_case__ : List[str] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) snake_case__ : Union[str, Any] = FlaxTimestepEmbedding(lowerCamelCase , dtype=self.dtype ) snake_case__ : Tuple = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) snake_case__ : Union[str, Any] = self.only_cross_attention if isinstance(lowerCamelCase , lowerCamelCase ): snake_case__ : Dict = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowerCamelCase , lowerCamelCase ): snake_case__ : Union[str, Any] = (num_attention_heads,) * len(self.down_block_types ) # down snake_case__ : Optional[Any] = [] snake_case__ : str = [] snake_case__ : Tuple = block_out_channels[0] snake_case__ : Tuple = nn.Conv( lowerCamelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowerCamelCase ) for i, down_block_type in enumerate(self.down_block_types ): snake_case__ : Optional[int] = output_channel snake_case__ : int = block_out_channels[i] snake_case__ : Union[str, Any] = i == len(lowerCamelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": snake_case__ : int = FlaxCrossAttnDownBlockaD( in_channels=lowerCamelCase , out_channels=lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: snake_case__ : Any = FlaxDownBlockaD( in_channels=lowerCamelCase , out_channels=lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(lowerCamelCase ) for _ in range(self.layers_per_block ): snake_case__ : str = nn.Conv( lowerCamelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowerCamelCase ) if not is_final_block: snake_case__ : Tuple = nn.Conv( lowerCamelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowerCamelCase ) snake_case__ : Optional[Any] = down_blocks snake_case__ : List[str] = controlnet_down_blocks # mid snake_case__ : Union[str, Any] = block_out_channels[-1] snake_case__ : Optional[int] = FlaxUNetMidBlockaDCrossAttn( in_channels=lowerCamelCase , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) snake_case__ : Tuple = nn.Conv( lowerCamelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Optional[int] , lowerCamelCase : int , lowerCamelCase : List[Any] , lowerCamelCase : Dict , lowerCamelCase : Optional[int] , lowerCamelCase : float = 1.0 , lowerCamelCase : bool = True , lowerCamelCase : bool = False , )-> Union[FlaxControlNetOutput, Tuple]: snake_case__ : int = self.controlnet_conditioning_channel_order if channel_order == "bgr": snake_case__ : Union[str, Any] = jnp.flip(lowerCamelCase , axis=1 ) # 1. time if not isinstance(lowerCamelCase , jnp.ndarray ): snake_case__ : List[Any] = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(lowerCamelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: snake_case__ : Optional[int] = timesteps.astype(dtype=jnp.floataa ) snake_case__ : Optional[int] = jnp.expand_dims(lowerCamelCase , 0 ) snake_case__ : Any = self.time_proj(lowerCamelCase ) snake_case__ : List[Any] = self.time_embedding(lowerCamelCase ) # 2. pre-process snake_case__ : Dict = jnp.transpose(lowerCamelCase , (0, 2, 3, 1) ) snake_case__ : Any = self.conv_in(lowerCamelCase ) snake_case__ : Dict = jnp.transpose(lowerCamelCase , (0, 2, 3, 1) ) snake_case__ : str = self.controlnet_cond_embedding(lowerCamelCase ) sample += controlnet_cond # 3. down snake_case__ : Any = (sample,) for down_block in self.down_blocks: if isinstance(lowerCamelCase , lowerCamelCase ): snake_case__ , snake_case__ : List[str] = down_block(lowerCamelCase , lowerCamelCase , lowerCamelCase , deterministic=not train ) else: snake_case__ , snake_case__ : List[str] = down_block(lowerCamelCase , lowerCamelCase , deterministic=not train ) down_block_res_samples += res_samples # 4. mid snake_case__ : Optional[Any] = self.mid_block(lowerCamelCase , lowerCamelCase , lowerCamelCase , deterministic=not train ) # 5. contronet blocks snake_case__ : List[str] = () for down_block_res_sample, controlnet_block in zip(lowerCamelCase , self.controlnet_down_blocks ): snake_case__ : List[str] = controlnet_block(lowerCamelCase ) controlnet_down_block_res_samples += (down_block_res_sample,) snake_case__ : Optional[Any] = controlnet_down_block_res_samples snake_case__ : Optional[int] = self.controlnet_mid_block(lowerCamelCase ) # 6. scaling snake_case__ : Optional[Any] = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowerCamelCase , mid_block_res_sample=lowerCamelCase )
172
1
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __a ( SCREAMING_SNAKE_CASE ): def __init__( self : List[Any] , snake_case_ : Tuple , snake_case_ : Dict=13 , snake_case_ : List[Any]=7 , snake_case_ : Optional[int]=True , snake_case_ : Tuple=True , snake_case_ : Optional[int]=True , snake_case_ : Optional[int]=True , snake_case_ : Any=True , snake_case_ : Any=False , snake_case_ : Union[str, Any]=False , snake_case_ : Dict=False , snake_case_ : str=2 , snake_case_ : Optional[int]=99 , snake_case_ : Any=0 , snake_case_ : Dict=32 , snake_case_ : Optional[Any]=5 , snake_case_ : Optional[Any]=4 , snake_case_ : Tuple=0.1 , snake_case_ : Any=0.1 , snake_case_ : str=5_12 , snake_case_ : List[str]=12 , snake_case_ : List[Any]=2 , snake_case_ : Optional[int]=0.0_2 , snake_case_ : Dict=3 , snake_case_ : Dict=4 , snake_case_ : Any="last" , snake_case_ : List[Any]=None , snake_case_ : int=None , )-> List[Any]: __lowerCAmelCase =parent __lowerCAmelCase =batch_size __lowerCAmelCase =seq_length __lowerCAmelCase =is_training __lowerCAmelCase =use_input_lengths __lowerCAmelCase =use_token_type_ids __lowerCAmelCase =use_labels __lowerCAmelCase =gelu_activation __lowerCAmelCase =sinusoidal_embeddings __lowerCAmelCase =causal __lowerCAmelCase =asm __lowerCAmelCase =n_langs __lowerCAmelCase =vocab_size __lowerCAmelCase =n_special __lowerCAmelCase =hidden_size __lowerCAmelCase =num_hidden_layers __lowerCAmelCase =num_attention_heads __lowerCAmelCase =hidden_dropout_prob __lowerCAmelCase =attention_probs_dropout_prob __lowerCAmelCase =max_position_embeddings __lowerCAmelCase =type_vocab_size __lowerCAmelCase =type_sequence_label_size __lowerCAmelCase =initializer_range __lowerCAmelCase =num_labels __lowerCAmelCase =num_choices __lowerCAmelCase =summary_type __lowerCAmelCase =use_proj __lowerCAmelCase =scope def UpperCamelCase ( self : List[Any])-> str: __lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length]) __lowerCAmelCase =None if self.use_input_lengths: __lowerCAmelCase =( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length __lowerCAmelCase =None if self.use_token_type_ids: __lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.n_langs) __lowerCAmelCase =None __lowerCAmelCase =None __lowerCAmelCase =None if self.use_labels: __lowerCAmelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size) __lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __lowerCAmelCase =ids_tensor([self.batch_size] , 2).float() __lowerCAmelCase =ids_tensor([self.batch_size] , self.num_choices) __lowerCAmelCase =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase ( self : Union[str, Any])-> Union[str, Any]: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def UpperCamelCase ( self : Any , snake_case_ : Optional[Any] , snake_case_ : Dict , snake_case_ : Any , snake_case_ : Optional[int] , snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : int , )-> Tuple: __lowerCAmelCase =FlaubertModel(config=snake_case_) model.to(snake_case_) model.eval() __lowerCAmelCase =model(snake_case_ , lengths=snake_case_ , langs=snake_case_) __lowerCAmelCase =model(snake_case_ , langs=snake_case_) __lowerCAmelCase =model(snake_case_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase ( self : Optional[int] , snake_case_ : Tuple , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : int , snake_case_ : List[str] , snake_case_ : Any , snake_case_ : Optional[int] , snake_case_ : List[str] , snake_case_ : str , )-> str: __lowerCAmelCase =FlaubertWithLMHeadModel(snake_case_) model.to(snake_case_) model.eval() __lowerCAmelCase =model(snake_case_ , token_type_ids=snake_case_ , labels=snake_case_) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase ( self : Optional[Any] , snake_case_ : Dict , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : List[str] , snake_case_ : Dict , snake_case_ : Dict , snake_case_ : Any , )-> Tuple: __lowerCAmelCase =FlaubertForQuestionAnsweringSimple(snake_case_) model.to(snake_case_) model.eval() __lowerCAmelCase =model(snake_case_) __lowerCAmelCase =model(snake_case_ , start_positions=snake_case_ , end_positions=snake_case_) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCamelCase ( self : List[str] , snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : str , snake_case_ : Optional[Any] , snake_case_ : str , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : str , snake_case_ : Optional[Any] , )-> Optional[int]: __lowerCAmelCase =FlaubertForQuestionAnswering(snake_case_) model.to(snake_case_) model.eval() __lowerCAmelCase =model(snake_case_) __lowerCAmelCase =model( snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , cls_index=snake_case_ , is_impossible=snake_case_ , p_mask=snake_case_ , ) __lowerCAmelCase =model( snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , cls_index=snake_case_ , is_impossible=snake_case_ , ) ((__lowerCAmelCase) , ) =result_with_labels.to_tuple() __lowerCAmelCase =model(snake_case_ , start_positions=snake_case_ , end_positions=snake_case_) ((__lowerCAmelCase) , ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , ()) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,)) def UpperCamelCase ( self : List[Any] , snake_case_ : Any , snake_case_ : int , snake_case_ : Union[str, Any] , snake_case_ : Dict , snake_case_ : int , snake_case_ : Tuple , snake_case_ : int , snake_case_ : str , snake_case_ : Dict , )-> Tuple: __lowerCAmelCase =FlaubertForSequenceClassification(snake_case_) model.to(snake_case_) model.eval() __lowerCAmelCase =model(snake_case_) __lowerCAmelCase =model(snake_case_ , labels=snake_case_) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def UpperCamelCase ( self : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Dict , snake_case_ : List[str] , snake_case_ : str , snake_case_ : List[Any] , snake_case_ : Dict , snake_case_ : List[str] , snake_case_ : Any , snake_case_ : Tuple , )-> Any: __lowerCAmelCase =self.num_labels __lowerCAmelCase =FlaubertForTokenClassification(snake_case_) model.to(snake_case_) model.eval() __lowerCAmelCase =model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCamelCase ( self : Union[str, Any] , snake_case_ : str , snake_case_ : int , snake_case_ : List[Any] , snake_case_ : int , snake_case_ : List[Any] , snake_case_ : List[str] , snake_case_ : str , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] , )-> Optional[int]: __lowerCAmelCase =self.num_choices __lowerCAmelCase =FlaubertForMultipleChoice(config=snake_case_) model.to(snake_case_) model.eval() __lowerCAmelCase =input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __lowerCAmelCase =token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __lowerCAmelCase =input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __lowerCAmelCase =model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCamelCase ( self : int)-> Dict: __lowerCAmelCase =self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) =config_and_inputs __lowerCAmelCase ={ """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase ( self : List[str] , snake_case_ : Any , snake_case_ : Dict , snake_case_ : Any , snake_case_ : Dict , snake_case_ : Dict)-> str: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""") ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase ( self : int , snake_case_ : List[str] , snake_case_ : Any , snake_case_ : int=False)-> Optional[Any]: __lowerCAmelCase =super()._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": __lowerCAmelCase =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_) __lowerCAmelCase =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_) return inputs_dict def UpperCamelCase ( self : Dict)-> Optional[Any]: __lowerCAmelCase =FlaubertModelTester(self) __lowerCAmelCase =ConfigTester(self , config_class=snake_case_ , emb_dim=37) def UpperCamelCase ( self : int)-> Dict: self.config_tester.run_common_tests() def UpperCamelCase ( self : Any)-> Tuple: __lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*snake_case_) def UpperCamelCase ( self : Union[str, Any])-> List[str]: __lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*snake_case_) def UpperCamelCase ( self : Any)-> Any: __lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*snake_case_) def UpperCamelCase ( self : Optional[int])-> List[str]: __lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*snake_case_) def UpperCamelCase ( self : List[Any])-> Optional[Any]: __lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*snake_case_) def UpperCamelCase ( self : Tuple)-> Union[str, Any]: __lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*snake_case_) def UpperCamelCase ( self : List[Any])-> Any: __lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*snake_case_) @slow def UpperCamelCase ( self : List[str])-> Tuple: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase =FlaubertModel.from_pretrained(snake_case_) self.assertIsNotNone(snake_case_) @slow @require_torch_gpu def UpperCamelCase ( self : Dict)-> str: __lowerCAmelCase , __lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return __lowerCAmelCase =True __lowerCAmelCase =model_class(config=snake_case_) __lowerCAmelCase =self._prepare_for_class(snake_case_ , snake_case_) __lowerCAmelCase =torch.jit.trace( snake_case_ , (inputs_dict["""input_ids"""].to("""cpu"""), inputs_dict["""attention_mask"""].to("""cpu"""))) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(snake_case_ , os.path.join(snake_case_ , """traced_model.pt""")) __lowerCAmelCase =torch.jit.load(os.path.join(snake_case_ , """traced_model.pt""") , map_location=snake_case_) loaded(inputs_dict["""input_ids"""].to(snake_case_) , inputs_dict["""attention_mask"""].to(snake_case_)) @require_torch class __a ( unittest.TestCase ): @slow def UpperCamelCase ( self : Tuple)-> str: __lowerCAmelCase =FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""") __lowerCAmelCase =torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]]) with torch.no_grad(): __lowerCAmelCase =model(snake_case_)[0] __lowerCAmelCase =torch.Size((1, 11, 7_68)) self.assertEqual(output.shape , snake_case_) __lowerCAmelCase =torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=1e-4))
354
from __future__ import annotations class __a : def __init__( self : List[Any] , snake_case_ : str , snake_case_ : str)-> Optional[int]: __lowerCAmelCase , __lowerCAmelCase =text, pattern __lowerCAmelCase , __lowerCAmelCase =len(snake_case_), len(snake_case_) def UpperCamelCase ( self : List[Any] , snake_case_ : str)-> int: for i in range(self.patLen - 1 , -1 , -1): if char == self.pattern[i]: return i return -1 def UpperCamelCase ( self : List[str] , snake_case_ : int)-> int: for i in range(self.patLen - 1 , -1 , -1): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def UpperCamelCase ( self : Dict)-> list[int]: # searches pattern in text and returns index positions __lowerCAmelCase =[] for i in range(self.textLen - self.patLen + 1): __lowerCAmelCase =self.mismatch_in_text(snake_case_) if mismatch_index == -1: positions.append(snake_case_) else: __lowerCAmelCase =self.match_in_pattern(self.text[mismatch_index]) __lowerCAmelCase =( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions lowercase_ = '''ABAABA''' lowercase_ = '''AB''' lowercase_ = BoyerMooreSearch(text, pattern) lowercase_ = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
354
1
'''simple docstring''' from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function _lowerCamelCase = 1.054571817e-34 # unit of ℏ : J * s _lowerCamelCase = 3e8 # unit of c : m * s^-1 def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: float , UpperCamelCase__: float , UpperCamelCase__: float ): if (force, area, distance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if force < 0: raise ValueError("""Magnitude of force can not be negative""" ) if distance < 0: raise ValueError("""Distance can not be negative""" ) if area < 0: raise ValueError("""Area can not be negative""" ) if force == 0: SCREAMING_SNAKE_CASE__ = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: SCREAMING_SNAKE_CASE__ = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: SCREAMING_SNAKE_CASE__ = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("""One and only one argument must be 0""" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
718
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase_ = OpenAIGPTTokenizer lowerCamelCase_ = OpenAIGPTTokenizerFast lowerCamelCase_ = True lowerCamelCase_ = False def _snake_case ( self :Optional[Any] ) -> Dict: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] SCREAMING_SNAKE_CASE__ = dict(zip(__A , range(len(__A ) ) ) ) SCREAMING_SNAKE_CASE__ = ["""#version: 0.2""", """l o""", """lo w""", """e r</w>""", """"""] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(__A ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(__A ) ) def _snake_case ( self :Union[str, Any] , __A :str ) -> List[Any]: """simple docstring""" return "lower newer", "lower newer" def _snake_case ( self :Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) SCREAMING_SNAKE_CASE__ = """lower""" SCREAMING_SNAKE_CASE__ = ["""low""", """er</w>"""] SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) SCREAMING_SNAKE_CASE__ = tokens + ["""<unk>"""] SCREAMING_SNAKE_CASE__ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , __A ) def _snake_case ( self :Optional[Any] , __A :Optional[Any]=15 ) -> Any: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained(__A , **__A ) # Simple input SCREAMING_SNAKE_CASE__ = """This is a simple input""" SCREAMING_SNAKE_CASE__ = ["""This is a simple input 1""", """This is a simple input 2"""] SCREAMING_SNAKE_CASE__ = ("""This is a simple input""", """This is a pair""") SCREAMING_SNAKE_CASE__ = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(__A , tokenizer_r.encode , __A , max_length=__A , padding="""max_length""" ) # Simple input self.assertRaises(__A , tokenizer_r.encode_plus , __A , max_length=__A , padding="""max_length""" ) # Simple input self.assertRaises( __A , tokenizer_r.batch_encode_plus , __A , max_length=__A , padding="""max_length""" , ) # Pair input self.assertRaises(__A , tokenizer_r.encode , __A , max_length=__A , padding="""max_length""" ) # Pair input self.assertRaises(__A , tokenizer_r.encode_plus , __A , max_length=__A , padding="""max_length""" ) # Pair input self.assertRaises( __A , tokenizer_r.batch_encode_plus , __A , max_length=__A , padding="""max_length""" , ) def _snake_case ( self :Dict ) -> List[Any]: """simple docstring""" pass @require_ftfy @require_spacy @require_tokenizers class UpperCamelCase_ ( UpperCamelCase__ ): pass
59
0
'''simple docstring''' import argparse import os import re _SCREAMING_SNAKE_CASE = "src/transformers/models/auto" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict _SCREAMING_SNAKE_CASE = re.compile(r"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict") # re pattern that matches identifiers in mappings _SCREAMING_SNAKE_CASE = re.compile(r"\s*\(\s*\"(\S[^\"]+)\"") def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : bool = False ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE_ , "r" , encoding="utf-8" ) as f: _lowerCAmelCase = f.read() _lowerCAmelCase = content.split("\n" ) _lowerCAmelCase = [] _lowerCAmelCase = 0 while line_idx < len(SCREAMING_SNAKE_CASE_ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: _lowerCAmelCase = len(re.search(R"^(\s*)\S" , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(" " * indent + "(" ): new_lines.append(lines[line_idx] ) line_idx += 1 _lowerCAmelCase = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": _lowerCAmelCase = line_idx while not lines[line_idx].startswith(" " * indent + ")" ): line_idx += 1 blocks.append("\n".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers _lowerCAmelCase = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : _re_identifier.search(SCREAMING_SNAKE_CASE_ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8" ) as f: f.write("\n".join(SCREAMING_SNAKE_CASE_ ) ) elif "\n".join(SCREAMING_SNAKE_CASE_ ) != content: return True def __a(SCREAMING_SNAKE_CASE_ : bool = False ): '''simple docstring''' _lowerCAmelCase = [os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for f in os.listdir(SCREAMING_SNAKE_CASE_ ) if f.endswith(".py" )] _lowerCAmelCase = [sort_auto_mapping(SCREAMING_SNAKE_CASE_ , overwrite=SCREAMING_SNAKE_CASE_ ) for fname in fnames] if not overwrite and any(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = [f for f, d in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if d] raise ValueError( F'''The following files have auto mappings that need sorting: {', '.join(SCREAMING_SNAKE_CASE_ )}. Run `make style` to fix''' " this." ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") _SCREAMING_SNAKE_CASE = parser.parse_args() sort_all_auto_mappings(not args.check_only)
18
'''simple docstring''' def __lowercase (_SCREAMING_SNAKE_CASE :int , _SCREAMING_SNAKE_CASE :int ): return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
507
0
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint __a : str = { """169M""": 1_2, """430M""": 2_4, """1B5""": 2_4, """3B""": 3_2, """7B""": 3_2, """14B""": 4_0, } __a : int = { """169M""": 7_6_8, """430M""": 1_0_2_4, """1B5""": 2_0_4_8, """3B""": 2_5_6_0, """7B""": 4_0_9_6, """14B""": 5_1_2_0, } def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase = list(state_dict.keys() ) for name in state_dict_keys: __lowercase = state_dict.pop(lowercase ) # emb -> embedding if name.startswith('''emb.''' ): __lowercase = name.replace('''emb.''' , '''embeddings.''' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('''blocks.0.ln0''' ): __lowercase = name.replace('''blocks.0.ln0''' , '''blocks.0.pre_ln''' ) # att -> attention __lowercase = re.sub(r'''blocks\.(\d+)\.att''' , r'''blocks.\1.attention''' , lowercase ) # ffn -> feed_forward __lowercase = re.sub(r'''blocks\.(\d+)\.ffn''' , r'''blocks.\1.feed_forward''' , lowercase ) # time_mix_k -> time_mix_key and reshape if name.endswith('''.time_mix_k''' ): __lowercase = name.replace('''.time_mix_k''' , '''.time_mix_key''' ) # time_mix_v -> time_mix_value and reshape if name.endswith('''.time_mix_v''' ): __lowercase = name.replace('''.time_mix_v''' , '''.time_mix_value''' ) # time_mix_r -> time_mix_key and reshape if name.endswith('''.time_mix_r''' ): __lowercase = name.replace('''.time_mix_r''' , '''.time_mix_receptance''' ) if name != "head.weight": __lowercase = '''rwkv.''' + name __lowercase = weight return state_dict def UpperCAmelCase ( lowercase , lowercase , lowercase , lowercase=None , lowercase=None , lowercase=False , lowercase=None ): """simple docstring""" if tokenizer_file is None: print('''No `--tokenizer_file` provided, we will use the default tokenizer.''' ) __lowercase = 50277 __lowercase = AutoTokenizer.from_pretrained('''EleutherAI/gpt-neox-20b''' ) else: __lowercase = PreTrainedTokenizerFast(tokenizer_file=lowercase ) __lowercase = len(lowercase ) tokenizer.save_pretrained(lowercase ) # 2. Build the config __lowercase = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: __lowercase = candidate break if size is None: raise ValueError('''Could not infer the size, please provide it with the `--size` argument.''' ) if size not in possible_sizes: raise ValueError(F"`size` should be one of {possible_sizes}, got {size}." ) __lowercase = RwkvConfig( vocab_size=lowercase , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(lowercase ) # 3. Download model file then convert state_dict __lowercase = hf_hub_download(lowercase , lowercase ) __lowercase = torch.load(lowercase , map_location='''cpu''' ) __lowercase = convert_state_dict(lowercase ) # 4. Split in shards and save __lowercase , __lowercase = shard_checkpoint(lowercase ) for shard_file, shard in shards.items(): torch.save(lowercase , os.path.join(lowercase , lowercase ) ) if index is not None: __lowercase = os.path.join(lowercase , lowercase ) # Save the index as well with open(lowercase , '''w''' , encoding='''utf-8''' ) as f: __lowercase = json.dumps(lowercase , indent=2 , sort_keys=lowercase ) + '''\n''' f.write(lowercase ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( '''Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.''' ) __lowercase = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: __lowercase = torch.load(os.path.join(lowercase , lowercase ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(lowercase , lowercase ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('''Please provide a `model_name` to push the model to the Hub.''' ) __lowercase = AutoModelForCausalLM.from_pretrained(lowercase ) model.push_to_hub(lowercase , max_shard_size='''2GB''' ) tokenizer.push_to_hub(lowercase ) if __name__ == "__main__": __a : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint.""" ) parser.add_argument( """--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo.""" ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model.""" ) parser.add_argument( """--tokenizer_file""", default=None, type=str, help="""Path to the tokenizer file to use (if not provided, only the model is converted).""", ) parser.add_argument( """--size""", default=None, type=str, help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Push to the Hub the converted model.""", ) parser.add_argument( """--model_name""", default=None, type=str, help="""Name of the pushed model on the Hub, including the username / organization.""", ) __a : Any = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
522
def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" __lowercase = '''''' for i in table: res += inp[i - 1] return res def UpperCAmelCase ( lowercase ): """simple docstring""" return data[1:] + data[0] def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" __lowercase = '''''' for i in range(len(lowercase ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" __lowercase = int('''0b''' + data[0] + data[-1] , 2 ) __lowercase = int('''0b''' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def UpperCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ): """simple docstring""" __lowercase = message[:4] __lowercase = message[4:] __lowercase = apply_table(lowercase , lowercase ) __lowercase = xor(lowercase , lowercase ) __lowercase = apply_sbox(lowercase , temp[:4] ) # noqa: E741 __lowercase = apply_sbox(lowercase , temp[4:] ) __lowercase = '''0''' * (2 - len(lowercase )) + l # noqa: E741 __lowercase = '''0''' * (2 - len(lowercase )) + r __lowercase = apply_table(l + r , lowercase ) __lowercase = xor(lowercase , lowercase ) return temp + right if __name__ == "__main__": __a : str = input("""Enter 10 bit key: """) __a : Optional[Any] = input("""Enter 8 bit message: """) __a : Any = [6, 3, 7, 4, 8, 5, 1_0, 9] __a : Tuple = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] __a : Optional[int] = [2, 4, 3, 1] __a : Dict = [2, 6, 3, 1, 4, 8, 5, 7] __a : Any = [4, 1, 3, 5, 7, 2, 8, 6] __a : int = [4, 1, 2, 3, 2, 3, 4, 1] __a : Union[str, Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __a : Tuple = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __a : Dict = apply_table(key, paa_table) __a : Any = temp[:5] __a : Optional[int] = temp[5:] __a : List[Any] = left_shift(left) __a : Any = left_shift(right) __a : List[Any] = apply_table(left + right, pa_table) __a : Any = left_shift(left) __a : Dict = left_shift(right) __a : Tuple = left_shift(left) __a : List[Any] = left_shift(right) __a : Any = apply_table(left + right, pa_table) # encryption __a : Dict = apply_table(message, IP) __a : Optional[Any] = function(expansion, sa, sa, keya, temp) __a : int = temp[4:] + temp[:4] __a : Optional[int] = function(expansion, sa, sa, keya, temp) __a : List[Any] = apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption __a : Optional[Any] = apply_table(CT, IP) __a : List[str] = function(expansion, sa, sa, keya, temp) __a : Tuple = temp[4:] + temp[:4] __a : List[Any] = function(expansion, sa, sa, keya, temp) __a : Any = apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
522
1
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] _snake_case = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : Union[str, Any] = torch.load(snake_case__, map_location="cpu" ) return sd def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=rename_keys_prefix ) -> List[Any]: __UpperCAmelCase : Optional[int] = OrderedDict() __UpperCAmelCase : List[str] = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __UpperCAmelCase : Optional[int] = key for name_pair in rename_keys_prefix: __UpperCAmelCase : List[Any] = new_key.replace(name_pair[0], name_pair[1] ) __UpperCAmelCase : Optional[Any] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __UpperCAmelCase : Optional[Any] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def _UpperCamelCase ( snake_case__, snake_case__ ) -> Optional[Any]: assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), f'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: __UpperCAmelCase : int = "pretraining" if "vcr" in checkpoint_path: __UpperCAmelCase : Optional[Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: __UpperCAmelCase : int = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: __UpperCAmelCase : Tuple = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: __UpperCAmelCase : Optional[Any] = {"visual_embedding_dim": 1024} else: raise NotImplementedError(f'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: __UpperCAmelCase : Optional[int] = {"visual_embedding_dim": 512} __UpperCAmelCase : List[str] = "multichoice" elif "vqa_advanced" in checkpoint_path: __UpperCAmelCase : Optional[int] = {"visual_embedding_dim": 2048} __UpperCAmelCase : str = "vqa_advanced" elif "vqa" in checkpoint_path: __UpperCAmelCase : str = {"visual_embedding_dim": 2048, "num_labels": 3129} __UpperCAmelCase : Union[str, Any] = "vqa" elif "nlvr" in checkpoint_path: __UpperCAmelCase : str = { "visual_embedding_dim": 1024, "num_labels": 2, } __UpperCAmelCase : Optional[int] = "nlvr" __UpperCAmelCase : Optional[int] = VisualBertConfig(**snake_case__ ) # Load State Dict __UpperCAmelCase : str = load_state_dict(snake_case__ ) __UpperCAmelCase : int = get_new_dict(snake_case__, snake_case__ ) if model_type == "pretraining": __UpperCAmelCase : Union[str, Any] = VisualBertForPreTraining(snake_case__ ) elif model_type == "vqa": __UpperCAmelCase : Union[str, Any] = VisualBertForQuestionAnswering(snake_case__ ) elif model_type == "nlvr": __UpperCAmelCase : str = VisualBertForVisualReasoning(snake_case__ ) elif model_type == "multichoice": __UpperCAmelCase : int = VisualBertForMultipleChoice(snake_case__ ) model.load_state_dict(snake_case__ ) # Save Checkpoints Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') _snake_case = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
382
def _UpperCamelCase ( snake_case__, snake_case__ ) -> str: if not isinstance(snake_case__, snake_case__ ): raise ValueError("iterations must be defined as integers" ) if not isinstance(snake_case__, snake_case__ ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) __UpperCAmelCase : Any = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(snake_case__ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
382
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { "facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json", } class UpperCAmelCase__ ( lowercase__ ): A : Optional[int] = '''data2vec-text''' def __init__(self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1e-12 , _a=1 , _a=0 , _a=2 , _a="absolute" , _a=True , _a=None , **_a , ) -> str: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) lowercase_ : Optional[Any] = vocab_size lowercase_ : List[str] = hidden_size lowercase_ : Tuple = num_hidden_layers lowercase_ : Union[str, Any] = num_attention_heads lowercase_ : Tuple = hidden_act lowercase_ : Union[str, Any] = intermediate_size lowercase_ : Union[str, Any] = hidden_dropout_prob lowercase_ : Tuple = attention_probs_dropout_prob lowercase_ : str = max_position_embeddings lowercase_ : Optional[Any] = type_vocab_size lowercase_ : Optional[Any] = initializer_range lowercase_ : str = layer_norm_eps lowercase_ : Union[str, Any] = position_embedding_type lowercase_ : List[Any] = use_cache lowercase_ : int = classifier_dropout class UpperCAmelCase__ ( lowercase__ ): @property def _lowerCamelCase (self ) -> int: if self.task == "multiple-choice": lowercase_ : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: lowercase_ : Optional[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
705
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _lowerCamelCase (self ) -> List[Any]: lowercase_ : Any = tempfile.mkdtemp() lowercase_ : int = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] lowercase_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) lowercase_ : Union[str, Any] = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } lowercase_ : List[str] = os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(_a , _a ) def _lowerCamelCase (self , **_a ) -> Tuple: return BertTokenizer.from_pretrained(self.tmpdirname , **_a ) def _lowerCamelCase (self , **_a ) -> Tuple: return BertTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def _lowerCamelCase (self , **_a ) -> int: return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_a ) def _lowerCamelCase (self ) -> Dict: shutil.rmtree(self.tmpdirname ) def _lowerCamelCase (self ) -> str: lowercase_ : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase_ : Optional[Any] = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowerCamelCase (self ) -> Optional[Any]: lowercase_ : str = self.get_tokenizer() lowercase_ : Tuple = self.get_rust_tokenizer() lowercase_ : int = self.get_image_processor() lowercase_ : int = AlignProcessor(tokenizer=_a , image_processor=_a ) processor_slow.save_pretrained(self.tmpdirname ) lowercase_ : List[str] = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_a ) lowercase_ : Optional[Any] = AlignProcessor(tokenizer=_a , image_processor=_a ) processor_fast.save_pretrained(self.tmpdirname ) lowercase_ : Any = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _a ) self.assertIsInstance(processor_fast.tokenizer , _a ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _a ) self.assertIsInstance(processor_fast.image_processor , _a ) def _lowerCamelCase (self ) -> Tuple: lowercase_ : str = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase_ : Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowercase_ : str = self.get_image_processor(do_normalize=_a , padding_value=1.0 ) lowercase_ : Optional[Any] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def _lowerCamelCase (self ) -> List[str]: lowercase_ : Union[str, Any] = self.get_image_processor() lowercase_ : Union[str, Any] = self.get_tokenizer() lowercase_ : Optional[int] = AlignProcessor(tokenizer=_a , image_processor=_a ) lowercase_ : Union[str, Any] = self.prepare_image_inputs() lowercase_ : Union[str, Any] = image_processor(_a , return_tensors='np' ) lowercase_ : Union[str, Any] = processor(images=_a , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowerCamelCase (self ) -> Dict: lowercase_ : List[Any] = self.get_image_processor() lowercase_ : int = self.get_tokenizer() lowercase_ : Any = AlignProcessor(tokenizer=_a , image_processor=_a ) lowercase_ : Tuple = 'lower newer' lowercase_ : Optional[Any] = processor(text=_a ) lowercase_ : List[Any] = tokenizer(_a , padding='max_length' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowerCamelCase (self ) -> List[Any]: lowercase_ : Any = self.get_image_processor() lowercase_ : List[Any] = self.get_tokenizer() lowercase_ : List[str] = AlignProcessor(tokenizer=_a , image_processor=_a ) lowercase_ : Optional[Any] = 'lower newer' lowercase_ : List[Any] = self.prepare_image_inputs() lowercase_ : List[str] = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def _lowerCamelCase (self ) -> Tuple: lowercase_ : Dict = self.get_image_processor() lowercase_ : Optional[Any] = self.get_tokenizer() lowercase_ : Optional[Any] = AlignProcessor(tokenizer=_a , image_processor=_a ) lowercase_ : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase_ : str = processor.batch_decode(_a ) lowercase_ : Dict = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def _lowerCamelCase (self ) -> List[str]: lowercase_ : str = self.get_image_processor() lowercase_ : str = self.get_tokenizer() lowercase_ : str = AlignProcessor(tokenizer=_a , image_processor=_a ) lowercase_ : Optional[int] = 'lower newer' lowercase_ : Union[str, Any] = self.prepare_image_inputs() lowercase_ : Union[str, Any] = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
438
0
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self : int , __snake_case : UNetaDModel , __snake_case : UNetaDModel , __snake_case : DDPMScheduler , __snake_case : str , ) -> Tuple: super().__init__() __magic_name__: Dict = value_function __magic_name__: Optional[Any] = unet __magic_name__: Dict = scheduler __magic_name__: Optional[int] = env __magic_name__: List[Any] = env.get_dataset() __magic_name__: str = {} for key in self.data.keys(): try: __magic_name__: Any = self.data[key].mean() except: # noqa: E722 pass __magic_name__: Optional[int] = {} for key in self.data.keys(): try: __magic_name__: Dict = self.data[key].std() except: # noqa: E722 pass __magic_name__: List[str] = env.observation_space.shape[0] __magic_name__: Any = env.action_space.shape[0] def lowerCamelCase__ ( self : Any , __snake_case : Dict , __snake_case : int ) -> Optional[int]: return (x_in - self.means[key]) / self.stds[key] def lowerCamelCase__ ( self : List[Any] , __snake_case : Optional[Any] , __snake_case : List[Any] ) -> Optional[int]: return x_in * self.stds[key] + self.means[key] def lowerCamelCase__ ( self : List[Any] , __snake_case : List[Any] ) -> Tuple: if type(__snake_case ) is dict: return {k: self.to_torch(__snake_case ) for k, v in x_in.items()} elif torch.is_tensor(__snake_case ): return x_in.to(self.unet.device ) return torch.tensor(__snake_case , device=self.unet.device ) def lowerCamelCase__ ( self : str , __snake_case : str , __snake_case : Dict , __snake_case : Tuple ) -> Optional[Any]: for key, val in cond.items(): __magic_name__: int = val.clone() return x_in def lowerCamelCase__ ( self : Any , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Any , __snake_case : List[Any] ) -> List[Any]: __magic_name__: str = x.shape[0] __magic_name__: Optional[Any] = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model __magic_name__: Dict = torch.full((batch_size,) , __snake_case , device=self.unet.device , dtype=torch.long ) for _ in range(__snake_case ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models __magic_name__: int = self.value_function(x.permute(0 , 2 , 1 ) , __snake_case ).sample __magic_name__: str = torch.autograd.grad([y.sum()] , [x] )[0] __magic_name__: Optional[int] = self.scheduler._get_variance(__snake_case ) __magic_name__: Optional[Any] = torch.exp(0.5 * posterior_variance ) __magic_name__: List[Any] = model_std * grad __magic_name__: List[str] = 0 __magic_name__: Any = x.detach() __magic_name__: Dict = x + scale * grad __magic_name__: Optional[Any] = self.reset_xa(__snake_case , __snake_case , self.action_dim ) __magic_name__: int = self.unet(x.permute(0 , 2 , 1 ) , __snake_case ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg __magic_name__: Dict = self.scheduler.step(__snake_case , __snake_case , __snake_case , predict_epsilon=__snake_case )["""prev_sample"""] # apply conditions to the trajectory (set the initial state) __magic_name__: Dict = self.reset_xa(__snake_case , __snake_case , self.action_dim ) __magic_name__: Union[str, Any] = self.to_torch(__snake_case ) return x, y def __call__( self : Optional[Any] , __snake_case : int , __snake_case : Tuple=6_4 , __snake_case : Union[str, Any]=3_2 , __snake_case : str=2 , __snake_case : Any=0.1 ) -> int: # normalize the observations and create batch dimension __magic_name__: List[str] = self.normalize(__snake_case , """observations""" ) __magic_name__: Optional[int] = obs[None].repeat(__snake_case , axis=0 ) __magic_name__: str = {0: self.to_torch(__snake_case )} __magic_name__: Any = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) __magic_name__: int = randn_tensor(__snake_case , device=self.unet.device ) __magic_name__: Union[str, Any] = self.reset_xa(__snake_case , __snake_case , self.action_dim ) __magic_name__: int = self.to_torch(__snake_case ) # run the diffusion process __magic_name__, __magic_name__: int = self.run_diffusion(__snake_case , __snake_case , __snake_case , __snake_case ) # sort output trajectories by value __magic_name__: List[str] = y.argsort(0 , descending=__snake_case ).squeeze() __magic_name__: List[str] = x[sorted_idx] __magic_name__: Dict = sorted_values[:, :, : self.action_dim] __magic_name__: str = actions.detach().cpu().numpy() __magic_name__: Optional[Any] = self.de_normalize(__snake_case , key="""actions""" ) # select the action with the highest value if y is not None: __magic_name__: Tuple = 0 else: # if we didn't run value guiding, select a random action __magic_name__: List[str] = np.random.randint(0 , __snake_case ) __magic_name__: int = denorm_actions[selected_index, 0] return denorm_actions
96
"""simple docstring""" import requests def a__ ( lowerCAmelCase , lowerCAmelCase ) -> None: UpperCAmelCase__ : List[str] = {"""Content-Type""": """application/json"""} UpperCAmelCase__ : List[str] = requests.post(lowerCAmelCase , json={"""text""": message_body} , headers=lowerCAmelCase ) if response.status_code != 2_00: UpperCAmelCase__ : str = ( """Request to slack returned an error """ F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(lowerCAmelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
182
0
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def UpperCAmelCase__ ( lowercase__="" ) -> Tuple: __lowercase = tempfile.mkdtemp() return os.path.join(_lowerCamelCase , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = torch.rand(12 , dtype=torch.floataa ) - 0.5 __lowercase = AgentAudio(lowercase ) __lowercase = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowercase , agent_type.to_raw() , atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(lowercase ) ) # Ensure that the file contains the same value as the original tensor __lowercase = sf.read(lowercase ) self.assertTrue(torch.allclose(lowercase , torch.tensor(lowercase ) , atol=1E-4 ) ) def snake_case__ ( self : List[str] ) -> str: """simple docstring""" __lowercase = torch.rand(12 , dtype=torch.floataa ) - 0.5 __lowercase = get_new_path(suffix=""".wav""" ) sf.write(lowercase , lowercase , 16_000 ) __lowercase = AgentAudio(lowercase ) self.assertTrue(torch.allclose(lowercase , agent_type.to_raw() , atol=1E-4 ) ) self.assertEqual(agent_type.to_string() , lowercase ) @require_vision @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Any ) -> Tuple: """simple docstring""" __lowercase = torch.randint(0 , 256 , (64, 64, 3) ) __lowercase = AgentImage(lowercase ) __lowercase = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowercase , agent_type._tensor , atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowercase ) ) def snake_case__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / "000000039769.png" __lowercase = Image.open(lowercase ) __lowercase = AgentImage(lowercase ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowercase ) ) def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / "000000039769.png" __lowercase = Image.open(lowercase ) __lowercase = AgentImage(lowercase ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowercase ) ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[str] ) -> int: """simple docstring""" __lowercase = "Hey!" __lowercase = AgentText(lowercase ) self.assertEqual(lowercase , agent_type.to_string() ) self.assertEqual(lowercase , agent_type.to_raw() ) self.assertEqual(lowercase , lowercase )
704
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _lowerCAmelCase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowercase__ : int = IFImgaImgSuperResolutionPipeline lowercase__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""width""", """height"""} lowercase__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""original_image"""} ) lowercase__ : Tuple = PipelineTesterMixin.required_optional_params - {"""latents"""} def snake_case__ ( self : Tuple ) -> Any: """simple docstring""" return self._get_superresolution_dummy_components() def snake_case__ ( self : List[str] , lowercase : Optional[int] , lowercase : Optional[Any]=0 ) -> Union[str, Any]: """simple docstring""" if str(lowercase ).startswith("""mps""" ): __lowercase = torch.manual_seed(lowercase ) else: __lowercase = torch.Generator(device=lowercase ).manual_seed(lowercase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase ) ).to(lowercase ) __lowercase = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase ) ).to(lowercase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def snake_case__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def snake_case__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def snake_case__ ( self : List[Any] ) -> Dict: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def snake_case__ ( self : Dict ) -> int: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def snake_case__ ( self : Optional[Any] ) -> int: """simple docstring""" self._test_save_load_local() def snake_case__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
634
0
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
79
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase : List[Any] = { """configuration_chinese_clip""": [ """CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ChineseCLIPConfig""", """ChineseCLIPOnnxConfig""", """ChineseCLIPTextConfig""", """ChineseCLIPVisionConfig""", ], """processing_chinese_clip""": ["""ChineseCLIPProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = ["""ChineseCLIPFeatureExtractor"""] __lowerCamelCase : List[str] = ["""ChineseCLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = [ """CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ChineseCLIPModel""", """ChineseCLIPPreTrainedModel""", """ChineseCLIPTextModel""", """ChineseCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
629
0
"""simple docstring""" from math import pi def lowerCamelCase__ ( __snake_case, __snake_case ) -> Any: """simple docstring""" return 2 * pi * radius * (angle / 3_60) if __name__ == "__main__": print(arc_length(90, 10))
715
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _UpperCAmelCase( unittest.TestCase ): def __init__( self , __a , __a=7 , __a=3 , __a=18 , __a=30 , __a=4_00 , __a=True , __a=None , __a=True , __a=None , __a=True , ) -> int: '''simple docstring''' _UpperCamelCase = size if size is not None else {'''shortest_edge''': 20} _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = num_channels _UpperCamelCase = image_size _UpperCamelCase = min_resolution _UpperCamelCase = max_resolution _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = do_flip_channel_order def UpperCAmelCase ( self) -> str: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class _UpperCAmelCase( lowerCamelCase , unittest.TestCase ): lowercase__ = MobileViTImageProcessor if is_vision_available() else None def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = MobileViTImageProcessingTester(self) @property def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__a , '''do_resize''')) self.assertTrue(hasattr(__a , '''size''')) self.assertTrue(hasattr(__a , '''do_center_crop''')) self.assertTrue(hasattr(__a , '''center_crop''')) self.assertTrue(hasattr(__a , '''do_flip_channel_order''')) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''shortest_edge''': 20}) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18}) _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {'''shortest_edge''': 42}) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84}) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' pass def UpperCAmelCase ( self) -> str: '''simple docstring''' # Initialize image_processing _UpperCamelCase = self.image_processing_class(**self.image_processor_dict) # create random PIL images _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a) for image in image_inputs: self.assertIsInstance(__a , Image.Image) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(__a , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' # Initialize image_processing _UpperCamelCase = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a) for image in image_inputs: self.assertIsInstance(__a , np.ndarray) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(__a , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCAmelCase ( self) -> int: '''simple docstring''' # Initialize image_processing _UpperCamelCase = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(__a , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
78
0
import csv import tweepy # Twitter API credentials __lowerCamelCase : List[Any] = "" __lowerCamelCase : Any = "" __lowerCamelCase : Tuple = "" __lowerCamelCase : Optional[Any] = "" def lowerCamelCase_(lowerCamelCase_ ) -> None: # authorize twitter, initialize tweepy UpperCAmelCase = tweepy.OAuthHandler(lowerCamelCase_ , lowerCamelCase_ ) auth.set_access_token(lowerCamelCase_ , lowerCamelCase_ ) UpperCAmelCase = tweepy.API(lowerCamelCase_ ) # initialize a list to hold all the tweepy Tweets UpperCAmelCase = [] # make initial request for most recent tweets (200 is the maximum allowed count) UpperCAmelCase = api.user_timeline(screen_name=lowerCamelCase_ , count=200 ) # save most recent tweets alltweets.extend(lowerCamelCase_ ) # save the id of the oldest tweet less one UpperCAmelCase = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCamelCase_ ) > 0: print(F'getting tweets before {oldest}' ) # all subsequent requests use the max_id param to prevent duplicates UpperCAmelCase = api.user_timeline( screen_name=lowerCamelCase_ , count=200 , max_id=lowerCamelCase_ ) # save most recent tweets alltweets.extend(lowerCamelCase_ ) # update the id of the oldest tweet less one UpperCAmelCase = alltweets[-1].id - 1 print(F'...{len(lowerCamelCase_ )} tweets downloaded so far' ) # transform the tweepy tweets into a 2D array that will populate the csv UpperCAmelCase = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F'new_{screen_name}_tweets.csv' , "w" ) as f: UpperCAmelCase = csv.writer(lowerCamelCase_ ) writer.writerow(["id", "created_at", "text"] ) writer.writerows(lowerCamelCase_ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("FirePing32")
323
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( A__, unittest.TestCase ): lowercase : Optional[Any] =RobertaTokenizer lowercase : Dict =RobertaTokenizerFast lowercase : Union[str, Any] =True lowercase : Dict ={'''cls_token''': '''<s>'''} def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] UpperCAmelCase = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) UpperCAmelCase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCAmelCase = {"unk_token": "<unk>"} UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCamelCase__ ) ) def SCREAMING_SNAKE_CASE_ ( self : Dict , **UpperCamelCase__ : Dict ) -> str: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , **UpperCamelCase__ : Dict ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCamelCase__ : Any ) -> Tuple: '''simple docstring''' UpperCAmelCase = "lower newer" UpperCAmelCase = "lower newer" return input_text, output_text def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Tuple: '''simple docstring''' UpperCAmelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase = "lower newer" UpperCAmelCase = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] UpperCAmelCase = tokenizer.tokenize(UpperCamelCase__ ) # , add_prefix_space=True) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = tokens + [tokenizer.unk_token] UpperCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any: '''simple docstring''' UpperCAmelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=UpperCamelCase__ ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=UpperCamelCase__ ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase = self.tokenizer_class.from_pretrained("roberta-base" ) UpperCAmelCase = tokenizer.encode("sequence builders" , add_special_tokens=UpperCamelCase__ ) UpperCAmelCase = tokenizer.encode("multi-sequence build" , add_special_tokens=UpperCamelCase__ ) UpperCAmelCase = tokenizer.encode( "sequence builders" , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) UpperCAmelCase = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[Any]: '''simple docstring''' UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = "Encode this sequence." UpperCAmelCase = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments UpperCAmelCase = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) UpperCAmelCase = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) # Testing spaces after special tokens UpperCAmelCase = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ )} ) # mask token has a left space UpperCAmelCase = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) UpperCAmelCase = "Encode <mask> sequence" UpperCAmelCase = "Encode <mask>sequence" UpperCAmelCase = tokenizer.encode(UpperCamelCase__ ) UpperCAmelCase = encoded.index(UpperCamelCase__ ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = tokenizer.encode(UpperCamelCase__ ) UpperCAmelCase = encoded.index(UpperCamelCase__ ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) UpperCAmelCase = self.tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) UpperCAmelCase = "A, <mask> AllenNLP sentence." UpperCAmelCase = tokenizer_r.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) UpperCAmelCase = tokenizer_p.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( UpperCamelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( UpperCamelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Dict: '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , UpperCamelCase__ ) self.assertEqual(post_processor_state["add_prefix_space"] , UpperCamelCase__ ) self.assertEqual(post_processor_state["trim_offsets"] , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[str]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCAmelCase = "hello" # `hello` is a token in the vocabulary of `pretrained_name` UpperCAmelCase = F'{text_of_1_token} {text_of_1_token}' UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) UpperCAmelCase = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ) + 1, len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) UpperCAmelCase = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ) + 1, len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) UpperCAmelCase = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ), len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) UpperCAmelCase = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ), len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) UpperCAmelCase = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) UpperCAmelCase = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__ ) + 1, 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) UpperCAmelCase = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__ ), 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) UpperCAmelCase = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__ ), 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , )
323
1
def A__ ( lowercase: Tuple, lowercase: int ) -> List[Any]: A : int =0 A : str =len(lowercase ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A : List[str] =left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowercase ): return None A : Union[str, Any] =sorted_collection[point] if current_item == item: return point else: if point < left: A : Union[str, Any] =left A : Optional[Any] =point elif point > right: A : List[Any] =right A : int =point else: if item < current_item: A : Dict =point - 1 else: A : Tuple =point + 1 return None def A__ ( lowercase: Optional[Any], lowercase: Optional[int], lowercase: str, lowercase: Optional[int] ) -> int: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A : Tuple =left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowercase ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(lowercase, lowercase, lowercase, lowercase ) elif point > right: return interpolation_search_by_recursion(lowercase, lowercase, lowercase, lowercase ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( lowercase, lowercase, lowercase, point - 1 ) else: return interpolation_search_by_recursion( lowercase, lowercase, point + 1, lowercase ) def A__ ( lowercase: Tuple ) -> Any: if collection != sorted(lowercase ): raise ValueError('Collection must be ascending sorted' ) return True if __name__ == "__main__": import sys _lowercase : List[str] =0 if debug == 1: _lowercase : Optional[int] =[1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit('''Sequence must be ascending sorted to apply interpolation search''') _lowercase : List[Any] =6_7 _lowercase : Any =interpolation_search(collection, target) if result is not None: print(f'''{target} found at positions: {result}''') else: print('''Not found''')
661
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _lowercase : int =2 class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : List[Any] , *, # begin keyword-only arguments SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="<unk>" , SCREAMING_SNAKE_CASE__ : int=None , ) -> List[Any]: A , A , A , A : Optional[Any] =bos, unk, pad, eos A : Dict =[] A : Union[str, Any] =[] A : Any ={} A : int =self.add_symbol(SCREAMING_SNAKE_CASE__ ) A : Any =self.add_symbol(SCREAMING_SNAKE_CASE__ ) A : List[Any] =self.add_symbol(SCREAMING_SNAKE_CASE__ ) A : List[str] =self.add_symbol(SCREAMING_SNAKE_CASE__ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(SCREAMING_SNAKE_CASE__ ) A : List[str] =len(self.symbols ) def __eq__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str: return self.indices == other.indices def __getitem__( self : int , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : List[Any] ) -> Union[str, Any]: return len(self.symbols ) def __contains__( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Tuple: return sym in self.indices @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Any: A : Union[str, Any] =cls() d.add_from_file(SCREAMING_SNAKE_CASE__ ) return d def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any=1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> Any: if word in self.indices and not overwrite: A : int =self.indices[word] A : Union[str, Any] =self.count[idx] + n return idx else: A : Tuple =len(self.symbols ) A : str =idx self.symbols.append(SCREAMING_SNAKE_CASE__ ) self.count.append(SCREAMING_SNAKE_CASE__ ) return idx def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: return 0 def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): try: with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as fd: self.add_from_file(SCREAMING_SNAKE_CASE__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(SCREAMING_SNAKE_CASE__ ) ) return A : str =f.readlines() A : int =self._load_meta(SCREAMING_SNAKE_CASE__ ) for line in lines[indices_start_line:]: try: A , A : Optional[int] =line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": A : int =True A , A : Optional[Any] =line.rsplit(' ' , 1 ) else: A : Any =False A : Tuple =int(SCREAMING_SNAKE_CASE__ ) A : Optional[int] =line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(SCREAMING_SNAKE_CASE__ ) ) self.add_symbol(SCREAMING_SNAKE_CASE__ , n=SCREAMING_SNAKE_CASE__ , overwrite=SCREAMING_SNAKE_CASE__ ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def A__ ( lowercase: Union[str, Any] ) -> str: # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} A : int =dict((re.sub(r'@@$', '', lowercase ), v) if k.endswith('@@' ) else (re.sub(r'$', '</w>', lowercase ), v) for k, v in d.items() ) A : int ='<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] A : List[Any] =d[k] # restore return da def A__ ( lowercase: Optional[int], lowercase: Optional[Any] ) -> str: # prep if not os.path.exists(lowercase ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(lowercase, exist_ok=lowercase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models A : List[str] =os.path.join(lowercase, 'checkpoint.pt' ) if not os.path.isfile(lowercase ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) A : Optional[Any] =torch.load(lowercase, map_location='cpu' ) A : Any =chkpt['cfg']['model'] # dicts A : Any =os.path.join(lowercase, 'dict.txt' ) if not os.path.isfile(lowercase ): raise ValueError(F'path to the file {dict_file} does not exist!' ) A : Dict =Dictionary.load(lowercase ) A : Optional[Any] =rewrite_dict_keys(src_dict.indices ) A : Tuple =len(lowercase ) A : Any =os.path.join(lowercase, VOCAB_FILES_NAMES['vocab_file'] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(lowercase, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) ) # merges_file (bpecodes) A : List[str] =os.path.join(lowercase, 'bpecodes' ) if not os.path.isfile(lowercase ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) A : List[str] =os.path.join(lowercase, VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(lowercase, lowercase ) # model config A : Tuple =os.path.join(lowercase, 'config.json' ) A : Tuple ={ 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1e-1_2, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(lowercase, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) ) # tokenizer config A : int =os.path.join(lowercase, lowercase ) A : List[str] ={ 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1_024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(lowercase, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) ) # model A : List[Any] =chkpt['model'] # remove unneeded keys A : List[Any] =[ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(lowercase, lowercase ) A : str =list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): A : Union[str, Any] =model_state_dict.pop(lowercase ) else: A : List[str] =model_state_dict.pop(lowercase ) A : Any =BioGptConfig.from_pretrained(lowercase ) A : str =BioGptForCausalLM(lowercase ) # check that it loads ok model_new.load_state_dict(lowercase ) # save A : Tuple =os.path.join(lowercase, lowercase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowercase, lowercase ) print('Conversion is done!' ) if __name__ == "__main__": _lowercase : Union[str, Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowercase : List[Any] =parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
661
1
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> list: snake_case = [] snake_case , snake_case = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) snake_case = result + left + right return input_list def __lowerCamelCase ( __lowerCAmelCase : list ) -> list: if len(__lowerCAmelCase ) <= 1: return input_list snake_case = list(__lowerCAmelCase ) # iteration for two-way merging snake_case = 2 while p <= len(__lowerCAmelCase ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase ): snake_case = i snake_case = i + p - 1 snake_case = (low + high + 1) // 2 snake_case = merge(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # final merge of last two parts if p * 2 >= len(__lowerCAmelCase ): snake_case = i snake_case = merge(__lowerCAmelCase , 0 , __lowerCAmelCase , len(__lowerCAmelCase ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _SCREAMING_SNAKE_CASE = input("Enter numbers separated by a comma:\n").strip() if user_input == "": _SCREAMING_SNAKE_CASE = [] else: _SCREAMING_SNAKE_CASE = [int(item.strip()) for item in user_input.split(",")] print(iter_merge_sort(unsorted))
369
'''simple docstring''' from __future__ import annotations import os from collections.abc import Mapping _SCREAMING_SNAKE_CASE = tuple[int, int] class _lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] , __snake_case : set[int] , __snake_case : Mapping[EdgeT, int] )-> None: snake_case = vertices snake_case = { (min(__snake_case ), max(__snake_case )): weight for edge, weight in edges.items() } def lowerCAmelCase ( self : Optional[Any] , __snake_case : EdgeT , __snake_case : int )-> None: self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) snake_case = weight def lowerCAmelCase ( self : str )-> Graph: snake_case = Graph({min(self.vertices )} , {} ) snake_case = 42 snake_case = 42 snake_case = 42 snake_case = 42 while len(subgraph.vertices ) < len(self.vertices ): snake_case = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: snake_case = edge snake_case = weight subgraph.add_edge(__snake_case , __snake_case ) return subgraph def __lowerCamelCase ( __lowerCAmelCase : str = "p107_network.txt" ) -> int: snake_case = os.path.abspath(os.path.dirname(__lowerCAmelCase ) ) snake_case = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) snake_case = {} snake_case = 42 snake_case = 42 snake_case = 42 with open(__lowerCAmelCase ) as f: snake_case = f.read().strip().split("""\n""" ) snake_case = [line.split(""",""" ) for line in data] for edgea in range(1 , len(__lowerCAmelCase ) ): for edgea in range(__lowerCAmelCase ): if adjaceny_matrix[edgea][edgea] != "-": snake_case = int(adjaceny_matrix[edgea][edgea] ) snake_case = Graph(set(range(len(__lowerCAmelCase ) ) ) , __lowerCAmelCase ) snake_case = graph.prims_algorithm() snake_case = sum(graph.edges.values() ) snake_case = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"""{solution() = }""")
369
1
'''simple docstring''' def UpperCamelCase__ ( __magic_name__ : int = 3 , __magic_name__ : int = 7 , __magic_name__ : int = 1_00_00_00 ) -> int: '''simple docstring''' snake_case__ : Union[str, Any] = 0 snake_case__ : str = 1 for current_denominator in range(1 , limit + 1 ): snake_case__ : List[str] = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: snake_case__ : Union[str, Any] = current_numerator snake_case__ : int = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1000000))
419
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A_ : List[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) A_ : str = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', F'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', F'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qpos_proj.weight', F'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kpos_proj.weight', F'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.weight', F'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', F'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', F'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kpos_proj.weight', F'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.weight', F'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', F'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', F'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', F'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_qpos_proj.bias', F'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_kpos_proj.bias', F'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.bias', F'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', F'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', F'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_kpos_proj.bias', F'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.bias', F'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', F'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"), ("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"), ("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"), ("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"), ("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"), ("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"), ("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"), ("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"), ("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"), ("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"), ] ) def UpperCamelCase__ ( __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Tuple ) -> Dict: '''simple docstring''' snake_case__ : Any = state_dict.pop(__magic_name__ ) snake_case__ : Optional[Any] = val def UpperCamelCase__ ( __magic_name__ : Any ) -> Union[str, Any]: '''simple docstring''' snake_case__ : str = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: snake_case__ : Any = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) snake_case__ : Tuple = value else: snake_case__ : Union[str, Any] = value return new_state_dict def UpperCamelCase__ ( __magic_name__ : Optional[int] , __magic_name__ : Tuple=False ) -> int: '''simple docstring''' snake_case__ : List[Any] = """""" if is_panoptic: snake_case__ : int = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case__ : List[Any] = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) snake_case__ : Optional[int] = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : List[Any] = in_proj_weight[:2_56, :] snake_case__ : int = in_proj_bias[:2_56] snake_case__ : int = in_proj_weight[2_56:5_12, :] snake_case__ : Tuple = in_proj_bias[2_56:5_12] snake_case__ : int = in_proj_weight[-2_56:, :] snake_case__ : Any = in_proj_bias[-2_56:] def UpperCamelCase__ ( ) -> int: '''simple docstring''' snake_case__ : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case__ : Optional[Any] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def UpperCamelCase__ ( __magic_name__ : Dict , __magic_name__ : List[Any] ) -> Any: '''simple docstring''' snake_case__ : Union[str, Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: snake_case__ : str = """resnet101""" if "dc5" in model_name: snake_case__ : Optional[int] = True snake_case__ : str = """panoptic""" in model_name if is_panoptic: snake_case__ : List[Any] = 2_50 else: snake_case__ : Optional[Any] = 91 snake_case__ : Optional[Any] = """huggingface/label-files""" snake_case__ : Optional[int] = """coco-detection-id2label.json""" snake_case__ : int = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="""dataset""" ) , """r""" ) ) snake_case__ : Any = {int(__magic_name__ ): v for k, v in idalabel.items()} snake_case__ : Optional[Any] = idalabel snake_case__ : int = {v: k for k, v in idalabel.items()} # load image processor snake_case__ : Optional[Any] = """coco_panoptic""" if is_panoptic else """coco_detection""" snake_case__ : Union[str, Any] = ConditionalDetrImageProcessor(format=__magic_name__ ) # prepare image snake_case__ : str = prepare_img() snake_case__ : Tuple = image_processor(images=__magic_name__ , return_tensors="""pt""" ) snake_case__ : Any = encoding["""pixel_values"""] logger.info(f"Converting model {model_name}..." ) # load original model from torch hub snake_case__ : Optional[Any] = torch.hub.load("""DeppMeng/ConditionalDETR""" , __magic_name__ , pretrained=__magic_name__ ).eval() snake_case__ : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: snake_case__ : Dict = """conditional_detr.""" + src rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) snake_case__ : Union[str, Any] = rename_backbone_keys(__magic_name__ ) # query, key and value matrices need special treatment read_in_q_k_v(__magic_name__ , is_panoptic=__magic_name__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case__ : List[Any] = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): snake_case__ : Dict = state_dict.pop(__magic_name__ ) snake_case__ : str = val elif "class_labels_classifier" in key or "bbox_predictor" in key: snake_case__ : Optional[int] = state_dict.pop(__magic_name__ ) snake_case__ : Optional[int] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: snake_case__ : str = state_dict.pop(__magic_name__ ) snake_case__ : Dict = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): snake_case__ : int = state_dict.pop(__magic_name__ ) snake_case__ : str = val # finally, create HuggingFace model and load state dict snake_case__ : Tuple = ConditionalDetrForSegmentation(__magic_name__ ) if is_panoptic else ConditionalDetrForObjectDetection(__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() model.push_to_hub(repo_id=__magic_name__ , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion snake_case__ : Union[str, Any] = conditional_detr(__magic_name__ ) snake_case__ : Dict = model(__magic_name__ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) # Save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) model.save_pretrained(__magic_name__ ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": A_ : List[Any] = argparse.ArgumentParser() parser.add_argument( "--model_name", default="conditional_detr_resnet50", type=str, help="Name of the CONDITIONAL_DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) A_ : List[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
419
1
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge _lowerCamelCase =[ """Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the""" """ final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe""" """ depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.""", """The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal""" """ accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's""" """ founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the""" """ body.""", """Amnesty International releases its annual report on the death penalty. The report catalogs the use of""" """ state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the""" """ world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital""" """ punishment.""", ] _lowerCamelCase =[ """Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""" """ Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz""" """ had informed his Lufthansa training school of an episode of severe depression, airline says .""", """Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .""" """ Israel and the United States opposed the move, which could open the door to war crimes investigations against""" """ Israelis .""", """Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to""" """ death . Organization claims that governments around the world are using the threat of terrorism to advance""" """ executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death""" """ sentences up by 28% .""", ] def _a ( ): lowerCamelCase : Any = calculate_rouge(lowerCamelCase, lowerCamelCase, bootstrap_aggregation=lowerCamelCase, rouge_keys=["""rouge2""", """rougeL"""] ) assert isinstance(lowerCamelCase, lowerCamelCase ) lowerCamelCase : str = calculate_rouge(lowerCamelCase, lowerCamelCase, bootstrap_aggregation=lowerCamelCase, rouge_keys=["""rouge2"""] ) assert ( pd.DataFrame(no_aggregation["""rouge2"""] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["""rouge2"""] ).fmeasure.mean() ) def _a ( ): lowerCamelCase : str = """rougeLsum""" lowerCamelCase : Optional[Any] = calculate_rouge(lowerCamelCase, lowerCamelCase, newline_sep=lowerCamelCase, rouge_keys=[k] )[k] lowerCamelCase : Any = calculate_rouge(lowerCamelCase, lowerCamelCase, newline_sep=lowerCamelCase, rouge_keys=[k] )[k] assert score > score_no_sep def _a ( ): lowerCamelCase : List[Any] = ["""rouge1""", """rouge2""", """rougeL"""] lowerCamelCase : Optional[Any] = calculate_rouge(lowerCamelCase, lowerCamelCase, newline_sep=lowerCamelCase, rouge_keys=lowerCamelCase ) lowerCamelCase : str = calculate_rouge(lowerCamelCase, lowerCamelCase, newline_sep=lowerCamelCase, rouge_keys=lowerCamelCase ) assert score_sep == score_no_sep def _a ( ): lowerCamelCase : List[Any] = [ """Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.""", """Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""", ] lowerCamelCase : Dict = [ """Margot Frank, died in 1945, a month earlier than previously thought.""", """Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of""" """ the final seconds on board Flight 9525.""", ] assert calculate_rouge(lowerCamelCase, lowerCamelCase, newline_sep=lowerCamelCase ) == calculate_rouge(lowerCamelCase, lowerCamelCase, newline_sep=lowerCamelCase ) def _a ( ): lowerCamelCase : List[str] = [ """\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" """ ] lowerCamelCase : Optional[Any] = [ """ Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .""" ] lowerCamelCase : str = calculate_rouge(lowerCamelCase, lowerCamelCase, rouge_keys=["""rougeLsum"""], newline_sep=lowerCamelCase )["""rougeLsum"""] lowerCamelCase : Union[str, Any] = calculate_rouge(lowerCamelCase, lowerCamelCase, rouge_keys=["""rougeLsum"""] )["""rougeLsum"""] assert new_score > prev_score def _a ( ): lowerCamelCase : List[str] = Path("""examples/seq2seq/test_data/wmt_en_ro""" ) lowerCamelCase : Optional[int] = calculate_rouge_path(data_dir.joinpath("""test.source""" ), data_dir.joinpath("""test.target""" ) ) assert isinstance(lowerCamelCase, lowerCamelCase ) lowerCamelCase : List[Any] = calculate_rouge_path( data_dir.joinpath("""test.source""" ), data_dir.joinpath("""test.target""" ), bootstrap_aggregation=lowerCamelCase ) assert isinstance(lowerCamelCase, lowerCamelCase )
681
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Optional[int] = """decision_transformer""" _UpperCAmelCase : str = ["""past_key_values"""] _UpperCAmelCase : Any = { """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __magic_name__=1_7 , __magic_name__=4 , __magic_name__=1_2_8 , __magic_name__=4_0_9_6 , __magic_name__=True , __magic_name__=1 , __magic_name__=1_0_2_4 , __magic_name__=3 , __magic_name__=1 , __magic_name__=None , __magic_name__="relu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=1e-5 , __magic_name__=0.02 , __magic_name__=True , __magic_name__=True , __magic_name__=5_0_2_5_6 , __magic_name__=5_0_2_5_6 , __magic_name__=False , __magic_name__=False , **__magic_name__ , ): lowerCamelCase : Optional[int] = state_dim lowerCamelCase : int = act_dim lowerCamelCase : int = hidden_size lowerCamelCase : Union[str, Any] = max_ep_len lowerCamelCase : Optional[int] = action_tanh lowerCamelCase : Any = vocab_size lowerCamelCase : List[str] = n_positions lowerCamelCase : List[Any] = n_layer lowerCamelCase : Dict = n_head lowerCamelCase : Optional[Any] = n_inner lowerCamelCase : Tuple = activation_function lowerCamelCase : Tuple = resid_pdrop lowerCamelCase : str = embd_pdrop lowerCamelCase : Dict = attn_pdrop lowerCamelCase : Tuple = layer_norm_epsilon lowerCamelCase : Tuple = initializer_range lowerCamelCase : Tuple = scale_attn_weights lowerCamelCase : str = use_cache lowerCamelCase : List[Any] = scale_attn_by_inverse_layer_idx lowerCamelCase : List[str] = reorder_and_upcast_attn lowerCamelCase : Optional[Any] = bos_token_id lowerCamelCase : str = eos_token_id super().__init__(bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
681
1
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _a ( SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" if is_torch_version('''<''' , '''2.0.0''' ) or not hasattr(SCREAMING_SNAKE_CASE , '''_dynamo''' ): return False return isinstance(SCREAMING_SNAKE_CASE , torch._dynamo.eval_frame.OptimizedModule ) def _a ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : bool = True ): """simple docstring""" UpperCamelCase__ : Dict = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) UpperCamelCase__ : Optional[int] = is_compiled_module(SCREAMING_SNAKE_CASE ) if is_compiled: UpperCamelCase__ : List[str] = model UpperCamelCase__ : int = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Dict = model.module if not keep_fpaa_wrapper: UpperCamelCase__ : Tuple = getattr(SCREAMING_SNAKE_CASE , '''forward''' ) UpperCamelCase__ : Optional[Any] = model.__dict__.pop('''_original_forward''' , SCREAMING_SNAKE_CASE ) if original_forward is not None: while hasattr(SCREAMING_SNAKE_CASE , '''__wrapped__''' ): UpperCamelCase__ : Any = forward.__wrapped__ if forward == original_forward: break UpperCamelCase__ : List[str] = forward if getattr(SCREAMING_SNAKE_CASE , '''_converted_to_transformer_engine''' , SCREAMING_SNAKE_CASE ): convert_model(SCREAMING_SNAKE_CASE , to_transformer_engine=SCREAMING_SNAKE_CASE ) if is_compiled: UpperCamelCase__ : str = model UpperCamelCase__ : int = compiled_model return model def _a ( ): """simple docstring""" PartialState().wait_for_everyone() def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif PartialState().local_process_index == 0: torch.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @contextmanager def _a ( **SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" for key, value in kwargs.items(): UpperCamelCase__ : Tuple = str(SCREAMING_SNAKE_CASE ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _a ( SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" if not hasattr(SCREAMING_SNAKE_CASE , '''__qualname__''' ) and not hasattr(SCREAMING_SNAKE_CASE , '''__name__''' ): UpperCamelCase__ : str = getattr(SCREAMING_SNAKE_CASE , '''__class__''' , SCREAMING_SNAKE_CASE ) if hasattr(SCREAMING_SNAKE_CASE , '''__qualname__''' ): return obj.__qualname__ if hasattr(SCREAMING_SNAKE_CASE , '''__name__''' ): return obj.__name__ return str(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" for key, value in source.items(): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Any = destination.setdefault(SCREAMING_SNAKE_CASE , {} ) merge_dicts(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: UpperCamelCase__ : Optional[Any] = value return destination def _a ( SCREAMING_SNAKE_CASE : int = None ): """simple docstring""" if port is None: UpperCamelCase__ : Optional[int] = 29500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('''localhost''', port) ) == 0
700
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __magic_name__ ( __lowerCAmelCase): A: Optional[Any] = ["image_processor", "tokenizer"] A: Optional[Any] = "LayoutLMv2ImageProcessor" A: List[str] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : Dict , lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : List[str]=None , **lowerCamelCase__ : Any ) -> Optional[Any]: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCamelCase__ , ) UpperCamelCase__ : str = kwargs.pop('''feature_extractor''' ) UpperCamelCase__ : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCamelCase__ , lowerCamelCase__ ) def __call__( self : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCamelCase__ : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , lowerCamelCase__ : Union[List[List[int]], List[List[List[int]]]] = None , lowerCamelCase__ : Optional[Union[List[int], List[List[int]]]] = None , lowerCamelCase__ : bool = True , lowerCamelCase__ : Union[bool, str, PaddingStrategy] = False , lowerCamelCase__ : Union[bool, str, TruncationStrategy] = None , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : int = 0 , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = True , lowerCamelCase__ : Optional[Union[str, TensorType]] = None , **lowerCamelCase__ : Any , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor UpperCamelCase__ : Optional[Any] = self.image_processor(images=lowerCamelCase__ , return_tensors=lowerCamelCase__ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCamelCase__ , lowerCamelCase__ ): UpperCamelCase__ : Optional[int] = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCamelCase__ : Optional[int] = features['''words'''] UpperCamelCase__ : Optional[int] = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , stride=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , return_special_tokens_mask=lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , return_length=lowerCamelCase__ , verbose=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ , ) # add pixel values UpperCamelCase__ : Optional[Any] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: UpperCamelCase__ : Union[str, Any] = self.get_overflowing_images(lowerCamelCase__ , encoded_inputs['''overflow_to_sample_mapping'''] ) UpperCamelCase__ : Tuple = images return encoded_inputs def UpperCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] ) -> str: '''simple docstring''' UpperCamelCase__ : int = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' F" {len(lowerCamelCase__ )} and {len(lowerCamelCase__ )}" ) return images_with_overflow def UpperCAmelCase__ ( self : int , *lowerCamelCase__ : Dict , **lowerCamelCase__ : str ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase__ ( self : List[str] , *lowerCamelCase__ : int , **lowerCamelCase__ : str ) -> Tuple: '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) @property def UpperCAmelCase__ ( self : int ) -> str: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def UpperCAmelCase__ ( self : Dict ) -> Tuple: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCamelCase__ , ) return self.image_processor_class @property def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCamelCase__ , ) return self.image_processor
106
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[str] = { 'facebook/deit-base-distilled-patch16-224': ( 'https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class A ( a__ ): '''simple docstring''' lowerCamelCase : Union[str, Any] = """deit""" def __init__( self : Optional[Any] , _UpperCamelCase : Union[str, Any]=768 , _UpperCamelCase : Optional[Any]=12 , _UpperCamelCase : str=12 , _UpperCamelCase : Any=3_072 , _UpperCamelCase : List[str]="gelu" , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : Optional[Any]=0.0_2 , _UpperCamelCase : int=1e-12 , _UpperCamelCase : int=224 , _UpperCamelCase : Any=16 , _UpperCamelCase : Dict=3 , _UpperCamelCase : Union[str, Any]=True , _UpperCamelCase : Optional[Any]=16 , **_UpperCamelCase : Optional[int] , ): super().__init__(**_A) _lowercase: List[Any] = hidden_size _lowercase: Union[str, Any] = num_hidden_layers _lowercase: Optional[int] = num_attention_heads _lowercase: Any = intermediate_size _lowercase: str = hidden_act _lowercase: List[str] = hidden_dropout_prob _lowercase: Union[str, Any] = attention_probs_dropout_prob _lowercase: int = initializer_range _lowercase: List[str] = layer_norm_eps _lowercase: Optional[int] = image_size _lowercase: Optional[Any] = patch_size _lowercase: List[Any] = num_channels _lowercase: List[Any] = qkv_bias _lowercase: Optional[int] = encoder_stride class A ( a__ ): '''simple docstring''' lowerCamelCase : Dict = version.parse("""1.11""" ) @property def UpperCAmelCase__ ( self : Dict): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def UpperCAmelCase__ ( self : Optional[Any]): return 1e-4
226
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class __UpperCamelCase ( a__ ): _UpperCAmelCase = "data2vec-vision" def __init__( self ,_A=768 ,_A=12 ,_A=12 ,_A=3072 ,_A="gelu" ,_A=0.0 ,_A=0.0 ,_A=0.0_2 ,_A=1E-12 ,_A=224 ,_A=16 ,_A=3 ,_A=False ,_A=False ,_A=False ,_A=False ,_A=0.1 ,_A=0.1 ,_A=True ,_A=[3, 5, 7, 11] ,_A=[1, 2, 3, 6] ,_A=True ,_A=0.4 ,_A=256 ,_A=1 ,_A=False ,_A=255 ,**_A ,): '''simple docstring''' super().__init__(**_A ) _lowerCAmelCase : Tuple = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : List[Any] = hidden_dropout_prob _lowerCAmelCase : List[str] = attention_probs_dropout_prob _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Optional[Any] = layer_norm_eps _lowerCAmelCase : int = image_size _lowerCAmelCase : Union[str, Any] = patch_size _lowerCAmelCase : int = num_channels _lowerCAmelCase : int = use_mask_token _lowerCAmelCase : Any = use_absolute_position_embeddings _lowerCAmelCase : List[str] = use_relative_position_bias _lowerCAmelCase : str = use_shared_relative_position_bias _lowerCAmelCase : Any = layer_scale_init_value _lowerCAmelCase : Optional[Any] = drop_path_rate _lowerCAmelCase : Tuple = use_mean_pooling # decode head attributes (semantic segmentation) _lowerCAmelCase : int = out_indices _lowerCAmelCase : Optional[Any] = pool_scales # auxiliary head attributes (semantic segmentation) _lowerCAmelCase : int = use_auxiliary_head _lowerCAmelCase : Any = auxiliary_loss_weight _lowerCAmelCase : List[str] = auxiliary_channels _lowerCAmelCase : Optional[Any] = auxiliary_num_convs _lowerCAmelCase : str = auxiliary_concat_input _lowerCAmelCase : Union[str, Any] = semantic_loss_ignore_index class __UpperCamelCase ( a__ ): _UpperCAmelCase = version.parse("1.11" ) @property def __lowerCamelCase ( self ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __lowerCamelCase ( self ): '''simple docstring''' return 1E-4
259
0
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def _UpperCamelCase ( UpperCamelCase__ ): for param in module.parameters(): UpperCAmelCase__ : Optional[int] = False def _UpperCamelCase ( ): UpperCAmelCase__ : Tuple = """cuda""" if torch.cuda.is_available() else """cpu""" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCAmelCase__ : Tuple = """mps""" if device == "mps": print( """WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch""" """ errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues""" """ with generations.""" ) return device def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : Optional[Any] = plt.imshow(UpperCamelCase__ ) fig.axes.get_xaxis().set_visible(UpperCamelCase__ ) fig.axes.get_yaxis().set_visible(UpperCamelCase__ ) plt.show() def _UpperCamelCase ( ): UpperCAmelCase__ : Tuple = datetime.now() UpperCAmelCase__ : Tuple = current_time.strftime("""%H:%M:%S""" ) return timestamp
113
'''simple docstring''' import os def _UpperCamelCase ( UpperCamelCase__ = "input.txt" ): with open(os.path.join(os.path.dirname(UpperCamelCase__ ) , UpperCamelCase__ ) ) as input_file: UpperCAmelCase__ : Tuple = [ [int(UpperCamelCase__ ) for element in line.split(""",""" )] for line in input_file.readlines() ] UpperCAmelCase__ : Optional[Any] = len(UpperCamelCase__ ) UpperCAmelCase__ : Any = len(matrix[0] ) UpperCAmelCase__ : Optional[int] = [[-1 for _ in range(UpperCamelCase__ )] for _ in range(UpperCamelCase__ )] for i in range(UpperCamelCase__ ): UpperCAmelCase__ : Any = matrix[i][0] for j in range(1 , UpperCamelCase__ ): for i in range(UpperCamelCase__ ): UpperCAmelCase__ : Any = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , UpperCamelCase__ ): UpperCAmelCase__ : Dict = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): UpperCAmelCase__ : int = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"""{solution() = }""")
113
1
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCAmelCase__ : def __init__( self : List[str] , __UpperCamelCase : int , __UpperCamelCase : List[Any]=13 , __UpperCamelCase : Optional[Any]=3 , __UpperCamelCase : List[Any]=True , __UpperCamelCase : List[Any]=True , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : str=0.1 , __UpperCamelCase : Any=224 , __UpperCamelCase : List[str]=1_000 , __UpperCamelCase : Optional[Any]=[3, 3, 6, 4] , __UpperCamelCase : Union[str, Any]=[48, 56, 112, 220] , ) -> Optional[int]: A = parent A = batch_size A = num_channels A = is_training A = use_labels A = hidden_dropout_prob A = attention_probs_dropout_prob A = num_labels A = image_size A = layer_depths A = embed_dims def __UpperCamelCase ( self : str ) -> Any: A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A = None if self.use_labels: A = ids_tensor([self.batch_size] , self.num_labels ) A = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : Dict ) -> str: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='gelu' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=__UpperCamelCase , layer_scale_init_value=1e-5 , ) def __UpperCamelCase ( self : str , __UpperCamelCase : str , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] ) -> Union[str, Any]: A = SwiftFormerModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def __UpperCamelCase ( self : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Dict ) -> Any: A = self.num_labels A = SwiftFormerForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) A = SwiftFormerForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : Optional[int] ) -> Tuple: ((A) , (A) , (A)) = self.prepare_config_and_inputs() A = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): A_ : Union[str, Any] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () A_ : List[Any] = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) A_ : List[str] = False A_ : List[Any] = False A_ : int = False A_ : List[str] = False A_ : Any = False def __UpperCamelCase ( self : Optional[int] ) -> Optional[int]: A = SwiftFormerModelTester(self ) A = ConfigTester( self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='SwiftFormer does not use inputs_embeds' ) def __UpperCamelCase ( self : str ) -> int: pass def __UpperCamelCase ( self : Dict ) -> Any: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(__UpperCamelCase ) A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(__UpperCamelCase ) A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def __UpperCamelCase ( self : List[Any] ) -> str: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __UpperCamelCase ( self : int ) -> int: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @slow def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = SwiftFormerModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @unittest.skip(reason='SwiftFormer does not output attentions' ) def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: pass def __UpperCamelCase ( self : str ) -> Optional[Any]: def check_hidden_states_output(__UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple ): A = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): A = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) A = outputs.hidden_states A = 8 self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(__UpperCamelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def __UpperCamelCase ( self : Any ) -> List[str]: def _config_zero_init(__UpperCamelCase : int ): A = copy.deepcopy(__UpperCamelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(__UpperCamelCase , __UpperCamelCase , 1e-10 ) if isinstance(getattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase ): A = _config_zero_init(getattr(__UpperCamelCase , __UpperCamelCase ) ) setattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return configs_no_init A , A = self.model_tester.prepare_config_and_inputs_for_common() A = _config_zero_init(__UpperCamelCase ) for model_class in self.all_model_classes: A = model_class(config=__UpperCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __UpperCamelCase ( self : List[str] ) -> List[str]: pass def lowerCamelCase_ ( ) -> Optional[Any]: '''simple docstring''' A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: return ViTImageProcessor.from_pretrained('MBZUAI/swiftformer-xs' ) if is_vision_available() else None @slow def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: A = SwiftFormerForImageClassification.from_pretrained('MBZUAI/swiftformer-xs' ).to(__UpperCamelCase ) A = self.default_image_processor A = prepare_img() A = image_processor(images=__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): A = model(**__UpperCamelCase ) # verify the logits A = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) A = torch.tensor([[-2.1703e00, 2.1107e00, -2.0811e00]] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1e-4 ) )
106
from collections.abc import Callable import numpy as np def lowerCamelCase_ ( lowerCAmelCase__ : Callable , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> np.array: '''simple docstring''' A = int(np.ceil((x_end - xa) / step_size ) ) A = np.zeros((n + 1,) ) A = ya A = xa for k in range(lowerCAmelCase__ ): A = y[k] + step_size * ode_func(lowerCAmelCase__ , y[k] ) A = y[k] + ( (step_size / 2) * (ode_func(lowerCAmelCase__ , y[k] ) + ode_func(x + step_size , lowerCAmelCase__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
106
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class snake_case__ ( metaclass=lowerCAmelCase_ ): SCREAMING_SNAKE_CASE__ = ['''flax''', '''transformers'''] def __init__( self : int , *lowercase : int , **lowercase : List[Any] ): '''simple docstring''' requires_backends(self , ["flax", "transformers"] ) @classmethod def __lowerCAmelCase ( cls : Optional[int] , *lowercase : Any , **lowercase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) @classmethod def __lowerCAmelCase ( cls : Any , *lowercase : Optional[int] , **lowercase : List[Any] ): '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) class snake_case__ ( metaclass=lowerCAmelCase_ ): SCREAMING_SNAKE_CASE__ = ['''flax''', '''transformers'''] def __init__( self : Tuple , *lowercase : Dict , **lowercase : List[str] ): '''simple docstring''' requires_backends(self , ["flax", "transformers"] ) @classmethod def __lowerCAmelCase ( cls : Any , *lowercase : Tuple , **lowercase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) @classmethod def __lowerCAmelCase ( cls : Dict , *lowercase : Any , **lowercase : List[Any] ): '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) class snake_case__ ( metaclass=lowerCAmelCase_ ): SCREAMING_SNAKE_CASE__ = ['''flax''', '''transformers'''] def __init__( self : Dict , *lowercase : List[Any] , **lowercase : Optional[Any] ): '''simple docstring''' requires_backends(self , ["flax", "transformers"] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *lowercase : Union[str, Any] , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) @classmethod def __lowerCAmelCase ( cls : Tuple , *lowercase : Optional[int] , **lowercase : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) class snake_case__ ( metaclass=lowerCAmelCase_ ): SCREAMING_SNAKE_CASE__ = ['''flax''', '''transformers'''] def __init__( self : Dict , *lowercase : Optional[Any] , **lowercase : str ): '''simple docstring''' requires_backends(self , ["flax", "transformers"] ) @classmethod def __lowerCAmelCase ( cls : List[str] , *lowercase : int , **lowercase : Optional[int] ): '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) @classmethod def __lowerCAmelCase ( cls : List[Any] , *lowercase : int , **lowercase : int ): '''simple docstring''' requires_backends(cls , ["flax", "transformers"] )
718
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case_ : Union[str, Any] = logging.get_logger(__name__) snake_case_ : Tuple = {"""vocab_file""": """sentencepiece.bpe.model"""} snake_case_ : List[str] = { """vocab_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""", } } snake_case_ : List[Any] = { """camembert-base""": 5_1_2, } snake_case_ : Any = """▁""" class snake_case__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ = ['''input_ids''', '''attention_mask'''] def __init__( self : int , lowercase : Union[str, Any] , lowercase : str="<s>" , lowercase : str="</s>" , lowercase : Optional[int]="</s>" , lowercase : Dict="<s>" , lowercase : Optional[Any]="<unk>" , lowercase : List[Any]="<pad>" , lowercase : Any="<mask>" , lowercase : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] , lowercase : Optional[Dict[str, Any]] = None , **lowercase : Dict , ): '''simple docstring''' UpperCAmelCase : Optional[Any] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else mask_token UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowercase , eos_token=lowercase , unk_token=lowercase , sep_token=lowercase , cls_token=lowercase , pad_token=lowercase , mask_token=lowercase , additional_special_tokens=lowercase , sp_model_kwargs=self.sp_model_kwargs , **lowercase , ) UpperCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase ) ) UpperCAmelCase : str = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> UpperCAmelCase : Union[str, Any] = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} UpperCAmelCase : Union[str, Any] = len(self.fairseq_tokens_to_ids ) UpperCAmelCase : Dict = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) UpperCAmelCase : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __lowerCAmelCase ( self : Union[str, Any] , lowercase : List[int] , lowercase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Dict = [self.cls_token_id] UpperCAmelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCAmelCase ( self : Dict , lowercase : List[int] , lowercase : Optional[List[int]] = None , lowercase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) if token_ids_a is None: return [1] + ([0] * len(lowercase )) + [1] return [1] + ([0] * len(lowercase )) + [1, 1] + ([0] * len(lowercase )) + [1] def __lowerCAmelCase ( self : Tuple , lowercase : List[int] , lowercase : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase : Optional[Any] = [self.sep_token_id] UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase : List[Any] = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCAmelCase ( self : Optional[Any] , lowercase : str ): '''simple docstring''' return self.sp_model.encode(lowercase , out_type=lowercase ) def __lowerCAmelCase ( self : int , lowercase : Optional[Any] ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(lowercase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(lowercase ) def __lowerCAmelCase ( self : Any , lowercase : Dict ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowerCAmelCase ( self : Tuple , lowercase : Optional[int] ): '''simple docstring''' UpperCAmelCase : Tuple = [] UpperCAmelCase : Tuple = "" UpperCAmelCase : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase ) + token UpperCAmelCase : Optional[int] = True UpperCAmelCase : str = [] else: current_sub_tokens.append(lowercase ) UpperCAmelCase : Any = False out_string += self.sp_model.decode(lowercase ) return out_string.strip() def __getstate__( self : str ): '''simple docstring''' UpperCAmelCase : List[str] = self.__dict__.copy() UpperCAmelCase : Dict = None return state def __setstate__( self : List[str] , lowercase : str ): '''simple docstring''' UpperCAmelCase : List[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase : Any = {} UpperCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self : Optional[Any] , lowercase : str , lowercase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowercase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase : Optional[Any] = os.path.join( lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase ) elif not os.path.isfile(self.vocab_file ): with open(lowercase , "wb" ) as fi: UpperCAmelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (out_vocab_file,)
292
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : str = logging.get_logger(__name__) def _a ( lowercase__ : Union[str, Any] , lowercase__ : Optional[int]=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = [] # fmt: off # stem: rename_keys.append(('cls_token', 'vit.embeddings.cls_token') ) rename_keys.append(('pos_embed', 'vit.embeddings.position_embeddings') ) rename_keys.append(('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias') ) # backbone rename_keys.append(('patch_embed.backbone.stem.conv.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight') ) rename_keys.append(('patch_embed.backbone.stem.norm.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight') ) rename_keys.append(('patch_embed.backbone.stem.norm.bias', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE__ : int = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) # fmt: on return rename_keys def _a ( lowercase__ : int , lowercase__ : Optional[Any] , lowercase__ : Optional[int]=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE__ : Any = '' else: SCREAMING_SNAKE_CASE__ : Optional[int] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ : int = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ : Any = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE__ : Union[str, Any] = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE__ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE__ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE__ : Optional[int] = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE__ : int = in_proj_bias[-config.hidden_size :] def _a ( lowercase__ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def _a ( lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = dct.pop(lowercase__ ) SCREAMING_SNAKE_CASE__ : Tuple = val def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = 'http://images.cocodataset.org/val2017/000000039769.jpg' SCREAMING_SNAKE_CASE__ : Optional[int] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def _a ( lowercase__ : Union[str, Any] , lowercase__ : List[str] , lowercase__ : int=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = BitConfig( global_padding='same' , layer_type='bottleneck' , depths=(3, 4, 9) , out_features=['stage3'] , embedding_dynamic_padding=lowercase__ , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ViTHybridConfig(backbone_config=lowercase__ , image_size=3_84 , num_labels=10_00 ) SCREAMING_SNAKE_CASE__ : Any = False # load original model from timm SCREAMING_SNAKE_CASE__ : str = timm.create_model(lowercase__ , pretrained=lowercase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys SCREAMING_SNAKE_CASE__ : Union[str, Any] = timm_model.state_dict() if base_model: remove_classification_head_(lowercase__ ) SCREAMING_SNAKE_CASE__ : Tuple = create_rename_keys(lowercase__ , lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE__ : List[Any] = 'huggingface/label-files' SCREAMING_SNAKE_CASE__ : Any = 'imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE__ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='dataset' ) , 'r' ) ) SCREAMING_SNAKE_CASE__ : List[Any] = {int(lowercase__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ : Optional[Any] = idalabel SCREAMING_SNAKE_CASE__ : Union[str, Any] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": SCREAMING_SNAKE_CASE__ : int = ViTHybridModel(lowercase__ ).eval() else: SCREAMING_SNAKE_CASE__ : Tuple = ViTHybridForImageClassification(lowercase__ ).eval() model.load_state_dict(lowercase__ ) # create image processor SCREAMING_SNAKE_CASE__ : List[Any] = create_transform(**resolve_data_config({} , model=lowercase__ ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = transform.transforms SCREAMING_SNAKE_CASE__ : List[Any] = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } SCREAMING_SNAKE_CASE__ : Optional[int] = ViTHybridImageProcessor( do_resize=lowercase__ , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase__ , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=lowercase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) SCREAMING_SNAKE_CASE__ : Tuple = prepare_img() SCREAMING_SNAKE_CASE__ : Any = transform(lowercase__ ).unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : List[Any] = processor(lowercase__ , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(lowercase__ , lowercase__ ) # verify logits with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(lowercase__ ) SCREAMING_SNAKE_CASE__ : List[Any] = outputs.logits print('Predicted class:' , logits.argmax(-1 ).item() ) if base_model: SCREAMING_SNAKE_CASE__ : Optional[int] = timm_model.forward_features(lowercase__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowercase__ , outputs.pooler_output , atol=1E-3 ) else: SCREAMING_SNAKE_CASE__ : Dict = timm_model(lowercase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase__ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowercase__ ) if push_to_hub: print(f'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(f'''ybelkada/{vit_name}''' ) processor.push_to_hub(f'''ybelkada/{vit_name}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_r50_s16_384", type=str, help="Name of the hybrid ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) SCREAMING_SNAKE_CASE__ : Any = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
85
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed lowerCAmelCase_ = logging.getLogger(__name__) def snake_case( __magic_name__=2 , __magic_name__=3 , __magic_name__=16 , __magic_name__ = 10 , __magic_name__ = 2 ) -> List[Any]: '''simple docstring''' def get_dataset(__magic_name__ ): lowercase : Optional[Any] = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(__magic_name__ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) lowercase : Any = get_dataset(__magic_name__ ) lowercase : List[str] = get_dataset(__magic_name__ ) lowercase : Optional[Any] = DataLoader(__magic_name__ , shuffle=__magic_name__ , batch_size=__magic_name__ , num_workers=4 ) lowercase : Union[str, Any] = DataLoader(__magic_name__ , shuffle=__magic_name__ , batch_size=__magic_name__ , num_workers=4 ) return (train_dataloader, valid_dataloader) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None ) -> Optional[int]: '''simple docstring''' lowercase : Dict = [] for epoch in range(__magic_name__ ): # Train quickly model.train() for batch in dataloader: lowercase , lowercase : Union[str, Any] = batch lowercase : Optional[int] = model(__magic_name__ ) lowercase : str = torch.nn.functional.mse_loss(__magic_name__ , __magic_name__ ) accelerator.backward(__magic_name__ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class _A ( nn.Module ): def __init__( self : Dict ) -> Any: """simple docstring""" super().__init__() lowercase : Optional[int] = nn.Parameter(torch.randn(1 ) ) lowercase : Optional[Any] = nn.Parameter(torch.randn(1 ) ) def __a ( self : Union[str, Any] , _A : Optional[int] ) -> List[Any]: """simple docstring""" return x * self.a + self.b class _A ( unittest.TestCase ): def __a ( self : str ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase : Tuple = DummyModel() lowercase : List[str] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) lowercase , lowercase : List[str] = dummy_dataloaders() lowercase : int = ProjectConfiguration(total_limit=1 , project_dir=_A , automatic_checkpoint_naming=_A ) # Train baseline lowercase : List[Any] = Accelerator(project_config=_A ) lowercase , lowercase , lowercase , lowercase : Dict = accelerator.prepare( _A , _A , _A , _A ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def __a ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase : str = DummyModel() lowercase : Tuple = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) lowercase , lowercase : Tuple = dummy_dataloaders() # Train baseline lowercase : Any = Accelerator() lowercase , lowercase , lowercase , lowercase : Dict = accelerator.prepare( _A , _A , _A , _A ) # Save initial lowercase : int = os.path.join(_A , '''initial''' ) accelerator.save_state(_A ) ((lowercase) , (lowercase)) : Optional[int] = model.a.item(), model.b.item() lowercase : Tuple = optimizer.state_dict() lowercase : List[Any] = train(3 , _A , _A , _A , _A ) ((lowercase) , (lowercase)) : Optional[Any] = model.a.item(), model.b.item() lowercase : Optional[Any] = optimizer.state_dict() # Train partially set_seed(42 ) lowercase : List[str] = DummyModel() lowercase : Any = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) lowercase , lowercase : Any = dummy_dataloaders() lowercase : Optional[int] = Accelerator() lowercase , lowercase , lowercase , lowercase : Dict = accelerator.prepare( _A , _A , _A , _A ) accelerator.load_state(_A ) ((lowercase) , (lowercase)) : Any = model.a.item(), model.b.item() lowercase : Optional[int] = optimizer.state_dict() self.assertEqual(_A , _A ) self.assertEqual(_A , _A ) self.assertEqual(_A , _A ) lowercase : List[Any] = train(2 , _A , _A , _A , _A ) # Save everything lowercase : Any = os.path.join(_A , '''checkpoint''' ) accelerator.save_state(_A ) # Load everything back in and make sure all states work accelerator.load_state(_A ) test_rands += train(1 , _A , _A , _A , _A ) ((lowercase) , (lowercase)) : int = model.a.item(), model.b.item() lowercase : Any = optimizer.state_dict() self.assertEqual(_A , _A ) self.assertEqual(_A , _A ) self.assertEqual(_A , _A ) self.assertEqual(_A , _A ) def __a ( self : Any ) -> Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase : List[Any] = DummyModel() lowercase : Tuple = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) lowercase , lowercase : List[Any] = dummy_dataloaders() lowercase : List[str] = ProjectConfiguration(automatic_checkpoint_naming=_A ) # Train baseline lowercase : List[str] = Accelerator(project_dir=_A , project_config=_A ) lowercase , lowercase , lowercase , lowercase : Optional[int] = accelerator.prepare( _A , _A , _A , _A ) # Save initial accelerator.save_state() ((lowercase) , (lowercase)) : Any = model.a.item(), model.b.item() lowercase : Dict = optimizer.state_dict() lowercase : List[Any] = train(3 , _A , _A , _A , _A ) ((lowercase) , (lowercase)) : Optional[Any] = model.a.item(), model.b.item() lowercase : str = optimizer.state_dict() # Train partially set_seed(42 ) lowercase : Optional[int] = DummyModel() lowercase : List[Any] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) lowercase , lowercase : Tuple = dummy_dataloaders() lowercase : List[Any] = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=_A ) lowercase : Tuple = Accelerator(project_dir=_A , project_config=_A ) lowercase , lowercase , lowercase , lowercase : Tuple = accelerator.prepare( _A , _A , _A , _A ) accelerator.load_state(os.path.join(_A , '''checkpoints''' , '''checkpoint_0''' ) ) ((lowercase) , (lowercase)) : Optional[Any] = model.a.item(), model.b.item() lowercase : Union[str, Any] = optimizer.state_dict() self.assertEqual(_A , _A ) self.assertEqual(_A , _A ) self.assertEqual(_A , _A ) lowercase : Tuple = train(2 , _A , _A , _A , _A ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_A , '''checkpoints''' , '''checkpoint_1''' ) ) test_rands += train(1 , _A , _A , _A , _A ) ((lowercase) , (lowercase)) : str = model.a.item(), model.b.item() lowercase : Optional[Any] = optimizer.state_dict() self.assertEqual(_A , _A ) self.assertEqual(_A , _A ) self.assertEqual(_A , _A ) self.assertEqual(_A , _A ) def __a ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase : Optional[Any] = torch.tensor([1, 2, 3] ) lowercase : Dict = torch.tensor([2, 3, 4] ) lowercase : Union[str, Any] = DummyModel() lowercase : int = torch.optim.Adam(net.parameters() ) lowercase : str = Accelerator() with self.assertRaises(_A ) as ve: accelerator.register_for_checkpointing(_A , _A , _A , _A ) lowercase : Union[str, Any] = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def __a ( self : List[Any] ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase : Optional[int] = DummyModel() lowercase : int = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) lowercase : List[str] = torch.optim.lr_scheduler.StepLR(_A , step_size=1 , gamma=0.99 ) lowercase , lowercase : int = dummy_dataloaders() lowercase : Dict = ProjectConfiguration(automatic_checkpoint_naming=_A ) # Train baseline lowercase : Any = Accelerator(project_dir=_A , project_config=_A ) lowercase , lowercase , lowercase , lowercase , lowercase : int = accelerator.prepare( _A , _A , _A , _A , _A ) # Save initial accelerator.save_state() lowercase : int = scheduler.state_dict() train(3 , _A , _A , _A , _A , _A ) self.assertNotEqual(_A , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_A , '''checkpoints''' , '''checkpoint_0''' ) ) self.assertEqual(_A , scheduler.state_dict() ) def __a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase : List[Any] = DummyModel() lowercase : str = ProjectConfiguration(automatic_checkpoint_naming=_A , total_limit=2 ) # Train baseline lowercase : Dict = Accelerator(project_dir=_A , project_config=_A ) lowercase : Optional[int] = accelerator.prepare(_A ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(_A , '''checkpoints''' , '''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_A , '''checkpoints''' , '''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_A , '''checkpoints''' , '''checkpoint_10''' ) ) ) @require_cuda def __a ( self : Union[str, Any] ) -> int: """simple docstring""" lowercase : Optional[int] = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(_A , env=os.environ.copy() ) if __name__ == "__main__": lowerCAmelCase_ = '/tmp/accelerate/state_checkpointing' lowerCAmelCase_ = DummyModel() lowerCAmelCase_ = torch.optim.Adam(params=model.parameters(), lr=1E-3) lowerCAmelCase_ = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) lowerCAmelCase_ , lowerCAmelCase_ = dummy_dataloaders() lowerCAmelCase_ = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline lowerCAmelCase_ = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) lowerCAmelCase_ , lowerCAmelCase_ = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: lowerCAmelCase_ = group['params'][0].device break assert param_device.type == accelerator.device.type lowerCAmelCase_ = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: lowerCAmelCase_ = group['params'][0].device break assert ( param_device.type == torch.device('cpu').type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: lowerCAmelCase_ = group['params'][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
217
0
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 A__: Tuple = get_tests_dir('''fixtures''') A__: Tuple = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') A__: Dict = get_tests_dir('''fixtures/dummy-config.json''') class _a ( unittest.TestCase): """simple docstring""" def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' UpperCamelCase__: Dict = 0 def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: Optional[int] = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def UpperCAmelCase_ ( self: int ): '''simple docstring''' UpperCamelCase__: Union[str, Any] = AutoFeatureExtractor.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__: Optional[int] = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCamelCase__: List[str] = AutoFeatureExtractor.from_pretrained(__lowerCamelCase ).to_dict() config_dict.pop("feature_extractor_type" ) UpperCamelCase__: Optional[Any] = WavaVecaFeatureExtractor(**__lowerCamelCase ) # save in new folder model_config.save_pretrained(__lowerCamelCase ) config.save_pretrained(__lowerCamelCase ) UpperCamelCase__: Union[str, Any] = AutoFeatureExtractor.from_pretrained(__lowerCamelCase ) # make sure private variable is not incorrectly saved UpperCamelCase__: str = json.loads(config.to_json_string() ) self.assertTrue("_processor_class" not in dict_as_saved ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' UpperCamelCase__: List[Any] = AutoFeatureExtractor.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' with self.assertRaisesRegex( __lowerCamelCase , "bert-base is not a local folder and is not a valid model identifier" ): UpperCamelCase__: List[str] = AutoFeatureExtractor.from_pretrained("bert-base" ) def UpperCAmelCase_ ( self: str ): '''simple docstring''' with self.assertRaisesRegex( __lowerCamelCase , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): UpperCamelCase__: Any = AutoFeatureExtractor.from_pretrained(__lowerCamelCase , revision="aaaaaa" ) def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' with self.assertRaisesRegex( __lowerCamelCase , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ): UpperCamelCase__: Dict = AutoFeatureExtractor.from_pretrained("hf-internal-testing/config-no-model" ) def UpperCAmelCase_ ( self: int ): '''simple docstring''' with self.assertRaises(__lowerCamelCase ): UpperCamelCase__: Any = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCamelCase ): UpperCamelCase__: Optional[Any] = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__lowerCamelCase ) UpperCamelCase__: int = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__lowerCamelCase ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__lowerCamelCase ) UpperCamelCase__: int = AutoFeatureExtractor.from_pretrained(__lowerCamelCase , trust_remote_code=__lowerCamelCase ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' try: AutoConfig.register("custom" , __lowerCamelCase ) AutoFeatureExtractor.register(__lowerCamelCase , __lowerCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCamelCase ): AutoFeatureExtractor.register(__lowerCamelCase , __lowerCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCamelCase__: int = CustomFeatureExtractor.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__lowerCamelCase ) UpperCamelCase__: Union[str, Any] = AutoFeatureExtractor.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = True try: AutoConfig.register("custom" , __lowerCamelCase ) AutoFeatureExtractor.register(__lowerCamelCase , __lowerCamelCase ) # If remote code is not set, the default is to use local UpperCamelCase__: Union[str, Any] = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCamelCase__: Dict = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__lowerCamelCase ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCamelCase__: List[Any] = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__lowerCamelCase ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(not hasattr(__lowerCamelCase , "is_local" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
221
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process A__: Union[str, Any] = logging.getLogger(__name__) def lowerCAmelCase_ ( A_ ,A_): return (preds == labels).mean() @dataclass class _a : """simple docstring""" UpperCamelCase__ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""}) UpperCamelCase__ = field( default=UpperCamelCase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""}) UpperCamelCase__ = field( default=UpperCamelCase__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""}) UpperCamelCase__ = field( default=UpperCamelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class _a : """simple docstring""" UpperCamelCase__ = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys())}) UpperCamelCase__ = field(metadata={"""help""": """Should contain the data files for the task."""}) UpperCamelCase__ = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) UpperCamelCase__ = field( default=UpperCamelCase__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""}) def lowerCAmelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase__: List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__: List[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" " --overwrite_output_dir to overcome.") # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" ,datefmt="%m/%d/%Y %H:%M:%S" ,level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN ,) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" ,training_args.local_rank ,training_args.device ,training_args.n_gpu ,bool(training_args.local_rank != -1) ,training_args.fpaa ,) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" ,A_) # Set seed set_seed(training_args.seed) try: UpperCamelCase__: str = processors[data_args.task_name]() UpperCamelCase__: Tuple = processor.get_labels() UpperCamelCase__: str = len(A_) except KeyError: raise ValueError("Task not found: %s" % (data_args.task_name)) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase__: Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=A_ ,finetuning_task=data_args.task_name ,cache_dir=model_args.cache_dir ,) UpperCamelCase__: Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,) UpperCamelCase__: Tuple = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path ,from_tf=bool(".ckpt" in model_args.model_name_or_path) ,config=A_ ,cache_dir=model_args.cache_dir ,) # Get datasets UpperCamelCase__: int = ( MultipleChoiceDataset( data_dir=data_args.data_dir ,tokenizer=A_ ,task=data_args.task_name ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.train ,) if training_args.do_train else None ) UpperCamelCase__: Tuple = ( MultipleChoiceDataset( data_dir=data_args.data_dir ,tokenizer=A_ ,task=data_args.task_name ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.dev ,) if training_args.do_eval else None ) def compute_metrics(A_) -> Dict: UpperCamelCase__: Optional[int] = np.argmax(p.predictions ,axis=1) return {"acc": simple_accuracy(A_ ,p.label_ids)} # Data collator UpperCamelCase__: str = DataCollatorWithPadding(A_ ,pad_to_multiple_of=8) if training_args.fpaa else None # Initialize our Trainer UpperCamelCase__: int = Trainer( model=A_ ,args=A_ ,train_dataset=A_ ,eval_dataset=A_ ,compute_metrics=A_ ,data_collator=A_ ,) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir) # Evaluation UpperCamelCase__: Optional[Any] = {} if training_args.do_eval: logger.info("*** Evaluate ***") UpperCamelCase__: List[Any] = trainer.evaluate() UpperCamelCase__: Dict = os.path.join(training_args.output_dir ,"eval_results.txt") if trainer.is_world_master(): with open(A_ ,"w") as writer: logger.info("***** Eval results *****") for key, value in result.items(): logger.info(" %s = %s" ,A_ ,A_) writer.write("%s = %s\n" % (key, value)) results.update(A_) return results def lowerCAmelCase_ ( A_): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
221
1
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class lowerCamelCase__ : __lowerCamelCase = None def lowerCamelCase_ ( self : str ): '''simple docstring''' lowerCamelCase__: Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) lowerCamelCase__: Tuple = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , A__ ) def lowerCamelCase_ ( self : str ): '''simple docstring''' lowerCamelCase__: Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase__: Any = os.path.join(A__ , """feat_extract.json""" ) feat_extract_first.to_json_file(A__ ) lowerCamelCase__: Union[str, Any] = self.feature_extraction_class.from_json_file(A__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def lowerCamelCase_ ( self : int ): '''simple docstring''' lowerCamelCase__: Tuple = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase__: int = feat_extract_first.save_pretrained(A__ )[0] check_json_file_has_correct_format(A__ ) lowerCamelCase__: int = self.feature_extraction_class.from_pretrained(A__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowerCamelCase__: List[str] = self.feature_extraction_class() self.assertIsNotNone(A__ )
306
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib UpperCAmelCase__ :List[str] = get_logger() UpperCAmelCase__ :Optional[dict] = None class SCREAMING_SNAKE_CASE ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self : Any , A__ : List[str]=None , A__ : Tuple=None , **A__ : Dict ): """simple docstring""" super().__init__(features=A__ ) import jax from jaxlib.xla_client import Device if isinstance(A__ , A__ ): raise ValueError( f"Expected {device} to be a `str` not {type(A__ )}, as `jaxlib.xla_extension.Device` " """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) __lowerCamelCase : Optional[int] = device if isinstance(A__ , A__ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: __lowerCamelCase : Dict = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f"Device with string identifier {self.device} not listed among the available " f"devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default " f"device: {str(jax.devices()[0] )}." ) __lowerCamelCase : str = str(jax.devices()[0] ) __lowerCamelCase : Optional[Any] = jnp_array_kwargs @staticmethod def a_ ( ): """simple docstring""" import jax return {str(A__ ): device for device in jax.devices()} def a_ ( self : Any , A__ : List[str] ): """simple docstring""" import jax import jax.numpy as jnp if isinstance(A__ , A__ ) and column: if all( isinstance(A__ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(A__ , axis=0 ) return column def a_ ( self : Tuple , A__ : Optional[int] ): """simple docstring""" import jax import jax.numpy as jnp if isinstance(A__ , (str, bytes, type(A__ )) ): return value elif isinstance(A__ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __lowerCamelCase : Dict = {} if isinstance(A__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: __lowerCamelCase : List[Any] = {"""dtype""": jnp.intaa} else: __lowerCamelCase : Any = {"""dtype""": jnp.intaa} elif isinstance(A__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __lowerCamelCase : int = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(A__ , PIL.Image.Image ): __lowerCamelCase : List[str] = np.asarray(A__ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: __lowerCamelCase : Tuple = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(A__ , **{**default_dtype, **self.jnp_array_kwargs} ) def a_ ( self : int , A__ : Any ): """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(A__ , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(A__ , """__array__""" ) and not isinstance(A__ , jax.Array ): __lowerCamelCase : Tuple = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(A__ , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(A__ ) for substruct in data_struct] ) elif isinstance(A__ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(A__ ) for substruct in data_struct] ) return self._tensorize(A__ ) def a_ ( self : Tuple , A__ : dict ): """simple docstring""" return map_nested(self._recursive_tensorize , A__ , map_list=A__ ) def a_ ( self : Any , A__ : pa.Table ): """simple docstring""" __lowerCamelCase : List[str] = self.numpy_arrow_extractor().extract_row(A__ ) __lowerCamelCase : str = self.python_features_decoder.decode_row(A__ ) return self.recursive_tensorize(A__ ) def a_ ( self : Dict , A__ : pa.Table ): """simple docstring""" __lowerCamelCase : List[str] = self.numpy_arrow_extractor().extract_column(A__ ) __lowerCamelCase : int = self.python_features_decoder.decode_column(A__ , pa_table.column_names[0] ) __lowerCamelCase : Optional[int] = self.recursive_tensorize(A__ ) __lowerCamelCase : List[Any] = self._consolidate(A__ ) return column def a_ ( self : Tuple , A__ : pa.Table ): """simple docstring""" __lowerCamelCase : Any = self.numpy_arrow_extractor().extract_batch(A__ ) __lowerCamelCase : int = self.python_features_decoder.decode_batch(A__ ) __lowerCamelCase : Union[str, Any] = self.recursive_tensorize(A__ ) for column_name in batch: __lowerCamelCase : Optional[int] = self._consolidate(batch[column_name] ) return batch
150
0
"""simple docstring""" import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu A = [ """EAGER""", """AOT_EAGER""", """INDUCTOR""", """NVFUSER""", """AOT_NVFUSER""", """AOT_CUDAGRAPHS""", """OFI""", """FX2TRT""", """ONNXRT""", """IPEX""", ] def _UpperCamelCase ( UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None ) -> Dict: """simple docstring""" __UpperCAmelCase : Union[str, Any] = True while ask_again: __UpperCAmelCase : Dict = input(UpperCamelCase ) try: if default is not None and len(UpperCamelCase ) == 0: return default return convert_value(UpperCamelCase ) if convert_value is not None else result except Exception: if error_message is not None: print(UpperCamelCase ) def _UpperCamelCase ( UpperCamelCase , UpperCamelCase=[] , UpperCamelCase=None , UpperCamelCase=0 ) -> str: """simple docstring""" __UpperCAmelCase : Optional[Any] = BulletMenu(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : str = menu.run(default_choice=UpperCamelCase ) return convert_value(UpperCamelCase ) if convert_value is not None else result def _UpperCamelCase ( UpperCamelCase ) -> List[str]: """simple docstring""" __UpperCAmelCase : Optional[Any] = int(UpperCamelCase ) return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value] ) def _UpperCamelCase ( UpperCamelCase ) -> int: """simple docstring""" __UpperCAmelCase : Any = int(UpperCamelCase ) return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "TPU"][value] ) def _UpperCamelCase ( UpperCamelCase ) -> List[str]: """simple docstring""" __UpperCAmelCase : List[Any] = int(UpperCamelCase ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _UpperCamelCase ( UpperCamelCase ) -> List[str]: """simple docstring""" __UpperCAmelCase : str = int(UpperCamelCase ) return PrecisionType(["no", "fp16", "bf16", "fp8"][value] ) def _UpperCamelCase ( UpperCamelCase ) -> int: """simple docstring""" __UpperCAmelCase : str = int(UpperCamelCase ) return SageMakerDistributedType(["NO", "DATA_PARALLEL", "MODEL_PARALLEL"][value] ) def _UpperCamelCase ( UpperCamelCase ) -> Union[str, Any]: """simple docstring""" return {"yes": True, "no": False}[value.lower()] class a__ ( argparse.RawDescriptionHelpFormatter ): def a_ ( self : Any , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : Tuple): """simple docstring""" __UpperCAmelCase : List[str] = super()._format_usage(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_) __UpperCAmelCase : Optional[Any] = usage.replace("<command> [<args>] " , "") return usage
714
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { """bigcode/gpt_bigcode-santacoder""": """https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json""", } class a__ ( __magic_name__ ): lowercase_ = "gpt_bigcode" lowercase_ = ["past_key_values"] lowercase_ = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Any , UpperCamelCase_ : Tuple=50257 , UpperCamelCase_ : Dict=1024 , UpperCamelCase_ : Optional[Any]=768 , UpperCamelCase_ : Optional[Any]=12 , UpperCamelCase_ : Any=12 , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : List[Any]="gelu_pytorch_tanh" , UpperCamelCase_ : Optional[Any]=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : Tuple=1e-5 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : str=50256 , UpperCamelCase_ : Union[str, Any]=50256 , UpperCamelCase_ : Dict=True , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : Union[str, Any]=True , **UpperCamelCase_ : Union[str, Any] , ): """simple docstring""" __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Optional[int] = n_positions __UpperCAmelCase : Tuple = n_embd __UpperCAmelCase : str = n_layer __UpperCAmelCase : Dict = n_head __UpperCAmelCase : Optional[Any] = n_inner __UpperCAmelCase : Optional[Any] = activation_function __UpperCAmelCase : List[str] = resid_pdrop __UpperCAmelCase : List[Any] = embd_pdrop __UpperCAmelCase : Optional[Any] = attn_pdrop __UpperCAmelCase : Dict = layer_norm_epsilon __UpperCAmelCase : List[str] = initializer_range __UpperCAmelCase : int = scale_attn_weights __UpperCAmelCase : Tuple = use_cache __UpperCAmelCase : List[Any] = attention_softmax_in_fpaa __UpperCAmelCase : Any = scale_attention_softmax_in_fpaa __UpperCAmelCase : str = multi_query __UpperCAmelCase : int = bos_token_id __UpperCAmelCase : str = eos_token_id super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_)
487
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Union[str, Any] = logging.get_logger(__name__) _a : Union[str, Any] = { 'BAAI/AltCLIP': 'https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json', # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[str] = '''altclip_text_model''' def __init__( self , a__=250002 , a__=1024 , a__=24 , a__=16 , a__=4096 , a__="gelu" , a__=0.1 , a__=0.1 , a__=514 , a__=1 , a__=0.0_2 , a__=0.0_2 , a__=1e-05 , a__=1 , a__=0 , a__=2 , a__="absolute" , a__=True , a__=768 , **a__ , ): super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) _lowerCAmelCase : str = vocab_size _lowerCAmelCase : Any = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : Union[str, Any] = hidden_act _lowerCAmelCase : Optional[Any] = intermediate_size _lowerCAmelCase : Tuple = hidden_dropout_prob _lowerCAmelCase : List[Any] = attention_probs_dropout_prob _lowerCAmelCase : Optional[int] = max_position_embeddings _lowerCAmelCase : Optional[int] = type_vocab_size _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Tuple = initializer_factor _lowerCAmelCase : Any = layer_norm_eps _lowerCAmelCase : List[Any] = position_embedding_type _lowerCAmelCase : Union[str, Any] = use_cache _lowerCAmelCase : int = project_dim class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = '''altclip_vision_model''' def __init__( self , a__=768 , a__=3072 , a__=512 , a__=12 , a__=12 , a__=3 , a__=224 , a__=32 , a__="quick_gelu" , a__=1e-5 , a__=0.0 , a__=0.0_2 , a__=1.0 , **a__ , ): super().__init__(**UpperCAmelCase_ ) _lowerCAmelCase : int = hidden_size _lowerCAmelCase : List[Any] = intermediate_size _lowerCAmelCase : Tuple = projection_dim _lowerCAmelCase : Optional[Any] = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : Any = num_channels _lowerCAmelCase : List[Any] = patch_size _lowerCAmelCase : str = image_size _lowerCAmelCase : List[Any] = initializer_range _lowerCAmelCase : Any = initializer_factor _lowerCAmelCase : Any = attention_dropout _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Optional[int] = hidden_act @classmethod def __A ( cls , a__ , **a__ ): cls._set_token_in_kwargs(UpperCAmelCase_ ) _lowerCAmelCase : Any = cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("""model_type""" ) == "altclip": _lowerCAmelCase : Union[str, Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[str] = '''altclip''' _UpperCamelCase : List[Any] = True def __init__( self , a__=None , a__=None , a__=768 , a__=2.6_5_9_2 , **a__ ): # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). _lowerCAmelCase : Optional[int] = kwargs.pop("""text_config_dict""" , UpperCAmelCase_ ) _lowerCAmelCase : Union[str, Any] = kwargs.pop("""vision_config_dict""" , UpperCAmelCase_ ) super().__init__(**UpperCAmelCase_ ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: _lowerCAmelCase : Optional[Any] = {} # This is the complete result when using `text_config_dict`. _lowerCAmelCase : Union[str, Any] = AltCLIPTextConfig(**UpperCAmelCase_ ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: _lowerCAmelCase : int = ( F"`{key}` is found in both `text_config_dict` and `text_config` but with different values. " F"The value `text_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: _lowerCAmelCase : Any = ( F"`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The " F"value `text_config[\"{key}\"]` will be overriden." ) logger.warning(UpperCAmelCase_ ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: _lowerCAmelCase : Dict = {} # This is the complete result when using `vision_config_dict`. _lowerCAmelCase : Any = AltCLIPVisionConfig(**UpperCAmelCase_ ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: _lowerCAmelCase : List[str] = { str(UpperCAmelCase_ ): value for key, value in _vision_config_dict["id2label"].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: _lowerCAmelCase : Union[str, Any] = ( F"`{key}` is found in both `vision_config_dict` and `vision_config` but with different " F"values. The value `vision_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: _lowerCAmelCase : Tuple = ( F"`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. " F"The value `vision_config[\"{key}\"]` will be overriden." ) logger.warning(UpperCAmelCase_ ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: _lowerCAmelCase : Tuple = {} logger.info("""`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.""" ) if vision_config is None: _lowerCAmelCase : Dict = {} logger.info("""`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.""" ) _lowerCAmelCase : Optional[int] = AltCLIPTextConfig(**UpperCAmelCase_ ) _lowerCAmelCase : Tuple = AltCLIPVisionConfig(**UpperCAmelCase_ ) _lowerCAmelCase : Dict = projection_dim _lowerCAmelCase : Union[str, Any] = logit_scale_init_value _lowerCAmelCase : Optional[Any] = 1.0 @classmethod def __A ( cls , a__ , a__ , **a__ ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCAmelCase_ ) def __A ( self ): _lowerCAmelCase : Dict = copy.deepcopy(self.__dict__ ) _lowerCAmelCase : int = self.text_config.to_dict() _lowerCAmelCase : Optional[int] = self.vision_config.to_dict() _lowerCAmelCase : Dict = self.__class__.model_type return output
213
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE ( lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : List[str] = KandinskyVaaPipeline UpperCamelCase_ : List[Any] = [ '''image_embeds''', '''negative_image_embeds''', ] UpperCamelCase_ : Tuple = ['''image_embeds''', '''negative_image_embeds'''] UpperCamelCase_ : Any = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCamelCase_ : List[str] = False @property def _A ( self : List[Any] ): return 32 @property def _A ( self : List[Any] ): return 32 @property def _A ( self : Any ): return self.time_input_dim @property def _A ( self : Union[str, Any] ): return self.time_input_dim * 4 @property def _A ( self : Tuple ): return 100 @property def _A ( self : Optional[int] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } SCREAMING_SNAKE_CASE : str = UNetaDConditionModel(**UpperCAmelCase_ ) return model @property def _A ( self : int ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _A ( self : Any ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = VQModel(**self.dummy_movq_kwargs ) return model def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : List[str] = self.dummy_unet SCREAMING_SNAKE_CASE : str = self.dummy_movq SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="linear" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="epsilon" , thresholding=UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : Optional[int] = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def _A ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any]=0 ): SCREAMING_SNAKE_CASE : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCAmelCase_ ) if str(UpperCAmelCase_ ).startswith("mps" ): SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE : Dict = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Any = "cpu" SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[str] = self.pipeline_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : Tuple = pipe( **self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0] SCREAMING_SNAKE_CASE : str = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : List[Any] = np.array( [0.6_237_976, 1.0, 0.36_441_332, 1.0, 0.70_639_634, 0.29_877_186, 0.85_652_125, 0.5_216_843, 0.54_454_046] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self : str ): SCREAMING_SNAKE_CASE : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy" ) SCREAMING_SNAKE_CASE : int = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = KandinskyVaaPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Tuple = pipeline.to(UpperCAmelCase_ ) pipeline.set_progress_bar_config(disable=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = "red cat, 4k photo" SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device="cuda" ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = pipe_prior( UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device="cuda" ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pipeline( image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , output_type="np" , ) SCREAMING_SNAKE_CASE : List[Any] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
62
0
"""simple docstring""" A__ : List[Any]= range(2, 20 + 1) A__ : List[str]= [10**k for k in range(ks[-1] + 1)] A__ : dict[int, dict[int, list[list[int]]]]= {} def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = sum(a_i[j] for j in range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ) ) UpperCamelCase__ = sum(a_i[j] * base[j] for j in range(min(len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) ) ) UpperCamelCase__ , UpperCamelCase__ = 0, 0 UpperCamelCase__ = n - i UpperCamelCase__ = memo.get(SCREAMING_SNAKE_CASE ) if sub_memo is not None: UpperCamelCase__ = sub_memo.get(SCREAMING_SNAKE_CASE ) if jumps is not None and len(SCREAMING_SNAKE_CASE ) > 0: # find and make the largest jump without going over UpperCamelCase__ = -1 for _k in range(len(SCREAMING_SNAKE_CASE ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: UpperCamelCase__ = _k break if max_jump >= 0: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = jumps[max_jump] # since the difference between jumps is cached, add c UpperCamelCase__ = diff + c for j in range(min(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ) ): UpperCamelCase__ , UpperCamelCase__ = divmod(SCREAMING_SNAKE_CASE , 10 ) if new_c > 0: add(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: UpperCamelCase__ = [] else: UpperCamelCase__ = {c: []} UpperCamelCase__ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps UpperCamelCase__ , UpperCamelCase__ = next_term(SCREAMING_SNAKE_CASE , k - 1 , i + dn , SCREAMING_SNAKE_CASE ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead UpperCamelCase__ , UpperCamelCase__ = compute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , i + dn , SCREAMING_SNAKE_CASE ) diff += _diff dn += terms_jumped UpperCamelCase__ = sub_memo[c] # keep jumps sorted by # of terms skipped UpperCamelCase__ = 0 while j < len(SCREAMING_SNAKE_CASE ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(SCREAMING_SNAKE_CASE , (diff, dn, k) ) return (diff, dn) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if i >= n: return 0, i if k > len(SCREAMING_SNAKE_CASE ): a_i.extend([0 for _ in range(k - len(SCREAMING_SNAKE_CASE ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) UpperCamelCase__ = i UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 0, 0, 0 for j in range(len(SCREAMING_SNAKE_CASE ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 UpperCamelCase__ = ds_c + ds_b diff += addend UpperCamelCase__ = 0 for j in range(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = a_i[j] + addend UpperCamelCase__ , UpperCamelCase__ = divmod(SCREAMING_SNAKE_CASE , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return diff, i - start_i def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" for j in range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = digits[j] + addend if s >= 10: UpperCamelCase__ , UpperCamelCase__ = divmod(SCREAMING_SNAKE_CASE , 10 ) UpperCamelCase__ = addend // 10 + quotient else: UpperCamelCase__ = s UpperCamelCase__ = addend // 10 if addend == 0: break while addend > 0: UpperCamelCase__ , UpperCamelCase__ = divmod(SCREAMING_SNAKE_CASE , 10 ) digits.append(SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 10**15 ) -> int: """simple docstring""" UpperCamelCase__ = [1] UpperCamelCase__ = 1 UpperCamelCase__ = 0 while True: UpperCamelCase__ , UpperCamelCase__ = next_term(SCREAMING_SNAKE_CASE , 20 , i + dn , SCREAMING_SNAKE_CASE ) dn += terms_jumped if dn == n - i: break UpperCamelCase__ = 0 for j in range(len(SCREAMING_SNAKE_CASE ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
703
"""simple docstring""" import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): A__ : str= { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: A__ : str= { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = (images / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase__ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCamelCase__ = numpy_to_pil(SCREAMING_SNAKE_CASE ) return images def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if images.ndim == 3: UpperCamelCase__ = images[None, ...] UpperCamelCase__ = (images * 2_55).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCamelCase__ = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: UpperCamelCase__ = [Image.fromarray(SCREAMING_SNAKE_CASE ) for image in images] return pil_images
20
0
"""simple docstring""" def snake_case ( UpperCamelCase__ : int ) -> int: return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def snake_case ( UpperCamelCase__ : int ) -> bool: lowerCamelCase : List[Any] = 0 lowerCamelCase : List[Any] = number while duplicate > 0: lowerCamelCase , lowerCamelCase : List[Any] = divmod(UpperCamelCase__ , 10 ) fact_sum += factorial(UpperCamelCase__ ) return fact_sum == number if __name__ == "__main__": print('Program to check whether a number is a Krisnamurthy Number or not.') __lowerCamelCase :Optional[int] = int(input('Enter number: ').strip()) print( f"""{number} is {"" if krishnamurthy(number) else "not "}a Krishnamurthy Number.""" )
222
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def snake_case ( UpperCamelCase__ : Any ) -> Dict: if "cls_token" in name: lowerCamelCase : str = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: lowerCamelCase : int = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: lowerCamelCase : str = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: lowerCamelCase : List[str] = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: lowerCamelCase : Optional[int] = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowerCamelCase : Tuple = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: lowerCamelCase : Union[str, Any] = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: lowerCamelCase : Tuple = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: lowerCamelCase : Optional[Any] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowerCamelCase : Tuple = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowerCamelCase : Optional[int] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowerCamelCase : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowerCamelCase : List[str] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCamelCase : Union[str, Any] = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: lowerCamelCase : List[Any] = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: lowerCamelCase : List[Any] = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: lowerCamelCase : str = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: lowerCamelCase : List[Any] = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: lowerCamelCase : str = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def snake_case ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): lowerCamelCase : Any = orig_state_dict.pop(UpperCamelCase__ ) if "qkv" in key: lowerCamelCase : int = key.split(""".""" ) lowerCamelCase : Dict = int(key_split[1] ) if "decoder_blocks" in key: lowerCamelCase : List[str] = config.decoder_hidden_size lowerCamelCase : str = """decoder.decoder_layers.""" if "weight" in key: lowerCamelCase : Dict = val[:dim, :] lowerCamelCase : Optional[Any] = val[dim : dim * 2, :] lowerCamelCase : Tuple = val[-dim:, :] elif "bias" in key: lowerCamelCase : Optional[Any] = val[:dim] lowerCamelCase : Optional[Any] = val[dim : dim * 2] lowerCamelCase : Optional[Any] = val[-dim:] else: lowerCamelCase : Optional[int] = config.hidden_size lowerCamelCase : Tuple = """vit.encoder.layer.""" if "weight" in key: lowerCamelCase : Optional[int] = val[:dim, :] lowerCamelCase : Union[str, Any] = val[dim : dim * 2, :] lowerCamelCase : Dict = val[-dim:, :] elif "bias" in key: lowerCamelCase : Any = val[:dim] lowerCamelCase : Union[str, Any] = val[dim : dim * 2] lowerCamelCase : Optional[Any] = val[-dim:] else: lowerCamelCase : Dict = val return orig_state_dict def snake_case ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] ) -> Any: lowerCamelCase : Optional[int] = ViTMAEConfig() if "large" in checkpoint_url: lowerCamelCase : List[Any] = 1024 lowerCamelCase : Union[str, Any] = 4096 lowerCamelCase : Dict = 24 lowerCamelCase : int = 16 elif "huge" in checkpoint_url: lowerCamelCase : Dict = 14 lowerCamelCase : int = 1280 lowerCamelCase : Any = 5120 lowerCamelCase : int = 32 lowerCamelCase : Dict = 16 lowerCamelCase : str = ViTMAEForPreTraining(UpperCamelCase__ ) lowerCamelCase : List[Any] = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location="""cpu""" )["""model"""] lowerCamelCase : Optional[int] = ViTMAEImageProcessor(size=config.image_size ) lowerCamelCase : int = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() lowerCamelCase : Tuple = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" lowerCamelCase : Union[str, Any] = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) lowerCamelCase : str = ViTMAEImageProcessor(size=config.image_size ) lowerCamelCase : Tuple = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) lowerCamelCase : Any = model(**UpperCamelCase__ ) lowerCamelCase : int = outputs.logits if "large" in checkpoint_url: lowerCamelCase : List[Any] = torch.tensor( [[-0.7_3_0_9, -0.7_1_2_8, -1.0_1_6_9], [-1.0_1_6_1, -0.9_0_5_8, -1.1_8_7_8], [-1.0_4_7_8, -0.9_4_1_1, -1.1_9_1_1]] ) elif "huge" in checkpoint_url: lowerCamelCase : Union[str, Any] = torch.tensor( [[-1.1_5_9_9, -0.9_1_9_9, -1.2_2_2_1], [-1.1_9_5_2, -0.9_2_6_9, -1.2_3_0_7], [-1.2_1_4_3, -0.9_3_3_7, -1.2_2_6_2]] ) else: lowerCamelCase : int = torch.tensor( [[-0.9_1_9_2, -0.8_4_8_1, -1.1_2_5_9], [-1.1_3_4_9, -1.0_0_3_4, -1.2_5_9_9], [-1.1_7_5_7, -1.0_4_2_9, -1.2_7_2_6]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , UpperCamelCase__ , atol=1E-4 ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCamelCase__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __lowerCamelCase :Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __lowerCamelCase :Union[str, Any] = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
222
1
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel __SCREAMING_SNAKE_CASE : Optional[int] = logging.getLogger(__name__) def snake_case_ ( lowercase__ : Optional[int] , lowercase__ : str ): '''simple docstring''' if os.path.exists(lowercase__ ): if os.path.exists(os.path.join(lowercase__ , """config.json""" ) ) and os.path.isfile( os.path.join(lowercase__ , """config.json""" ) ): os.remove(os.path.join(lowercase__ , """config.json""" ) ) if os.path.exists(os.path.join(lowercase__ , """pytorch_model.bin""" ) ) and os.path.isfile( os.path.join(lowercase__ , """pytorch_model.bin""" ) ): os.remove(os.path.join(lowercase__ , """pytorch_model.bin""" ) ) else: os.makedirs(lowercase__ ) model.save_pretrained(lowercase__ ) def snake_case_ ( lowercase__ : List[str] , lowercase__ : Tuple=False ): '''simple docstring''' _lowerCAmelCase =2 if unlogit: _lowerCAmelCase =torch.pow(lowercase__ , lowercase__ ) _lowerCAmelCase =p * torch.log(lowercase__ ) _lowerCAmelCase =0 return -plogp.sum(dim=-1 ) def snake_case_ ( lowercase__ : List[str] ): '''simple docstring''' logger.info("""lv, h >\t""" + """\t""".join(f"{x + 1}" for x in range(len(lowercase__ ) ) ) ) for row in range(len(lowercase__ ) ): if tensor.dtype != torch.long: logger.info(f"layer {row + 1}:\t" + """\t""".join(f"{x:.5f}" for x in tensor[row].cpu().data ) ) else: logger.info(f"layer {row + 1}:\t" + """\t""".join(f"{x:d}" for x in tensor[row].cpu().data ) ) def snake_case_ ( lowercase__ : Union[str, Any] , lowercase__ : Any , lowercase__ : Union[str, Any] , lowercase__ : List[str]=True , lowercase__ : Optional[Any]=True , lowercase__ : Optional[int]=None , lowercase__ : List[str]=False ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase =model.config.num_hidden_layers, model.config.num_attention_heads _lowerCAmelCase =torch.zeros(lowercase__ , lowercase__ ).to(args.device ) _lowerCAmelCase =torch.zeros(lowercase__ , lowercase__ ).to(args.device ) if head_mask is None: _lowerCAmelCase =torch.ones(lowercase__ , lowercase__ ).to(args.device ) head_mask.requires_grad_(requires_grad=lowercase__ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _lowerCAmelCase =None _lowerCAmelCase =0.0 _lowerCAmelCase =0.0 for step, inputs in enumerate(tqdm(lowercase__ , desc="""Iteration""" , disable=args.local_rank not in [-1, 0] ) ): _lowerCAmelCase =tuple(t.to(args.device ) for t in inputs ) ((_lowerCAmelCase) , ) =inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _lowerCAmelCase =model(lowercase__ , labels=lowercase__ , head_mask=lowercase__ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(lowercase__ ): _lowerCAmelCase =entropy(attn.detach() , lowercase__ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(lowercase__ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _lowerCAmelCase =2 _lowerCAmelCase =torch.pow(torch.pow(lowercase__ , lowercase__ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: _lowerCAmelCase =(head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("""Attention entropies""" ) print_ad_tensor(lowercase__ ) if compute_importance: logger.info("""Head importance scores""" ) print_ad_tensor(lowercase__ ) logger.info("""Head ranked by importance scores""" ) _lowerCAmelCase =torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _lowerCAmelCase =torch.arange( head_importance.numel() , device=args.device ) _lowerCAmelCase =head_ranks.view_as(lowercase__ ) print_ad_tensor(lowercase__ ) return attn_entropy, head_importance, total_loss def snake_case_ ( lowercase__ : str , lowercase__ : int , lowercase__ : Tuple ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =compute_heads_importance(lowercase__ , lowercase__ , lowercase__ , compute_entropy=lowercase__ ) _lowerCAmelCase =1 / loss # instead of downsteam score use the LM loss logger.info("""Pruning: original score: %f, threshold: %f""" , lowercase__ , original_score * args.masking_threshold ) _lowerCAmelCase =torch.ones_like(lowercase__ ) _lowerCAmelCase =max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _lowerCAmelCase =original_score while current_score >= original_score * args.masking_threshold: _lowerCAmelCase =new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _lowerCAmelCase =float("""Inf""" ) _lowerCAmelCase =head_importance.view(-1 ).sort()[1] if len(lowercase__ ) <= num_to_mask: print("""BREAK BY num_to_mask""" ) break # mask heads _lowerCAmelCase =current_heads_to_mask[:num_to_mask] logger.info("""Heads to mask: %s""" , str(current_heads_to_mask.tolist() ) ) _lowerCAmelCase =new_head_mask.view(-1 ) _lowerCAmelCase =0.0 _lowerCAmelCase =new_head_mask.view_as(lowercase__ ) _lowerCAmelCase =new_head_mask.clone().detach() print_ad_tensor(lowercase__ ) # Compute metric and head importance again _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =compute_heads_importance( lowercase__ , lowercase__ , lowercase__ , compute_entropy=lowercase__ , head_mask=lowercase__ ) _lowerCAmelCase =1 / loss logger.info( """Masking: current score: %f, remaining heads %d (%.1f percents)""" , lowercase__ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info("""Final head mask""" ) print_ad_tensor(lowercase__ ) np.save(os.path.join(args.output_dir , """head_mask.npy""" ) , head_mask.detach().cpu().numpy() ) return head_mask def snake_case_ ( lowercase__ : List[Any] , lowercase__ : int , lowercase__ : int , lowercase__ : Optional[int] ): '''simple docstring''' _lowerCAmelCase =datetime.now() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =compute_heads_importance( lowercase__ , lowercase__ , lowercase__ , compute_entropy=lowercase__ , compute_importance=lowercase__ , head_mask=lowercase__ ) _lowerCAmelCase =1 / loss _lowerCAmelCase =datetime.now() - before_time _lowerCAmelCase =sum(p.numel() for p in model.parameters() ) _lowerCAmelCase ={ layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowercase__ ) ) } for k, v in heads_to_prune.items(): if isinstance(lowercase__ , lowercase__ ): _lowerCAmelCase =[ v, ] assert sum(len(lowercase__ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(lowercase__ ) _lowerCAmelCase =sum(p.numel() for p in model.parameters() ) _lowerCAmelCase =datetime.now() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =compute_heads_importance( lowercase__ , lowercase__ , lowercase__ , compute_entropy=lowercase__ , compute_importance=lowercase__ , head_mask=lowercase__ , actually_pruned=lowercase__ , ) _lowerCAmelCase =1 / loss _lowerCAmelCase =datetime.now() - before_time logger.info( """Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)""" , lowercase__ , lowercase__ , pruned_num_params / original_num_params * 1_00 , ) logger.info("""Pruning: score with masking: %f score with pruning: %f""" , lowercase__ , lowercase__ ) logger.info("""Pruning: speed ratio (original timing / new timing): %f percents""" , original_time / new_time * 1_00 ) save_model(lowercase__ , args.output_dir ) def snake_case_ ( ): '''simple docstring''' _lowerCAmelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( """--data_dir""" , default=lowercase__ , type=lowercase__ , required=lowercase__ , help="""The input data dir. Should contain the .tsv files (or other data files) for the task.""" , ) parser.add_argument( """--model_name_or_path""" , default=lowercase__ , type=lowercase__ , required=lowercase__ , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--output_dir""" , default=lowercase__ , type=lowercase__ , required=lowercase__ , help="""The output directory where the model predictions and checkpoints will be written.""" , ) # Other parameters parser.add_argument( """--config_name""" , default="""""" , type=lowercase__ , help="""Pretrained config name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--tokenizer_name""" , default="""""" , type=lowercase__ , help="""Pretrained tokenizer name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--cache_dir""" , default=lowercase__ , type=lowercase__ , help="""Where do you want to store the pre-trained models downloaded from s3""" , ) parser.add_argument( """--data_subset""" , type=lowercase__ , default=-1 , help="""If > 0: limit the data to a subset of data_subset instances.""" ) parser.add_argument( """--overwrite_output_dir""" , action="""store_true""" , help="""Whether to overwrite data in output directory""" ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) parser.add_argument( """--dont_normalize_importance_by_layer""" , action="""store_true""" , help="""Don't normalize importance score by layers""" ) parser.add_argument( """--dont_normalize_global_importance""" , action="""store_true""" , help="""Don't normalize all importance scores between 0 and 1""" , ) parser.add_argument( """--try_masking""" , action="""store_true""" , help="""Whether to try to mask head until a threshold of accuracy.""" ) parser.add_argument( """--masking_threshold""" , default=0.9 , type=lowercase__ , help="""masking threshold in term of metrics (stop masking when metric < threshold * original metric value).""" , ) parser.add_argument( """--masking_amount""" , default=0.1 , type=lowercase__ , help="""Amount to heads to masking at each masking step.""" ) parser.add_argument("""--metric_name""" , default="""acc""" , type=lowercase__ , help="""Metric to use for head masking.""" ) parser.add_argument( """--max_seq_length""" , default=1_28 , type=lowercase__ , help=( """The maximum total input sequence length after WordPiece tokenization. \n""" """Sequences longer than this will be truncated, sequences shorter padded.""" ) , ) parser.add_argument("""--batch_size""" , default=1 , type=lowercase__ , help="""Batch size.""" ) parser.add_argument("""--seed""" , type=lowercase__ , default=42 ) parser.add_argument("""--local_rank""" , type=lowercase__ , default=-1 , help="""local_rank for distributed training on gpus""" ) parser.add_argument("""--no_cuda""" , action="""store_true""" , help="""Whether not to use CUDA when available""" ) parser.add_argument("""--server_ip""" , type=lowercase__ , default="""""" , help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" , type=lowercase__ , default="""""" , help="""Can be used for distant debugging.""" ) _lowerCAmelCase =parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowercase__ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _lowerCAmelCase =torch.device("""cuda""" if torch.cuda.is_available() and not args.no_cuda else """cpu""" ) _lowerCAmelCase =0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _lowerCAmelCase =torch.device("""cuda""" , args.local_rank ) _lowerCAmelCase =1 torch.distributed.init_process_group(backend="""nccl""" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("""device: {} n_gpu: {}, distributed: {}""".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _lowerCAmelCase =GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _lowerCAmelCase =nn.parallel.DistributedDataParallel( lowercase__ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowercase__ ) elif args.n_gpu > 1: _lowerCAmelCase =nn.DataParallel(lowercase__ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=lowercase__ ) torch.save(lowercase__ , os.path.join(args.output_dir , """run_args.bin""" ) ) logger.info("""Training/evaluation parameters %s""" , lowercase__ ) # Prepare dataset _lowerCAmelCase =np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _lowerCAmelCase =(torch.from_numpy(lowercase__ ),) _lowerCAmelCase =TensorDataset(*lowercase__ ) _lowerCAmelCase =RandomSampler(lowercase__ ) _lowerCAmelCase =DataLoader(lowercase__ , sampler=lowercase__ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(lowercase__ , lowercase__ , lowercase__ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _lowerCAmelCase =mask_heads(lowercase__ , lowercase__ , lowercase__ ) prune_heads(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if __name__ == "__main__": main()
149
from typing import TYPE_CHECKING from ...utils import _LazyModule __SCREAMING_SNAKE_CASE : Optional[Any] = {'''tokenization_wav2vec2_phoneme''': ['''Wav2Vec2PhonemeCTCTokenizer''']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys __SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
149
1
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow UpperCamelCase_ = False class a ( unittest.TestCase ): def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : Dict=32 ): """simple docstring""" set_seed(0 ) __lowerCAmelCase = UNetaDModel(sample_size=snake_case__ , in_channels=3 , out_channels=3 ) __lowerCAmelCase = torch.optim.SGD(model.parameters() , lr=0.0_0_0_1 ) return model, optimizer @slow def UpperCAmelCase__ ( self : Any ): """simple docstring""" __lowerCAmelCase = "cpu" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable __lowerCAmelCase = DDPMScheduler( num_train_timesteps=1_000 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule="linear" , clip_sample=snake_case__ , ) __lowerCAmelCase = DDIMScheduler( num_train_timesteps=1_000 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule="linear" , clip_sample=snake_case__ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) __lowerCAmelCase = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(snake_case__ ) for _ in range(4 )] __lowerCAmelCase = [torch.randn((4, 3, 32, 32) ).to(snake_case__ ) for _ in range(4 )] __lowerCAmelCase = [torch.randint(0 , 1_000 , (4,) ).long().to(snake_case__ ) for _ in range(4 )] # train with a DDPM scheduler __lowerCAmelCase , __lowerCAmelCase = self.get_model_optimizer(resolution=32 ) model.train().to(snake_case__ ) for i in range(4 ): optimizer.zero_grad() __lowerCAmelCase = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) __lowerCAmelCase = model(snake_case__ , timesteps[i] ).sample __lowerCAmelCase = torch.nn.functional.mse_loss(snake_case__ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM __lowerCAmelCase , __lowerCAmelCase = self.get_model_optimizer(resolution=32 ) model.train().to(snake_case__ ) for i in range(4 ): optimizer.zero_grad() __lowerCAmelCase = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) __lowerCAmelCase = model(snake_case__ , timesteps[i] ).sample __lowerCAmelCase = torch.nn.functional.mse_loss(snake_case__ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) ) self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) )
611
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger("transformers.models.speecht5") def _UpperCAmelCase ( UpperCamelCase: Optional[int] , UpperCamelCase: Optional[Any] , UpperCamelCase: Optional[int] ): """simple docstring""" hf_model.apply_weight_norm() __lowerCAmelCase = checkpoint["input_conv.weight_g"] __lowerCAmelCase = checkpoint["input_conv.weight_v"] __lowerCAmelCase = checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates ) ): __lowerCAmelCase = checkpoint[F"upsamples.{i}.1.weight_g"] __lowerCAmelCase = checkpoint[F"upsamples.{i}.1.weight_v"] __lowerCAmelCase = checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): __lowerCAmelCase = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] __lowerCAmelCase = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] __lowerCAmelCase = checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] __lowerCAmelCase = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] __lowerCAmelCase = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] __lowerCAmelCase = checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] __lowerCAmelCase = checkpoint["output_conv.1.weight_g"] __lowerCAmelCase = checkpoint["output_conv.1.weight_v"] __lowerCAmelCase = checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() @torch.no_grad() def _UpperCAmelCase ( UpperCamelCase: Tuple , UpperCamelCase: Dict , UpperCamelCase: Any , UpperCamelCase: str=None , UpperCamelCase: Tuple=None , ): """simple docstring""" if config_path is not None: __lowerCAmelCase = SpeechTaHifiGanConfig.from_pretrained(UpperCamelCase ) else: __lowerCAmelCase = SpeechTaHifiGanConfig() __lowerCAmelCase = SpeechTaHifiGan(UpperCamelCase ) __lowerCAmelCase = torch.load(UpperCamelCase ) load_weights(orig_checkpoint["model"]["generator"] , UpperCamelCase , UpperCamelCase ) __lowerCAmelCase = np.load(UpperCamelCase ) __lowerCAmelCase = stats[0].reshape(-1 ) __lowerCAmelCase = stats[1].reshape(-1 ) __lowerCAmelCase = torch.from_numpy(UpperCamelCase ).float() __lowerCAmelCase = torch.from_numpy(UpperCamelCase ).float() model.save_pretrained(UpperCamelCase ) if repo_id: print("Pushing to the hub..." ) model.push_to_hub(UpperCamelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) UpperCamelCase_ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
611
1
'''simple docstring''' from __future__ import annotations from collections import Counter from random import random class lowerCAmelCase_ : """simple docstring""" def __init__( self : str ): '''simple docstring''' __a = {} def __a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' __a = {} def __a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : float ): '''simple docstring''' if nodea not in self.connections: self.add_node(SCREAMING_SNAKE_CASE__ ) if nodea not in self.connections: self.add_node(SCREAMING_SNAKE_CASE__ ) __a = probability def __a ( self : List[str] ): '''simple docstring''' return list(self.connections ) def __a ( self : str , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' __a = 0 __a = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> dict[str, int]: """simple docstring""" __a = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __a = Counter(graph.get_nodes() ) __a = start for _ in range(__SCREAMING_SNAKE_CASE ): __a = graph.transition(__SCREAMING_SNAKE_CASE ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
707
'''simple docstring''' def __lowercase ( __SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" __a = [] __a = set({"""(""", """[""", """{"""} ) __a = set({""")""", """]""", """}"""} ) __a = {"""{""": """}""", """[""": """]""", """(""": """)"""} for i in range(len(__SCREAMING_SNAKE_CASE ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(__SCREAMING_SNAKE_CASE ) == 0 or (len(__SCREAMING_SNAKE_CASE ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(__SCREAMING_SNAKE_CASE ) == 0 def __lowercase ( ) -> List[str]: """simple docstring""" __a = input("""Enter sequence of brackets: """ ) if is_balanced(__SCREAMING_SNAKE_CASE ): print(__SCREAMING_SNAKE_CASE , """is balanced""" ) else: print(__SCREAMING_SNAKE_CASE , """is not balanced""" ) if __name__ == "__main__": main()
201
0