code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def lowerCamelCase_( ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "-m" , "--pretrained_model_name_or_path" , type=_lowerCamelCase , default=_lowerCamelCase , required=_lowerCamelCase , help="Path to pretrained model or model identifier from huggingface.co/models." , ) parser.add_argument( "-c" , "--caption" , type=_lowerCamelCase , default="robotic cat with wings" , help="Text used to generate images." , ) parser.add_argument( "-n" , "--images_num" , type=_lowerCamelCase , default=4 , help="How much images to generate." , ) parser.add_argument( "-s" , "--seed" , type=_lowerCamelCase , default=42 , help="Seed for random process." , ) parser.add_argument( "-ci" , "--cuda_id" , type=_lowerCamelCase , default=0 , help="cuda_id." , ) _lowerCamelCase : Optional[int] = parser.parse_args() return args def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' if not len(_lowerCamelCase ) == rows * cols: raise ValueError("The specified number of rows and columns are not correct." ) _lowerCamelCase, _lowerCamelCase : str = imgs[0].size _lowerCamelCase : List[Any] = Image.new("RGB" , size=(cols * w, rows * h) ) _lowerCamelCase, _lowerCamelCase : List[Any] = grid.size for i, img in enumerate(_lowerCamelCase ): grid.paste(_lowerCamelCase , box=(i % cols * w, i // cols * h) ) return grid def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase="robotic cat with wings" , _lowerCamelCase=7.5 , _lowerCamelCase=50 , _lowerCamelCase=1 , _lowerCamelCase=42 , ) -> Dict: '''simple docstring''' _lowerCamelCase : Any = torch.Generator(pipeline.device ).manual_seed(_lowerCamelCase ) _lowerCamelCase : str = pipeline( _lowerCamelCase , guidance_scale=_lowerCamelCase , num_inference_steps=_lowerCamelCase , generator=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , ).images _lowerCamelCase : int = int(math.sqrt(_lowerCamelCase ) ) _lowerCamelCase : str = image_grid(_lowerCamelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images _lowerCAmelCase : Optional[Any] = parse_args() # Load models and create wrapper for stable diffusion _lowerCAmelCase : List[str] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') _lowerCAmelCase : List[str] = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') _lowerCAmelCase : Dict = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') _lowerCAmelCase : Any = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') _lowerCAmelCase : int = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) _lowerCAmelCase : int = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): _lowerCAmelCase : Union[str, Any] = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: _lowerCAmelCase : int = unet.to(torch.device('''cuda''', args.cuda_id)) _lowerCAmelCase : List[Any] = pipeline.to(unet.device) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) _lowerCAmelCase : Dict = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
46
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): lowerCAmelCase :Any = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right lowerCAmelCase :str = 1_2_8_0_2_2 lowerCAmelCase :int = 1_2_8_0_2_8 @require_sentencepiece class _lowerCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : str = MaMaaaTokenizer A_ : Any = False A_ : List[str] = False A_ : Optional[Any] = True def __lowerCAmelCase ( self : List[Any] ) -> int: super().setUp() __magic_name__ : int = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] __magic_name__ : Optional[int] = dict(zip(_A , range(len(_A ) ) ) ) __magic_name__ : int = Path(self.tmpdirname ) save_json(_A , save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_A , save_dir / VOCAB_FILES_NAMES['spm_file'] ) __magic_name__ : Optional[Any] = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : Optional[int] , **_A : int ) -> str: return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **_A ) def __lowerCAmelCase ( self : Any , _A : str ) -> Optional[int]: return ( "This is a test", "This is a test", ) def __lowerCAmelCase ( self : Union[str, Any] ) -> int: __magic_name__ : Union[str, Any] = '</s>' __magic_name__ : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def __lowerCAmelCase ( self : int ) -> Optional[int]: __magic_name__ : List[str] = self.get_tokenizer() __magic_name__ : Optional[Any] = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<s>' ) self.assertEqual(len(_A ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip('Skip this test while all models are still to be uploaded.' ) def __lowerCAmelCase ( self : Dict ) -> List[str]: pass def __lowerCAmelCase ( self : Union[str, Any] ) -> str: __magic_name__ : Any = self.get_tokenizer() __magic_name__ : Optional[int] = tokenizer.tokenize('This is a test' ) self.assertListEqual(_A , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [2, 3, 4, 5, 6] , ) __magic_name__ : str = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(_A , ['▁This', '▁is', '▁a', '▁t', 'est'] ) __magic_name__ : Union[str, Any] = tokenizer.convert_tokens_to_string(_A ) self.assertEqual(_A , 'This is a test' ) @slow def __lowerCAmelCase ( self : Optional[int] ) -> int: # fmt: off __magic_name__ : int = {'input_ids': [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='facebook/m2m100_418M' , revision='c168bae485c864188cf9aa0e4108b0b6934dc91e' , ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' A_ : str = """facebook/m2m100_418M""" A_ : Tuple = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] A_ : Tuple = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off A_ : List[Any] = [EN_CODE, 5_93, 19_49, 11_57_81, 4, 7_15_86, 42_34, 6_06_33, 12_62_33, 4_32, 12_38_08, 1_55_92, 11_97, 11_71_32, 12_06_18, 5, 2] @classmethod def __lowerCAmelCase ( cls : int ) -> List[str]: __magic_name__ : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en' , tgt_lang='fr' ) __magic_name__ : Optional[int] = 1 return cls def __lowerCAmelCase ( self : List[str] ) -> str: self.assertEqual(self.tokenizer.get_lang_id('ar' ) , 128006 ) self.assertEqual(self.tokenizer.get_lang_id('en' ) , 128022 ) self.assertEqual(self.tokenizer.get_lang_id('ro' ) , 128076 ) self.assertEqual(self.tokenizer.get_lang_id('mr' ) , 128063 ) def __lowerCAmelCase ( self : Any ) -> Union[str, Any]: __magic_name__ : Optional[int] = self.tokenizer.get_vocab() self.assertEqual(len(_A ) , self.tokenizer.vocab_size ) self.assertEqual(vocab['<unk>'] , 3 ) self.assertIn(self.tokenizer.get_lang_token('en' ) , _A ) def __lowerCAmelCase ( self : Optional[int] ) -> Any: __magic_name__ : List[str] = 'en' __magic_name__ : str = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _A ) def __lowerCAmelCase ( self : int ) -> List[str]: self.assertIn(_A , self.tokenizer.all_special_ids ) # fmt: off __magic_name__ : List[str] = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2] # fmt: on __magic_name__ : List[Any] = self.tokenizer.decode(_A , skip_special_tokens=_A ) __magic_name__ : Tuple = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_A ) self.assertEqual(_A , _A ) self.assertNotIn(self.tokenizer.eos_token , _A ) def __lowerCAmelCase ( self : int ) -> Optional[Any]: __magic_name__ : Any = tempfile.mkdtemp() __magic_name__ : List[str] = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(_A ) __magic_name__ : List[str] = MaMaaaTokenizer.from_pretrained(_A ) self.assertDictEqual(new_tok.lang_token_to_id , _A ) @require_torch def __lowerCAmelCase ( self : Dict ) -> List[str]: __magic_name__ : Tuple = 'en' __magic_name__ : Dict = 'fr' __magic_name__ : List[Any] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_A , return_tensors='pt' ) __magic_name__ : int = shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: __magic_name__ : Union[str, Any] = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __lowerCAmelCase ( self : int ) -> Any: __magic_name__ : int = 'mr' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('mr' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) __magic_name__ : Optional[int] = 'zh' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('zh' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __lowerCAmelCase ( self : str ) -> List[Any]: __magic_name__ : Union[str, Any] = 'mr' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('mr' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) __magic_name__ : Union[str, Any] = 'zh' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('zh' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __lowerCAmelCase ( self : str ) -> Union[str, Any]: __magic_name__ : Union[str, Any] = self.tokenizer._build_translation_inputs('A test' , return_tensors='pt' , src_lang='en' , tgt_lang='ar' ) self.assertEqual( nested_simplify(_A ) , { # en_XX, A, test, EOS 'input_ids': [[128022, 58, 4183, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 128006, } , )
561
0
"""simple docstring""" from math import factorial def _SCREAMING_SNAKE_CASE ( __snake_case : int = 1_00 ): '''simple docstring''' return sum(int(__snake_case ) for x in str(factorial(__snake_case ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
134
"""simple docstring""" import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class a : def UpperCamelCase_ ( self ): torch.manual_seed(0 ) lowercase = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) lowercase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) lowercase = UNetaDConditionModel( sample_size=3_2 , layers_per_block=1 , block_out_channels=[3_2, 6_4] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowercase = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_0_0_1 , beta_end=0.0_2 , thresholding=_lowerCamelCase , dynamic_thresholding_ratio=0.9_5 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase_ ( self ): torch.manual_seed(0 ) lowercase = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) lowercase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) lowercase = UNetaDConditionModel( sample_size=3_2 , layers_per_block=[1, 2] , block_out_channels=[3_2, 6_4] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.4_1_4 , time_embedding_act_fn='gelu' , time_embedding_dim=3_2 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowercase = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_0_0_1 , beta_end=0.0_2 , thresholding=_lowerCamelCase , dynamic_thresholding_ratio=0.9_5 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) lowercase = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_0_0_1 , beta_end=0.0_2 , ) torch.manual_seed(0 ) lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase_ ( self ): lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowercase = self.get_dummy_inputs(_lowerCamelCase ) lowercase = inputs['prompt'] lowercase = inputs['generator'] lowercase = inputs['num_inference_steps'] lowercase = inputs['output_type'] if "image" in inputs: lowercase = inputs['image'] else: lowercase = None if "mask_image" in inputs: lowercase = inputs['mask_image'] else: lowercase = None if "original_image" in inputs: lowercase = inputs['original_image'] else: lowercase = None lowercase , lowercase = pipe.encode_prompt(_lowerCamelCase ) # inputs with prompt converted to embeddings lowercase = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: lowercase = image if mask_image is not None: lowercase = mask_image if original_image is not None: lowercase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowercase = pipe(**_lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_lowerCamelCase ) lowercase = self.pipeline_class.from_pretrained(_lowerCamelCase ) pipe_loaded.to(_lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=_lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(_lowerCamelCase , _lowerCamelCase ) is None , F'`{optional_component}` did not stay set to None after loading.' , ) lowercase = self.get_dummy_inputs(_lowerCamelCase ) lowercase = inputs['generator'] lowercase = inputs['num_inference_steps'] lowercase = inputs['output_type'] # inputs with prompt converted to embeddings lowercase = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: lowercase = image if mask_image is not None: lowercase = mask_image if original_image is not None: lowercase = original_image lowercase = pipe_loaded(**_lowerCamelCase )[0] lowercase = np.abs(to_np(_lowerCamelCase ) - to_np(_lowerCamelCase ) ).max() self.assertLess(_lowerCamelCase , 1e-4 ) def UpperCamelCase_ ( self ): lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowercase = self.get_dummy_inputs(_lowerCamelCase ) lowercase = pipe(**_lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_lowerCamelCase ) lowercase = self.pipeline_class.from_pretrained(_lowerCamelCase ) pipe_loaded.to(_lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=_lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests lowercase = self.get_dummy_inputs(_lowerCamelCase ) lowercase = pipe_loaded(**_lowerCamelCase )[0] lowercase = np.abs(to_np(_lowerCamelCase ) - to_np(_lowerCamelCase ) ).max() self.assertLess(_lowerCamelCase , 1e-4 )
134
1
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def a__ ( A__, A__=False ): try: SCREAMING_SNAKE_CASE_ : Optional[int] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. SCREAMING_SNAKE_CASE_ : Dict = default else: # KEY is set, convert it to True or False. try: SCREAMING_SNAKE_CASE_ : Optional[Any] = strtobool(A__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'''If set, {key} must be yes or no.''' ) return _value lowerCAmelCase__ : Tuple =parse_flag_from_env('RUN_SLOW', default=False) lowerCAmelCase__ : List[Any] =parse_flag_from_env('RUN_REMOTE', default=False) lowerCAmelCase__ : Tuple =parse_flag_from_env('RUN_LOCAL', default=True) lowerCAmelCase__ : Any =parse_flag_from_env('RUN_PACKAGED', default=True) # Compression lowerCAmelCase__ : Any =pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') lowerCAmelCase__ : int =pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') lowerCAmelCase__ : Union[str, Any] =pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio lowerCAmelCase__ : List[Any] =pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam lowerCAmelCase__ : str =pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility lowerCAmelCase__ : Optional[int] =pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows lowerCAmelCase__ : Dict =pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def a__ ( A__ ): try: import faiss # noqa except ImportError: SCREAMING_SNAKE_CASE_ : str = unittest.skip('test requires faiss' )(A__ ) return test_case def a__ ( A__ ): try: import regex # noqa except ImportError: SCREAMING_SNAKE_CASE_ : List[Any] = unittest.skip('test requires regex' )(A__ ) return test_case def a__ ( A__ ): try: import elasticsearch # noqa except ImportError: SCREAMING_SNAKE_CASE_ : List[Any] = unittest.skip('test requires elasticsearch' )(A__ ) return test_case def a__ ( A__ ): try: import sqlalchemy # noqa except ImportError: SCREAMING_SNAKE_CASE_ : Dict = unittest.skip('test requires sqlalchemy' )(A__ ) return test_case def a__ ( A__ ): if not config.TORCH_AVAILABLE: SCREAMING_SNAKE_CASE_ : Optional[Any] = unittest.skip('test requires PyTorch' )(A__ ) return test_case def a__ ( A__ ): if not config.TF_AVAILABLE: SCREAMING_SNAKE_CASE_ : int = unittest.skip('test requires TensorFlow' )(A__ ) return test_case def a__ ( A__ ): if not config.JAX_AVAILABLE: SCREAMING_SNAKE_CASE_ : List[str] = unittest.skip('test requires JAX' )(A__ ) return test_case def a__ ( A__ ): if not config.PIL_AVAILABLE: SCREAMING_SNAKE_CASE_ : Tuple = unittest.skip('test requires Pillow' )(A__ ) return test_case def a__ ( A__ ): try: import transformers # noqa F401 except ImportError: return unittest.skip('test requires transformers' )(A__ ) else: return test_case def a__ ( A__ ): try: import tiktoken # noqa F401 except ImportError: return unittest.skip('test requires tiktoken' )(A__ ) else: return test_case def a__ ( A__ ): try: import spacy # noqa F401 except ImportError: return unittest.skip('test requires spacy' )(A__ ) else: return test_case def a__ ( A__ ): def _require_spacy_model(A__ ): try: import spacy # noqa F401 spacy.load(A__ ) except ImportError: return unittest.skip('test requires spacy' )(A__ ) except OSError: return unittest.skip('test requires spacy model \'{}\''.format(A__ ) )(A__ ) else: return test_case return _require_spacy_model def a__ ( A__ ): try: import pyspark # noqa F401 except ImportError: return unittest.skip('test requires pyspark' )(A__ ) else: return test_case def a__ ( A__ ): try: import joblibspark # noqa F401 except ImportError: return unittest.skip('test requires joblibspark' )(A__ ) else: return test_case def a__ ( A__ ): if not _run_slow_tests or _run_slow_tests == 0: SCREAMING_SNAKE_CASE_ : Union[str, Any] = unittest.skip('test is slow' )(A__ ) return test_case def a__ ( A__ ): if not _run_local_tests or _run_local_tests == 0: SCREAMING_SNAKE_CASE_ : str = unittest.skip('test is local' )(A__ ) return test_case def a__ ( A__ ): if not _run_packaged_tests or _run_packaged_tests == 0: SCREAMING_SNAKE_CASE_ : int = unittest.skip('test is packaged' )(A__ ) return test_case def a__ ( A__ ): if not _run_remote_tests or _run_remote_tests == 0: SCREAMING_SNAKE_CASE_ : int = unittest.skip('test requires remote' )(A__ ) return test_case def a__ ( *A__ ): def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(A__ ) and name.startswith('test' ): for decorator in decorators: SCREAMING_SNAKE_CASE_ : int = decorator(A__ ) setattr(cls, A__, A__ ) return cls return decorate class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" pass class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = 1 _UpperCAmelCase = 2 @contextmanager def a__ ( A__=OfflineSimulationMode.CONNECTION_FAILS, A__=1E-16 ): SCREAMING_SNAKE_CASE_ : Any = requests.Session().request def timeout_request(A__, A__, A__, **A__ ): # Change the url to an invalid url so that the connection hangs SCREAMING_SNAKE_CASE_ : int = 'https://10.255.255.1' if kwargs.get('timeout' ) is None: raise RequestWouldHangIndefinitelyError( F'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''' ) SCREAMING_SNAKE_CASE_ : Optional[int] = timeout try: return online_request(A__, A__, **A__ ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier SCREAMING_SNAKE_CASE_ : int = url SCREAMING_SNAKE_CASE_ : Optional[int] = e.args[0] SCREAMING_SNAKE_CASE_ : Dict = (max_retry_error.args[0].replace('10.255.255.1', F'''OfflineMock[{url}]''' ),) SCREAMING_SNAKE_CASE_ : Optional[int] = (max_retry_error,) raise def raise_connection_error(A__, A__, **A__ ): raise requests.ConnectionError('Offline mode is enabled.', request=A__ ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('requests.Session.send', A__ ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('requests.Session.request', A__ ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('datasets.config.HF_DATASETS_OFFLINE', A__ ): yield else: raise ValueError('Please use a value from the OfflineSimulationMode enum.' ) @contextmanager def a__ ( *A__, **A__ ): SCREAMING_SNAKE_CASE_ : Dict = str(Path().resolve() ) with tempfile.TemporaryDirectory(*A__, **A__ ) as tmp_dir: try: os.chdir(A__ ) yield finally: os.chdir(A__ ) @contextmanager def a__ ( ): import gc gc.collect() SCREAMING_SNAKE_CASE_ : Optional[Any] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def a__ ( ): import gc gc.collect() SCREAMING_SNAKE_CASE_ : Dict = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def a__ ( A__, A__ ): return deepcopy(A__ ).integers(0, 1_0_0, 1_0 ).tolist() == deepcopy(A__ ).integers(0, 1_0_0, 1_0 ).tolist() def a__ ( A__ ): import decorator from requests.exceptions import HTTPError def _wrapper(A__, *A__, **A__ ): try: return func(*A__, **A__ ) except HTTPError as err: if str(A__ ).startswith('500' ) or str(A__ ).startswith('502' ): pytest.xfail(str(A__ ) ) raise err return decorator.decorator(_wrapper, A__ ) class __lowercase : """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = returncode SCREAMING_SNAKE_CASE_ : Optional[int] = stdout SCREAMING_SNAKE_CASE_ : int = stderr async def a__ ( A__, A__ ): while True: SCREAMING_SNAKE_CASE_ : Tuple = await stream.readline() if line: callback(A__ ) else: break async def a__ ( A__, A__=None, A__=None, A__=None, A__=False, A__=False ): if echo: print('\nRunning: ', ' '.join(A__ ) ) SCREAMING_SNAKE_CASE_ : Dict = await asyncio.create_subprocess_exec( cmd[0], *cmd[1:], stdin=A__, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, env=A__, ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) SCREAMING_SNAKE_CASE_ : List[Any] = [] SCREAMING_SNAKE_CASE_ : Dict = [] def tee(A__, A__, A__, A__="" ): SCREAMING_SNAKE_CASE_ : List[Any] = line.decode('utf-8' ).rstrip() sink.append(A__ ) if not quiet: print(A__, A__, file=A__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout, lambda A__ : tee(A__, A__, sys.stdout, label='stdout:' ) ), _read_stream(p.stderr, lambda A__ : tee(A__, A__, sys.stderr, label='stderr:' ) ), ], timeout=A__, ) return _RunOutput(await p.wait(), A__, A__ ) def a__ ( A__, A__=None, A__=None, A__=1_8_0, A__=False, A__=True ): SCREAMING_SNAKE_CASE_ : str = asyncio.get_event_loop() SCREAMING_SNAKE_CASE_ : List[str] = loop.run_until_complete( _stream_subprocess(A__, env=A__, stdin=A__, timeout=A__, quiet=A__, echo=A__ ) ) SCREAMING_SNAKE_CASE_ : List[str] = ' '.join(A__ ) if result.returncode > 0: SCREAMING_SNAKE_CASE_ : Optional[Any] = '\n'.join(result.stderr ) raise RuntimeError( F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' F'''The combined stderr from workers follows:\n{stderr}''' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F'''\'{cmd_str}\' produced no output.''' ) return result def a__ ( ): SCREAMING_SNAKE_CASE_ : Tuple = os.environ.get('PYTEST_XDIST_WORKER', 'gw0' ) SCREAMING_SNAKE_CASE_ : int = re.sub(r'^gw', '', A__, 0, re.M ) return int(A__ ) def a__ ( ): SCREAMING_SNAKE_CASE_ : Optional[Any] = 2_9_5_0_0 SCREAMING_SNAKE_CASE_ : List[Any] = pytest_xdist_worker_id() return port + uniq_delta
101
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file _A: Union[str, Any] = """Run commands across TPU VMs for initial setup before running `accelerate launch`.""" def _lowerCAmelCase ( _lowerCAmelCase=None )-> Optional[Any]: if subparsers is not None: __UpperCAmelCase = subparsers.add_parser('tpu-config' , description=_description ) else: __UpperCAmelCase = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments __UpperCAmelCase = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=_lowerCAmelCase , default=_lowerCAmelCase , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=_lowerCAmelCase , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=_lowerCAmelCase , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) __UpperCAmelCase = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=_lowerCAmelCase , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=_lowerCAmelCase ) return parser def _lowerCAmelCase ( _lowerCAmelCase )-> int: __UpperCAmelCase = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_lowerCAmelCase ): __UpperCAmelCase = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: __UpperCAmelCase = defaults.command_file if not args.command and defaults.commands is not None: __UpperCAmelCase = defaults.commands if not args.tpu_name: __UpperCAmelCase = defaults.tpu_name if not args.tpu_zone: __UpperCAmelCase = defaults.tpu_zone if args.accelerate_version == "dev": __UpperCAmelCase = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": __UpperCAmelCase = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , _lowerCAmelCase ): __UpperCAmelCase = F'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: __UpperCAmelCase = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _lowerCAmelCase ): __UpperCAmelCase = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate __UpperCAmelCase = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F'pip install {args.accelerate_version}'] new_cmd += args.command __UpperCAmelCase = '; '.join(_lowerCAmelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess __UpperCAmelCase = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'Running {" ".join(_lowerCAmelCase )}' ) return subprocess.run(_lowerCAmelCase ) print('Successfully setup pod.' ) def _lowerCAmelCase ( )-> Any: __UpperCAmelCase = tpu_command_parser() __UpperCAmelCase = parser.parse_args() tpu_command_launcher(_lowerCAmelCase )
126
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: _UpperCAmelCase = None _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} _UpperCAmelCase = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } _UpperCAmelCase = { 'google/fnet-base': 512, 'google/fnet-large': 512, } _UpperCAmelCase = '▁' class snake_case_ ( __lowercase ): A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['input_ids', 'token_type_ids'] A_ = FNetTokenizer def __init__( self : str , _snake_case : List[Any]=None , _snake_case : Union[str, Any]=None , _snake_case : int=False , _snake_case : Union[str, Any]=True , _snake_case : int=True , _snake_case : Union[str, Any]="<unk>" , _snake_case : str="[SEP]" , _snake_case : Union[str, Any]="<pad>" , _snake_case : Union[str, Any]="[CLS]" , _snake_case : Union[str, Any]="[MASK]" , **_snake_case : Optional[Any] , )->Any: '''simple docstring''' __lowerCAmelCase : Optional[int] = ( AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case , normalized=_snake_case ) if isinstance(_snake_case , _snake_case ) else mask_token ) super().__init__( _snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , remove_space=_snake_case , keep_accents=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , **_snake_case , ) __lowerCAmelCase : Dict = do_lower_case __lowerCAmelCase : Optional[int] = remove_space __lowerCAmelCase : Tuple = keep_accents __lowerCAmelCase : List[str] = vocab_file __lowerCAmelCase : Union[str, Any] = False if not self.vocab_file else True def UpperCAmelCase__ ( self : List[Any] , _snake_case : List[int] , _snake_case : Optional[List[int]] = None )->List[int]: '''simple docstring''' __lowerCAmelCase : Any = [self.sep_token_id] __lowerCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ ( self : Dict , _snake_case : List[int] , _snake_case : Optional[List[int]] = None )->List[int]: '''simple docstring''' __lowerCAmelCase : Dict = [self.sep_token_id] __lowerCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self : List[str] , _snake_case : str , _snake_case : Optional[str] = None )->Tuple[str]: '''simple docstring''' if not os.path.isdir(_snake_case ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCAmelCase : Dict = os.path.join( _snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ): copyfile(self.vocab_file , _snake_case ) return (out_vocab_file,)
718
from math import asin, atan, cos, radians, sin, sqrt, tan _UpperCAmelCase = 6_378_137.0 _UpperCAmelCase = 6_356_752.314_245 _UpperCAmelCase = 637_8137 def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :float ) -> float: __lowerCAmelCase : List[Any] = (AXIS_A - AXIS_B) / AXIS_A __lowerCAmelCase : Tuple = atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE ) ) ) __lowerCAmelCase : str = atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE ) ) ) __lowerCAmelCase : int = radians(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = radians(SCREAMING_SNAKE_CASE ) # Equation __lowerCAmelCase : List[str] = sin((phi_a - phi_a) / 2 ) __lowerCAmelCase : Optional[int] = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda __lowerCAmelCase : Optional[Any] = sqrt(sin_sq_phi + (cos(SCREAMING_SNAKE_CASE ) * cos(SCREAMING_SNAKE_CASE ) * sin_sq_lambda) ) return 2 * RADIUS * asin(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
240
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase__ : int = { """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : int = ["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Dict = ["""CLIPFeatureExtractor"""] UpperCamelCase__ : Union[str, Any] = ["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = [ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Any = [ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = [ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
614
'''simple docstring''' import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase ( lowerCamelCase__ ): def __init__( self, lowerCAmelCase, lowerCAmelCase=13, lowerCAmelCase=7, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=False, lowerCAmelCase=False, lowerCAmelCase=False, lowerCAmelCase=2, lowerCAmelCase=99, lowerCAmelCase=0, lowerCAmelCase=32, lowerCAmelCase=5, lowerCAmelCase=4, lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=512, lowerCAmelCase=12, lowerCAmelCase=2, lowerCAmelCase=0.0_2, lowerCAmelCase=3, lowerCAmelCase=4, lowerCAmelCase="last", lowerCAmelCase=None, lowerCAmelCase=None, ): """simple docstring""" lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =seq_length lowerCamelCase_ =is_training lowerCamelCase_ =use_input_lengths lowerCamelCase_ =use_token_type_ids lowerCamelCase_ =use_labels lowerCamelCase_ =gelu_activation lowerCamelCase_ =sinusoidal_embeddings lowerCamelCase_ =causal lowerCamelCase_ =asm lowerCamelCase_ =n_langs lowerCamelCase_ =vocab_size lowerCamelCase_ =n_special lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =type_vocab_size lowerCamelCase_ =type_sequence_label_size lowerCamelCase_ =initializer_range lowerCamelCase_ =num_labels lowerCamelCase_ =num_choices lowerCamelCase_ =summary_type lowerCamelCase_ =use_proj lowerCamelCase_ =scope def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ =None if self.use_input_lengths: lowerCamelCase_ =( ids_tensor([self.batch_size], vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCamelCase_ =None if self.use_token_type_ids: lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.n_langs ) lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None if self.use_labels: lowerCamelCase_ =ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase_ =ids_tensor([self.batch_size], 2 ).float() lowerCamelCase_ =ids_tensor([self.batch_size], self.num_choices ) lowerCamelCase_ =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowercase__ ( self ): """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size, n_special=self.n_special, emb_dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, gelu_activation=self.gelu_activation, sinusoidal_embeddings=self.sinusoidal_embeddings, asm=self.asm, causal=self.causal, n_langs=self.n_langs, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, summary_type=self.summary_type, use_proj=self.use_proj, ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =FlaubertModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =model(lowerCAmelCase, lengths=lowerCAmelCase, langs=lowerCAmelCase ) lowerCamelCase_ =model(lowerCAmelCase, langs=lowerCAmelCase ) lowerCamelCase_ =model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =FlaubertWithLMHeadModel(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =model(lowerCAmelCase, token_type_ids=lowerCAmelCase, labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =FlaubertForQuestionAnsweringSimple(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =model(lowerCAmelCase ) lowerCamelCase_ =model(lowerCAmelCase, start_positions=lowerCAmelCase, end_positions=lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =FlaubertForQuestionAnswering(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =model(lowerCAmelCase ) lowerCamelCase_ =model( lowerCAmelCase, start_positions=lowerCAmelCase, end_positions=lowerCAmelCase, cls_index=lowerCAmelCase, is_impossible=lowerCAmelCase, p_mask=lowerCAmelCase, ) lowerCamelCase_ =model( lowerCAmelCase, start_positions=lowerCAmelCase, end_positions=lowerCAmelCase, cls_index=lowerCAmelCase, is_impossible=lowerCAmelCase, ) ((lowerCamelCase_), ) =result_with_labels.to_tuple() lowerCamelCase_ =model(lowerCAmelCase, start_positions=lowerCAmelCase, end_positions=lowerCAmelCase ) ((lowerCamelCase_), ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape, () ) self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =FlaubertForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =model(lowerCAmelCase ) lowerCamelCase_ =model(lowerCAmelCase, labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =self.num_labels lowerCamelCase_ =FlaubertForTokenClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =model(lowerCAmelCase, attention_mask=lowerCAmelCase, labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =self.num_choices lowerCamelCase_ =FlaubertForMultipleChoice(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase_ =token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase_ =input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase_ =model( lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase, labels=lowerCAmelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.prepare_config_and_inputs() ( ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ) =config_and_inputs lowerCamelCase_ ={ '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase : List[Any] =( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) lowercase : Tuple =( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase=False ): """simple docstring""" lowerCamelCase_ =super()._prepare_for_class(lowerCAmelCase, lowerCAmelCase, return_labels=lowerCAmelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowerCamelCase_ =torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCAmelCase ) lowerCamelCase_ =torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCAmelCase ) return inputs_dict def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =FlaubertModelTester(self ) lowerCamelCase_ =ConfigTester(self, config_class=lowerCAmelCase, emb_dim=37 ) def lowercase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*lowerCAmelCase ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ =FlaubertModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @slow @require_torch_gpu def lowercase__ ( self ): """simple docstring""" lowerCamelCase_, lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowerCamelCase_ =True lowerCamelCase_ =model_class(config=lowerCAmelCase ) lowerCamelCase_ =self._prepare_for_class(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =torch.jit.trace( lowerCAmelCase, (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowerCAmelCase, os.path.join(lowerCAmelCase, '''traced_model.pt''' ) ) lowerCamelCase_ =torch.jit.load(os.path.join(lowerCAmelCase, '''traced_model.pt''' ), map_location=lowerCAmelCase ) loaded(inputs_dict['''input_ids'''].to(lowerCAmelCase ), inputs_dict['''attention_mask'''].to(lowerCAmelCase ) ) @require_torch class __UpperCamelCase ( unittest.TestCase ): @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) lowerCamelCase_ =torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) with torch.no_grad(): lowerCamelCase_ =model(lowerCAmelCase )[0] lowerCamelCase_ =torch.Size((1, 11, 768) ) self.assertEqual(output.shape, lowerCAmelCase ) lowerCamelCase_ =torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], lowerCAmelCase, atol=1e-4 ) )
676
0
from __future__ import annotations from collections.abc import Sequence from typing import Literal def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): __UpperCamelCase =list(snake_case_ ) __UpperCamelCase =list(snake_case_ ) __UpperCamelCase =0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count += 1 __UpperCamelCase ="""_""" if count > 1: return False else: return "".join(snake_case_ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =[] while True: __UpperCamelCase =["""$"""] * len(snake_case_ ) __UpperCamelCase =[] for i in range(len(snake_case_ ) ): for j in range(i + 1 , len(snake_case_ ) ): __UpperCamelCase =compare_string(binary[i] , binary[j] ) if k is False: __UpperCamelCase ="""*""" __UpperCamelCase ="""*""" temp.append('X' ) for i in range(len(snake_case_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case_ ) == 0: return pi __UpperCamelCase =list(set(snake_case_ ) ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any ): __UpperCamelCase =[] for minterm in minterms: __UpperCamelCase ="""""" for _ in range(snake_case_ ): __UpperCamelCase =str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case_ ) return temp def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): __UpperCamelCase =list(snake_case_ ) __UpperCamelCase =list(snake_case_ ) __UpperCamelCase =0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): __UpperCamelCase =[] __UpperCamelCase =[0] * len(snake_case_ ) for i in range(len(chart[0] ) ): __UpperCamelCase =0 __UpperCamelCase =-1 for j in range(len(snake_case_ ) ): if chart[j][i] == 1: count += 1 __UpperCamelCase =j if count == 1: __UpperCamelCase =1 for i in range(len(snake_case_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case_ ) ): __UpperCamelCase =0 temp.append(prime_implicants[i] ) while True: __UpperCamelCase =0 __UpperCamelCase =-1 __UpperCamelCase =0 for i in range(len(snake_case_ ) ): __UpperCamelCase =chart[i].count(1 ) if count_n > max_n: __UpperCamelCase =count_n __UpperCamelCase =i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case_ ) ): __UpperCamelCase =0 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =[[0 for x in range(len(snake_case_ ) )] for x in range(len(snake_case_ ) )] for i in range(len(snake_case_ ) ): __UpperCamelCase =prime_implicants[i].count('_' ) for j in range(len(snake_case_ ) ): if is_for_table(prime_implicants[i] , binary[j] , snake_case_ ): __UpperCamelCase =1 return chart def _UpperCAmelCase ( ): __UpperCamelCase =int(input('Enter the no. of variables\n' ) ) __UpperCamelCase =[ float(snake_case_ ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] __UpperCamelCase =decimal_to_binary(snake_case_ , snake_case_ ) __UpperCamelCase =check(snake_case_ ) print('Prime Implicants are:' ) print(snake_case_ ) __UpperCamelCase =prime_implicant_chart(snake_case_ , snake_case_ ) __UpperCamelCase =selection(snake_case_ , snake_case_ ) print('Essential Prime Implicants are:' ) print(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
710
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , ) -> List[Any]: __UpperCamelCase =size if size is not None else {'height': 18, 'width': 18} __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =num_channels __UpperCamelCase =image_size __UpperCamelCase =min_resolution __UpperCamelCase =max_resolution __UpperCamelCase =do_resize __UpperCamelCase =size __UpperCamelCase =apply_ocr def _a ( self ) -> Tuple: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _a ( self ) -> Optional[Any]: __UpperCamelCase =LayoutLMvaImageProcessingTester(self ) @property def _a ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ) -> List[Any]: __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'apply_ocr' ) ) def _a ( self ) -> Dict: __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def _a ( self ) -> Dict: pass def _a ( self ) -> Optional[Any]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , A_ ) self.assertIsInstance(encoding.boxes , A_ ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> int: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> List[str]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> Any: # with apply_OCR = True __UpperCamelCase =LayoutLMvaImageProcessor() from datasets import load_dataset __UpperCamelCase =load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __UpperCamelCase =Image.open(ds[0]['file'] ).convert('RGB' ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __UpperCamelCase =[['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __UpperCamelCase =[[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , A_ ) self.assertListEqual(encoding.boxes , A_ ) # with apply_OCR = False __UpperCamelCase =LayoutLMvaImageProcessor(apply_ocr=A_ ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
682
0
"""simple docstring""" import requests __lowerCAmelCase : int = '''https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=''' def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Dict = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page["""articles"""] , 1 ): print(F'{i}.) {article["title"]}' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='''<Your BBC News API key goes here>''')
58
"""simple docstring""" # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : str , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : Optional[Any] = { """en""": """Machine learning is great, isn't it?""", """ru""": """Машинное обучение - это здорово, не так ли?""", """de""": """Maschinelles Lernen ist großartig, oder?""", } # BLUE scores as follows: # "pair": [fairseq, transformers] snake_case_ : Optional[int] = { """ru-en""": ["""[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)""", """39.20"""], """en-ru""": ["""[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)""", """33.47"""], """en-de""": ["""[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)""", """42.83"""], """de-en""": ["""[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)""", """41.35"""], } snake_case_ : Optional[Any] = F'{src_lang}-{tgt_lang}' snake_case_ : Dict = F'\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "facebook/wmt19-{src_lang}-{tgt_lang}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n' os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) snake_case_ : List[str] = os.path.join(__UpperCamelCase , """README.md""" ) print(F'Generating {path}' ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(__UpperCamelCase ) # make sure we are under the root of the project __lowerCAmelCase : str = Path(__file__).resolve().parent.parent.parent __lowerCAmelCase : Optional[int] = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Optional[int] = model_name.split('''-''') __lowerCAmelCase : Optional[int] = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
58
1
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=99 , lowercase__=32 , lowercase__=5 , lowercase__=4 , lowercase__=37 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=128 , lowercase__=32 , lowercase__=16 , lowercase__=2 , lowercase__=0.02 , lowercase__=3 , lowercase__=4 , lowercase__=None , ) -> str: """simple docstring""" _snake_case : Tuple = parent _snake_case : Union[str, Any] = batch_size _snake_case : List[Any] = seq_length _snake_case : str = is_training _snake_case : Union[str, Any] = use_input_mask _snake_case : Optional[int] = use_token_type_ids _snake_case : List[Any] = use_labels _snake_case : str = vocab_size _snake_case : Union[str, Any] = hidden_size _snake_case : Dict = num_hidden_layers _snake_case : List[str] = num_attention_heads _snake_case : Dict = intermediate_size _snake_case : Union[str, Any] = hidden_act _snake_case : List[str] = hidden_dropout_prob _snake_case : str = attention_probs_dropout_prob _snake_case : Any = max_position_embeddings _snake_case : List[str] = type_vocab_size _snake_case : Dict = type_sequence_label_size _snake_case : List[str] = initializer_range _snake_case : int = num_labels _snake_case : Optional[int] = num_choices _snake_case : Dict = scope def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" _snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : Optional[int] = None if self.use_input_mask: _snake_case : int = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case : int = None if self.use_token_type_ids: _snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case : Optional[Any] = None _snake_case : Any = None _snake_case : List[str] = None if self.use_labels: _snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case : str = ids_tensor([self.batch_size] , self.num_choices ) _snake_case : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : List[Any] = self.prepare_config_and_inputs() _snake_case : Optional[int] = True _snake_case : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Tuple: """simple docstring""" _snake_case : List[str] = NezhaModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() _snake_case : Dict = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ ) _snake_case : str = model(lowercase__ , token_type_ids=lowercase__ ) _snake_case : Union[str, Any] = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[Any] = True _snake_case : Optional[Any] = NezhaModel(lowercase__ ) model.to(lowercase__ ) model.eval() _snake_case : Union[str, Any] = model( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , encoder_hidden_states=lowercase__ , encoder_attention_mask=lowercase__ , ) _snake_case : Any = model( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , encoder_hidden_states=lowercase__ , ) _snake_case : int = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> int: """simple docstring""" _snake_case : Dict = NezhaForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() _snake_case : int = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> int: """simple docstring""" _snake_case : Optional[Any] = NezhaForNextSentencePrediction(config=lowercase__ ) model.to(lowercase__ ) model.eval() _snake_case : Union[str, Any] = model( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Union[str, Any]: """simple docstring""" _snake_case : str = NezhaForPreTraining(config=lowercase__ ) model.to(lowercase__ ) model.eval() _snake_case : Dict = model( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ , next_sentence_label=lowercase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> int: """simple docstring""" _snake_case : str = NezhaForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() _snake_case : Optional[int] = model( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , start_positions=lowercase__ , end_positions=lowercase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: """simple docstring""" _snake_case : List[Any] = self.num_labels _snake_case : str = NezhaForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() _snake_case : int = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Any: """simple docstring""" _snake_case : Union[str, Any] = self.num_labels _snake_case : Any = NezhaForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() _snake_case : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Optional[int]: """simple docstring""" _snake_case : Dict = self.num_choices _snake_case : Tuple = NezhaForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() _snake_case : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case : Dict = model( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : List[Any] = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : int = config_and_inputs _snake_case : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase (a__ , a__ , a__ , unittest.TestCase ): _lowercase : Optional[int] = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) _lowercase : Dict = ( { """feature-extraction""": NezhaModel, """fill-mask""": NezhaForMaskedLM, """question-answering""": NezhaForQuestionAnswering, """text-classification""": NezhaForSequenceClassification, """token-classification""": NezhaForTokenClassification, """zero-shot""": NezhaForSequenceClassification, } if is_torch_available() else {} ) _lowercase : Any = True def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__=False ) -> Dict: """simple docstring""" _snake_case : Union[str, Any] = super()._prepare_for_class(lowercase__ , lowercase__ , return_labels=lowercase__ ) if return_labels: if model_class in get_values(lowercase__ ): _snake_case : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowercase__ ) _snake_case : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase__ ) return inputs_dict def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : str = NezhaModelTester(self ) _snake_case : List[str] = ConfigTester(self , config_class=lowercase__ , hidden_size=37 ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowercase__ ) def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() _snake_case : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase__ ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" _snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*lowercase__ ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> int: """simple docstring""" for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Any = NezhaModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @slow @require_torch_gpu def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case , _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return _snake_case : Dict = True _snake_case : Tuple = model_class(config=lowercase__ ) _snake_case : Dict = self._prepare_for_class(lowercase__ , lowercase__ ) _snake_case : Dict = torch.jit.trace( lowercase__ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase__ , os.path.join(lowercase__ , '''bert.pt''' ) ) _snake_case : Optional[int] = torch.jit.load(os.path.join(lowercase__ , '''bert.pt''' ) , map_location=lowercase__ ) loaded(inputs_dict['''input_ids'''].to(lowercase__ ) , inputs_dict['''attention_mask'''].to(lowercase__ ) ) @require_torch class lowerCamelCase (unittest.TestCase ): @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[int] = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' ) _snake_case : str = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _snake_case : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _snake_case : Any = model(lowercase__ , attention_mask=lowercase__ )[0] _snake_case : Optional[int] = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , lowercase__ ) _snake_case : Optional[Any] = torch.tensor([[[0.0_685, 0.2_441, 0.1_102], [0.0_600, 0.1_906, 0.1_349], [0.0_221, 0.0_819, 0.0_586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase__ , atol=1E-4 ) ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : str = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' ) _snake_case : str = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _snake_case : List[Any] = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _snake_case : Any = model(lowercase__ , attention_mask=lowercase__ )[0] _snake_case : int = torch.Size((1, 6, 21_128) ) self.assertEqual(output.shape , lowercase__ ) _snake_case : Tuple = torch.tensor( [[-2.7_939, -1.7_902, -2.2_189], [-2.8_585, -1.8_908, -2.3_723], [-2.6_499, -1.7_750, -2.2_558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase__ , atol=1E-4 ) )
47
'''simple docstring''' import os import numpy import onnx def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = a.name _snake_case : List[Any] = b.name _snake_case : Tuple = '''''' _snake_case : Tuple = '''''' _snake_case : Optional[Any] = a == b _snake_case : List[Any] = name_a _snake_case : str = name_b return res def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowerCAmelCase_ , lowerCAmelCase_ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ ) _graph_replace_input_with(node_proto.attribute[1].g , lowerCAmelCase_ , lowerCAmelCase_ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for n in graph_proto.node: _node_replace_input_with(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = list(model.graph.initializer ) _snake_case : List[str] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _snake_case : List[Any] = inits[i].name _snake_case : List[str] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Tuple = os.path.dirname(lowerCAmelCase_ ) _snake_case : str = os.path.basename(lowerCAmelCase_ ) _snake_case : Tuple = onnx.load(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case : Union[str, Any] = list(model.graph.initializer ) _snake_case : Union[str, Any] = set() _snake_case : Any = {} _snake_case : str = [] _snake_case : Union[str, Any] = 0 for i in range(len(lowerCAmelCase_ ) ): if i in dup_set: continue for j in range(i + 1 , len(lowerCAmelCase_ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(lowerCAmelCase_ ) dup_set.add(lowerCAmelCase_ ) _snake_case : List[Any] = inits[j].data_type _snake_case : Dict = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , lowerCAmelCase_ ) total_reduced_size += mem_size _snake_case : Union[str, Any] = inits[i].name _snake_case : Any = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowerCAmelCase_ ) else: _snake_case : Union[str, Any] = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1_024 / 1_024 / 1_024 , '''GB''' ) _snake_case : List[str] = sorted(lowerCAmelCase_ ) _remove_dup_initializers_from_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : List[str] = '''optimized_''' + model_file_name _snake_case : List[Any] = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) onnx.save(lowerCAmelCase_ , lowerCAmelCase_ ) return new_model
47
1
def A(__a: int ): lowerCAmelCase_ = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
122
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
122
1
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowercase_ = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } lowercase_ = { '''allenai/led-base-16384''': 16384, } class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : List[Any] =VOCAB_FILES_NAMES lowerCamelCase__ : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Optional[int] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : str =LEDTokenizer lowerCamelCase__ : int =["input_ids", "attention_mask"] def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="replace" , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="</s>" , lowerCamelCase="<s>" , lowerCamelCase="<unk>" , lowerCamelCase="<pad>" , lowerCamelCase="<mask>" , lowerCamelCase=False , lowerCamelCase=True , **lowerCamelCase , ) -> List[Any]: """simple docstring""" super().__init__( lowerCamelCase , lowerCamelCase , tokenizer_file=lowerCamelCase , errors=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , unk_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , trim_offsets=lowerCamelCase , **lowerCamelCase , ) __magic_name__ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowerCamelCase ) != add_prefix_space: __magic_name__ : Dict = getattr(lowerCamelCase , pre_tok_state.pop('''type''' ) ) __magic_name__ : str = add_prefix_space __magic_name__ : Optional[Any] = pre_tok_class(**lowerCamelCase ) __magic_name__ : List[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __magic_name__ : int = '''post_processor''' __magic_name__ : Dict = getattr(self.backend_tokenizer , lowerCamelCase , lowerCamelCase ) if tokenizer_component_instance: __magic_name__ : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __magic_name__ : Optional[int] = tuple(state['''sep'''] ) if "cls" in state: __magic_name__ : List[Any] = tuple(state['''cls'''] ) __magic_name__ : Tuple = False if state.get('''add_prefix_space''' , lowerCamelCase ) != add_prefix_space: __magic_name__ : Optional[int] = add_prefix_space __magic_name__ : Union[str, Any] = True if state.get('''trim_offsets''' , lowerCamelCase ) != trim_offsets: __magic_name__ : Tuple = trim_offsets __magic_name__ : Optional[int] = True if changes_to_apply: __magic_name__ : Union[str, Any] = getattr(lowerCamelCase , state.pop('''type''' ) ) __magic_name__ : Union[str, Any] = component_class(**lowerCamelCase ) setattr(self.backend_tokenizer , lowerCamelCase , lowerCamelCase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowercase ( self ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def lowercase ( self , lowerCamelCase ) -> str: """simple docstring""" __magic_name__ : Any = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else value __magic_name__ : Union[str, Any] = value def lowercase ( self , *lowerCamelCase , **lowerCamelCase ) -> BatchEncoding: """simple docstring""" __magic_name__ : Optional[Any] = kwargs.get('''is_split_into_words''' , lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*lowerCamelCase , **lowerCamelCase ) def lowercase ( self , *lowerCamelCase , **lowerCamelCase ) -> BatchEncoding: """simple docstring""" __magic_name__ : List[str] = kwargs.get('''is_split_into_words''' , lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*lowerCamelCase , **lowerCamelCase ) def lowercase ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" __magic_name__ : Optional[Any] = self._tokenizer.model.save(lowerCamelCase , name=lowerCamelCase ) return tuple(lowerCamelCase ) def lowercase ( self , lowerCamelCase , lowerCamelCase=None ) -> List[Any]: """simple docstring""" __magic_name__ : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: """simple docstring""" __magic_name__ : Any = [self.sep_token_id] __magic_name__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = PaddingStrategy.DO_NOT_PAD , lowerCamelCase = None , lowerCamelCase = None , ) -> dict: """simple docstring""" __magic_name__ : str = super()._pad( encoded_inputs=lowerCamelCase , max_length=lowerCamelCase , padding_strategy=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: __magic_name__ : str = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __magic_name__ : Any = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __magic_name__ : str = len(encoded_inputs['''global_attention_mask'''] ) != len(lowerCamelCase ) if needs_to_be_padded: __magic_name__ : int = len(lowerCamelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __magic_name__ : int = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": __magic_name__ : Any = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
717
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar lowercase_ = TypeVar('''T''') class A__ ( Generic[T] ): def __init__( self , lowerCamelCase = True ) -> None: """simple docstring""" __magic_name__ : dict[T, list[T]] = {} # dictionary of lists __magic_name__ : str = directed def lowercase ( self , lowerCamelCase , lowerCamelCase ) -> GraphAdjacencyList[T]: """simple docstring""" if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase ) self.adj_list[destination_vertex].append(lowerCamelCase ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase ) __magic_name__ : Optional[Any] = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(lowerCamelCase ) __magic_name__ : Union[str, Any] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: __magic_name__ : Optional[int] = [destination_vertex] __magic_name__ : Optional[Any] = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase ) __magic_name__ : List[str] = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: __magic_name__ : Dict = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: __magic_name__ : List[str] = [destination_vertex] __magic_name__ : List[str] = [] return self def __repr__( self ) -> str: """simple docstring""" return pformat(self.adj_list )
336
0
'''simple docstring''' import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self, A, A, A=1_024, A=1_024, A=3.6 ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = tokenizer SCREAMING_SNAKE_CASE : str = tokenizer.bos_token_id SCREAMING_SNAKE_CASE : Tuple = dataset SCREAMING_SNAKE_CASE : List[Any] = seq_length SCREAMING_SNAKE_CASE : Tuple = seq_length * chars_per_token * num_of_sequences def __iter__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = iter(self.dataset ) SCREAMING_SNAKE_CASE : List[Any] = True while more_examples: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(A )['content'] ) buffer_len += len(buffer[-1] ) except StopIteration: SCREAMING_SNAKE_CASE : Dict = False break SCREAMING_SNAKE_CASE : Dict = tokenizer(A, truncation=A )['input_ids'] SCREAMING_SNAKE_CASE : List[str] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0, len(A ), self.seq_length ): SCREAMING_SNAKE_CASE : Union[str, Any] = all_token_ids[i : i + self.seq_length] if len(A ) == self.seq_length: yield torch.tensor(A ) def lowercase__( __UpperCamelCase: Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = {'streaming': True} SCREAMING_SNAKE_CASE : Dict = load_dataset(args.dataset_name ,split='train' ,**__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = ConstantLengthDataset(__UpperCamelCase ,__UpperCamelCase ,seq_length=args.seq_length ) SCREAMING_SNAKE_CASE : Optional[Any] = DataLoader(__UpperCamelCase ,batch_size=args.batch_size ) return eval_dataloader def lowercase__( __UpperCamelCase: Any ): """simple docstring""" model.eval() SCREAMING_SNAKE_CASE : Any = [] for step, batch in enumerate(__UpperCamelCase ): with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(__UpperCamelCase ,labels=__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[str] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__UpperCamelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break SCREAMING_SNAKE_CASE : str = torch.mean(torch.cat(__UpperCamelCase ) ) try: SCREAMING_SNAKE_CASE : Any = torch.exp(__UpperCamelCase ) except OverflowError: SCREAMING_SNAKE_CASE : List[str] = float('inf' ) return loss.item(), perplexity.item() # Setup Accelerator UpperCamelCase_ = Accelerator() # Parse configuration UpperCamelCase_ = HfArgumentParser(EvaluationArguments) UpperCamelCase_ = parser.parse_args() set_seed(args.seed) # Logging UpperCamelCase_ = logging.getLogger(__name__) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) # Load model and tokenizer UpperCamelCase_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt) UpperCamelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader UpperCamelCase_ = create_dataloader(args) # Prepare everything with our `accelerator`. UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info("Evaluating and saving model after training") UpperCamelCase_ , UpperCamelCase_ = evaluate(args) logger.info(F"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
28
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCAmelCase : BigBirdConfig __UpperCAmelCase : jnp.dtype = jnp.floataa __UpperCAmelCase : bool = True def snake_case ( self : Optional[Any] ): super().setup() __lowercase : str = nn.Dense(5 , dtype=self.dtype ) def __call__( self : Optional[Any] , *lowercase__ : Any , **lowercase__ : Optional[Any] ): __lowercase : str = super().__call__(*lowercase__ , **lowercase__ ) __lowercase : Dict = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCAmelCase : Any = FlaxBigBirdForNaturalQuestionsModule def snake_case__ ( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) ->Union[str, Any]: """simple docstring""" def cross_entropy(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase=None ): __lowercase : Union[str, Any] = logits.shape[-1] __lowercase : List[str] = (labels[..., None] == jnp.arange(_lowerCamelCase )[None]).astype("f4" ) __lowercase : int = jax.nn.log_softmax(_lowerCamelCase, axis=-1 ) __lowercase : int = -jnp.sum(labels * logits, axis=-1 ) if reduction is not None: __lowercase : List[str] = reduction(_lowerCamelCase ) return loss __lowercase : Union[str, Any] = partial(_lowerCamelCase, reduction=jnp.mean ) __lowercase : Dict = cross_entropy(_lowerCamelCase, _lowerCamelCase ) __lowercase : int = cross_entropy(_lowerCamelCase, _lowerCamelCase ) __lowercase : Union[str, Any] = cross_entropy(_lowerCamelCase, _lowerCamelCase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class lowerCAmelCase__ : """simple docstring""" __UpperCAmelCase : str = "google/bigbird-roberta-base" __UpperCAmelCase : int = 3000 __UpperCAmelCase : int = 10500 __UpperCAmelCase : int = 128 __UpperCAmelCase : int = 3 __UpperCAmelCase : int = 1 __UpperCAmelCase : int = 5 # tx_args __UpperCAmelCase : float = 3E-5 __UpperCAmelCase : float = 0.0 __UpperCAmelCase : int = 20000 __UpperCAmelCase : float = 0.00_95 __UpperCAmelCase : str = "bigbird-roberta-natural-questions" __UpperCAmelCase : str = "training-expt" __UpperCAmelCase : str = "data/nq-training.jsonl" __UpperCAmelCase : str = "data/nq-validation.jsonl" def snake_case ( self : Tuple ): os.makedirs(self.base_dir , exist_ok=lowercase__ ) __lowercase : int = os.path.join(self.base_dir , self.save_dir ) __lowercase : Tuple = self.batch_size_per_device * jax.device_count() @dataclass class lowerCAmelCase__ : """simple docstring""" __UpperCAmelCase : int __UpperCAmelCase : int = 4096 # no dynamic padding on TPUs def __call__( self : Dict , lowercase__ : Tuple ): __lowercase : List[Any] = self.collate_fn(lowercase__ ) __lowercase : Dict = jax.tree_util.tree_map(lowercase__ , lowercase__ ) return batch def snake_case ( self : str , lowercase__ : Union[str, Any] ): __lowercase ,__lowercase : List[Any] = self.fetch_inputs(features["input_ids"] ) __lowercase : int = { "input_ids": jnp.array(lowercase__ , dtype=jnp.intaa ), "attention_mask": jnp.array(lowercase__ , dtype=jnp.intaa ), "start_labels": jnp.array(features["start_token"] , dtype=jnp.intaa ), "end_labels": jnp.array(features["end_token"] , dtype=jnp.intaa ), "pooled_labels": jnp.array(features["category"] , dtype=jnp.intaa ), } return batch def snake_case ( self : List[Any] , lowercase__ : list ): __lowercase : str = [self._fetch_inputs(lowercase__ ) for ids in input_ids] return zip(*lowercase__ ) def snake_case ( self : Any , lowercase__ : list ): __lowercase : Optional[Any] = [1 for _ in range(len(lowercase__ ) )] while len(lowercase__ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def snake_case__ ( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase=None ) ->Any: """simple docstring""" if seed is not None: __lowercase : Optional[Any] = dataset.shuffle(seed=_lowerCamelCase ) for i in range(len(_lowerCamelCase ) // batch_size ): __lowercase : int = dataset[i * batch_size : (i + 1) * batch_size] yield dict(_lowerCamelCase ) @partial(jax.pmap, axis_name="batch" ) def snake_case__ ( _lowerCamelCase, _lowerCamelCase, **_lowerCamelCase ) ->Any: """simple docstring""" def loss_fn(_lowerCamelCase ): __lowercase : Dict = model_inputs.pop("start_labels" ) __lowercase : str = model_inputs.pop("end_labels" ) __lowercase : Union[str, Any] = model_inputs.pop("pooled_labels" ) __lowercase : List[str] = state.apply_fn(**_lowerCamelCase, params=_lowerCamelCase, dropout_rng=_lowerCamelCase, train=_lowerCamelCase ) __lowercase ,__lowercase ,__lowercase : List[str] = outputs return state.loss_fn( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, ) __lowercase ,__lowercase : Any = jax.random.split(_lowerCamelCase ) __lowercase : Dict = jax.value_and_grad(_lowerCamelCase ) __lowercase ,__lowercase : Tuple = grad_fn(state.params ) __lowercase : str = jax.lax.pmean({"loss": loss}, axis_name="batch" ) __lowercase : str = jax.lax.pmean(_lowerCamelCase, "batch" ) __lowercase : Any = state.apply_gradients(grads=_lowerCamelCase ) return state, metrics, new_drp_rng @partial(jax.pmap, axis_name="batch" ) def snake_case__ ( _lowerCamelCase, **_lowerCamelCase ) ->Optional[int]: """simple docstring""" __lowercase : Optional[int] = model_inputs.pop("start_labels" ) __lowercase : Optional[int] = model_inputs.pop("end_labels" ) __lowercase : Optional[Any] = model_inputs.pop("pooled_labels" ) __lowercase : Optional[int] = state.apply_fn(**_lowerCamelCase, params=state.params, train=_lowerCamelCase ) __lowercase ,__lowercase ,__lowercase : int = outputs __lowercase : int = state.loss_fn(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) __lowercase : str = jax.lax.pmean({"loss": loss}, axis_name="batch" ) return metrics class lowerCAmelCase__ ( train_state.TrainState ): """simple docstring""" __UpperCAmelCase : Callable = struct.field(pytree_node=lowerCAmelCase_ ) @dataclass class lowerCAmelCase__ : """simple docstring""" __UpperCAmelCase : Args __UpperCAmelCase : Callable __UpperCAmelCase : Callable __UpperCAmelCase : Callable __UpperCAmelCase : Callable __UpperCAmelCase : wandb __UpperCAmelCase : Callable = None def snake_case ( self : Union[str, Any] , lowercase__ : Union[str, Any] , lowercase__ : Any , lowercase__ : Union[str, Any] , lowercase__ : Optional[Any]=None ): __lowercase : Optional[Any] = model.params __lowercase : Union[str, Any] = TrainState.create( apply_fn=model.__call__ , params=lowercase__ , tx=lowercase__ , loss_fn=lowercase__ , ) if ckpt_dir is not None: __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase : List[str] = restore_checkpoint(lowercase__ , lowercase__ ) __lowercase : Optional[Any] = { "lr": args.lr, "init_lr": args.init_lr, "warmup_steps": args.warmup_steps, "num_train_steps": num_train_steps, "weight_decay": args.weight_decay, } __lowercase ,__lowercase : Any = build_tx(**lowercase__ ) __lowercase : Any = train_state.TrainState( step=lowercase__ , apply_fn=model.__call__ , params=lowercase__ , tx=lowercase__ , opt_state=lowercase__ , ) __lowercase : List[Any] = args __lowercase : List[str] = data_collator __lowercase : Dict = lr __lowercase : List[str] = params __lowercase : str = jax_utils.replicate(lowercase__ ) return state def snake_case ( self : Optional[Any] , lowercase__ : List[Any] , lowercase__ : Union[str, Any] , lowercase__ : Any ): __lowercase : Tuple = self.args __lowercase : Dict = len(lowercase__ ) // args.batch_size __lowercase : Dict = jax.random.PRNGKey(0 ) __lowercase : Optional[Any] = jax.random.split(lowercase__ , jax.device_count() ) for epoch in range(args.max_epochs ): __lowercase : Any = jnp.array(0 , dtype=jnp.floataa ) __lowercase : Union[str, Any] = get_batched_dataset(lowercase__ , args.batch_size , seed=lowercase__ ) __lowercase : Optional[int] = 0 for batch in tqdm(lowercase__ , total=lowercase__ , desc=f'Running EPOCH-{epoch}' ): __lowercase : Any = self.data_collator(lowercase__ ) __lowercase ,__lowercase ,__lowercase : int = self.train_step_fn(lowercase__ , lowercase__ , **lowercase__ ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 if i % args.logging_steps == 0: __lowercase : Union[str, Any] = jax_utils.unreplicate(state.step ) __lowercase : Tuple = running_loss.item() / i __lowercase : Tuple = self.scheduler_fn(state_step - 1 ) __lowercase : Optional[int] = self.evaluate(lowercase__ , lowercase__ ) __lowercase : Union[str, Any] = { "step": state_step.item(), "eval_loss": eval_loss.item(), "tr_loss": tr_loss, "lr": lr.item(), } tqdm.write(str(lowercase__ ) ) self.logger.log(lowercase__ , commit=lowercase__ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}' , state=lowercase__ ) def snake_case ( self : int , lowercase__ : List[Any] , lowercase__ : Union[str, Any] ): __lowercase : int = get_batched_dataset(lowercase__ , self.args.batch_size ) __lowercase : List[Any] = len(lowercase__ ) // self.args.batch_size __lowercase : List[str] = jnp.array(0 , dtype=jnp.floataa ) __lowercase : Any = 0 for batch in tqdm(lowercase__ , total=lowercase__ , desc="Evaluating ... " ): __lowercase : Optional[Any] = self.data_collator(lowercase__ ) __lowercase : Dict = self.val_step_fn(lowercase__ , **lowercase__ ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 return running_loss / i def snake_case ( self : Dict , lowercase__ : Union[str, Any] , lowercase__ : Any ): __lowercase : int = jax_utils.unreplicate(lowercase__ ) print(f'SAVING CHECKPOINT IN {save_dir}' , end=" ... " ) self.model_save_fn(lowercase__ , params=state.params ) with open(os.path.join(lowercase__ , "opt_state.msgpack" ) , "wb" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(lowercase__ , "args.joblib" ) ) joblib.dump(self.data_collator , os.path.join(lowercase__ , "data_collator.joblib" ) ) with open(os.path.join(lowercase__ , "training_state.json" ) , "w" ) as f: json.dump({"step": state.step.item()} , lowercase__ ) print("DONE" ) def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->str: """simple docstring""" print(F'RESTORING CHECKPOINT FROM {save_dir}', end=" ... " ) with open(os.path.join(_lowerCamelCase, "flax_model.msgpack" ), "rb" ) as f: __lowercase : Union[str, Any] = from_bytes(state.params, f.read() ) with open(os.path.join(_lowerCamelCase, "opt_state.msgpack" ), "rb" ) as f: __lowercase : Dict = from_bytes(state.opt_state, f.read() ) __lowercase : int = joblib.load(os.path.join(_lowerCamelCase, "args.joblib" ) ) __lowercase : Any = joblib.load(os.path.join(_lowerCamelCase, "data_collator.joblib" ) ) with open(os.path.join(_lowerCamelCase, "training_state.json" ), "r" ) as f: __lowercase : int = json.load(_lowerCamelCase ) __lowercase : List[str] = training_state["step"] print("DONE" ) return params, opt_state, step, args, data_collator def snake_case__ ( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) ->Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = num_train_steps - warmup_steps __lowercase : Dict = optax.linear_schedule(init_value=_lowerCamelCase, end_value=_lowerCamelCase, transition_steps=_lowerCamelCase ) __lowercase : Optional[Any] = optax.linear_schedule(init_value=_lowerCamelCase, end_value=1E-7, transition_steps=_lowerCamelCase ) __lowercase : Dict = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[warmup_steps] ) return lr def snake_case__ ( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) ->Union[str, Any]: """simple docstring""" def weight_decay_mask(_lowerCamelCase ): __lowercase : Tuple = traverse_util.flatten_dict(_lowerCamelCase ) __lowercase : int = {k: (v[-1] != "bias" and v[-2:] != ("LayerNorm", "scale")) for k, v in params.items()} return traverse_util.unflatten_dict(_lowerCamelCase ) __lowercase : Tuple = scheduler_fn(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) __lowercase : List[Any] = optax.adamw(learning_rate=_lowerCamelCase, weight_decay=_lowerCamelCase, mask=_lowerCamelCase ) return tx, lr
575
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if "img_encoder.pos_embed" in name: lowerCamelCase : Any = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: lowerCamelCase : Optional[Any] = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: lowerCamelCase : str = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: lowerCamelCase : Any = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: lowerCamelCase : Union[str, Any] = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: lowerCamelCase : int = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: lowerCamelCase : Union[str, Any] = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: lowerCamelCase : Union[str, Any] = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: lowerCamelCase : int = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: lowerCamelCase : Dict = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: lowerCamelCase : Union[str, Any] = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: lowerCamelCase : Optional[Any] = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: lowerCamelCase : Union[str, Any] = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: lowerCamelCase : int = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: lowerCamelCase : str = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: lowerCamelCase : List[Any] = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: lowerCamelCase : Optional[Any] = name.replace("c_fc" , "fc1" ) if "c_proj" in name: lowerCamelCase : int = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: lowerCamelCase : Tuple = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: lowerCamelCase : Any = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: lowerCamelCase : Tuple = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: lowerCamelCase : Optional[int] = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: lowerCamelCase : List[str] = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: lowerCamelCase : Optional[int] = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCamelCase : Optional[int] = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCamelCase : Union[str, Any] = key.split("." ) lowerCamelCase : int = int(key_split[2] ), int(key_split[4] ) lowerCamelCase : Optional[Any] = config.vision_config.hidden_size if "weight" in key: lowerCamelCase : List[Any] = val[:dim, :] lowerCamelCase : int = val[dim : dim * 2, :] lowerCamelCase : str = val[-dim:, :] else: lowerCamelCase : Optional[Any] = val[:dim] lowerCamelCase : List[str] = val[dim : dim * 2] lowerCamelCase : str = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCamelCase : Optional[int] = key.split("." ) lowerCamelCase : Optional[int] = int(key_split[3] ) lowerCamelCase : List[Any] = config.text_config.hidden_size if "weight" in key: lowerCamelCase : Optional[Any] = val[:dim, :] lowerCamelCase : List[Any] = val[ dim : dim * 2, : ] lowerCamelCase : str = val[-dim:, :] else: lowerCamelCase : int = val[:dim] lowerCamelCase : Optional[Any] = val[dim : dim * 2] lowerCamelCase : Optional[int] = val[-dim:] else: lowerCamelCase : Optional[int] = rename_key(SCREAMING_SNAKE_CASE_ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowerCamelCase : Optional[Any] = val.squeeze_() else: lowerCamelCase : Any = val return orig_state_dict def lowercase_( ): '''simple docstring''' lowerCamelCase : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase : str = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="groupvit-gcc-yfcc" , SCREAMING_SNAKE_CASE_=False ): '''simple docstring''' lowerCamelCase : Any = GroupViTConfig() lowerCamelCase : List[Any] = GroupViTModel(SCREAMING_SNAKE_CASE_ ).eval() lowerCamelCase : Tuple = torch.load(SCREAMING_SNAKE_CASE_ , map_location="cpu" )["model"] lowerCamelCase : List[str] = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Union[str, Any] = model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(SCREAMING_SNAKE_CASE_ ) == 0) # verify result lowerCamelCase : List[str] = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) lowerCamelCase : Any = prepare_img() lowerCamelCase : int = processor(text=["a photo of a cat", "a photo of a dog"] , images=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_tensors="pt" ) with torch.no_grad(): lowerCamelCase : List[str] = model(**SCREAMING_SNAKE_CASE_ ) if model_name == "groupvit-gcc-yfcc": lowerCamelCase : List[Any] = torch.tensor([[13.3523, 6.3629]] ) elif model_name == "groupvit-gcc-redcaps": lowerCamelCase : int = torch.tensor([[16.1873, 8.6230]] ) else: raise ValueError(f"""Model name {model_name} not supported.""" ) assert torch.allclose(outputs.logits_per_image , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print("Successfully saved processor and model to" , SCREAMING_SNAKE_CASE_ ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(SCREAMING_SNAKE_CASE_ , organization="nielsr" ) model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization="nielsr" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to dump the processor and PyTorch model.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to GroupViT checkpoint''') parser.add_argument( '''--model_name''', default='''groupvit-gccy-fcc''', type=str, help='''Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.''', ) _snake_case = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
721
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType _snake_case = logging.get_logger(__name__) _snake_case = { '''openai/whisper-base''': '''https://huggingface.co/openai/whisper-base/resolve/main/config.json''', } # fmt: off _snake_case = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_57, 3_66, 4_38, 5_32, 6_85, 7_05, 7_96, 9_30, 10_58, 12_20, 12_67, 12_79, 13_03, 13_43, 13_77, 13_91, 16_35, 17_82, 18_75, 21_62, 23_61, 24_88, 34_67, 40_08, 42_11, 46_00, 48_08, 52_99, 58_55, 63_29, 72_03, 96_09, 99_59, 1_05_63, 1_07_86, 1_14_20, 1_17_09, 1_19_07, 1_31_63, 1_36_97, 1_37_00, 1_48_08, 1_53_06, 1_64_10, 1_67_91, 1_79_92, 1_92_03, 1_95_10, 2_07_24, 2_23_05, 2_29_35, 2_70_07, 3_01_09, 3_04_20, 3_34_09, 3_49_49, 4_02_83, 4_04_93, 4_05_49, 4_72_82, 4_91_46, 5_02_57, 5_03_59, 5_03_60, 5_03_61 ] _snake_case = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_59, 5_03, 5_22, 5_42, 8_73, 8_93, 9_02, 9_18, 9_22, 9_31, 13_50, 18_53, 19_82, 24_60, 26_27, 32_46, 32_53, 32_68, 35_36, 38_46, 39_61, 41_83, 46_67, 65_85, 66_47, 72_73, 90_61, 93_83, 1_04_28, 1_09_29, 1_19_38, 1_20_33, 1_23_31, 1_25_62, 1_37_93, 1_41_57, 1_46_35, 1_52_65, 1_56_18, 1_65_53, 1_66_04, 1_83_62, 1_89_56, 2_00_75, 2_16_75, 2_25_20, 2_61_30, 2_61_61, 2_64_35, 2_82_79, 2_94_64, 3_16_50, 3_23_02, 3_24_70, 3_68_65, 4_28_63, 4_74_25, 4_98_70, 5_02_54, 5_02_58, 5_03_60, 5_03_61, 5_03_62 ] class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : Union[str, Any] = "whisper" __A : List[str] = ["past_key_values"] __A : str = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , __A=5_1865 , __A=80 , __A=6 , __A=4 , __A=6 , __A=4 , __A=1536 , __A=1536 , __A=0.0 , __A=0.0 , __A=5_0257 , __A=True , __A=True , __A="gelu" , __A=256 , __A=0.0 , __A=0.0 , __A=0.0 , __A=0.02 , __A=False , __A=1500 , __A=448 , __A=5_0256 , __A=5_0256 , __A=5_0256 , __A=None , __A=[220, 5_0256] , __A=False , __A=256 , __A=False , __A=0.05 , __A=10 , __A=2 , __A=0.0 , __A=10 , __A=0 , __A=7 , **__A , ): """simple docstring""" lowerCamelCase : List[str] = vocab_size lowerCamelCase : Optional[Any] = num_mel_bins lowerCamelCase : List[Any] = d_model lowerCamelCase : List[Any] = encoder_layers lowerCamelCase : Optional[Any] = encoder_attention_heads lowerCamelCase : Optional[int] = decoder_layers lowerCamelCase : int = decoder_attention_heads lowerCamelCase : Any = decoder_ffn_dim lowerCamelCase : int = encoder_ffn_dim lowerCamelCase : Union[str, Any] = dropout lowerCamelCase : Dict = attention_dropout lowerCamelCase : Optional[Any] = activation_dropout lowerCamelCase : Optional[Any] = activation_function lowerCamelCase : Optional[Any] = init_std lowerCamelCase : List[Any] = encoder_layerdrop lowerCamelCase : str = decoder_layerdrop lowerCamelCase : Optional[Any] = use_cache lowerCamelCase : Tuple = encoder_layers lowerCamelCase : str = scale_embedding # scale factor will be sqrt(d_model) if True lowerCamelCase : str = max_source_positions lowerCamelCase : List[str] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. lowerCamelCase : Optional[int] = classifier_proj_size lowerCamelCase : List[str] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase : Optional[int] = apply_spec_augment lowerCamelCase : str = mask_time_prob lowerCamelCase : Union[str, Any] = mask_time_length lowerCamelCase : Union[str, Any] = mask_time_min_masks lowerCamelCase : Any = mask_feature_prob lowerCamelCase : Any = mask_feature_length lowerCamelCase : Dict = mask_feature_min_masks lowerCamelCase : List[str] = median_filter_width super().__init__( pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , is_encoder_decoder=__A , decoder_start_token_id=__A , suppress_tokens=__A , begin_suppress_tokens=__A , **__A , ) class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' @property def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[str] = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: lowerCamelCase : List[str] = {0: "batch"} else: lowerCamelCase : str = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__A , direction="inputs" ) return common_inputs def _snake_case ( self , __A , __A = -1 , __A = -1 , __A = False , __A = None , __A = 2_2050 , __A = 5.0 , __A = 220 , ): """simple docstring""" lowerCamelCase : Any = OrderedDict() lowerCamelCase : List[str] = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=__A , framework=__A , sampling_rate=__A , time_duration=__A , frequency=__A , ) lowerCamelCase : Any = encoder_inputs["input_features"].shape[2] lowerCamelCase : Optional[Any] = encoder_sequence_length // 2 if self.use_past else seq_length lowerCamelCase : str = super().generate_dummy_inputs( preprocessor.tokenizer , __A , __A , __A , __A ) lowerCamelCase : List[Any] = encoder_inputs.pop("input_features" ) lowerCamelCase : Dict = decoder_inputs.pop("decoder_input_ids" ) if "past_key_values" in decoder_inputs: lowerCamelCase : List[str] = decoder_inputs.pop("past_key_values" ) return dummy_inputs @property def _snake_case ( self ): """simple docstring""" return 1e-3
231
0
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=True , UpperCAmelCase_="pt" ) ->Dict: """simple docstring""" __UpperCAmelCase : Dict = {'''add_prefix_space''': True} if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and not line.startswith(''' ''' ) else {} __UpperCAmelCase : Tuple = padding_side return tokenizer( [line] , max_length=UpperCAmelCase_ , padding='''max_length''' if pad_to_max_length else None , truncation=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , **UpperCAmelCase_ , ) def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , ) ->Any: """simple docstring""" __UpperCAmelCase : Optional[Any] = input_ids.ne(UpperCAmelCase_ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class snake_case ( __UpperCAmelCase ): '''simple docstring''' def __init__( self : str , __lowercase : Optional[Any] , __lowercase : List[Any] , __lowercase : int , __lowercase : List[str] , __lowercase : Union[str, Any]="train" , __lowercase : Union[str, Any]=None , __lowercase : Tuple=None , __lowercase : Any=None , __lowercase : Optional[int]="" , ): '''simple docstring''' super().__init__() __UpperCAmelCase : Optional[int] = Path(__lowercase ).joinpath(type_path + '''.source''' ) __UpperCAmelCase : List[str] = Path(__lowercase ).joinpath(type_path + '''.target''' ) __UpperCAmelCase : int = self.get_char_lens(self.src_file ) __UpperCAmelCase : Dict = max_source_length __UpperCAmelCase : str = max_target_length assert min(self.src_lens ) > 0, f'''found empty line in {self.src_file}''' __UpperCAmelCase : List[str] = tokenizer __UpperCAmelCase : Dict = prefix if n_obs is not None: __UpperCAmelCase : str = self.src_lens[:n_obs] __UpperCAmelCase : Optional[int] = src_lang __UpperCAmelCase : List[str] = tgt_lang def __len__( self : int ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self : str , __lowercase : List[str] ): '''simple docstring''' __UpperCAmelCase : List[Any] = index + 1 # linecache starts at 1 __UpperCAmelCase : int = self.prefix + linecache.getline(str(self.src_file ) , __lowercase ).rstrip('''\n''' ) __UpperCAmelCase : str = linecache.getline(str(self.tgt_file ) , __lowercase ).rstrip('''\n''' ) assert source_line, f'''empty source line for index {index}''' assert tgt_line, f'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , __lowercase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __UpperCAmelCase : str = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , __lowercase ) else self.tokenizer ) __UpperCAmelCase : Any = self.tokenizer.generator if isinstance(self.tokenizer , __lowercase ) else self.tokenizer __UpperCAmelCase : str = encode_line(__lowercase , __lowercase , self.max_source_length , '''right''' ) __UpperCAmelCase : Tuple = encode_line(__lowercase , __lowercase , self.max_target_length , '''right''' ) __UpperCAmelCase : Optional[Any] = source_inputs['''input_ids'''].squeeze() __UpperCAmelCase : str = target_inputs['''input_ids'''].squeeze() __UpperCAmelCase : Optional[Any] = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def A_ ( __lowercase : Optional[Any] ): '''simple docstring''' return [len(__lowercase ) for x in Path(__lowercase ).open().readlines()] def A_ ( self : Optional[Any] , __lowercase : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = torch.stack([x['''input_ids'''] for x in batch] ) __UpperCAmelCase : Optional[Any] = torch.stack([x['''attention_mask'''] for x in batch] ) __UpperCAmelCase : Optional[int] = torch.stack([x['''decoder_input_ids'''] for x in batch] ) __UpperCAmelCase : Any = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , __lowercase ) else self.tokenizer.pad_token_id ) __UpperCAmelCase : Any = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , __lowercase ) else self.tokenizer.pad_token_id ) __UpperCAmelCase : str = trim_batch(__lowercase , __lowercase ) __UpperCAmelCase , __UpperCAmelCase : str = trim_batch(__lowercase , __lowercase , attention_mask=__lowercase ) __UpperCAmelCase : Tuple = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch lowercase__ :Tuple = getLogger(__name__) def lowerCamelCase_ ( UpperCAmelCase_ ) ->int: """simple docstring""" return list(itertools.chain.from_iterable(UpperCAmelCase_ ) ) def lowerCamelCase_ ( UpperCAmelCase_ ) ->None: """simple docstring""" __UpperCAmelCase : str = get_git_info() save_json(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , '''git_log.json''' ) ) def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=4 , **UpperCAmelCase_ ) ->Optional[Any]: """simple docstring""" with open(UpperCAmelCase_ , '''w''' ) as f: json.dump(UpperCAmelCase_ , UpperCAmelCase_ , indent=UpperCAmelCase_ , **UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ ) ->str: """simple docstring""" with open(UpperCAmelCase_ ) as f: return json.load(UpperCAmelCase_ ) def lowerCamelCase_ ( ) ->Union[str, Any]: """simple docstring""" __UpperCAmelCase : Dict = git.Repo(search_parent_directories=UpperCAmelCase_ ) __UpperCAmelCase : List[str] = { '''repo_id''': str(UpperCAmelCase_ ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ) ->List: """simple docstring""" return list(map(UpperCAmelCase_ , UpperCAmelCase_ ) ) def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ) ->str: """simple docstring""" with open(UpperCAmelCase_ , '''wb''' ) as f: return pickle.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ ) ->Tuple: """simple docstring""" def remove_articles(UpperCAmelCase_ ): return re.sub(R'''\b(a|an|the)\b''' , ''' ''' , UpperCAmelCase_ ) def white_space_fix(UpperCAmelCase_ ): return " ".join(text.split() ) def remove_punc(UpperCAmelCase_ ): __UpperCAmelCase : Dict = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCAmelCase_ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCAmelCase_ ) ) ) ) def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ) ->Tuple: """simple docstring""" __UpperCAmelCase : Dict = normalize_answer(UpperCAmelCase_ ).split() __UpperCAmelCase : Optional[Any] = normalize_answer(UpperCAmelCase_ ).split() __UpperCAmelCase : List[Any] = Counter(UpperCAmelCase_ ) & Counter(UpperCAmelCase_ ) __UpperCAmelCase : List[Any] = sum(common.values() ) if num_same == 0: return 0 __UpperCAmelCase : Any = 1.0 * num_same / len(UpperCAmelCase_ ) __UpperCAmelCase : Tuple = 1.0 * num_same / len(UpperCAmelCase_ ) __UpperCAmelCase : str = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ) ->int: """simple docstring""" return normalize_answer(UpperCAmelCase_ ) == normalize_answer(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ) ->Dict: """simple docstring""" assert len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = 0 for hypo, pred in zip(UpperCAmelCase_ , UpperCAmelCase_ ): em += exact_match_score(UpperCAmelCase_ , UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 0: em /= len(UpperCAmelCase_ ) return {"em": em} def lowerCamelCase_ ( UpperCAmelCase_ ) ->Union[str, Any]: """simple docstring""" return model_prefix.startswith('''rag''' ) def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->int: """simple docstring""" __UpperCAmelCase : str = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __UpperCAmelCase : Tuple = '''dropout_rate''' for p in extra_params: if getattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if not hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) and not hasattr(UpperCAmelCase_ , equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(UpperCAmelCase_ ) ) delattr(UpperCAmelCase_ , UpperCAmelCase_ ) continue __UpperCAmelCase : Dict = p if hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) else equivalent_param[p] setattr(UpperCAmelCase_ , UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) delattr(UpperCAmelCase_ , UpperCAmelCase_ ) return hparams, config
522
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time lowercase__ :List[Any] = Lock() def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->List[str]: """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(UpperCAmelCase_ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() __UpperCAmelCase : str = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left __UpperCAmelCase : List[Any] = min(UpperCAmelCase_ , UpperCAmelCase_ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(UpperCAmelCase_ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() __UpperCAmelCase : Union[str, Any] = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right __UpperCAmelCase : Union[str, Any] = max(UpperCAmelCase_ , UpperCAmelCase_ ) # after all swaps are performed, send the values back to main result_pipe[1].send(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ ) ->Optional[int]: """simple docstring""" __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : int = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop __UpperCAmelCase : Optional[int] = Pipe() __UpperCAmelCase : str = Pipe() process_array_.append( Process( target=UpperCAmelCase_ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) __UpperCAmelCase : Optional[int] = temp_rs __UpperCAmelCase : Any = temp_rr for i in range(1 , len(UpperCAmelCase_ ) - 1 ): __UpperCAmelCase : List[Any] = Pipe() __UpperCAmelCase : List[Any] = Pipe() process_array_.append( Process( target=UpperCAmelCase_ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) __UpperCAmelCase : int = temp_rs __UpperCAmelCase : Optional[Any] = temp_rr process_array_.append( Process( target=UpperCAmelCase_ , args=( len(UpperCAmelCase_ ) - 1, arr[len(UpperCAmelCase_ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(UpperCAmelCase_ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(UpperCAmelCase_ ) ): __UpperCAmelCase : str = result_pipe[p][0].recv() process_array_[p].join() return arr def lowerCamelCase_ ( ) ->Optional[int]: """simple docstring""" __UpperCAmelCase : Optional[Any] = list(range(10 , 0 , -1 ) ) print('''Initial List''' ) print(*UpperCAmelCase_ ) __UpperCAmelCase : int = odd_even_transposition(UpperCAmelCase_ ) print('''Sorted List\n''' ) print(*UpperCAmelCase_ ) if __name__ == "__main__": main()
522
1
def _snake_case (__lowercase): if p < 2: raise ValueError('p should not be less than 2!') elif p == 2: return True UpperCamelCase_ = 4 UpperCamelCase_ = (1 << p) - 1 for _ in range(p - 2): UpperCamelCase_ = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
618
def _snake_case (__lowercase , __lowercase , __lowercase): return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(__lowercase)) def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase): # Base Case if index == len(__lowercase): return True # Recursive Step for i in range(__lowercase): if valid_coloring(graph[index] , __lowercase , __lowercase): # Color current vertex UpperCamelCase_ = i # Validate coloring if util_color(__lowercase , __lowercase , __lowercase , index + 1): return True # Backtrack UpperCamelCase_ = -1 return False def _snake_case (__lowercase , __lowercase): UpperCamelCase_ = [-1] * len(__lowercase) if util_color(__lowercase , __lowercase , __lowercase , 0): return colored_vertices return []
618
1
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class snake_case : '''simple docstring''' @staticmethod def _lowercase ( *lowerCAmelCase_ : str , **lowerCAmelCase_ : Any ) -> Tuple: """simple docstring""" pass def UpperCAmelCase ( UpperCAmelCase )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE_ = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def UpperCAmelCase ( UpperCAmelCase )-> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_ = np.array(UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = npimg.shape return {"hash": hashimage(UpperCAmelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class snake_case ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Tuple = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) UpperCAmelCase : str = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def _lowercase ( self : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ = MaskGenerationPipeline(model=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _lowercase ( self : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] ) -> int: """simple docstring""" pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''' ) def _lowercase ( self : Any ) -> Union[str, Any]: """simple docstring""" pass @slow @require_torch def _lowercase ( self : Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' ) SCREAMING_SNAKE_CASE_ = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 ) # Shortening by hashing SCREAMING_SNAKE_CASE_ = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(lowerCAmelCase_ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9_967}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9_909}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9_879}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9_834}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9_716}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9_612}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9_599}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9_552}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9_532}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9_516}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9_499}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9_483}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9_464}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9_408}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9_335}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9_326}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9_262}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8_999}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8_986}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8_984}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8_873}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8_871} ] , ) # fmt: on @require_torch @slow def _lowercase ( self : Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ = '''facebook/sam-vit-huge''' SCREAMING_SNAKE_CASE_ = pipeline('''mask-generation''' , model=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing SCREAMING_SNAKE_CASE_ = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(lowerCAmelCase_ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0_210}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053}, ] , )
393
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def UpperCAmelCase ( UpperCAmelCase )-> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_ = int(UpperCAmelCase ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = t // 3600, (t // 60) % 60, t % 60 return f'''{h}:{m:02d}:{s:02d}''' if h != 0 else f'''{m:02d}:{s:02d}''' def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase=300 )-> Optional[Any]: '''simple docstring''' return f''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def UpperCAmelCase ( UpperCAmelCase )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_ = '''<table border="1" class="dataframe">\n''' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: SCREAMING_SNAKE_CASE_ = f'''{elt:.6f}''' if isinstance(UpperCAmelCase ,UpperCAmelCase ) else str(UpperCAmelCase ) html_code += f''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class snake_case : '''simple docstring''' UpperCAmelCase : Tuple = 5 UpperCAmelCase : Any = 0.2 def __init__( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional["NotebookTrainingTracker"] = None , lowerCAmelCase_ : int = 300 , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ = total SCREAMING_SNAKE_CASE_ = '''''' if prefix is None else prefix SCREAMING_SNAKE_CASE_ = leave SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = width SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None def _lowercase ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : str = None ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ = value if comment is not None: SCREAMING_SNAKE_CASE_ = comment if self.last_value is None: SCREAMING_SNAKE_CASE_ = SCREAMING_SNAKE_CASE_ = time.time() SCREAMING_SNAKE_CASE_ = SCREAMING_SNAKE_CASE_ = value SCREAMING_SNAKE_CASE_ = SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = self.warmup SCREAMING_SNAKE_CASE_ = 1 self.update_bar(lowerCAmelCase_ ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 SCREAMING_SNAKE_CASE_ = time.time() SCREAMING_SNAKE_CASE_ = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: SCREAMING_SNAKE_CASE_ = self.elapsed_time / (value - self.start_value) else: SCREAMING_SNAKE_CASE_ = None if value >= self.total: SCREAMING_SNAKE_CASE_ = self.total SCREAMING_SNAKE_CASE_ = None if not self.leave: self.close() elif self.average_time_per_item is not None: SCREAMING_SNAKE_CASE_ = self.average_time_per_item * (self.total - value) self.update_bar(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = value SCREAMING_SNAKE_CASE_ = current_time if self.average_time_per_item is None: SCREAMING_SNAKE_CASE_ = 1 else: SCREAMING_SNAKE_CASE_ = max(int(self.update_every / self.average_time_per_item ) , 1 ) def _lowercase ( self : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int=None ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = ''' ''' * (len(str(self.total ) ) - len(str(lowerCAmelCase_ ) )) + str(lowerCAmelCase_ ) if self.elapsed_time is None: SCREAMING_SNAKE_CASE_ = F'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: SCREAMING_SNAKE_CASE_ = F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: SCREAMING_SNAKE_CASE_ = ( F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' F''' {format_time(self.predicted_remaining )}''' ) self.label += F''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else F''', {self.comment}]''' self.display() def _lowercase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: SCREAMING_SNAKE_CASE_ = disp.display(disp.HTML(self.html_code ) , display_id=lowerCAmelCase_ ) else: self.output.update(disp.HTML(self.html_code ) ) def _lowercase ( self : Optional[int] ) -> int: """simple docstring""" if self.parent is None and self.output is not None: self.output.update(disp.HTML('''''' ) ) class snake_case ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int]=None ) -> Union[str, Any]: """simple docstring""" super().__init__(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = None if column_names is None else [column_names] SCREAMING_SNAKE_CASE_ = None def _lowercase ( self : Any ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: SCREAMING_SNAKE_CASE_ = disp.display(disp.HTML(self.html_code ) , display_id=lowerCAmelCase_ ) else: self.output.update(disp.HTML(self.html_code ) ) def _lowercase ( self : List[str] , lowerCAmelCase_ : int ) -> List[str]: """simple docstring""" if self.inner_table is None: SCREAMING_SNAKE_CASE_ = [list(values.keys() ), list(values.values() )] else: SCREAMING_SNAKE_CASE_ = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = columns self.inner_table.append([values[c] for c in columns] ) def _lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=300 ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ = NotebookProgressBar(lowerCAmelCase_ , prefix=lowerCAmelCase_ , parent=self , width=lowerCAmelCase_ ) return self.child_bar def _lowercase ( self : Optional[int] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ = None self.display() class snake_case ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self : List[Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = False def _lowercase ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = '''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step''' SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = [self.first_column] + ['''Training Loss'''] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('''Validation Loss''' ) SCREAMING_SNAKE_CASE_ = NotebookTrainingTracker(state.max_steps , lowerCAmelCase_ ) def _lowercase ( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , **lowerCAmelCase_ : List[str] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ = int(state.epoch ) if int(state.epoch ) == state.epoch else F'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=F'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) SCREAMING_SNAKE_CASE_ = False def _lowercase ( self : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple=None , **lowerCAmelCase_ : Union[str, Any] ) -> Tuple: """simple docstring""" if not has_length(lowerCAmelCase_ ): return if self.prediction_bar is None: if self.training_tracker is not None: SCREAMING_SNAKE_CASE_ = self.training_tracker.add_child(len(lowerCAmelCase_ ) ) else: SCREAMING_SNAKE_CASE_ = NotebookProgressBar(len(lowerCAmelCase_ ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def _lowercase ( self : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , **lowerCAmelCase_ : int ) -> Any: """simple docstring""" if self.prediction_bar is not None: self.prediction_bar.close() SCREAMING_SNAKE_CASE_ = None def _lowercase ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : Tuple ) -> List[str]: """simple docstring""" if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: SCREAMING_SNAKE_CASE_ = {'''Training Loss''': logs['''loss''']} # First column is necessarily Step sine we're not in epoch eval strategy SCREAMING_SNAKE_CASE_ = state.global_step self.training_tracker.write_line(lowerCAmelCase_ ) def _lowercase ( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]=None , **lowerCAmelCase_ : str ) -> str: """simple docstring""" if self.training_tracker is not None: SCREAMING_SNAKE_CASE_ = {'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''} for log in reversed(state.log_history ): if "loss" in log: SCREAMING_SNAKE_CASE_ = log['''loss'''] break if self.first_column == "Epoch": SCREAMING_SNAKE_CASE_ = int(state.epoch ) else: SCREAMING_SNAKE_CASE_ = state.global_step SCREAMING_SNAKE_CASE_ = '''eval''' for k in metrics: if k.endswith('''_loss''' ): SCREAMING_SNAKE_CASE_ = re.sub(r'''\_loss$''' , '''''' , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = metrics.pop('''total_flos''' , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = metrics.pop('''epoch''' , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = metrics.pop(F'''{metric_key_prefix}_runtime''' , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = metrics.pop(F'''{metric_key_prefix}_samples_per_second''' , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = metrics.pop(F'''{metric_key_prefix}_steps_per_second''' , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = metrics.pop(F'''{metric_key_prefix}_jit_compilation_time''' , lowerCAmelCase_ ) for k, v in metrics.items(): if k == F'''{metric_key_prefix}_loss''': SCREAMING_SNAKE_CASE_ = v else: SCREAMING_SNAKE_CASE_ = k.split('''_''' ) SCREAMING_SNAKE_CASE_ = ''' '''.join([part.capitalize() for part in splits[1:]] ) SCREAMING_SNAKE_CASE_ = v self.training_tracker.write_line(lowerCAmelCase_ ) self.training_tracker.remove_child() SCREAMING_SNAKE_CASE_ = None # Evaluation takes a long time so we should force the next update. SCREAMING_SNAKE_CASE_ = True def _lowercase ( self : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : Dict ) -> Optional[Any]: """simple docstring""" self.training_tracker.update( state.global_step , comment=F'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = None
393
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase) class lowerCamelCase__ ( _UpperCAmelCase): """simple docstring""" _A = field(default='question-answering-extractive' , metadata={'include_in_asdict_even_if_is_default': True}) _A = Features({'question': Value('string'), 'context': Value('string')}) _A = Features( { 'answers': Sequence( { 'text': Value('string'), 'answer_start': Value('int32'), }) }) _A = "question" _A = "context" _A = "answers" @property def _a (self ): '''simple docstring''' return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
704
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def _a (self ): '''simple docstring''' lowerCamelCase = mock.Mock() lowerCamelCase = 5_00 lowerCamelCase = {} lowerCamelCase = HTTPError lowerCamelCase = {} # Download this model to make sure it's in the cache. lowerCamelCase = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=__a ) as mock_head: lowerCamelCase = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def _a (self ): '''simple docstring''' lowerCamelCase = mock.Mock() lowerCamelCase = 5_00 lowerCamelCase = {} lowerCamelCase = HTTPError lowerCamelCase = {} # Download this model to make sure it's in the cache. lowerCamelCase = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=__a ) as mock_head: lowerCamelCase = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def _a (self ): '''simple docstring''' try: lowerCamelCase = tempfile.mktemp() with open(__a , "wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" , __a ) lowerCamelCase = AlbertTokenizer.from_pretrained(__a ) finally: os.remove(__a ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" , "wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" , __a ) lowerCamelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 10_00 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def _a (self ): '''simple docstring''' lowerCamelCase = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" _A = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def _a (cls ): '''simple docstring''' lowerCamelCase = TOKEN HfFolder.save_token(__a ) @classmethod def _a (cls ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def _a (self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase = os.path.join(__a , "vocab.txt" ) with open(__a , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) lowerCamelCase = BertTokenizer(__a ) tokenizer.push_to_hub("test-tokenizer" , use_auth_token=self._token ) lowerCamelCase = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__a , repo_id="test-tokenizer" , push_to_hub=__a , use_auth_token=self._token ) lowerCamelCase = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def _a (self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase = os.path.join(__a , "vocab.txt" ) with open(__a , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) lowerCamelCase = BertTokenizer(__a ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" , use_auth_token=self._token ) lowerCamelCase = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( __a , repo_id="valid_org/test-tokenizer-org" , push_to_hub=__a , use_auth_token=self._token ) lowerCamelCase = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def _a (self ): '''simple docstring''' CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase = os.path.join(__a , "vocab.txt" ) with open(__a , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) lowerCamelCase = CustomTokenizer(__a ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) lowerCamelCase = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=__a ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase = os.path.join(__a , "vocab.txt" ) with open(__a , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) lowerCamelCase = BertTokenizerFast.from_pretrained(__a ) bert_tokenizer.save_pretrained(__a ) lowerCamelCase = CustomTokenizerFast.from_pretrained(__a ) tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) lowerCamelCase = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=__a ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizerFast" ) lowerCamelCase = AutoTokenizer.from_pretrained( F"""{USER}/test-dynamic-tokenizer""" , use_fast=__a , trust_remote_code=__a ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def _a (self ): '''simple docstring''' lowerCamelCase = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def _a (self ): '''simple docstring''' lowerCamelCase = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS]", " This is a ", "extra_id_100"] ) def _a (self ): '''simple docstring''' lowerCamelCase = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) , ["A", "BC"] ) self.assertEqual(trie.split("BCA" ) , ["BC", "A"] ) def _a (self ): '''simple docstring''' lowerCamelCase = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def _a (self ): '''simple docstring''' lowerCamelCase = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def _a (self ): '''simple docstring''' lowerCamelCase = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) , ["AB", "C"] ) def _a (self ): '''simple docstring''' lowerCamelCase = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) , ["ABC", "D"] ) def _a (self ): '''simple docstring''' lowerCamelCase = Trie() lowerCamelCase = trie.cut_text("ABC" , [0, 0, 2, 1, 2, 3] ) self.assertEqual(__a , ["AB", "C"] )
484
0
"""simple docstring""" import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={"vocab_file": "vocab.txt"} lowerCAmelCase__ ={ "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } lowerCAmelCase__ ={ "facebook/esm2_t6_8M_UR50D": 1_024, "facebook/esm2_t12_35M_UR50D": 1_024, } def _a ( UpperCAmelCase__ ) -> Optional[Any]: with open(UpperCAmelCase__ , '''r''' ) as f: __SCREAMING_SNAKE_CASE = f.read().splitlines() return [l.strip() for l in lines] class A__( __magic_name__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int]="<unk>" , __SCREAMING_SNAKE_CASE : Dict="<cls>" , __SCREAMING_SNAKE_CASE : Optional[Any]="<pad>" , __SCREAMING_SNAKE_CASE : Dict="<mask>" , __SCREAMING_SNAKE_CASE : List[Any]="<eos>" , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> Optional[Any]: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = load_vocab_file(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = dict(enumerate(self.all_tokens ) ) __SCREAMING_SNAKE_CASE = {tok: ind for ind, tok in enumerate(self.all_tokens )} __SCREAMING_SNAKE_CASE = unk_token __SCREAMING_SNAKE_CASE = cls_token __SCREAMING_SNAKE_CASE = pad_token __SCREAMING_SNAKE_CASE = mask_token __SCREAMING_SNAKE_CASE = eos_token __SCREAMING_SNAKE_CASE = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def _a ( self : int , __SCREAMING_SNAKE_CASE : int ) -> str: """simple docstring""" return self._id_to_token.get(__SCREAMING_SNAKE_CASE , self.unk_token ) def _a ( self : Any , __SCREAMING_SNAKE_CASE : str ) -> int: """simple docstring""" return self._token_to_id.get(__SCREAMING_SNAKE_CASE , self._token_to_id.get(self.unk_token ) ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : Tuple , **__SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: """simple docstring""" return text.split() def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : str=False ) -> List[str]: """simple docstring""" return len(self._id_to_token ) def _a ( self : Tuple ) -> Any: """simple docstring""" return {token: i for i, token in enumerate(self.all_tokens )} def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str ) -> int: """simple docstring""" return self._token_to_id.get(__SCREAMING_SNAKE_CASE , self._token_to_id.get(self.unk_token ) ) def _a ( self : int , __SCREAMING_SNAKE_CASE : int ) -> str: """simple docstring""" return self._id_to_token.get(__SCREAMING_SNAKE_CASE , self.unk_token ) def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = [self.cls_token_id] __SCREAMING_SNAKE_CASE = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List , __SCREAMING_SNAKE_CASE : Optional[List] = None , __SCREAMING_SNAKE_CASE : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] __SCREAMING_SNAKE_CASE = [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] if token_ids_a is not None: mask += [0] * len(__SCREAMING_SNAKE_CASE ) + [1] return mask def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Any ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = os.path.join(__SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(__SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def _a ( self : Dict ) -> int: """simple docstring""" return self.get_vocab_size(with_added_tokens=__SCREAMING_SNAKE_CASE ) def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Union[List[str], List[AddedToken]] , __SCREAMING_SNAKE_CASE : bool = False ) -> int: """simple docstring""" return super()._add_tokens(__SCREAMING_SNAKE_CASE , special_tokens=__SCREAMING_SNAKE_CASE )
482
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: lowerCAmelCase__ =None lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ="▁" lowerCAmelCase__ ={"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} lowerCAmelCase__ ={ "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } lowerCAmelCase__ ={ "google/pegasus-xsum": 512, } class A__( __magic_name__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = PegasusTokenizer lowerCAmelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : List[str]="<pad>" , __SCREAMING_SNAKE_CASE : Union[str, Any]="</s>" , __SCREAMING_SNAKE_CASE : Any="<unk>" , __SCREAMING_SNAKE_CASE : Optional[int]="<mask_2>" , __SCREAMING_SNAKE_CASE : Optional[Any]="<mask_1>" , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Optional[int]=1_03 , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = offset if additional_special_tokens is not None: if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise TypeError( f"""additional_special_tokens should be of type {type(__SCREAMING_SNAKE_CASE )}, but is""" f""" {type(__SCREAMING_SNAKE_CASE )}""" ) __SCREAMING_SNAKE_CASE = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(__SCREAMING_SNAKE_CASE ) , self.offset - 1 ) ] if len(set(__SCREAMING_SNAKE_CASE ) ) != len(__SCREAMING_SNAKE_CASE ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) __SCREAMING_SNAKE_CASE = additional_special_tokens_extended else: __SCREAMING_SNAKE_CASE = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] super().__init__( __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , mask_token_sent=__SCREAMING_SNAKE_CASE , offset=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = vocab_file __SCREAMING_SNAKE_CASE = False if not self.vocab_file else True def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : List[str] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( '''There should be 3 special tokens: mask_token, pad_token, and eos_token +''' f""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" ) return [1 if x in all_special_ids else 0 for x in seq] def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List , __SCREAMING_SNAKE_CASE : Optional[List] = None , __SCREAMING_SNAKE_CASE : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(__SCREAMING_SNAKE_CASE ) elif token_ids_a is None: return self._special_token_mask(__SCREAMING_SNAKE_CASE ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _a ( self : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __SCREAMING_SNAKE_CASE = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
482
1
def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = generate_pascal_triangle(_A ) for row_idx in range(_A ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def lowerCamelCase__ ( _A ): '''simple docstring''' if not isinstance(_A , _A ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) snake_case_ = [] for current_row_idx in range(_A ): snake_case_ = populate_current_row(_A , _A ) triangle.append(_A ) return triangle def lowerCamelCase__ ( _A , _A ): '''simple docstring''' snake_case_ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 snake_case_ , snake_case_ = 1, 1 for current_col_idx in range(1 , _A ): calculate_current_element( _A , _A , _A , _A ) return current_row def lowerCamelCase__ ( _A , _A , _A , _A , ): '''simple docstring''' snake_case_ = triangle[current_row_idx - 1][current_col_idx - 1] snake_case_ = triangle[current_row_idx - 1][current_col_idx] snake_case_ = above_to_left_elt + above_to_right_elt def lowerCamelCase__ ( _A ): '''simple docstring''' if not isinstance(_A , _A ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) snake_case_ = [[1]] for row_index in range(1 , _A ): snake_case_ = [0] + result[-1] + [0] snake_case_ = row_index + 1 # Calculate the number of distinct elements in a row snake_case_ = sum(divmod(_A , 2 ) ) snake_case_ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] snake_case_ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() snake_case_ = row_first_half + row_second_half result.append(_A ) return result def lowerCamelCase__ ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(_A , _A ) -> None: snake_case_ = f"{func.__name__}({value})" snake_case_ = timeit(f"__main__.{call}" , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(_A , _A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
139
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( _A , _A , _A ): '''simple docstring''' return params[f"{prefix}/{prefix}/relpos_bias/rel_embedding"][:, i, :] def lowerCamelCase__ ( _A , _A , _A , _A="attention" ): '''simple docstring''' snake_case_ = snake_case_ = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/key/kernel"][:, i, :, :] ) snake_case_ = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) snake_case_ = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/out/kernel"][:, i, :, :] ) snake_case_ = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) snake_case_ = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/query/kernel"][:, i, :, :] ) snake_case_ = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) snake_case_ = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/value/kernel"][:, i, :, :] ) snake_case_ = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def lowerCamelCase__ ( _A , _A , _A , _A=False ): '''simple docstring''' if split_mlp_wi: snake_case_ = params[f"{prefix}/{prefix}/mlp/wi_0/kernel"][:, i, :] snake_case_ = params[f"{prefix}/{prefix}/mlp/wi_1/kernel"][:, i, :] snake_case_ = (wi_a, wi_a) else: snake_case_ = params[f"{prefix}/{prefix}/mlp/wi/kernel"][:, i, :] snake_case_ = params[f"{prefix}/{prefix}/mlp/wo/kernel"][:, i, :] return wi, wo def lowerCamelCase__ ( _A , _A , _A , _A ): '''simple docstring''' return params[f"{prefix}/{prefix}/{layer_name}/scale"][:, i] def lowerCamelCase__ ( _A , *, _A , _A , _A = False ): '''simple docstring''' snake_case_ = traverse_util.flatten_dict(variables["target"] ) snake_case_ = {"/".join(_A ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi snake_case_ = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , _A ) snake_case_ = collections.OrderedDict() # Shared embeddings. snake_case_ = old["token_embedder/embedding"] # Encoder. for i in range(_A ): # Block i, layer 0 (Self Attention). snake_case_ = tax_layer_norm_lookup(_A , _A , "encoder" , "pre_attention_layer_norm" ) snake_case_ , snake_case_ , snake_case_ , snake_case_ = tax_attention_lookup(_A , _A , "encoder" , "attention" ) snake_case_ = layer_norm snake_case_ = k.T snake_case_ = o.T snake_case_ = q.T snake_case_ = v.T # Block i, layer 1 (MLP). snake_case_ = tax_layer_norm_lookup(_A , _A , "encoder" , "pre_mlp_layer_norm" ) snake_case_ , snake_case_ = tax_mlp_lookup(_A , _A , "encoder" , _A ) snake_case_ = layer_norm if split_mlp_wi: snake_case_ = wi[0].T snake_case_ = wi[1].T else: snake_case_ = wi.T snake_case_ = wo.T if scalable_attention: # convert the rel_embedding of each layer snake_case_ = tax_relpos_bias_lookup( _A , _A , "encoder" ).T snake_case_ = old["encoder/encoder_norm/scale"] if not scalable_attention: snake_case_ = tax_relpos_bias_lookup( _A , 0 , "encoder" ).T snake_case_ = tax_relpos_bias_lookup( _A , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(_A ): # Block i, layer 0 (Self Attention). snake_case_ = tax_layer_norm_lookup(_A , _A , "decoder" , "pre_self_attention_layer_norm" ) snake_case_ , snake_case_ , snake_case_ , snake_case_ = tax_attention_lookup(_A , _A , "decoder" , "self_attention" ) snake_case_ = layer_norm snake_case_ = k.T snake_case_ = o.T snake_case_ = q.T snake_case_ = v.T # Block i, layer 1 (Cross Attention). snake_case_ = tax_layer_norm_lookup(_A , _A , "decoder" , "pre_cross_attention_layer_norm" ) snake_case_ , snake_case_ , snake_case_ , snake_case_ = tax_attention_lookup(_A , _A , "decoder" , "encoder_decoder_attention" ) snake_case_ = layer_norm snake_case_ = k.T snake_case_ = o.T snake_case_ = q.T snake_case_ = v.T # Block i, layer 2 (MLP). snake_case_ = tax_layer_norm_lookup(_A , _A , "decoder" , "pre_mlp_layer_norm" ) snake_case_ , snake_case_ = tax_mlp_lookup(_A , _A , "decoder" , _A ) snake_case_ = layer_norm if split_mlp_wi: snake_case_ = wi[0].T snake_case_ = wi[1].T else: snake_case_ = wi.T snake_case_ = wo.T if scalable_attention: # convert the rel_embedding of each layer snake_case_ = tax_relpos_bias_lookup(_A , _A , "decoder" ).T snake_case_ = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: snake_case_ = old["decoder/logits_dense/kernel"].T return new def lowerCamelCase__ ( _A , _A ): '''simple docstring''' snake_case_ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: snake_case_ = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: snake_case_ = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) snake_case_ = state_dict["shared.weight"] return state_dict def lowerCamelCase__ ( _A , _A , _A , _A , _A ): '''simple docstring''' snake_case_ = checkpoints.load_tax_checkpoint(_A ) snake_case_ = convert_tax_to_pytorch( _A , num_layers=config.num_layers , is_encoder_only=_A , scalable_attention=_A ) snake_case_ = make_state_dict(_A , _A ) model.load_state_dict(_A , strict=_A ) def lowerCamelCase__ ( _A , _A , _A , _A = False , _A = False , ): '''simple docstring''' snake_case_ = MTaConfig.from_json_file(_A ) print(f"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: snake_case_ = UMTaEncoderModel(_A ) else: snake_case_ = UMTaForConditionalGeneration(_A ) # Load weights from tf checkpoint load_tax_weights_in_ta(_A , _A , _A , _A , _A ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_A ) # Verify that we can load the checkpoint. model.from_pretrained(_A ) print("Done" ) if __name__ == "__main__": lowercase__ : int = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) parser.add_argument( "--scalable_attention", action="store_true", help="Whether the model uses scaled attention (umt5 model)", default=False, ) lowercase__ : Tuple = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
139
1
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def a__ ( _UpperCamelCase : Tuple ): __lowerCamelCase = model.config __lowerCamelCase = DonutSwinConfig( image_size=original_config.input_size ,patch_size=4 ,depths=original_config.encoder_layer ,num_heads=[4, 8, 16, 32] ,window_size=original_config.window_size ,embed_dim=1_28 ,) __lowerCamelCase = MBartConfig( is_decoder=__snake_case ,is_encoder_decoder=__snake_case ,add_cross_attention=__snake_case ,decoder_layers=original_config.decoder_layer ,max_position_embeddings=original_config.max_position_embeddings ,vocab_size=len( model.decoder.tokenizer ) ,scale_embedding=__snake_case ,add_final_layer_norm=__snake_case ,) return encoder_config, decoder_config def a__ ( _UpperCamelCase : Dict ): if "encoder.model" in name: __lowerCamelCase = name.replace('''encoder.model''' ,'''encoder''' ) if "decoder.model" in name: __lowerCamelCase = name.replace('''decoder.model''' ,'''decoder''' ) if "patch_embed.proj" in name: __lowerCamelCase = name.replace('''patch_embed.proj''' ,'''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: __lowerCamelCase = name.replace('''patch_embed.norm''' ,'''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: __lowerCamelCase = """encoder.""" + name if "attn.proj" in name: __lowerCamelCase = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in name and "mask" not in name: __lowerCamelCase = name.replace('''attn''' ,'''attention.self''' ) if "norm1" in name: __lowerCamelCase = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name: __lowerCamelCase = name.replace('''norm2''' ,'''layernorm_after''' ) if "mlp.fc1" in name: __lowerCamelCase = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: __lowerCamelCase = name.replace('''mlp.fc2''' ,'''output.dense''' ) if name == "encoder.norm.weight": __lowerCamelCase = """encoder.layernorm.weight""" if name == "encoder.norm.bias": __lowerCamelCase = """encoder.layernorm.bias""" return name def a__ ( _UpperCamelCase : Tuple ,_UpperCamelCase : Optional[Any] ): for key in orig_state_dict.copy().keys(): __lowerCamelCase = orig_state_dict.pop(__snake_case ) if "qkv" in key: __lowerCamelCase = key.split('''.''' ) __lowerCamelCase = int(key_split[3] ) __lowerCamelCase = int(key_split[5] ) __lowerCamelCase = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __lowerCamelCase = val[:dim, :] __lowerCamelCase = val[dim : dim * 2, :] __lowerCamelCase = val[-dim:, :] else: __lowerCamelCase = val[:dim] __lowerCamelCase = val[dim : dim * 2] __lowerCamelCase = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: __lowerCamelCase = val return orig_state_dict def a__ ( _UpperCamelCase : Optional[int] ,_UpperCamelCase : str=None ,_UpperCamelCase : Tuple=False ): __lowerCamelCase = DonutModel.from_pretrained(__snake_case ).eval() # load HuggingFace model __lowerCamelCase = get_configs(__snake_case ) __lowerCamelCase = DonutSwinModel(__snake_case ) __lowerCamelCase = MBartForCausalLM(__snake_case ) __lowerCamelCase = VisionEncoderDecoderModel(encoder=__snake_case ,decoder=__snake_case ) model.eval() __lowerCamelCase = original_model.state_dict() __lowerCamelCase = convert_state_dict(__snake_case ,__snake_case ) model.load_state_dict(__snake_case ) # verify results on scanned document __lowerCamelCase = load_dataset('''hf-internal-testing/example-documents''' ) __lowerCamelCase = dataset["""test"""][0]["""image"""].convert('''RGB''' ) __lowerCamelCase = XLMRobertaTokenizerFast.from_pretrained(__snake_case ,from_slow=__snake_case ) __lowerCamelCase = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis ,size=original_model.config.input_size[::-1] ) __lowerCamelCase = DonutProcessor(__snake_case ,__snake_case ) __lowerCamelCase = processor(__snake_case ,return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": __lowerCamelCase = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" __lowerCamelCase = """When is the coffee break?""" __lowerCamelCase = task_prompt.replace('''{user_input}''' ,__snake_case ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": __lowerCamelCase = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: __lowerCamelCase = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": __lowerCamelCase = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": __lowerCamelCase = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt __lowerCamelCase = """hello world""" else: raise ValueError('''Model name not supported''' ) __lowerCamelCase = original_model.decoder.tokenizer(__snake_case ,add_special_tokens=__snake_case ,return_tensors='''pt''' )[ """input_ids""" ] __lowerCamelCase = original_model.encoder.model.patch_embed(__snake_case ) __lowerCamelCase = model.encoder.embeddings(__snake_case ) assert torch.allclose(__snake_case ,__snake_case ,atol=1e-3 ) # verify encoder hidden states __lowerCamelCase = original_model.encoder(__snake_case ) __lowerCamelCase = model.encoder(__snake_case ).last_hidden_state assert torch.allclose(__snake_case ,__snake_case ,atol=1e-2 ) # verify decoder hidden states __lowerCamelCase = original_model(__snake_case ,__snake_case ,__snake_case ).logits __lowerCamelCase = model(__snake_case ,decoder_input_ids=__snake_case ).logits assert torch.allclose(__snake_case ,__snake_case ,atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(__snake_case ) processor.save_pretrained(__snake_case ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] ,commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] ,commit_message='''Update model''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""naver-clova-ix/donut-base-finetuned-docvqa""", required=False, type=str, help="""Name of the original model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, required=False, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub.""", ) a_ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
175
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 42 __snake_case = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.26.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version('>=', '0.0.12') ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 42 __snake_case = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
215
0
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def snake_case__ ( _lowerCamelCase ) ->int: """simple docstring""" return 1.0 / (1.0 + np.exp(-_outputs )) def snake_case__ ( _lowerCamelCase ) ->List[str]: """simple docstring""" __lowercase : Tuple = np.max(_outputs, axis=-1, keepdims=_lowerCamelCase ) __lowercase : Tuple = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1, keepdims=_lowerCamelCase ) class lowerCAmelCase__ ( _snake_case ): """simple docstring""" __UpperCAmelCase : Dict = """sigmoid""" __UpperCAmelCase : Any = """softmax""" __UpperCAmelCase : Optional[int] = """none""" @add_end_docstrings( _snake_case , r"\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `\"default\"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `\"sigmoid\"`: Applies the sigmoid function on the output.\n - `\"softmax\"`: Applies the softmax function on the output.\n - `\"none\"`: Does not apply any function on the output.\n " , ) class lowerCAmelCase__ ( _snake_case ): """simple docstring""" __UpperCAmelCase : Any = False __UpperCAmelCase : Dict = ClassificationFunction.NONE def __init__( self : Any , **lowercase__ : List[Any] ): super().__init__(**snake_case_ ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def snake_case ( self : Union[str, Any] , lowercase__ : Optional[Any]=None , lowercase__ : Optional[int]=None , lowercase__ : Optional[int]="" , **lowercase__ : List[str] ): # Using "" as default argument because we're going to use `top_k=None` in user code to declare # "No top_k" __lowercase : str = tokenizer_kwargs __lowercase : str = {} if hasattr(self.model.config , "return_all_scores" ) and return_all_scores is None: __lowercase : str = self.model.config.return_all_scores if isinstance(snake_case_ , snake_case_ ) or top_k is None: __lowercase : Optional[Any] = top_k __lowercase : List[str] = False elif return_all_scores is not None: warnings.warn( "`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" " `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." , snake_case_ , ) if return_all_scores: __lowercase : Optional[int] = None else: __lowercase : Dict = 1 if isinstance(snake_case_ , snake_case_ ): __lowercase : List[Any] = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: __lowercase : List[str] = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self : Dict , *lowercase__ : List[Any] , **lowercase__ : List[Any] ): __lowercase : Dict = super().__call__(*snake_case_ , **snake_case_ ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. __lowercase : Tuple = "top_k" not in kwargs if isinstance(args[0] , snake_case_ ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def snake_case ( self : str , lowercase__ : Optional[Any] , **lowercase__ : Optional[int] ): __lowercase : str = self.framework if isinstance(snake_case_ , snake_case_ ): return self.tokenizer(**snake_case_ , return_tensors=snake_case_ , **snake_case_ ) elif isinstance(snake_case_ , snake_case_ ) and len(snake_case_ ) == 1 and isinstance(inputs[0] , snake_case_ ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=snake_case_ , **snake_case_ ) elif isinstance(snake_case_ , snake_case_ ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( "The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" " dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." ) return self.tokenizer(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) def snake_case ( self : List[Any] , lowercase__ : int ): return self.model(**snake_case_ ) def snake_case ( self : Any , lowercase__ : str , lowercase__ : List[Any]=None , lowercase__ : int=1 , lowercase__ : List[str]=True ): # `_legacy` is used to determine if we're running the naked pipeline and in backward # compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running # the more natural result containing the list. # Default value before `set_parameters` if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: __lowercase : Dict = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: __lowercase : Union[str, Any] = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , "function_to_apply" ) and function_to_apply is None: __lowercase : Any = self.model.config.function_to_apply else: __lowercase : str = ClassificationFunction.NONE __lowercase : Optional[Any] = model_outputs["logits"][0] __lowercase : Optional[Any] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: __lowercase : Optional[Any] = sigmoid(snake_case_ ) elif function_to_apply == ClassificationFunction.SOFTMAX: __lowercase : Tuple = softmax(snake_case_ ) elif function_to_apply == ClassificationFunction.NONE: __lowercase : Dict = outputs else: raise ValueError(f'Unrecognized `function_to_apply` argument: {function_to_apply}' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} __lowercase : List[Any] = [ {"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(snake_case_ ) ] if not _legacy: dict_scores.sort(key=lambda lowercase__ : x["score"] , reverse=snake_case_ ) if top_k is not None: __lowercase : int = dict_scores[:top_k] return dict_scores
721
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping __A : str = tuple[int, int] class lowerCAmelCase__ : """simple docstring""" def __init__( self : int , lowercase__ : set[int] , lowercase__ : Mapping[EdgeT, int] ): __lowercase : set[int] = vertices __lowercase : dict[EdgeT, int] = { (min(lowercase__ ), max(lowercase__ )): weight for edge, weight in edges.items() } def snake_case ( self : Optional[Any] , lowercase__ : EdgeT , lowercase__ : int ): self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __lowercase : Union[str, Any] = weight def snake_case ( self : Dict ): __lowercase : Graph = Graph({min(self.vertices )} , {} ) __lowercase : EdgeT __lowercase : int __lowercase : EdgeT __lowercase : int while len(subgraph.vertices ) < len(self.vertices ): __lowercase : int = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __lowercase : Optional[Any] = edge __lowercase : List[str] = weight subgraph.add_edge(lowercase__ , lowercase__ ) return subgraph def snake_case__ ( _lowerCamelCase = "p107_network.txt" ) ->int: """simple docstring""" __lowercase : str = os.path.abspath(os.path.dirname(_lowerCamelCase ) ) __lowercase : str = os.path.join(_lowerCamelCase, _lowerCamelCase ) __lowercase : dict[EdgeT, int] = {} __lowercase : list[str] __lowercase : int __lowercase : int with open(_lowerCamelCase ) as f: __lowercase : List[str] = f.read().strip().split("\n" ) __lowercase : Any = [line.split("," ) for line in data] for edgea in range(1, len(_lowerCamelCase ) ): for edgea in range(_lowerCamelCase ): if adjaceny_matrix[edgea][edgea] != "-": __lowercase : Dict = int(adjaceny_matrix[edgea][edgea] ) __lowercase : Graph = Graph(set(range(len(_lowerCamelCase ) ) ), _lowerCamelCase ) __lowercase : Graph = graph.prims_algorithm() __lowercase : int = sum(graph.edges.values() ) __lowercase : int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"""{solution() = }""")
281
0
import numpy as np from PIL import Image def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> np.ndarray: '''simple docstring''' UpperCAmelCase__ : Dict = np.array(__lowerCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Union[str, Any] = 0 UpperCAmelCase__ : Optional[Any] = 0 UpperCAmelCase__ : Optional[int] = 0 # compute the shape of the output matrix UpperCAmelCase__ : Tuple = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape UpperCAmelCase__ : Any = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix UpperCAmelCase__ : int = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCAmelCase__ : str = 0 UpperCAmelCase__ : Tuple = 0 return updated_arr def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> np.ndarray: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = np.array(__lowerCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) UpperCAmelCase__ : Union[str, Any] = 0 UpperCAmelCase__ : Optional[Any] = 0 UpperCAmelCase__ : List[str] = 0 UpperCAmelCase__ : List[Any] = 0 # compute the shape of the output matrix UpperCAmelCase__ : List[Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape UpperCAmelCase__ : Dict = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix UpperCAmelCase__ : int = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCAmelCase__ : List[str] = 0 UpperCAmelCase__ : Tuple = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="""avgpooling""", verbose=True) # Loading the image SCREAMING_SNAKE_CASE__ : Tuple = Image.open("""path_to_image""") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
79
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class _lowerCamelCase : """simple docstring""" # setable values snake_case = None snake_case = None snake_case = None # sigma(t_i) @classmethod def _snake_case ( cls )->int: '''simple docstring''' return cls() @dataclass class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = 42 snake_case = 42 snake_case = 42 class _lowerCamelCase ( UpperCamelCase , UpperCamelCase ): """simple docstring""" @property def _snake_case ( self )->Dict: '''simple docstring''' return True @register_to_config def __init__( self , _SCREAMING_SNAKE_CASE = 0.0_2 , _SCREAMING_SNAKE_CASE = 100 , _SCREAMING_SNAKE_CASE = 1.0_0_7 , _SCREAMING_SNAKE_CASE = 80 , _SCREAMING_SNAKE_CASE = 0.0_5 , _SCREAMING_SNAKE_CASE = 50 , )->Union[str, Any]: '''simple docstring''' pass def _snake_case ( self )->List[Any]: '''simple docstring''' return KarrasVeSchedulerState.create() def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = () )->KarrasVeSchedulerState: '''simple docstring''' A_ : str = jnp.arange(0 , _SCREAMING_SNAKE_CASE )[::-1].copy() A_ : Optional[Any] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=_SCREAMING_SNAKE_CASE , schedule=jnp.array(_SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) , timesteps=_SCREAMING_SNAKE_CASE , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )->Tuple[jnp.ndarray, float]: '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: A_ : List[Any] = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: A_ : Any = 0 # sample eps ~ N(0, S_noise^2 * I) A_ : Any = random.split(_SCREAMING_SNAKE_CASE , num=1 ) A_ : List[str] = self.config.s_noise * random.normal(key=_SCREAMING_SNAKE_CASE , shape=sample.shape ) A_ : Optional[Any] = sigma + gamma * sigma A_ : Any = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , )->Union[FlaxKarrasVeOutput, Tuple]: '''simple docstring''' A_ : int = sample_hat + sigma_hat * model_output A_ : Dict = (sample_hat - pred_original_sample) / sigma_hat A_ : Optional[Any] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=_SCREAMING_SNAKE_CASE , derivative=_SCREAMING_SNAKE_CASE , state=_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , )->Union[FlaxKarrasVeOutput, Tuple]: '''simple docstring''' A_ : List[Any] = sample_prev + sigma_prev * model_output A_ : str = (sample_prev - pred_original_sample) / sigma_prev A_ : List[Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=_SCREAMING_SNAKE_CASE , derivative=_SCREAMING_SNAKE_CASE , state=_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Union[str, Any]: '''simple docstring''' raise NotImplementedError()
590
0
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : Tuple = { """google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""", """google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""", """google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""", } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''owlvit_text_model''' def __init__( self : int , UpperCAmelCase__ : List[Any]=49_408 , UpperCAmelCase__ : int=512 , UpperCAmelCase__ : Optional[int]=2_048 , UpperCAmelCase__ : List[Any]=12 , UpperCAmelCase__ : List[Any]=8 , UpperCAmelCase__ : Optional[int]=16 , UpperCAmelCase__ : List[Any]="quick_gelu" , UpperCAmelCase__ : str=1e-5 , UpperCAmelCase__ : List[str]=0.0 , UpperCAmelCase__ : Optional[int]=0.02 , UpperCAmelCase__ : Tuple=1.0 , UpperCAmelCase__ : int=0 , UpperCAmelCase__ : Dict=49_406 , UpperCAmelCase__ : Tuple=49_407 , **UpperCAmelCase__ : Tuple , ) ->List[str]: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__) A__ = vocab_size A__ = hidden_size A__ = intermediate_size A__ = num_hidden_layers A__ = num_attention_heads A__ = max_position_embeddings A__ = hidden_act A__ = layer_norm_eps A__ = attention_dropout A__ = initializer_range A__ = initializer_factor @classmethod def SCREAMING_SNAKE_CASE ( cls : Tuple , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : Dict) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase__) A__ , A__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''') == "owlvit": A__ = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''owlvit_vision_model''' def __init__( self : Union[str, Any] , UpperCAmelCase__ : int=768 , UpperCAmelCase__ : Optional[int]=3_072 , UpperCAmelCase__ : Tuple=12 , UpperCAmelCase__ : List[Any]=12 , UpperCAmelCase__ : str=3 , UpperCAmelCase__ : Tuple=768 , UpperCAmelCase__ : Tuple=32 , UpperCAmelCase__ : str="quick_gelu" , UpperCAmelCase__ : Union[str, Any]=1e-5 , UpperCAmelCase__ : Optional[Any]=0.0 , UpperCAmelCase__ : Any=0.02 , UpperCAmelCase__ : List[Any]=1.0 , **UpperCAmelCase__ : Dict , ) ->Union[str, Any]: '''simple docstring''' super().__init__(**UpperCAmelCase__) A__ = hidden_size A__ = intermediate_size A__ = num_hidden_layers A__ = num_attention_heads A__ = num_channels A__ = image_size A__ = patch_size A__ = hidden_act A__ = layer_norm_eps A__ = attention_dropout A__ = initializer_range A__ = initializer_factor @classmethod def SCREAMING_SNAKE_CASE ( cls : Dict , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : str) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase__) A__ , A__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''') == "owlvit": A__ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''owlvit''' UpperCAmelCase__ = True def __init__( self : str , UpperCAmelCase__ : str=None , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : str=512 , UpperCAmelCase__ : str=2.6592 , UpperCAmelCase__ : Union[str, Any]=True , **UpperCAmelCase__ : Dict , ) ->Optional[int]: '''simple docstring''' super().__init__(**UpperCAmelCase__) if text_config is None: A__ = {} logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''') if vision_config is None: A__ = {} logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''') A__ = OwlViTTextConfig(**UpperCAmelCase__) A__ = OwlViTVisionConfig(**UpperCAmelCase__) A__ = projection_dim A__ = logit_scale_init_value A__ = return_dict A__ = 1.0 @classmethod def SCREAMING_SNAKE_CASE ( cls : Any , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : Optional[Any]) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase__) A__ , A__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__) if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__) @classmethod def SCREAMING_SNAKE_CASE ( cls : str , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Optional[Any]) ->List[Any]: '''simple docstring''' A__ = {} A__ = text_config A__ = vision_config return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[Any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__) A__ = self.text_config.to_dict() A__ = self.vision_config.to_dict() A__ = self.__class__.model_type return output class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE ( self : Dict) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ]) @property def SCREAMING_SNAKE_CASE ( self : List[str]) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''logits_per_image''', {0: '''batch'''}), ('''logits_per_text''', {0: '''batch'''}), ('''text_embeds''', {0: '''batch'''}), ('''image_embeds''', {0: '''batch'''}), ]) @property def SCREAMING_SNAKE_CASE ( self : Dict) ->float: '''simple docstring''' return 1e-4 def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : "ProcessorMixin" , UpperCAmelCase__ : int = -1 , UpperCAmelCase__ : int = -1 , UpperCAmelCase__ : Optional["TensorType"] = None , ) ->Mapping[str, Any]: '''simple docstring''' A__ = super().generate_dummy_inputs( processor.tokenizer , batch_size=UpperCAmelCase__ , seq_length=UpperCAmelCase__ , framework=UpperCAmelCase__) A__ = super().generate_dummy_inputs( processor.image_processor , batch_size=UpperCAmelCase__ , framework=UpperCAmelCase__) return {**text_input_dict, **image_input_dict} @property def SCREAMING_SNAKE_CASE ( self : Tuple) ->int: '''simple docstring''' return 14
702
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = XGLMConfig UpperCAmelCase__ = {} UpperCAmelCase__ = '''gelu''' def __init__( self : str , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Union[str, Any]=14 , UpperCAmelCase__ : Tuple=7 , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Any=99 , UpperCAmelCase__ : Union[str, Any]=32 , UpperCAmelCase__ : Any=2 , UpperCAmelCase__ : Dict=4 , UpperCAmelCase__ : List[str]=37 , UpperCAmelCase__ : Union[str, Any]="gelu" , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : Any=512 , UpperCAmelCase__ : List[Any]=0.02 , ) ->str: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_labels A__ = vocab_size A__ = d_model A__ = num_hidden_layers A__ = num_attention_heads A__ = ffn_dim A__ = activation_function A__ = activation_dropout A__ = attention_dropout A__ = max_position_embeddings A__ = initializer_range A__ = None A__ = 0 A__ = 2 A__ = 1 def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: '''simple docstring''' return XGLMConfig.from_pretrained('''facebook/xglm-564M''') def SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple: '''simple docstring''' A__ = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) , clip_value_min=0 , clip_value_max=3) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length]) A__ = self.get_config() A__ = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2) return ( config, input_ids, input_mask, head_mask, ) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=UpperCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=UpperCAmelCase__ , ) def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCAmelCase__ = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCAmelCase__ = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: '''simple docstring''' A__ = TFXGLMModelTester(self) A__ = ConfigTester(self , config_class=UpperCAmelCase__ , n_embd=37) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str: '''simple docstring''' self.config_tester.run_common_tests() @slow def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFXGLMModel.from_pretrained(UpperCAmelCase__) self.assertIsNotNone(UpperCAmelCase__) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''') def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' super().test_resize_token_embeddings() @require_tf class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Optional[Any]=True) ->Union[str, Any]: '''simple docstring''' A__ = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''') A__ = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off A__ = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on A__ = model.generate(UpperCAmelCase__ , do_sample=UpperCAmelCase__ , num_beams=1) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , UpperCAmelCase__) @slow def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' A__ = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''') A__ = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''') tf.random.set_seed(0) A__ = tokenizer('''Today is a nice day and''' , return_tensors='''tf''') A__ = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0'''): A__ = model.generate(UpperCAmelCase__ , do_sample=UpperCAmelCase__ , seed=[7, 0]) A__ = tokenizer.decode(output_ids[0] , skip_special_tokens=UpperCAmelCase__) A__ = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' A__ = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''') A__ = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''') A__ = '''left''' # use different length sentences to test batching A__ = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] A__ = tokenizer(UpperCAmelCase__ , return_tensors='''tf''' , padding=UpperCAmelCase__) A__ = inputs['''input_ids'''] A__ = model.generate(input_ids=UpperCAmelCase__ , attention_mask=inputs['''attention_mask'''] , max_new_tokens=12) A__ = tokenizer(sentences[0] , return_tensors='''tf''').input_ids A__ = model.generate(input_ids=UpperCAmelCase__ , max_new_tokens=12) A__ = tokenizer(sentences[1] , return_tensors='''tf''').input_ids A__ = model.generate(input_ids=UpperCAmelCase__ , max_new_tokens=12) A__ = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__) A__ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCAmelCase__) A__ = tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCAmelCase__) A__ = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__) self.assertListEqual(UpperCAmelCase__ , [non_padded_sentence, padded_sentence])
177
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
411
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Union[str, Any] , lowerCAmelCase: str )-> int: return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Tuple , lowerCAmelCase: str="attention" )-> List[Any]: _snake_case : Optional[Any] = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) _snake_case : Optional[int] = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) _snake_case : List[Any] = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) _snake_case : Optional[int] = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) _snake_case : str = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) _snake_case : Union[str, Any] = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) _snake_case : Dict = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) _snake_case : int = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: Any , lowerCAmelCase: Union[str, Any]=False )-> int: if split_mlp_wi: _snake_case : Dict = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] _snake_case : Dict = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] _snake_case : List[str] = (wi_a, wi_a) else: _snake_case : Optional[Any] = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] _snake_case : Any = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def lowerCamelCase_ ( lowerCAmelCase: List[str] , lowerCAmelCase: Dict , lowerCAmelCase: int , lowerCAmelCase: Optional[int] )-> Optional[Any]: return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def lowerCamelCase_ ( lowerCAmelCase: dict , *, lowerCAmelCase: int , lowerCAmelCase: bool , lowerCAmelCase: bool = False )-> str: _snake_case : List[Any] = traverse_util.flatten_dict(variables['target'] ) _snake_case : Dict = {'/'.join(lowerCAmelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _snake_case : str = 'encoder/encoder/mlp/wi_0/kernel' in old print('Split MLP:' , lowerCAmelCase ) _snake_case : Any = collections.OrderedDict() # Shared embeddings. _snake_case : Optional[int] = old['token_embedder/embedding'] # Encoder. for i in range(lowerCAmelCase ): # Block i, layer 0 (Self Attention). _snake_case : Tuple = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , 'encoder' , 'pre_attention_layer_norm' ) _snake_case , _snake_case , _snake_case , _snake_case : Union[str, Any] = tax_attention_lookup(lowerCAmelCase , lowerCAmelCase , 'encoder' , 'attention' ) _snake_case : List[str] = layer_norm _snake_case : Tuple = k.T _snake_case : str = o.T _snake_case : Tuple = q.T _snake_case : Optional[Any] = v.T # Block i, layer 1 (MLP). _snake_case : Any = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , 'encoder' , 'pre_mlp_layer_norm' ) _snake_case , _snake_case : List[Any] = tax_mlp_lookup(lowerCAmelCase , lowerCAmelCase , 'encoder' , lowerCAmelCase ) _snake_case : int = layer_norm if split_mlp_wi: _snake_case : Union[str, Any] = wi[0].T _snake_case : Any = wi[1].T else: _snake_case : str = wi.T _snake_case : List[str] = wo.T if scalable_attention: # convert the rel_embedding of each layer _snake_case : Optional[Any] = tax_relpos_bias_lookup( lowerCAmelCase , lowerCAmelCase , 'encoder' ).T _snake_case : int = old['encoder/encoder_norm/scale'] if not scalable_attention: _snake_case : Any = tax_relpos_bias_lookup( lowerCAmelCase , 0 , 'encoder' ).T _snake_case : Optional[int] = tax_relpos_bias_lookup( lowerCAmelCase , 0 , 'decoder' ).T if not is_encoder_only: # Decoder. for i in range(lowerCAmelCase ): # Block i, layer 0 (Self Attention). _snake_case : Optional[int] = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , 'decoder' , 'pre_self_attention_layer_norm' ) _snake_case , _snake_case , _snake_case , _snake_case : List[str] = tax_attention_lookup(lowerCAmelCase , lowerCAmelCase , 'decoder' , 'self_attention' ) _snake_case : List[str] = layer_norm _snake_case : Tuple = k.T _snake_case : str = o.T _snake_case : str = q.T _snake_case : List[Any] = v.T # Block i, layer 1 (Cross Attention). _snake_case : List[str] = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , 'decoder' , 'pre_cross_attention_layer_norm' ) _snake_case , _snake_case , _snake_case , _snake_case : Optional[Any] = tax_attention_lookup(lowerCAmelCase , lowerCAmelCase , 'decoder' , 'encoder_decoder_attention' ) _snake_case : Optional[Any] = layer_norm _snake_case : List[str] = k.T _snake_case : Optional[Any] = o.T _snake_case : Union[str, Any] = q.T _snake_case : List[Any] = v.T # Block i, layer 2 (MLP). _snake_case : List[str] = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , 'decoder' , 'pre_mlp_layer_norm' ) _snake_case , _snake_case : Tuple = tax_mlp_lookup(lowerCAmelCase , lowerCAmelCase , 'decoder' , lowerCAmelCase ) _snake_case : str = layer_norm if split_mlp_wi: _snake_case : List[str] = wi[0].T _snake_case : List[str] = wi[1].T else: _snake_case : Union[str, Any] = wi.T _snake_case : int = wo.T if scalable_attention: # convert the rel_embedding of each layer _snake_case : Dict = tax_relpos_bias_lookup(lowerCAmelCase , lowerCAmelCase , 'decoder' ).T _snake_case : Optional[int] = old['decoder/decoder_norm/scale'] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _snake_case : Union[str, Any] = old['decoder/logits_dense/kernel'].T return new def lowerCamelCase_ ( lowerCAmelCase: List[str] , lowerCAmelCase: bool )-> int: _snake_case : Optional[int] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _snake_case : str = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _snake_case : List[str] = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) _snake_case : Dict = state_dict['shared.weight'] return state_dict def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: str , lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Any , lowerCAmelCase: Dict )-> Optional[int]: _snake_case : List[Any] = checkpoints.load_tax_checkpoint(lowerCAmelCase ) _snake_case : Optional[int] = convert_tax_to_pytorch( lowerCAmelCase , num_layers=config.num_layers , is_encoder_only=lowerCAmelCase , scalable_attention=lowerCAmelCase ) _snake_case : Tuple = make_state_dict(lowerCAmelCase , lowerCAmelCase ) model.load_state_dict(lowerCAmelCase , strict=lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: List[Any] , lowerCAmelCase: Dict , lowerCAmelCase: bool = False , lowerCAmelCase: bool = False , )-> Tuple: _snake_case : Union[str, Any] = MTaConfig.from_json_file(lowerCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _snake_case : int = UMTaEncoderModel(lowerCAmelCase ) else: _snake_case : int = UMTaForConditionalGeneration(lowerCAmelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCAmelCase ) # Verify that we can load the checkpoint. model.from_pretrained(lowerCAmelCase ) print('Done' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) lowerCAmelCase_ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
411
1
'''simple docstring''' def __snake_case( _lowerCAmelCase ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("""The given input must be positive""" ) # get the generated string sequence snake_case__ : str = gray_code_sequence_string(_lowerCAmelCase ) # # convert them to integers for i in range(len(_lowerCAmelCase ) ): snake_case__ : Any = int(sequence[i] , 2 ) return sequence def __snake_case( _lowerCAmelCase ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] snake_case__ : str = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits snake_case__ : Dict = gray_code_sequence_string(bit_count - 1 ) snake_case__ : Dict = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): snake_case__ : Any = """0""" + smaller_sequence[i] sequence.append(_lowerCAmelCase ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): snake_case__ : Optional[int] = """1""" + smaller_sequence[i] sequence.append(_lowerCAmelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
301
'''simple docstring''' def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> bool: return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(_lowerCAmelCase ) ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> bool: # Base Case if index == len(_lowerCAmelCase ): return True # Recursive Step for i in range(_lowerCAmelCase ): if valid_coloring(graph[index] , _lowerCAmelCase , _lowerCAmelCase ): # Color current vertex snake_case__ : List[Any] = i # Validate coloring if util_color(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , index + 1 ): return True # Backtrack snake_case__ : Any = -1 return False def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> list[int]: snake_case__ : Tuple = [-1] * len(_lowerCAmelCase ) if util_color(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , 0 ): return colored_vertices return []
301
1
import os import sys import unittest lowerCamelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowerCamelCase__ = os.path.join(git_repo_path, "src", "diffusers") class lowerCAmelCase__ ( unittest.TestCase ): def A_ ( self ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = find_backend(""" if not is_torch_available():""" ) self.assertEqual(A_ , """torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") _UpperCamelCase = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(A_ , """torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") _UpperCamelCase = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(A_ , """torch_and_transformers_and_onnx""" ) def A_ ( self ) -> Dict: '''simple docstring''' _UpperCamelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""" , A_ ) self.assertIn("""torch_and_transformers""" , A_ ) self.assertIn("""flax_and_transformers""" , A_ ) self.assertIn("""torch_and_transformers_and_onnx""" , A_ ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""" , objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""" , objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""" , objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""" , objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""" , objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""" , objects["""torch_and_transformers_and_onnx"""] ) def A_ ( self ) -> int: '''simple docstring''' _UpperCamelCase = create_dummy_object("""CONSTANT""" , """'torch'""" ) self.assertEqual(A_ , """\nCONSTANT = None\n""" ) _UpperCamelCase = create_dummy_object("""function""" , """'torch'""" ) self.assertEqual( A_ , """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) _UpperCamelCase = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ _UpperCamelCase = create_dummy_object("""FakeClass""" , """'torch'""" ) self.assertEqual(A_ , A_ ) def A_ ( self ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ _UpperCamelCase = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""] , A_ )
612
"""simple docstring""" def a_ ( lowercase__ :str, lowercase__ :int ): return [sentence[i : i + ngram_size] for i in range(len(lowercase__ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
281
0
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=None , ): """simple docstring""" UpperCamelCase : Any = parent UpperCamelCase : Optional[int] = batch_size UpperCamelCase : Optional[Any] = seq_length UpperCamelCase : Optional[int] = is_training UpperCamelCase : Dict = use_input_mask UpperCamelCase : Dict = use_token_type_ids UpperCamelCase : Any = use_labels UpperCamelCase : Dict = vocab_size UpperCamelCase : str = hidden_size UpperCamelCase : Optional[int] = num_hidden_layers UpperCamelCase : Dict = num_attention_heads UpperCamelCase : Union[str, Any] = intermediate_size UpperCamelCase : List[Any] = hidden_act UpperCamelCase : Dict = hidden_dropout_prob UpperCamelCase : List[str] = attention_probs_dropout_prob UpperCamelCase : int = max_position_embeddings UpperCamelCase : Tuple = type_vocab_size UpperCamelCase : Union[str, Any] = type_sequence_label_size UpperCamelCase : str = initializer_range UpperCamelCase : Optional[Any] = num_labels UpperCamelCase : List[str] = num_choices UpperCamelCase : List[str] = scope def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase : Union[str, Any] = None if self.use_input_mask: UpperCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Union[str, Any] = None if self.use_token_type_ids: UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase : Union[str, Any] = None UpperCamelCase : Tuple = None UpperCamelCase : int = None if self.use_labels: UpperCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , use_stable_embedding=__SCREAMING_SNAKE_CASE , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = OpenLlamaModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase : Any = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Optional[int] = True UpperCamelCase : Dict = OpenLlamaModel(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase : List[Any] = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : str = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Dict = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : List[Any] = OpenLlamaForCausalLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase : Union[str, Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Optional[Any] = True UpperCamelCase : int = True UpperCamelCase : Dict = OpenLlamaForCausalLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() # first forward pass UpperCamelCase : Optional[int] = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[str] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase : List[str] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase : int = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , )['''hidden_states'''][0] UpperCamelCase : int = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , )['''hidden_states'''][0] # select random slice UpperCamelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-3 ) ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Dict = config_and_inputs UpperCamelCase : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a, _a, _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : Union[str, Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __UpperCamelCase : Optional[int] = (OpenLlamaForCausalLM,) if is_torch_available() else () __UpperCamelCase : List[str] = ( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase : Optional[Any] = False __UpperCamelCase : Any = False def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = OpenLlamaModelTester(self ) UpperCamelCase : Tuple = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def _lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase : Dict = type self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase , UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : List[Any] = 3 UpperCamelCase : int = input_dict['''input_ids'''] UpperCamelCase : str = input_ids.ne(1 ).to(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase : Optional[Any] = OpenLlamaForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase : Union[str, Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase ( self ): """simple docstring""" UpperCamelCase , UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : List[Any] = 3 UpperCamelCase : Union[str, Any] = '''single_label_classification''' UpperCamelCase : Any = input_dict['''input_ids'''] UpperCamelCase : Tuple = input_ids.ne(1 ).to(__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase : Optional[Any] = OpenLlamaForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase : str = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase ( self ): """simple docstring""" UpperCamelCase , UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : str = 3 UpperCamelCase : Optional[int] = '''multi_label_classification''' UpperCamelCase : str = input_dict['''input_ids'''] UpperCamelCase : str = input_ids.ne(1 ).to(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCamelCase : Dict = OpenLlamaForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase : List[Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def _lowercase ( self ): """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase , UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : Dict = ids_tensor([1, 10] , config.vocab_size ) UpperCamelCase : Dict = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase : Optional[int] = OpenLlamaModel(__SCREAMING_SNAKE_CASE ) original_model.to(__SCREAMING_SNAKE_CASE ) original_model.eval() UpperCamelCase : int = original_model(__SCREAMING_SNAKE_CASE ).last_hidden_state UpperCamelCase : List[str] = original_model(__SCREAMING_SNAKE_CASE ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase : Tuple = {'''type''': scaling_type, '''factor''': 10.0} UpperCamelCase : List[str] = OpenLlamaModel(__SCREAMING_SNAKE_CASE ) scaled_model.to(__SCREAMING_SNAKE_CASE ) scaled_model.eval() UpperCamelCase : str = scaled_model(__SCREAMING_SNAKE_CASE ).last_hidden_state UpperCamelCase : List[Any] = scaled_model(__SCREAMING_SNAKE_CASE ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-5 ) )
643
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __UpperCAmelCase : List[Any] = True except ImportError: __UpperCAmelCase : List[str] = False __UpperCAmelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def a ( SCREAMING_SNAKE_CASE_ : Namespace ): """simple docstring""" return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class UpperCAmelCase_ ( _a): '''simple docstring''' @staticmethod def _lowercase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[Any] = parser.add_parser('''add-new-model''' ) add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''' ) add_new_model_parser.add_argument('''--testing_file''' , type=__SCREAMING_SNAKE_CASE , help='''Configuration file on which to run.''' ) add_new_model_parser.add_argument( '''--path''' , type=__SCREAMING_SNAKE_CASE , help='''Path to cookiecutter. Should only be used for testing purposes.''' ) add_new_model_parser.set_defaults(func=__SCREAMING_SNAKE_CASE ) def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , *__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = testing UpperCamelCase : Any = testing_file UpperCamelCase : Dict = path def _lowercase ( self ): """simple docstring""" warnings.warn( '''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ''' '''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ''' '''checks, you should use `transformers-cli add-new-model-like` instead.''' ) if not _has_cookiecutter: raise ImportError( '''Model creation dependencies are required to use the `add_new_model` command. Install them by running ''' '''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory UpperCamelCase : List[str] = [directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:22]] if len(__SCREAMING_SNAKE_CASE ) > 0: raise ValueError( '''Several directories starting with `cookiecutter-template-` in current working directory. ''' '''Please clean your directory by removing all folders starting with `cookiecutter-template-` or ''' '''change your working directory.''' ) UpperCamelCase : Dict = ( Path(__SCREAMING_SNAKE_CASE ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) UpperCamelCase : List[Any] = path_to_transformer_root / '''templates''' / '''adding_a_new_model''' # Execute cookiecutter if not self._testing: cookiecutter(str(__SCREAMING_SNAKE_CASE ) ) else: with open(self._testing_file , '''r''' ) as configuration_file: UpperCamelCase : Tuple = json.load(__SCREAMING_SNAKE_CASE ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=__SCREAMING_SNAKE_CASE , extra_context=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Dict = [directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:22]][0] # Retrieve configuration with open(directory + '''/configuration.json''' , '''r''' ) as configuration_file: UpperCamelCase : Tuple = json.load(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = configuration['''lowercase_modelname'''] UpperCamelCase : int = configuration['''generate_tensorflow_pytorch_and_flax'''] os.remove(f"""{directory}/configuration.json""" ) UpperCamelCase : str = '''PyTorch''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Any = '''TensorFlow''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Union[str, Any] = '''Flax''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Optional[Any] = f"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) os.makedirs(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=__SCREAMING_SNAKE_CASE ) # Tests require submodules as they have parent imports with open(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , '''w''' ): pass shutil.move( f"""{directory}/__init__.py""" , f"""{model_dir}/__init__.py""" , ) shutil.move( f"""{directory}/configuration_{lowercase_model_name}.py""" , f"""{model_dir}/configuration_{lowercase_model_name}.py""" , ) def remove_copy_lines(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE , '''r''' ) as f: UpperCamelCase : Any = f.readlines() with open(__SCREAMING_SNAKE_CASE , '''w''' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(__SCREAMING_SNAKE_CASE ) if output_pytorch: if not self._testing: remove_copy_lines(f"""{directory}/modeling_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_{lowercase_model_name}.py""" ) if output_tensorflow: if not self._testing: remove_copy_lines(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_tf_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" ) if output_flax: if not self._testing: remove_copy_lines(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_flax_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/{lowercase_model_name}.md""" , f"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , ) shutil.move( f"""{directory}/tokenization_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # Create temp file UpperCamelCase , UpperCamelCase : Optional[Any] = mkstemp() UpperCamelCase : Tuple = False with fdopen(__SCREAMING_SNAKE_CASE , '''w''' ) as new_file: with open(__SCREAMING_SNAKE_CASE ) as old_file: for line in old_file: new_file.write(__SCREAMING_SNAKE_CASE ) if line_to_copy_below in line: UpperCamelCase : Optional[int] = True for line_to_copy in lines_to_copy: new_file.write(__SCREAMING_SNAKE_CASE ) if not line_found: raise ValueError(f"""Line {line_to_copy_below} was not found in file.""" ) # Copy the file permissions from the old file to the new file copymode(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Remove original file remove(__SCREAMING_SNAKE_CASE ) # Move new file move(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def skip_units(__SCREAMING_SNAKE_CASE ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE ) as datafile: UpperCamelCase : int = [] UpperCamelCase : Dict = False UpperCamelCase : List[Any] = False for line in datafile: if "# To replace in: " in line and "##" not in line: UpperCamelCase : Dict = line.split('''"''' )[1] UpperCamelCase : int = skip_units(__SCREAMING_SNAKE_CASE ) elif "# Below: " in line and "##" not in line: UpperCamelCase : Dict = line.split('''"''' )[1] UpperCamelCase : List[str] = skip_units(__SCREAMING_SNAKE_CASE ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = [] elif "# Replace with" in line and "##" not in line: UpperCamelCase : Tuple = [] elif "##" not in line: lines_to_copy.append(__SCREAMING_SNAKE_CASE ) remove(__SCREAMING_SNAKE_CASE ) replace_in_files(f"""{directory}/to_replace_{lowercase_model_name}.py""" ) os.rmdir(__SCREAMING_SNAKE_CASE )
643
1
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch __snake_case : Optional[int] = logging.get_logger(__name__) class A : def __init__( self , snake_case_ = None , snake_case_ = None , snake_case_=None , snake_case_=None ) -> str: if not conversation_id: _a = uuid.uuida() if past_user_inputs is None: _a = [] if generated_responses is None: _a = [] _a = conversation_id _a = past_user_inputs _a = generated_responses _a = text def __eq__( self , snake_case_ ) -> Optional[Any]: if not isinstance(_lowerCamelCase , _lowerCamelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = False ) -> str: if self.new_user_input: if overwrite: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' F'''with: "{text}".''' ) _a = text else: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' F'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: _a = text def __lowerCAmelCase ( self ) -> Union[str, Any]: if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) _a = None def __lowerCAmelCase ( self , snake_case_ ) -> Any: self.generated_responses.append(_lowerCamelCase ) def __lowerCAmelCase ( self ) -> Any: for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ) -> Optional[Any]: _a = F'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): _a = 'user' if is_user else 'bot' output += F'''{name} >> {text} \n''' return output @add_end_docstrings( A__ , R""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class A ( A__ ): def __init__( self , *snake_case_ , **snake_case_ ) -> str: super().__init__(*_lowerCamelCase , **_lowerCamelCase ) if self.tokenizer.pad_token_id is None: _a = self.tokenizer.eos_token def __lowerCAmelCase ( self , snake_case_=None , snake_case_=None , snake_case_=None , **snake_case_ ) -> Optional[Any]: _a = {} _a = {} _a = {} if min_length_for_response is not None: _a = min_length_for_response if minimum_tokens is not None: _a = minimum_tokens if "max_length" in generate_kwargs: _a = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: _a = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(_lowerCamelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self , snake_case_ , snake_case_=0 , **snake_case_ ) -> Any: _a = super().__call__(_lowerCamelCase , num_workers=_lowerCamelCase , **_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) and len(_lowerCamelCase ) == 1: return outputs[0] return outputs def __lowerCAmelCase ( self , snake_case_ , snake_case_=3_2 ) -> str: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("ConversationalPipeline, expects Conversation as inputs" ) if conversation.new_user_input is None: raise ValueError( F'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' "Add user inputs with the conversation\'s `add_user_input` method" ) if hasattr(self.tokenizer , "_build_conversation_input_ids" ): _a = self.tokenizer._build_conversation_input_ids(_lowerCamelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version _a = self._legacy_parse_and_tokenize(_lowerCamelCase ) if self.framework == "pt": _a = torch.LongTensor([input_ids] ) elif self.framework == "tf": _a = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def __lowerCAmelCase ( self , snake_case_ , snake_case_=1_0 , **snake_case_ ) -> int: _a = generate_kwargs.get("max_length" , self.model.config.max_length ) _a = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(F'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) _a = max_length - minimum_tokens _a = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: _a = model_inputs['attention_mask'][:, -trim:] _a = model_inputs.pop("conversation" ) _a = max_length _a = self.model.generate(**_lowerCamelCase , **_lowerCamelCase ) if self.model.config.is_encoder_decoder: _a = 1 else: _a = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def __lowerCAmelCase ( self , snake_case_ , snake_case_=True ) -> Dict: _a = model_outputs['output_ids'] _a = self.tokenizer.decode( output_ids[0] , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase , ) _a = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(_lowerCamelCase ) return conversation def __lowerCAmelCase ( self , snake_case_ ) -> int: _a = self.tokenizer.eos_token_id _a = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) ) if len(_lowerCamelCase ) > self.tokenizer.model_max_length: _a = input_ids[-self.tokenizer.model_max_length :] return input_ids
131
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def A_ ( __lowercase ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F) or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) # or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) # or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) # or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) # or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F) or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) # ): # return True return False def A_ ( __lowercase ): # word like '180' or '身高' or '神' for char in word: UpperCamelCase_ : Union[str, Any] =ord(__lowercase ) if not _is_chinese_char(__lowercase ): return 0 return 1 def A_ ( __lowercase ): UpperCamelCase_ : List[str] =set() for token in tokens: UpperCamelCase_ : Optional[int] =len(__lowercase ) > 1 and is_chinese(__lowercase ) if chinese_word: word_set.add(__lowercase ) UpperCamelCase_ : Tuple =list(__lowercase ) return word_list def A_ ( __lowercase , __lowercase ): if not chinese_word_set: return bert_tokens UpperCamelCase_ : List[str] =max([len(__lowercase ) for w in chinese_word_set] ) UpperCamelCase_ : Optional[Any] =bert_tokens UpperCamelCase_ , UpperCamelCase_ : Union[str, Any] =0, len(__lowercase ) while start < end: UpperCamelCase_ : str =True if is_chinese(bert_word[start] ): UpperCamelCase_ : Optional[int] =min(end - start , __lowercase ) for i in range(__lowercase , 1 , -1 ): UpperCamelCase_ : Tuple =''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): UpperCamelCase_ : Tuple ='##' + bert_word[j] UpperCamelCase_ : int =start + i UpperCamelCase_ : Dict =False break if single_word: start += 1 return bert_word def A_ ( __lowercase , __lowercase , __lowercase ): UpperCamelCase_ : Tuple =[] for i in range(0 , len(__lowercase ) , 1_00 ): UpperCamelCase_ : Union[str, Any] =ltp_tokenizer.seg(lines[i : i + 1_00] )[0] UpperCamelCase_ : int =[get_chinese_word(__lowercase ) for r in res] ltp_res.extend(__lowercase ) assert len(__lowercase ) == len(__lowercase ) UpperCamelCase_ : Dict =[] for i in range(0 , len(__lowercase ) , 1_00 ): UpperCamelCase_ : int =bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=__lowercase , truncation=__lowercase , max_length=5_12 ) bert_res.extend(res['input_ids'] ) assert len(__lowercase ) == len(__lowercase ) UpperCamelCase_ : Dict =[] for input_ids, chinese_word in zip(__lowercase , __lowercase ): UpperCamelCase_ : List[str] =[] for id in input_ids: UpperCamelCase_ : Union[str, Any] =bert_tokenizer._convert_id_to_token(__lowercase ) input_tokens.append(__lowercase ) UpperCamelCase_ : Optional[int] =add_sub_symbol(__lowercase , __lowercase ) UpperCamelCase_ : Dict =[] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__lowercase ): if token[:2] == "##": UpperCamelCase_ : Optional[int] =token[2:] # save chinese tokens' pos if len(__lowercase ) == 1 and _is_chinese_char(ord(__lowercase ) ): ref_id.append(__lowercase ) ref_ids.append(__lowercase ) assert len(__lowercase ) == len(__lowercase ) return ref_ids def A_ ( __lowercase ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , 'r' , encoding='utf-8' ) as f: UpperCamelCase_ : Tuple =f.readlines() UpperCamelCase_ : Optional[int] =[line.strip() for line in data if len(__lowercase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' UpperCamelCase_ : Optional[Any] =LTP(args.ltp ) # faster in GPU device UpperCamelCase_ : Dict =BertTokenizer.from_pretrained(args.bert ) UpperCamelCase_ : int =prepare_ref(__lowercase , __lowercase , __lowercase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: UpperCamelCase_ : Tuple =[json.dumps(__lowercase ) + '\n' for ref in ref_ids] f.writelines(__lowercase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path' ) parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer') parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res') __SCREAMING_SNAKE_CASE = parser.parse_args() main(args)
357
0
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin SCREAMING_SNAKE_CASE = random.Random() if is_torch_available(): import torch def a (lowerCAmelCase__ , lowerCAmelCase__=1.0 , lowerCAmelCase__=None , lowerCAmelCase__=None ): if rng is None: __a = global_rng __a = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , __A , __A=7 , __A=400 , __A=2000 , __A=1 , __A=0.0 , __A=16000 , __A=True , __A=True , ): __a = parent __a = batch_size __a = min_seq_length __a = max_seq_length __a = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __a = feature_size __a = padding_value __a = sampling_rate __a = return_attention_mask __a = do_normalize def snake_case_ ( self ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def snake_case_ ( self , __A=False , __A=False ): def _flatten(__A ): return list(itertools.chain(*__A ) ) if equal_length: __a = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __a = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __a = [np.asarray(__A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __UpperCAmelCase ( __A , unittest.TestCase ): """simple docstring""" _lowerCamelCase = ASTFeatureExtractor def snake_case_ ( self ): __a = ASTFeatureExtractionTester(self ) def snake_case_ ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus __a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __a = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __a = [np.asarray(__A ) for speech_input in speech_inputs] # Test not batched input __a = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values __a = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(__A , __A , atol=1E-3 ) ) # Test batched __a = feat_extract(__A , padding=__A , return_tensors="""np""" ).input_values __a = feat_extract(__A , padding=__A , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(__A , __A ): self.assertTrue(np.allclose(__A , __A , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __a = [floats_list((1, x) )[0] for x in (800, 800, 800)] __a = np.asarray(__A ) __a = feat_extract(__A , return_tensors="""np""" ).input_values __a = feat_extract(__A , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(__A , __A ): self.assertTrue(np.allclose(__A , __A , atol=1E-3 ) ) @require_torch def snake_case_ ( self ): import torch __a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __a = np.random.rand(100 ).astype(np.floataa ) __a = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __a = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __a = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def snake_case_ ( self , __A ): from datasets import load_dataset __a = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech __a = ds.sort("""id""" ).select(range(__A ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] @require_torch def snake_case_ ( self ): # fmt: off __a = torch.tensor( [-0.9894, -1.2776, -0.9066, -1.2776, -0.9349, -1.2609, -1.0386, -1.2776, -1.1561, -1.2776, -1.2052, -1.2723, -1.2190, -1.2132, -1.2776, -1.1133, -1.1953, -1.1343, -1.1584, -1.2203, -1.1770, -1.2474, -1.2381, -1.1936, -0.9270, -0.8317, -0.8049, -0.7706, -0.7565, -0.7869] ) # fmt: on __a = self._load_datasamples(1 ) __a = ASTFeatureExtractor() __a = feature_extractor(__A , return_tensors="""pt""" ).input_values self.assertEquals(input_values.shape , (1, 1024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , __A , atol=1E-4 ) )
209
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCAmelCase ( __A , unittest.TestCase ): """simple docstring""" _lowerCamelCase = LDMTextToImagePipeline _lowerCamelCase = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } _lowerCamelCase = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } _lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase = False def snake_case_ ( self ): torch.manual_seed(0 ) __a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __a = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__A , set_alpha_to_one=__A , ) torch.manual_seed(0 ) __a = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , ) torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __a = CLIPTextModel(__A ) __a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __a = { """unet""": unet, """scheduler""": scheduler, """vqvae""": vae, """bert""": text_encoder, """tokenizer""": tokenizer, } return components def snake_case_ ( self , __A , __A=0 ): if str(__A ).startswith("""mps""" ): __a = torch.manual_seed(__A ) else: __a = torch.Generator(device=__A ).manual_seed(__A ) __a = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def snake_case_ ( self ): __a = """cpu""" # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = LDMTextToImagePipeline(**__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) __a = self.get_dummy_inputs(__A ) __a = pipe(**__A ).images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) __a = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self , __A , __A=torch.floataa , __A=0 ): __a = torch.manual_seed(__A ) __a = np.random.RandomState(__A ).standard_normal((1, 4, 32, 32) ) __a = torch.from_numpy(__A ).to(device=__A , dtype=__A ) __a = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def snake_case_ ( self ): __a = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__A ) pipe.set_progress_bar_config(disable=__A ) __a = self.get_inputs(__A ) __a = pipe(**__A ).images __a = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) __a = np.array([0.51825, 0.52850, 0.52543, 0.54258, 0.52304, 0.52569, 0.54363, 0.55276, 0.56878] ) __a = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self , __A , __A=torch.floataa , __A=0 ): __a = torch.manual_seed(__A ) __a = np.random.RandomState(__A ).standard_normal((1, 4, 32, 32) ) __a = torch.from_numpy(__A ).to(device=__A , dtype=__A ) __a = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def snake_case_ ( self ): __a = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__A ) pipe.set_progress_bar_config(disable=__A ) __a = self.get_inputs(__A ) __a = pipe(**__A ).images[0] __a = load_numpy( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" ) __a = np.abs(expected_image - image ).max() assert max_diff < 1E-3
209
1
"""simple docstring""" import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase__ ( a_ , unittest.TestCase): """simple docstring""" __UpperCAmelCase = None __UpperCAmelCase = BloomTokenizerFast __UpperCAmelCase = BloomTokenizerFast __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = """tokenizer_file""" __UpperCAmelCase = {"""bos_token""": """<s>""", """eos_token""": """</s>""", """unk_token""": """<unk>""", """pad_token""": """<pad>"""} def a__ ( self : Tuple ): '''simple docstring''' super().setUp() __magic_name__ = BloomTokenizerFast.from_pretrained('bigscience/tokenizer' ) tokenizer.save_pretrained(self.tmpdirname ) def a__ ( self : List[Any] , **UpperCamelCase_ : List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def a__ ( self : str ): '''simple docstring''' __magic_name__ = self.get_rust_tokenizer() __magic_name__ = ['The quick brown fox</s>', 'jumps over the lazy dog</s>'] __magic_name__ = [[2_1_7_5, 2_3_7_1_4, 7_3_1_7_3, 1_4_4_2_5_2, 2], [7_7, 1_3_2_6_1_9, 3_4_7_8, 3_6_8, 1_0_9_5_8_6, 3_5_4_3_3, 2]] __magic_name__ = tokenizer.batch_encode_plus(UpperCamelCase_ )['input_ids'] self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __magic_name__ = tokenizer.batch_decode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def a__ ( self : Tuple , UpperCamelCase_ : Tuple=6 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __magic_name__ = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input __magic_name__ = 'This is a simple input' __magic_name__ = ['This is a simple input 1', 'This is a simple input 2'] __magic_name__ = ('This is a simple input', 'This is a pair') __magic_name__ = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests try: tokenizer_r.encode(UpperCamelCase_ , max_length=UpperCamelCase_ ) tokenizer_r.encode_plus(UpperCamelCase_ , max_length=UpperCamelCase_ ) tokenizer_r.batch_encode_plus(UpperCamelCase_ , max_length=UpperCamelCase_ ) tokenizer_r.encode(UpperCamelCase_ , max_length=UpperCamelCase_ ) tokenizer_r.batch_encode_plus(UpperCamelCase_ , max_length=UpperCamelCase_ ) except ValueError: self.fail('Bloom Tokenizer should be able to deal with padding' ) __magic_name__ = None # Hotfixing padding = None self.assertRaises(UpperCamelCase_ , tokenizer_r.encode , UpperCamelCase_ , max_length=UpperCamelCase_ , padding='max_length' ) # Simple input self.assertRaises(UpperCamelCase_ , tokenizer_r.encode_plus , UpperCamelCase_ , max_length=UpperCamelCase_ , padding='max_length' ) # Simple input self.assertRaises( UpperCamelCase_ , tokenizer_r.batch_encode_plus , UpperCamelCase_ , max_length=UpperCamelCase_ , padding='max_length' , ) # Pair input self.assertRaises(UpperCamelCase_ , tokenizer_r.encode , UpperCamelCase_ , max_length=UpperCamelCase_ , padding='max_length' ) # Pair input self.assertRaises(UpperCamelCase_ , tokenizer_r.encode_plus , UpperCamelCase_ , max_length=UpperCamelCase_ , padding='max_length' ) # Pair input self.assertRaises( UpperCamelCase_ , tokenizer_r.batch_encode_plus , UpperCamelCase_ , max_length=UpperCamelCase_ , padding='max_length' , ) def a__ ( self : Dict ): '''simple docstring''' __magic_name__ = self.get_rust_tokenizer() __magic_name__ = load_dataset('xnli' , 'all_languages' , split='test' , streaming=UpperCamelCase_ ) __magic_name__ = next(iter(UpperCamelCase_ ) )['premise'] # pick up one data __magic_name__ = list(sample_data.values() ) __magic_name__ = list(map(tokenizer.encode , UpperCamelCase_ ) ) __magic_name__ = [tokenizer.decode(UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) for x in output_tokens] self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def a__ ( self : Tuple ): '''simple docstring''' self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
545
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def A ( __snake_case: Tuple ) -> Optional[Any]: """simple docstring""" if ( (cp >= 0x4_E00 and cp <= 0x9_FFF) or (cp >= 0x3_400 and cp <= 0x4_DBF) # or (cp >= 0x20_000 and cp <= 0x2A_6DF) # or (cp >= 0x2A_700 and cp <= 0x2B_73F) # or (cp >= 0x2B_740 and cp <= 0x2B_81F) # or (cp >= 0x2B_820 and cp <= 0x2C_EAF) # or (cp >= 0xF_900 and cp <= 0xF_AFF) or (cp >= 0x2F_800 and cp <= 0x2F_A1F) # ): # return True return False def A ( __snake_case: str ) -> Optional[Any]: """simple docstring""" for char in word: __magic_name__ = ord(__snake_case ) if not _is_chinese_char(__snake_case ): return 0 return 1 def A ( __snake_case: List[str] ) -> List[str]: """simple docstring""" __magic_name__ = set() for token in tokens: __magic_name__ = len(__snake_case ) > 1 and is_chinese(__snake_case ) if chinese_word: word_set.add(__snake_case ) __magic_name__ = list(__snake_case ) return word_list def A ( __snake_case: List[str] , __snake_case: set() ) -> str: """simple docstring""" if not chinese_word_set: return bert_tokens __magic_name__ = max([len(__snake_case ) for w in chinese_word_set] ) __magic_name__ = bert_tokens __magic_name__ , __magic_name__ = 0, len(__snake_case ) while start < end: __magic_name__ = True if is_chinese(bert_word[start] ): __magic_name__ = min(end - start , __snake_case ) for i in range(__snake_case , 1 , -1 ): __magic_name__ = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): __magic_name__ = '##' + bert_word[j] __magic_name__ = start + i __magic_name__ = False break if single_word: start += 1 return bert_word def A ( __snake_case: List[str] , __snake_case: LTP , __snake_case: BertTokenizer ) -> List[Any]: """simple docstring""" __magic_name__ = [] for i in range(0 , len(__snake_case ) , 1_0_0 ): __magic_name__ = ltp_tokenizer.pipeline(lines[i : i + 1_0_0] , tasks=['cws'] ).cws __magic_name__ = [get_chinese_word(__snake_case ) for r in res] ltp_res.extend(__snake_case ) assert len(__snake_case ) == len(__snake_case ) __magic_name__ = [] for i in range(0 , len(__snake_case ) , 1_0_0 ): __magic_name__ = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=__snake_case , truncation=__snake_case , max_length=5_1_2 ) bert_res.extend(res['input_ids'] ) assert len(__snake_case ) == len(__snake_case ) __magic_name__ = [] for input_ids, chinese_word in zip(__snake_case , __snake_case ): __magic_name__ = [] for id in input_ids: __magic_name__ = bert_tokenizer._convert_id_to_token(__snake_case ) input_tokens.append(__snake_case ) __magic_name__ = add_sub_symbol(__snake_case , __snake_case ) __magic_name__ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__snake_case ): if token[:2] == "##": __magic_name__ = token[2:] # save chinese tokens' pos if len(__snake_case ) == 1 and _is_chinese_char(ord(__snake_case ) ): ref_id.append(__snake_case ) ref_ids.append(__snake_case ) assert len(__snake_case ) == len(__snake_case ) return ref_ids def A ( __snake_case: Optional[Any] ) -> List[str]: """simple docstring""" with open(args.file_name , 'r' , encoding='utf-8' ) as f: __magic_name__ = f.readlines() __magic_name__ = [line.strip() for line in data if len(__snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __magic_name__ = LTP(args.ltp ) # faster in GPU device __magic_name__ = BertTokenizer.from_pretrained(args.bert ) __magic_name__ = prepare_ref(__snake_case , __snake_case , __snake_case ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: __magic_name__ = [json.dumps(__snake_case ) + '\n' for ref in ref_ids] f.writelines(__snake_case ) if __name__ == "__main__": snake_case : Tuple = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) snake_case : Any = parser.parse_args() main(args)
545
1
"""simple docstring""" import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class A_ ( unittest.TestCase ): def _snake_case ( self : Any ) -> Union[str, Any]: __magic_name__ = 0 @slow def _snake_case ( self : Any ) -> Union[str, Any]: for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): __magic_name__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(__lowerCamelCase ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): __magic_name__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(__lowerCamelCase ) , 0 ) def _snake_case ( self : List[Any] ) -> List[str]: __magic_name__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def _snake_case ( self : Any ) -> Optional[int]: __magic_name__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 2_0 ) def _snake_case ( self : int ) -> List[str]: __magic_name__ = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) # Check that tokenizer_type ≠ model_type __magic_name__ = AutoTokenizer.from_pretrained(__lowerCamelCase , config=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def _snake_case ( self : Any ) -> List[str]: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt" , os.path.join(__lowerCamelCase , "vocab.txt" ) ) __magic_name__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type="bert" , use_fast=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json" , os.path.join(__lowerCamelCase , "vocab.json" ) ) shutil.copy("./tests/fixtures/merges.txt" , os.path.join(__lowerCamelCase , "merges.txt" ) ) __magic_name__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type="gpt2" , use_fast=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @require_tokenizers def _snake_case ( self : List[Any] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt" , os.path.join(__lowerCamelCase , "vocab.txt" ) ) __magic_name__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type="bert" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json" , os.path.join(__lowerCamelCase , "vocab.json" ) ) shutil.copy("./tests/fixtures/merges.txt" , os.path.join(__lowerCamelCase , "merges.txt" ) ) __magic_name__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type="gpt2" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : Tuple ) -> Optional[int]: with pytest.raises(__lowerCamelCase ): AutoTokenizer.from_pretrained("./" , tokenizer_type="xxx" ) @require_tokenizers def _snake_case ( self : Any ) -> Tuple: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: __magic_name__ = tokenizer_class.from_pretrained("wietsedv/bert-base-dutch-cased" ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) if isinstance(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , __lowerCamelCase ) else: self.assertEqual(tokenizer.do_lower_case , __lowerCamelCase ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) @require_tokenizers def _snake_case ( self : Optional[Any] ) -> Union[str, Any]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( __lowerCamelCase , "julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier" , ): __magic_name__ = tokenizer_class.from_pretrained("julien-c/herlolip-not-exists" ) def _snake_case ( self : Optional[int] ) -> List[Any]: # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai __magic_name__ = TOKENIZER_MAPPING.values() __magic_name__ = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(__lowerCamelCase ) @require_tokenizers def _snake_case ( self : Tuple ) -> Dict: self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" , use_fast=__lowerCamelCase ) , __lowerCamelCase ) self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" ) , __lowerCamelCase ) @require_tokenizers def _snake_case ( self : List[str] ) -> Dict: __magic_name__ = AutoTokenizer.from_pretrained("distilbert-base-uncased" , do_lower_case=__lowerCamelCase ) __magic_name__ = "Hello, world. How are you?" __magic_name__ = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual("[UNK]" , tokens[0] ) __magic_name__ = AutoTokenizer.from_pretrained("microsoft/mpnet-base" , do_lower_case=__lowerCamelCase ) __magic_name__ = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual("[UNK]" , tokens[0] ) @require_tokenizers def _snake_case ( self : Dict ) -> Union[str, Any]: __magic_name__ = AutoTokenizer.from_pretrained("robot-test/dummy-tokenizer-fast-with-model-config" ) self.assertEqual(type(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) self.assertEqual(tokenizer.vocab_size , 3_0_0_0_0 ) self.assertEqual(tokenizer.unk_token , "[UNK]" ) self.assertEqual(tokenizer.padding_side , "right" ) self.assertEqual(tokenizer.truncation_side , "right" ) def _snake_case ( self : int ) -> Dict: __magic_name__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) __magic_name__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 1_2 ) def _snake_case ( self : Union[str, Any] ) -> Optional[Any]: __magic_name__ = AutoTokenizer.from_pretrained("ctrl" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : Optional[int] ) -> Union[str, Any]: # Check we can load the tokenizer config of an online model. __magic_name__ = get_tokenizer_config("bert-base-cased" ) __magic_name__ = config.pop("_commit_hash" , __lowerCamelCase ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(__lowerCamelCase , {"do_lower_case": False} ) # This model does not have a tokenizer_config so we get back an empty dict. __magic_name__ = get_tokenizer_config(__lowerCamelCase ) self.assertDictEqual(__lowerCamelCase , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. __magic_name__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) __magic_name__ = get_tokenizer_config(__lowerCamelCase ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["tokenizer_class"] , "BertTokenizer" ) def _snake_case ( self : str ) -> List[str]: try: AutoConfig.register("custom" , __lowerCamelCase ) AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCamelCase ): AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) __magic_name__ = CustomTokenizer.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) __magic_name__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def _snake_case ( self : str ) -> Tuple: try: AutoConfig.register("custom" , __lowerCamelCase ) # Can register in two steps AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( __lowerCamelCase , slow_tokenizer_class=__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCamelCase ): AutoTokenizer.register(__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ = BertTokenizerFast.from_pretrained(__lowerCamelCase ) bert_tokenizer.save_pretrained(__lowerCamelCase ) __magic_name__ = CustomTokenizerFast.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) __magic_name__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) __magic_name__ = AutoTokenizer.from_pretrained(__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def _snake_case ( self : List[Any] ) -> List[str]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__lowerCamelCase ): __magic_name__ = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCamelCase ): __magic_name__ = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowerCamelCase ) __magic_name__ = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) __magic_name__ = AutoTokenizer.from_pretrained(__lowerCamelCase , trust_remote_code=__lowerCamelCase ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizerFast" ) # Test we can also load the slow version __magic_name__ = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) __magic_name__ = AutoTokenizer.from_pretrained(__lowerCamelCase , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizer" ) @require_tokenizers def _snake_case ( self : Tuple ) -> Optional[int]: class A_ ( snake_case_ ): UpperCAmelCase__ = False class A_ ( snake_case_ ): UpperCAmelCase__ = NewTokenizer UpperCAmelCase__ = False try: AutoConfig.register("custom" , __lowerCamelCase ) AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) AutoTokenizer.register(__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) # If remote code is not set, the default is to use local __magic_name__ = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertFalse(tokenizer.special_attribute_present ) __magic_name__ = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" , use_fast=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. __magic_name__ = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertFalse(tokenizer.special_attribute_present ) __magic_name__ = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub __magic_name__ = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertTrue(tokenizer.special_attribute_present ) __magic_name__ = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def _snake_case ( self : Dict ) -> Any: __magic_name__ = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy" , trust_remote_code=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) # Test we can also load the slow version __magic_name__ = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy" , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) def _snake_case ( self : List[str] ) -> Union[str, Any]: with self.assertRaisesRegex( __lowerCamelCase , "bert-base is not a local folder and is not a valid model identifier" ): __magic_name__ = AutoTokenizer.from_pretrained("bert-base" ) def _snake_case ( self : str ) -> List[str]: with self.assertRaisesRegex( __lowerCamelCase , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): __magic_name__ = AutoTokenizer.from_pretrained(__lowerCamelCase , revision="aaaaaa" ) def _snake_case ( self : Optional[Any] ) -> str: # Make sure we have cached the tokenizer. __magic_name__ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: __magic_name__ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
720
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowercase = '''platform''' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def _lowerCAmelCase ( __lowerCamelCase:List[Any] , __lowerCamelCase:int , __lowerCamelCase:List[Any]=None , __lowerCamelCase:Any=None , __lowerCamelCase:Any=None , __lowerCamelCase:List[str]=None , __lowerCamelCase:Optional[int]=None , __lowerCamelCase:Optional[int]=None , ): '''simple docstring''' if attention_mask is None: __magic_name__ = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: __magic_name__ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: __magic_name__ = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __magic_name__ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __magic_name__ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class A_ : def __init__( self : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any]=1_3 , __lowerCamelCase : str=7 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Dict=False , __lowerCamelCase : Optional[int]=9_9 , __lowerCamelCase : Tuple=1_6 , __lowerCamelCase : Any=2 , __lowerCamelCase : int=4 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : List[str]=3_2 , __lowerCamelCase : int=2 , __lowerCamelCase : Any=1 , __lowerCamelCase : int=0 , __lowerCamelCase : Tuple=0.02 , ) -> List[Any]: __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = seq_length __magic_name__ = is_training __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = eos_token_id __magic_name__ = pad_token_id __magic_name__ = bos_token_id __magic_name__ = initializer_range def _snake_case ( self : str ) -> List[str]: __magic_name__ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __magic_name__ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __magic_name__ = shift_tokens_right(__lowerCamelCase , 1 , 2 ) __magic_name__ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=__lowerCamelCase , ) __magic_name__ = prepare_blenderbot_inputs_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, inputs_dict def _snake_case ( self : Optional[Any] ) -> Any: __magic_name__ , __magic_name__ = self.prepare_config_and_inputs() return config, inputs_dict def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : str , __lowerCamelCase : List[Any] ) -> Union[str, Any]: __magic_name__ = 2_0 __magic_name__ = model_class_name(__lowerCamelCase ) __magic_name__ = model.encode(inputs_dict["input_ids"] ) __magic_name__ , __magic_name__ = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) __magic_name__ = model.init_cache(decoder_input_ids.shape[0] , __lowerCamelCase , __lowerCamelCase ) __magic_name__ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) __magic_name__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __magic_name__ = model.decode( decoder_input_ids[:, :-1] , __lowerCamelCase , decoder_attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase , decoder_position_ids=__lowerCamelCase , ) __magic_name__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) __magic_name__ = model.decode( decoder_input_ids[:, -1:] , __lowerCamelCase , decoder_attention_mask=__lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__lowerCamelCase , ) __magic_name__ = model.decode(__lowerCamelCase , __lowerCamelCase ) __magic_name__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def _snake_case ( self : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple ) -> int: __magic_name__ = 2_0 __magic_name__ = model_class_name(__lowerCamelCase ) __magic_name__ = model.encode(inputs_dict["input_ids"] ) __magic_name__ , __magic_name__ = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) __magic_name__ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __magic_name__ = model.init_cache(decoder_input_ids.shape[0] , __lowerCamelCase , __lowerCamelCase ) __magic_name__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __magic_name__ = model.decode( decoder_input_ids[:, :-1] , __lowerCamelCase , decoder_attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase , decoder_position_ids=__lowerCamelCase , ) __magic_name__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) __magic_name__ = model.decode( decoder_input_ids[:, -1:] , __lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__lowerCamelCase , decoder_position_ids=__lowerCamelCase , ) __magic_name__ = model.decode(__lowerCamelCase , __lowerCamelCase , decoder_attention_mask=__lowerCamelCase ) __magic_name__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) @require_flax class A_ ( unittest.TestCase ): UpperCAmelCase__ = 9_9 def _snake_case ( self : Dict ) -> Dict: __magic_name__ = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) __magic_name__ = input_ids.shape[0] __magic_name__ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _snake_case ( self : Optional[Any] ) -> Optional[int]: __magic_name__ , __magic_name__ , __magic_name__ = self._get_config_and_data() __magic_name__ = FlaxBlenderbotForConditionalGeneration(__lowerCamelCase ) __magic_name__ = lm_model(input_ids=__lowerCamelCase ) __magic_name__ = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , __lowerCamelCase ) def _snake_case ( self : List[Any] ) -> Optional[Any]: __magic_name__ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) __magic_name__ = FlaxBlenderbotForConditionalGeneration(__lowerCamelCase ) __magic_name__ = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) __magic_name__ = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) __magic_name__ = lm_model(input_ids=__lowerCamelCase , decoder_input_ids=__lowerCamelCase ) __magic_name__ = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , __lowerCamelCase ) def _snake_case ( self : Union[str, Any] ) -> List[Any]: __magic_name__ = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) __magic_name__ = shift_tokens_right(__lowerCamelCase , 1 , 2 ) __magic_name__ = np.equal(__lowerCamelCase , 1 ).astype(np.floataa ).sum() __magic_name__ = np.equal(__lowerCamelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(__lowerCamelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class A_ ( snake_case_ , unittest.TestCase , snake_case_ ): UpperCAmelCase__ = True UpperCAmelCase__ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) UpperCAmelCase__ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _snake_case ( self : List[Any] ) -> Any: __magic_name__ = FlaxBlenderbotModelTester(self ) def _snake_case ( self : int ) -> Optional[Any]: __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : Optional[int] ) -> Union[str, Any]: __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : Tuple ) -> Dict: __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __magic_name__ = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) __magic_name__ = model_class(__lowerCamelCase ) @jax.jit def encode_jitted(__lowerCamelCase : Dict , __lowerCamelCase : str=None , **__lowerCamelCase : List[str] ): return model.encode(input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase ) with self.subTest("JIT Enabled" ): __magic_name__ = encode_jitted(**__lowerCamelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __magic_name__ = encode_jitted(**__lowerCamelCase ).to_tuple() self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for jitted_output, output in zip(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def _snake_case ( self : Union[str, Any] ) -> Union[str, Any]: __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __magic_name__ = model_class(__lowerCamelCase ) __magic_name__ = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) __magic_name__ = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(__lowerCamelCase : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict ): return model.decode( decoder_input_ids=__lowerCamelCase , decoder_attention_mask=__lowerCamelCase , encoder_outputs=__lowerCamelCase , ) with self.subTest("JIT Enabled" ): __magic_name__ = decode_jitted(**__lowerCamelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __magic_name__ = decode_jitted(**__lowerCamelCase ).to_tuple() self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for jitted_output, output in zip(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _snake_case ( self : int ) -> int: for model_class_name in self.all_model_classes: __magic_name__ = model_class_name.from_pretrained("facebook/blenderbot-400M-distill" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __magic_name__ = np.ones((1, 1) ) * model.config.eos_token_id __magic_name__ = model(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU." ) @slow def _snake_case ( self : int ) -> List[Any]: __magic_name__ = {"num_beams": 1, "early_stopping": True, "min_length": 1_5, "max_length": 2_5} __magic_name__ = {"skip_special_tokens": True, "clean_up_tokenization_spaces": True} __magic_name__ = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=__lowerCamelCase ) __magic_name__ = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B" ) __magic_name__ = ["Sam"] __magic_name__ = tokenizer(__lowerCamelCase , return_tensors="jax" ) __magic_name__ = model.generate(**__lowerCamelCase , **__lowerCamelCase ) __magic_name__ = "Sam is a great name. It means \"sun\" in Gaelic." __magic_name__ = tokenizer.batch_decode(__lowerCamelCase , **__lowerCamelCase ) assert generated_txt[0].strip() == tgt_text
468
0
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput __UpperCAmelCase = 'scheduler_config.json' class __a ( __UpperCamelCase ): __snake_case : str = 1 __snake_case : List[Any] = 2 __snake_case : Tuple = 3 __snake_case : Any = 4 __snake_case : Optional[Any] = 5 @dataclass class __a ( __UpperCamelCase ): __snake_case : List[str] = 42 class __a : __snake_case : List[str] = SCHEDULER_CONFIG_NAME __snake_case : Union[str, Any] = ["""dtype"""] __snake_case : Any = [] __snake_case : int = True @classmethod def A ( cls : Optional[int] , UpperCAmelCase : Dict[str, Any] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Union[str, Any]=False , **UpperCAmelCase : Optional[Any] , ): lowerCAmelCase_ : int = cls.load_config( pretrained_model_name_or_path=lowerCamelCase__ , subfolder=lowerCamelCase__ , return_unused_kwargs=lowerCamelCase__ , **lowerCamelCase__ , ) lowerCAmelCase_ : Any = cls.from_config(lowerCamelCase__ , return_unused_kwargs=lowerCamelCase__ , **lowerCamelCase__ ) if hasattr(lowerCamelCase__ , """create_state""" ) and getattr(lowerCamelCase__ , """has_state""" , lowerCamelCase__ ): lowerCAmelCase_ : int = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def A ( self : Tuple , UpperCAmelCase : Union[str, os.PathLike] , UpperCAmelCase : bool = False , **UpperCAmelCase : List[Any] ): self.save_config(save_directory=lowerCamelCase__ , push_to_hub=lowerCamelCase__ , **lowerCamelCase__ ) @property def A ( self : List[Any] ): return self._get_compatibles() @classmethod def A ( cls : Dict ): lowerCAmelCase_ : int = list(set([cls.__name__] + cls._compatibles ) ) lowerCAmelCase_ : Tuple = importlib.import_module(__name__.split(""".""" )[0] ) lowerCAmelCase_ : List[Any] = [ getattr(lowerCamelCase__ , lowerCamelCase__ ) for c in compatible_classes_str if hasattr(lowerCamelCase__ , lowerCamelCase__ ) ] return compatible_classes def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : int ) -> List[Any]: '''simple docstring''' assert len(UpperCAmelCase_ ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(UpperCAmelCase_ ) - x.ndim) ) , UpperCAmelCase_ ) def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : List[Any]=0.999 , lowercase__ : List[Any]=jnp.floataa ) -> List[Any]: '''simple docstring''' def alpha_bar(lowercase__ : Optional[int] ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 lowerCAmelCase_ : int = [] for i in range(UpperCAmelCase_ ): lowerCAmelCase_ : List[Any] = i / num_diffusion_timesteps lowerCAmelCase_ : Dict = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(UpperCAmelCase_ ) / alpha_bar(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) return jnp.array(UpperCAmelCase_ , dtype=UpperCAmelCase_ ) @flax.struct.dataclass class __a : __snake_case : Optional[int] = 42 __snake_case : Union[str, Any] = 42 __snake_case : Dict = 42 @classmethod def A ( cls : str , UpperCAmelCase : List[str] ): lowerCAmelCase_ : Union[str, Any] = scheduler.config if config.trained_betas is not None: lowerCAmelCase_ : Dict = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": lowerCAmelCase_ : int = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCAmelCase_ : Optional[int] = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCAmelCase_ : Optional[Any] = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}' ) lowerCAmelCase_ : str = 1.0 - betas lowerCAmelCase_ : Dict = jnp.cumprod(lowerCamelCase__ , axis=0 ) return cls( alphas=lowerCamelCase__ , betas=lowerCamelCase__ , alphas_cumprod=lowerCamelCase__ , ) def __UpperCamelCase ( lowercase__ : int , lowercase__ : Tuple , lowercase__ : Any , lowercase__ : List[Any] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[Any] = state.alphas_cumprod lowerCAmelCase_ : Optional[int] = alphas_cumprod[timesteps] ** 0.5 lowerCAmelCase_ : List[Any] = sqrt_alpha_prod.flatten() lowerCAmelCase_ : Any = broadcast_to_shape_from_left(UpperCAmelCase_ , original_samples.shape ) lowerCAmelCase_ : str = (1 - alphas_cumprod[timesteps]) ** 0.5 lowerCAmelCase_ : Optional[int] = sqrt_one_minus_alpha_prod.flatten() lowerCAmelCase_ : Optional[Any] = broadcast_to_shape_from_left(UpperCAmelCase_ , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : int , lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = get_sqrt_alpha_prod(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase_ : Tuple = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __UpperCamelCase ( lowercase__ : Tuple , lowercase__ : int , lowercase__ : Dict , lowercase__ : Union[str, Any] ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = get_sqrt_alpha_prod(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase_ : Optional[Any] = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
600
'''simple docstring''' import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def A__ ( UpperCAmelCase_ ): if "model" in orig_key: _UpperCamelCase : List[Any] = orig_key.replace('model.' , '' ) if "norm1" in orig_key: _UpperCamelCase : List[Any] = orig_key.replace('norm1' , 'attention.output.LayerNorm' ) if "norm2" in orig_key: _UpperCamelCase : int = orig_key.replace('norm2' , 'output.LayerNorm' ) if "norm" in orig_key: _UpperCamelCase : str = orig_key.replace('norm' , 'LayerNorm' ) if "transformer" in orig_key: _UpperCamelCase : int = orig_key.split('.' )[0].split('_' )[-1] _UpperCamelCase : Tuple = orig_key.replace(f'transformer_{layer_num}' , f'encoder.layer.{layer_num}' ) if "mha.attn" in orig_key: _UpperCamelCase : List[Any] = orig_key.replace('mha.attn' , 'attention.self' ) if "mha" in orig_key: _UpperCamelCase : Union[str, Any] = orig_key.replace('mha' , 'attention' ) if "W_q" in orig_key: _UpperCamelCase : Union[str, Any] = orig_key.replace('W_q' , 'self.query' ) if "W_k" in orig_key: _UpperCamelCase : List[Any] = orig_key.replace('W_k' , 'self.key' ) if "W_v" in orig_key: _UpperCamelCase : List[Any] = orig_key.replace('W_v' , 'self.value' ) if "ff1" in orig_key: _UpperCamelCase : Optional[Any] = orig_key.replace('ff1' , 'intermediate.dense' ) if "ff2" in orig_key: _UpperCamelCase : List[str] = orig_key.replace('ff2' , 'output.dense' ) if "ff" in orig_key: _UpperCamelCase : Union[str, Any] = orig_key.replace('ff' , 'output.dense' ) if "mlm_class" in orig_key: _UpperCamelCase : Tuple = orig_key.replace('mlm.mlm_class' , 'cls.predictions.decoder' ) if "mlm" in orig_key: _UpperCamelCase : int = orig_key.replace('mlm' , 'cls.predictions.transform' ) if "cls" not in orig_key: _UpperCamelCase : Optional[int] = 'yoso.' + orig_key return orig_key def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): for key in orig_state_dict.copy().keys(): _UpperCamelCase : Any = orig_state_dict.pop(UpperCAmelCase_ ) if ("pooler" in key) or ("sen_class" in key): continue else: _UpperCamelCase : Union[str, Any] = val _UpperCamelCase : Any = orig_state_dict['cls.predictions.decoder.bias'] _UpperCamelCase : Union[str, Any] = torch.arange(UpperCAmelCase_ ).expand((1, -1) ) + 2 return orig_state_dict def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : List[Any] = torch.load(UpperCAmelCase_ , map_location='cpu' )['model_state_dict'] _UpperCamelCase : List[str] = YosoConfig.from_json_file(UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = YosoForMaskedLM(UpperCAmelCase_ ) _UpperCamelCase : Tuple = convert_checkpoint_helper(config.max_position_embeddings , UpperCAmelCase_ ) print(model.load_state_dict(UpperCAmelCase_ ) ) model.eval() model.save_pretrained(UpperCAmelCase_ ) print(f'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) if __name__ == "__main__": snake_case_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) snake_case_ : List[Any] = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
195
0
from __future__ import annotations def __lowerCamelCase ( _lowercase ) -> bool: return len(set(_lowercase ) ) == len(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
170
def __lowerCamelCase ( _lowercase , _lowercase ) -> tuple[float, float]: # Check if the input is valid if not len(_lowercase ) == len(_lowercase ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients UpperCamelCase , UpperCamelCase , UpperCamelCase = equationa UpperCamelCase , UpperCamelCase , UpperCamelCase = equationa # Calculate the determinants of the matrices UpperCamelCase = aa * ba - aa * ba UpperCamelCase = ca * ba - ca * ba UpperCamelCase = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: UpperCamelCase = determinant_x / determinant UpperCamelCase = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
170
1
'''simple docstring''' import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def __UpperCAmelCase ( _UpperCAmelCase : List[str] ) -> str: if hor == 1_28: __snake_case = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") __snake_case = (32, 1_28, 2_56) __snake_case = ("UpResnetBlock1D", "UpResnetBlock1D") elif hor == 32: __snake_case = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") __snake_case = (32, 64, 1_28, 2_56) __snake_case = ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D") __snake_case = torch.load(F'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) __snake_case = model.state_dict() __snake_case = { "down_block_types": down_block_types, "block_out_channels": block_out_channels, "up_block_types": up_block_types, "layers_per_block": 1, "use_timestep_embedding": True, "out_block_type": "OutConv1DBlock", "norm_num_groups": 8, "downsample_each_block": False, "in_channels": 14, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "flip_sin_to_cos": False, "freq_shift": 1, "sample_size": 6_55_36, "mid_block_type": "MidResTemporalBlock1D", "act_fn": "mish", } __snake_case = UNetaDModel(**_UpperCAmelCase ) print(F'''length of state dict: {len(state_dict.keys() )}''' ) print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) __snake_case = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __snake_case = state_dict.pop(_UpperCAmelCase ) hf_value_function.load_state_dict(_UpperCAmelCase ) torch.save(hf_value_function.state_dict() , F'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(F'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , "w" ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def __UpperCAmelCase ( ) -> List[Any]: __snake_case = { "in_channels": 14, "down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"), "up_block_types": (), "out_block_type": "ValueFunction", "mid_block_type": "ValueFunctionMidBlock1D", "block_out_channels": (32, 64, 1_28, 2_56), "layers_per_block": 1, "downsample_each_block": True, "sample_size": 6_55_36, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "use_timestep_embedding": True, "flip_sin_to_cos": False, "freq_shift": 1, "norm_num_groups": 8, "act_fn": "mish", } __snake_case = torch.load("/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch" ) __snake_case = model __snake_case = UNetaDModel(**_UpperCAmelCase ) print(F'''length of state dict: {len(state_dict.keys() )}''' ) print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) __snake_case = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __snake_case = state_dict.pop(_UpperCAmelCase ) hf_value_function.load_state_dict(_UpperCAmelCase ) torch.save(hf_value_function.state_dict() , "hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin" ) with open("hub/hopper-medium-v2/value_function/config.json" , "w" ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
69
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging UpperCamelCase = logging.get_logger(__name__) def lowerCamelCase_ ( _lowercase , _lowercase ) -> Optional[int]: try: with open(_lowercase , "rb" ) as flax_state_f: __A : int = from_bytes(_lowercase , flax_state_f.read() ) except UnpicklingError as e: try: with open(_lowercase ) as f: if f.read().startswith("version" ): raise OSError( "You seem to have cloned a repository without having git-lfs installed. Please" " install git-lfs and run `git lfs install` followed by `git lfs pull` in the" " folder you cloned." ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F"Unable to convert {model_file} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(_lowercase , _lowercase ) def lowerCamelCase_ ( _lowercase , _lowercase ) -> Optional[Any]: try: import torch # noqa: F401 except ImportError: logger.error( "Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights __A : Dict = flatten_dict(jax.tree_util.tree_map(lambda _lowercase : x.dtype == jnp.bfloataa , _lowercase ) ).values() if any(_lowercase ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) __A : Any = jax.tree_util.tree_map( lambda _lowercase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _lowercase ) __A : Union[str, Any] = "" __A : List[Any] = flatten_dict(_lowercase , sep="." ) __A : str = pt_model.state_dict() # keep track of unexpected & missing keys __A : Tuple = [] __A : List[Any] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __A : List[Any] = flax_key_tuple.split("." ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: __A : Dict = flax_key_tuple_array[:-1] + ["weight"] __A : List[str] = jnp.transpose(_lowercase , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": __A : str = flax_key_tuple_array[:-1] + ["weight"] __A : List[str] = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": __A : Optional[int] = flax_key_tuple_array[:-1] + ["weight"] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(_lowercase ): __A : List[Any] = ( flax_key_tuple_string.replace("_0" , ".0" ) .replace("_1" , ".1" ) .replace("_2" , ".2" ) .replace("_3" , ".3" ) .replace("_4" , ".4" ) .replace("_5" , ".5" ) .replace("_6" , ".6" ) .replace("_7" , ".7" ) .replace("_8" , ".8" ) .replace("_9" , ".9" ) ) __A : Optional[int] = ".".join(_lowercase ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict __A : str = np.asarray(_lowercase ) if not isinstance(_lowercase , np.ndarray ) else flax_tensor __A : Union[str, Any] = torch.from_numpy(_lowercase ) # remove from missing keys missing_keys.remove(_lowercase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_lowercase ) pt_model.load_state_dict(_lowercase ) # re-transform missing_keys to list __A : Optional[Any] = list(_lowercase ) if len(_lowercase ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) if len(_lowercase ) > 0: logger.warning( F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" " use it for predictions and inference." ) return pt_model
520
0
'''simple docstring''' def __lowerCAmelCase ( a_ , a_ ) -> list: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = word.split() def justify(a_ , a_ , a_ ) -> str: SCREAMING_SNAKE_CASE : Any = max_width - width SCREAMING_SNAKE_CASE : Optional[int] = len(a_ ) if len(a_ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: SCREAMING_SNAKE_CASE : List[str] = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] SCREAMING_SNAKE_CASE : Optional[Any] = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] SCREAMING_SNAKE_CASE : Any = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(a_ ): num_spaces_between_words_list[i] += 1 SCREAMING_SNAKE_CASE : Any = [] for i in range(a_ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ' ' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(a_ ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : list[str] = [] SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for word in words: if width + len(a_ ) + len(a_ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(a_ ) width += len(a_ ) else: # justify the line and add it to result answer.append(justify(a_ , a_ , a_ ) ) # reset new line and new width SCREAMING_SNAKE_CASE : Optional[int] = [word], len(a_ ) SCREAMING_SNAKE_CASE : Optional[int] = max_width - width - len(a_ ) answer.append(' '.join(a_ ) + (remaining_spaces + 1) * ' ' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
708
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class UpperCAmelCase : '''simple docstring''' snake_case__ : Dict = LEDConfig snake_case__ : Dict = {} snake_case__ : int = "gelu" def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=False , lowercase__=99 , lowercase__=32 , lowercase__=2 , lowercase__=4 , lowercase__=37 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=20 , lowercase__=2 , lowercase__=1 , lowercase__=0 , lowercase__=4 , ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : int = parent SCREAMING_SNAKE_CASE : str = batch_size SCREAMING_SNAKE_CASE : List[Any] = seq_length SCREAMING_SNAKE_CASE : List[str] = is_training SCREAMING_SNAKE_CASE : Tuple = use_labels SCREAMING_SNAKE_CASE : Optional[int] = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : Dict = num_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Any = eos_token_id SCREAMING_SNAKE_CASE : Optional[int] = pad_token_id SCREAMING_SNAKE_CASE : Tuple = bos_token_id SCREAMING_SNAKE_CASE : Optional[int] = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after SCREAMING_SNAKE_CASE : List[str] = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests SCREAMING_SNAKE_CASE : Optional[int] = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) SCREAMING_SNAKE_CASE : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE : List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Tuple = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) SCREAMING_SNAKE_CASE : Union[str, Any] = prepare_led_inputs_dict(lowercase__ , lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE : str = tf.concat( [tf.zeros_like(lowercase__ )[:, :-1], tf.ones_like(lowercase__ )[:, -1:]] , axis=-1 , ) SCREAMING_SNAKE_CASE : Optional[int] = global_attention_mask return config, inputs_dict def _UpperCamelCase ( self , lowercase__ , lowercase__ ) -> Dict: SCREAMING_SNAKE_CASE : List[Any] = TFLEDModel(config=lowercase__ ).get_decoder() SCREAMING_SNAKE_CASE : int = inputs_dict['input_ids'] SCREAMING_SNAKE_CASE : Tuple = input_ids[:1, :] SCREAMING_SNAKE_CASE : Optional[int] = inputs_dict['attention_mask'][:1, :] SCREAMING_SNAKE_CASE : Optional[Any] = 1 # first forward pass SCREAMING_SNAKE_CASE : Any = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE : List[str] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE : Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) SCREAMING_SNAKE_CASE : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) SCREAMING_SNAKE_CASE : int = model(lowercase__ , attention_mask=lowercase__ )[0] SCREAMING_SNAKE_CASE : List[Any] = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE : str = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE : Tuple = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE : Tuple = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase__ , lowercase__ , rtol=1E-3 ) def __lowerCAmelCase ( a_ , a_ , a_ , a_=None , a_=None , a_=None , a_=None , ) -> Any: '''simple docstring''' if attention_mask is None: SCREAMING_SNAKE_CASE : int = tf.cast(tf.math.not_equal(a_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE : List[str] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: SCREAMING_SNAKE_CASE : Union[str, Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE : Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class UpperCAmelCase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case__ : str = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () snake_case__ : List[str] = (TFLEDForConditionalGeneration,) if is_tf_available() else () snake_case__ : Union[str, Any] = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) snake_case__ : List[Any] = True snake_case__ : Tuple = False snake_case__ : Dict = False snake_case__ : int = False def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE : Optional[int] = TFLEDModelTester(self ) SCREAMING_SNAKE_CASE : Dict = ConfigTester(self , config_class=lowercase__ ) def _UpperCamelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase__ ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Union[str, Any] = tf.zeros_like(inputs_dict['attention_mask'] ) SCREAMING_SNAKE_CASE : str = 2 SCREAMING_SNAKE_CASE : List[str] = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.seq_length SCREAMING_SNAKE_CASE : str = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase__ ): SCREAMING_SNAKE_CASE : List[Any] = outputs.decoder_attentions self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase__ ): SCREAMING_SNAKE_CASE : Optional[Any] = [t.numpy() for t in outputs.encoder_attentions] SCREAMING_SNAKE_CASE : Tuple = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Tuple = False SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Any = model_class(lowercase__ ) SCREAMING_SNAKE_CASE : str = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) SCREAMING_SNAKE_CASE : List[str] = len(lowercase__ ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowercase__ ) SCREAMING_SNAKE_CASE : Dict = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_decoder_attentions_output(lowercase__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowercase__ ) SCREAMING_SNAKE_CASE : List[str] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Tuple = model_class(lowercase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase__ ) ) self.assertEqual(model.config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def _UpperCamelCase ( self ) -> Tuple: pass def _UpperCamelCase ( self ) -> Tuple: # TODO: Head-masking not yet implement pass def __lowerCAmelCase ( a_ ) -> Any: '''simple docstring''' return tf.constant(a_ , dtype=tf.intaa ) _lowerCAmelCase :Union[str, Any] = 1E-4 @slow @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE : Any = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here SCREAMING_SNAKE_CASE : Optional[Any] = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) SCREAMING_SNAKE_CASE : List[str] = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) SCREAMING_SNAKE_CASE : Any = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE : Tuple = model(**lowercase__ )[0] SCREAMING_SNAKE_CASE : str = (1, 1_024, 768) self.assertEqual(output.shape , lowercase__ ) # change to expected output here SCREAMING_SNAKE_CASE : str = tf.convert_to_tensor( [[2.3_0_5_0, 2.8_2_7_9, 0.6_5_3_1], [-1.8_4_5_7, -0.1_4_5_5, -3.5_6_6_1], [-1.0_1_8_6, 0.4_5_8_6, -2.2_0_4_3]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE : str = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here SCREAMING_SNAKE_CASE : List[Any] = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) SCREAMING_SNAKE_CASE : str = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) SCREAMING_SNAKE_CASE : Optional[Any] = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE : str = model(**lowercase__ )[0] SCREAMING_SNAKE_CASE : Optional[int] = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase__ ) # change to expected output here SCREAMING_SNAKE_CASE : str = tf.convert_to_tensor( [[3_3.6_5_0_7, 6.4_5_7_2, 1_6.8_0_8_9], [5.8_7_3_9, -2.4_2_3_8, 1_1.2_9_0_2], [-3.2_1_3_9, -4.3_1_4_9, 4.2_7_8_3]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 , rtol=1E-3 )
179
0
'''simple docstring''' _lowercase = 65521 def A (__lowerCamelCase :Optional[Any] ): _lowerCAmelCase = 1 _lowerCAmelCase = 0 for plain_chr in plain_text: _lowerCAmelCase = (a + ord(a_ )) % MOD_ADLER _lowerCAmelCase = (b + a) % MOD_ADLER return (b << 16) | a
5
'''simple docstring''' import json import os import torch from diffusers import UNetaDModel os.makedirs("""hub/hopper-medium-v2/unet/hor32""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/unet/hor128""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/value_function""", exist_ok=True) def __lowerCAmelCase ( a_ ) -> Optional[int]: '''simple docstring''' if hor == 128: SCREAMING_SNAKE_CASE : Union[str, Any] = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') SCREAMING_SNAKE_CASE : List[Any] = (32, 128, 256) SCREAMING_SNAKE_CASE : Optional[Any] = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: SCREAMING_SNAKE_CASE : str = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') SCREAMING_SNAKE_CASE : Union[str, Any] = (32, 64, 128, 256) SCREAMING_SNAKE_CASE : List[str] = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') SCREAMING_SNAKE_CASE : Optional[int] = torch.load(f"""/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = model.state_dict() SCREAMING_SNAKE_CASE : str = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 6_5536, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } SCREAMING_SNAKE_CASE : Optional[int] = UNetaDModel(**a_ ) print(f"""length of state dict: {len(state_dict.keys() )}""" ) print(f"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) SCREAMING_SNAKE_CASE : Optional[Any] = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): SCREAMING_SNAKE_CASE : Tuple = state_dict.pop(a_ ) hf_value_function.load_state_dict(a_ ) torch.save(hf_value_function.state_dict() , f"""hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin""" ) with open(f"""hub/hopper-medium-v2/unet/hor{hor}/config.json""" , 'w' ) as f: json.dump(a_ , a_ ) def __lowerCAmelCase ( ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 128, 256), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 6_5536, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } SCREAMING_SNAKE_CASE : List[Any] = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) SCREAMING_SNAKE_CASE : int = model SCREAMING_SNAKE_CASE : str = UNetaDModel(**a_ ) print(f"""length of state dict: {len(state_dict.keys() )}""" ) print(f"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) SCREAMING_SNAKE_CASE : List[Any] = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): SCREAMING_SNAKE_CASE : Any = state_dict.pop(a_ ) hf_value_function.load_state_dict(a_ ) torch.save(hf_value_function.state_dict() , 'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' , 'w' ) as f: json.dump(a_ , a_ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
251
0
from __future__ import annotations def __snake_case ( _UpperCamelCase ) -> list[int]: _a = [True] * limit _a = False _a = False _a = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): _a = i * 2 while index < limit: _a = False _a = index + i _a = [2] for i in range(3 , _UpperCamelCase , 2 ): if is_prime[i]: primes.append(_UpperCamelCase ) return primes def __snake_case ( _UpperCamelCase = 1_00_00_00 ) -> int: _a = prime_sieve(_UpperCamelCase ) _a = 0 _a = 0 for i in range(len(_UpperCamelCase ) ): for j in range(i + length , len(_UpperCamelCase ) ): _a = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: _a = j - i _a = sol return largest if __name__ == "__main__": print(F'''{solution() = }''')
346
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def __snake_case ( _UpperCamelCase ) -> int: _a = prime_factors(_UpperCamelCase ) if is_square_free(_UpperCamelCase ): return -1 if len(_UpperCamelCase ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
346
1
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : int = 1000 ): '''simple docstring''' _lowerCAmelCase = 1 _lowerCAmelCase = 0 for divide_by_number in range(SCREAMING_SNAKE_CASE_ , digit + 1 ): _lowerCAmelCase = [] _lowerCAmelCase = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = divide_by_number else: has_been_divided.append(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
18
"""simple docstring""" def __snake_case ( __A : list , __A : int , __A : int = 0 , __A : int = 0 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = right or len(__A ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__A , __A , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
265
0
'''simple docstring''' from __future__ import annotations def _lowercase ( lowerCamelCase__ : dict, lowerCamelCase__ : str ): _a , _a = set(lowerCamelCase__ ), [start] while stack: _a = stack.pop() explored.add(lowerCamelCase__ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(lowerCamelCase__ ) return explored __snake_case : Tuple = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
691
'''simple docstring''' def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number | (1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number & ~(1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number ^ (1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return ((number >> position) & 1) == 1 def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
691
1
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCAmelCase__ : str = 4 UpperCAmelCase__ : Dict = 3 class lowerCAmelCase_ (a__ ): """simple docstring""" pass def lowercase_ ( _snake_case ): for shard in shards: for i in range(_snake_case ): yield {"i": i, "shard": shard} def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : Tuple = int(os.environ["""RANK"""] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = int(os.environ["""WORLD_SIZE"""] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ArgumentParser() parser.add_argument("""--streaming""" ,type=_snake_case ) parser.add_argument("""--local_rank""" ,type=_snake_case ) parser.add_argument("""--num_workers""" ,type=_snake_case ,default=0 ) SCREAMING_SNAKE_CASE__ : Any = parser.parse_args() SCREAMING_SNAKE_CASE__ : int = args.streaming SCREAMING_SNAKE_CASE__ : Union[str, Any] = args.num_workers SCREAMING_SNAKE_CASE__ : Optional[Any] = {"""shards""": [f'''shard_{shard_idx}''' for shard_idx in range(_snake_case )]} SCREAMING_SNAKE_CASE__ : str = IterableDataset.from_generator(_snake_case ,gen_kwargs=_snake_case ) if not streaming: SCREAMING_SNAKE_CASE__ : str = Dataset.from_list(list(_snake_case ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = split_dataset_by_node(_snake_case ,rank=_snake_case ,world_size=_snake_case ) SCREAMING_SNAKE_CASE__ : Tuple = torch.utils.data.DataLoader(_snake_case ,num_workers=_snake_case ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD SCREAMING_SNAKE_CASE__ : Optional[int] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) SCREAMING_SNAKE_CASE__ : Tuple = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''' ) if __name__ == "__main__": main()
223
"""simple docstring""" import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor UpperCAmelCase__ : List[str] = logging.get_logger(__name__) class lowerCAmelCase_ (a__ ): """simple docstring""" def __init__(self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> None: """simple docstring""" warnings.warn( """The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PoolFormerImageProcessor instead.""" , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
223
1
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin _lowercase : Optional[int] = random.Random() def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : int=1.0 , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : List[Any]=None ) -> List[str]: if rng is None: lowercase_ : str = global_rng lowercase_ : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __magic_name__ ( unittest.TestCase): def __init__( self : int , lowercase_ : Union[str, Any] , lowercase_ : int=7 , lowercase_ : List[Any]=400 , lowercase_ : List[Any]=2000 , lowercase_ : Union[str, Any]=1 , lowercase_ : Any=0.0 , lowercase_ : Any=16000 , lowercase_ : Optional[Any]=True , lowercase_ : Tuple=True , ): lowercase_ : List[str] = parent lowercase_ : int = batch_size lowercase_ : str = min_seq_length lowercase_ : int = max_seq_length lowercase_ : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowercase_ : str = feature_size lowercase_ : Optional[Any] = padding_value lowercase_ : Dict = sampling_rate lowercase_ : List[str] = return_attention_mask lowercase_ : str = do_normalize def SCREAMING_SNAKE_CASE_ ( self : str ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[Any]=False , lowercase_ : str=False ): def _flatten(lowercase_ : str ): return list(itertools.chain(*lowercase_ ) ) if equal_length: lowercase_ : str = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowercase_ : Optional[Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowercase_ : List[Any] = [np.asarray(lowercase_ ) for x in speech_inputs] return speech_inputs class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = WavaVecaFeatureExtractor def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Tuple = WavaVecaFeatureExtractionTester(self ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : List[str] ): self.assertTrue(np.all(np.mean(lowercase_ , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowercase_ , axis=0 ) - 1 ) < 1E-3 ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): # Tests that all call wrap to encode_plus and batch_encode_plus lowercase_ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase_ : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase_ : Dict = [np.asarray(lowercase_ ) for speech_input in speech_inputs] # Test not batched input lowercase_ : str = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values lowercase_ : List[str] = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1E-3 ) ) # Test batched lowercase_ : List[str] = feat_extract(lowercase_ , return_tensors="""np""" ).input_values lowercase_ : Union[str, Any] = feat_extract(lowercase_ , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(lowercase_ , lowercase_ ): self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowercase_ : Union[str, Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowercase_ : str = np.asarray(lowercase_ ) lowercase_ : Any = feat_extract(lowercase_ , return_tensors="""np""" ).input_values lowercase_ : Any = feat_extract(lowercase_ , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(lowercase_ , lowercase_ ): self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1E-3 ) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase_ : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase_ : List[str] = ["""longest""", """max_length""", """do_not_pad"""] lowercase_ : Optional[int] = [None, 1600, None] for max_length, padding in zip(lowercase_ , lowercase_ ): lowercase_ : Union[str, Any] = feat_extract(lowercase_ , padding=lowercase_ , max_length=lowercase_ , return_tensors="""np""" ) lowercase_ : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase_ : List[str] = range(800 , 1400 , 200 ) lowercase_ : Any = [floats_list((1, x) )[0] for x in lengths] lowercase_ : List[str] = ["""longest""", """max_length""", """do_not_pad"""] lowercase_ : Union[str, Any] = [None, 1600, None] for max_length, padding in zip(lowercase_ , lowercase_ ): lowercase_ : Optional[Any] = feat_extract(lowercase_ , max_length=lowercase_ , padding=lowercase_ ) lowercase_ : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase_ : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase_ : Any = feat_extract( lowercase_ , truncation=lowercase_ , max_length=1000 , padding="""max_length""" , return_tensors="""np""" ) lowercase_ : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase_ : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase_ : Tuple = feat_extract( lowercase_ , truncation=lowercase_ , max_length=1000 , padding="""longest""" , return_tensors="""np""" ) lowercase_ : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) lowercase_ : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase_ : Optional[int] = feat_extract( lowercase_ , truncation=lowercase_ , max_length=2000 , padding="""longest""" , return_tensors="""np""" ) lowercase_ : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): import torch lowercase_ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase_ : Any = np.random.rand(100 ).astype(np.floataa ) lowercase_ : List[str] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowercase_ : List[str] = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowercase_ : Any = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: lowercase_ : Any = WavaVecaConfig.from_pretrained(lowercase_ ) lowercase_ : Dict = WavaVecaFeatureExtractor.from_pretrained(lowercase_ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == """layer""" )
720
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Optional[Any] = { "configuration_swiftformer": [ "SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwiftFormerConfig", "SwiftFormerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = [ "SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "SwiftFormerForImageClassification", "SwiftFormerModel", "SwiftFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _lowercase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
30
0
"""simple docstring""" from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __lowerCamelCase ( lowerCAmelCase , lowerCAmelCase ): a__: Dict = 'pixel_values' a__: Any = False a__: List[Any] = TimmBackboneConfig def __init__( self , UpperCAmelCase , **UpperCAmelCase ): requires_backends(self , '''timm''' ) super().__init__(UpperCAmelCase ) lowerCamelCase_ = config if config.backbone is None: raise ValueError('''backbone is not set in the config. Please set it to a timm model name.''' ) if config.backbone not in timm.list_models(): raise ValueError(f"backbone {config.backbone} is not supported by timm." ) if hasattr(UpperCAmelCase , '''out_features''' ) and config.out_features is not None: raise ValueError('''out_features is not supported by TimmBackbone. Please use out_indices instead.''' ) lowerCamelCase_ = getattr(UpperCAmelCase , '''use_pretrained_backbone''' , UpperCAmelCase ) if pretrained is None: raise ValueError('''use_pretrained_backbone is not set in the config. Please set it to True or False.''' ) # We just take the final layer by default. This matches the default for the transformers models. lowerCamelCase_ = config.out_indices if getattr(UpperCAmelCase , '''out_indices''' , UpperCAmelCase ) is not None else (-1,) lowerCamelCase_ = timm.create_model( config.backbone , pretrained=UpperCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=UpperCAmelCase , **UpperCAmelCase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowerCamelCase_ = self._backbone.return_layers lowerCamelCase_ = {layer['''module''']: str(UpperCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(UpperCAmelCase ) @classmethod def UpperCAmelCase__ ( cls , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ): requires_backends(cls , ['''vision''', '''timm'''] ) from ...models.timm_backbone import TimmBackboneConfig lowerCamelCase_ = kwargs.pop('''config''' , TimmBackboneConfig() ) lowerCamelCase_ = kwargs.pop('''use_timm_backbone''' , UpperCAmelCase ) if not use_timm: raise ValueError('''use_timm_backbone must be True for timm backbones''' ) lowerCamelCase_ = kwargs.pop('''num_channels''' , config.num_channels ) lowerCamelCase_ = kwargs.pop('''features_only''' , config.features_only ) lowerCamelCase_ = kwargs.pop('''use_pretrained_backbone''' , config.use_pretrained_backbone ) lowerCamelCase_ = kwargs.pop('''out_indices''' , config.out_indices ) lowerCamelCase_ = TimmBackboneConfig( backbone=UpperCAmelCase , num_channels=UpperCAmelCase , features_only=UpperCAmelCase , use_pretrained_backbone=UpperCAmelCase , out_indices=UpperCAmelCase , ) return super()._from_config(UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase ): pass def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ): lowerCamelCase_ = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase_ = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('''Cannot output attentions for timm backbones at the moment''' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowerCamelCase_ = self._all_layers lowerCamelCase_ = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = self._return_layers lowerCamelCase_ = tuple(hidden_states[i] for i in self.out_indices ) else: lowerCamelCase_ = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = None lowerCamelCase_ = tuple(UpperCAmelCase ) lowerCamelCase_ = tuple(UpperCAmelCase ) if hidden_states is not None else None if not return_dict: lowerCamelCase_ = (feature_maps,) if output_hidden_states: lowerCamelCase_ = output + (hidden_states,) return output return BackboneOutput(feature_maps=UpperCAmelCase , hidden_states=UpperCAmelCase , attentions=UpperCAmelCase )
29
'''simple docstring''' import math from collections.abc import Iterator from itertools import takewhile def _lowerCAmelCase ( lowerCamelCase_ : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCAmelCase ( ): __lowercase = 2 while True: if is_prime(lowerCamelCase_ ): yield num num += 1 def _lowerCAmelCase ( lowerCamelCase_ : int = 2_0_0_0_0_0_0 ): return sum(takewhile(lambda lowerCamelCase_ : x < n , prime_generator() ) ) if __name__ == "__main__": print(f'''{solution() = }''')
502
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : int = logging.get_logger(__name__) lowerCamelCase__ : List[Any] = { "google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json", # See all CANINE models at https://huggingface.co/models?filter=canine } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """canine""" def __init__( self :List[str] , lowerCamelCase_ :Dict=7_68 , lowerCamelCase_ :Tuple=12 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :Optional[int]=30_72 , lowerCamelCase_ :Tuple="gelu" , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :Optional[Any]=0.1 , lowerCamelCase_ :List[Any]=1_63_84 , lowerCamelCase_ :List[Any]=16 , lowerCamelCase_ :Any=0.0_2 , lowerCamelCase_ :List[str]=1E-12 , lowerCamelCase_ :int=0 , lowerCamelCase_ :Optional[int]=0xE000 , lowerCamelCase_ :List[Any]=0xE001 , lowerCamelCase_ :Union[str, Any]=4 , lowerCamelCase_ :str=4 , lowerCamelCase_ :str=8 , lowerCamelCase_ :Tuple=1_63_84 , lowerCamelCase_ :Dict=1_28 , **lowerCamelCase_ :Optional[int] , ) -> int: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE : Any = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Dict = type_vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = layer_norm_eps # Character config: SCREAMING_SNAKE_CASE : Any = downsampling_rate SCREAMING_SNAKE_CASE : List[Any] = upsampling_kernel_size SCREAMING_SNAKE_CASE : List[Any] = num_hash_functions SCREAMING_SNAKE_CASE : Dict = num_hash_buckets SCREAMING_SNAKE_CASE : str = local_transformer_stride
18
"""simple docstring""" import math class lowercase__: '''simple docstring''' def __init__( self :Union[str, Any] , lowerCamelCase_ :List[str]=0 ) -> List[Any]: # a graph with Node 0,1,...,N-1 '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = n SCREAMING_SNAKE_CASE : List[Any] = [ [math.inf for j in range(0 , lowerCamelCase_ )] for i in range(0 , lowerCamelCase_ ) ] # adjacency matrix for weight SCREAMING_SNAKE_CASE : Any = [ [math.inf for j in range(0 , lowerCamelCase_ )] for i in range(0 , lowerCamelCase_ ) ] # dp[i][j] stores minimum distance from i to j def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = w def __lowerCAmelCase ( self :str ) -> Union[str, Any]: '''simple docstring''' for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): SCREAMING_SNAKE_CASE : List[str] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __lowerCAmelCase ( self :int , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[int] ) -> Optional[Any]: '''simple docstring''' return self.dp[u][v] if __name__ == "__main__": lowerCamelCase__ : Dict = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
18
1
"""simple docstring""" import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Optional[int] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} __lowerCAmelCase : Union[str, Any] = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } __lowerCAmelCase : Dict = { '''allenai/longformer-base-4096''': 4096, '''allenai/longformer-large-4096''': 4096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : List[Any] = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) snake_case_ : List[Any] = bs[:] snake_case_ : Union[str, Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(__UpperCamelCase ) cs.append(2**8 + n ) n += 1 snake_case_ : Union[str, Any] = [chr(__UpperCamelCase ) for n in cs] return dict(zip(__UpperCamelCase , __UpperCamelCase ) ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : List[str] = set() snake_case_ : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case_ : List[str] = char return pairs class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowercase , _lowercase , _lowercase="replace" , _lowercase="<s>" , _lowercase="</s>" , _lowercase="</s>" , _lowercase="<s>" , _lowercase="<unk>" , _lowercase="<pad>" , _lowercase="<mask>" , _lowercase=False , **_lowercase , ) -> Any: '''simple docstring''' snake_case_ : Optional[int] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else bos_token snake_case_ : Union[str, Any] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else eos_token snake_case_ : List[Any] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else sep_token snake_case_ : Union[str, Any] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else cls_token snake_case_ : str = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else unk_token snake_case_ : Dict = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ : str = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( errors=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , add_prefix_space=_lowercase , **_lowercase , ) with open(_lowercase , encoding="""utf-8""" ) as vocab_handle: snake_case_ : Dict = json.load(_lowercase ) snake_case_ : Optional[int] = {v: k for k, v in self.encoder.items()} snake_case_ : Optional[Any] = errors # how to handle errors in decoding snake_case_ : str = bytes_to_unicode() snake_case_ : Any = {v: k for k, v in self.byte_encoder.items()} with open(_lowercase , encoding="""utf-8""" ) as merges_handle: snake_case_ : Dict = merges_handle.read().split("""\n""" )[1:-1] snake_case_ : List[Any] = [tuple(merge.split() ) for merge in bpe_merges] snake_case_ : str = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) snake_case_ : List[str] = {} snake_case_ : List[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case_ : Dict = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase__ ( self , _lowercase ) -> Tuple: '''simple docstring''' if token in self.cache: return self.cache[token] snake_case_ : Union[str, Any] = tuple(_lowercase ) snake_case_ : Optional[int] = get_pairs(_lowercase ) if not pairs: return token while True: snake_case_ : Tuple = min(_lowercase , key=lambda _lowercase : self.bpe_ranks.get(_lowercase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break snake_case_ , snake_case_ : str = bigram snake_case_ : List[Any] = [] snake_case_ : str = 0 while i < len(_lowercase ): try: snake_case_ : Optional[Any] = word.index(_lowercase , _lowercase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case_ : Dict = j if word[i] == first and i < len(_lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case_ : Optional[int] = tuple(_lowercase ) snake_case_ : Any = new_word if len(_lowercase ) == 1: break else: snake_case_ : Any = get_pairs(_lowercase ) snake_case_ : List[Any] = """ """.join(_lowercase ) snake_case_ : int = word return word def UpperCAmelCase__ ( self , _lowercase ) -> str: '''simple docstring''' snake_case_ : List[Any] = [] for token in re.findall(self.pat , _lowercase ): snake_case_ : Any = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowercase ).split(""" """ ) ) return bpe_tokens def UpperCAmelCase__ ( self , _lowercase ) -> Union[str, Any]: '''simple docstring''' return self.encoder.get(_lowercase , self.encoder.get(self.unk_token ) ) def UpperCAmelCase__ ( self , _lowercase ) -> List[str]: '''simple docstring''' return self.decoder.get(_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = """""".join(_lowercase ) snake_case_ : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return snake_case_ : str = os.path.join( _lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case_ : Union[str, Any] = os.path.join( _lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowercase , ensure_ascii=_lowercase ) + """\n""" ) snake_case_ : str = 0 with open(_lowercase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowercase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) snake_case_ : List[Any] = token_index writer.write(""" """.join(_lowercase ) + """\n""" ) index += 1 return vocab_file, merge_file def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ : int = [self.cls_token_id] snake_case_ : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase__ ( self , _lowercase , _lowercase = None , _lowercase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) if token_ids_a is None: return [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1, 1] + ([0] * len(_lowercase )) + [1] def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: '''simple docstring''' snake_case_ : Tuple = [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase__ ( self , _lowercase , _lowercase=False , **_lowercase ) -> List[Any]: '''simple docstring''' snake_case_ : List[str] = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_lowercase ) > 0 and not text[0].isspace()): snake_case_ : List[str] = """ """ + text return (text, kwargs)
58
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def lowercase ( a , a ): '''simple docstring''' if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer SCREAMING_SNAKE_CASE_ :List[Any] = flax_key_tuple[:-1] + ("weight",) SCREAMING_SNAKE_CASE_ :Any = torch.permute(a , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(a ): # linear layer SCREAMING_SNAKE_CASE_ :str = flax_key_tuple[:-1] + ("weight",) SCREAMING_SNAKE_CASE_ :Optional[int] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: SCREAMING_SNAKE_CASE_ :Union[str, Any] = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def lowercase ( a , a , a ): '''simple docstring''' if "metadata" in layer: SCREAMING_SNAKE_CASE_ :Dict = layer.split("metadata" ) SCREAMING_SNAKE_CASE_ :Optional[int] = "".join(split_layer[0] )[:-1] SCREAMING_SNAKE_CASE_ :str = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: SCREAMING_SNAKE_CASE_ :str = layer.split("kvstore" ) SCREAMING_SNAKE_CASE_ :str = "".join(split_layer[0] )[:-1] SCREAMING_SNAKE_CASE_ :str = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: SCREAMING_SNAKE_CASE_ :Union[str, Any] = layer.split("/" ) SCREAMING_SNAKE_CASE_ :Optional[int] = "/".join(split_layer[:-1] ) SCREAMING_SNAKE_CASE_ :int = (split_layer[-1],) if "kvstore/path" in layer: SCREAMING_SNAKE_CASE_ :Union[str, Any] = F"{switch_checkpoint_path}/{checkpoint_info[layer]}" elif "kvstore/driver" in layer: SCREAMING_SNAKE_CASE_ :Tuple = "file" else: SCREAMING_SNAKE_CASE_ :str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def lowercase ( a , a ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :int = rename_keys(a ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = {} for k, v in current_block.items(): SCREAMING_SNAKE_CASE_ :List[str] = v SCREAMING_SNAKE_CASE_ :Optional[Any] = new_current_block torch.save(a , a ) def lowercase ( a , a , a , a , a = WEIGHTS_NAME ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :Optional[int] = convert_file_size_to_int(a ) SCREAMING_SNAKE_CASE_ :int = [] SCREAMING_SNAKE_CASE_ :str = {} SCREAMING_SNAKE_CASE_ :List[str] = 0 SCREAMING_SNAKE_CASE_ :Optional[int] = 0 os.makedirs(a , exist_ok=a ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: SCREAMING_SNAKE_CASE_ :int = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] SCREAMING_SNAKE_CASE_ :Any = flatten_dict(a , sep="/" ) SCREAMING_SNAKE_CASE_ :Optional[Any] = {} for layer in checkpoint_info.keys(): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :List[Any] = get_key_and_tensorstore_dict( a , a , a ) if curr_real_layer_name in all_layers: SCREAMING_SNAKE_CASE_ :str = content else: SCREAMING_SNAKE_CASE_ :Optional[Any] = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file SCREAMING_SNAKE_CASE_ :Any = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() SCREAMING_SNAKE_CASE_ :List[Any] = torch.tensor(a ) SCREAMING_SNAKE_CASE_ :str = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Optional[Any] = rename_base_flax_keys(tuple(key.split("/" ) ) , a ) SCREAMING_SNAKE_CASE_ :Any = "/".join(a ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: SCREAMING_SNAKE_CASE_ :str = os.path.join( a , weights_name.replace(".bin" , F"-{len(a )+1:05d}-of-???.bin" ) ) rename_and_save_block(a , a ) sharded_state_dicts.append(current_block.keys() ) del current_block SCREAMING_SNAKE_CASE_ :Tuple = {} SCREAMING_SNAKE_CASE_ :Dict = 0 SCREAMING_SNAKE_CASE_ :Optional[int] = raw_weights.to(getattr(a , a ) ) current_block_size += weight_size total_size += weight_size # Add the last block SCREAMING_SNAKE_CASE_ :Dict = os.path.join(a , weights_name.replace(".bin" , F"-{len(a )+1:05d}-of-???.bin" ) ) rename_and_save_block(a , a ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(a ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index SCREAMING_SNAKE_CASE_ :Optional[int] = {} SCREAMING_SNAKE_CASE_ :int = {} for idx, shard in enumerate(a ): SCREAMING_SNAKE_CASE_ :Optional[Any] = weights_name.replace( ".bin" , F"-{idx+1:05d}-of-{len(a ):05d}.bin" ) # len(sharded_state_dicts):05d} SCREAMING_SNAKE_CASE_ :Any = os.path.join(a , weights_name.replace(".bin" , F"-{idx+1:05d}-of-???.bin" ) ) os.rename(a , os.path.join(a , a ) ) SCREAMING_SNAKE_CASE_ :List[Any] = shard for key in shard: SCREAMING_SNAKE_CASE_ :str = shard_file # Add the metadata SCREAMING_SNAKE_CASE_ :List[str] = {"total_size": total_size} SCREAMING_SNAKE_CASE_ :Optional[int] = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(a , a ) , "w" , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE_ :Optional[int] = json.dumps(a , indent=2 , sort_keys=a ) + "\n" f.write(a ) return metadata, index if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size") parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted", type=str, required=False, help="Path to the output pytorch model.", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def lowercase ( ): '''simple docstring''' from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer SCREAMING_SNAKE_CASE_ :Dict = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) SCREAMING_SNAKE_CASE_ :str = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) SCREAMING_SNAKE_CASE_ :List[Any] = TaTokenizer.from_pretrained("t5-small" ) SCREAMING_SNAKE_CASE_ :Optional[int] = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." SCREAMING_SNAKE_CASE_ :List[Any] = tokenizer(a , return_tensors="pt" ).input_ids SCREAMING_SNAKE_CASE_ :List[str] = model.generate(a , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
631
0
'''simple docstring''' import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCamelCase_ ( _A ): '''simple docstring''' a__ = "M-CLIP" def __init__( self : Dict , __lowerCamelCase : List[str]=10_24 , __lowerCamelCase : Optional[Any]=7_68 , **__lowerCamelCase : List[Any] ) -> Optional[int]: A : List[str] = transformerDimSize A : Dict = imageDimSize super().__init__(**__lowerCamelCase ) class lowerCamelCase_ ( _A ): '''simple docstring''' a__ = MCLIPConfig def __init__( self : Optional[int] , __lowerCamelCase : Optional[int] , *__lowerCamelCase : Any , **__lowerCamelCase : Union[str, Any] ) -> Optional[Any]: super().__init__(__lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) A : Dict = XLMRobertaModel(__lowerCamelCase ) A : List[str] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def SCREAMING_SNAKE_CASE__ ( self : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Any ) -> int: A : Any = self.transformer(input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase )[0] A : Any = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(__lowerCamelCase ), embs
715
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=_A ) class lowerCamelCase_ ( _A ): '''simple docstring''' # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization a__ = field(default="question-answering-extractive" ,metadata={"include_in_asdict_even_if_is_default": True} ) a__ = Features({"question": Value("string" ), "context": Value("string" )} ) a__ = Features( { "answers": Sequence( { "text": Value("string" ), "answer_start": Value("int32" ), } ) } ) a__ = "question" a__ = "context" a__ = "answers" @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Dict[str, str]: return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
17
0
"""simple docstring""" import warnings from ..trainer import Trainer from ..utils import logging __UpperCAmelCase =logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase_ ): def __init__( self , UpperCamelCase__=None , **UpperCamelCase__ ): '''simple docstring''' warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead." , UpperCamelCase__ , ) super().__init__(args=UpperCamelCase__ , **UpperCamelCase__ )
337
"""simple docstring""" __UpperCAmelCase ="""0.18.2""" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
337
1
"""simple docstring""" import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class snake_case ( __UpperCAmelCase ): '''simple docstring''' _A : List[str] = (KDPMaDiscreteScheduler,) _A : Optional[Any] = 10 def A_ ( self : Dict , **__lowercase : List[str] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = { '''num_train_timesteps''': 1_100, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', } config.update(**__lowercase ) return config def A_ ( self : Dict ): '''simple docstring''' for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=__lowercase ) def A_ ( self : Any ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=__lowercase , beta_end=__lowercase ) def A_ ( self : Dict ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__lowercase ) def A_ ( self : Union[str, Any] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowercase ) def A_ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Dict = self.scheduler_classes[0] __UpperCAmelCase : List[str] = self.get_scheduler_config(prediction_type='''v_prediction''' ) __UpperCAmelCase : Tuple = scheduler_class(**__lowercase ) scheduler.set_timesteps(self.num_inference_steps ) __UpperCAmelCase : Optional[int] = self.dummy_model() __UpperCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma __UpperCAmelCase : Any = sample.to(__lowercase ) for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase : Tuple = scheduler.scale_model_input(__lowercase , __lowercase ) __UpperCAmelCase : Optional[Any] = model(__lowercase , __lowercase ) __UpperCAmelCase : Tuple = scheduler.step(__lowercase , __lowercase , __lowercase ) __UpperCAmelCase : Dict = output.prev_sample __UpperCAmelCase : List[str] = torch.sum(torch.abs(__lowercase ) ) __UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(__lowercase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934e-07 ) < 1e-2 assert abs(result_mean.item() - 6.1112e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.693_4286_5017_0972e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0_0_0_2 ) < 1e-3 def A_ ( self : Optional[Any] ): '''simple docstring''' if torch_device == "mps": return __UpperCAmelCase : Dict = self.scheduler_classes[0] __UpperCAmelCase : Optional[Any] = self.get_scheduler_config() __UpperCAmelCase : Optional[Any] = scheduler_class(**__lowercase ) scheduler.set_timesteps(self.num_inference_steps ) __UpperCAmelCase : Optional[int] = self.dummy_model() __UpperCAmelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma __UpperCAmelCase : Union[str, Any] = sample.to(__lowercase ) for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase : List[str] = scheduler.scale_model_input(__lowercase , __lowercase ) __UpperCAmelCase : List[Any] = model(__lowercase , __lowercase ) __UpperCAmelCase : str = scheduler.step(__lowercase , __lowercase , __lowercase ) __UpperCAmelCase : List[str] = output.prev_sample __UpperCAmelCase : Dict = torch.sum(torch.abs(__lowercase ) ) __UpperCAmelCase : Union[str, Any] = torch.mean(torch.abs(__lowercase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 def A_ ( self : str ): '''simple docstring''' if torch_device == "mps": return __UpperCAmelCase : Optional[Any] = self.scheduler_classes[0] __UpperCAmelCase : Tuple = self.get_scheduler_config() __UpperCAmelCase : Any = scheduler_class(**__lowercase ) scheduler.set_timesteps(self.num_inference_steps , device=__lowercase ) __UpperCAmelCase : Optional[Any] = self.dummy_model() __UpperCAmelCase : Optional[Any] = self.dummy_sample_deter.to(__lowercase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __UpperCAmelCase : Any = scheduler.scale_model_input(__lowercase , __lowercase ) __UpperCAmelCase : Optional[Any] = model(__lowercase , __lowercase ) __UpperCAmelCase : Optional[int] = scheduler.step(__lowercase , __lowercase , __lowercase ) __UpperCAmelCase : Any = output.prev_sample __UpperCAmelCase : Optional[int] = torch.sum(torch.abs(__lowercase ) ) __UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(__lowercase ) ) if str(__lowercase ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3
374
"""simple docstring""" # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers lowercase__ :int = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
374
1
"""simple docstring""" def lowerCamelCase_ ( __lowerCAmelCase ) -> Tuple: '''simple docstring''' return "".join(chr(ord(__lowerCAmelCase ) - 32 ) if "a" <= char <= "z" else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
530
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __a : Union[str, Any] = logging.get_logger(__name__) def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase = torch.load(lowercase , map_location='''cpu''' ) if "model" in sd.keys(): __lowercase = torch.load(lowercase , map_location='''cpu''' )['''model'''] # pop unnecessary weights __lowercase = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(lowercase ) __lowercase = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __lowercase = sd.pop(lowercase ) __lowercase = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __lowercase = sd[key] # We split QKV in separate Q,K,V __lowercase = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) __lowercase = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __lowercase , __lowercase , __lowercase = torch.split(lowercase , depth // 3 , dim=0 ) __lowercase = q __lowercase = k __lowercase = v del sd[key] return sd @torch.no_grad() def UpperCAmelCase ( lowercase , lowercase , lowercase=None ): """simple docstring""" __lowercase = load_checkpoint(lowercase ) if config is not None: __lowercase = OPTConfig.from_pretrained(lowercase ) else: __lowercase = OPTConfig() __lowercase = OPTModel(lowercase ).half().eval() model.load_state_dict(lowercase ) # Check results Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": __a : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") __a : Any = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
534
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : Tuple = logging.get_logger(__name__) def __snake_case (__UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=False ): """simple docstring""" lowerCamelCase_ : Tuple = '''backbone.''' if is_semantic else '''''' lowerCamelCase_ : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""{prefix}blocks.{i}.norm1.weight""", F"""beit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""{prefix}blocks.{i}.norm1.bias""", F"""beit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""{prefix}blocks.{i}.attn.proj.weight""", F"""beit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""{prefix}blocks.{i}.attn.proj.bias""", F"""beit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""{prefix}blocks.{i}.norm2.weight""", F"""beit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""{prefix}blocks.{i}.norm2.bias""", F"""beit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""{prefix}blocks.{i}.mlp.fc1.weight""", F"""beit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""{prefix}blocks.{i}.mlp.fc1.bias""", F"""beit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""{prefix}blocks.{i}.mlp.fc2.weight""", F"""beit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""{prefix}blocks.{i}.mlp.fc2.bias""", F"""beit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ (F"""{prefix}cls_token""", '''beit.embeddings.cls_token'''), (F"""{prefix}patch_embed.proj.weight""", '''beit.embeddings.patch_embeddings.projection.weight'''), (F"""{prefix}patch_embed.proj.bias""", '''beit.embeddings.patch_embeddings.projection.bias'''), (F"""{prefix}pos_embed""", '''beit.embeddings.position_embeddings'''), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('''mask_token''', '''beit.embeddings.mask_token'''), ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) else: # layernorm + classification head rename_keys.extend( [ ('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''), ('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=False ): """simple docstring""" for i in range(config.num_hidden_layers ): lowerCamelCase_ : Optional[int] = '''backbone.''' if is_semantic else '''''' # queries, keys and values lowerCamelCase_ : List[Any] = state_dict.pop(F"""{prefix}blocks.{i}.attn.qkv.weight""" ) lowerCamelCase_ : Dict = state_dict.pop(F"""{prefix}blocks.{i}.attn.q_bias""" ) lowerCamelCase_ : Dict = state_dict.pop(F"""{prefix}blocks.{i}.attn.v_bias""" ) lowerCamelCase_ : Tuple = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase_ : Tuple = q_bias lowerCamelCase_ : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase_ : Optional[int] = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase_ : int = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained lowerCamelCase_ : Dict = state_dict.pop(F"""{prefix}blocks.{i}.gamma_1""" ) lowerCamelCase_ : List[str] = state_dict.pop(F"""{prefix}blocks.{i}.gamma_2""" ) lowerCamelCase_ : str = gamma_a lowerCamelCase_ : Optional[Any] = gamma_a def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : List[str] = dct.pop(__UpperCAmelCase ) lowerCamelCase_ : Optional[int] = val def __snake_case (): """simple docstring""" lowerCamelCase_ : List[str] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ : Any = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ): """simple docstring""" lowerCamelCase_ : List[str] = False if '''rvlcdip''' in checkpoint_url else True lowerCamelCase_ : Any = BeitConfig(use_absolute_position_embeddings=__UpperCAmelCase , use_mask_token=__UpperCAmelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: lowerCamelCase_ : Dict = 1024 lowerCamelCase_ : List[Any] = 4096 lowerCamelCase_ : Optional[int] = 24 lowerCamelCase_ : Any = 16 # labels if "rvlcdip" in checkpoint_url: lowerCamelCase_ : Union[str, Any] = 16 lowerCamelCase_ : Union[str, Any] = '''huggingface/label-files''' lowerCamelCase_ : str = '''rvlcdip-id2label.json''' lowerCamelCase_ : List[str] = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) lowerCamelCase_ : Dict = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase_ : Union[str, Any] = idalabel lowerCamelCase_ : int = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys lowerCamelCase_ : Optional[int] = torch.hub.load_state_dict_from_url(__UpperCAmelCase , map_location='''cpu''' )['''model'''] lowerCamelCase_ : int = create_rename_keys(__UpperCAmelCase , has_lm_head=__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase , has_lm_head=__UpperCAmelCase ) # load HuggingFace model lowerCamelCase_ : Dict = BeitForMaskedImageModeling(__UpperCAmelCase ) if has_lm_head else BeitForImageClassification(__UpperCAmelCase ) model.eval() model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image lowerCamelCase_ : Tuple = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__UpperCAmelCase ) lowerCamelCase_ : List[Any] = prepare_img() lowerCamelCase_ : Dict = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ) lowerCamelCase_ : Dict = encoding['''pixel_values'''] lowerCamelCase_ : Optional[int] = model(__UpperCAmelCase ) lowerCamelCase_ : Dict = outputs.logits # verify logits lowerCamelCase_ : str = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(__UpperCAmelCase ), "Shape of logits not as expected" Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: if has_lm_head: lowerCamelCase_ : int = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large''' else: lowerCamelCase_ : Dict = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip''' image_processor.push_to_hub( repo_path_or_name=Path(__UpperCAmelCase , __UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=__UpperCAmelCase , ) model.push_to_hub( repo_path_or_name=Path(__UpperCAmelCase , __UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=__UpperCAmelCase , ) if __name__ == "__main__": __lowerCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) __lowerCamelCase : List[Any] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
418
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : Tuple = {"""configuration_fnet""": ["""FNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = ["""FNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = ["""FNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[int] = [ """FNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FNetForMaskedLM""", """FNetForMultipleChoice""", """FNetForNextSentencePrediction""", """FNetForPreTraining""", """FNetForQuestionAnswering""", """FNetForSequenceClassification""", """FNetForTokenClassification""", """FNetLayer""", """FNetModel""", """FNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
418
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Any = logging.get_logger(__name__) lowercase__ : Optional[int] = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = '''sew''' def __init__( self : List[Any] , __lowercase : Union[str, Any]=32 , __lowercase : List[Any]=7_68 , __lowercase : List[Any]=12 , __lowercase : Dict=12 , __lowercase : List[str]=30_72 , __lowercase : List[str]=2 , __lowercase : Union[str, Any]="gelu" , __lowercase : Dict=0.1 , __lowercase : Dict=0.1 , __lowercase : str=0.1 , __lowercase : str=0.0 , __lowercase : Union[str, Any]=0.1 , __lowercase : List[Any]=0.1 , __lowercase : Dict=0.02 , __lowercase : Any=1E-5 , __lowercase : Optional[int]="group" , __lowercase : Optional[Any]="gelu" , __lowercase : Dict=(64, 1_28, 1_28, 1_28, 1_28, 2_56, 2_56, 2_56, 2_56, 5_12, 5_12, 5_12, 5_12) , __lowercase : Tuple=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __lowercase : int=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __lowercase : List[Any]=False , __lowercase : Tuple=1_28 , __lowercase : Union[str, Any]=16 , __lowercase : List[str]=True , __lowercase : int=0.05 , __lowercase : Any=10 , __lowercase : Tuple=2 , __lowercase : Optional[Any]=0.0 , __lowercase : str=10 , __lowercase : Tuple=0 , __lowercase : str="mean" , __lowercase : Optional[Any]=False , __lowercase : Any=False , __lowercase : Optional[int]=2_56 , __lowercase : List[str]=0 , __lowercase : Any=1 , __lowercase : List[Any]=2 , **__lowercase : Any , ): """simple docstring""" super().__init__(**__lowercase , pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase ) snake_case_ = hidden_size snake_case_ = feat_extract_norm snake_case_ = feat_extract_activation snake_case_ = list(__lowercase ) snake_case_ = list(__lowercase ) snake_case_ = list(__lowercase ) snake_case_ = conv_bias snake_case_ = num_conv_pos_embeddings snake_case_ = num_conv_pos_embedding_groups snake_case_ = len(self.conv_dim ) snake_case_ = num_hidden_layers snake_case_ = intermediate_size snake_case_ = squeeze_factor snake_case_ = hidden_act snake_case_ = num_attention_heads snake_case_ = hidden_dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = feat_proj_dropout snake_case_ = final_dropout snake_case_ = layerdrop snake_case_ = layer_norm_eps snake_case_ = initializer_range snake_case_ = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," f"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)" f"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case_ = apply_spec_augment snake_case_ = mask_time_prob snake_case_ = mask_time_length snake_case_ = mask_time_min_masks snake_case_ = mask_feature_prob snake_case_ = mask_feature_length snake_case_ = mask_feature_min_masks # ctc loss snake_case_ = ctc_loss_reduction snake_case_ = ctc_zero_infinity # sequence classification snake_case_ = use_weighted_layer_sum snake_case_ = classifier_proj_size @property def snake_case__ ( self : List[Any] ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
376
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowerCamelCase__ ( _A , _A ): '''simple docstring''' snake_case_ = old_name if "patch_embed" in old_name: snake_case_ , snake_case_ , snake_case_ = old_name.split("." ) if layer == "0": snake_case_ = old_name.replace("0" , "convolution1" ) elif layer == "1": snake_case_ = old_name.replace("1" , "batchnorm_before" ) elif layer == "3": snake_case_ = old_name.replace("3" , "convolution2" ) else: snake_case_ = old_name.replace("4" , "batchnorm_after" ) if "network" in old_name and re.search(R"\d\.\d" , _A ): snake_case_ = R"\b\d{2}\b" if bool(re.search(_A , _A ) ): snake_case_ = re.search(R"\d\.\d\d." , _A ).group() else: snake_case_ = re.search(R"\d\.\d." , _A ).group() if int(match[0] ) < 6: snake_case_ = old_name.replace(_A , "" ) snake_case_ = trimmed_name.replace("network" , match[0] + ".meta4D_layers.blocks." + match[2:-1] ) snake_case_ = "intermediate_stages." + trimmed_name else: snake_case_ = old_name.replace(_A , "" ) if int(match[2] ) < num_meta4D_last_stage: snake_case_ = trimmed_name.replace("network" , "meta4D_layers.blocks." + match[2] ) else: snake_case_ = str(int(match[2] ) - num_meta4D_last_stage ) snake_case_ = trimmed_name.replace("network" , "meta3D_layers.blocks." + layer_index ) if "norm1" in old_name: snake_case_ = trimmed_name.replace("norm1" , "layernorm1" ) elif "norm2" in old_name: snake_case_ = trimmed_name.replace("norm2" , "layernorm2" ) elif "fc1" in old_name: snake_case_ = trimmed_name.replace("fc1" , "linear_in" ) elif "fc2" in old_name: snake_case_ = trimmed_name.replace("fc2" , "linear_out" ) snake_case_ = "last_stage." + trimmed_name elif "network" in old_name and re.search(R".\d." , _A ): snake_case_ = old_name.replace("network" , "intermediate_stages" ) if "fc" in new_name: snake_case_ = new_name.replace("fc" , "convolution" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): snake_case_ = new_name.replace("norm1" , "batchnorm_before" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): snake_case_ = new_name.replace("norm2" , "batchnorm_after" ) if "proj" in new_name: snake_case_ = new_name.replace("proj" , "projection" ) if "dist_head" in new_name: snake_case_ = new_name.replace("dist_head" , "distillation_classifier" ) elif "head" in new_name: snake_case_ = new_name.replace("head" , "classifier" ) elif "patch_embed" in new_name: snake_case_ = "efficientformer." + new_name elif new_name == "norm.weight" or new_name == "norm.bias": snake_case_ = new_name.replace("norm" , "layernorm" ) snake_case_ = "efficientformer." + new_name else: snake_case_ = "efficientformer.encoder." + new_name return new_name def lowerCamelCase__ ( _A , _A ): '''simple docstring''' for key in checkpoint.copy().keys(): snake_case_ = checkpoint.pop(_A ) snake_case_ = val return checkpoint def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case_ = Image.open(requests.get(_A , stream=_A ).raw ) return image def lowerCamelCase__ ( _A , _A , _A , _A ): '''simple docstring''' snake_case_ = torch.load(_A , map_location="cpu" )["model"] snake_case_ = EfficientFormerConfig.from_json_file(_A ) snake_case_ = EfficientFormerForImageClassificationWithTeacher(_A ) snake_case_ = "_".join(checkpoint_path.split("/" )[-1].split("." )[0].split("_" )[:-1] ) snake_case_ = config.depths[-1] - config.num_metaad_blocks + 1 snake_case_ = convert_torch_checkpoint(_A , _A ) model.load_state_dict(_A ) model.eval() snake_case_ = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } # prepare image snake_case_ = prepare_img() snake_case_ = 256 snake_case_ = 224 snake_case_ = EfficientFormerImageProcessor( size={"shortest_edge": image_size} , crop_size={"height": crop_size, "width": crop_size} , resample=pillow_resamplings["bicubic"] , ) snake_case_ = processor(images=_A , return_tensors="pt" ).pixel_values # original processing pipeline snake_case_ = Compose( [ Resize(_A , interpolation=pillow_resamplings["bicubic"] ), CenterCrop(_A ), ToTensor(), Normalize(_A , _A ), ] ) snake_case_ = image_transforms(_A ).unsqueeze(0 ) assert torch.allclose(_A , _A ) snake_case_ = model(_A ) snake_case_ = outputs.logits snake_case_ = (1, 1000) if "l1" in model_name: snake_case_ = torch.Tensor( [-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28] ) assert torch.allclose(logits[0, :10] , _A , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: snake_case_ = torch.Tensor( [-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27] ) assert torch.allclose(logits[0, :10] , _A , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: snake_case_ = torch.Tensor( [-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78] ) assert logits.shape == expected_shape else: raise ValueError( f"Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7" ) # Save Checkpoints Path(_A ).mkdir(exist_ok=_A ) model.save_pretrained(_A ) print(f"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}" ) processor.save_pretrained(_A ) print(f"Processor successfuly saved at {pytorch_dump_path}" ) if push_to_hub: print("Pushing model to the hub..." ) model.push_to_hub( repo_id=f"Bearnardd/{pytorch_dump_path}" , commit_message="Add model" , use_temp_dir=_A , ) processor.push_to_hub( repo_id=f"Bearnardd/{pytorch_dump_path}" , commit_message="Add image processor" , use_temp_dir=_A , ) if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) lowercase__ : Optional[Any] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
376
1
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def UpperCAmelCase_( a__ ): """simple docstring""" if not is_accelerate_available(): return method SCREAMING_SNAKE_CASE : str = version.parse(accelerate.__version__ ).base_version if version.parse(lowercase_ ) < version.parse('''0.17.0''' ): return method def wrapper(self , *a__ , **a__ ): if hasattr(self , '''_hf_hook''' ) and hasattr(self._hf_hook , '''pre_forward''' ): self._hf_hook.pre_forward(self ) return method(self , *lowercase_ , **lowercase_ ) return wrapper
707
def UpperCAmelCase_( a__ ): """simple docstring""" if collection == []: return [] # get some information about the collection SCREAMING_SNAKE_CASE : List[Any] = len(a__ ) SCREAMING_SNAKE_CASE : int = max(a__ ) SCREAMING_SNAKE_CASE : Optional[int] = min(a__ ) # create the counting array SCREAMING_SNAKE_CASE : str = coll_max + 1 - coll_min SCREAMING_SNAKE_CASE : Any = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , a__ ): SCREAMING_SNAKE_CASE : Tuple = counting_arr[i] + counting_arr[i - 1] # create the output collection SCREAMING_SNAKE_CASE : int = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , a__ ) ): SCREAMING_SNAKE_CASE : Dict = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def UpperCAmelCase_( a__ ): """simple docstring""" return "".join([chr(a__ ) for i in counting_sort([ord(a__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('''thisisthestring''') == "eghhiiinrsssttt" a__ : Optional[int] = input('''Enter numbers separated by a comma:\n''').strip() a__ : str = [int(item) for item in user_input.split(''',''')] print(counting_sort(unsorted))
333
0
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer a_ = 'bart' a_ = True @st.cache(allow_output_mutation=UpperCamelCase__ ) def _a ( ) -> str: """simple docstring""" if LOAD_DENSE_INDEX: lowerCAmelCase__ = AutoTokenizer.from_pretrained("yjernite/retribert-base-uncased" ) lowerCAmelCase__ = AutoModel.from_pretrained("yjernite/retribert-base-uncased" ).to("cuda:0" ) lowerCAmelCase__ = qar_model.eval() else: lowerCAmelCase__ = (None, None) if MODEL_TYPE == "bart": lowerCAmelCase__ = AutoTokenizer.from_pretrained("yjernite/bart_eli5" ) lowerCAmelCase__ = AutoModelForSeqaSeqLM.from_pretrained("yjernite/bart_eli5" ).to("cuda:0" ) lowerCAmelCase__ = torch.load("seq2seq_models/eli5_bart_model_blm_2.pth" ) sas_model.load_state_dict(save_dict["model"] ) lowerCAmelCase__ = sas_model.eval() else: lowerCAmelCase__ = make_qa_sas_model( model_name="t5-small" , from_file="seq2seq_models/eli5_t5_model_1024_4.pth" , device="cuda:0" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=UpperCamelCase__ ) def _a ( ) -> Tuple: """simple docstring""" if LOAD_DENSE_INDEX: lowerCAmelCase__ = faiss.StandardGpuResources() lowerCAmelCase__ = datasets.load_dataset(path="wiki_snippets" , name="wiki40b_en_100_0" )['''train'''] lowerCAmelCase__ = np.memmap( "wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat" , dtype="float32" , mode="r" , shape=(wikiaab_passages.num_rows, 128) , ) lowerCAmelCase__ = faiss.IndexFlatIP(128 ) lowerCAmelCase__ = faiss.index_cpu_to_gpu(UpperCamelCase__ , 1 , UpperCamelCase__ ) wikiaab_gpu_index_flat.add(UpperCamelCase__ ) # TODO fix for larger GPU else: lowerCAmelCase__ = (None, None) lowerCAmelCase__ = Elasticsearch([{"host": "localhost", "port": "9200"}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=UpperCamelCase__ ) def _a ( ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = datasets.load_dataset("eli5" , name="LFQA_reddit" ) lowerCAmelCase__ = elia['''train_eli5'''] lowerCAmelCase__ = np.memmap( "eli5_questions_reps.dat" , dtype="float32" , mode="r" , shape=(elia_train.num_rows, 128) ) lowerCAmelCase__ = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(UpperCamelCase__ ) return (elia_train, eli5_train_q_index) a_ = load_indexes() a_ = load_models() a_ = load_train_data() def _a ( UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple=10 ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = embed_questions_for_retrieval([question] , UpperCamelCase__ , UpperCamelCase__ ) lowerCAmelCase__ = eli5_train_q_index.search(UpperCamelCase__ , UpperCamelCase__ ) lowerCAmelCase__ = [elia_train[int(UpperCamelCase__ )] for i in I[0]] return nn_examples def _a ( UpperCamelCase_ : int , UpperCamelCase_ : Dict="wiki40b" , UpperCamelCase_ : Union[str, Any]="dense" , UpperCamelCase_ : Tuple=10 ) -> List[Any]: """simple docstring""" if source == "none": lowerCAmelCase__ = (''' <P> '''.join(["" for _ in range(11 )] ).strip(), []) else: if method == "dense": lowerCAmelCase__ = query_qa_dense_index( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: lowerCAmelCase__ = query_es_index( UpperCamelCase__ , UpperCamelCase__ , index_name="english_wiki40b_snippets_100w" , n_results=UpperCamelCase__ , ) lowerCAmelCase__ = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] lowerCAmelCase__ = '''question: {} context: {}'''.format(UpperCamelCase__ , UpperCamelCase__ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda UpperCamelCase_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda UpperCamelCase_ : None), } ) def _a ( UpperCamelCase_ : Tuple , UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Dict=64 , UpperCamelCase_ : Union[str, Any]=256 , UpperCamelCase_ : List[Any]=False , UpperCamelCase_ : Union[str, Any]=2 , UpperCamelCase_ : Tuple=0.95 , UpperCamelCase_ : List[str]=0.8 ) -> Optional[int]: """simple docstring""" with torch.no_grad(): lowerCAmelCase__ = qa_sas_generate( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , num_answers=1 , num_beams=UpperCamelCase__ , min_len=UpperCamelCase__ , max_len=UpperCamelCase__ , do_sample=UpperCamelCase__ , temp=UpperCamelCase__ , top_p=UpperCamelCase__ , top_k=UpperCamelCase__ , max_input_length=1_024 , device="cuda:0" , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar a_ = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' a_ = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia a_ = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) a_ = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] a_ = st.sidebar.checkbox('''Demo options''') if demo_options: a_ = st.sidebar.selectbox( '''''', action_list, index=3, ) a_ = action_list.index(action_st) a_ = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) a_ = show_type == 'Show full text of passages' else: a_ = 3 a_ = True a_ = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: a_ = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) a_ = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) a_ = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: a_ = 'wiki40b' a_ = 'dense' a_ = 'beam' a_ = 2 a_ = 64 a_ = 256 a_ = None a_ = None a_ = st.sidebar.checkbox('''Generation options''') if generate_options: a_ = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) a_ = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) a_ = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) a_ = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": a_ = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: a_ = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) a_ = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) a_ = None # start main text a_ = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] a_ = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": a_ = st.text_input('''Enter your question here:''', '''''') else: a_ = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": a_ = make_support(question, source=wiki_source, method='''dense''', n_results=10) a_ = make_support(question, source=wiki_source, method='''sparse''', n_results=10) a_ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] a_ = support_list[:10] a_ = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: a_ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: a_ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): a_ = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(''' ''', '''_''')) a_ = res[1].strip() if sec_titles == "": a_ = '[{}]({})'.format(res[0], wiki_url) else: a_ = sec_titles.split(''' & ''') a_ = ' & '.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: a_ = find_nearest_training(question) a_ = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) a_ = [ '{}. {}'.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) a_ = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
339
"""simple docstring""" import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowerCamelCase_ (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str=False ): try: _UpperCAmelCase : Tuple = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _UpperCAmelCase : str = default else: # KEY is set, convert it to True or False. try: _UpperCAmelCase : List[str] = strtobool(UpperCamelCase__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'If set, {key} must be yes or no.' ) return _value _lowerCAmelCase :Optional[Any] = parse_flag_from_env('RUN_SLOW', default=False) def lowerCamelCase_ (UpperCamelCase__ : int ): return unittest.skip('''Test was skipped''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Dict ): return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Optional[Any] ): return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] ): return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : int ): return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : List[Any] ): return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : List[str] ): return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Tuple ): return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Optional[Any] ): return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] ): return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : List[Any] ): return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Optional[Any] ): return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] ): return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : List[Any] ): return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Dict ): return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Optional[int] ): return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : str=None , UpperCamelCase__ : str=None ): if test_case is None: return partial(UpperCamelCase__ , version=UpperCamelCase__ ) return unittest.skipUnless(is_torch_version('''>=''' , UpperCamelCase__ ) , F'test requires torch version >= {version}' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : List[str] ): return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Any ): return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] ): return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(UpperCamelCase__ ) _lowerCAmelCase :Union[str, Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowerCamelCase_ (UpperCamelCase__ : str ): return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(UpperCamelCase__ ) class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' a__ =True @classmethod def __lowerCAmelCase ( cls ) -> Union[str, Any]: _UpperCAmelCase : Tuple = tempfile.mkdtemp() @classmethod def __lowerCAmelCase ( cls ) -> List[Any]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __lowerCAmelCase ( self ) -> Dict: if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(A ) class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self ) -> Union[str, Any]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self , A ) -> List[Any]: _UpperCAmelCase : Any = mocks if isinstance(A , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowerCamelCase_ (UpperCamelCase__ : Optional[int] ): _UpperCAmelCase : Union[str, Any] = AcceleratorState() _UpperCAmelCase : Union[str, Any] = tensor[None].clone().to(state.device ) _UpperCAmelCase : List[str] = gather(UpperCamelCase__ ).cpu() _UpperCAmelCase : List[Any] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , UpperCamelCase__ ): return False return True class _UpperCAmelCase : '''simple docstring''' def __init__( self , A , A , A ) -> Optional[int]: _UpperCAmelCase : List[Any] = returncode _UpperCAmelCase : Any = stdout _UpperCAmelCase : Tuple = stderr async def lowerCamelCase_ (UpperCamelCase__ : Dict , UpperCamelCase__ : int ): while True: _UpperCAmelCase : Tuple = await stream.readline() if line: callback(UpperCamelCase__ ) else: break async def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : str=False ): if echo: print('''\nRunning: ''' , ''' '''.join(UpperCamelCase__ ) ) _UpperCAmelCase : Dict = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=UpperCamelCase__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=UpperCamelCase__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : Optional[int] = [] def tee(UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Dict="" ): _UpperCAmelCase : int = line.decode('''utf-8''' ).rstrip() sink.append(UpperCamelCase__ ) if not quiet: print(UpperCamelCase__ , UpperCamelCase__ , file=UpperCamelCase__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda UpperCamelCase__ : tee(UpperCamelCase__ , UpperCamelCase__ , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda UpperCamelCase__ : tee(UpperCamelCase__ , UpperCamelCase__ , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=UpperCamelCase__ , ) return _RunOutput(await p.wait() , UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : int=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Union[str, Any]=180 , UpperCamelCase__ : int=False , UpperCamelCase__ : Optional[Any]=True ): _UpperCAmelCase : Optional[int] = asyncio.get_event_loop() _UpperCAmelCase : Union[str, Any] = loop.run_until_complete( _stream_subprocess(UpperCamelCase__ , env=UpperCamelCase__ , stdin=UpperCamelCase__ , timeout=UpperCamelCase__ , quiet=UpperCamelCase__ , echo=UpperCamelCase__ ) ) _UpperCAmelCase : Tuple = ''' '''.join(UpperCamelCase__ ) if result.returncode > 0: _UpperCAmelCase : Any = '''\n'''.join(result.stderr ) raise RuntimeError( F'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' F'The combined stderr from workers follows:\n{stderr}' ) return result class _UpperCAmelCase ( a ): '''simple docstring''' pass def lowerCamelCase_ (UpperCamelCase__ : List[str] , UpperCamelCase__ : str=False ): try: _UpperCAmelCase : Union[str, Any] = subprocess.check_output(UpperCamelCase__ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(UpperCamelCase__ , '''decode''' ): _UpperCAmelCase : List[Any] = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F'Command `{" ".join(UpperCamelCase__ )}` failed with the following error:\n\n{e.output.decode()}' ) from e
506
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __snake_case :Any =16 __snake_case :Tuple =32 def lowerCamelCase_ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int = 16 , lowerCAmelCase__ : Optional[Any] = "bert-base-cased" ) -> int: '''simple docstring''' A = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) A = load_dataset('glue' , 'mrpc' ) def tokenize_function(lowerCAmelCase__ : Tuple ): # max_length=None => use the model max length (it's actually the default) A = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=lowerCAmelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowerCAmelCase__ : Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(lowerCAmelCase__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. A = DataLoader( tokenized_datasets['train'] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) A = DataLoader( tokenized_datasets['validation'] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader def lowerCamelCase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple ) -> Optional[Any]: '''simple docstring''' model.eval() A = 0 for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A = model(**lowerCAmelCase__ ) A = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times A , A = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCAmelCase__ ) - 1: A = predictions[: len(eval_dataloader.dataset ) - samples_seen] A = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) A = metric.compute() return eval_metric["accuracy"] def lowerCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] ) -> List[Any]: '''simple docstring''' A = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A = config['lr'] A = int(config['num_epochs'] ) A = int(config['seed'] ) A = int(config['batch_size'] ) A = args.model_name_or_path set_seed(lowerCAmelCase__ ) A , A = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) # Instantiate optimizer A = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) A = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase__ ) if accelerator.state.deepspeed_plugin is not None: A = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: A = 1 A = (len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): A = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=0 , num_training_steps=lowerCAmelCase__ , ) else: A = DummyScheduler(lowerCAmelCase__ , total_num_steps=lowerCAmelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A , A , A , A , A = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # We need to keep track of how many total steps we have iterated over A = 0 # We also need to keep track of the stating epoch so files are named properly A = 0 A = evaluate.load('glue' , 'mrpc' ) A = num_epochs if args.partial_train_epoch is not None: A = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) A = args.resume_from_checkpoint.split('epoch_' )[1] A = '' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break A = int(lowerCAmelCase__ ) + 1 A = evaluation_loop(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) accelerator.print('resumed checkpoint performance:' , lowerCAmelCase__ ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:' , lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:' , optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir , F'''state_{starting_epoch-1}.json''' ) , 'r' ) as f: A = json.load(lowerCAmelCase__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model A = {} for epoch in range(lowerCAmelCase__ , lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): A = model(**lowerCAmelCase__ ) A = outputs.loss A = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 A = F'''epoch_{epoch}''' A = os.path.join(args.output_dir , lowerCAmelCase__ ) accelerator.save_state(lowerCAmelCase__ ) A = evaluation_loop(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) A = accuracy A = lr_scheduler.get_lr()[0] A = optimizer.param_groups[0]['lr'] A = epoch A = overall_step accelerator.print(F'''epoch {epoch}:''' , lowerCAmelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'''state_{epoch}.json''' ) , 'w' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def lowerCamelCase_ ( ) -> Dict: '''simple docstring''' A = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=lowerCAmelCase__ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=lowerCAmelCase__ , ) parser.add_argument( '--output_dir' , type=lowerCAmelCase__ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--partial_train_epoch' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='If passed, the training will stop after this number of epochs.' , ) parser.add_argument( '--num_epochs' , type=lowerCAmelCase__ , default=2 , help='Number of train epochs.' , ) A = parser.parse_args() A = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
709
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase__ : def __init__( self : Any , __UpperCamelCase : str , __UpperCamelCase : Any=13 , __UpperCamelCase : Optional[Any]=7 , __UpperCamelCase : List[str]=True , __UpperCamelCase : Any=True , __UpperCamelCase : List[str]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : int=99 , __UpperCamelCase : Any=32 , __UpperCamelCase : int=2 , __UpperCamelCase : Tuple=4 , __UpperCamelCase : Any=37 , __UpperCamelCase : List[Any]="gelu" , __UpperCamelCase : Union[str, Any]=0.1 , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : Any=512 , __UpperCamelCase : Tuple=16 , __UpperCamelCase : int=2 , __UpperCamelCase : Union[str, Any]=0.0_2 , __UpperCamelCase : Optional[Any]=3 , __UpperCamelCase : Any=4 , __UpperCamelCase : List[str]=None , ) -> Union[str, Any]: A = parent A = 13 A = 7 A = True A = True A = True A = True A = 99 A = 384 A = 2 A = 4 A = 37 A = 'gelu' A = 0.1 A = 0.1 A = 512 A = 16 A = 2 A = 0.0_2 A = 3 A = 4 A = 128 A = 2 A = 9 A = 1 A = None def __UpperCamelCase ( self : Optional[int] ) -> Dict: A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A = ids_tensor([self.batch_size] , self.num_choices ) A = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__UpperCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] ) -> Union[str, Any]: A = TFConvBertModel(config=__UpperCamelCase ) A = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} A = [input_ids, input_mask] A = model(__UpperCamelCase ) A = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] ) -> str: A = TFConvBertForMaskedLM(config=__UpperCamelCase ) A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } A = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Dict , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : Tuple , __UpperCamelCase : str , __UpperCamelCase : List[str] ) -> Tuple: A = self.num_labels A = TFConvBertForSequenceClassification(config=__UpperCamelCase ) A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } A = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] ) -> Tuple: A = self.num_choices A = TFConvBertForMultipleChoice(config=__UpperCamelCase ) A = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) A = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) A = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) A = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } A = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) -> Any: A = self.num_labels A = TFConvBertForTokenClassification(config=__UpperCamelCase ) A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } A = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] ) -> str: A = TFConvBertForQuestionAnswering(config=__UpperCamelCase ) A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } A = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Any ) -> List[str]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): A_ : Tuple = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A_ : int = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A_ : Optional[int] = False A_ : Any = False A_ : str = False def __UpperCamelCase ( self : int ) -> Any: A = TFConvBertModelTester(self ) A = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def __UpperCamelCase ( self : Optional[int] ) -> Any: self.config_tester.run_common_tests() def __UpperCamelCase ( self : Dict ) -> str: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def __UpperCamelCase ( self : Tuple ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCamelCase ) def __UpperCamelCase ( self : Union[str, Any] ) -> int: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCamelCase ) def __UpperCamelCase ( self : str ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCamelCase ) def __UpperCamelCase ( self : Optional[Any] ) -> int: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: A , A = self.model_tester.prepare_config_and_inputs_for_common() A = True A = True if hasattr(__UpperCamelCase , 'use_cache' ): A = True A = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) A = getattr(self.model_tester , 'key_length' , __UpperCamelCase ) for model_class in self.all_model_classes: A = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) A = model_class(__UpperCamelCase ) A = len(model(__UpperCamelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCamelCase , saved_model=__UpperCamelCase ) A = os.path.join(__UpperCamelCase , 'saved_model' , '1' ) A = tf.keras.models.load_model(__UpperCamelCase ) A = model(__UpperCamelCase ) if self.is_encoder_decoder: A = outputs['encoder_hidden_states'] A = outputs['encoder_attentions'] else: A = outputs['hidden_states'] A = outputs['attentions'] self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) A = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __UpperCamelCase ( self : str ) -> str: A = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(__UpperCamelCase ) def __UpperCamelCase ( self : List[Any] ) -> Dict: A , A = self.model_tester.prepare_config_and_inputs_for_common() A = True A = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) A = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) A = getattr(self.model_tester , 'key_length' , __UpperCamelCase ) A = getattr(self.model_tester , 'key_length' , __UpperCamelCase ) def check_decoder_attentions_output(__UpperCamelCase : List[Any] ): A = len(__UpperCamelCase ) self.assertEqual(out_len % 2 , 0 ) A = outputs.decoder_attentions self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__UpperCamelCase : Dict ): A = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: A = True A = False A = model_class(__UpperCamelCase ) A = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) A = len(__UpperCamelCase ) self.assertEqual(config.output_hidden_states , __UpperCamelCase ) check_encoder_attentions_output(__UpperCamelCase ) if self.is_encoder_decoder: A = model_class(__UpperCamelCase ) A = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(config.output_hidden_states , __UpperCamelCase ) check_decoder_attentions_output(__UpperCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] A = True A = model_class(__UpperCamelCase ) A = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(config.output_hidden_states , __UpperCamelCase ) check_encoder_attentions_output(__UpperCamelCase ) # Check attention is always last and order is fine A = True A = True A = model_class(__UpperCamelCase ) A = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__UpperCamelCase ) ) self.assertEqual(model.config.output_hidden_states , __UpperCamelCase ) check_encoder_attentions_output(__UpperCamelCase ) @require_tf class lowerCAmelCase__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: A = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) A = tf.constant([[0, 1, 2, 3, 4, 5]] ) A = model(__UpperCamelCase )[0] A = [1, 6, 768] self.assertEqual(output.shape , __UpperCamelCase ) A = tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 )
224
0
from ..utils import DummyObject, requires_backends class a_ ( metaclass=a ): A__ : Any = ['transformers', 'torch', 'note_seq'] def __init__( self : Union[str, Any] , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Optional[Any] ): """simple docstring""" requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def lowerCAmelCase( cls : Tuple , *UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : Dict ): """simple docstring""" requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def lowerCAmelCase( cls : Dict , *UpperCAmelCase__ : str , **UpperCAmelCase__ : Any ): """simple docstring""" requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
598
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=a ) class a_ ( a ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization A__ : str = field(default='question-answering-extractive' , metadata={'include_in_asdict_even_if_is_default': True} ) A__ : ClassVar[Features] = Features({'question': Value('string' ), 'context': Value('string' )} ) A__ : ClassVar[Features] = Features( { 'answers': Sequence( { 'text': Value('string' ), 'answer_start': Value('int32' ), } ) } ) A__ : str = "question" A__ : str = "context" A__ : str = "answers" @property def lowerCAmelCase( self : Optional[int] ): """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
598
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCamelCase : List[Any] = { """configuration_mvp""": ["""MVP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MvpConfig""", """MvpOnnxConfig"""], """tokenization_mvp""": ["""MvpTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = ["""MvpTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : str = [ """MVP_PRETRAINED_MODEL_ARCHIVE_LIST""", """MvpForCausalLM""", """MvpForConditionalGeneration""", """MvpForQuestionAnswering""", """MvpForSequenceClassification""", """MvpModel""", """MvpPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys _lowerCamelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
700
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures _lowerCamelCase : Dict = logging.get_logger(__name__) @dataclass class lowercase : '''simple docstring''' UpperCAmelCase : str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys())}) UpperCAmelCase : str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'}) UpperCAmelCase : int = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) UpperCAmelCase : bool = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Overwrite the cached training and evaluation sets'}) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.task_name.lower() class lowercase ( SCREAMING_SNAKE_CASE_): '''simple docstring''' UpperCAmelCase : List[Any] = 'train' UpperCAmelCase : Optional[Any] = 'dev' UpperCAmelCase : Optional[int] = 'test' class lowercase ( SCREAMING_SNAKE_CASE_): '''simple docstring''' UpperCAmelCase : GlueDataTrainingArguments UpperCAmelCase : str UpperCAmelCase : List[InputFeatures] def __init__( self : Union[str, Any] , snake_case : GlueDataTrainingArguments , snake_case : PreTrainedTokenizerBase , snake_case : Optional[int] = None , snake_case : Union[str, Split] = Split.train , snake_case : Optional[str] = None , ): '''simple docstring''' warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , snake_case , ) SCREAMING_SNAKE_CASE : Tuple = args SCREAMING_SNAKE_CASE : int = glue_processors[args.task_name]() SCREAMING_SNAKE_CASE : str = glue_output_modes[args.task_name] if isinstance(snake_case , snake_case ): try: SCREAMING_SNAKE_CASE : Any = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) # Load data features from cache or dataset file SCREAMING_SNAKE_CASE : Optional[int] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , ) SCREAMING_SNAKE_CASE : Any = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = label_list[2], label_list[1] SCREAMING_SNAKE_CASE : List[Any] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE : Union[str, Any] = cached_features_file + '.lock' with FileLock(snake_case ): if os.path.exists(snake_case ) and not args.overwrite_cache: SCREAMING_SNAKE_CASE : Optional[int] = time.time() SCREAMING_SNAKE_CASE : int = torch.load(snake_case ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) else: logger.info(f'''Creating features from dataset file at {args.data_dir}''' ) if mode == Split.dev: SCREAMING_SNAKE_CASE : str = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: SCREAMING_SNAKE_CASE : Dict = self.processor.get_test_examples(args.data_dir ) else: SCREAMING_SNAKE_CASE : str = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = examples[:limit_length] SCREAMING_SNAKE_CASE : Optional[Any] = glue_convert_examples_to_features( snake_case , snake_case , max_length=args.max_seq_length , label_list=snake_case , output_mode=self.output_mode , ) SCREAMING_SNAKE_CASE : Tuple = time.time() torch.save(self.features , snake_case ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self : int ): '''simple docstring''' return len(self.features ) def __getitem__( self : Dict , snake_case : Optional[int] ): '''simple docstring''' return self.features[i] def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return self.label_list
308
0
'''simple docstring''' import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase_ ( __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = AudioLDMPipeline UpperCamelCase_ = TEXT_TO_AUDIO_PARAMS UpperCamelCase_ = TEXT_TO_AUDIO_BATCH_PARAMS UpperCamelCase_ = frozenset( [ '''num_inference_steps''', '''num_waveforms_per_prompt''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def A__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) lowercase : str =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=(32, 64) , class_embed_type='''simple_projection''' , projection_class_embeddings_input_dim=32 , class_embeddings_concat=UpperCAmelCase , ) lowercase : Dict =DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=UpperCAmelCase , set_alpha_to_one=UpperCAmelCase , ) torch.manual_seed(0 ) lowercase : str =AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase : Optional[int] =ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) lowercase : Dict =ClapTextModelWithProjection(UpperCAmelCase ) lowercase : List[str] =RobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-roberta''' , model_max_length=77 ) lowercase : Any =SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=UpperCAmelCase , ) lowercase : Dict =SpeechTaHifiGan(UpperCAmelCase ) lowercase : int ={ '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''vocoder''': vocoder, } return components def A__ ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any]=0 ) -> Union[str, Any]: '''simple docstring''' if str(UpperCAmelCase ).startswith('''mps''' ): lowercase : int =torch.manual_seed(UpperCAmelCase ) else: lowercase : Tuple =torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowercase : Optional[Any] ={ '''prompt''': '''A hammer hitting a wooden surface''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, } return inputs def A__ ( self : str ) -> Dict: '''simple docstring''' lowercase : str ='''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase : Any =self.get_dummy_components() lowercase : str =AudioLDMPipeline(**UpperCAmelCase ) lowercase : Tuple =audioldm_pipe.to(UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase : List[str] =self.get_dummy_inputs(UpperCAmelCase ) lowercase : int =audioldm_pipe(**UpperCAmelCase ) lowercase : Dict =output.audios[0] assert audio.ndim == 1 assert len(UpperCAmelCase ) == 256 lowercase : int =audio[:10] lowercase : Union[str, Any] =np.array( [-0.0_0_5_0, 0.0_0_5_0, -0.0_0_6_0, 0.0_0_3_3, -0.0_0_2_6, 0.0_0_3_3, -0.0_0_2_7, 0.0_0_3_3, -0.0_0_2_8, 0.0_0_3_3] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Dict =self.get_dummy_components() lowercase : List[str] =AudioLDMPipeline(**UpperCAmelCase ) lowercase : Optional[int] =audioldm_pipe.to(UpperCAmelCase ) lowercase : Any =audioldm_pipe.to(UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase : Union[str, Any] =self.get_dummy_inputs(UpperCAmelCase ) lowercase : Optional[Any] =3 * [inputs['''prompt''']] # forward lowercase : Optional[int] =audioldm_pipe(**UpperCAmelCase ) lowercase : Dict =output.audios[0] lowercase : str =self.get_dummy_inputs(UpperCAmelCase ) lowercase : int =3 * [inputs.pop('''prompt''' )] lowercase : List[Any] =audioldm_pipe.tokenizer( UpperCAmelCase , padding='''max_length''' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=UpperCAmelCase , return_tensors='''pt''' , ) lowercase : int =text_inputs['''input_ids'''].to(UpperCAmelCase ) lowercase : Optional[int] =audioldm_pipe.text_encoder( UpperCAmelCase , ) lowercase : Any =prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state lowercase : int =F.normalize(UpperCAmelCase , dim=-1 ) lowercase : Union[str, Any] =prompt_embeds # forward lowercase : int =audioldm_pipe(**UpperCAmelCase ) lowercase : Optional[Any] =output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def A__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' lowercase : List[Any] =self.get_dummy_components() lowercase : Any =AudioLDMPipeline(**UpperCAmelCase ) lowercase : str =audioldm_pipe.to(UpperCAmelCase ) lowercase : List[str] =audioldm_pipe.to(UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase : int =self.get_dummy_inputs(UpperCAmelCase ) lowercase : List[str] =3 * ['''this is a negative prompt'''] lowercase : List[str] =negative_prompt lowercase : List[Any] =3 * [inputs['''prompt''']] # forward lowercase : List[Any] =audioldm_pipe(**UpperCAmelCase ) lowercase : Optional[int] =output.audios[0] lowercase : str =self.get_dummy_inputs(UpperCAmelCase ) lowercase : List[Any] =3 * [inputs.pop('''prompt''' )] lowercase : str =[] for p in [prompt, negative_prompt]: lowercase : Tuple =audioldm_pipe.tokenizer( UpperCAmelCase , padding='''max_length''' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=UpperCAmelCase , return_tensors='''pt''' , ) lowercase : Optional[int] =text_inputs['''input_ids'''].to(UpperCAmelCase ) lowercase : List[str] =audioldm_pipe.text_encoder( UpperCAmelCase , ) lowercase : Tuple =text_embeds.text_embeds # additional L_2 normalization over each hidden-state lowercase : Dict =F.normalize(UpperCAmelCase , dim=-1 ) embeds.append(UpperCAmelCase ) lowercase , lowercase : Optional[Any] =embeds # forward lowercase : List[Any] =audioldm_pipe(**UpperCAmelCase ) lowercase : Optional[int] =output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def A__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' lowercase : Union[str, Any] ='''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase : Dict =self.get_dummy_components() lowercase : Optional[int] =PNDMScheduler(skip_prk_steps=UpperCAmelCase ) lowercase : Tuple =AudioLDMPipeline(**UpperCAmelCase ) lowercase : List[str] =audioldm_pipe.to(UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase : Any =self.get_dummy_inputs(UpperCAmelCase ) lowercase : Union[str, Any] ='''egg cracking''' lowercase : Tuple =audioldm_pipe(**UpperCAmelCase , negative_prompt=UpperCAmelCase ) lowercase : Tuple =output.audios[0] assert audio.ndim == 1 assert len(UpperCAmelCase ) == 256 lowercase : Optional[int] =audio[:10] lowercase : Union[str, Any] =np.array( [-0.0_0_5_1, 0.0_0_5_0, -0.0_0_6_0, 0.0_0_3_4, -0.0_0_2_6, 0.0_0_3_3, -0.0_0_2_7, 0.0_0_3_3, -0.0_0_2_8, 0.0_0_3_2] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : List[str] ='''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase : Tuple =self.get_dummy_components() lowercase : Optional[int] =PNDMScheduler(skip_prk_steps=UpperCAmelCase ) lowercase : Optional[int] =AudioLDMPipeline(**UpperCAmelCase ) lowercase : List[Any] =audioldm_pipe.to(UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase : Dict ='''A hammer hitting a wooden surface''' # test num_waveforms_per_prompt=1 (default) lowercase : Optional[int] =audioldm_pipe(UpperCAmelCase , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts lowercase : List[Any] =2 lowercase : Union[str, Any] =audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt lowercase : Dict =2 lowercase : Optional[int] =audioldm_pipe(UpperCAmelCase , num_inference_steps=2 , num_waveforms_per_prompt=UpperCAmelCase ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts lowercase : Optional[int] =2 lowercase : Optional[int] =audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=UpperCAmelCase ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def A__ ( self : Tuple ) -> str: '''simple docstring''' lowercase : str ='''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase : Optional[Any] =self.get_dummy_components() lowercase : Dict =AudioLDMPipeline(**UpperCAmelCase ) lowercase : List[str] =audioldm_pipe.to(UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase : Dict =audioldm_pipe.vocoder.config.sampling_rate lowercase : Optional[Any] =self.get_dummy_inputs(UpperCAmelCase ) lowercase : Optional[int] =audioldm_pipe(audio_length_in_s=0.0_1_6 , **UpperCAmelCase ) lowercase : Union[str, Any] =output.audios[0] assert audio.ndim == 1 assert len(UpperCAmelCase ) / vocoder_sampling_rate == 0.0_1_6 lowercase : int =audioldm_pipe(audio_length_in_s=0.0_3_2 , **UpperCAmelCase ) lowercase : Any =output.audios[0] assert audio.ndim == 1 assert len(UpperCAmelCase ) / vocoder_sampling_rate == 0.0_3_2 def A__ ( self : str ) -> str: '''simple docstring''' lowercase : Any =self.get_dummy_components() lowercase : Union[str, Any] =AudioLDMPipeline(**UpperCAmelCase ) lowercase : List[str] =audioldm_pipe.to(UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase : Optional[Any] =['''hey'''] lowercase : Any =audioldm_pipe(UpperCAmelCase , num_inference_steps=1 ) lowercase : int =output.audios.shape assert audio_shape == (1, 256) lowercase : int =audioldm_pipe.vocoder.config config.model_in_dim *= 2 lowercase : str =SpeechTaHifiGan(UpperCAmelCase ).to(UpperCAmelCase ) lowercase : Any =audioldm_pipe(UpperCAmelCase , num_inference_steps=1 ) lowercase : int =output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def A__ ( self : List[Any] ) -> str: '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=UpperCAmelCase ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' self._test_inference_batch_single_identical(test_mean_pixel_difference=UpperCAmelCase ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def A__ ( self : List[str] ) -> List[Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCAmelCase ) @slow class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : Any ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any]="cpu" , UpperCAmelCase : Union[str, Any]=torch.floataa , UpperCAmelCase : List[str]=0 ) -> str: '''simple docstring''' lowercase : str =torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowercase : List[str] =np.random.RandomState(UpperCAmelCase ).standard_normal((1, 8, 128, 16) ) lowercase : Tuple =torch.from_numpy(UpperCAmelCase ).to(device=UpperCAmelCase , dtype=UpperCAmelCase ) lowercase : Any ={ '''prompt''': '''A hammer hitting a wooden surface''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 2.5, } return inputs def A__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Any =AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) lowercase : int =audioldm_pipe.to(UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase : Optional[int] =self.get_inputs(UpperCAmelCase ) lowercase : Tuple =25 lowercase : Optional[Any] =audioldm_pipe(**UpperCAmelCase ).audios[0] assert audio.ndim == 1 assert len(UpperCAmelCase ) == 8_1920 lowercase : List[Any] =audio[7_7230:7_7240] lowercase : str =np.array( [-0.4_8_8_4, -0.4_6_0_7, 0.0_0_2_3, 0.5_0_0_7, 0.5_8_9_6, 0.5_1_5_1, 0.3_8_1_3, -0.0_2_0_8, -0.3_6_8_7, -0.4_3_1_5] ) lowercase : List[str] =np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def A__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' lowercase : List[str] =AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) lowercase : Union[str, Any] =LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) lowercase : Optional[int] =audioldm_pipe.to(UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase : List[Any] =self.get_inputs(UpperCAmelCase ) lowercase : int =audioldm_pipe(**UpperCAmelCase ).audios[0] assert audio.ndim == 1 assert len(UpperCAmelCase ) == 8_1920 lowercase : List[str] =audio[2_7780:2_7790] lowercase : Any =np.array([-0.2_1_3_1, -0.0_8_7_3, -0.0_1_2_4, -0.0_1_8_9, 0.0_5_6_9, 0.1_3_7_3, 0.1_8_8_3, 0.2_8_8_6, 0.3_2_9_7, 0.2_2_1_2] ) lowercase : Optional[Any] =np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
94
"""simple docstring""" import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __lowercase : List[str] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case = 1_60_00): __snake_case = int(round(sample_rate * max_length)) if len(snake_case) <= sample_length: return wav __snake_case = randint(0, len(snake_case) - sample_length - 1) return wav[random_offset : random_offset + sample_length] @dataclass class _A : """simple docstring""" UpperCamelCase_ : Optional[str] = field(default=_UpperCAmelCase , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) UpperCamelCase_ : Optional[str] = field( default=_UpperCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase_ : Optional[str] = field( default=_UpperCAmelCase , metadata={'''help''': '''A file containing the training audio paths and labels.'''} ) UpperCamelCase_ : Optional[str] = field( default=_UpperCAmelCase , metadata={'''help''': '''A file containing the validation audio paths and labels.'''} ) UpperCamelCase_ : str = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) UpperCamelCase_ : str = field( default='''validation''' , metadata={ '''help''': ( '''The name of the training data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) UpperCamelCase_ : str = field( default='''audio''' , metadata={'''help''': '''The name of the dataset column containing the audio data. Defaults to \'audio\''''} , ) UpperCamelCase_ : str = field( default='''label''' , metadata={'''help''': '''The name of the dataset column containing the labels. Defaults to \'label\''''} ) UpperCamelCase_ : Optional[int] = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) UpperCamelCase_ : float = field( default=2_0 , metadata={'''help''': '''Audio clips will be randomly cut to this length during training if the value is set.'''} , ) @dataclass class _A : """simple docstring""" UpperCamelCase_ : str = field( default='''facebook/wav2vec2-base''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) UpperCamelCase_ : Optional[str] = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=_UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from the Hub'''} ) UpperCamelCase_ : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase_ : Optional[str] = field( default=_UpperCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) UpperCamelCase_ : bool = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the feature encoder layers of the model.'''} ) UpperCamelCase_ : bool = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to generate an attention mask in the feature extractor.'''} ) UpperCamelCase_ : bool = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) UpperCamelCase_ : Optional[bool] = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) UpperCamelCase_ : bool = field( default=_UpperCAmelCase , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def lowercase ( self : int ) -> Tuple: if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''will be removed in a future version. Use `--freeze_feature_encoder`''' '''instead. Setting `freeze_feature_encoder==True`.''' , A_ , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''should not be used in combination with `--freeze_feature_encoder`.''' '''Only make use of `--freeze_feature_encoder`.''' ) def SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith('''.json'''): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: __snake_case , __snake_case , __snake_case = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_audio_classification''', snake_case, snake_case) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', handlers=[logging.StreamHandler(sys.stdout)], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __snake_case = training_args.get_process_log_level() logger.setLevel(snake_case) transformers.utils.logging.set_verbosity(snake_case) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} " + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fpaa}") logger.info(f"Training/evaluation parameters {training_args}") # Set seed before initializing model. set_seed(training_args.seed) # Detecting last checkpoint. __snake_case = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: __snake_case = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to train from scratch.''') elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''') # Initialize our dataset and prepare it for the audio classification task. __snake_case = DatasetDict() __snake_case = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=data_args.train_split_name, use_auth_token=True if model_args.use_auth_token else None, ) __snake_case = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=data_args.eval_split_name, use_auth_token=True if model_args.use_auth_token else None, ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. " '''Make sure to set `--audio_column_name` to the correct audio column - one of ''' f"{', '.join(raw_datasets['train'].column_names)}.") if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. " '''Make sure to set `--label_column_name` to the correct text column - one of ''' f"{', '.join(raw_datasets['train'].column_names)}.") # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy __snake_case = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path, return_attention_mask=model_args.attention_mask, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. __snake_case = raw_datasets.cast_column( data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)) __snake_case = feature_extractor.model_input_names[0] def train_transforms(snake_case): __snake_case = [] for audio in batch[data_args.audio_column_name]: __snake_case = random_subsample( audio['''array'''], max_length=data_args.max_length_seconds, sample_rate=feature_extractor.sampling_rate) subsampled_wavs.append(snake_case) __snake_case = feature_extractor(snake_case, sampling_rate=feature_extractor.sampling_rate) __snake_case = {model_input_name: inputs.get(snake_case)} __snake_case = list(batch[data_args.label_column_name]) return output_batch def val_transforms(snake_case): __snake_case = [audio['''array'''] for audio in batch[data_args.audio_column_name]] __snake_case = feature_extractor(snake_case, sampling_rate=feature_extractor.sampling_rate) __snake_case = {model_input_name: inputs.get(snake_case)} __snake_case = list(batch[data_args.label_column_name]) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. __snake_case = raw_datasets['''train'''].features[data_args.label_column_name].names __snake_case , __snake_case = {}, {} for i, label in enumerate(snake_case): __snake_case = str(snake_case) __snake_case = label # Load the accuracy metric from the datasets package __snake_case = evaluate.load('''accuracy''') # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(snake_case): __snake_case = np.argmax(eval_pred.predictions, axis=1) return metric.compute(predictions=snake_case, references=eval_pred.label_ids) __snake_case = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path, num_labels=len(snake_case), labelaid=snake_case, idalabel=snake_case, finetuning_task='''audio-classification''', cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) __snake_case = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path), config=snake_case, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: __snake_case = ( raw_datasets['''train'''].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples)) ) # Set the training transforms raw_datasets["train"].set_transform(snake_case, output_all_columns=snake_case) if training_args.do_eval: if data_args.max_eval_samples is not None: __snake_case = ( raw_datasets['''eval'''].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples)) ) # Set the validation transforms raw_datasets["eval"].set_transform(snake_case, output_all_columns=snake_case) # Initialize our trainer __snake_case = Trainer( model=snake_case, args=snake_case, train_dataset=raw_datasets['''train'''] if training_args.do_train else None, eval_dataset=raw_datasets['''eval'''] if training_args.do_eval else None, compute_metrics=snake_case, tokenizer=snake_case, ) # Training if training_args.do_train: __snake_case = None if training_args.resume_from_checkpoint is not None: __snake_case = training_args.resume_from_checkpoint elif last_checkpoint is not None: __snake_case = last_checkpoint __snake_case = trainer.train(resume_from_checkpoint=snake_case) trainer.save_model() trainer.log_metrics('''train''', train_result.metrics) trainer.save_metrics('''train''', train_result.metrics) trainer.save_state() # Evaluation if training_args.do_eval: __snake_case = trainer.evaluate() trainer.log_metrics('''eval''', snake_case) trainer.save_metrics('''eval''', snake_case) # Write model card and (optionally) push to hub __snake_case = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''audio-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''audio-classification'''], } if training_args.push_to_hub: trainer.push_to_hub(**snake_case) else: trainer.create_model_card(**snake_case) if __name__ == "__main__": main()
564
0
"""simple docstring""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_: Dict = logging.get_logger(__name__) lowerCAmelCase_: Dict = "▁" lowerCAmelCase_: Tuple = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} lowerCAmelCase_: Union[str, Any] = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } lowerCAmelCase_: Union[str, Any] = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } lowerCAmelCase_: str = { "ernie-m-base": 5_1_4, "ernie-m-large": 5_1_4, } lowerCAmelCase_: Optional[int] = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class a__ ( _a ): snake_case_ = ["input_ids"] snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_INIT_CONFIGURATION snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = RESOURCE_FILES_NAMES def __init__( self, _UpperCAmelCase, _UpperCAmelCase=None, _UpperCAmelCase=False, _UpperCAmelCase="utf8", _UpperCAmelCase="[UNK]", _UpperCAmelCase="[SEP]", _UpperCAmelCase="[PAD]", _UpperCAmelCase="[CLS]", _UpperCAmelCase="[MASK]", _UpperCAmelCase = None, **_UpperCAmelCase, ): '''simple docstring''' lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_UpperCAmelCase, unk_token=_UpperCAmelCase, sep_token=_UpperCAmelCase, pad_token=_UpperCAmelCase, cls_token=_UpperCAmelCase, mask_token=_UpperCAmelCase, vocab_file=_UpperCAmelCase, encoding=_UpperCAmelCase, sp_model_kwargs=self.sp_model_kwargs, **_UpperCAmelCase, ) lowercase__ = do_lower_case lowercase__ = sentencepiece_model_ckpt lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCAmelCase ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: lowercase__ = self.load_vocab(filepath=_UpperCAmelCase ) else: lowercase__ = {self.sp_model.id_to_piece(_UpperCAmelCase ): id for id in range(self.sp_model.get_piece_size() )} lowercase__ = {v: k for k, v in self.vocab.items()} def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' if text is None: return None lowercase__ = self.tokenize(_UpperCAmelCase ) lowercase__ , lowercase__ = "", [] for i, ch in enumerate(_UpperCAmelCase ): if ch in self.SP_CHAR_MAPPING: lowercase__ = self.SP_CHAR_MAPPING.get(_UpperCAmelCase ) else: lowercase__ = unicodedata.normalize("NFKC", _UpperCAmelCase ) if self.is_whitespace(_UpperCAmelCase ): continue normalized_text += ch char_mapping.extend([i] * len(_UpperCAmelCase ) ) lowercase__ , lowercase__ , lowercase__ = normalized_text, [], 0 if self.do_lower_case: lowercase__ = text.lower() for token in split_tokens: if token[:1] == "▁": lowercase__ = token[1:] lowercase__ = text[offset:].index(_UpperCAmelCase ) + offset lowercase__ = start + len(_UpperCAmelCase ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) lowercase__ = end return token_mapping @property def snake_case__ ( self ): '''simple docstring''' return len(self.vocab ) def snake_case__ ( self ): '''simple docstring''' return dict(self.vocab, **self.added_tokens_encoder ) def __getstate__( self ): '''simple docstring''' lowercase__ = self.__dict__.copy() lowercase__ = None return state def __setstate__( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs" ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' return "".join((self.SP_CHAR_MAPPING.get(_UpperCAmelCase, _UpperCAmelCase ) for c in text) ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase=64, _UpperCAmelCase=0.1 ): '''simple docstring''' if self.sp_model_kwargs.get("enable_sampling" ) is True: lowercase__ = True if self.sp_model_kwargs.get("alpha" ) is not None: lowercase__ = self.sp_model_kwargs.get("alpha" ) if self.sp_model_kwargs.get("nbest_size" ) is not None: lowercase__ = self.sp_model_kwargs.get("nbest_size" ) if not enable_sampling: lowercase__ = self.sp_model.EncodeAsPieces(_UpperCAmelCase ) else: lowercase__ = self.sp_model.SampleEncodeAsPieces(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) lowercase__ = [] for pi, piece in enumerate(_UpperCAmelCase ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_UpperCAmelCase ) and pi != 0: new_pieces.append(_UpperCAmelCase ) continue else: continue lowercase__ = 0 for i, chunk in enumerate(_UpperCAmelCase ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_UpperCAmelCase ) or self.is_punct(_UpperCAmelCase ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_UpperCAmelCase ) lowercase__ = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowercase__ = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowercase__ = i if len(_UpperCAmelCase ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = "".join(_UpperCAmelCase ).replace(_UpperCAmelCase, " " ).strip() return out_string def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = self.convert_ids_to_tokens(_UpperCAmelCase ) lowercase__ = "".join(_UpperCAmelCase ).replace(_UpperCAmelCase, " " ).strip() return out_string def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' return self.vocab.get(_UpperCAmelCase, self.vocab.get(self.unk_token ) ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' return self.reverse_vocab.get(_UpperCAmelCase, self.unk_token ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=None ): '''simple docstring''' if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=None, _UpperCAmelCase=False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1] def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None ): '''simple docstring''' if token_ids_a is None: # [CLS] X [SEP] return (len(_UpperCAmelCase ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_UpperCAmelCase ) + 1) + [1] * (len(_UpperCAmelCase ) + 3) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' if "\u4e00" <= char <= "\u9fff": return True return False def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' if char in ",;:.?!~,;:。?!《》【】": return True return False def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_UpperCAmelCase ) == 1: lowercase__ = unicodedata.category(_UpperCAmelCase ) if cat == "Zs": return True return False def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = {} with io.open(_UpperCAmelCase, "r", encoding="utf-8" ) as f: for index, line in enumerate(_UpperCAmelCase ): lowercase__ = line.rstrip("\n" ) lowercase__ = int(_UpperCAmelCase ) return token_to_idx def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None ): '''simple docstring''' lowercase__ = 0 if os.path.isdir(_UpperCAmelCase ): lowercase__ = os.path.join( _UpperCAmelCase, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: lowercase__ = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(_UpperCAmelCase, "w", encoding="utf-8" ) as writer: for token, token_index in sorted(self.vocab.items(), key=lambda _UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' " Please check that the vocabulary is not corrupted!" ) lowercase__ = token_index writer.write(token + "\n" ) index += 1 lowercase__ = os.path.join(_UpperCAmelCase, "sentencepiece.bpe.model" ) with open(_UpperCAmelCase, "wb" ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (vocab_file,)
668
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase_: Dict = "pt" elif is_tf_available(): lowerCAmelCase_: Dict = "tf" else: lowerCAmelCase_: str = "jax" class a__ ( _a , unittest.TestCase ): snake_case_ = ByTaTokenizer snake_case_ = False def snake_case__ ( self ): '''simple docstring''' super().setUp() lowercase__ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case__ ( self ): '''simple docstring''' return ByTaTokenizer.from_pretrained("google/byt5-small" ) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase=20, _UpperCAmelCase=5 ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): try: lowercase__ = tokenizer.decode([i], clean_up_tokenization_spaces=_UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowercase__ = list(filter(lambda _UpperCAmelCase : re.match(R"^[ a-zA-Z]+$", t[1] ), _UpperCAmelCase ) ) lowercase__ = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1], add_special_tokens=_UpperCAmelCase ), _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: lowercase__ = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: lowercase__ = toks + toks # toks_str = [t[1] for t in toks] lowercase__ = [t[0] for t in toks] # Ensure consistency lowercase__ = tokenizer.decode(_UpperCAmelCase, clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: lowercase__ = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=_UpperCAmelCase ) + " " + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: lowercase__ = " " + output_txt lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] ) lowercase__ = tokenizer(["hi", "I went to the gym", ""] ) self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = "Unicode €." lowercase__ = tokenizer(_UpperCAmelCase ) lowercase__ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["input_ids"], _UpperCAmelCase ) # decoding lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, "Unicode €.</s>" ) lowercase__ = tokenizer("e è é ê ë" ) lowercase__ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["input_ids"], _UpperCAmelCase ) # decoding lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, "e è é ê ë</s>" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ), "e è é ê ë</s>" ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) if FRAMEWORK != "jax": lowercase__ = list(batch.input_ids.numpy()[0] ) else: lowercase__ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertEqual((2, 37), batch.input_ids.shape ) self.assertEqual((2, 37), batch.attention_mask.shape ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids", _UpperCAmelCase ) self.assertIn("attention_mask", _UpperCAmelCase ) self.assertNotIn("decoder_input_ids", _UpperCAmelCase ) self.assertNotIn("decoder_attention_mask", _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = [ "Summary of the text.", "Another summary.", ] lowercase__ = tokenizer( text_target=_UpperCAmelCase, max_length=32, padding="max_length", truncation=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) self.assertEqual(32, targets["input_ids"].shape[1] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization. </s>"] lowercase__ = ["Summary of the text. </s>"] # fmt: off lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] lowercase__ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on lowercase__ = tokenizer(_UpperCAmelCase, text_target=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, batch["input_ids"][0] ) self.assertEqual(_UpperCAmelCase, batch["labels"][0] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 42 ) # Now let's start the test lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = " He is very happy, UNwant\u00E9d,running" lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) lowercase__ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) lowercase__ = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 42 ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase, model_max_length=43 ) self.assertEqual(tokenizer.model_max_length, 43 ) shutil.rmtree(_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), encoding="utf-8" ) as json_file: lowercase__ = json.load(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), encoding="utf-8" ) as json_file: lowercase__ = json.load(_UpperCAmelCase ) lowercase__ = [F'''<extra_id_{i}>''' for i in range(125 )] lowercase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] lowercase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), "w", encoding="utf-8" ) as outfile: json.dump(_UpperCAmelCase, _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), "w", encoding="utf-8" ) as outfile: json.dump(_UpperCAmelCase, _UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowercase__ = tokenizer_class.from_pretrained( _UpperCAmelCase, ) self.assertIn( "an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["an_additional_special_token"], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowercase__ = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=_UpperCAmelCase )] lowercase__ = tokenizer_class.from_pretrained( _UpperCAmelCase, additional_special_tokens=_UpperCAmelCase, ) self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ), ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer_class.from_pretrained(_UpperCAmelCase ) self.assertTrue(tokenizer.decode([255] ) == "" ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers(fast=_UpperCAmelCase, do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"] lowercase__ = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] lowercase__ = 0 lowercase__ = tokenizer.convert_ids_to_tokens( _UpperCAmelCase, skip_special_tokens=_UpperCAmelCase ) for attr in attributes_list: setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase ) setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase ) setattr(_UpperCAmelCase, "additional_special_tokens_ids", [] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [] ) setattr(_UpperCAmelCase, "additional_special_tokens_ids", [token_id_to_test_setters] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [token_to_test_setters] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [token_id_to_test_setters] )
668
1
from typing import List from .keymap import KEYMAP, get_character def snake_case (__lowercase ) -> Dict: '''simple docstring''' def decorator(__lowercase ): _snake_case : str = getattr(__lowercase , "handle_key" , [] ) handle += [key] setattr(__lowercase , "handle_key" , __lowercase ) return func return decorator def snake_case (*__lowercase ) -> int: '''simple docstring''' def decorator(__lowercase ): _snake_case : Union[str, Any] = getattr(__lowercase , "handle_key" , [] ) handle += keys setattr(__lowercase , "handle_key" , __lowercase ) return func return decorator class lowercase_ ( snake_case__ ): def __new__( cls , lowercase_ , lowercase_ , lowercase_ ): _snake_case : int = super().__new__(cls , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if not hasattr(lowerCamelCase_ , "key_handler" ): setattr(lowerCamelCase_ , "key_handler" , {} ) setattr(lowerCamelCase_ , "handle_input" , KeyHandler.handle_input ) for value in attrs.values(): _snake_case : Optional[int] = getattr(lowerCamelCase_ , "handle_key" , [] ) for key in handled_keys: _snake_case : Union[str, Any] = value return new_cls @staticmethod def UpperCamelCase ( cls ): _snake_case : Optional[Any] = get_character() if char != KEYMAP["undefined"]: _snake_case : List[Any] = ord(lowerCamelCase_ ) _snake_case : Optional[Any] = cls.key_handler.get(lowerCamelCase_ ) if handler: _snake_case : List[str] = char return handler(cls ) else: return None def snake_case (cls ) -> Optional[Any]: '''simple docstring''' return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
670
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "google/vivit-b-16x2-kinetics400": ( "https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class a ( snake_case__ ): '''simple docstring''' __lowerCAmelCase : str = """vivit""" def __init__( self , lowerCamelCase_=2_2_4 , lowerCamelCase_=3_2 , lowerCamelCase_=[2, 1_6, 1_6] , lowerCamelCase_=3 , lowerCamelCase_=7_6_8 , lowerCamelCase_=1_2 , lowerCamelCase_=1_2 , lowerCamelCase_=3_0_7_2 , lowerCamelCase_="gelu_fast" , lowerCamelCase_=0.0 , lowerCamelCase_=0.0 , lowerCamelCase_=0.02 , lowerCamelCase_=1e-06 , lowerCamelCase_=True , **lowerCamelCase_ , ) -> int: _a : Tuple = hidden_size _a : Dict = num_hidden_layers _a : List[str] = num_attention_heads _a : int = intermediate_size _a : Optional[int] = hidden_act _a : Dict = hidden_dropout_prob _a : List[str] = attention_probs_dropout_prob _a : List[str] = initializer_range _a : List[str] = layer_norm_eps _a : Any = image_size _a : Optional[Any] = num_frames _a : Dict = tubelet_size _a : Union[str, Any] = num_channels _a : Optional[int] = qkv_bias super().__init__(**lowerCamelCase_ )
120
0
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00_00_00 ) -> int: """simple docstring""" UpperCamelCase__ = set() UpperCamelCase__ = int((limit - 24) ** (1 / 2) ) UpperCamelCase__ = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , SCREAMING_SNAKE_CASE ) ) ) for primea in primes: UpperCamelCase__ = primea * primea for primea in primes: UpperCamelCase__ = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: UpperCamelCase__ = primea * primea * primea * primea UpperCamelCase__ = square + cube + tetr if total >= limit: break ret.add(SCREAMING_SNAKE_CASE ) return len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F"""{solution() = }""")
715
"""simple docstring""" from copy import deepcopy class __lowerCamelCase : def __init__( self , snake_case_ = None , snake_case_ = None ) -> None: if arr is None and size is not None: UpperCamelCase__ = size UpperCamelCase__ = [0] * size elif arr is not None: self.init(snake_case_ ) else: raise ValueError('Either arr or size must be specified' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: UpperCamelCase__ = len(snake_case_ ) UpperCamelCase__ = deepcopy(snake_case_ ) for i in range(1 , self.size ): UpperCamelCase__ = self.next_(snake_case_ ) if j < self.size: self.tree[j] += self.tree[i] def SCREAMING_SNAKE_CASE__ ( self ) -> list[int]: UpperCamelCase__ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): UpperCamelCase__ = self.next_(snake_case_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: return index + (index & (-index)) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: return index - (index & (-index)) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value UpperCamelCase__ = self.next_(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: self.add(snake_case_ , value - self.get(snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: if right == 0: return 0 UpperCamelCase__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] UpperCamelCase__ = self.prev(snake_case_ ) return result def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> int: return self.prefix(snake_case_ ) - self.prefix(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: return self.query(snake_case_ , index + 1 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: value -= self.tree[0] if value < 0: return -1 UpperCamelCase__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 UpperCamelCase__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
20
0
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _lowercase : Union[str, Any] =logging.get_logger(__name__) class snake_case__ (A__ ): """simple docstring""" def __init__( self , *__lowercase , **__lowercase ) -> None: """simple docstring""" warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , __lowercase , ) super().__init__(*__lowercase , **__lowercase )
136
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : Optional[int] ={ "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str =["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int =[ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys _lowercase : Union[str, Any] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
136
1
'''simple docstring''' from __future__ import annotations class _A : '''simple docstring''' def __init__( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : str )-> List[str]: snake_case__ , snake_case__ : Optional[Any] = text, pattern snake_case__ , snake_case__ : List[Any] = len(lowerCamelCase ), len(lowerCamelCase ) def __lowerCAmelCase ( self : List[str] , lowerCamelCase : str )-> int: for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def __lowerCAmelCase ( self : str , lowerCamelCase : int )-> int: for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def __lowerCAmelCase ( self : str )-> list[int]: # searches pattern in text and returns index positions snake_case__ : Union[str, Any] = [] for i in range(self.textLen - self.patLen + 1 ): snake_case__ : Any = self.mismatch_in_text(lowerCamelCase ) if mismatch_index == -1: positions.append(lowerCamelCase ) else: snake_case__ : Optional[int] = self.match_in_pattern(self.text[mismatch_index] ) snake_case__ : Any = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions lowerCAmelCase__ = 'ABAABA' lowerCAmelCase__ = 'AB' lowerCAmelCase__ = BoyerMooreSearch(text, pattern) lowerCAmelCase__ = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
172
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py lowerCAmelCase__ = 'src/diffusers' # Matches is_xxx_available() lowerCAmelCase__ = re.compile(R'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla lowerCAmelCase__ = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') lowerCAmelCase__ = '\n{0} = None\n' lowerCAmelCase__ = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' lowerCAmelCase__ = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" snake_case__ : Union[str, Any] = _re_backend.findall(UpperCAmelCase ) if len(UpperCAmelCase ) == 0: return None return "_and_".join(UpperCAmelCase ) def lowerCAmelCase__ ( ): """simple docstring""" with open(os.path.join(UpperCAmelCase , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case__ : Union[str, Any] = f.readlines() # Get to the point we do the actual imports for type checking snake_case__ : Optional[int] = 0 snake_case__ : Optional[Any] = {} # Go through the end of the file while line_index < len(UpperCAmelCase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block snake_case__ : Tuple = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("""else:""" ): line_index += 1 line_index += 1 snake_case__ : Optional[int] = [] # Until we unindent, add backend objects to the list while line_index < len(UpperCAmelCase ) and len(lines[line_index] ) > 1: snake_case__ : int = lines[line_index] snake_case__ : List[Any] = _re_single_line_import.search(UpperCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(UpperCAmelCase ) > 0: snake_case__ : str = objects else: line_index += 1 return backend_specific_objects def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase ): """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(UpperCAmelCase ) elif name.islower(): return DUMMY_FUNCTION.format(UpperCAmelCase , UpperCAmelCase ) else: return DUMMY_CLASS.format(UpperCAmelCase , UpperCAmelCase ) def lowerCAmelCase__ ( UpperCAmelCase=None ): """simple docstring""" if backend_specific_objects is None: snake_case__ : int = read_init() # For special correspondence backend to module name as used in the function requires_modulename snake_case__ : Union[str, Any] = {} for backend, objects in backend_specific_objects.items(): snake_case__ : Union[str, Any] = """[""" + """, """.join(f"""\"{b}\"""" for b in backend.split("""_and_""" ) ) + """]""" snake_case__ : str = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n""" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(UpperCAmelCase , UpperCAmelCase ) for o in objects] ) snake_case__ : Optional[int] = dummy_file return dummy_files def lowerCAmelCase__ ( UpperCAmelCase=False ): """simple docstring""" snake_case__ : Tuple = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py snake_case__ : Any = {"""torch""": """pt"""} # Locate actual dummy modules and read their content. snake_case__ : List[str] = os.path.join(UpperCAmelCase , """utils""" ) snake_case__ : Any = { backend: os.path.join(UpperCAmelCase , f"""dummy_{short_names.get(UpperCAmelCase , UpperCAmelCase )}_objects.py""" ) for backend in dummy_files.keys() } snake_case__ : List[str] = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(UpperCAmelCase ): with open(UpperCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case__ : str = f.read() else: snake_case__ : int = """""" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f"""Updating diffusers.utils.dummy_{short_names.get(UpperCAmelCase , UpperCAmelCase )}_objects.py as the main """ """__init__ has new objects.""" ) with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( """The main __init__ has objects that are not present in """ f"""diffusers.utils.dummy_{short_names.get(UpperCAmelCase , UpperCAmelCase )}_objects.py. Run `make fix-copies` """ """to fix this.""" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowerCAmelCase__ = parser.parse_args() check_dummies(args.fix_and_overwrite)
172
1
'''simple docstring''' import math import qiskit def _A ( _lowerCAmelCase = 1 , _lowerCAmelCase = 1 , _lowerCAmelCase = 1 ): """simple docstring""" if ( isinstance(a_ , a_ ) or isinstance(a_ , a_ ) or isinstance(a_ , a_ ) ): raise TypeError('inputs must be integers.' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('inputs must be positive.' ) if ( (math.floor(a_ ) != input_a) or (math.floor(a_ ) != input_a) or (math.floor(a_ ) != carry_in) ): raise ValueError('inputs must be exact integers.' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('inputs must be less or equal to 2.' ) # build registers __lowercase =qiskit.QuantumRegister(4 , 'qr' ) __lowercase =qiskit.ClassicalRegister(2 , 'cr' ) # list the entries __lowercase =[input_a, input_a, carry_in] __lowercase =qiskit.QuantumCircuit(a_ , a_ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(a_ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(a_ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(a_ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , a_ ) # measure the last two qbits __lowercase =qiskit.Aer.get_backend('aer_simulator' ) __lowercase =qiskit.execute(a_ , a_ , shots=1_000 ) return job.result().get_counts(a_ ) if __name__ == "__main__": print(f"Total sum count for state is: {quantum_full_adder(1, 1, 1)}")
474
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self , lowercase__ ) -> Dict: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): SCREAMING_SNAKE_CASE : Optional[Any] = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(lowercase__ ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : Optional[int] = 'sshleifer/tiny-gpt2' SCREAMING_SNAKE_CASE : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase__ , inference=lowercase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase__ , ) SCREAMING_SNAKE_CASE : List[str] = PyTorchBenchmark(lowercase__ ) SCREAMING_SNAKE_CASE : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE : Any = 'sgugger/tiny-distilbert-classification' SCREAMING_SNAKE_CASE : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase__ , inference=lowercase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase__ , only_pretrain_model=lowercase__ , ) SCREAMING_SNAKE_CASE : Optional[Any] = PyTorchBenchmark(lowercase__ ) SCREAMING_SNAKE_CASE : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE : Dict = 'sshleifer/tiny-gpt2' SCREAMING_SNAKE_CASE : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase__ , inference=lowercase__ , torchscript=lowercase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase__ , ) SCREAMING_SNAKE_CASE : List[str] = PyTorchBenchmark(lowercase__ ) SCREAMING_SNAKE_CASE : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : Any = 'sshleifer/tiny-gpt2' SCREAMING_SNAKE_CASE : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase__ , inference=lowercase__ , fpaa=lowercase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase__ , ) SCREAMING_SNAKE_CASE : List[str] = PyTorchBenchmark(lowercase__ ) SCREAMING_SNAKE_CASE : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : int = 'sshleifer/tiny-gpt2' SCREAMING_SNAKE_CASE : Dict = AutoConfig.from_pretrained(lowercase__ ) # set architectures equal to `None` SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase__ , inference=lowercase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase__ , ) SCREAMING_SNAKE_CASE : List[str] = PyTorchBenchmark(lowercase__ , configs=[config] ) SCREAMING_SNAKE_CASE : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE : Optional[int] = 'sshleifer/tiny-gpt2' SCREAMING_SNAKE_CASE : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase__ , inference=lowercase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase__ , ) SCREAMING_SNAKE_CASE : Tuple = PyTorchBenchmark(lowercase__ ) SCREAMING_SNAKE_CASE : str = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == 'cpu' , 'Can\'t do half precision' ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE : Optional[Any] = 'sshleifer/tiny-gpt2' SCREAMING_SNAKE_CASE : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase__ , inference=lowercase__ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=lowercase__ , multi_process=lowercase__ , ) SCREAMING_SNAKE_CASE : List[str] = PyTorchBenchmark(lowercase__ ) SCREAMING_SNAKE_CASE : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : Union[str, Any] = 'sshleifer/tiny-gpt2' SCREAMING_SNAKE_CASE : List[str] = AutoConfig.from_pretrained(lowercase__ ) SCREAMING_SNAKE_CASE : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase__ , inference=lowercase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase__ , ) SCREAMING_SNAKE_CASE : Dict = PyTorchBenchmark(lowercase__ , configs=[config] ) SCREAMING_SNAKE_CASE : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : Any = 'sshleifer/tinier_bart' SCREAMING_SNAKE_CASE : List[Any] = AutoConfig.from_pretrained(lowercase__ ) SCREAMING_SNAKE_CASE : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase__ , inference=lowercase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase__ , ) SCREAMING_SNAKE_CASE : List[str] = PyTorchBenchmark(lowercase__ , configs=[config] ) SCREAMING_SNAKE_CASE : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE : List[str] = 'sshleifer/tiny-gpt2' SCREAMING_SNAKE_CASE : int = AutoConfig.from_pretrained(lowercase__ ) SCREAMING_SNAKE_CASE : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase__ , inference=lowercase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase__ , ) SCREAMING_SNAKE_CASE : List[str] = PyTorchBenchmark(lowercase__ , configs=[config] ) SCREAMING_SNAKE_CASE : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE : Optional[Any] = 'sshleifer/tinier_bart' SCREAMING_SNAKE_CASE : Optional[Any] = AutoConfig.from_pretrained(lowercase__ ) SCREAMING_SNAKE_CASE : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase__ , inference=lowercase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase__ , ) SCREAMING_SNAKE_CASE : List[str] = PyTorchBenchmark(lowercase__ , configs=[config] ) SCREAMING_SNAKE_CASE : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE : Optional[Any] = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase__ , inference=lowercase__ , save_to_csv=lowercase__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(lowercase__ , 'inf_time.csv' ) , train_memory_csv_file=os.path.join(lowercase__ , 'train_mem.csv' ) , inference_memory_csv_file=os.path.join(lowercase__ , 'inf_mem.csv' ) , train_time_csv_file=os.path.join(lowercase__ , 'train_time.csv' ) , env_info_csv_file=os.path.join(lowercase__ , 'env.csv' ) , multi_process=lowercase__ , ) SCREAMING_SNAKE_CASE : Any = PyTorchBenchmark(lowercase__ ) benchmark.run() self.assertTrue(Path(os.path.join(lowercase__ , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase__ , 'train_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase__ , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase__ , 'train_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase__ , 'env.csv' ) ).exists() ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : int = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(lowercase__ ): self.assertTrue(hasattr(lowercase__ , 'sequential' ) ) self.assertTrue(hasattr(lowercase__ , 'cumulative' ) ) self.assertTrue(hasattr(lowercase__ , 'current' ) ) self.assertTrue(hasattr(lowercase__ , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase__ , inference=lowercase__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(lowercase__ , 'log.txt' ) , log_print=lowercase__ , trace_memory_line_by_line=lowercase__ , multi_process=lowercase__ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = PyTorchBenchmark(lowercase__ ) SCREAMING_SNAKE_CASE : Any = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(lowercase__ , 'log.txt' ) ).exists() )
251
0
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder __snake_case : Tuple =logging.get_logger(__name__) # pylint: disable=invalid-name __snake_case : Tuple =2_5_6 class lowerCamelCase__ ( A_): '''simple docstring''' snake_case_ =['''melgan'''] def __init__(self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,) -> Any: """simple docstring""" super().__init__() # From MELGAN lowerCAmelCase__ : Any = math.log(1e-5 ) # Matches MelGAN training. lowerCAmelCase__ : Optional[int] = 4.0 # Largest value for most examples lowerCAmelCase__ : Dict = 1_28 self.register_modules( notes_encoder=__lowerCamelCase ,continuous_encoder=__lowerCamelCase ,decoder=__lowerCamelCase ,scheduler=__lowerCamelCase ,melgan=__lowerCamelCase ,) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase=(-1.0, 1.0) ,__lowerCamelCase=False ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Tuple = output_range if clip: lowerCAmelCase__ : Dict = torch.clip(__lowerCamelCase ,self.min_value ,self.max_value ) # Scale to [0, 1]. lowerCAmelCase__ : Optional[int] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase=(-1.0, 1.0) ,__lowerCamelCase=False ) -> Any: """simple docstring""" lowerCAmelCase__ : Dict = input_range lowerCAmelCase__ : int = torch.clip(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) if clip else outputs # Scale to [0, 1]. lowerCAmelCase__ : Tuple = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> str: """simple docstring""" lowerCAmelCase__ : Tuple = input_tokens > 0 lowerCAmelCase__ : List[Any] = self.notes_encoder( encoder_input_tokens=__lowerCamelCase ,encoder_inputs_mask=__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = self.continuous_encoder( encoder_inputs=__lowerCamelCase ,encoder_inputs_mask=__lowerCamelCase ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : str = noise_time if not torch.is_tensor(__lowerCamelCase ): lowerCAmelCase__ : List[Any] = torch.tensor([timesteps] ,dtype=torch.long ,device=input_tokens.device ) elif torch.is_tensor(__lowerCamelCase ) and len(timesteps.shape ) == 0: lowerCAmelCase__ : List[str] = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowerCAmelCase__ : Union[str, Any] = timesteps * torch.ones(input_tokens.shape[0] ,dtype=timesteps.dtype ,device=timesteps.device ) lowerCAmelCase__ : Optional[int] = self.decoder( encodings_and_masks=__lowerCamelCase ,decoder_input_tokens=__lowerCamelCase ,decoder_noise_time=__lowerCamelCase ) return logits @torch.no_grad() def __call__(self ,__lowerCamelCase ,__lowerCamelCase = None ,__lowerCamelCase = 1_00 ,__lowerCamelCase = True ,__lowerCamelCase = "numpy" ,__lowerCamelCase = None ,__lowerCamelCase = 1 ,) -> Tuple: """simple docstring""" if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__lowerCamelCase ,__lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(__lowerCamelCase )}.""" ) lowerCAmelCase__ : Optional[Any] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] ,dtype=np.floataa ) lowerCAmelCase__ : List[Any] = np.zeros([1, 0, self.n_dims] ,np.floataa ) lowerCAmelCase__ : List[Any] = torch.ones((1, TARGET_FEATURE_LENGTH) ,dtype=__lowerCamelCase ,device=self.device ) for i, encoder_input_tokens in enumerate(__lowerCamelCase ): if i == 0: lowerCAmelCase__ : Any = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device ,dtype=self.decoder.dtype ) # The first chunk has no previous context. lowerCAmelCase__ : Optional[Any] = torch.zeros((1, TARGET_FEATURE_LENGTH) ,dtype=__lowerCamelCase ,device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. lowerCAmelCase__ : int = ones lowerCAmelCase__ : List[Any] = self.scale_features( __lowerCamelCase ,output_range=[-1.0, 1.0] ,clip=__lowerCamelCase ) lowerCAmelCase__ : int = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) ,continuous_inputs=__lowerCamelCase ,continuous_mask=__lowerCamelCase ,) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop lowerCAmelCase__ : int = randn_tensor( shape=encoder_continuous_inputs.shape ,generator=__lowerCamelCase ,device=self.device ,dtype=self.decoder.dtype ,) # set step values self.scheduler.set_timesteps(__lowerCamelCase ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowerCAmelCase__ : List[Any] = self.decode( encodings_and_masks=__lowerCamelCase ,input_tokens=__lowerCamelCase ,noise_time=t / self.scheduler.config.num_train_timesteps ,) # Compute previous output: x_t -> x_t-1 lowerCAmelCase__ : List[str] = self.scheduler.step(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,generator=__lowerCamelCase ).prev_sample lowerCAmelCase__ : Any = self.scale_to_features(__lowerCamelCase ,input_range=[-1.0, 1.0] ) lowerCAmelCase__ : Optional[Any] = mel[:1] lowerCAmelCase__ : List[Any] = mel.cpu().float().numpy() lowerCAmelCase__ : Optional[int] = np.concatenate([full_pred_mel, pred_mel[:1]] ,axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__lowerCamelCase ,__lowerCamelCase ) logger.info('''Generated segment''' ,__lowerCamelCase ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": lowerCAmelCase__ : Optional[int] = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: lowerCAmelCase__ : Any = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=__lowerCamelCase )
707
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass __snake_case : Optional[int] =(3, 9, -1_1, 0, 7, 5, 1, -1) __snake_case : str =(4, 6, 2, 0, 8, 1_0, 3, -2) @dataclass class lowerCamelCase__ : '''simple docstring''' snake_case_ =42 snake_case_ =42 class lowerCamelCase__ : '''simple docstring''' def __init__(self ,__lowerCamelCase ) -> None: """simple docstring""" lowerCAmelCase__ : Node | None = None for i in sorted(__lowerCamelCase ,reverse=__lowerCamelCase ): lowerCAmelCase__ : Dict = Node(__lowerCamelCase ,self.head ) def __iter__(self ) -> Iterator[int]: """simple docstring""" lowerCAmelCase__ : Optional[Any] = self.head while node: yield node.data lowerCAmelCase__ : Dict = node.next_node def __len__(self ) -> int: """simple docstring""" return sum(1 for _ in self ) def __str__(self ) -> str: """simple docstring""" return " -> ".join([str(__lowerCamelCase ) for node in self] ) def lowerCAmelCase__ ( lowerCamelCase_ : SortedLinkedList ,lowerCamelCase_ : SortedLinkedList): '''simple docstring''' return SortedLinkedList(list(lowerCamelCase_) + list(lowerCamelCase_)) if __name__ == "__main__": import doctest doctest.testmod() __snake_case : Any =SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
90
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ["""MaskFormerFeatureExtractor"""] A = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] A = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
77
'''simple docstring''' from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image lowerCAmelCase : List[Any] = ["""text""", """image""", """audio"""] def _A ( A ) -> Dict: lowercase : str = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((5_1_2, 5_1_2) ) ) elif input_type == "audio": inputs.append(torch.ones(3_0_0_0 ) ) elif isinstance(A ,A ): inputs.append(create_inputs(A ) ) else: raise ValueError(F'''Invalid type requested: {input_type}''' ) return inputs def _A ( A ) -> str: lowercase : Tuple = [] for output in outputs: if isinstance(A ,(str, AgentText) ): output_types.append("text" ) elif isinstance(A ,(Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(A ,(torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(F'''Invalid output: {output}''' ) return output_types @is_tool_test class _UpperCamelCase : '''simple docstring''' def a__ ( self ) -> Optional[Any]: self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) lowercase : Optional[Any] = self.tool.inputs for _input in inputs: if isinstance(_input , a_ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowercase : Any = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def a__ ( self ) -> Any: lowercase : Any = create_inputs(self.tool.inputs ) lowercase : Tuple = self.tool(*a_ ) # There is a single output if len(self.tool.outputs ) == 1: lowercase : Any = [outputs] self.assertListEqual(output_types(a_ ) , self.tool.outputs ) def a__ ( self ) -> List[str]: self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def a__ ( self ) -> int: lowercase : str = create_inputs(self.tool.inputs ) lowercase : str = self.tool(*a_ ) if not isinstance(a_ , a_ ): lowercase : Union[str, Any] = [outputs] self.assertEqual(len(a_ ) , len(self.tool.outputs ) ) for output, output_type in zip(a_ , self.tool.outputs ): lowercase : List[str] = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(a_ , a_ ) ) def a__ ( self ) -> Optional[int]: lowercase : int = create_inputs(self.tool.inputs ) lowercase : str = [] for _input, input_type in zip(a_ , self.tool.inputs ): if isinstance(a_ , a_ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowercase : Optional[int] = self.tool(*a_ ) if not isinstance(a_ , a_ ): lowercase : str = [outputs] self.assertEqual(len(a_ ) , len(self.tool.outputs ) )
372
0
'''simple docstring''' from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase )-> Optional[int]: __UpperCAmelCase = k_size // 2 __UpperCAmelCase , __UpperCAmelCase = mgrid[0 - center : k_size - center, 0 - center : k_size - center] __UpperCAmelCase = 1 / (2 * pi * sigma) * exp(-(square(UpperCamelCase__ ) + square(UpperCamelCase__ )) / (2 * square(UpperCamelCase__ )) ) return g def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )-> List[Any]: __UpperCAmelCase , __UpperCAmelCase = image.shape[0], image.shape[1] # dst image height and width __UpperCAmelCase = height - k_size + 1 __UpperCAmelCase = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows __UpperCAmelCase = zeros((dst_height * dst_width, k_size * k_size) ) __UpperCAmelCase = 0 for i, j in product(range(UpperCamelCase__ ) , range(UpperCamelCase__ ) ): __UpperCAmelCase = ravel(image[i : i + k_size, j : j + k_size] ) __UpperCAmelCase = window row += 1 # turn the kernel into shape(k*k, 1) __UpperCAmelCase = gen_gaussian_kernel(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = ravel(UpperCamelCase__ ) # reshape and get the dst image __UpperCAmelCase = dot(UpperCamelCase__ , UpperCamelCase__ ).reshape(UpperCamelCase__ , UpperCamelCase__ ).astype(UpperCamelCase__ ) return dst if __name__ == "__main__": # read original image _A: Union[str, Any] = imread(r"""../image_data/lena.jpg""") # turn image in gray scale value _A: List[Any] = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size _A: Union[str, Any] = gaussian_filter(gray, 3, sigma=1) _A: Optional[int] = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("""gaussian filter with 3x3 mask""", gaussianaxa) imshow("""gaussian filter with 5x5 mask""", gaussianaxa) waitKey()
715
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex _A: int = logging.getLogger(__name__) class UpperCAmelCase : def __init__( self ): __UpperCAmelCase = False def __lowerCamelCase ( self , __A , __A , __A , __A ): if not self.initialized: __UpperCAmelCase = RagRetriever( __A , question_encoder_tokenizer=__A , generator_tokenizer=__A , index=__A , init_retrieval=__A , ) __UpperCAmelCase = True def __lowerCamelCase ( self ): self.retriever.index.init_index() def __lowerCamelCase ( self , __A , __A ): __UpperCAmelCase , __UpperCAmelCase = self.retriever._main_retrieve(__A , __A ) return doc_ids, retrieved_doc_embeds class UpperCAmelCase ( UpperCAmelCase_ ): def __init__( self , __A , __A , __A , __A , __A=None ): if index is not None and index.is_initialized() and len(__A ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( __A , question_encoder_tokenizer=__A , generator_tokenizer=__A , index=__A , init_retrieval=__A , ) __UpperCAmelCase = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(__A , __A , __A , __A ) for worker in self.retrieval_workers ] ) def __lowerCamelCase ( self ): logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __lowerCamelCase ( self , __A , __A ): if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __UpperCAmelCase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __UpperCAmelCase , __UpperCAmelCase = ray.get(random_worker.retrieve.remote(__A , __A ) ) else: __UpperCAmelCase , __UpperCAmelCase = self._main_retrieve(__A , __A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__A ) @classmethod def __lowerCamelCase ( cls , __A , __A=None , **__A ): return super(__A , cls ).get_tokenizers(__A , __A , **__A ) @classmethod def __lowerCamelCase ( cls , __A , __A , __A=None , **__A ): __UpperCAmelCase = kwargs.pop('config' , __A ) or RagConfig.from_pretrained(__A , **__A ) __UpperCAmelCase = RagTokenizer.from_pretrained(__A , config=__A ) __UpperCAmelCase = rag_tokenizer.question_encoder __UpperCAmelCase = rag_tokenizer.generator if indexed_dataset is not None: __UpperCAmelCase = 'custom' __UpperCAmelCase = CustomHFIndex(config.retrieval_vector_size , __A ) else: __UpperCAmelCase = cls._build_index(__A ) return cls( __A , question_encoder_tokenizer=__A , generator_tokenizer=__A , retrieval_workers=__A , index=__A , )
617
0
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def snake_case_ ( ) -> Any: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join lowercase__ : Union[str, Any] = "__test_patch_submodule_mock__" with patch_submodule(_test_patching ,"os.path.join" ,SCREAMING_SNAKE_CASE_ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os ,_PatchedModuleObj ) assert isinstance(_test_patching.os.path ,_PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path ,_PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os ,_PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path ,_PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path ,_PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def snake_case_ ( ) -> Tuple: assert _test_patching.open is open lowercase__ : Tuple = "__test_patch_submodule_builtin_mock__" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching ,"open" ,SCREAMING_SNAKE_CASE_ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def snake_case_ ( ) -> Union[str, Any]: # pandas.read_csv is not present in _test_patching lowercase__ : List[str] = "__test_patch_submodule_missing_mock__" with patch_submodule(_test_patching ,"pandas.read_csv" ,SCREAMING_SNAKE_CASE_ ): pass def snake_case_ ( ) -> Dict: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point lowercase__ : Optional[Any] = "__test_patch_submodule_missing_builtin_mock__" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching ,"len" ,SCREAMING_SNAKE_CASE_ ) is None with patch_submodule(_test_patching ,"len" ,SCREAMING_SNAKE_CASE_ ): assert _test_patching.len is mock assert _test_patching.len is len def snake_case_ ( ) -> Optional[Any]: lowercase__ : str = "__test_patch_submodule_start_and_stop_mock__" lowercase__ : str = patch_submodule(_test_patching ,"open" ,SCREAMING_SNAKE_CASE_ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def snake_case_ ( ) -> Optional[Any]: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join lowercase__ : Any = "__test_patch_submodule_successive_join__" lowercase__ : Union[str, Any] = "__test_patch_submodule_successive_dirname__" lowercase__ : List[Any] = "__test_patch_submodule_successive_rename__" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching ,"os.path.join" ,SCREAMING_SNAKE_CASE_ ): with patch_submodule(_test_patching ,"os.rename" ,SCREAMING_SNAKE_CASE_ ): with patch_submodule(_test_patching ,"os.path.dirname" ,SCREAMING_SNAKE_CASE_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching ,"os.rename" ,SCREAMING_SNAKE_CASE_ ): with patch_submodule(_test_patching ,"os.path.join" ,SCREAMING_SNAKE_CASE_ ): with patch_submodule(_test_patching ,"os.path.dirname" ,SCREAMING_SNAKE_CASE_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def snake_case_ ( ) -> List[Any]: lowercase__ : Optional[int] = "__test_patch_submodule_doesnt_exist_mock__" with patch_submodule(_test_patching ,"__module_that_doesn_exist__.__attribute_that_doesn_exist__" ,SCREAMING_SNAKE_CASE_ ): pass with patch_submodule(_test_patching ,"os.__attribute_that_doesn_exist__" ,SCREAMING_SNAKE_CASE_ ): pass
397
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __a : List[str] = { '''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''], '''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : int = ['''MaskFormerFeatureExtractor'''] __a : str = ['''MaskFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Dict = [ '''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MaskFormerForInstanceSegmentation''', '''MaskFormerModel''', '''MaskFormerPreTrainedModel''', ] __a : Optional[int] = [ '''MaskFormerSwinBackbone''', '''MaskFormerSwinModel''', '''MaskFormerSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys __a : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
397
1
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class __lowerCamelCase ( __snake_case ): def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> int: super().__init__() snake_case_ = value_function snake_case_ = unet snake_case_ = scheduler snake_case_ = env snake_case_ = env.get_dataset() snake_case_ = {} for key in self.data.keys(): try: snake_case_ = self.data[key].mean() except: # noqa: E722 pass snake_case_ = {} for key in self.data.keys(): try: snake_case_ = self.data[key].std() except: # noqa: E722 pass snake_case_ = env.observation_space.shape[0] snake_case_ = env.action_space.shape[0] def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase ) -> int: return (x_in - self.means[key]) / self.stds[key] def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase ) -> Dict: return x_in * self.stds[key] + self.means[key] def lowerCAmelCase_ ( self , lowerCamelCase ) -> List[str]: if type(lowerCamelCase ) is dict: return {k: self.to_torch(lowerCamelCase ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase , device=self.unet.device ) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Any: for key, val in cond.items(): snake_case_ = val.clone() return x_in def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Any: snake_case_ = x.shape[0] snake_case_ = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model snake_case_ = torch.full((batch_size,) , lowerCamelCase , device=self.unet.device , dtype=torch.long ) for _ in range(lowerCamelCase ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models snake_case_ = self.value_function(x.permute(0 , 2 , 1 ) , lowerCamelCase ).sample snake_case_ = torch.autograd.grad([y.sum()] , [x] )[0] snake_case_ = self.scheduler._get_variance(lowerCamelCase ) snake_case_ = torch.exp(0.5 * posterior_variance ) snake_case_ = model_std * grad snake_case_ = 0 snake_case_ = x.detach() snake_case_ = x + scale * grad snake_case_ = self.reset_xa(lowerCamelCase , lowerCamelCase , self.action_dim ) snake_case_ = self.unet(x.permute(0 , 2 , 1 ) , lowerCamelCase ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg snake_case_ = self.scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , predict_epsilon=lowerCamelCase )["""prev_sample"""] # apply conditions to the trajectory (set the initial state) snake_case_ = self.reset_xa(lowerCamelCase , lowerCamelCase , self.action_dim ) snake_case_ = self.to_torch(lowerCamelCase ) return x, y def __call__( self , lowerCamelCase , lowerCamelCase=64 , lowerCamelCase=32 , lowerCamelCase=2 , lowerCamelCase=0.1 ) -> List[Any]: # normalize the observations and create batch dimension snake_case_ = self.normalize(lowerCamelCase , """observations""" ) snake_case_ = obs[None].repeat(lowerCamelCase , axis=0 ) snake_case_ = {0: self.to_torch(lowerCamelCase )} snake_case_ = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) snake_case_ = randn_tensor(lowerCamelCase , device=self.unet.device ) snake_case_ = self.reset_xa(lowerCamelCase , lowerCamelCase , self.action_dim ) snake_case_ = self.to_torch(lowerCamelCase ) # run the diffusion process snake_case_ , snake_case_ = self.run_diffusion(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # sort output trajectories by value snake_case_ = y.argsort(0 , descending=lowerCamelCase ).squeeze() snake_case_ = x[sorted_idx] snake_case_ = sorted_values[:, :, : self.action_dim] snake_case_ = actions.detach().cpu().numpy() snake_case_ = self.de_normalize(lowerCamelCase , key="""actions""" ) # select the action with the highest value if y is not None: snake_case_ = 0 else: # if we didn't run value guiding, select a random action snake_case_ = np.random.randint(0 , lowerCamelCase ) snake_case_ = denorm_actions[selected_index, 0] return denorm_actions
161
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __lowerCamelCase ( __snake_case ): lowerCamelCase_ : Tuple = 'vit_msn' def __init__( self , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase="gelu" , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.02 , lowerCamelCase=1e-06 , lowerCamelCase=224 , lowerCamelCase=16 , lowerCamelCase=3 , lowerCamelCase=True , **lowerCamelCase , ) -> Optional[int]: super().__init__(**lowerCamelCase ) snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias
161
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _lowerCamelCase = logging.getLogger(__name__) @dataclass class _snake_case : __A : str =field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) __A : Optional[str] =field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained config name or path if not the same as model_name"}) __A : Optional[str] =field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) __A : Optional[str] =field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __A : bool =field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether tp freeze the encoder."}) __A : bool =field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to freeze the embeddings."}) @dataclass class _snake_case : __A : str =field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."}) __A : Optional[str] =field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) __A : Optional[int] =field( default=10_24 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __A : Optional[int] =field( default=1_28 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __A : Optional[int] =field( default=1_42 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) __A : Optional[int] =field( default=1_42 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __A : Optional[int] =field(default=-1 , metadata={"help": "# training examples. -1 means use all."}) __A : Optional[int] =field(default=-1 , metadata={"help": "# validation examples. -1 means use all."}) __A : Optional[int] =field(default=-1 , metadata={"help": "# test examples. -1 means use all."}) __A : Optional[str] =field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Source language id for translation."}) __A : Optional[str] =field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Target language id for translation."}) __A : Optional[int] =field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "# num_beams to use for evaluation."}) __A : bool =field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: """simple docstring""" logger.info(F'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(F''' {key} = {metrics[key]}''' ) save_json(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , F'''{split}_results.json''' ) ) def a__ ( ) -> Any: """simple docstring""" UpperCAmelCase_ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = parser.parse_args_into_dataclasses() check_output_dir(_SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , _SCREAMING_SNAKE_CASE ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCAmelCase_ : List[Any] = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCAmelCase_ : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_SCREAMING_SNAKE_CASE , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: UpperCAmelCase_ : Dict = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_SCREAMING_SNAKE_CASE , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Dict = tokenizer.lang_code_to_id[data_args.tgt_lang] else: UpperCAmelCase_ : List[Any] = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_SCREAMING_SNAKE_CASE ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) UpperCAmelCase_ : Dict = SeqaSeqDataset # Get datasets UpperCAmelCase_ : Tuple = ( dataset_class( _SCREAMING_SNAKE_CASE , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) UpperCAmelCase_ : Dict = ( dataset_class( _SCREAMING_SNAKE_CASE , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) UpperCAmelCase_ : int = ( dataset_class( _SCREAMING_SNAKE_CASE , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer UpperCAmelCase_ : Optional[Any] = ( build_compute_metrics_fn(data_args.task , _SCREAMING_SNAKE_CASE ) if training_args.predict_with_generate else None ) UpperCAmelCase_ : List[str] = SeqaSeqTrainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , data_args=_SCREAMING_SNAKE_CASE , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , data_collator=SeqaSeqDataCollator( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase_ : List[Any] = {} # Training if training_args.do_train: logger.info("*** Train ***" ) UpperCAmelCase_ : Any = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) UpperCAmelCase_ : int = train_result.metrics UpperCAmelCase_ : Dict = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , _SCREAMING_SNAKE_CASE , training_args.output_dir ) all_metrics.update(_SCREAMING_SNAKE_CASE ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCAmelCase_ : Union[str, Any] = trainer.evaluate(metric_key_prefix="val" ) UpperCAmelCase_ : Optional[Any] = data_args.n_val UpperCAmelCase_ : Union[str, Any] = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , _SCREAMING_SNAKE_CASE , training_args.output_dir ) all_metrics.update(_SCREAMING_SNAKE_CASE ) if training_args.do_predict: logger.info("*** Predict ***" ) UpperCAmelCase_ : List[Any] = trainer.predict(test_dataset=_SCREAMING_SNAKE_CASE , metric_key_prefix="test" ) UpperCAmelCase_ : List[str] = test_output.metrics UpperCAmelCase_ : int = data_args.n_test if trainer.is_world_process_zero(): UpperCAmelCase_ : Optional[Any] = round(metrics["test_loss"] , 4 ) handle_metrics("test" , _SCREAMING_SNAKE_CASE , training_args.output_dir ) all_metrics.update(_SCREAMING_SNAKE_CASE ) if training_args.predict_with_generate: UpperCAmelCase_ : Optional[int] = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = lmap(str.strip , _SCREAMING_SNAKE_CASE ) write_txt_file(_SCREAMING_SNAKE_CASE , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(_SCREAMING_SNAKE_CASE , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def a__ ( _SCREAMING_SNAKE_CASE : str ) -> Optional[int]: """simple docstring""" main() if __name__ == "__main__": main()
71
from math import factorial class _a : """simple docstring""" def __init__( self , _snake_case , _snake_case ): _UpperCAmelCase =real if isinstance(_snake_case , _snake_case ): _UpperCAmelCase =[1] * rank else: _UpperCAmelCase =rank def __repr__( self ): return ( F"{self.real}+" F"{'+'.join(str(_snake_case )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}" ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , _snake_case ) def __add__( self , _snake_case ): if not isinstance(_snake_case , _snake_case ): return Dual(self.real + other , self.duals ) _UpperCAmelCase =self.duals.copy() _UpperCAmelCase =other.duals.copy() if len(_snake_case ) > len(_snake_case ): o_dual.extend([1] * (len(_snake_case ) - len(_snake_case )) ) elif len(_snake_case ) < len(_snake_case ): s_dual.extend([1] * (len(_snake_case ) - len(_snake_case )) ) _UpperCAmelCase =[] for i in range(len(_snake_case ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , _snake_case ) snake_case =__add__ def __sub__( self , _snake_case ): return self + other * -1 def __mul__( self , _snake_case ): if not isinstance(_snake_case , _snake_case ): _UpperCAmelCase =[] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , _snake_case ) _UpperCAmelCase =[0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , _snake_case ) snake_case =__mul__ def __truediv__( self , _snake_case ): if not isinstance(_snake_case , _snake_case ): _UpperCAmelCase =[] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , _snake_case ) raise ValueError def __floordiv__( self , _snake_case ): if not isinstance(_snake_case , _snake_case ): _UpperCAmelCase =[] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , _snake_case ) raise ValueError def __pow__( self , _snake_case ): if n < 0 or isinstance(_snake_case , _snake_case ): raise ValueError("power must be a positive integer" ) if n == 0: return 1 if n == 1: return self _UpperCAmelCase =self for _ in range(n - 1 ): x *= self return x def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->List[str]: if not callable(_lowerCamelCase ): raise ValueError("differentiate() requires a function as input for func" ) if not isinstance(_lowerCamelCase , (float, int) ): raise ValueError("differentiate() requires a float as input for position" ) if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("differentiate() requires an int as input for order" ) _UpperCAmelCase =Dual(_lowerCamelCase , 1 ) _UpperCAmelCase =func(_lowerCamelCase ) if order == 0: return result.real return result.duals[order - 1] * factorial(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() def lowerCamelCase__ ( _lowerCamelCase ) ->Optional[int]: return y**2 * y**4 print(differentiate(f, 9, 2))
408
0
"""simple docstring""" from typing import Any class lowercase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : Any ): _A = data _A = None class lowercase_ : '''simple docstring''' def __init__( self : int ): _A = None def lowerCAmelCase_ ( self : List[str] ): _A = self.head while temp is not None: print(temp.data , end=' ' ) _A = temp.next print() def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Any ): _A = Node(_UpperCAmelCase ) _A = self.head _A = new_node def lowerCAmelCase_ ( self : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] ): if node_data_a == node_data_a: return else: _A = self.head while node_a is not None and node_a.data != node_data_a: _A = node_a.next _A = self.head while node_a is not None and node_a.data != node_data_a: _A = node_a.next if node_a is None or node_a is None: return _A , _A = node_a.data, node_a.data if __name__ == "__main__": a = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('''After swapping''') ll.print_list()
505
"""simple docstring""" import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : List[Any] , _UpperCAmelCase : NestedDataStructureLike[PathLike] , _UpperCAmelCase : Optional[NamedSplit] = None , _UpperCAmelCase : Optional[Features] = None , _UpperCAmelCase : str = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : str , ): super().__init__( _UpperCAmelCase , split=_UpperCAmelCase , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase , streaming=_UpperCAmelCase , num_proc=_UpperCAmelCase , **_UpperCAmelCase , ) _A = field _A = path_or_paths if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else {self.split: path_or_paths} _A = Json( cache_dir=_UpperCAmelCase , data_files=_UpperCAmelCase , features=_UpperCAmelCase , field=_UpperCAmelCase , **_UpperCAmelCase , ) def lowerCAmelCase_ ( self : Union[str, Any] ): # Build iterable dataset if self.streaming: _A = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _A = None _A = None _A = None _A = None self.builder.download_and_prepare( download_config=_UpperCAmelCase , download_mode=_UpperCAmelCase , verification_mode=_UpperCAmelCase , base_path=_UpperCAmelCase , num_proc=self.num_proc , ) _A = self.builder.as_dataset( split=self.split , verification_mode=_UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset class lowercase_ : '''simple docstring''' def __init__( self : Tuple , _UpperCAmelCase : Dataset , _UpperCAmelCase : Union[PathLike, BinaryIO] , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : int , ): if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''' ) _A = dataset _A = path_or_buf _A = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _A = num_proc _A = 'utf-8' _A = to_json_kwargs def lowerCAmelCase_ ( self : Optional[Any] ): _A = self.to_json_kwargs.pop('path_or_buf' , _UpperCAmelCase ) _A = self.to_json_kwargs.pop('orient' , 'records' ) _A = self.to_json_kwargs.pop('lines' , True if orient == 'records' else False ) _A = self.to_json_kwargs.pop('index' , False if orient in ['split', 'table'] else True ) _A = self.to_json_kwargs.pop('compression' , _UpperCAmelCase ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , 'wb' , compression=_UpperCAmelCase ) as buffer: _A = self._write(file_obj=_UpperCAmelCase , orient=_UpperCAmelCase , lines=_UpperCAmelCase , index=_UpperCAmelCase , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' ' was passed. Please provide a local path instead.' ) _A = self._write( file_obj=self.path_or_buf , orient=_UpperCAmelCase , lines=_UpperCAmelCase , index=_UpperCAmelCase , **self.to_json_kwargs ) return written def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : List[Any] ): _A , _A , _A , _A , _A = args _A = query_table( table=self.dataset.data , key=slice(_UpperCAmelCase , offset + self.batch_size ) , indices=self.dataset._indices , ) _A = batch.to_pandas().to_json( path_or_buf=_UpperCAmelCase , orient=_UpperCAmelCase , lines=_UpperCAmelCase , index=_UpperCAmelCase , **_UpperCAmelCase ) if not json_str.endswith('\n' ): json_str += "\n" return json_str.encode(self.encoding ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : BinaryIO , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , **_UpperCAmelCase : Optional[Any] , ): _A = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ): _A = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(_UpperCAmelCase ) else: _A , _A = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , _UpperCAmelCase , _UpperCAmelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ): written += file_obj.write(_UpperCAmelCase ) return written
505
1
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class lowerCAmelCase ( A_ ): """simple docstring""" def __magic_name__ ( self ) -> Tuple: __a : Any = tempfile.mkdtemp() __a : Any = 5 # Realm tok __a : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''test''', '''question''', '''this''', '''is''', '''the''', '''first''', '''second''', '''third''', '''fourth''', '''fifth''', '''record''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __a : Tuple = os.path.join(self.tmpdirname , 'realm_tokenizer' ) os.makedirs(_A , exist_ok=_A ) __a : Any = os.path.join(_A , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) __a : Tuple = os.path.join(self.tmpdirname , 'realm_block_records' ) os.makedirs(_A , exist_ok=_A ) def __magic_name__ ( self ) -> str: return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'realm_tokenizer' ) ) def __magic_name__ ( self ) -> List[str]: shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ) -> Optional[Any]: __a : Optional[int] = RealmConfig(num_block_records=self.num_block_records ) return config def __magic_name__ ( self ) -> int: __a : Tuple = Dataset.from_dict( { 'id': ['0', '1'], 'question': ['foo', 'bar'], 'answers': [['Foo', 'Bar'], ['Bar']], } ) return dataset def __magic_name__ ( self ) -> int: __a : Optional[Any] = np.array( [ B'This is the first record', B'This is the second record', B'This is the third record', B'This is the fourth record', B'This is the fifth record', B'This is a longer longer longer record', ] , dtype=_A , ) return block_records def __magic_name__ ( self ) -> Optional[Any]: __a : List[Any] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def __magic_name__ ( self ) -> Tuple: __a : Optional[Any] = self.get_config() __a : Dict = self.get_dummy_retriever() __a : Any = retriever.tokenizer __a : Optional[Any] = np.array([0, 3] , dtype='long' ) __a : Optional[int] = tokenizer(['Test question'] ).input_ids __a : Dict = tokenizer( ['the fourth'] , add_special_tokens=_A , return_token_type_ids=_A , return_attention_mask=_A , ).input_ids __a : List[str] = config.reader_seq_len __a : str = retriever( _A , _A , answer_ids=_A , max_length=_A , return_tensors='np' ) self.assertEqual(len(_A ) , 2 ) self.assertEqual(len(_A ) , 2 ) self.assertEqual(len(_A ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'first', 'record', '[SEP]'] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'fourth', 'record', '[SEP]'] , ) def __magic_name__ ( self ) -> List[Any]: __a : Union[str, Any] = self.get_config() __a : str = self.get_dummy_retriever() __a : List[Any] = retriever.tokenizer __a : Dict = np.array([0, 3, 5] , dtype='long' ) __a : Any = tokenizer(['Test question'] ).input_ids __a : Tuple = tokenizer( ['the fourth', 'longer longer'] , add_special_tokens=_A , return_token_type_ids=_A , return_attention_mask=_A , ).input_ids __a : Optional[int] = config.reader_seq_len __a : Union[str, Any] = retriever( _A , _A , answer_ids=_A , max_length=_A , return_tensors='np' ) self.assertEqual([False, True, True] , _A ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , _A ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , _A ) def __magic_name__ ( self ) -> Optional[Any]: __a : str = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , 'realm_block_records' ) ) # Test local path __a : List[Any] = retriever.from_pretrained(os.path.join(self.tmpdirname , 'realm_block_records' ) ) self.assertEqual(retriever.block_records[0] , B'This is the first record' ) # Test mocked remote path with patch('transformers.models.realm.retrieval_realm.hf_hub_download' ) as mock_hf_hub_download: __a : Union[str, Any] = os.path.join( os.path.join(self.tmpdirname , 'realm_block_records' ) , _REALM_BLOCK_RECORDS_FILENAME ) __a : List[Any] = RealmRetriever.from_pretrained('google/realm-cc-news-pretrained-openqa' ) self.assertEqual(retriever.block_records[0] , B'This is the first record' )
597
from __future__ import annotations from typing import Any class UpperCAmelCase__ : '''simple docstring''' def __init__( self : Dict , UpperCamelCase : int = 6 ): """simple docstring""" _lowercase : Node | None = None _lowercase : Node | None = None self.create_linked_list(UpperCamelCase ) def lowerCAmelCase_ ( self : List[str] , UpperCamelCase : int ): """simple docstring""" _lowercase : Union[str, Any] = Node() _lowercase : Any = current_node _lowercase : List[Any] = current_node _lowercase : str = current_node for _ in range(1 , UpperCamelCase ): _lowercase : Any = Node() _lowercase : Union[str, Any] = current_node _lowercase : List[str] = previous_node _lowercase : List[str] = current_node _lowercase : str = self.front _lowercase : Optional[int] = previous_node def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" return ( self.front == self.rear and self.front is not None and self.front.data is None ) def lowerCAmelCase_ ( self : int ): """simple docstring""" self.check_can_perform_operation() return self.front.data if self.front else None def lowerCAmelCase_ ( self : Any , UpperCamelCase : Any ): """simple docstring""" if self.rear is None: return self.check_is_full() if not self.is_empty(): _lowercase : List[str] = self.rear.next if self.rear: _lowercase : Union[str, Any] = data def lowerCAmelCase_ ( self : Any ): """simple docstring""" self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: _lowercase : Optional[int] = self.front.data _lowercase : Any = None return data _lowercase : Union[str, Any] = self.front _lowercase : int = old_front.next _lowercase : Any = old_front.data _lowercase : Any = None return data def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" if self.is_empty(): raise Exception('''Empty Queue''' ) def lowerCAmelCase_ ( self : Any ): """simple docstring""" if self.rear and self.rear.next == self.front: raise Exception('''Full Queue''' ) class UpperCAmelCase__ : '''simple docstring''' def __init__( self : int ): """simple docstring""" _lowercase : Any | None = None _lowercase : Node | None = None _lowercase : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
322
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = tempfile.mkdtemp() __lowercase = BlipImageProcessor() __lowercase = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-BertModel''' ) __lowercase = BlipProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ).tokenizer def _SCREAMING_SNAKE_CASE ( self , **lowerCAmelCase__ ) -> Any: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ).image_processor def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowercase = [Image.fromarray(np.moveaxis(lowerCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' __lowercase = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowercase = self.get_image_processor(do_normalize=lowerCAmelCase__ , padding_value=1.0 ) __lowercase = BlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowerCAmelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(lowerCAmelCase__ , return_tensors='''np''' ) __lowercase = processor(images=lowerCAmelCase__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __lowercase = '''lower newer''' __lowercase = processor(text=lowerCAmelCase__ ) __lowercase = tokenizer(lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __lowercase = '''lower newer''' __lowercase = self.prepare_image_inputs() __lowercase = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowercase = processor.batch_decode(lowerCAmelCase__ ) __lowercase = tokenizer.batch_decode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __lowercase = '''lower newer''' __lowercase = self.prepare_image_inputs() __lowercase = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
522
from math import factorial __a : dict[str, int] = {str(digit): factorial(digit) for digit in range(1_0)} def UpperCAmelCase ( lowercase ): """simple docstring""" if not isinstance(lowercase , lowercase ): raise TypeError('''Parameter number must be int''' ) if number < 0: raise ValueError('''Parameter number must be greater than or equal to 0''' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(lowercase ) ) def UpperCAmelCase ( lowercase = 60 , lowercase = 1000000 ): """simple docstring""" if not isinstance(lowercase , lowercase ) or not isinstance(lowercase , lowercase ): raise TypeError('''Parameters chain_length and number_limit must be int''' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( '''Parameters chain_length and number_limit must be greater than 0''' ) # the counter for the chains with the exact desired length __lowercase = 0 # the cached sizes of the previous chains __lowercase = {} for start_chain_element in range(1 , lowercase ): # The temporary set will contain the elements of the chain __lowercase = set() __lowercase = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. __lowercase = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(lowercase ) chain_set_length += 1 __lowercase = digit_factorial_sum(lowercase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] __lowercase = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution()}''')
522
1
'''simple docstring''' import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib UpperCAmelCase_ : Any = threading.Lock() UpperCAmelCase_ : Optional[logging.Handler] = None UpperCAmelCase_ : str = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } UpperCAmelCase_ : int = logging.WARNING UpperCAmelCase_ : Optional[Any] = True def A_ ( ): """simple docstring""" _lowerCamelCase : Optional[int] = os.getenv("TRANSFORMERS_VERBOSITY" , _lowerCAmelCase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ' F'has to be one of: { ", ".join(log_levels.keys() ) }' ) return _default_log_level def A_ ( ): """simple docstring""" return __name__.split("." )[0] def A_ ( ): """simple docstring""" return logging.getLogger(_get_library_name() ) def A_ ( ): """simple docstring""" global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _lowerCamelCase : int = logging.StreamHandler() # Set sys.stderr as stream. _lowerCamelCase : Tuple = sys.stderr.flush # Apply our default configuration to the library root logger. _lowerCamelCase : Optional[Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) _lowerCamelCase : Dict = False def A_ ( ): """simple docstring""" global _default_handler with _lock: if not _default_handler: return _lowerCamelCase : Dict = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) _lowerCamelCase : int = None def A_ ( ): """simple docstring""" return log_levels def A_ ( _lowerCAmelCase : Optional[str] = None ): """simple docstring""" if name is None: _lowerCamelCase : List[Any] = _get_library_name() _configure_library_root_logger() return logging.getLogger(_lowerCAmelCase ) def A_ ( ): """simple docstring""" _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def A_ ( _lowerCAmelCase : int ): """simple docstring""" _configure_library_root_logger() _get_library_root_logger().setLevel(_lowerCAmelCase ) def A_ ( ): """simple docstring""" return set_verbosity(_lowerCAmelCase ) def A_ ( ): """simple docstring""" return set_verbosity(_lowerCAmelCase ) def A_ ( ): """simple docstring""" return set_verbosity(_lowerCAmelCase ) def A_ ( ): """simple docstring""" return set_verbosity(_lowerCAmelCase ) def A_ ( ): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def A_ ( ): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def A_ ( _lowerCAmelCase : logging.Handler ): """simple docstring""" _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : logging.Handler ): """simple docstring""" _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(_lowerCAmelCase ) def A_ ( ): """simple docstring""" _configure_library_root_logger() _lowerCamelCase : str = False def A_ ( ): """simple docstring""" _configure_library_root_logger() _lowerCamelCase : int = True def A_ ( ): """simple docstring""" _lowerCamelCase : List[Any] = _get_library_root_logger().handlers for handler in handlers: _lowerCamelCase : str = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s" ) handler.setFormatter(_lowerCAmelCase ) def A_ ( ): """simple docstring""" _lowerCamelCase : Dict = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(_lowerCAmelCase ) def A_ ( self : Optional[Any] , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Union[str, Any] = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS" , _lowerCAmelCase ) if no_advisory_warnings: return self.warning(*_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase_ : int = warning_advice @functools.lru_cache(_lowerCAmelCase ) def A_ ( self : int , *_lowerCAmelCase : str , **_lowerCAmelCase : Tuple ): """simple docstring""" self.warning(*_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase_ : Dict = warning_once class UpperCAmelCase__ : def __init__( self : Any,*__A : str,**__A : Tuple ): # pylint: disable=unused-argument _lowerCamelCase : Any = args[0] if args else None def __iter__( self : List[Any] ): return iter(self._iterator ) def __getattr__( self : Any,__A : int ): def empty_fn(*__A : int,**__A : str ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Optional[int] ): return self def __exit__( self : List[Any],__A : List[str],__A : List[str],__A : List[str] ): return class UpperCAmelCase__ : def __call__( self : List[Any],*__A : Dict,**__A : List[str] ): if _tqdm_active: return tqdm_lib.tqdm(*__A,**__A ) else: return EmptyTqdm(*__A,**__A ) def lowerCamelCase_ ( self : Any,*__A : Tuple,**__A : List[Any] ): _lowerCamelCase : str = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*__A,**__A ) def lowerCamelCase_ ( self : Any ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() UpperCAmelCase_ : str = _tqdm_cls() def A_ ( ): """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def A_ ( ): """simple docstring""" global _tqdm_active _lowerCamelCase : Any = True hf_hub_utils.enable_progress_bars() def A_ ( ): """simple docstring""" global _tqdm_active _lowerCamelCase : Any = False hf_hub_utils.disable_progress_bars()
44
import os import time import numpy as np import onnxruntime as ort __snake_case :Any ='1' __snake_case :List[str] ='0' __snake_case :Union[str, Any] ='1' __snake_case :Optional[Any] =ort.SessionOptions() __snake_case :List[str] =ort.GraphOptimizationLevel.ORT_DISABLE_ALL print('Create inference session...') __snake_case :int =['TensorrtExecutionProvider', 'CUDAExecutionProvider'] __snake_case :Optional[Any] =ort.InferenceSession('model.onnx', sess_options=sess_opt, providers=execution_provider) __snake_case :int =ort.RunOptions() __snake_case :Tuple =128 __snake_case :List[Any] =1 __snake_case :Union[str, Any] =np.ones((batch, sequence), dtype=np.intaa) __snake_case :Optional[Any] =np.ones((batch, sequence), dtype=np.intaa) __snake_case :Optional[int] =np.ones((batch, sequence), dtype=np.intaa) print('Warm up phase...') sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('Start inference...') __snake_case :Union[str, Any] =time.time() __snake_case :int =2000 __snake_case :Optional[int] ={} for iter in range(max_iters): __snake_case :Optional[Any] =sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('Average Inference Time = {:.3f} ms'.format((time.time() - start_time) * 1000 / max_iters))
106
0
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class A_ ( snake_case_ ): UpperCAmelCase__ = '''Wav2Vec2FeatureExtractor''' UpperCAmelCase__ = '''AutoTokenizer''' def __init__( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Dict ) -> Dict: super().__init__(__lowerCamelCase , __lowerCamelCase ) __magic_name__ = self.feature_extractor __magic_name__ = False @classmethod def _snake_case ( cls : int , __lowerCamelCase : Tuple , **__lowerCamelCase : List[Any] ) -> List[str]: try: return super().from_pretrained(__lowerCamelCase , **__lowerCamelCase ) except OSError: warnings.warn( f'''Loading a tokenizer inside {cls.__name__} from a config that does not''' " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " , __lowerCamelCase , ) __magic_name__ = WavaVecaFeatureExtractor.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) __magic_name__ = WavaVecaCTCTokenizer.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) return cls(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) def __call__( self : Tuple , *__lowerCamelCase : Tuple , **__lowerCamelCase : List[Any] ) -> Tuple: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__lowerCamelCase , **__lowerCamelCase ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) __magic_name__ = kwargs.pop("raw_speech" ) else: __magic_name__ = kwargs.pop("audio" , __lowerCamelCase ) __magic_name__ = kwargs.pop("sampling_rate" , __lowerCamelCase ) __magic_name__ = kwargs.pop("text" , __lowerCamelCase ) if len(__lowerCamelCase ) > 0: __magic_name__ = args[0] __magic_name__ = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: __magic_name__ = self.feature_extractor(__lowerCamelCase , *__lowerCamelCase , sampling_rate=__lowerCamelCase , **__lowerCamelCase ) if text is not None: __magic_name__ = self.tokenizer(__lowerCamelCase , **__lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: __magic_name__ = encodings["input_ids"] return inputs def _snake_case ( self : List[str] , *__lowerCamelCase : Tuple , **__lowerCamelCase : Any ) -> List[str]: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__lowerCamelCase , **__lowerCamelCase ) __magic_name__ = kwargs.pop("input_features" , __lowerCamelCase ) __magic_name__ = kwargs.pop("labels" , __lowerCamelCase ) if len(__lowerCamelCase ) > 0: __magic_name__ = args[0] __magic_name__ = args[1:] if input_features is not None: __magic_name__ = self.feature_extractor.pad(__lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) if labels is not None: __magic_name__ = self.tokenizer.pad(__lowerCamelCase , **__lowerCamelCase ) if labels is None: return input_features elif input_features is None: return labels else: __magic_name__ = labels["input_ids"] return input_features def _snake_case ( self : List[str] , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Dict ) -> List[str]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def _snake_case ( self : str , *__lowerCamelCase : Tuple , **__lowerCamelCase : Optional[Any] ) -> Any: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @contextmanager def _snake_case ( self : Optional[int] ) -> Optional[int]: warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) __magic_name__ = True __magic_name__ = self.tokenizer yield __magic_name__ = self.feature_extractor __magic_name__ = False
700
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class A_ ( snake_case_ ): UpperCAmelCase__ = 42 class A_ ( snake_case_ , snake_case_ ): UpperCAmelCase__ = True @register_to_config def __init__( self : Any , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 3 , __lowerCamelCase : Tuple[str] = ("DownEncoderBlock2D",) , __lowerCamelCase : Tuple[str] = ("UpDecoderBlock2D",) , __lowerCamelCase : Tuple[int] = (6_4,) , __lowerCamelCase : int = 1 , __lowerCamelCase : str = "silu" , __lowerCamelCase : int = 4 , __lowerCamelCase : int = 3_2 , __lowerCamelCase : int = 3_2 , __lowerCamelCase : float = 0.1_8215 , ) -> Any: super().__init__() # pass init params to Encoder __magic_name__ = Encoder( in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , down_block_types=__lowerCamelCase , block_out_channels=__lowerCamelCase , layers_per_block=__lowerCamelCase , act_fn=__lowerCamelCase , norm_num_groups=__lowerCamelCase , double_z=__lowerCamelCase , ) # pass init params to Decoder __magic_name__ = Decoder( in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , up_block_types=__lowerCamelCase , block_out_channels=__lowerCamelCase , layers_per_block=__lowerCamelCase , norm_num_groups=__lowerCamelCase , act_fn=__lowerCamelCase , ) __magic_name__ = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) __magic_name__ = nn.Convad(__lowerCamelCase , __lowerCamelCase , 1 ) __magic_name__ = False __magic_name__ = False # only relevant if vae tiling is enabled __magic_name__ = self.config.sample_size __magic_name__ = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) __magic_name__ = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) __magic_name__ = 0.25 def _snake_case ( self : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict=False ) -> Optional[int]: if isinstance(__lowerCamelCase , (Encoder, Decoder) ): __magic_name__ = value def _snake_case ( self : Dict , __lowerCamelCase : bool = True ) -> int: __magic_name__ = use_tiling def _snake_case ( self : Dict ) -> Optional[int]: self.enable_tiling(__lowerCamelCase ) def _snake_case ( self : int ) -> str: __magic_name__ = True def _snake_case ( self : Optional[Any] ) -> Tuple: __magic_name__ = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def _snake_case ( self : Optional[int] ) -> Dict[str, AttentionProcessor]: __magic_name__ = {} def fn_recursive_add_processors(__lowerCamelCase : str , __lowerCamelCase : torch.nn.Module , __lowerCamelCase : Dict[str, AttentionProcessor] ): if hasattr(__lowerCamelCase , "set_processor" ): __magic_name__ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , __lowerCamelCase , __lowerCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return processors def _snake_case ( self : Dict , __lowerCamelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> int: __magic_name__ = len(self.attn_processors.keys() ) if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(__lowerCamelCase )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(__lowerCamelCase : str , __lowerCamelCase : torch.nn.Module , __lowerCamelCase : List[str] ): if hasattr(__lowerCamelCase , "set_processor" ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): module.set_processor(__lowerCamelCase ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , __lowerCamelCase , __lowerCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : List[Any] ) -> Optional[Any]: self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def _snake_case ( self : str , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : bool = True ) -> AutoencoderKLOutput: if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(__lowerCamelCase , return_dict=__lowerCamelCase ) if self.use_slicing and x.shape[0] > 1: __magic_name__ = [self.encoder(__lowerCamelCase ) for x_slice in x.split(1 )] __magic_name__ = torch.cat(__lowerCamelCase ) else: __magic_name__ = self.encoder(__lowerCamelCase ) __magic_name__ = self.quant_conv(__lowerCamelCase ) __magic_name__ = DiagonalGaussianDistribution(__lowerCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__lowerCamelCase ) def _snake_case ( self : int , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(__lowerCamelCase , return_dict=__lowerCamelCase ) __magic_name__ = self.post_quant_conv(__lowerCamelCase ) __magic_name__ = self.decoder(__lowerCamelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=__lowerCamelCase ) @apply_forward_hook def _snake_case ( self : Optional[Any] , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_slicing and z.shape[0] > 1: __magic_name__ = [self._decode(__lowerCamelCase ).sample for z_slice in z.split(1 )] __magic_name__ = torch.cat(__lowerCamelCase ) else: __magic_name__ = self._decode(__lowerCamelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=__lowerCamelCase ) def _snake_case ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : Dict ) -> Optional[int]: __magic_name__ = min(a.shape[2] , b.shape[2] , __lowerCamelCase ) for y in range(__lowerCamelCase ): __magic_name__ = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def _snake_case ( self : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple ) -> Optional[int]: __magic_name__ = min(a.shape[3] , b.shape[3] , __lowerCamelCase ) for x in range(__lowerCamelCase ): __magic_name__ = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def _snake_case ( self : Optional[int] , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : bool = True ) -> AutoencoderKLOutput: __magic_name__ = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) __magic_name__ = int(self.tile_latent_min_size * self.tile_overlap_factor ) __magic_name__ = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __magic_name__ = [] for i in range(0 , x.shape[2] , __lowerCamelCase ): __magic_name__ = [] for j in range(0 , x.shape[3] , __lowerCamelCase ): __magic_name__ = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __magic_name__ = self.encoder(__lowerCamelCase ) __magic_name__ = self.quant_conv(__lowerCamelCase ) row.append(__lowerCamelCase ) rows.append(__lowerCamelCase ) __magic_name__ = [] for i, row in enumerate(__lowerCamelCase ): __magic_name__ = [] for j, tile in enumerate(__lowerCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __magic_name__ = self.blend_v(rows[i - 1][j] , __lowerCamelCase , __lowerCamelCase ) if j > 0: __magic_name__ = self.blend_h(row[j - 1] , __lowerCamelCase , __lowerCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__lowerCamelCase , dim=3 ) ) __magic_name__ = torch.cat(__lowerCamelCase , dim=2 ) __magic_name__ = DiagonalGaussianDistribution(__lowerCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__lowerCamelCase ) def _snake_case ( self : str , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: __magic_name__ = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) __magic_name__ = int(self.tile_sample_min_size * self.tile_overlap_factor ) __magic_name__ = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __magic_name__ = [] for i in range(0 , z.shape[2] , __lowerCamelCase ): __magic_name__ = [] for j in range(0 , z.shape[3] , __lowerCamelCase ): __magic_name__ = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __magic_name__ = self.post_quant_conv(__lowerCamelCase ) __magic_name__ = self.decoder(__lowerCamelCase ) row.append(__lowerCamelCase ) rows.append(__lowerCamelCase ) __magic_name__ = [] for i, row in enumerate(__lowerCamelCase ): __magic_name__ = [] for j, tile in enumerate(__lowerCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __magic_name__ = self.blend_v(rows[i - 1][j] , __lowerCamelCase , __lowerCamelCase ) if j > 0: __magic_name__ = self.blend_h(row[j - 1] , __lowerCamelCase , __lowerCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__lowerCamelCase , dim=3 ) ) __magic_name__ = torch.cat(__lowerCamelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=__lowerCamelCase ) def _snake_case ( self : List[str] , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : bool = False , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[torch.Generator] = None , ) -> Union[DecoderOutput, torch.FloatTensor]: __magic_name__ = sample __magic_name__ = self.encode(__lowerCamelCase ).latent_dist if sample_posterior: __magic_name__ = posterior.sample(generator=__lowerCamelCase ) else: __magic_name__ = posterior.mode() __magic_name__ = self.decode(__lowerCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__lowerCamelCase )
468
0
"""simple docstring""" import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def a ( __snake_case : Optional[Any], __snake_case : Union[str, Any], __snake_case : str ): '''simple docstring''' UpperCAmelCase_ :List[str] = 1.5 UpperCAmelCase_ :List[Any] = int(factor * num_class_images ) UpperCAmelCase_ :Union[str, Any] = ClipClient( url='''https://knn.laion.ai/knn-service''', indice_name='''laion_400m''', num_images=__snake_case, aesthetic_weight=0.1 ) os.makedirs(f'{class_data_dir}/images', exist_ok=__snake_case ) if len(list(Path(f'{class_data_dir}/images' ).iterdir() ) ) >= num_class_images: return while True: UpperCAmelCase_ :int = client.query(text=__snake_case ) if len(__snake_case ) >= factor * num_class_images or num_images > 1E4: break else: UpperCAmelCase_ :str = int(factor * num_images ) UpperCAmelCase_ :Optional[Any] = ClipClient( url='''https://knn.laion.ai/knn-service''', indice_name='''laion_400m''', num_images=__snake_case, aesthetic_weight=0.1, ) UpperCAmelCase_ :List[Any] = 0 UpperCAmelCase_ :int = 0 UpperCAmelCase_ :List[str] = tqdm(desc='''downloading real regularization images''', total=__snake_case ) with open(f'{class_data_dir}/caption.txt', '''w''' ) as fa, open(f'{class_data_dir}/urls.txt', '''w''' ) as fa, open( f'{class_data_dir}/images.txt', '''w''' ) as fa: while total < num_class_images: UpperCAmelCase_ :Optional[Any] = class_images[count] count += 1 try: UpperCAmelCase_ :Union[str, Any] = requests.get(images['''url'''] ) if img.status_code == 200: UpperCAmelCase_ :int = Image.open(BytesIO(img.content ) ) with open(f'{class_data_dir}/images/{total}.jpg', '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(f'{class_data_dir}/images/{total}.jpg' + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def a ( ): '''simple docstring''' UpperCAmelCase_ :Optional[Any] = argparse.ArgumentParser('''''', add_help=__snake_case ) parser.add_argument('''--class_prompt''', help='''text prompt to retrieve images''', required=__snake_case, type=__snake_case ) parser.add_argument('''--class_data_dir''', help='''path to save images''', required=__snake_case, type=__snake_case ) parser.add_argument('''--num_class_images''', help='''number of images to download''', default=200, type=__snake_case ) return parser.parse_args() if __name__ == "__main__": __lowerCamelCase = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
608
"""simple docstring""" import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class _snake_case ( A__ ): '''simple docstring''' UpperCamelCase__ =(CMStochasticIterativeScheduler,) UpperCamelCase__ =10 def snake_case_ ( self : Tuple , **snake_case : Any ): UpperCAmelCase_ :Tuple = { '''num_train_timesteps''': 201, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } config.update(**snake_case ) return config def snake_case_ ( self : int ): UpperCAmelCase_ :List[Any] = 10 UpperCAmelCase_ :Union[str, Any] = self.get_scheduler_config() UpperCAmelCase_ :Any = self.scheduler_classes[0](**snake_case ) scheduler.set_timesteps(snake_case ) UpperCAmelCase_ :Union[str, Any] = scheduler.timesteps[0] UpperCAmelCase_ :int = scheduler.timesteps[1] UpperCAmelCase_ :Dict = self.dummy_sample UpperCAmelCase_ :Dict = 0.1 * sample UpperCAmelCase_ :List[str] = scheduler.step(snake_case , snake_case , snake_case ).prev_sample UpperCAmelCase_ :List[str] = scheduler.step(snake_case , snake_case , snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case_ ( self : Union[str, Any] ): for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=snake_case ) def snake_case_ ( self : Dict ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=snake_case ) def snake_case_ ( self : Any ): UpperCAmelCase_ :Union[str, Any] = self.scheduler_classes[0] UpperCAmelCase_ :List[str] = self.get_scheduler_config() UpperCAmelCase_ :Any = scheduler_class(**snake_case ) UpperCAmelCase_ :Tuple = 1 scheduler.set_timesteps(snake_case ) UpperCAmelCase_ :Union[str, Any] = scheduler.timesteps UpperCAmelCase_ :Tuple = torch.manual_seed(0 ) UpperCAmelCase_ :Dict = self.dummy_model() UpperCAmelCase_ :List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(snake_case ): # 1. scale model input UpperCAmelCase_ :int = scheduler.scale_model_input(snake_case , snake_case ) # 2. predict noise residual UpperCAmelCase_ :Optional[int] = model(snake_case , snake_case ) # 3. predict previous sample x_t-1 UpperCAmelCase_ :List[str] = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ).prev_sample UpperCAmelCase_ :Dict = pred_prev_sample UpperCAmelCase_ :Any = torch.sum(torch.abs(snake_case ) ) UpperCAmelCase_ :Tuple = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 192.7_614 ) < 1e-2 assert abs(result_mean.item() - 0.2_510 ) < 1e-3 def snake_case_ ( self : Optional[int] ): UpperCAmelCase_ :List[Any] = self.scheduler_classes[0] UpperCAmelCase_ :Tuple = self.get_scheduler_config() UpperCAmelCase_ :Dict = scheduler_class(**snake_case ) UpperCAmelCase_ :Union[str, Any] = [106, 0] scheduler.set_timesteps(timesteps=snake_case ) UpperCAmelCase_ :Union[str, Any] = scheduler.timesteps UpperCAmelCase_ :Dict = torch.manual_seed(0 ) UpperCAmelCase_ :Optional[Any] = self.dummy_model() UpperCAmelCase_ :int = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input UpperCAmelCase_ :str = scheduler.scale_model_input(snake_case , snake_case ) # 2. predict noise residual UpperCAmelCase_ :Tuple = model(snake_case , snake_case ) # 3. predict previous sample x_t-1 UpperCAmelCase_ :Optional[int] = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ).prev_sample UpperCAmelCase_ :int = pred_prev_sample UpperCAmelCase_ :List[str] = torch.sum(torch.abs(snake_case ) ) UpperCAmelCase_ :int = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 347.6_357 ) < 1e-2 assert abs(result_mean.item() - 0.4_527 ) < 1e-3 def snake_case_ ( self : Optional[int] ): UpperCAmelCase_ :Union[str, Any] = self.scheduler_classes[0] UpperCAmelCase_ :int = self.get_scheduler_config() UpperCAmelCase_ :str = scheduler_class(**snake_case ) UpperCAmelCase_ :int = [39, 30, 12, 15, 0] with self.assertRaises(snake_case , msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=snake_case ) def snake_case_ ( self : List[str] ): UpperCAmelCase_ :Union[str, Any] = self.scheduler_classes[0] UpperCAmelCase_ :List[str] = self.get_scheduler_config() UpperCAmelCase_ :List[Any] = scheduler_class(**snake_case ) UpperCAmelCase_ :Dict = [39, 30, 12, 1, 0] UpperCAmelCase_ :str = len(snake_case ) with self.assertRaises(snake_case , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=snake_case , timesteps=snake_case ) def snake_case_ ( self : Any ): UpperCAmelCase_ :Dict = self.scheduler_classes[0] UpperCAmelCase_ :int = self.get_scheduler_config() UpperCAmelCase_ :int = scheduler_class(**snake_case ) UpperCAmelCase_ :Union[str, Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( snake_case , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=snake_case )
608
1
'''simple docstring''' import string def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase ='' for i in sequence: _lowerCAmelCase =ord(lowerCAmelCase__ ) if 6_5 <= extract <= 9_0: output += chr(1_5_5 - extract ) elif 9_7 <= extract <= 1_2_2: output += chr(2_1_9 - extract ) else: output += i return output def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =string.ascii_letters _lowerCAmelCase =string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(lowerCAmelCase__ )] if c in letters else c for c in sequence ) def UpperCamelCase__ ( ): '''simple docstring''' from timeit import timeit print('Running performance benchmarks...' ) _lowerCAmelCase ='from string import printable ; from __main__ import atbash, atbash_slow' print(F'''> atbash_slow(): {timeit('atbash_slow(printable)' , setup=lowerCAmelCase__ )} seconds''' ) print(F'''> atbash(): {timeit('atbash(printable)' , setup=lowerCAmelCase__ )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F'{example} encrypted in atbash: {atbash(example)}') benchmark()
708
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters lowercase_ = False lowercase_ = False def UpperCamelCase__ ( a__ ): '''simple docstring''' return TrainCommand(a__ ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @staticmethod def UpperCamelCase__ ( __A ) -> Tuple: _lowerCAmelCase =parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=__A , required=__A , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=__A , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=__A , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=__A , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=__A , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=__A , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=__A , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=__A , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=__A , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=__A , default=32 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=__A , default=64 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=__A , default=3E-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=__A , default=1E-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=__A ) def __init__( self , __A ) -> List[str]: _lowerCAmelCase =logging.get_logger('transformers-cli/training' ) _lowerCAmelCase ='tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=__A ) _lowerCAmelCase =args.output _lowerCAmelCase =args.column_label _lowerCAmelCase =args.column_text _lowerCAmelCase =args.column_id self.logger.info(F'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": _lowerCAmelCase =TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F'''Loading dataset from {args.train_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =None if args.validation_data: self.logger.info(F'''Loading validation dataset from {args.validation_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =args.validation_split _lowerCAmelCase =args.train_batch_size _lowerCAmelCase =args.valid_batch_size _lowerCAmelCase =args.learning_rate _lowerCAmelCase =args.adam_epsilon def UpperCamelCase__ ( self ) -> List[str]: if self.framework == "tf": return self.run_tf() return self.run_torch() def UpperCamelCase__ ( self ) -> Union[str, Any]: raise NotImplementedError def UpperCamelCase__ ( self ) -> List[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
58
0
"""simple docstring""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : int = "▁" _lowerCAmelCase : Optional[Any] = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} _lowerCAmelCase : Any = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } _lowerCAmelCase : List[str] = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } _lowerCAmelCase : Union[str, Any] = { "ernie-m-base": 5_14, "ernie-m-large": 5_14, } _lowerCAmelCase : str = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : List[str] = ["input_ids"] __SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : List[Any] = RESOURCE_FILES_NAMES def __init__( self : List[str] , A : Tuple , A : Union[str, Any]=None , A : Union[str, Any]=False , A : Optional[int]="utf8" , A : List[str]="[UNK]" , A : Union[str, Any]="[SEP]" , A : Union[str, Any]="[PAD]" , A : Dict="[CLS]" , A : int="[MASK]" , A : Optional[Dict[str, Any]] = None , **A : List[Any] , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _UpperCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , vocab_file=A , encoding=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) _UpperCAmelCase : Any = do_lower_case _UpperCAmelCase : Optional[int] = sentencepiece_model_ckpt _UpperCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: _UpperCAmelCase : List[str] = self.load_vocab(filepath=A ) else: _UpperCAmelCase : Optional[Any] = {self.sp_model.id_to_piece(A ): id for id in range(self.sp_model.get_piece_size() )} _UpperCAmelCase : Tuple = {v: k for k, v in self.vocab.items()} def snake_case_ ( self : Any , A : int ): if text is None: return None _UpperCAmelCase : Tuple = self.tokenize(A ) _UpperCAmelCase , _UpperCAmelCase : Dict = "", [] for i, ch in enumerate(A ): if ch in self.SP_CHAR_MAPPING: _UpperCAmelCase : Optional[Any] = self.SP_CHAR_MAPPING.get(A ) else: _UpperCAmelCase : str = unicodedata.normalize("NFKC" , A ) if self.is_whitespace(A ): continue normalized_text += ch char_mapping.extend([i] * len(A ) ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : int = normalized_text, [], 0 if self.do_lower_case: _UpperCAmelCase : Optional[int] = text.lower() for token in split_tokens: if token[:1] == "▁": _UpperCAmelCase : Any = token[1:] _UpperCAmelCase : List[str] = text[offset:].index(A ) + offset _UpperCAmelCase : Optional[Any] = start + len(A ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) _UpperCAmelCase : str = end return token_mapping @property def snake_case_ ( self : int ): return len(self.vocab ) def snake_case_ ( self : int ): return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : List[str] ): _UpperCAmelCase : Union[str, Any] = self.__dict__.copy() _UpperCAmelCase : List[str] = None return state def __setstate__( self : str , A : Tuple ): _UpperCAmelCase : Optional[int] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase : str = {} _UpperCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def snake_case_ ( self : Union[str, Any] , A : Tuple ): return "".join((self.SP_CHAR_MAPPING.get(A , A ) for c in text) ) def snake_case_ ( self : Union[str, Any] , A : Dict , A : Union[str, Any]=False , A : Tuple=6_4 , A : str=0.1 ): if self.sp_model_kwargs.get("enable_sampling" ) is True: _UpperCAmelCase : List[str] = True if self.sp_model_kwargs.get("alpha" ) is not None: _UpperCAmelCase : Dict = self.sp_model_kwargs.get("alpha" ) if self.sp_model_kwargs.get("nbest_size" ) is not None: _UpperCAmelCase : Any = self.sp_model_kwargs.get("nbest_size" ) if not enable_sampling: _UpperCAmelCase : Optional[Any] = self.sp_model.EncodeAsPieces(A ) else: _UpperCAmelCase : List[str] = self.sp_model.SampleEncodeAsPieces(A , A , A ) _UpperCAmelCase : List[str] = [] for pi, piece in enumerate(A ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(A ) and pi != 0: new_pieces.append(A ) continue else: continue _UpperCAmelCase : List[Any] = 0 for i, chunk in enumerate(A ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(A ) or self.is_punct(A ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(A ) _UpperCAmelCase : Union[str, Any] = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) _UpperCAmelCase : List[str] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) _UpperCAmelCase : Optional[Any] = i if len(A ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def snake_case_ ( self : List[str] , A : List[str] ): _UpperCAmelCase : int = "".join(A ).replace(A , " " ).strip() return out_string def snake_case_ ( self : Union[str, Any] , A : List[Any] ): _UpperCAmelCase : Any = self.convert_ids_to_tokens(A ) _UpperCAmelCase : Union[str, Any] = "".join(A ).replace(A , " " ).strip() return out_string def snake_case_ ( self : List[Any] , A : List[Any] ): return self.vocab.get(A , self.vocab.get(self.unk_token ) ) def snake_case_ ( self : Dict , A : Any ): return self.reverse_vocab.get(A , self.unk_token ) def snake_case_ ( self : Optional[Any] , A : int , A : Union[str, Any]=None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase : Dict = [self.cls_token_id] _UpperCAmelCase : Dict = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def snake_case_ ( self : Union[str, Any] , A : Optional[Any] , A : Any=None ): if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def snake_case_ ( self : List[Any] , A : Tuple , A : Dict=None , A : Tuple=False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] def snake_case_ ( self : Any , A : List[int] , A : Optional[List[int]] = None ): # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(A ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(A ) + 1) + [1] * (len(A ) + 3) def snake_case_ ( self : List[str] , A : Union[str, Any] ): if "\u4e00" <= char <= "\u9fff": return True return False def snake_case_ ( self : Optional[Any] , A : Tuple ): if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def snake_case_ ( self : Optional[int] , A : Optional[Any] ): if char in ",;:.?!~,;:。?!《》【】": return True return False def snake_case_ ( self : str , A : Union[str, Any] ): if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(A ) == 1: _UpperCAmelCase : Tuple = unicodedata.category(A ) if cat == "Zs": return True return False def snake_case_ ( self : Any , A : List[Any] ): _UpperCAmelCase : Tuple = {} with io.open(A , "r" , encoding="utf-8" ) as f: for index, line in enumerate(A ): _UpperCAmelCase : Any = line.rstrip("\n" ) _UpperCAmelCase : Optional[int] = int(A ) return token_to_idx def snake_case_ ( self : Optional[Any] , A : str , A : Optional[str] = None ): _UpperCAmelCase : Optional[int] = 0 if os.path.isdir(A ): _UpperCAmelCase : Any = os.path.join( A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: _UpperCAmelCase : int = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(A , "w" , encoding="utf-8" ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda A : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' " Please check that the vocabulary is not corrupted!" ) _UpperCAmelCase : Optional[int] = token_index writer.write(token + "\n" ) index += 1 _UpperCAmelCase : Union[str, Any] = os.path.join(A , "sentencepiece.bpe.model" ) with open(A , "wb" ) as fi: _UpperCAmelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(A ) return (vocab_file,)
289
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __snake_case ( ) -> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[int] = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png" _UpperCAmelCase : int = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ).convert("RGB" ) return image def __snake_case ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Dict: '''simple docstring''' _UpperCAmelCase : List[Any] = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'visual_encoder.blocks.{i}.norm1.weight', f'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm1.bias', f'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.weight', f'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.bias', f'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.qkv.weight', f'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.weight', f'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.bias', f'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.weight', f'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.bias', f'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.weight', f'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.bias', f'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.layernorm.bias") ) # fmt: on return rename_keys def __snake_case ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict: '''simple docstring''' _UpperCAmelCase : Optional[int] = dct.pop(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Tuple = val def __snake_case ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _UpperCAmelCase : List[Any] = state_dict.pop(f'visual_encoder.blocks.{i}.attn.q_bias' ) _UpperCAmelCase : List[str] = state_dict.pop(f'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict _UpperCAmelCase : List[Any] = torch.cat((q_bias, torch.zeros_like(SCREAMING_SNAKE_CASE__ , requires_grad=SCREAMING_SNAKE_CASE__ ), v_bias) ) _UpperCAmelCase : Union[str, Any] = qkv_bias def __snake_case ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any ) -> str: '''simple docstring''' _UpperCAmelCase : int = 364 if "coco" in model_name else 224 _UpperCAmelCase : Dict = BlipaVisionConfig(image_size=SCREAMING_SNAKE_CASE__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _UpperCAmelCase : Any = OPTConfig.from_pretrained("facebook/opt-2.7b" , eos_token_id=SCREAMING_SNAKE_CASE__ ).to_dict() elif "opt-6.7b" in model_name: _UpperCAmelCase : List[Any] = OPTConfig.from_pretrained("facebook/opt-6.7b" , eos_token_id=SCREAMING_SNAKE_CASE__ ).to_dict() elif "t5-xl" in model_name: _UpperCAmelCase : Tuple = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _UpperCAmelCase : int = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() _UpperCAmelCase : Optional[Any] = BlipaConfig(vision_config=SCREAMING_SNAKE_CASE__ , text_config=SCREAMING_SNAKE_CASE__ ) return config, image_size @torch.no_grad() def __snake_case ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = ( AutoTokenizer.from_pretrained("facebook/opt-2.7b" ) if "opt" in model_name else AutoTokenizer.from_pretrained("google/flan-t5-xl" ) ) _UpperCAmelCase : Optional[int] = tokenizer("\n" , add_special_tokens=SCREAMING_SNAKE_CASE__ ).input_ids[0] _UpperCAmelCase , _UpperCAmelCase : int = get_blipa_config(SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : int = BlipaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() _UpperCAmelCase : Optional[int] = { "blip2-opt-2.7b": ("blip2_opt", "pretrain_opt2.7b"), "blip2-opt-6.7b": ("blip2_opt", "pretrain_opt6.7b"), "blip2-opt-2.7b-coco": ("blip2_opt", "caption_coco_opt2.7b"), "blip2-opt-6.7b-coco": ("blip2_opt", "caption_coco_opt6.7b"), "blip2-flan-t5-xl": ("blip2_t5", "pretrain_flant5xl"), "blip2-flan-t5-xl-coco": ("blip2_t5", "caption_coco_flant5xl"), "blip2-flan-t5-xxl": ("blip2_t5", "pretrain_flant5xxl"), } _UpperCAmelCase , _UpperCAmelCase : str = model_name_to_original[model_name] # load original model print("Loading original model..." ) _UpperCAmelCase : List[Any] = "cuda" if torch.cuda.is_available() else "cpu" _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = load_model_and_preprocess( name=SCREAMING_SNAKE_CASE__ , model_type=SCREAMING_SNAKE_CASE__ , is_eval=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ ) original_model.eval() print("Done!" ) # update state dict keys _UpperCAmelCase : Optional[Any] = original_model.state_dict() _UpperCAmelCase : Union[str, Any] = create_rename_keys(SCREAMING_SNAKE_CASE__ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _UpperCAmelCase : Tuple = state_dict.pop(SCREAMING_SNAKE_CASE__ ) if key.startswith("Qformer.bert" ): _UpperCAmelCase : List[Any] = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: _UpperCAmelCase : Dict = key.replace("self" , "attention" ) if "opt_proj" in key: _UpperCAmelCase : Union[str, Any] = key.replace("opt_proj" , "language_projection" ) if "t5_proj" in key: _UpperCAmelCase : Optional[Any] = key.replace("t5_proj" , "language_projection" ) if key.startswith("opt" ): _UpperCAmelCase : Dict = key.replace("opt" , "language" ) if key.startswith("t5" ): _UpperCAmelCase : Union[str, Any] = key.replace("t5" , "language" ) _UpperCAmelCase : List[str] = val # read in qv biases read_in_q_v_bias(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = hf_model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _UpperCAmelCase : Dict = load_demo_image() _UpperCAmelCase : List[Any] = vis_processors["eval"](SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ).to(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Optional[Any] = tokenizer(["\n"] , return_tensors="pt" ).input_ids.to(SCREAMING_SNAKE_CASE__ ) # create processor _UpperCAmelCase : Any = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=SCREAMING_SNAKE_CASE__ , image_std=SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Dict = BlipaProcessor(image_processor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Dict = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="pt" ).pixel_values.to(SCREAMING_SNAKE_CASE__ ) # make sure processor creates exact same pixel values assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) original_model.to(SCREAMING_SNAKE_CASE__ ) hf_model.to(SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): if "opt" in model_name: _UpperCAmelCase : str = original_model({"image": original_pixel_values, "text_input": [""]} ).logits _UpperCAmelCase : Optional[int] = hf_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).logits else: _UpperCAmelCase : List[Any] = original_model( {"image": original_pixel_values, "text_input": ["\n"], "text_output": ["\n"]} ).logits _UpperCAmelCase : List[str] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) _UpperCAmelCase : Union[str, Any] = hf_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ).logits assert original_logits.shape == logits.shape print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _UpperCAmelCase : List[str] = torch.tensor( [[-41.5_850, -4.4_440, -8.9_922], [-47.4_322, -5.9_143, -1.7_340]] , device=SCREAMING_SNAKE_CASE__ ) assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": _UpperCAmelCase : Any = torch.tensor( [[-57.0_109, -9.8_967, -12.6_280], [-68.6_578, -12.7_191, -10.5_065]] , device=SCREAMING_SNAKE_CASE__ ) else: # cast to same type _UpperCAmelCase : List[str] = logits.dtype assert torch.allclose(original_logits.to(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , atol=1E-2 ) print("Looks ok!" ) print("Generating a caption..." ) _UpperCAmelCase : int = "" _UpperCAmelCase : Any = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors="pt" ).input_ids.to(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : List[Any] = original_model.generate({"image": original_pixel_values} ) _UpperCAmelCase : int = hf_model.generate( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , do_sample=SCREAMING_SNAKE_CASE__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("Original generation:" , SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : str = input_ids.shape[1] _UpperCAmelCase : List[Any] = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : int = [text.strip() for text in output_text] print("HF generation:" , SCREAMING_SNAKE_CASE__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: processor.push_to_hub(f'nielsr/{model_name}' ) hf_model.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() _lowerCAmelCase : List[Any] = [ "blip2-opt-2.7b", "blip2-opt-6.7b", "blip2-opt-2.7b-coco", "blip2-opt-6.7b-coco", "blip2-flan-t5-xl", "blip2-flan-t5-xl-coco", "blip2-flan-t5-xxl", ] parser.add_argument( "--model_name", default="blip2-opt-2.7b", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) _lowerCAmelCase : str = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
289
1
import os import string import sys lowercase__ : List[Any] = 1 << 8 lowercase__ : int = { 'tab': ord("\t"), 'newline': ord("\r"), 'esc': 2_7, 'up': 6_5 + ARROW_KEY_FLAG, 'down': 6_6 + ARROW_KEY_FLAG, 'right': 6_7 + ARROW_KEY_FLAG, 'left': 6_8 + ARROW_KEY_FLAG, 'mod_int': 9_1, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 5_0, 'delete': 5_1, 'pg_up': 5_3, 'pg_down': 5_4, } lowercase__ : List[Any] = KEYMAP['up'] lowercase__ : int = KEYMAP['left'] if sys.platform == "win32": lowercase__ : str = [] lowercase__ : List[str] = { b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(1_0): lowercase__ : Dict = ord(str(i)) def A_ ( ) -> Union[str, Any]: '''simple docstring''' if os.name == "nt": import msvcrt __UpperCamelCase = "mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_lowerCAmelCase ) == 0: # Read the keystroke __UpperCamelCase = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): __UpperCamelCase = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: __UpperCamelCase = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['''mod_int'''] ) ) WIN_CH_BUFFER.append(_lowerCAmelCase ) if ord(_lowerCAmelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) __UpperCamelCase = chr(KEYMAP['''esc'''] ) except KeyError: __UpperCamelCase = cha[1] else: __UpperCamelCase = ch.decode(_lowerCAmelCase ) else: __UpperCamelCase = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty __UpperCamelCase = sys.stdin.fileno() __UpperCamelCase = termios.tcgetattr(_lowerCAmelCase ) try: tty.setraw(_lowerCAmelCase ) __UpperCamelCase = sys.stdin.read(1 ) finally: termios.tcsetattr(_lowerCAmelCase , termios.TCSADRAIN , _lowerCAmelCase ) return ch def A_ ( ) -> Optional[int]: '''simple docstring''' __UpperCamelCase = get_raw_chars() if ord(_lowerCAmelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_lowerCAmelCase ) == KEYMAP["esc"]: __UpperCamelCase = get_raw_chars() if ord(_lowerCAmelCase ) == KEYMAP["mod_int"]: __UpperCamelCase = get_raw_chars() if ord(_lowerCAmelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_lowerCAmelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_lowerCAmelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
711
from collections import Counter from timeit import timeit def A_ ( snake_case : str = "" , ) -> bool: '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(''' ''' , '''''' ).lower() ).values() ) < 2 def A_ ( snake_case : str = "" ) -> bool: '''simple docstring''' if len(snake_case ) == 0: return True __UpperCamelCase = input_str.replace(''' ''' , '''''' ).lower() # character_freq_dict: Stores the frequency of every character in the input string __UpperCamelCase = {} for character in lower_case_input_str: __UpperCamelCase = character_freq_dict.get(snake_case , 0 ) + 1 __UpperCamelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def A_ ( snake_case : str = "" ) -> None: '''simple docstring''' print('''\nFor string = ''' , snake_case , ''':''' ) print( '''> can_string_be_rearranged_as_palindrome_counter()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome_counter(snake_case ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome_counter(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) print( '''> can_string_be_rearranged_as_palindrome()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome(snake_case ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) if __name__ == "__main__": lowercase__ : Tuple = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) lowercase__ : Dict = can_string_be_rearranged_as_palindrome_counter(check_str) print(F"{check_str} can {'' if status else 'not '}be rearranged as a palindrome")
451
0
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file lowercase : List[Any] = 'Run commands across TPU VMs for initial setup before running `accelerate launch`.' def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any]=None) -> List[str]: '''simple docstring''' if subparsers is not None: __UpperCamelCase : int = subparsers.add_parser("tpu-config" , description=_description) else: __UpperCamelCase : Dict = argparse.ArgumentParser("Accelerate tpu-config command" , description=_description) # Core arguments __UpperCamelCase : Optional[Any] = parser.add_argument_group( "Config Arguments" , "Arguments that can be configured through `accelerate config`.") config_args.add_argument( "--config_file" , type=_lowerCamelCase , default=_lowerCamelCase , help="Path to the config file to use for accelerate." , ) config_args.add_argument( "--tpu_name" , default=_lowerCamelCase , help="The name of the TPU to use. If not specified, will use the TPU specified in the config file." , ) config_args.add_argument( "--tpu_zone" , default=_lowerCamelCase , help="The zone of the TPU to use. If not specified, will use the zone specified in the config file." , ) __UpperCamelCase : Tuple = parser.add_argument_group("TPU Arguments" , "Arguments for options ran inside the TPU.") pod_args.add_argument( "--use_alpha" , action="store_true" , help="Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`." , ) pod_args.add_argument( "--command_file" , default=_lowerCamelCase , help="The path to the file containing the commands to run on the pod on startup." , ) pod_args.add_argument( "--command" , action="append" , nargs="+" , help="A command to run on the pod. Can be passed multiple times." , ) pod_args.add_argument( "--install_accelerate" , action="store_true" , help="Whether to install accelerate on the pod. Defaults to False." , ) pod_args.add_argument( "--accelerate_version" , default="latest" , help="The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub." , ) pod_args.add_argument( "--debug" , action="store_true" , help="If set, will print the command that would be run instead of running it.") if subparsers is not None: parser.set_defaults(func=_lowerCamelCase) return parser def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any]) -> Dict: '''simple docstring''' __UpperCamelCase : List[str] = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_lowerCamelCase): __UpperCamelCase : Dict = load_config_from_file(args.config_file) if not args.command_file and defaults.command_file is not None and not args.command: __UpperCamelCase : List[Any] = defaults.command_file if not args.command and defaults.commands is not None: __UpperCamelCase : int = defaults.commands if not args.tpu_name: __UpperCamelCase : int = defaults.tpu_name if not args.tpu_zone: __UpperCamelCase : Optional[Any] = defaults.tpu_zone if args.accelerate_version == "dev": __UpperCamelCase : List[str] = "git+https://github.com/huggingface/accelerate.git" elif args.accelerate_version == "latest": __UpperCamelCase : Optional[int] = "accelerate -U" elif isinstance(parse(args.accelerate_version) , _lowerCamelCase): __UpperCamelCase : Union[str, Any] = F'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError("You must specify either a command file or a command to run on the pod.") if args.command_file: with open(args.command_file , "r") as f: __UpperCamelCase : List[Any] = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _lowerCamelCase): __UpperCamelCase : Union[str, Any] = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate __UpperCamelCase : str = ["cd /usr/share"] if args.install_accelerate: new_cmd += [F'pip install {args.accelerate_version}'] new_cmd += args.command __UpperCamelCase : str = "; ".join(_lowerCamelCase) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess __UpperCamelCase : List[Any] = ["gcloud"] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'Running {" ".join(_lowerCamelCase)}') return subprocess.run(_lowerCamelCase) print("Successfully setup pod.") def _SCREAMING_SNAKE_CASE ( ) -> List[Any]: '''simple docstring''' __UpperCamelCase : Optional[Any] = tpu_command_parser() __UpperCamelCase : Optional[Any] = parser.parse_args() tpu_command_launcher(_lowerCamelCase)
557
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : Tuple = { 'configuration_luke': ['LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LukeConfig'], 'tokenization_luke': ['LukeTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : int = [ 'LUKE_PRETRAINED_MODEL_ARCHIVE_LIST', 'LukeForEntityClassification', 'LukeForEntityPairClassification', 'LukeForEntitySpanClassification', 'LukeForMultipleChoice', 'LukeForQuestionAnswering', 'LukeForSequenceClassification', 'LukeForTokenClassification', 'LukeForMaskedLM', 'LukeModel', 'LukePreTrainedModel', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys lowercase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
557
1
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger('''transformers.models.encodec''') SCREAMING_SNAKE_CASE__ = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } SCREAMING_SNAKE_CASE__ = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } SCREAMING_SNAKE_CASE__ = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } SCREAMING_SNAKE_CASE__ = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } SCREAMING_SNAKE_CASE__ = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } SCREAMING_SNAKE_CASE__ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } SCREAMING_SNAKE_CASE__ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Any: for attribute in key.split('.' ): A__ = getattr(__UpperCamelCase , __UpperCamelCase ) if weight_type is not None: A__ = getattr(__UpperCamelCase , __UpperCamelCase ).shape else: A__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": A__ = value elif weight_type == "weight_g": A__ = value elif weight_type == "weight_v": A__ = value elif weight_type == "bias": A__ = value elif weight_type == "running_mean": A__ = value elif weight_type == "running_var": A__ = value elif weight_type == "num_batches_tracked": A__ = value elif weight_type == "weight_ih_l0": A__ = value elif weight_type == "weight_hh_l0": A__ = value elif weight_type == "bias_ih_l0": A__ = value elif weight_type == "bias_hh_l0": A__ = value elif weight_type == "weight_ih_l1": A__ = value elif weight_type == "weight_hh_l1": A__ = value elif weight_type == "bias_ih_l1": A__ = value elif weight_type == "bias_hh_l1": A__ = value else: A__ = value logger.info(f'''{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.''' ) def A ( __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: A__ , A__ = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Any: A__ = [] if model_name == "encodec_24khz" or "encodec_32khz": A__ = MAPPING_24K elif model_name == "encodec_48khz": A__ = MAPPING_48K else: raise ValueError(f'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(__UpperCamelCase , __UpperCamelCase ): logger.info(f'''{name} was ignored''' ) continue A__ = False for key, mapped_key in MAPPING.items(): if "*" in key: A__ , A__ = key.split('.*.' ) if prefix in name and suffix in name: A__ = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue A__ = True if "*" in mapped_key: A__ = name.split(__UpperCamelCase )[0].split('.' )[-2] A__ = mapped_key.replace('*' , __UpperCamelCase ) if "weight_g" in name: A__ = 'weight_g' elif "weight_v" in name: A__ = 'weight_v' elif "weight_ih_l0" in name: A__ = 'weight_ih_l0' elif "weight_hh_l0" in name: A__ = 'weight_hh_l0' elif "bias_ih_l0" in name: A__ = 'bias_ih_l0' elif "bias_hh_l0" in name: A__ = 'bias_hh_l0' elif "weight_ih_l1" in name: A__ = 'weight_ih_l1' elif "weight_hh_l1" in name: A__ = 'weight_hh_l1' elif "bias_ih_l1" in name: A__ = 'bias_ih_l1' elif "bias_hh_l1" in name: A__ = 'bias_hh_l1' elif "bias" in name: A__ = 'bias' elif "weight" in name: A__ = 'weight' elif "running_mean" in name: A__ = 'running_mean' elif "running_var" in name: A__ = 'running_var' elif "num_batches_tracked" in name: A__ = 'num_batches_tracked' else: A__ = None set_recursively(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) continue if not is_used: unused_weights.append(__UpperCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) @torch.no_grad() def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , ) -> int: if config_path is not None: A__ = EncodecConfig.from_pretrained(__UpperCamelCase ) else: A__ = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": A__ = [8, 5, 4, 4] A__ = [2.2] A__ = 64 A__ = 32_000 A__ = 2_048 A__ = False A__ = False A__ = False elif model_name == "encodec_48khz": A__ = [8, 5, 4, 2] A__ = [3.0, 6.0, 12.0, 24.0] A__ = 48_000 A__ = 2 A__ = False A__ = 'time_group_norm' A__ = True A__ = 1.0 A__ = 0.01 else: raise ValueError(f'''Unknown model name: {model_name}''' ) A__ = EncodecModel(__UpperCamelCase ) A__ = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(__UpperCamelCase ) A__ = torch.load(__UpperCamelCase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights A__ = original_checkpoint['best_state'] recursively_load_weights(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(__UpperCamelCase ) model.push_to_hub(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
707
import argparse import struct import unittest class __lowerCAmelCase : """simple docstring""" def __init__( self : List[str] , _snake_case : bytes ): """simple docstring""" A__ = data # Initialize hash values A__ = [ 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19, ] # Initialize round constants A__ = [ 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967, 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070, 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2, ] A__ = self.preprocessing(self.data ) self.final_hash() @staticmethod def _a ( _snake_case : bytes ): """simple docstring""" A__ = B'\x80' + (B'\x00' * (63 - (len(_snake_case ) + 8) % 64)) A__ = struct.pack('>Q' , (len(_snake_case ) * 8) ) return data + padding + big_endian_integer def _a ( self : Optional[int] ): """simple docstring""" A__ = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers A__ = list(struct.unpack('>16L' , _snake_case ) ) # add 48 0-ed integers words += [0] * 48 A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array A__ = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) A__ = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) A__ = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x100000000 # Compression A__ = self.ror(_snake_case , 6 ) ^ self.ror(_snake_case , 11 ) ^ self.ror(_snake_case , 25 ) A__ = (e & f) ^ ((~e & 0xFFFFFFFF) & g) A__ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x100000000 A__ = self.ror(_snake_case , 2 ) ^ self.ror(_snake_case , 13 ) ^ self.ror(_snake_case , 22 ) A__ = (a & b) ^ (a & c) ^ (b & c) A__ = (sa + maj) % 0x100000000 A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ = ( g, f, e, ((d + tempa) % 0x100000000), c, b, a, ((tempa + tempa) % 0x100000000), ) A__ = [a, b, c, d, e, f, g, h] # Modify final values A__ = [ ((element + mutated_hash_values[index]) % 0x100000000) for index, element in enumerate(self.hashes ) ] A__ = ''.join([hex(_snake_case )[2:].zfill(8 ) for value in self.hashes] ) def _a ( self : Dict , _snake_case : int , _snake_case : int ): """simple docstring""" return 0xFFFFFFFF & (value << (32 - rotations)) | (value >> rotations) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _a ( self : str ): """simple docstring""" import hashlib A__ = bytes('Test String' , 'utf-8' ) self.assertEqual(SHAaaa(_snake_case ).hash , hashlib.shaaaa(_snake_case ).hexdigest() ) def A ( ) -> None: import doctest doctest.testmod() A__ = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) A__ = parser.parse_args() A__ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: A__ = f.read() else: A__ = bytes(__UpperCamelCase , 'utf-8' ) print(SHAaaa(__UpperCamelCase ).hash ) if __name__ == "__main__": main()
52
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu UpperCamelCase = [ """EAGER""", """AOT_EAGER""", """INDUCTOR""", """NVFUSER""", """AOT_NVFUSER""", """AOT_CUDAGRAPHS""", """OFI""", """FX2TRT""", """ONNXRT""", """IPEX""", ] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ): A_ : str = True while ask_again: A_ : str = input(SCREAMING_SNAKE_CASE ) try: if default is not None and len(SCREAMING_SNAKE_CASE ) == 0: return default return convert_value(SCREAMING_SNAKE_CASE ) if convert_value is not None else result except Exception: if error_message is not None: print(SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=[] , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=0 ): A_ : Any = BulletMenu(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = menu.run(default_choice=SCREAMING_SNAKE_CASE ) return convert_value(SCREAMING_SNAKE_CASE ) if convert_value is not None else result def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : str = int(SCREAMING_SNAKE_CASE ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : int = int(SCREAMING_SNAKE_CASE ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : Optional[int] = int(SCREAMING_SNAKE_CASE ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : List[Any] = int(SCREAMING_SNAKE_CASE ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : Any = int(SCREAMING_SNAKE_CASE ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): return {"yes": True, "no": False}[value.lower()] class _lowerCamelCase ( argparse.RawDescriptionHelpFormatter ): """simple docstring""" def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Tuple: '''simple docstring''' A_ : List[str] = super()._format_usage(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = usage.replace('''<command> [<args>] ''' , '''''' ) return usage
590
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor UpperCamelCase = logging.get_logger(__name__) class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->None: '''simple docstring''' warnings.warn( '''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use SegformerImageProcessor instead.''' , _SCREAMING_SNAKE_CASE , ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
590
1
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = {'vocab_file': 'vocab.txt'} __UpperCamelCase : int = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } __UpperCamelCase : List[str] = { 'facebook/esm2_t6_8M_UR50D': 1024, 'facebook/esm2_t12_35M_UR50D': 1024, } def snake_case ( lowerCamelCase ): '''simple docstring''' with open(lowerCamelCase , """r""" ) as f: __lowercase = f.read().splitlines() return [l.strip() for l in lines] class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Any = VOCAB_FILES_NAMES __snake_case :str = PRETRAINED_VOCAB_FILES_MAP __snake_case :List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case :Union[str, Any] = ['input_ids', 'attention_mask'] def __init__( self : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any="<unk>" , _lowerCAmelCase : Dict="<cls>" , _lowerCAmelCase : Dict="<pad>" , _lowerCAmelCase : Optional[Any]="<mask>" , _lowerCAmelCase : int="<eos>" , **_lowerCAmelCase : Optional[Any] , ) -> str: """simple docstring""" super().__init__(**UpperCAmelCase__ ) __lowercase = load_vocab_file(UpperCAmelCase__ ) __lowercase = dict(enumerate(self.all_tokens ) ) __lowercase = {tok: ind for ind, tok in enumerate(self.all_tokens )} __lowercase = unk_token __lowercase = cls_token __lowercase = pad_token __lowercase = mask_token __lowercase = eos_token __lowercase = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def _a ( self : int , _lowerCAmelCase : int ) -> Optional[int]: """simple docstring""" return self._id_to_token.get(UpperCAmelCase__ , self.unk_token ) def _a ( self : Optional[Any] , _lowerCAmelCase : str ) -> Dict: """simple docstring""" return self._token_to_id.get(UpperCAmelCase__ , self._token_to_id.get(self.unk_token ) ) def _a ( self : Optional[int] , _lowerCAmelCase : int , **_lowerCAmelCase : Tuple ) -> List[str]: """simple docstring""" return text.split() def _a ( self : Union[str, Any] , _lowerCAmelCase : Optional[int]=False ) -> Dict: """simple docstring""" return len(self._id_to_token ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return {token: i for i, token in enumerate(self.all_tokens )} def _a ( self : List[Any] , _lowerCAmelCase : str ) -> List[str]: """simple docstring""" return self._token_to_id.get(UpperCAmelCase__ , self._token_to_id.get(self.unk_token ) ) def _a ( self : str , _lowerCAmelCase : int ) -> Union[str, Any]: """simple docstring""" return self._id_to_token.get(UpperCAmelCase__ , self.unk_token ) def _a ( self : Any , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ) -> List[Any]: """simple docstring""" __lowercase = [self.cls_token_id] __lowercase = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("""Cannot tokenize multiple sequences when EOS token is not set!""" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def _a ( self : List[str] , _lowerCAmelCase : List , _lowerCAmelCase : Optional[List] = None , _lowerCAmelCase : bool = False ) -> Optional[Any]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] __lowercase = [1] + ([0] * len(UpperCAmelCase__ )) + [1] if token_ids_a is not None: mask += [0] * len(UpperCAmelCase__ ) + [1] return mask def _a ( self : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple ) -> int: """simple docstring""" __lowercase = os.path.join(UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + """vocab.txt""" ) with open(UpperCAmelCase__ , """w""" ) as f: f.write("""\n""".join(self.all_tokens ) ) return (vocab_file,) @property def _a ( self : Tuple ) -> str: """simple docstring""" return self.get_vocab_size(with_added_tokens=UpperCAmelCase__ ) def _a ( self : List[Any] , _lowerCAmelCase : Union[List[str], List[AddedToken]] , _lowerCAmelCase : bool = False ) -> str: """simple docstring""" return super()._add_tokens(UpperCAmelCase__ , special_tokens=UpperCAmelCase__ )
717
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [] def parse_line(lowerCamelCase ): for line in fp: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(lowerCamelCase ) > 0: __lowercase = """\n""".join(lowerCamelCase ) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets ): selected_warnings.add(lowerCamelCase ) buffer.clear() continue else: __lowercase = line.strip() buffer.append(lowerCamelCase ) if from_gh: for filename in os.listdir(lowerCamelCase ): __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) else: try: with zipfile.ZipFile(lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with z.open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [os.path.join(lowerCamelCase , lowerCamelCase ) for p in os.listdir(lowerCamelCase ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowerCamelCase , lowerCamelCase ) ) return selected_warnings if __name__ == "__main__": def snake_case ( lowerCamelCase ): '''simple docstring''' return values.split(""",""" ) __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) __UpperCamelCase : List[str] = parser.parse_args() __UpperCamelCase : Union[str, Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __UpperCamelCase : Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __UpperCamelCase : Union[str, Any] = extract_warnings(args.output_dir, args.targets) __UpperCamelCase : Any = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
53
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool _A : Union[str, Any] = { """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ : str = """facebook/nllb-200-distilled-600M""" lowerCamelCase__ : Optional[Any] = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) lowerCamelCase__ : Union[str, Any] = """translator""" lowerCamelCase__ : List[str] = AutoTokenizer lowerCamelCase__ : Any = AutoModelForSeqaSeqLM lowerCamelCase__ : Tuple = LANGUAGE_CODES lowerCamelCase__ : str = ["""text""", """text""", """text"""] lowerCamelCase__ : Tuple = ["""text"""] def lowercase_ ( self , A_ , A_ , A_ ): '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(f'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(f'''{tgt_lang} is not a supported language.''' ) SCREAMING_SNAKE_CASE__ = self.lang_to_code[src_lang] SCREAMING_SNAKE_CASE__ = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( A_ , return_tensors='''pt''' , src_lang=A_ , tgt_lang=A_ ) def lowercase_ ( self , A_ ): '''simple docstring''' return self.model.generate(**A_ ) def lowercase_ ( self , A_ ): '''simple docstring''' return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=A_ )
100
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _SCREAMING_SNAKE_CASE : lowerCamelCase_ = 42 lowerCamelCase_ = 42 class _SCREAMING_SNAKE_CASE : def __init__( self : List[str] , snake_case_ : int ): """simple docstring""" A : list[list[Edge]] = [[] for _ in range(snake_case_ )] A : Union[str, Any] = size def __getitem__( self : Any , snake_case_ : int ): """simple docstring""" return iter(self._graph[vertex] ) @property def _UpperCAmelCase ( self : str ): """simple docstring""" return self._size def _UpperCAmelCase ( self : Tuple , snake_case_ : int , snake_case_ : int , snake_case_ : int ): """simple docstring""" if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(snake_case_ , snake_case_ ) ) def _UpperCAmelCase ( self : str , snake_case_ : int , snake_case_ : int ): """simple docstring""" A : Tuple = deque([start_vertex] ) A : list[int | None] = [None] * self.size A : str = 0 while queue: A : Optional[Any] = queue.popleft() A : List[str] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: A : Tuple = current_distance + edge.weight A : Dict = distances[edge.destination_vertex] if ( isinstance(snake_case_ , snake_case_ ) and new_distance >= dest_vertex_distance ): continue A : Optional[int] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
256
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : List[Any] = { "configuration_roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaOnnxConfig"], "tokenization_roberta": ["RobertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[Any] = ["RobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = [ "ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaForCausalLM", "RobertaForMaskedLM", "RobertaForMultipleChoice", "RobertaForQuestionAnswering", "RobertaForSequenceClassification", "RobertaForTokenClassification", "RobertaModel", "RobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = [ "TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaForCausalLM", "TFRobertaForMaskedLM", "TFRobertaForMultipleChoice", "TFRobertaForQuestionAnswering", "TFRobertaForSequenceClassification", "TFRobertaForTokenClassification", "TFRobertaMainLayer", "TFRobertaModel", "TFRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = [ "FlaxRobertaForCausalLM", "FlaxRobertaForMaskedLM", "FlaxRobertaForMultipleChoice", "FlaxRobertaForQuestionAnswering", "FlaxRobertaForSequenceClassification", "FlaxRobertaForTokenClassification", "FlaxRobertaModel", "FlaxRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys __snake_case : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
702
'''simple docstring''' def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number | (1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number & ~(1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number ^ (1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return ((number >> position) & 1) == 1 def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
691
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase=False )-> Union[str, Any]: """simple docstring""" lowercase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase=False )-> int: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowercase = '''''' else: lowercase = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowercase = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowercase = in_proj_weight[ : config.hidden_size, : ] lowercase = in_proj_bias[: config.hidden_size] lowercase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase = in_proj_weight[ -config.hidden_size :, : ] lowercase = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( UpperCAmelCase )-> Any: """simple docstring""" lowercase = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(UpperCAmelCase, UpperCAmelCase ) def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase )-> Any: """simple docstring""" lowercase = dct.pop(UpperCAmelCase ) lowercase = val def __UpperCAmelCase ( )-> Union[str, Any]: """simple docstring""" lowercase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase = Image.open(requests.get(UpperCAmelCase, stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase )-> Any: """simple docstring""" lowercase = ViTConfig() lowercase = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": lowercase = True lowercase = int(vit_name[-12:-10] ) lowercase = int(vit_name[-9:-6] ) else: lowercase = 1000 lowercase = '''huggingface/label-files''' lowercase = '''imagenet-1k-id2label.json''' lowercase = json.load(open(hf_hub_download(UpperCAmelCase, UpperCAmelCase, repo_type='''dataset''' ), '''r''' ) ) lowercase = {int(UpperCAmelCase ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} lowercase = int(vit_name[-6:-4] ) lowercase = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): lowercase = 192 lowercase = 768 lowercase = 12 lowercase = 3 elif vit_name[9:].startswith('''small''' ): lowercase = 384 lowercase = 1536 lowercase = 12 lowercase = 6 else: pass else: if vit_name[4:].startswith('''small''' ): lowercase = 768 lowercase = 2304 lowercase = 8 lowercase = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): lowercase = 1024 lowercase = 4096 lowercase = 24 lowercase = 16 elif vit_name[4:].startswith('''huge''' ): lowercase = 1280 lowercase = 5120 lowercase = 32 lowercase = 16 # load original model from timm lowercase = timm.create_model(UpperCAmelCase, pretrained=UpperCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowercase = timm_model.state_dict() if base_model: remove_classification_head_(UpperCAmelCase ) lowercase = create_rename_keys(UpperCAmelCase, UpperCAmelCase ) for src, dest in rename_keys: rename_key(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) read_in_q_k_v(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": lowercase = ViTModel(UpperCAmelCase ).eval() else: lowercase = ViTForImageClassification(UpperCAmelCase ).eval() model.load_state_dict(UpperCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: lowercase = DeiTImageProcessor(size=config.image_size ) else: lowercase = ViTImageProcessor(size=config.image_size ) lowercase = image_processor(images=prepare_img(), return_tensors='''pt''' ) lowercase = encoding['''pixel_values'''] lowercase = model(UpperCAmelCase ) if base_model: lowercase = timm_model.forward_features(UpperCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(UpperCAmelCase, outputs.pooler_output, atol=1e-3 ) else: lowercase = timm_model(UpperCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCAmelCase, outputs.logits, atol=1e-3 ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) print(f'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCAmelCase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_patch16_224", type=str, help="Name of the ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) A_ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
604
'''simple docstring''' import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast _SCREAMING_SNAKE_CASE : Optional[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class _snake_case ( datasets.BuilderConfig ): lowerCAmelCase_ : int = 1_0000 lowerCAmelCase_ : Optional[List[str]] = None lowerCAmelCase_ : Optional[datasets.Features] = None class _snake_case ( datasets.ArrowBasedBuilder ): lowerCAmelCase_ : Tuple = ParquetConfig def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase__ ( self , a__ ) -> Tuple: '''simple docstring''' if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) snake_case_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(a__ , (str, list, tuple) ): snake_case_ = data_files if isinstance(a__ , a__ ): snake_case_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive snake_case_ = [dl_manager.iter_files(a__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] snake_case_ = [] for split_name, files in data_files.items(): if isinstance(a__ , a__ ): snake_case_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive snake_case_ = [dl_manager.iter_files(a__ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(a__ ): with open(a__ , "rb" ) as f: snake_case_ = datasets.Features.from_arrow_schema(pq.read_schema(a__ ) ) break splits.append(datasets.SplitGenerator(name=a__ , gen_kwargs={"files": files} ) ) return splits def lowerCAmelCase__ ( self , a__ ) -> pa.Table: '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example snake_case_ = table_cast(a__ , self.info.features.arrow_schema ) return pa_table def lowerCAmelCase__ ( self , a__ ) -> List[Any]: '''simple docstring''' snake_case_ = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F'Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'' ) for file_idx, file in enumerate(itertools.chain.from_iterable(a__ ) ): with open(a__ , "rb" ) as f: snake_case_ = pq.ParquetFile(a__ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): snake_case_ = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F'{file_idx}_{batch_idx}', self._cast_table(a__ ) except ValueError as e: logger.error(F'Failed to read file \'{file}\' with error {type(a__ )}: {e}' ) raise
400
0
"""simple docstring""" from pathlib import Path import fire def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->int: """simple docstring""" __UpperCAmelCase : Dict = Path(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = Path(UpperCAmelCase_ ) dest_dir.mkdir(exist_ok=UpperCAmelCase_ ) for path in src_dir.iterdir(): __UpperCAmelCase : List[str] = [x.rstrip() for x in list(path.open().readlines() )][:n] __UpperCAmelCase : Optional[Any] = dest_dir.joinpath(path.name ) print(UpperCAmelCase_ ) dest_path.open('''w''' ).write('''\n'''.join(UpperCAmelCase_ ) ) if __name__ == "__main__": fire.Fire(minify)
374
"""simple docstring""" def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ) ->Tuple: """simple docstring""" return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_=0 ) ->Dict: """simple docstring""" return sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : x[column] ) def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=float('''inf''' ) ) ->str: """simple docstring""" for i in range(points_counts - 1 ): for j in range(i + 1 , UpperCAmelCase_ ): __UpperCAmelCase : List[Any] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __UpperCAmelCase : Tuple = current_dis return min_dis def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=float('''inf''' ) ) ->str: """simple docstring""" for i in range(min(6 , points_counts - 1 ) , UpperCAmelCase_ ): for j in range(max(0 , i - 6 ) , UpperCAmelCase_ ): __UpperCAmelCase : Dict = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __UpperCAmelCase : Tuple = current_dis return min_dis def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->Any: """simple docstring""" if points_counts <= 3: return dis_between_closest_pair(UpperCAmelCase_ , UpperCAmelCase_ ) # recursion __UpperCAmelCase : Any = points_counts // 2 __UpperCAmelCase : Any = closest_pair_of_points_sqr( UpperCAmelCase_ , points_sorted_on_y[:mid] , UpperCAmelCase_ ) __UpperCAmelCase : Tuple = closest_pair_of_points_sqr( UpperCAmelCase_ , points_sorted_on_y[mid:] , points_counts - mid ) __UpperCAmelCase : List[Any] = min(UpperCAmelCase_ , UpperCAmelCase_ ) __UpperCAmelCase : int = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = dis_between_closest_in_strip( UpperCAmelCase_ , len(UpperCAmelCase_ ) , UpperCAmelCase_ ) return min(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ) ->List[Any]: """simple docstring""" __UpperCAmelCase : str = column_based_sort(UpperCAmelCase_ , column=0 ) __UpperCAmelCase : Any = column_based_sort(UpperCAmelCase_ , column=1 ) return ( closest_pair_of_points_sqr( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ) ** 0.5 if __name__ == "__main__": lowercase__ :Optional[Any] = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)] print('Distance:', closest_pair_of_points(points, len(points)))
374
1
"""simple docstring""" def __a ( A ) -> Any: '''simple docstring''' A__ = [] A__ = set({"(", "[", "{"} ) A__ = set({")", "]", "}"} ) A__ = {"{": "}", "[": "]", "(": ")"} for i in range(len(A ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(A ) == 0 or (len(A ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(A ) == 0 def __a ( ) -> Optional[int]: '''simple docstring''' A__ = input("Enter sequence of brackets: " ) if is_balanced(A ): print(A , "is balanced" ) else: print(A , "is not balanced" ) if __name__ == "__main__": main()
337
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase ={ """configuration_rembert""": ["""REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RemBertConfig""", """RemBertOnnxConfig"""] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =["""RemBertTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =["""RemBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =[ """REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """RemBertForCausalLM""", """RemBertForMaskedLM""", """RemBertForMultipleChoice""", """RemBertForQuestionAnswering""", """RemBertForSequenceClassification""", """RemBertForTokenClassification""", """RemBertLayer""", """RemBertModel""", """RemBertPreTrainedModel""", """load_tf_weights_in_rembert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =[ """TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRemBertForCausalLM""", """TFRemBertForMaskedLM""", """TFRemBertForMultipleChoice""", """TFRemBertForQuestionAnswering""", """TFRemBertForSequenceClassification""", """TFRemBertForTokenClassification""", """TFRemBertLayer""", """TFRemBertModel""", """TFRemBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys __UpperCAmelCase =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
337
1
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=[] ): """simple docstring""" lowercase__ = size[0] - overlap_pixels * 2 lowercase__ = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels lowercase__ = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_55 lowercase__ = np.pad(SCREAMING_SNAKE_CASE , mode='''linear_ramp''' , pad_width=SCREAMING_SNAKE_CASE , end_values=0 ) if "l" in remove_borders: lowercase__ = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: lowercase__ = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: lowercase__ = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: lowercase__ = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return max(SCREAMING_SNAKE_CASE , min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = list(SCREAMING_SNAKE_CASE ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap lowercase__ = clamp_rect(SCREAMING_SNAKE_CASE , [0, 0] , [image_size[0], image_size[1]] ) return rect def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = Image.new('''RGB''' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(SCREAMING_SNAKE_CASE , (original_slice, 0) ) return result def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) lowercase__ = tile.crop(SCREAMING_SNAKE_CASE ) return tile def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = n % d return n - divisor class _a ( UpperCamelCase__ ): def __init__( self: List[Any] , UpperCamelCase_: AutoencoderKL , UpperCamelCase_: CLIPTextModel , UpperCamelCase_: CLIPTokenizer , UpperCamelCase_: UNetaDConditionModel , UpperCamelCase_: DDPMScheduler , UpperCamelCase_: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCamelCase_: int = 350 , ) -> str: """simple docstring""" super().__init__( vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , unet=UpperCamelCase_ , low_res_scheduler=UpperCamelCase_ , scheduler=UpperCamelCase_ , max_noise_level=UpperCamelCase_ , ) def lowerCamelCase_ ( self: int , UpperCamelCase_: List[Any] , UpperCamelCase_: Dict , UpperCamelCase_: Tuple , UpperCamelCase_: int , UpperCamelCase_: str , UpperCamelCase_: Any , UpperCamelCase_: Any , **UpperCamelCase_: Optional[int] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) lowercase__ = add_overlap_rect(UpperCamelCase_ , UpperCamelCase_ , image.size ) lowercase__ = image.crop(UpperCamelCase_ ) lowercase__ = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] lowercase__ = translated_slice_x - (original_image_slice / 2) lowercase__ = max(0 , UpperCamelCase_ ) lowercase__ = squeeze_tile(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = to_input.size lowercase__ = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) lowercase__ = super(UpperCamelCase_ , self ).__call__(image=UpperCamelCase_ , **UpperCamelCase_ ).images[0] lowercase__ = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) lowercase__ = unsqueeze_tile(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) lowercase__ = [] if x == 0: remove_borders.append('''l''' ) elif crop_rect[2] == image.size[0]: remove_borders.append('''r''' ) if y == 0: remove_borders.append('''t''' ) elif crop_rect[3] == image.size[1]: remove_borders.append('''b''' ) lowercase__ = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=UpperCamelCase_ ) , mode='''L''' , ) final_image.paste( UpperCamelCase_ , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , UpperCamelCase_ ) @torch.no_grad() def __call__( self: Optional[int] , UpperCamelCase_: Union[str, List[str]] , UpperCamelCase_: Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCamelCase_: int = 75 , UpperCamelCase_: float = 9.0 , UpperCamelCase_: int = 50 , UpperCamelCase_: Optional[Union[str, List[str]]] = None , UpperCamelCase_: Optional[int] = 1 , UpperCamelCase_: float = 0.0 , UpperCamelCase_: Optional[torch.Generator] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 128 , UpperCamelCase_: int = 32 , UpperCamelCase_: int = 32 , ) -> Optional[Any]: """simple docstring""" lowercase__ = Image.new('''RGB''' , (image.size[0] * 4, image.size[1] * 4) ) lowercase__ = math.ceil(image.size[0] / tile_size ) lowercase__ = math.ceil(image.size[1] / tile_size ) lowercase__ = tcx * tcy lowercase__ = 0 for y in range(UpperCamelCase_ ): for x in range(UpperCamelCase_ ): self._process_tile( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , prompt=UpperCamelCase_ , num_inference_steps=UpperCamelCase_ , guidance_scale=UpperCamelCase_ , noise_level=UpperCamelCase_ , negative_prompt=UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ , eta=UpperCamelCase_ , generator=UpperCamelCase_ , latents=UpperCamelCase_ , ) current_count += 1 if callback is not None: callback({'''progress''': current_count / total_tile_count, '''image''': final_image} ) return final_image def _a ( ): """simple docstring""" lowercase__ = '''stabilityai/stable-diffusion-x4-upscaler''' lowercase__ = StableDiffusionTiledUpscalePipeline.from_pretrained(SCREAMING_SNAKE_CASE , revision='''fp16''' , torch_dtype=torch.floataa ) lowercase__ = pipe.to('''cuda''' ) lowercase__ = Image.open('''../../docs/source/imgs/diffusers_library.jpg''' ) def callback(SCREAMING_SNAKE_CASE ): print(f'progress: {obj["progress"]:.4f}' ) obj["image"].save('''diffusers_library_progress.jpg''' ) lowercase__ = pipe(image=SCREAMING_SNAKE_CASE , prompt='''Black font, white background, vector''' , noise_level=40 , callback=SCREAMING_SNAKE_CASE ) final_image.save('''diffusers_library.jpg''' ) if __name__ == "__main__": main()
429
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase = 16 lowerCAmelCase = 32 def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 16 ): """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(SCREAMING_SNAKE_CASE ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ = datasets.map( SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(SCREAMING_SNAKE_CASE ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ = 16 elif accelerator.mixed_precision != "no": lowercase__ = 8 else: lowercase__ = None return tokenizer.pad( SCREAMING_SNAKE_CASE , padding='''longest''' , max_length=SCREAMING_SNAKE_CASE , pad_to_multiple_of=SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets['''train'''] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) lowercase__ = DataLoader( tokenized_datasets['''validation'''] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase = mocked_dataloaders # noqa: F811 def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , SCREAMING_SNAKE_CASE ) == "1": lowercase__ = 2 # Initialize accelerator lowercase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config['''lr'''] lowercase__ = int(config['''num_epochs'''] ) lowercase__ = int(config['''seed'''] ) lowercase__ = int(config['''batch_size'''] ) lowercase__ = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation lowercase__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowercase__ = batch_size // MAX_GPU_BATCH_SIZE lowercase__ = MAX_GPU_BATCH_SIZE set_seed(SCREAMING_SNAKE_CASE ) lowercase__ , lowercase__ = get_dataloaders(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ = model.to(accelerator.device ) # Instantiate optimizer lowercase__ = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE ) # Instantiate scheduler lowercase__ = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE , num_warmup_steps=1_00 , num_training_steps=(len(SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ = model(**SCREAMING_SNAKE_CASE ) lowercase__ = outputs.loss lowercase__ = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() lowercase__ = 0 for step, batch in enumerate(SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**SCREAMING_SNAKE_CASE ) lowercase__ = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ = accelerator.gather((predictions, batch['''labels''']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(SCREAMING_SNAKE_CASE ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples lowercase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowercase__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=SCREAMING_SNAKE_CASE , references=SCREAMING_SNAKE_CASE , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , SCREAMING_SNAKE_CASE ) def _a ( ): """simple docstring""" lowercase__ = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ = parser.parse_args() lowercase__ = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
429
1
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(SCREAMING_SNAKE_CASE__ ): _lowerCAmelCase = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _lowerCAmelCase = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @slow def __lowerCamelCase ( self : List[Any] ) -> str: """simple docstring""" for model_name in ["roberta-base", "roberta-large"]: with self.subTest(SCREAMING_SNAKE_CASE__ ): _lowerCAmelCase = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _lowerCAmelCase = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @slow def __lowerCamelCase ( self : List[Any] ) -> str: """simple docstring""" for model_name in ["bert-base-cased", "bert-large-uncased"]: _lowerCAmelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) _lowerCAmelCase = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) _lowerCAmelCase = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**UpperCAmelCase_ : Union[str, Any] ): return model(**SCREAMING_SNAKE_CASE__ ) eval(**SCREAMING_SNAKE_CASE__ ).block_until_ready() @slow def __lowerCamelCase ( self : Tuple ) -> Any: """simple docstring""" for model_name in ["roberta-base", "roberta-large"]: _lowerCAmelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) _lowerCAmelCase = FlaxRobertaModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) _lowerCAmelCase = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**UpperCAmelCase_ : Dict ): return model(**SCREAMING_SNAKE_CASE__ ) eval(**SCREAMING_SNAKE_CASE__ ).block_until_ready() def __lowerCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" with self.assertRaisesRegex( SCREAMING_SNAKE_CASE__ , 'bert-base is not a local folder and is not a valid model identifier' ): _lowerCAmelCase = FlaxAutoModel.from_pretrained('bert-base' ) def __lowerCamelCase ( self : Dict ) -> Dict: """simple docstring""" with self.assertRaisesRegex( SCREAMING_SNAKE_CASE__ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): _lowerCAmelCase = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE__ , revision='aaaaaa' ) def __lowerCamelCase ( self : Optional[Any] ) -> int: """simple docstring""" with self.assertRaisesRegex( SCREAMING_SNAKE_CASE__ , 'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack' , ): _lowerCAmelCase = FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def __lowerCamelCase ( self : Dict ) -> Any: """simple docstring""" with self.assertRaisesRegex(SCREAMING_SNAKE_CASE__ , 'Use `from_pt=True` to load this model' ): _lowerCAmelCase = FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' )
580
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCamelCase = logging.get_logger(__name__) class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = ["pixel_values"] def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : float = None , SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Union[int, float] = 1 / 255 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> None: super().__init__(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = size if size is not None else {"shortest_edge": 384} lowerCAmelCase__ = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = do_resize lowerCAmelCase__ = size # Default value set here for backwards compatibility where the value in config is None lowerCAmelCase__ = crop_pct if crop_pct is not None else 224 / 256 lowerCAmelCase__ = resample lowerCAmelCase__ = do_rescale lowerCAmelCase__ = rescale_factor lowerCAmelCase__ = do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Dict[str, int] , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : int , ) -> np.ndarray: lowerCAmelCase__ = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) if "shortest_edge" not in size: raise ValueError(f'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) lowerCAmelCase__ = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct lowerCAmelCase__ = int(shortest_edge / crop_pct ) lowerCAmelCase__ = get_resize_output_image_size(SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = resize(image=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=SCREAMING_SNAKE_CASE__ , size=(shortest_edge, shortest_edge) , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( SCREAMING_SNAKE_CASE__ , size=(shortest_edge, shortest_edge) , resample=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def a ( self : int , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Union[int, float] , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> List[Any]: return rescale(SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Union[float, List[float]] , SCREAMING_SNAKE_CASE__ : Union[float, List[float]] , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> np.ndarray: return normalize(SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def a ( self : Any , SCREAMING_SNAKE_CASE__ : ImageInput , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : float = None , SCREAMING_SNAKE_CASE__ : PILImageResampling = None , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : float = None , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE__ : ChannelDimension = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE__ : Dict , ) -> PIL.Image.Image: lowerCAmelCase__ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ = crop_pct if crop_pct is not None else self.crop_pct lowerCAmelCase__ = resample if resample is not None else self.resample lowerCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ = image_std if image_std is not None else self.image_std lowerCAmelCase__ = size if size is not None else self.size lowerCAmelCase__ = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = make_list_of_images(SCREAMING_SNAKE_CASE__ ) if not valid_images(SCREAMING_SNAKE_CASE__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. lowerCAmelCase__ = [to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images] if do_resize: lowerCAmelCase__ = [self.resize(image=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , crop_pct=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ ) for image in images] if do_rescale: lowerCAmelCase__ = [self.rescale(image=SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ ) for image in images] if do_normalize: lowerCAmelCase__ = [self.normalize(image=SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ ) for image in images] lowerCAmelCase__ = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for image in images] lowerCAmelCase__ = {"pixel_values": images} return BatchFeature(data=SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ )
61
0
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _snake_case (tf.keras.layers.Layer): def __init__( self ,_snake_case ,_snake_case ,_snake_case = None ,_snake_case = None ): super().__init__() UpperCAmelCase_ : Tuple = pad_token_id UpperCAmelCase_ : Union[str, Any] = max_length UpperCAmelCase_ : Optional[int] = vocab UpperCAmelCase_ : str = merges UpperCAmelCase_ : Any = BytePairTokenizer(_snake_case ,_snake_case ,sequence_length=_snake_case ) @classmethod def UpperCamelCase__ ( cls ,_snake_case ,*_snake_case ,**_snake_case ): UpperCAmelCase_ : Dict = [" ".join(_snake_case ) for m in tokenizer.bpe_ranks.keys()] UpperCAmelCase_ : Union[str, Any] = tokenizer.get_vocab() return cls(_snake_case ,_snake_case ,*_snake_case ,**_snake_case ) @classmethod def UpperCamelCase__ ( cls ,_snake_case ,*_snake_case ,**_snake_case ): UpperCAmelCase_ : str = GPTaTokenizer.from_pretrained(_snake_case ,*_snake_case ,**_snake_case ) return cls.from_tokenizer(_snake_case ,*_snake_case ,**_snake_case ) @classmethod def UpperCamelCase__ ( cls ,_snake_case ): return cls(**_snake_case ) def UpperCamelCase__ ( self ): return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCamelCase__ ( self ,_snake_case ,_snake_case = None ): UpperCAmelCase_ : Tuple = self.tf_tokenizer(_snake_case ) UpperCAmelCase_ : Dict = tf.ones_like(_snake_case ) if self.pad_token_id is not None: # pad the tokens up to max length UpperCAmelCase_ : List[Any] = max_length if max_length is not None else self.max_length if max_length is not None: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = pad_model_inputs( _snake_case ,max_seq_length=_snake_case ,pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
323
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _lowerCamelCase = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def a__ ( _SCREAMING_SNAKE_CASE : Any ) -> str: """simple docstring""" config.addinivalue_line( "markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested" ) config.addinivalue_line( "markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested" ) config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested" ) config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment" ) config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate" ) config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule" ) def a__ ( _SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]: """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE : str ) -> Any: """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main UpperCAmelCase_ : Optional[int] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(_SCREAMING_SNAKE_CASE , id=_SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Tuple ) -> Dict: """simple docstring""" if exitstatus == 5: UpperCAmelCase_ : List[Any] = 0 # Doctest custom flag to ignore output. _lowerCamelCase = doctest.register_optionflag("""IGNORE_RESULT""") _lowerCamelCase = doctest.OutputChecker class _snake_case (__SCREAMING_SNAKE_CASE): def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self ,_snake_case ,_snake_case ,_snake_case ) _lowerCamelCase = CustomOutputChecker _lowerCamelCase = HfDoctestModule _lowerCamelCase = HfDocTestParser
323
1
"""simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = {str(digit): digit**5 for digit in range(10)} def lowerCamelCase__ ( _lowerCamelCase : int ) -> int: return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_lowerCamelCase ) ) def lowerCamelCase__ ( ) -> int: return sum( number for number in range(1000 , 1000000 ) if number == digits_fifth_powers_sum(_lowerCamelCase ) ) if __name__ == "__main__": print(solution())
549
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase : list[list[int | float]] ) -> int: lowerCamelCase_ = len(_lowerCamelCase ) lowerCamelCase_ = len(matrix[0] ) lowerCamelCase_ = min(_lowerCamelCase , _lowerCamelCase ) for row in range(_lowerCamelCase ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , _lowerCamelCase ): lowerCamelCase_ = matrix[col][row] / matrix[row][row] for i in range(_lowerCamelCase , _lowerCamelCase ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows lowerCamelCase_ = True for i in range(row + 1 , _lowerCamelCase ): if matrix[i][row] != 0: lowerCamelCase_ , lowerCamelCase_ = matrix[i], matrix[row] lowerCamelCase_ = False break if reduce: rank -= 1 for i in range(_lowerCamelCase ): lowerCamelCase_ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
549
1
def A_( ): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] UpperCamelCase__ = generate_large_matrix() UpperCamelCase__ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A_( A ): assert all(row == sorted(__snake_case , reverse=__snake_case ) for row in grid ) assert all(list(__snake_case ) == sorted(__snake_case , reverse=__snake_case ) for col in zip(*__snake_case ) ) def A_( A ): UpperCAmelCase_ = 0 UpperCAmelCase_ = len(__snake_case ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: UpperCAmelCase_ = (left + right) // 2 UpperCAmelCase_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: UpperCAmelCase_ = mid + 1 else: UpperCAmelCase_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__snake_case ) def A_( A ): UpperCAmelCase_ = 0 UpperCAmelCase_ = len(grid[0] ) for i in range(len(__snake_case ) ): UpperCAmelCase_ = find_negative_index(grid[i][:bound] ) total += bound return (len(__snake_case ) * len(grid[0] )) - total def A_( A ): return len([number for row in grid for number in row if number < 0] ) def A_( A ): UpperCAmelCase_ = 0 for row in grid: for i, number in enumerate(__snake_case ): if number < 0: total += len(__snake_case ) - i break return total def A_( ): from timeit import timeit print("""Running benchmarks""" ) UpperCAmelCase_ = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): UpperCAmelCase_ = timeit(f"""{func}(grid=grid)""" , setup=__snake_case , number=500 ) print(f"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
712
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ : List[str] = logging.get_logger(__name__) UpperCamelCase__ : int = """▁""" UpperCamelCase__ : Dict = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} UpperCamelCase__ : Dict = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } UpperCamelCase__ : Optional[int] = {"""vinai/bartpho-syllable""": 10_24} class _UpperCamelCase ( A_ ): '''simple docstring''' lowerCamelCase : str = VOCAB_FILES_NAMES lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = ['input_ids', 'attention_mask'] def __init__( self : List[str] , __lowercase : Optional[int] , __lowercase : List[Any] , __lowercase : List[str]="<s>" , __lowercase : str="</s>" , __lowercase : Optional[Any]="</s>" , __lowercase : Any="<s>" , __lowercase : Dict="<unk>" , __lowercase : int="<pad>" , __lowercase : str="<mask>" , __lowercase : Optional[Dict[str, Any]] = None , **__lowercase : Optional[Any] , ): '''simple docstring''' UpperCAmelCase_ = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , sp_model_kwargs=self.sp_model_kwargs , **__lowercase , ) UpperCAmelCase_ = vocab_file UpperCAmelCase_ = monolingual_vocab_file UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowercase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility UpperCAmelCase_ = {} UpperCAmelCase_ = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__lowercase ) not in self.fairseq_tokens_to_ids: UpperCAmelCase_ = cnt cnt += 1 with open(__lowercase , """r""" , encoding="""utf-8""" ) as f: for line in f.readlines(): UpperCAmelCase_ = line.strip().split()[0] UpperCAmelCase_ = len(self.fairseq_tokens_to_ids ) if str(__lowercase ) not in self.fairseq_tokens_to_ids: UpperCAmelCase_ = len(self.fairseq_tokens_to_ids ) UpperCAmelCase_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None UpperCAmelCase_ = self.sp_model.serialized_model_proto() return state def __setstate__( self : List[str] , __lowercase : Dict ): '''simple docstring''' UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] UpperCAmelCase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowercase : List[int] , __lowercase : Optional[List[int]] = None , __lowercase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase ) if token_ids_a is None: return [1] + ([0] * len(__lowercase )) + [1] return [1] + ([0] * len(__lowercase )) + [1, 1] + ([0] * len(__lowercase )) + [1] def SCREAMING_SNAKE_CASE ( self : Any , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' return len(self.fairseq_ids_to_tokens ) def SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' UpperCAmelCase_ = {self.convert_ids_to_tokens(__lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self : str , __lowercase : str ): '''simple docstring''' return self.sp_model.encode(__lowercase , out_type=__lowercase ) def SCREAMING_SNAKE_CASE ( self : Tuple , __lowercase : Tuple ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def SCREAMING_SNAKE_CASE ( self : Dict , __lowercase : Optional[Any] ): '''simple docstring''' return self.fairseq_ids_to_tokens[index] def SCREAMING_SNAKE_CASE ( self : Any , __lowercase : Dict ): '''simple docstring''' UpperCAmelCase_ = """""".join(__lowercase ).replace(__lowercase , """ """ ).strip() return out_string def SCREAMING_SNAKE_CASE ( self : str , __lowercase : str , __lowercase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__lowercase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase_ = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowercase ) elif not os.path.isfile(self.vocab_file ): with open(__lowercase , """wb""" ) as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(__lowercase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __lowercase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __lowercase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__lowercase , """w""" , encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F"""{str(__lowercase )} \n""" ) return out_vocab_file, out_monolingual_vocab_file
486
0
'''simple docstring''' import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: # Construct model if openai_config_file == "": lowerCamelCase_ = OpenAIGPTConfig() else: lowerCamelCase_ = OpenAIGPTConfig.from_json_file(__UpperCamelCase ) lowerCamelCase_ = OpenAIGPTModel(__UpperCamelCase ) # Load weights from numpy load_tf_weights_in_openai_gpt(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # Save pytorch-model lowerCamelCase_ = pytorch_dump_folder_path + '/' + WEIGHTS_NAME lowerCamelCase_ = pytorch_dump_folder_path + '/' + CONFIG_NAME print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() ,__UpperCamelCase ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__UpperCamelCase ,'w' ,encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--openai_checkpoint_folder_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--openai_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) A_ = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
42
import copy import random from transformers import CLIPTokenizer class A__ ( __SCREAMING_SNAKE_CASE): def __init__( self , *__magic_name__ , **__magic_name__ ): super().__init__(*__magic_name__ , **__magic_name__ ) lowerCamelCase : Dict = {} def UpperCamelCase__ ( self , __magic_name__ , *__magic_name__ , **__magic_name__ ): lowerCamelCase : Any = super().add_tokens(__magic_name__ , *__magic_name__ , **__magic_name__ ) if num_added_tokens == 0: raise ValueError( F'''The tokenizer already contains the token {placeholder_token}. Please pass a different''' """ `placeholder_token` that is not already in the tokenizer.""" ) def UpperCamelCase__ ( self , __magic_name__ , *__magic_name__ , __magic_name__=1 , **__magic_name__ ): lowerCamelCase : List[Any] = [] if num_vec_per_token == 1: self.try_adding_tokens(__magic_name__ , *__magic_name__ , **__magic_name__ ) output.append(__magic_name__ ) else: lowerCamelCase : Dict = [] for i in range(__magic_name__ ): lowerCamelCase : Optional[Any] = placeholder_token + F'''_{i}''' self.try_adding_tokens(__magic_name__ , *__magic_name__ , **__magic_name__ ) output.append(__magic_name__ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F'''The tokenizer already has placeholder token {token} that can get confused with''' F''' {placeholder_token}keep placeholder tokens independent''' ) lowerCamelCase : Any = output def UpperCamelCase__ ( self , __magic_name__ , __magic_name__=False , __magic_name__=1.0 ): if isinstance(__magic_name__ , __magic_name__ ): lowerCamelCase : List[str] = [] for i in range(len(__magic_name__ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=__magic_name__ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: lowerCamelCase : List[str] = self.token_map[placeholder_token] lowerCamelCase : Optional[Any] = tokens[: 1 + int(len(__magic_name__ ) * prop_tokens_to_load )] if vector_shuffle: lowerCamelCase : Union[str, Any] = copy.copy(__magic_name__ ) random.shuffle(__magic_name__ ) lowerCamelCase : str = text.replace(__magic_name__ , """ """.join(__magic_name__ ) ) return text def __call__( self , __magic_name__ , *__magic_name__ , __magic_name__=False , __magic_name__=1.0 , **__magic_name__ ): return super().__call__( self.replace_placeholder_tokens_in_text( __magic_name__ , vector_shuffle=__magic_name__ , prop_tokens_to_load=__magic_name__ ) , *__magic_name__ , **__magic_name__ , ) def UpperCamelCase__ ( self , __magic_name__ , *__magic_name__ , __magic_name__=False , __magic_name__=1.0 , **__magic_name__ ): return super().encode( self.replace_placeholder_tokens_in_text( __magic_name__ , vector_shuffle=__magic_name__ , prop_tokens_to_load=__magic_name__ ) , *__magic_name__ , **__magic_name__ , )
681
0
"""simple docstring""" from maths.prime_check import is_prime def lowercase_ ( _snake_case ): if not isinstance(_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : str = f'''Input value of [number={number}] must be an integer''' raise TypeError(_snake_case ) if is_prime(_snake_case ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
545
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class lowerCAmelCase_ (a__ , a__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Any = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) __UpperCamelCase : Tuple = ( { '''feature-extraction''': TFMobileBertModel, '''fill-mask''': TFMobileBertForMaskedLM, '''question-answering''': TFMobileBertForQuestionAnswering, '''text-classification''': TFMobileBertForSequenceClassification, '''token-classification''': TFMobileBertForTokenClassification, '''zero-shot''': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) __UpperCamelCase : Optional[int] = False __UpperCamelCase : str = False def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = super()._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) if return_labels: if model_class in get_values(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : List[str] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class lowerCAmelCase_ (a__ ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=99 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=37 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=5_12 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=None , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = parent SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE__ : List[Any] = seq_length SCREAMING_SNAKE_CASE__ : Any = is_training SCREAMING_SNAKE_CASE__ : List[str] = use_input_mask SCREAMING_SNAKE_CASE__ : List[Any] = use_token_type_ids SCREAMING_SNAKE_CASE__ : List[Any] = use_labels SCREAMING_SNAKE_CASE__ : Optional[int] = vocab_size SCREAMING_SNAKE_CASE__ : int = hidden_size SCREAMING_SNAKE_CASE__ : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : List[str] = num_attention_heads SCREAMING_SNAKE_CASE__ : List[str] = intermediate_size SCREAMING_SNAKE_CASE__ : List[Any] = hidden_act SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Dict = type_vocab_size SCREAMING_SNAKE_CASE__ : Optional[int] = type_sequence_label_size SCREAMING_SNAKE_CASE__ : str = initializer_range SCREAMING_SNAKE_CASE__ : str = num_labels SCREAMING_SNAKE_CASE__ : Dict = num_choices SCREAMING_SNAKE_CASE__ : Union[str, Any] = scope SCREAMING_SNAKE_CASE__ : Dict = embedding_size def __magic_name__ (self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ : List[Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : str = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ : str = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = TFMobileBertModel(config=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} SCREAMING_SNAKE_CASE__ : List[Any] = model(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = [input_ids, input_mask] SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = TFMobileBertForMaskedLM(config=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} SCREAMING_SNAKE_CASE__ : List[str] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = TFMobileBertForNextSentencePrediction(config=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} SCREAMING_SNAKE_CASE__ : List[str] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = TFMobileBertForPreTraining(config=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE__ : List[Any] = TFMobileBertForSequenceClassification(config=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.num_choices SCREAMING_SNAKE_CASE__ : List[Any] = TFMobileBertForMultipleChoice(config=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE__ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE__ : Tuple = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE__ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE__ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE__ : Optional[int] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.num_labels SCREAMING_SNAKE_CASE__ : Tuple = TFMobileBertForTokenClassification(config=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} SCREAMING_SNAKE_CASE__ : List[str] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = TFMobileBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} SCREAMING_SNAKE_CASE__ : str = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ (self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict def __magic_name__ (self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = TFMobileBertModelTest.TFMobileBertModelTester(self ) SCREAMING_SNAKE_CASE__ : str = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ (self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*SCREAMING_SNAKE_CASE__ ) @slow def __magic_name__ (self ) -> List[str]: """simple docstring""" for model_name in ["google/mobilebert-uncased"]: SCREAMING_SNAKE_CASE__ : Optional[Any] = TFMobileBertModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @require_tf class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" @slow def __magic_name__ (self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""" ) SCREAMING_SNAKE_CASE__ : List[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE__ : Dict = model(SCREAMING_SNAKE_CASE__ )[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = [1, 6, 3_05_22] self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = tf.constant( [ [ [-4.5919547, -9.248295, -9.645256], [-6.7306175, -6.440284, -6.6052837], [-7.2743506, -6.7847915, -6.024673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 )
545
1
def UpperCamelCase ( snake_case__ : List[str] , snake_case__ : Any ) -> Union[str, Any]: UpperCamelCase : int = [1] for i in range(2 , snake_case__ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" UpperCamelCase : List[Any] = [] UpperCamelCase : List[Any] = list(range(snake_case__ ) ) # Find permutation while factorials: UpperCamelCase : int = factorials.pop() UpperCamelCase , UpperCamelCase : int = divmod(snake_case__ , snake_case__ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
40
"""simple docstring""" UpperCAmelCase : int = [ (1000, "M"), (900, "CM"), (500, "D"), (400, "CD"), (100, "C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 1_00, """D""": 5_00, """M""": 10_00} lowercase_ = 0 lowercase_ = 0 while place < len(__lowerCAmelCase ): if (place + 1 < len(__lowerCAmelCase )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = [] for arabic, roman in ROMAN: ((lowercase_) , (lowercase_)) = divmod(__lowerCAmelCase , __lowerCAmelCase ) result.append(roman * factor ) if number == 0: break return "".join(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
567
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a_( lowercase__ ): """simple docstring""" __snake_case : Dict =['''image_processor''', '''tokenizer'''] __snake_case : str ='''ViltImageProcessor''' __snake_case : int =('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : List[str] , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Optional[Any]=None , **lowerCAmelCase__ : List[str]) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE = kwargs.pop('feature_extractor') SCREAMING_SNAKE_CASE = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE = self.image_processor def __call__( self : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase__ : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase__ : Optional[int] , ) -> BatchEncoding: """simple docstring""" SCREAMING_SNAKE_CASE = self.tokenizer( text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) # add pixel_values + pixel_mask SCREAMING_SNAKE_CASE = self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__) encoding.update(lowerCAmelCase__) return encoding def __UpperCamelCase ( self : List[Any] , *lowerCAmelCase__ : Any , **lowerCAmelCase__ : Optional[Any]) -> Tuple: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__) def __UpperCamelCase ( self : Tuple , *lowerCAmelCase__ : Any , **lowerCAmelCase__ : List[Any]) -> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__) @property def __UpperCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def __UpperCamelCase ( self : Any) -> Dict: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowerCAmelCase__ , ) return self.image_processor_class @property def __UpperCamelCase ( self : List[str]) -> int: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowerCAmelCase__ , ) return self.image_processor
707
import os import re import shutil import sys import tempfile import unittest import black __UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. __UpperCAmelCase = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class a_( unittest.TestCase ): """simple docstring""" def __UpperCamelCase ( self : Optional[int]) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , 'models/bert/')) SCREAMING_SNAKE_CASE = self.transformer_dir shutil.copy( os.path.join(lowerCAmelCase__ , 'src/transformers/models/bert/modeling_bert.py') , os.path.join(self.transformer_dir , 'models/bert/modeling_bert.py') , ) def __UpperCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE = 'src/transformers' shutil.rmtree(self.transformer_dir) def __UpperCamelCase ( self : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Dict=None) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = comment + f'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: SCREAMING_SNAKE_CASE = comment + f'''\nclass {class_name}(nn.Module):\n''' + overwrite_result SCREAMING_SNAKE_CASE = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9) SCREAMING_SNAKE_CASE = black.format_str(lowerCAmelCase__ , mode=lowerCAmelCase__) SCREAMING_SNAKE_CASE = os.path.join(self.transformer_dir , 'new_code.py') with open(lowerCAmelCase__ , 'w' , newline='\n') as f: f.write(lowerCAmelCase__) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCAmelCase__)) == 0) else: check_copies.is_copy_consistent(f.name , overwrite=lowerCAmelCase__) with open(lowerCAmelCase__ , 'r') as f: self.assertTrue(f.read() , lowerCAmelCase__) def __UpperCamelCase ( self : List[Any]) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = check_copies.find_code_in_transformers('models.bert.modeling_bert.BertLMPredictionHead') self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) def __UpperCamelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" # Base copy consistency self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , lowerCAmelCase__ , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , re.sub('Bert' , 'TestModel' , lowerCAmelCase__) , ) # Copy consistency with a really long name SCREAMING_SNAKE_CASE = 'TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , f'''{long_class_name}LMPredictionHead''' , re.sub('Bert' , lowerCAmelCase__ , lowerCAmelCase__) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , lowerCAmelCase__ , overwrite_result=re.sub('Bert' , 'TestModel' , lowerCAmelCase__) , ) def __UpperCamelCase ( self : Optional[int]) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE = check_copies.LOCALIZED_READMES['README_zh-hans.md'] SCREAMING_SNAKE_CASE = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),' ' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**' ' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders' ' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang' ' Luong, Quoc V. Le, Christopher D. Manning.' ) SCREAMING_SNAKE_CASE = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) SCREAMING_SNAKE_CASE = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文' ' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自' ' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather' ' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,' ' Christopher D. Manning 发布。\n' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = check_copies.convert_to_localized_md( lowerCAmelCase__ , lowerCAmelCase__ , localized_readme['format_model_list']) self.assertFalse(lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = check_copies.convert_to_localized_md( lowerCAmelCase__ , lowerCAmelCase__ , localized_readme['format_model_list']) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowerCAmelCase__) SCREAMING_SNAKE_CASE = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.' ) SCREAMING_SNAKE_CASE = ( '1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and' ' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) SCREAMING_SNAKE_CASE = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = check_copies.convert_to_localized_md( lowerCAmelCase__ , lowerCAmelCase__ , localized_readme['format_model_list']) # Check if the model link is synchronized. self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__)
259
0
def a ( a ) ->bool: '''simple docstring''' if p < 2: raise ValueError('''p should not be less than 2!''' ) elif p == 2: return True SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = (1 << p) - 1 for _ in range(p - 2 ): SCREAMING_SNAKE_CASE = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
201
import json import os import torch from diffusers import UNetaDModel os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True) os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True) os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True) def a ( a ) ->List[Any]: '''simple docstring''' if hor == 128: SCREAMING_SNAKE_CASE = ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''') SCREAMING_SNAKE_CASE = (32, 128, 256) SCREAMING_SNAKE_CASE = ('''UpResnetBlock1D''', '''UpResnetBlock1D''') elif hor == 32: SCREAMING_SNAKE_CASE = ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''') SCREAMING_SNAKE_CASE = (32, 64, 128, 256) SCREAMING_SNAKE_CASE = ('''UpResnetBlock1D''', '''UpResnetBlock1D''', '''UpResnetBlock1D''') SCREAMING_SNAKE_CASE = torch.load(F"""/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch""" ) SCREAMING_SNAKE_CASE = model.state_dict() SCREAMING_SNAKE_CASE = { '''down_block_types''': down_block_types, '''block_out_channels''': block_out_channels, '''up_block_types''': up_block_types, '''layers_per_block''': 1, '''use_timestep_embedding''': True, '''out_block_type''': '''OutConv1DBlock''', '''norm_num_groups''': 8, '''downsample_each_block''': False, '''in_channels''': 14, '''out_channels''': 14, '''extra_in_channels''': 0, '''time_embedding_type''': '''positional''', '''flip_sin_to_cos''': False, '''freq_shift''': 1, '''sample_size''': 6_5536, '''mid_block_type''': '''MidResTemporalBlock1D''', '''act_fn''': '''mish''', } SCREAMING_SNAKE_CASE = UNetaDModel(**a ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) SCREAMING_SNAKE_CASE = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): SCREAMING_SNAKE_CASE = state_dict.pop(a ) hf_value_function.load_state_dict(a ) torch.save(hf_value_function.state_dict() , F"""hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin""" ) with open(F"""hub/hopper-medium-v2/unet/hor{hor}/config.json""" , '''w''' ) as f: json.dump(a , a ) def a ( ) ->Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = { '''in_channels''': 14, '''down_block_types''': ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D'''), '''up_block_types''': (), '''out_block_type''': '''ValueFunction''', '''mid_block_type''': '''ValueFunctionMidBlock1D''', '''block_out_channels''': (32, 64, 128, 256), '''layers_per_block''': 1, '''downsample_each_block''': True, '''sample_size''': 6_5536, '''out_channels''': 14, '''extra_in_channels''': 0, '''time_embedding_type''': '''positional''', '''use_timestep_embedding''': True, '''flip_sin_to_cos''': False, '''freq_shift''': 1, '''norm_num_groups''': 8, '''act_fn''': '''mish''', } SCREAMING_SNAKE_CASE = torch.load('''/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch''' ) SCREAMING_SNAKE_CASE = model SCREAMING_SNAKE_CASE = UNetaDModel(**a ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) SCREAMING_SNAKE_CASE = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): SCREAMING_SNAKE_CASE = state_dict.pop(a ) hf_value_function.load_state_dict(a ) torch.save(hf_value_function.state_dict() , '''hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin''' ) with open('''hub/hopper-medium-v2/value_function/config.json''' , '''w''' ) as f: json.dump(a , a ) if __name__ == "__main__": unet(3_2) # unet(128) value_function()
201
1
from numpy import exp, pi, sqrt def UpperCAmelCase_ ( __a : Dict , __a : int = 0.0 , __a : Dict = 1.0 ): '''simple docstring''' return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
716
"""simple docstring""" def UpperCAmelCase_ ( __a : int = 10_00 ): '''simple docstring''' _lowerCamelCase , _lowerCamelCase : Dict = 1, 1 _lowerCamelCase : Optional[Any] = 2 while True: _lowerCamelCase : str = 0 _lowerCamelCase : Optional[Any] = fa + fa _lowerCamelCase , _lowerCamelCase : Optional[int] = fa, f index += 1 for _ in str(__a ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
349
0
class A : def __init__( self , lowercase_ ) -> None: '''simple docstring''' _snake_case : str = set_counts _snake_case : Union[str, Any] = max(lowercase_ ) _snake_case : List[Any] = len(lowercase_ ) _snake_case : Tuple = [1] * num_sets _snake_case : Dict = list(range(lowercase_ ) ) def __a ( self , lowercase_ , lowercase_ ) -> bool: '''simple docstring''' _snake_case : List[Any] = self.get_parent(lowercase_ ) _snake_case : Tuple = self.get_parent(lowercase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] _snake_case : List[str] = 0 _snake_case : List[Any] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 _snake_case : Dict = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] _snake_case : Union[str, Any] = 0 _snake_case : Optional[int] = src_parent _snake_case : Tuple = self.set_counts[src_parent] _snake_case : str = max(self.max_set , lowercase_ ) return True def __a ( self , lowercase_ ) -> int: '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set _snake_case : Optional[int] = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
326
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class a (unittest.TestCase ): """simple docstring""" def __snake_case ( self : Tuple ) -> Optional[Any]: __snake_case : Dict = tempfile.mkdtemp() __snake_case : Any = SamImageProcessor() __snake_case : Optional[int] = SamProcessor(lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def __snake_case ( self : Optional[Any] , **lowerCamelCase : Optional[int] ) -> Optional[Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase ).image_processor def __snake_case ( self : Optional[Any] ) -> Dict: shutil.rmtree(self.tmpdirname ) def __snake_case ( self : int ) -> List[Any]: __snake_case : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __snake_case : int = [Image.fromarray(np.moveaxis(lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __snake_case ( self : List[Any] ) -> Dict: __snake_case : int = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __snake_case : Dict = self.get_image_processor(do_normalize=lowerCamelCase , padding_value=1.0 ) __snake_case : Optional[Any] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase ) def __snake_case ( self : List[str] ) -> Tuple: __snake_case : int = self.get_image_processor() __snake_case : str = SamProcessor(image_processor=lowerCamelCase ) __snake_case : Optional[int] = self.prepare_image_inputs() __snake_case : List[str] = image_processor(lowerCamelCase , return_tensors="np" ) __snake_case : Dict = processor(images=lowerCamelCase , return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_torch def __snake_case ( self : Optional[Any] ) -> Dict: __snake_case : Tuple = self.get_image_processor() __snake_case : List[Any] = SamProcessor(image_processor=lowerCamelCase ) __snake_case : List[str] = [torch.ones((1, 3, 5, 5) )] __snake_case : Tuple = [[1764, 2646]] __snake_case : Optional[int] = [[683, 1024]] __snake_case : int = processor.post_process_masks(lowerCamelCase , lowerCamelCase , lowerCamelCase ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) __snake_case : Optional[Any] = processor.post_process_masks( lowerCamelCase , torch.tensor(lowerCamelCase ) , torch.tensor(lowerCamelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np __snake_case : List[str] = [np.ones((1, 3, 5, 5) )] __snake_case : Optional[int] = processor.post_process_masks(lowerCamelCase , np.array(lowerCamelCase ) , np.array(lowerCamelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) __snake_case : str = [[1, 0], [0, 1]] with self.assertRaises(lowerCamelCase ): __snake_case : Optional[int] = processor.post_process_masks(lowerCamelCase , np.array(lowerCamelCase ) , np.array(lowerCamelCase ) ) @require_vision @require_tf class a (unittest.TestCase ): """simple docstring""" def __snake_case ( self : List[Any] ) -> Union[str, Any]: __snake_case : int = tempfile.mkdtemp() __snake_case : str = SamImageProcessor() __snake_case : List[Any] = SamProcessor(lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def __snake_case ( self : str , **lowerCamelCase : Any ) -> Tuple: return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase ).image_processor def __snake_case ( self : Optional[int] ) -> Any: shutil.rmtree(self.tmpdirname ) def __snake_case ( self : str ) -> List[Any]: __snake_case : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __snake_case : Dict = [Image.fromarray(np.moveaxis(lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __snake_case ( self : int ) -> List[str]: __snake_case : List[Any] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __snake_case : Optional[Any] = self.get_image_processor(do_normalize=lowerCamelCase , padding_value=1.0 ) __snake_case : Tuple = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase ) def __snake_case ( self : Union[str, Any] ) -> List[Any]: __snake_case : str = self.get_image_processor() __snake_case : Union[str, Any] = SamProcessor(image_processor=lowerCamelCase ) __snake_case : Dict = self.prepare_image_inputs() __snake_case : int = image_processor(lowerCamelCase , return_tensors="np" ) __snake_case : List[str] = processor(images=lowerCamelCase , return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_tf def __snake_case ( self : Any ) -> Optional[int]: __snake_case : List[str] = self.get_image_processor() __snake_case : Dict = SamProcessor(image_processor=lowerCamelCase ) __snake_case : Union[str, Any] = [tf.ones((1, 3, 5, 5) )] __snake_case : List[Any] = [[1764, 2646]] __snake_case : Dict = [[683, 1024]] __snake_case : List[str] = processor.post_process_masks(lowerCamelCase , lowerCamelCase , lowerCamelCase , return_tensors="tf" ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) __snake_case : Optional[Any] = processor.post_process_masks( lowerCamelCase , tf.convert_to_tensor(lowerCamelCase ) , tf.convert_to_tensor(lowerCamelCase ) , return_tensors="tf" , ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np __snake_case : Union[str, Any] = [np.ones((1, 3, 5, 5) )] __snake_case : List[str] = processor.post_process_masks( lowerCamelCase , np.array(lowerCamelCase ) , np.array(lowerCamelCase ) , return_tensors="tf" ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) __snake_case : Tuple = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): __snake_case : Dict = processor.post_process_masks( lowerCamelCase , np.array(lowerCamelCase ) , np.array(lowerCamelCase ) , return_tensors="tf" ) @require_vision @require_torchvision class a (unittest.TestCase ): """simple docstring""" def __snake_case ( self : List[str] ) -> str: __snake_case : Optional[int] = tempfile.mkdtemp() __snake_case : str = SamImageProcessor() __snake_case : List[Any] = SamProcessor(lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def __snake_case ( self : List[str] , **lowerCamelCase : Any ) -> Dict: return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase ).image_processor def __snake_case ( self : Optional[int] ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def __snake_case ( self : Optional[int] ) -> Optional[int]: __snake_case : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __snake_case : List[Any] = [Image.fromarray(np.moveaxis(lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def __snake_case ( self : Union[str, Any] ) -> List[str]: __snake_case : str = self.get_image_processor() __snake_case : str = SamProcessor(image_processor=lowerCamelCase ) __snake_case : List[Any] = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) __snake_case : Dict = [tf.convert_to_tensor(lowerCamelCase )] __snake_case : List[Any] = [torch.tensor(lowerCamelCase )] __snake_case : Optional[Any] = [[1764, 2646]] __snake_case : Optional[int] = [[683, 1024]] __snake_case : Union[str, Any] = processor.post_process_masks( lowerCamelCase , lowerCamelCase , lowerCamelCase , return_tensors="tf" ) __snake_case : Dict = processor.post_process_masks( lowerCamelCase , lowerCamelCase , lowerCamelCase , return_tensors="pt" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def __snake_case ( self : List[Any] ) -> List[str]: __snake_case : Any = self.get_image_processor() __snake_case : List[Any] = SamProcessor(image_processor=lowerCamelCase ) __snake_case : Dict = self.prepare_image_inputs() __snake_case : Any = image_processor(lowerCamelCase , return_tensors="pt" )["pixel_values"].numpy() __snake_case : Optional[Any] = processor(images=lowerCamelCase , return_tensors="pt" )["pixel_values"].numpy() __snake_case : Tuple = image_processor(lowerCamelCase , return_tensors="tf" )["pixel_values"].numpy() __snake_case : List[Any] = processor(images=lowerCamelCase , return_tensors="tf" )["pixel_values"].numpy() self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase ) ) self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase ) ) self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase ) )
81
0
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def snake_case ( _a: Dict , _a: Optional[Any] , _a: str )-> str: '''simple docstring''' lowerCamelCase__ = RemBertConfig.from_json_file(lowerCAmelCase_ ) print('Building PyTorch model from configuration: {}'.format(str(lowerCAmelCase_ ) ) ) lowerCamelCase__ = RemBertModel(lowerCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Save pytorch-model print('Save PyTorch model to {}'.format(lowerCAmelCase_ ) ) torch.save(model.state_dict() , lowerCAmelCase_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _snake_case = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
707
"""simple docstring""" def snake_case ( _a: List[Any] , _a: Any , _a: str , _a: List[Any] )-> List[Any]: '''simple docstring''' lowerCamelCase__ = [False] * len(_a ) lowerCamelCase__ = [] queue.append(_a ) lowerCamelCase__ = True while queue: lowerCamelCase__ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_a ) lowerCamelCase__ = True lowerCamelCase__ = u return visited[t] def snake_case ( _a: List[Any] , _a: str , _a: List[str] )-> Optional[int]: '''simple docstring''' lowerCamelCase__ = [-1] * (len(_a )) lowerCamelCase__ = 0 while bfs(_a , _a , _a , _a ): lowerCamelCase__ = float('Inf' ) lowerCamelCase__ = sink while s != source: # Find the minimum value in select path lowerCamelCase__ = min(_a , graph[parent[s]][s] ) lowerCamelCase__ = parent[s] max_flow += path_flow lowerCamelCase__ = sink while v != source: lowerCamelCase__ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowerCamelCase__ = parent[v] return max_flow _snake_case = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _snake_case , _snake_case = 0, 5 print(ford_fulkerson(graph, source, sink))
659
0
'''simple docstring''' import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Union[str, Any] = "mask2former" __lowerCamelCase : Optional[Any] = ["swin"] __lowerCamelCase : str = {"hidden_size": "hidden_dim"} def __init__( self , _lowerCAmelCase = None , _lowerCAmelCase = 256 , _lowerCAmelCase = 256 , _lowerCAmelCase = 256 , _lowerCAmelCase = 1024 , _lowerCAmelCase = "relu" , _lowerCAmelCase = 6 , _lowerCAmelCase = 10 , _lowerCAmelCase = 8 , _lowerCAmelCase = 0.0 , _lowerCAmelCase = 2048 , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = 4 , _lowerCAmelCase = 255 , _lowerCAmelCase = 100 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 2.0 , _lowerCAmelCase = 5.0 , _lowerCAmelCase = 5.0 , _lowerCAmelCase = 12544 , _lowerCAmelCase = 3.0 , _lowerCAmelCase = 0.75 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 1.0 , _lowerCAmelCase = True , _lowerCAmelCase = [4, 8, 16, 32] , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> List[Any]: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone." ) _lowerCAmelCase = CONFIG_MAPPING["swin"]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_lowerCAmelCase , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = backbone_config.pop("model_type" ) _lowerCAmelCase = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase = config_class.from_dict(_lowerCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' f'''Supported model types: {','.join(self.backbones_supported )}''' ) _lowerCAmelCase = backbone_config _lowerCAmelCase = feature_size _lowerCAmelCase = mask_feature_size _lowerCAmelCase = hidden_dim _lowerCAmelCase = encoder_feedforward_dim _lowerCAmelCase = activation_function _lowerCAmelCase = encoder_layers _lowerCAmelCase = decoder_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = dropout _lowerCAmelCase = dim_feedforward _lowerCAmelCase = pre_norm _lowerCAmelCase = enforce_input_projection _lowerCAmelCase = common_stride _lowerCAmelCase = ignore_value _lowerCAmelCase = num_queries _lowerCAmelCase = no_object_weight _lowerCAmelCase = class_weight _lowerCAmelCase = mask_weight _lowerCAmelCase = dice_weight _lowerCAmelCase = train_num_points _lowerCAmelCase = oversample_ratio _lowerCAmelCase = importance_sample_ratio _lowerCAmelCase = init_std _lowerCAmelCase = init_xavier_std _lowerCAmelCase = use_auxiliary_loss _lowerCAmelCase = feature_strides _lowerCAmelCase = output_auxiliary_logits _lowerCAmelCase = decoder_layers super().__init__(**_lowerCAmelCase ) @classmethod def _snake_case ( cls , _lowerCAmelCase , **_lowerCAmelCase ) -> Dict: return cls( backbone_config=_lowerCAmelCase , **_lowerCAmelCase , ) def _snake_case ( self ) -> Dict[str, any]: _lowerCAmelCase = copy.deepcopy(self.__dict__ ) _lowerCAmelCase = self.backbone_config.to_dict() _lowerCAmelCase = self.__class__.model_type return output
18
"""simple docstring""" def UpperCAmelCase ( A : list[int] , A : list[int] ): '''simple docstring''' if not len(A ) == len(A ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = equationa _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = equationa # Calculate the determinants of the matrices _UpperCAmelCase = aa * ba - aa * ba _UpperCAmelCase = ca * ba - ca * ba _UpperCAmelCase = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _UpperCAmelCase = determinant_x / determinant _UpperCAmelCase = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
573
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : Union[str, Any] = { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowerCamelCase ( lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = '''roformer''' def __init__( self : List[str] , UpperCAmelCase__ : Dict=5_0000 , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : List[Any]=768 , UpperCAmelCase__ : Optional[int]=12 , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : Optional[int]=3072 , UpperCAmelCase__ : Any="gelu" , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Union[str, Any]=1536 , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : Any=0.02 , UpperCAmelCase__ : Optional[Any]=1e-12 , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : Optional[Any]=True , **UpperCAmelCase__ : Any , ) ->Tuple: super().__init__(pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size if embedding_size is None else embedding_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = rotary_value UpperCAmelCase_ = use_cache class lowerCamelCase ( lowerCamelCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self : str ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCAmelCase_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase_ = {0: '''batch''', 1: '''sequence'''} UpperCAmelCase_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
43
'''simple docstring''' import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase ( lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = XLMTokenizer lowerCAmelCase__ = False def lowerCAmelCase__ ( self : int ) ->Union[str, Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] UpperCAmelCase_ = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) UpperCAmelCase_ = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(UpperCAmelCase__ ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(UpperCAmelCase__ ) ) def lowerCAmelCase__ ( self : Optional[int] , UpperCAmelCase__ : Any ) ->List[Any]: UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = '''lower newer''' return input_text, output_text def lowerCAmelCase__ ( self : Union[str, Any] ) ->Tuple: UpperCAmelCase_ = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase_ = '''lower''' UpperCAmelCase_ = ['''low''', '''er</w>'''] UpperCAmelCase_ = tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCAmelCase_ = tokens + ['''<unk>'''] UpperCAmelCase_ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , UpperCAmelCase__ ) @slow def lowerCAmelCase__ ( self : Any ) ->str: UpperCAmelCase_ = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) UpperCAmelCase_ = tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCAmelCase__ ) UpperCAmelCase_ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCAmelCase__ ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ , UpperCAmelCase__ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
43
1