code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : List[str] = ["""image_processor""", """tokenizer"""] _A : Tuple = """BridgeTowerImageProcessor""" _A : str = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__(self , lowercase__ , lowercase__ ): super().__init__(lowercase__ , lowercase__ ) def __call__(self , lowercase__ , lowercase__ = None , lowercase__ = True , lowercase__ = False , lowercase__ = None , lowercase__ = None , lowercase__ = 0 , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = True , lowercase__ = None , **lowercase__ , ): snake_case_ : Optional[int] = self.tokenizer( text=lowercase__ , add_special_tokens=lowercase__ , padding=lowercase__ , truncation=lowercase__ , max_length=lowercase__ , stride=lowercase__ , pad_to_multiple_of=lowercase__ , return_token_type_ids=lowercase__ , return_attention_mask=lowercase__ , return_overflowing_tokens=lowercase__ , return_special_tokens_mask=lowercase__ , return_offsets_mapping=lowercase__ , return_length=lowercase__ , verbose=lowercase__ , return_tensors=lowercase__ , **lowercase__ , ) # add pixel_values + pixel_mask snake_case_ : List[Any] = self.image_processor( lowercase__ , return_tensors=lowercase__ , do_normalize=lowercase__ , do_center_crop=lowercase__ , **lowercase__ ) encoding.update(lowercase__ ) return encoding def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property def __UpperCamelCase (self ): snake_case_ : Tuple = self.tokenizer.model_input_names snake_case_ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
480
"""simple docstring""" a_ = 256 # Modulus to hash a string a_ = 1000003 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : str = len(SCREAMING_SNAKE_CASE__ ) snake_case_ : int = len(SCREAMING_SNAKE_CASE__ ) if p_len > t_len: return False snake_case_ : str = 0 snake_case_ : Dict = 0 snake_case_ : List[str] = 1 # Calculating the hash of pattern and substring of text for i in range(SCREAMING_SNAKE_CASE__ ): snake_case_ : Optional[int] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus snake_case_ : int = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue snake_case_ : int = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash snake_case_ : List[str] = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Optional[int] = """abc1abc12""" snake_case_ : Any = """alskfjaldsabc1abc1abc12k23adsfabcabc""" snake_case_ : List[str] = """alskfjaldsk23adsfabcabc""" assert rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and not rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Test 2) snake_case_ : Union[str, Any] = """ABABX""" snake_case_ : Optional[Any] = """ABABZABABYABABX""" assert rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Test 3) snake_case_ : Union[str, Any] = """AAAB""" snake_case_ : Union[str, Any] = """ABAAAAAB""" assert rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Test 4) snake_case_ : Optional[Any] = """abcdabcy""" snake_case_ : Union[str, Any] = """abcxabcdabxabcdabcdabcy""" assert rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Test 5) snake_case_ : List[str] = """Lü""" snake_case_ : Optional[int] = """Lüsai""" assert rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Any = """Lue""" assert not rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print("""Success.""" ) if __name__ == "__main__": test_rabin_karp()
480
1
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class UpperCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights a__ = FlaxDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowerCamelCase , cache_dir=lowerCamelCase ) a__ = [t[-1] for t in os.walk(os.path.join(lowerCamelCase , os.listdir(lowerCamelCase )[0] , "snapshots" ) )] a__ = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(".bin" ) for f in files ) @slow @require_flax class UpperCamelCase__ ( unittest.TestCase ): def __a ( self : List[str] ): '''simple docstring''' a__ , a__ = FlaxStableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowerCamelCase ) a__ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) a__ = jax.random.PRNGKey(0 ) a__ = 4 a__ = jax.device_count() a__ = num_samples * [prompt] a__ = pipeline.prepare_inputs(lowerCamelCase ) # shard inputs and rng a__ = replicate(lowerCamelCase ) a__ = jax.random.split(lowerCamelCase , lowerCamelCase ) a__ = shard(lowerCamelCase ) a__ = pipeline(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1514745 ) < 1e-3 assert np.abs(np.abs(lowerCamelCase , dtype=np.floataa ).sum() - 49947.875 ) < 5e-1 a__ = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCamelCase ) == num_samples def __a ( self : Union[str, Any] ): '''simple docstring''' a__ , a__ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=lowerCamelCase ) a__ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) a__ = jax.random.PRNGKey(0 ) a__ = 5_0 a__ = jax.device_count() a__ = num_samples * [prompt] a__ = pipeline.prepare_inputs(lowerCamelCase ) # shard inputs and rng a__ = replicate(lowerCamelCase ) a__ = jax.random.split(lowerCamelCase , lowerCamelCase ) a__ = shard(lowerCamelCase ) a__ = pipeline(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05652401) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase , dtype=np.floataa ).sum() - 2383808.2) ) < 5e-1 def __a ( self : Any ): '''simple docstring''' a__ , a__ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowerCamelCase ) a__ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) a__ = jax.random.PRNGKey(0 ) a__ = 5_0 a__ = jax.device_count() a__ = num_samples * [prompt] a__ = pipeline.prepare_inputs(lowerCamelCase ) # shard inputs and rng a__ = replicate(lowerCamelCase ) a__ = jax.random.split(lowerCamelCase , lowerCamelCase ) a__ = shard(lowerCamelCase ) a__ = pipeline(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase , dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1 def __a ( self : List[str] ): '''simple docstring''' a__ , a__ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa ) a__ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) a__ = jax.random.PRNGKey(0 ) a__ = 5_0 a__ = jax.device_count() a__ = num_samples * [prompt] a__ = pipeline.prepare_inputs(lowerCamelCase ) # shard inputs and rng a__ = replicate(lowerCamelCase ) a__ = jax.random.split(lowerCamelCase , lowerCamelCase ) a__ = shard(lowerCamelCase ) a__ = pipeline(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase , dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1 def __a ( self : int ): '''simple docstring''' a__ = FlaxDDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , set_alpha_to_one=lowerCamelCase , steps_offset=1 , ) a__ , a__ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=lowerCamelCase , safety_checker=lowerCamelCase , ) a__ = scheduler.create_state() a__ = scheduler_state a__ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) a__ = jax.random.PRNGKey(0 ) a__ = 5_0 a__ = jax.device_count() a__ = num_samples * [prompt] a__ = pipeline.prepare_inputs(lowerCamelCase ) # shard inputs and rng a__ = replicate(lowerCamelCase ) a__ = jax.random.split(lowerCamelCase , lowerCamelCase ) a__ = shard(lowerCamelCase ) a__ = pipeline(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045043945) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase , dtype=np.floataa ).sum() - 2347693.5) ) < 5e-1 def __a ( self : Optional[Any] ): '''simple docstring''' a__ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) a__ = jax.device_count() a__ = num_samples * [prompt] a__ = jax.random.split(jax.random.PRNGKey(0 ) , lowerCamelCase ) a__ , a__ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowerCamelCase , ) a__ = replicate(lowerCamelCase ) a__ = pipeline.prepare_inputs(lowerCamelCase ) a__ = shard(lowerCamelCase ) a__ = pipeline(lowerCamelCase , lowerCamelCase , lowerCamelCase , jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) a__ = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention a__ , a__ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowerCamelCase , use_memory_efficient_attention=lowerCamelCase , ) a__ = replicate(lowerCamelCase ) a__ = pipeline.prepare_inputs(lowerCamelCase ) a__ = shard(lowerCamelCase ) a__ = pipeline(lowerCamelCase , lowerCamelCase , lowerCamelCase , jit=lowerCamelCase ).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) a__ = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
289
'''simple docstring''' import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCamelCase__ : def __init__( self : List[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Any=2 , lowerCamelCase : Optional[Any]=3 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : Optional[Any]=2 , lowerCamelCase : Tuple=7 , lowerCamelCase : Dict=True , lowerCamelCase : Optional[Any]=True , lowerCamelCase : int=True , lowerCamelCase : Any=True , lowerCamelCase : int=9_9 , lowerCamelCase : Tuple=3_6 , lowerCamelCase : List[Any]=3 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : Any=3_7 , lowerCamelCase : List[Any]="gelu" , lowerCamelCase : Optional[Any]=0.1 , lowerCamelCase : Optional[int]=0.1 , lowerCamelCase : Union[str, Any]=5_1_2 , lowerCamelCase : Dict=1_6 , lowerCamelCase : int=2 , lowerCamelCase : Union[str, Any]=0.02 , lowerCamelCase : Tuple=6 , lowerCamelCase : Tuple=6 , lowerCamelCase : int=3 , lowerCamelCase : str=4 , lowerCamelCase : int=None , lowerCamelCase : Optional[int]=1_0_0_0 , ): '''simple docstring''' a__ = parent a__ = batch_size a__ = num_channels a__ = image_size a__ = patch_size a__ = text_seq_length a__ = is_training a__ = use_input_mask a__ = use_token_type_ids a__ = use_labels a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = coordinate_size a__ = shape_size a__ = num_labels a__ = num_choices a__ = scope a__ = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) a__ = text_seq_length a__ = (image_size // patch_size) ** 2 + 1 a__ = self.text_seq_length + self.image_seq_length def __a ( self : Union[str, Any] ): '''simple docstring''' a__ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) a__ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: a__ = bbox[i, j, 3] a__ = bbox[i, j, 1] a__ = t if bbox[i, j, 2] < bbox[i, j, 0]: a__ = bbox[i, j, 2] a__ = bbox[i, j, 0] a__ = t a__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ = None if self.use_input_mask: a__ = random_attention_mask([self.batch_size, self.text_seq_length] ) a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) a__ = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __a ( self : Tuple , lowerCamelCase : int , lowerCamelCase : Dict , lowerCamelCase : int , lowerCamelCase : str , lowerCamelCase : int , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Dict ): '''simple docstring''' a__ = LayoutLMvaModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() # text + image a__ = model(lowerCamelCase , pixel_values=lowerCamelCase ) a__ = model( lowerCamelCase , bbox=lowerCamelCase , pixel_values=lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase ) a__ = model(lowerCamelCase , bbox=lowerCamelCase , pixel_values=lowerCamelCase , token_type_ids=lowerCamelCase ) a__ = model(lowerCamelCase , bbox=lowerCamelCase , pixel_values=lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only a__ = model(lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only a__ = model(pixel_values=lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __a ( self : str , lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : List[str] , lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[int] ): '''simple docstring''' a__ = self.num_labels a__ = LayoutLMvaForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() a__ = model( lowerCamelCase , bbox=lowerCamelCase , pixel_values=lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self : int , lowerCamelCase : Dict , lowerCamelCase : Any , lowerCamelCase : str , lowerCamelCase : Dict , lowerCamelCase : int , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : Tuple ): '''simple docstring''' a__ = self.num_labels a__ = LayoutLMvaForTokenClassification(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() a__ = model( lowerCamelCase , bbox=lowerCamelCase , pixel_values=lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __a ( self : Dict , lowerCamelCase : Tuple , lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : Any ): '''simple docstring''' a__ = LayoutLMvaForQuestionAnswering(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() a__ = model( lowerCamelCase , bbox=lowerCamelCase , pixel_values=lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , start_positions=lowerCamelCase , end_positions=lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self : Optional[int] ): '''simple docstring''' a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCamelCase__ ( __lowerCAmelCase ,__lowerCAmelCase ,unittest.TestCase ): lowerCAmelCase__ : str = False lowerCAmelCase__ : Optional[Any] = False lowerCAmelCase__ : Any = False lowerCAmelCase__ : List[str] = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase__ : List[Any] = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def __a ( self : List[str] , lowerCamelCase : List[str] , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any] ): '''simple docstring''' # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def __a ( self : int ): '''simple docstring''' a__ = LayoutLMvaModelTester(self ) a__ = ConfigTester(self , config_class=lowerCamelCase , hidden_size=3_7 ) def __a ( self : List[str] , lowerCamelCase : Optional[int] , lowerCamelCase : Any , lowerCamelCase : Tuple=False ): '''simple docstring''' a__ = copy.deepcopy(lowerCamelCase ) if model_class in get_values(lowerCamelCase ): a__ = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(lowerCamelCase , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowerCamelCase ): a__ = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase ) elif model_class in get_values(lowerCamelCase ): a__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase ) a__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase ) elif model_class in [ *get_values(lowerCamelCase ), ]: a__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase ) elif model_class in [ *get_values(lowerCamelCase ), ]: a__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=lowerCamelCase , ) return inputs_dict def __a ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def __a ( self : Optional[Any] ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def __a ( self : List[Any] ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a__ = type self.model_tester.create_and_check_model(*lowerCamelCase ) def __a ( self : Tuple ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase ) def __a ( self : Optional[int] ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase ) def __a ( self : List[Any] ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase ) @slow def __a ( self : List[Any] ): '''simple docstring''' for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = LayoutLMvaModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def _lowerCamelCase () -> Dict: a__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class UpperCamelCase__ ( unittest.TestCase ): @cached_property def __a ( self : int ): '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=lowerCamelCase ) if is_vision_available() else None @slow def __a ( self : List[Any] ): '''simple docstring''' a__ = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(lowerCamelCase ) a__ = self.default_image_processor a__ = prepare_img() a__ = image_processor(images=lowerCamelCase , return_tensors="pt" ).pixel_values.to(lowerCamelCase ) a__ = torch.tensor([[1, 2]] ) a__ = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass a__ = model( input_ids=input_ids.to(lowerCamelCase ) , bbox=bbox.to(lowerCamelCase ) , pixel_values=pixel_values.to(lowerCamelCase ) , ) # verify the logits a__ = torch.Size((1, 1_9_9, 7_6_8) ) self.assertEqual(outputs.last_hidden_state.shape , lowerCamelCase ) a__ = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase , atol=1e-4 ) )
289
1
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : torch.FloatTensor class _lowerCAmelCase ( lowercase_ , lowercase_ ): """simple docstring""" @register_to_config def __init__( self : Tuple , UpperCamelCase__ : int = 3_2 , UpperCamelCase__ : int = 6_4 , UpperCamelCase__ : int = 2_0 , UpperCamelCase__ : int = 7_6_8 , UpperCamelCase__ : Optional[Any]=7_7 , UpperCamelCase__ : str=4 , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : str = "silu" , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : Optional[str] = "linear" , UpperCamelCase__ : Optional[str] = "prd" , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[int] = None , ): '''simple docstring''' super().__init__() snake_case__ = num_attention_heads snake_case__ = attention_head_dim snake_case__ = num_attention_heads * attention_head_dim snake_case__ = additional_embeddings snake_case__ = time_embed_dim or inner_dim snake_case__ = embedding_proj_dim or embedding_dim snake_case__ = clip_embed_dim or embedding_dim snake_case__ = Timesteps(UpperCamelCase__ , UpperCamelCase__ , 0) snake_case__ = TimestepEmbedding(UpperCamelCase__ , UpperCamelCase__ , out_dim=UpperCamelCase__ , act_fn=UpperCamelCase__) snake_case__ = nn.Linear(UpperCamelCase__ , UpperCamelCase__) if embedding_proj_norm_type is None: snake_case__ = None elif embedding_proj_norm_type == "layer": snake_case__ = nn.LayerNorm(UpperCamelCase__) else: raise ValueError(F'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''') snake_case__ = nn.Linear(UpperCamelCase__ , UpperCamelCase__) if encoder_hid_proj_type is None: snake_case__ = None elif encoder_hid_proj_type == "linear": snake_case__ = nn.Linear(UpperCamelCase__ , UpperCamelCase__) else: raise ValueError(F'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''') snake_case__ = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCamelCase__)) if added_emb_type == "prd": snake_case__ = nn.Parameter(torch.zeros(1 , 1 , UpperCamelCase__)) elif added_emb_type is None: snake_case__ = None else: raise ValueError( F'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''') snake_case__ = nn.ModuleList( [ BasicTransformerBlock( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , dropout=UpperCamelCase__ , activation_fn="""gelu""" , attention_bias=UpperCamelCase__ , ) for d in range(UpperCamelCase__) ]) if norm_in_type == "layer": snake_case__ = nn.LayerNorm(UpperCamelCase__) elif norm_in_type is None: snake_case__ = None else: raise ValueError(F'''Unsupported norm_in_type: {norm_in_type}.''') snake_case__ = nn.LayerNorm(UpperCamelCase__) snake_case__ = nn.Linear(UpperCamelCase__ , UpperCamelCase__) snake_case__ = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0) causal_attention_mask.triu_(1) snake_case__ = causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" , UpperCamelCase__ , persistent=UpperCamelCase__) snake_case__ = nn.Parameter(torch.zeros(1 , UpperCamelCase__)) snake_case__ = nn.Parameter(torch.zeros(1 , UpperCamelCase__)) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __magic_name__ ( self : Optional[int]): '''simple docstring''' snake_case__ = {} def fn_recursive_add_processors(UpperCamelCase__ : str , UpperCamelCase__ : torch.nn.Module , UpperCamelCase__ : Dict[str, AttentionProcessor]): if hasattr(UpperCamelCase__ , """set_processor"""): snake_case__ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , UpperCamelCase__ , UpperCamelCase__) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) return processors def __magic_name__ ( self : Union[str, Any] , UpperCamelCase__ : Union[AttentionProcessor, Dict[str, AttentionProcessor]]): '''simple docstring''' snake_case__ = len(self.attn_processors.keys()) if isinstance(UpperCamelCase__ , UpperCamelCase__) and len(UpperCamelCase__) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(UpperCamelCase__)} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''') def fn_recursive_attn_processor(UpperCamelCase__ : str , UpperCamelCase__ : torch.nn.Module , UpperCamelCase__ : Optional[int]): if hasattr(UpperCamelCase__ , """set_processor"""): if not isinstance(UpperCamelCase__ , UpperCamelCase__): module.set_processor(UpperCamelCase__) else: module.set_processor(processor.pop(F'''{name}.processor''')) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , UpperCamelCase__ , UpperCamelCase__) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) def __magic_name__ ( self : Dict): '''simple docstring''' self.set_attn_processor(AttnProcessor()) def __magic_name__ ( self : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Union[torch.Tensor, float, int] , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.BoolTensor] = None , UpperCamelCase__ : bool = True , ): '''simple docstring''' snake_case__ = hidden_states.shape[0] snake_case__ = timestep if not torch.is_tensor(UpperCamelCase__): snake_case__ = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device) elif torch.is_tensor(UpperCamelCase__) and len(timesteps.shape) == 0: snake_case__ = timesteps[None].to(hidden_states.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML snake_case__ = timesteps * torch.ones(UpperCamelCase__ , dtype=timesteps.dtype , device=timesteps.device) snake_case__ = self.time_proj(UpperCamelCase__) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. snake_case__ = timesteps_projected.to(dtype=self.dtype) snake_case__ = self.time_embedding(UpperCamelCase__) if self.embedding_proj_norm is not None: snake_case__ = self.embedding_proj_norm(UpperCamelCase__) snake_case__ = self.embedding_proj(UpperCamelCase__) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: snake_case__ = self.encoder_hidden_states_proj(UpperCamelCase__) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""") snake_case__ = self.proj_in(UpperCamelCase__) snake_case__ = self.positional_embedding.to(hidden_states.dtype) snake_case__ = [] snake_case__ = 0 if encoder_hidden_states is not None: additional_embeds.append(UpperCamelCase__) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape) == 2: snake_case__ = proj_embeddings[:, None, :] if len(hidden_states.shape) == 2: snake_case__ = hidden_states[:, None, :] snake_case__ = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: snake_case__ = self.prd_embedding.to(hidden_states.dtype).expand(UpperCamelCase__ , -1 , -1) additional_embeds.append(UpperCamelCase__) snake_case__ = torch.cat( UpperCamelCase__ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens snake_case__ = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: snake_case__ = F.pad( UpperCamelCase__ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) snake_case__ = hidden_states + positional_embeddings if attention_mask is not None: snake_case__ = (1 - attention_mask.to(hidden_states.dtype)) * -1_00_00.0 snake_case__ = F.pad(UpperCamelCase__ , (0, self.additional_embeddings) , value=0.0) snake_case__ = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype) snake_case__ = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0) if self.norm_in is not None: snake_case__ = self.norm_in(UpperCamelCase__) for block in self.transformer_blocks: snake_case__ = block(UpperCamelCase__ , attention_mask=UpperCamelCase__) snake_case__ = self.norm_out(UpperCamelCase__) if self.prd_embedding is not None: snake_case__ = hidden_states[:, -1] else: snake_case__ = hidden_states[:, additional_embeddings_len:] snake_case__ = self.proj_to_clip_embeddings(UpperCamelCase__) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCamelCase__) def __magic_name__ ( self : Any , UpperCamelCase__ : Any): '''simple docstring''' snake_case__ = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
654
a__ = [0, 2, 4, 6, 8] a__ = [1, 3, 5, 7, 9] def _UpperCAmelCase ( a : int , a : int , a : list[int] , a : int ): if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 snake_case__ = 0 for digit in range(10 ): snake_case__ = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , a , a ) return result snake_case__ = 0 for digita in range(10 ): snake_case__ = digita if (remainder + digita) % 2 == 0: snake_case__ = ODD_DIGITS else: snake_case__ = EVEN_DIGITS for digita in other_parity_digits: snake_case__ = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , a , a , ) return result def _UpperCAmelCase ( a : int = 9 ): snake_case__ = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(a , 0 , [0] * length , a ) return result if __name__ == "__main__": print(F'''{solution() = }''')
654
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case__ : int = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Union[str, Any] = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[Any] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys snake_case__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
715
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class SCREAMING_SNAKE_CASE_ (pl.LightningModule ): '''simple docstring''' def __init__( self : Any , __a : Optional[int] ) ->str: super().__init__() lowerCamelCase_ : List[Any] = model lowerCamelCase_ : List[Any] = 2 lowerCamelCase_ : Optional[int] = nn.Linear(self.model.config.hidden_size , self.num_labels ) def _lowerCAmelCase ( self : Any ) ->Tuple: pass def __lowerCamelCase ( A__ : str , A__ : str , A__ : str ) -> Any: # load longformer model from model identifier lowerCamelCase_ : Tuple = LongformerModel.from_pretrained(A__ ) lowerCamelCase_ : Optional[Any] = LightningModel(A__ ) lowerCamelCase_ : Tuple = torch.load(A__ , map_location=torch.device("""cpu""" ) ) lightning_model.load_state_dict(ckpt["""state_dict"""] ) # init longformer question answering model lowerCamelCase_ : List[str] = LongformerForQuestionAnswering.from_pretrained(A__ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(A__ ) print(f'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' ) if __name__ == "__main__": snake_case__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) snake_case__ : Dict = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
171
0
import warnings from ..trainer import Trainer from ..utils import logging UpperCAmelCase__ = logging.get_logger(__name__) class a ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self : List[str] , lowerCamelCase__ : Tuple=None , **lowerCamelCase__ : Any ) -> int: """simple docstring""" warnings.warn( '''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ''' '''instead.''' , lowerCamelCase__ , ) super().__init__(args=lowerCamelCase__ , **lowerCamelCase__ )
332
from ..utils import DummyObject, requires_backends class a ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase_ : Optional[int] = ['note_seq'] def __init__( self : Dict , *lowerCamelCase__ : int , **lowerCamelCase__ : List[str] ) -> str: """simple docstring""" requires_backends(self , ['''note_seq'''] ) @classmethod def UpperCAmelCase_ ( cls : int , *lowerCamelCase__ : Dict , **lowerCamelCase__ : int ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['''note_seq'''] ) @classmethod def UpperCAmelCase_ ( cls : Tuple , *lowerCamelCase__ : Any , **lowerCamelCase__ : Optional[Any] ) -> List[str]: """simple docstring""" requires_backends(cls , ['''note_seq'''] )
332
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {} class __lowercase ( a__ ): _lowerCAmelCase = "llama" _lowerCAmelCase = ["past_key_values"] def __init__( self : Tuple , lowercase__ : Tuple=3_2_0_0_0 , lowercase__ : List[Any]=4_0_9_6 , lowercase__ : Tuple=1_1_0_0_8 , lowercase__ : int=3_2 , lowercase__ : int=3_2 , lowercase__ : Optional[int]=None , lowercase__ : List[str]="silu" , lowercase__ : List[Any]=2_0_4_8 , lowercase__ : Union[str, Any]=0.02 , lowercase__ : List[str]=1e-6 , lowercase__ : Optional[int]=True , lowercase__ : str=0 , lowercase__ : Union[str, Any]=1 , lowercase__ : int=2 , lowercase__ : str=1 , lowercase__ : Any=False , lowercase__ : Any=None , **lowercase__ : Union[str, Any] , ): a_ = vocab_size a_ = max_position_embeddings a_ = hidden_size a_ = intermediate_size a_ = num_hidden_layers a_ = num_attention_heads # for backward compatibility if num_key_value_heads is None: a_ = num_attention_heads a_ = num_key_value_heads a_ = hidden_act a_ = initializer_range a_ = rms_norm_eps a_ = pretraining_tp a_ = use_cache a_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , tie_word_embeddings=lowercase__ , **lowercase__ , ) def __magic_name__ ( self : Optional[int] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase__ ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"got {self.rope_scaling}" ) a_ = self.rope_scaling.get('''type''' , lowercase__ ) a_ = self.rope_scaling.get('''factor''' , lowercase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(lowercase__ , lowercase__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
143
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class __lowercase ( unittest.TestCase ): def __init__( self : Union[str, Any] , lowercase__ : Union[str, Any] , lowercase__ : Any=7 , lowercase__ : Any=3 , lowercase__ : str=3_0 , lowercase__ : int=4_0_0 , lowercase__ : Dict=True , lowercase__ : Union[str, Any]=None , lowercase__ : str=True , lowercase__ : Dict=1 / 2_5_5 , lowercase__ : List[Any]=True , lowercase__ : Dict=[0.5, 0.5, 0.5] , lowercase__ : List[str]=[0.5, 0.5, 0.5] , lowercase__ : List[str]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p a_ = size if size is not None else {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} a_ = parent a_ = batch_size a_ = num_channels a_ = min_resolution a_ = max_resolution a_ = do_resize a_ = size a_ = do_rescale a_ = rescale_factor a_ = do_normalize a_ = image_mean a_ = image_std a_ = do_pad def __magic_name__ ( self : int ): return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def __magic_name__ ( self : Tuple , lowercase__ : Optional[int] , lowercase__ : Optional[int]=False ): if not batched: a_ = image_inputs[0] if isinstance(lowercase__ , Image.Image ): a_ , a_ = image.size else: a_ , a_ = image.shape[1], image.shape[2] if w < h: a_ = int(self.size['''shortest_edge'''] * h / w ) a_ = self.size['''shortest_edge'''] elif w > h: a_ = self.size['''shortest_edge'''] a_ = int(self.size['''shortest_edge'''] * w / h ) else: a_ = self.size['''shortest_edge'''] a_ = self.size['''shortest_edge'''] else: a_ = [] for image in image_inputs: a_ , a_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) a_ = max(lowercase__ , key=lambda lowercase__ : item[0] )[0] a_ = max(lowercase__ , key=lambda lowercase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowercase ( a__ , unittest.TestCase ): _lowerCAmelCase = DetrImageProcessor if is_vision_available() else None def __magic_name__ ( self : Dict ): a_ = DetrImageProcessingTester(self ) @property def __magic_name__ ( self : Tuple ): return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self : Optional[int] ): a_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowercase__ , '''image_std''' ) ) self.assertTrue(hasattr(lowercase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowercase__ , '''do_rescale''' ) ) self.assertTrue(hasattr(lowercase__ , '''rescale_factor''' ) ) self.assertTrue(hasattr(lowercase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowercase__ , '''size''' ) ) self.assertTrue(hasattr(lowercase__ , '''do_pad''' ) ) def __magic_name__ ( self : Any ): a_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , lowercase__ ) a_ = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=lowercase__ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2, '''longest_edge''': 8_4} ) self.assertEqual(image_processor.do_pad , lowercase__ ) def __magic_name__ ( self : str ): pass def __magic_name__ ( self : List[Any] ): # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values a_ , a_ = self.image_processor_tester.get_expected_values(lowercase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a_ , a_ = self.image_processor_tester.get_expected_values(lowercase__ , batched=lowercase__ ) a_ = image_processing(lowercase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self : Optional[int] ): # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , numpify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , np.ndarray ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values a_ , a_ = self.image_processor_tester.get_expected_values(lowercase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a_ = image_processing(lowercase__ , return_tensors='''pt''' ).pixel_values a_ , a_ = self.image_processor_tester.get_expected_values(lowercase__ , batched=lowercase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self : List[str] ): # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , torchify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , torch.Tensor ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values a_ , a_ = self.image_processor_tester.get_expected_values(lowercase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a_ = image_processing(lowercase__ , return_tensors='''pt''' ).pixel_values a_ , a_ = self.image_processor_tester.get_expected_values(lowercase__ , batched=lowercase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __magic_name__ ( self : Dict ): # prepare image and target a_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: a_ = json.loads(f.read() ) a_ = {'''image_id''': 3_9_7_6_9, '''annotations''': target} # encode them a_ = DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50''' ) a_ = image_processing(images=lowercase__ , annotations=lowercase__ , return_tensors='''pt''' ) # verify pixel values a_ = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , lowercase__ ) a_ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowercase__ , atol=1e-4 ) ) # verify area a_ = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowercase__ ) ) # verify boxes a_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowercase__ ) a_ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowercase__ , atol=1e-3 ) ) # verify image_id a_ = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowercase__ ) ) # verify is_crowd a_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowercase__ ) ) # verify class_labels a_ = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowercase__ ) ) # verify orig_size a_ = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowercase__ ) ) # verify size a_ = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowercase__ ) ) @slow def __magic_name__ ( self : str ): # prepare image, target and masks_path a_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: a_ = json.loads(f.read() ) a_ = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9_7_6_9, '''segments_info''': target} a_ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them a_ = DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50-panoptic''' ) a_ = image_processing(images=lowercase__ , annotations=lowercase__ , masks_path=lowercase__ , return_tensors='''pt''' ) # verify pixel values a_ = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , lowercase__ ) a_ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowercase__ , atol=1e-4 ) ) # verify area a_ = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowercase__ ) ) # verify boxes a_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowercase__ ) a_ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowercase__ , atol=1e-3 ) ) # verify image_id a_ = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowercase__ ) ) # verify is_crowd a_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowercase__ ) ) # verify class_labels a_ = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowercase__ ) ) # verify masks a_ = 8_2_2_8_7_3 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , lowercase__ ) # verify orig_size a_ = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowercase__ ) ) # verify size a_ = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowercase__ ) )
143
1
"""simple docstring""" def lowercase ( UpperCamelCase : int = 1000000 ): """simple docstring""" A__ : Optional[Any] =set(range(3 , UpperCamelCase , 2 ) ) primes.add(2 ) for p in range(3 , UpperCamelCase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , UpperCamelCase , UpperCamelCase ) ) ) A__ : int =[float(UpperCamelCase ) for n in range(limit + 1 )] for p in primes: for n in range(UpperCamelCase , limit + 1 , UpperCamelCase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f"""{solution() = }""")
656
"""simple docstring""" def lowercase ( UpperCamelCase : int ): """simple docstring""" if num <= 0: raise ValueError("Input must be a positive integer" ) A__ : Union[str, Any] =[True] * (num + 1) A__ : Union[str, Any] =2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , UpperCamelCase ): A__ : str =False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() __A : Optional[int] = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
656
1
'''simple docstring''' from __future__ import annotations def _A ( A ,A ,A ,) -> tuple: if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
425
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # General docstring lowerCAmelCase : Tuple = """MobileNetV1Config""" # Base docstring lowerCAmelCase : int = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Any = [1, 1_0_2_4, 7, 7] # Image classification docstring lowerCAmelCase : Union[str, Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Tuple = """tabby, tabby cat""" lowerCAmelCase : Optional[Any] = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def _A ( A ,A ,A=None ) -> List[str]: lowercase : List[str] = {} if isinstance(A ,A ): lowercase : Dict = model.mobilenet_va else: lowercase : List[str] = model lowercase : Dict = "MobilenetV1/Conv2d_0/" lowercase : Union[str, Any] = backbone.conv_stem.convolution.weight lowercase : List[Any] = backbone.conv_stem.normalization.bias lowercase : List[str] = backbone.conv_stem.normalization.weight lowercase : Any = backbone.conv_stem.normalization.running_mean lowercase : Union[str, Any] = backbone.conv_stem.normalization.running_var for i in range(1_3 ): lowercase : Union[str, Any] = i + 1 lowercase : int = i * 2 lowercase : Union[str, Any] = backbone.layer[pt_index] lowercase : List[str] = F'''MobilenetV1/Conv2d_{tf_index}_depthwise/''' lowercase : Tuple = pointer.convolution.weight lowercase : Any = pointer.normalization.bias lowercase : List[Any] = pointer.normalization.weight lowercase : List[Any] = pointer.normalization.running_mean lowercase : List[str] = pointer.normalization.running_var lowercase : str = backbone.layer[pt_index + 1] lowercase : List[str] = F'''MobilenetV1/Conv2d_{tf_index}_pointwise/''' lowercase : str = pointer.convolution.weight lowercase : str = pointer.normalization.bias lowercase : Any = pointer.normalization.weight lowercase : str = pointer.normalization.running_mean lowercase : int = pointer.normalization.running_var if isinstance(A ,A ): lowercase : Optional[Any] = "MobilenetV1/Logits/Conv2d_1c_1x1/" lowercase : Union[str, Any] = model.classifier.weight lowercase : Optional[int] = model.classifier.bias return tf_to_pt_map def _A ( A ,A ,A ) -> Optional[Any]: try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model lowercase : Union[str, Any] = tf.train.list_variables(A ) lowercase : int = {} for name, shape in init_vars: logger.info(F'''Loading TF weight {name} with shape {shape}''' ) lowercase : Optional[int] = tf.train.load_variable(A ,A ) lowercase : str = array # Build TF to PyTorch weights loading map lowercase : Union[str, Any] = _build_tf_to_pytorch_map(A ,A ,A ) for name, pointer in tf_to_pt_map.items(): logger.info(F'''Importing {name}''' ) if name not in tf_weights: logger.info(F'''{name} not in tf pre-trained weights, skipping''' ) continue lowercase : Optional[Any] = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) lowercase : Any = np.transpose(A ,(2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer lowercase : List[Any] = array.squeeze().transpose() else: lowercase : Optional[int] = np.transpose(A ,(3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''' ) logger.info(F'''Initialize PyTorch weight {name} {array.shape}''' ) lowercase : Optional[Any] = torch.from_numpy(A ) tf_weights.pop(A ,A ) tf_weights.pop(name + "/RMSProp" ,A ) tf_weights.pop(name + "/RMSProp_1" ,A ) tf_weights.pop(name + "/ExponentialMovingAverage" ,A ) logger.info(F'''Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}''' ) return model def _A ( A ,A ) -> torch.Tensor: lowercase , lowercase : List[Any] = features.shape[-2:] lowercase , lowercase : List[str] = conv_layer.stride lowercase , lowercase : Tuple = conv_layer.kernel_size if in_height % stride_height == 0: lowercase : Dict = max(kernel_height - stride_height ,0 ) else: lowercase : Optional[int] = max(kernel_height - (in_height % stride_height) ,0 ) if in_width % stride_width == 0: lowercase : str = max(kernel_width - stride_width ,0 ) else: lowercase : Optional[int] = max(kernel_width - (in_width % stride_width) ,0 ) lowercase : Dict = pad_along_width // 2 lowercase : str = pad_along_width - pad_left lowercase : Optional[int] = pad_along_height // 2 lowercase : Tuple = pad_along_height - pad_top lowercase : str = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(A ,A ,"constant" ,0.0 ) class _UpperCamelCase ( nn.Module): '''simple docstring''' def __init__( self , a_ , a_ , a_ , a_ , a_ = 1 , a_ = 1 , a_ = False , a_ = True , a_ = True , ) -> None: super().__init__() lowercase : Any = config if in_channels % groups != 0: raise ValueError(F'''Input channels ({in_channels}) are not divisible by {groups} groups.''' ) if out_channels % groups != 0: raise ValueError(F'''Output channels ({out_channels}) are not divisible by {groups} groups.''' ) lowercase : Optional[Any] = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) lowercase : Union[str, Any] = nn.Convad( in_channels=a_ , out_channels=a_ , kernel_size=a_ , stride=a_ , padding=a_ , groups=a_ , bias=a_ , padding_mode="zeros" , ) if use_normalization: lowercase : Optional[Any] = nn.BatchNormad( num_features=a_ , eps=config.layer_norm_eps , momentum=0.99_97 , affine=a_ , track_running_stats=a_ , ) else: lowercase : Optional[int] = None if use_activation: if isinstance(a_ , a_ ): lowercase : int = ACTaFN[use_activation] elif isinstance(config.hidden_act , a_ ): lowercase : Any = ACTaFN[config.hidden_act] else: lowercase : List[Any] = config.hidden_act else: lowercase : List[str] = None def a__ ( self , a_ ) -> torch.Tensor: if self.config.tf_padding: lowercase : Optional[int] = apply_tf_padding(a_ , self.convolution ) lowercase : Optional[int] = self.convolution(a_ ) if self.normalization is not None: lowercase : Any = self.normalization(a_ ) if self.activation is not None: lowercase : Dict = self.activation(a_ ) return features class _UpperCamelCase ( SCREAMING_SNAKE_CASE): '''simple docstring''' _snake_case = MobileNetVaConfig _snake_case = load_tf_weights_in_mobilenet_va _snake_case = '''mobilenet_v1''' _snake_case = '''pixel_values''' _snake_case = False def a__ ( self , a_ ) -> None: if isinstance(a_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(a_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) lowerCAmelCase : Optional[Any] = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ lowerCAmelCase : Union[str, Any] = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , SCREAMING_SNAKE_CASE , ) class _UpperCamelCase ( SCREAMING_SNAKE_CASE): '''simple docstring''' def __init__( self , a_ , a_ = True ) -> Optional[Any]: super().__init__(a_ ) lowercase : str = config lowercase : Optional[int] = 3_2 lowercase : List[str] = max(int(depth * config.depth_multiplier ) , config.min_depth ) lowercase : Tuple = MobileNetVaConvLayer( a_ , in_channels=config.num_channels , out_channels=a_ , kernel_size=3 , stride=2 , ) lowercase : Optional[int] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] lowercase : List[str] = nn.ModuleList() for i in range(1_3 ): lowercase : Tuple = out_channels if strides[i] == 2 or i == 0: depth *= 2 lowercase : Any = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( a_ , in_channels=a_ , out_channels=a_ , kernel_size=3 , stride=strides[i] , groups=a_ , ) ) self.layer.append( MobileNetVaConvLayer( a_ , in_channels=a_ , out_channels=a_ , kernel_size=1 , ) ) lowercase : List[str] = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def a__ ( self , a_ ) -> Optional[int]: raise NotImplementedError @add_start_docstrings_to_model_forward(a_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=a_ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a__ ( self , a_ = None , a_ = None , a_ = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: lowercase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) lowercase : Tuple = self.conv_stem(a_ ) lowercase : Dict = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): lowercase : str = layer_module(a_ ) if output_hidden_states: lowercase : List[str] = all_hidden_states + (hidden_states,) lowercase : Optional[int] = hidden_states if self.pooler is not None: lowercase : Dict = torch.flatten(self.pooler(a_ ) , start_dim=1 ) else: lowercase : str = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=a_ , pooler_output=a_ , hidden_states=a_ , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , SCREAMING_SNAKE_CASE , ) class _UpperCamelCase ( SCREAMING_SNAKE_CASE): '''simple docstring''' def __init__( self , a_ ) -> None: super().__init__(a_ ) lowercase : Optional[Any] = config.num_labels lowercase : Optional[Any] = MobileNetVaModel(a_ ) lowercase : Tuple = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head lowercase : Dict = nn.Dropout(config.classifier_dropout_prob , inplace=a_ ) lowercase : Any = nn.Linear(a_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(a_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=a_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a__ ( self , a_ = None , a_ = None , a_ = None , a_ = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: lowercase : str = return_dict if return_dict is not None else self.config.use_return_dict lowercase : Union[str, Any] = self.mobilenet_va(a_ , output_hidden_states=a_ , return_dict=a_ ) lowercase : Union[str, Any] = outputs.pooler_output if return_dict else outputs[1] lowercase : Any = self.classifier(self.dropout(a_ ) ) lowercase : List[str] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase : List[Any] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase : List[str] = "single_label_classification" else: lowercase : Optional[int] = "multi_label_classification" if self.config.problem_type == "regression": lowercase : int = MSELoss() if self.num_labels == 1: lowercase : Tuple = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowercase : Dict = loss_fct(a_ , a_ ) elif self.config.problem_type == "single_label_classification": lowercase : int = CrossEntropyLoss() lowercase : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase : Union[str, Any] = BCEWithLogitsLoss() lowercase : Any = loss_fct(a_ , a_ ) if not return_dict: lowercase : str = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=a_ , logits=a_ , hidden_states=outputs.hidden_states , )
425
1
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def lowerCamelCase ( lowerCamelCase : dict , lowerCamelCase : str , lowerCamelCase : set , lowerCamelCase : set , lowerCamelCase : dict , lowerCamelCase : dict , lowerCamelCase : PriorityQueue , lowerCamelCase : dict , lowerCamelCase : float | int , ): for nxt, d in graph[v]: if nxt in visited_forward: continue A_ : str = cst_fwd.get(lowerCAmelCase_ , np.inf) A_ : Dict = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt)) A_ : int = new_cost_f A_ : Optional[int] = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A_ : Optional[Any] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowerCamelCase ( lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : dict , lowerCamelCase : dict): A_ : Dict = -1 A_ : str = set() A_ : List[Any] = set() A_ : Dict = {source: 0} A_ : Optional[int] = {destination: 0} A_ : str = {source: None} A_ : Tuple = {destination: None} A_ : PriorityQueue[Any] = PriorityQueue() A_ : PriorityQueue[Any] = PriorityQueue() A_ : Union[str, Any] = np.inf queue_forward.put((0, source)) queue_backward.put((0, destination)) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A_ : str = queue_forward.get() visited_forward.add(lowerCAmelCase_) A_ : List[Any] = queue_backward.get() visited_backward.add(lowerCAmelCase_) A_ : Union[str, Any] = pass_and_relaxation( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) A_ : List[str] = pass_and_relaxation( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A_ : Optional[Any] = shortest_distance return shortest_path_distance __magic_name__ = { 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } __magic_name__ = { 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
665
from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: list[int | float] , lowerCAmelCase_: int , lowerCAmelCase_: int ): if len(lowerCAmelCase_ ) == 0: raise ValueError("find_max() arg is an empty sequence" ) if ( left >= len(lowerCAmelCase_ ) or left < -len(lowerCAmelCase_ ) or right >= len(lowerCAmelCase_ ) or right < -len(lowerCAmelCase_ ) ): raise IndexError("list index out of range" ) if left == right: return nums[left] snake_case_ : List[Any] = (left + right) >> 1 # the middle snake_case_ : Dict = find_max(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # find max in range[left, mid] snake_case_ : int = find_max(lowerCAmelCase_ , mid + 1 , lowerCAmelCase_ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
666
0
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class SCREAMING_SNAKE_CASE_ (unittest.TestCase ): '''simple docstring''' _a = MODEL_FOR_CAUSAL_LM_MAPPING _a = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def _lowerCAmelCase ( self : Optional[Any] ) ->int: lowerCamelCase_ : List[str] = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""pt""" ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ : List[str] = text_generator("""This is a test""" , do_sample=__a ) self.assertEqual( __a , [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ] , ) lowerCamelCase_ : List[str] = text_generator(["""This is a test""", """This is a second test"""] ) self.assertEqual( __a , [ [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ], [ { """generated_text""": ( """This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy""" """ oscope. oscope. FiliFili@@""" ) } ], ] , ) lowerCamelCase_ : Any = text_generator("""This is a test""" , do_sample=__a , num_return_sequences=2 , return_tensors=__a ) self.assertEqual( __a , [ {"""generated_token_ids""": ANY(__a )}, {"""generated_token_ids""": ANY(__a )}, ] , ) lowerCamelCase_ : List[Any] = text_generator.model.config.eos_token_id lowerCamelCase_ : Tuple = """<pad>""" lowerCamelCase_ : Union[str, Any] = text_generator( ["""This is a test""", """This is a second test"""] , do_sample=__a , num_return_sequences=2 , batch_size=2 , return_tensors=__a , ) self.assertEqual( __a , [ [ {"""generated_token_ids""": ANY(__a )}, {"""generated_token_ids""": ANY(__a )}, ], [ {"""generated_token_ids""": ANY(__a )}, {"""generated_token_ids""": ANY(__a )}, ], ] , ) @require_tf def _lowerCAmelCase ( self : Union[str, Any] ) ->int: lowerCamelCase_ : int = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""tf""" ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ : Dict = text_generator("""This is a test""" , do_sample=__a ) self.assertEqual( __a , [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ] , ) lowerCamelCase_ : str = text_generator(["""This is a test""", """This is a second test"""] , do_sample=__a ) self.assertEqual( __a , [ [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ], [ { """generated_text""": ( """This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes""" """ Cannes 閲閲Cannes Cannes Cannes 攵 please,""" ) } ], ] , ) def _lowerCAmelCase ( self : int , __a : Any , __a : List[str] , __a : Optional[Any] ) ->Tuple: lowerCamelCase_ : List[str] = TextGenerationPipeline(model=__a , tokenizer=__a ) return text_generator, ["This is a test", "Another test"] def _lowerCAmelCase ( self : int ) ->Optional[int]: lowerCamelCase_ : str = """Hello I believe in""" lowerCamelCase_ : List[Any] = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) lowerCamelCase_ : Dict = text_generator(__a ) self.assertEqual( __a , [{"""generated_text""": """Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"""}] , ) lowerCamelCase_ : Union[str, Any] = text_generator(__a , stop_sequence=""" fe""" ) self.assertEqual(__a , [{"""generated_text""": """Hello I believe in fe"""}] ) def _lowerCAmelCase ( self : Optional[int] , __a : Optional[Any] , __a : Optional[Any] ) ->Tuple: lowerCamelCase_ : int = text_generator.model lowerCamelCase_ : Any = text_generator.tokenizer lowerCamelCase_ : Optional[Any] = text_generator("""This is a test""" ) self.assertEqual(__a , [{"""generated_text""": ANY(__a )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) lowerCamelCase_ : Any = text_generator("""This is a test""" , return_full_text=__a ) self.assertEqual(__a , [{"""generated_text""": ANY(__a )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) lowerCamelCase_ : Optional[Any] = pipeline(task="""text-generation""" , model=__a , tokenizer=__a , return_full_text=__a ) lowerCamelCase_ : Any = text_generator("""This is a test""" ) self.assertEqual(__a , [{"""generated_text""": ANY(__a )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) lowerCamelCase_ : Any = text_generator("""This is a test""" , return_full_text=__a ) self.assertEqual(__a , [{"""generated_text""": ANY(__a )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) lowerCamelCase_ : List[str] = text_generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=__a ) self.assertEqual( __a , [ [{"""generated_text""": ANY(__a )}, {"""generated_text""": ANY(__a )}], [{"""generated_text""": ANY(__a )}, {"""generated_text""": ANY(__a )}], ] , ) if text_generator.tokenizer.pad_token is not None: lowerCamelCase_ : List[str] = text_generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=__a ) self.assertEqual( __a , [ [{"""generated_text""": ANY(__a )}, {"""generated_text""": ANY(__a )}], [{"""generated_text""": ANY(__a )}, {"""generated_text""": ANY(__a )}], ] , ) with self.assertRaises(__a ): lowerCamelCase_ : Dict = text_generator("""test""" , return_full_text=__a , return_text=__a ) with self.assertRaises(__a ): lowerCamelCase_ : Union[str, Any] = text_generator("""test""" , return_full_text=__a , return_tensors=__a ) with self.assertRaises(__a ): lowerCamelCase_ : Optional[Any] = text_generator("""test""" , return_text=__a , return_tensors=__a ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): lowerCamelCase_ : str = text_generator("""""" ) self.assertEqual(__a , [{"""generated_text""": ANY(__a )}] ) else: with self.assertRaises((ValueError, AssertionError) ): lowerCamelCase_ : Union[str, Any] = text_generator("""""" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. lowerCamelCase_ : str = ["""RwkvForCausalLM""", """XGLMForCausalLM""", """GPTNeoXForCausalLM"""] if ( tokenizer.model_max_length < 10_000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("""This is a test""" * 500 , max_new_tokens=20 ) lowerCamelCase_ : Optional[int] = text_generator("""This is a test""" * 500 , handle_long_generation="""hole""" , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(__a ): text_generator( """This is a test""" * 500 , handle_long_generation="""hole""" , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def _lowerCAmelCase ( self : Union[str, Any] ) ->Tuple: import torch # Classic `model_kwargs` lowerCamelCase_ : Any = pipeline( model="""hf-internal-testing/tiny-random-bloom""" , model_kwargs={"""device_map""": """auto""", """torch_dtype""": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ : int = pipe("""This is a test""" ) self.assertEqual( __a , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) lowerCamelCase_ : Optional[Any] = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ : str = pipe("""This is a test""" ) self.assertEqual( __a , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 lowerCamelCase_ : List[str] = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) lowerCamelCase_ : str = pipe("""This is a test""" ) self.assertEqual( __a , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) @require_torch @require_torch_gpu def _lowerCAmelCase ( self : Dict ) ->Optional[Any]: import torch lowerCamelCase_ : Any = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device=0 , torch_dtype=torch.floataa ) pipe("""This is a test""" ) @require_torch @require_accelerate @require_torch_gpu def _lowerCAmelCase ( self : List[str] ) ->Optional[int]: import torch lowerCamelCase_ : Optional[Any] = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.floataa ) pipe("""This is a test""" , do_sample=__a , top_p=0.5 ) def _lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: lowerCamelCase_ : Optional[int] = """Hello world""" lowerCamelCase_ : Optional[Any] = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) if text_generator.model.framework == "tf": lowerCamelCase_ : str = logging.get_logger("""transformers.generation.tf_utils""" ) else: lowerCamelCase_ : int = logging.get_logger("""transformers.generation.utils""" ) lowerCamelCase_ : List[Any] = """Both `max_new_tokens`""" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(__a ) as cl: lowerCamelCase_ : Any = text_generator(__a , max_length=10 , max_new_tokens=1 ) self.assertIn(__a , cl.out ) # The user only sets one -> no warning with CaptureLogger(__a ) as cl: lowerCamelCase_ : int = text_generator(__a , max_new_tokens=1 ) self.assertNotIn(__a , cl.out ) with CaptureLogger(__a ) as cl: lowerCamelCase_ : Optional[int] = text_generator(__a , max_length=10 ) self.assertNotIn(__a , cl.out )
171
import fire from utils import calculate_rouge, save_json def __lowerCamelCase ( A__ : Union[str, Any] , A__ : Optional[int] , A__ : Dict=None , **A__ : Dict ) -> str: lowerCamelCase_ : Union[str, Any] = [x.strip() for x in open(A__ ).readlines()] lowerCamelCase_ : Union[str, Any] = [x.strip() for x in open(A__ ).readlines()][: len(A__ )] lowerCamelCase_ : int = calculate_rouge(A__ , A__ , **A__ ) if save_path is not None: save_json(A__ , A__ , indent=A__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
171
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available a_ = {'tokenization_herbert': ['HerbertTokenizer']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['HerbertTokenizerFast'] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
296
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : List[Any] , __lowercase : Tuple , __lowercase : Tuple=7 , __lowercase : List[str]=3 , __lowercase : List[Any]=18 , __lowercase : int=30 , __lowercase : Any=4_00 , __lowercase : Dict=True , __lowercase : Dict=None , __lowercase : Union[str, Any]=True , ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : List[Any] =size if size is not None else {'''height''': 18, '''width''': 18} SCREAMING_SNAKE_CASE__ : Union[str, Any] =parent SCREAMING_SNAKE_CASE__ : List[str] =batch_size SCREAMING_SNAKE_CASE__ : Dict =num_channels SCREAMING_SNAKE_CASE__ : Optional[int] =image_size SCREAMING_SNAKE_CASE__ : Optional[Any] =min_resolution SCREAMING_SNAKE_CASE__ : Dict =max_resolution SCREAMING_SNAKE_CASE__ : Optional[Any] =do_resize SCREAMING_SNAKE_CASE__ : Optional[int] =size SCREAMING_SNAKE_CASE__ : Tuple =apply_ocr def __magic_name__ ( self : Tuple ) -> List[Any]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __SCREAMING_SNAKE_CASE ( lowerCamelCase , unittest.TestCase ): snake_case_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __magic_name__ ( self : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Optional[Any] =LayoutLMvaImageProcessingTester(self ) @property def __magic_name__ ( self : Union[str, Any] ) -> List[str]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE__ : str =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowercase , '''size''' ) ) self.assertTrue(hasattr(__lowercase , '''apply_ocr''' ) ) def __magic_name__ ( self : List[str] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Any =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) SCREAMING_SNAKE_CASE__ : Optional[int] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def __magic_name__ ( self : int ) -> Optional[int]: pass def __magic_name__ ( self : str ) -> Optional[int]: # Initialize image_processing SCREAMING_SNAKE_CASE__ : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ : Optional[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ : int =image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , __lowercase ) self.assertIsInstance(encoding.boxes , __lowercase ) # Test batched SCREAMING_SNAKE_CASE__ : Optional[Any] =image_processing(__lowercase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __magic_name__ ( self : Union[str, Any] ) -> Any: # Initialize image_processing SCREAMING_SNAKE_CASE__ : List[str] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ : List[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ : Any =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE__ : Dict =image_processing(__lowercase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __magic_name__ ( self : Dict ) -> Optional[Any]: # Initialize image_processing SCREAMING_SNAKE_CASE__ : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ : Optional[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ : str =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE__ : Optional[Any] =image_processing(__lowercase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __magic_name__ ( self : Tuple ) -> List[Any]: # with apply_OCR = True SCREAMING_SNAKE_CASE__ : int =LayoutLMvaImageProcessor() from datasets import load_dataset SCREAMING_SNAKE_CASE__ : Tuple =load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) SCREAMING_SNAKE_CASE__ : int =Image.open(ds[0]['''file'''] ).convert('''RGB''' ) SCREAMING_SNAKE_CASE__ : Tuple =image_processing(__lowercase , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 SCREAMING_SNAKE_CASE__ : Any =[['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 SCREAMING_SNAKE_CASE__ : Optional[Any] =[[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __lowercase ) self.assertListEqual(encoding.boxes , __lowercase ) # with apply_OCR = False SCREAMING_SNAKE_CASE__ : Dict =LayoutLMvaImageProcessor(apply_ocr=__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =image_processing(__lowercase , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
296
1
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: A__ : List[str]= None try: import msvcrt except ImportError: A__ : Dict= None try: import fcntl except ImportError: A__ : Dict= None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: A__ : Optional[int]= OSError # Data # ------------------------------------------------ A__ : str= [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] A__ : Union[str, Any]= """3.0.12""" A__ : Any= None def lowerCAmelCase_( ) -> int: """simple docstring""" global _logger UpperCamelCase__ = _logger or logging.getLogger(__name__ ) return _logger class __lowerCamelCase ( _a ): def __init__( self , snake_case_ ) -> Any: UpperCamelCase__ = lock_file return None def __str__( self ) -> Optional[int]: UpperCamelCase__ = F'The file lock \'{self.lock_file}\' could not be acquired.' return temp class __lowerCamelCase : def __init__( self , snake_case_ ) -> List[Any]: UpperCamelCase__ = lock return None def __enter__( self ) -> int: return self.lock def __exit__( self , snake_case_ , snake_case_ , snake_case_ ) -> Dict: self.lock.release() return None class __lowerCamelCase : def __init__( self , snake_case_ , snake_case_=-1 , snake_case_=None ) -> Dict: UpperCamelCase__ = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long UpperCamelCase__ = self.hash_filename_if_too_long(snake_case_ , snake_case_ ) # The path to the lock file. UpperCamelCase__ = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. UpperCamelCase__ = None # The default timeout value. UpperCamelCase__ = timeout # We use this lock primarily for the lock counter. UpperCamelCase__ = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. UpperCamelCase__ = 0 return None @property def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: return self._lock_file @property def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: return self._timeout @timeout.setter def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: UpperCamelCase__ = float(snake_case_ ) return None def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: raise NotImplementedError() def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: raise NotImplementedError() @property def SCREAMING_SNAKE_CASE__ ( self ) -> str: return self._lock_file_fd is not None def SCREAMING_SNAKE_CASE__ ( self , snake_case_=None , snake_case_=0.05 ) -> int: # Use the default timeout, if no timeout is provided. if timeout is None: UpperCamelCase__ = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 UpperCamelCase__ = id(self ) UpperCamelCase__ = self._lock_file UpperCamelCase__ = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F'Attempting to acquire lock {lock_id} on {lock_filename}' ) self._acquire() if self.is_locked: logger().debug(F'Lock {lock_id} acquired on {lock_filename}' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F'Timeout on acquiring lock {lock_id} on {lock_filename}' ) raise Timeout(self._lock_file ) else: logger().debug( F'Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...' ) time.sleep(snake_case_ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: UpperCamelCase__ = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_=False ) -> Tuple: with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: UpperCamelCase__ = id(self ) UpperCamelCase__ = self._lock_file logger().debug(F'Attempting to release lock {lock_id} on {lock_filename}' ) self._release() UpperCamelCase__ = 0 logger().debug(F'Lock {lock_id} released on {lock_filename}' ) return None def __enter__( self ) -> List[Any]: self.acquire() return self def __exit__( self , snake_case_ , snake_case_ , snake_case_ ) -> Union[str, Any]: self.release() return None def __del__( self ) -> Optional[Any]: self.release(force=snake_case_ ) return None def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = os.path.basename(snake_case_ ) if len(snake_case_ ) > max_length and max_length > 0: UpperCamelCase__ = os.path.dirname(snake_case_ ) UpperCamelCase__ = str(hash(snake_case_ ) ) UpperCamelCase__ = filename[: max_length - len(snake_case_ ) - 8] + '...' + hashed_filename + '.lock' return os.path.join(snake_case_ , snake_case_ ) else: return path class __lowerCamelCase ( _a ): def __init__( self , snake_case_ , snake_case_=-1 , snake_case_=None ) -> Dict: from .file_utils import relative_to_absolute_path super().__init__(snake_case_ , timeout=snake_case_ , max_filename_length=snake_case_ ) UpperCamelCase__ = '\\\\?\\' + relative_to_absolute_path(self.lock_file ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: UpperCamelCase__ = os.open(self._lock_file , snake_case_ ) except OSError: pass else: try: msvcrt.locking(snake_case_ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(snake_case_ ) else: UpperCamelCase__ = fd return None def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self._lock_file_fd UpperCamelCase__ = None msvcrt.locking(snake_case_ , msvcrt.LK_UNLCK , 1 ) os.close(snake_case_ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __lowerCamelCase ( _a ): def __init__( self , snake_case_ , snake_case_=-1 , snake_case_=None ) -> int: UpperCamelCase__ = os.statvfs(os.path.dirname(snake_case_ ) ).f_namemax super().__init__(snake_case_ , timeout=snake_case_ , max_filename_length=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = os.O_RDWR | os.O_CREAT | os.O_TRUNC UpperCamelCase__ = os.open(self._lock_file , snake_case_ ) try: fcntl.flock(snake_case_ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(snake_case_ ) else: UpperCamelCase__ = fd return None def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition UpperCamelCase__ = self._lock_file_fd UpperCamelCase__ = None fcntl.flock(snake_case_ , fcntl.LOCK_UN ) os.close(snake_case_ ) return None class __lowerCamelCase ( _a ): def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: UpperCamelCase__ = os.open(self._lock_file , snake_case_ ) except OSError: pass else: UpperCamelCase__ = fd return None def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: os.close(self._lock_file_fd ) UpperCamelCase__ = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None A__ : Union[str, Any]= None if msvcrt: A__ : List[Any]= WindowsFileLock elif fcntl: A__ : Optional[Any]= UnixFileLock else: A__ : Dict= SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
20
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file A__ : Optional[Any]= """Run commands across TPU VMs for initial setup before running `accelerate launch`.""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> Dict: """simple docstring""" if subparsers is not None: UpperCamelCase__ = subparsers.add_parser('tpu-config' , description=_description ) else: UpperCamelCase__ = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments UpperCamelCase__ = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) UpperCamelCase__ = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE ) return parser def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase__ = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCamelCase__ = defaults.command_file if not args.command and defaults.commands is not None: UpperCamelCase__ = defaults.commands if not args.tpu_name: UpperCamelCase__ = defaults.tpu_name if not args.tpu_zone: UpperCamelCase__ = defaults.tpu_zone if args.accelerate_version == "dev": UpperCamelCase__ = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": UpperCamelCase__ = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = F'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: UpperCamelCase__ = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCamelCase__ = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F'pip install {args.accelerate_version}'] new_cmd += args.command UpperCamelCase__ = '; '.join(SCREAMING_SNAKE_CASE ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCamelCase__ = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'Running {" ".join(SCREAMING_SNAKE_CASE )}' ) return subprocess.run(SCREAMING_SNAKE_CASE ) print('Successfully setup pod.' ) def lowerCAmelCase_( ) -> int: """simple docstring""" UpperCamelCase__ = tpu_command_parser() UpperCamelCase__ = parser.parse_args() tpu_command_launcher(SCREAMING_SNAKE_CASE )
20
1
import random from .binary_exp_mod import bin_exp_mod def __a ( __UpperCAmelCase , __UpperCAmelCase=1000 ): if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd a__ = n - 1 a__ = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) a__ = 0 while count < prec: a__ = random.randint(2 , n - 1 ) a__ = bin_exp_mod(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if b != 1: a__ = True for _ in range(__UpperCAmelCase ): if b == n - 1: a__ = False break a__ = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": a_ : Optional[Any] = abs(int(input('Enter bound : ').strip())) print('Here\'s the list of primes:') print(', '.join(str(i) for i in range(n + 1) if is_prime_big(i)))
194
import inspect import unittest class lowerCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self :int ): '''simple docstring''' try: import diffusers # noqa: F401 except ImportError: assert False def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' import diffusers from diffusers.dependency_versions_table import deps lowercase__ = inspect.getmembers(_lowercase , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": lowercase__ = "k-diffusion" elif backend == "invisible_watermark": lowercase__ = "invisible-watermark" assert backend in deps, f'''{backend} is not in the deps table!'''
655
0
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' lowercase_ = [[0 for _ in range(__lowerCamelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): lowercase_ = 1 for n in range(m + 1 ): for k in range(1 , __lowerCamelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: SCREAMING_SNAKE_CASE__ = int(input("""Enter a number: """).strip()) print(partition(n)) except ValueError: print("""Please enter a number.""") else: try: SCREAMING_SNAKE_CASE__ = int(sys.argv[1]) print(partition(n)) except ValueError: print("""Please pass a number.""")
601
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int] , __lowerCamelCase: Any , __lowerCamelCase: str=None ): '''simple docstring''' assert torch_layer.weight.shape == weight.shape, F'{torch_layer} layer.weight does not match' lowercase_ = nn.Parameter(__lowerCamelCase ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'{torch_layer} layer.bias does not match' lowercase_ = nn.Parameter(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[str] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Union[str, Any] ): '''simple docstring''' lowercase_ = np.asarray(weights[0] ) lowercase_ = np.asarray(weights[1] ) lowercase_ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(__lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCamelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCamelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(__lowerCamelCase ).view(-1 , __lowerCamelCase ).contiguous().transpose(0 , 1 ) , ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Any , __lowerCamelCase: List[str] ): '''simple docstring''' lowercase_ = np.asarray(weights[0] ) lowercase_ = np.asarray(weights[1] ) lowercase_ = np.asarray(weights[2] ) lowercase_ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(__lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCamelCase ) , ) set_param( torch_layer.self_attention.key , torch.tensor(__lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCamelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCamelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(__lowerCamelCase ).view(-1 , __lowerCamelCase ).contiguous().transpose(0 , 1 ) , ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: Optional[Any] , __lowerCamelCase: str ): '''simple docstring''' lowercase_ = weights[0][0][0] lowercase_ = np.asarray(layer_norm_a[0] ) lowercase_ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(__lowerCamelCase ) , torch.tensor(__lowerCamelCase ) , ) # lsh weights + output lowercase_ = weights[0][1] if len(__lowerCamelCase ) < 4: set_layer_weights_in_torch_lsh(__lowerCamelCase , torch_block.attention , __lowerCamelCase ) else: set_layer_weights_in_torch_local(__lowerCamelCase , torch_block.attention , __lowerCamelCase ) # intermediate weighs lowercase_ = weights[2][0][1][2] # Chunked Feed Forward if len(__lowerCamelCase ) == 4: lowercase_ = intermediate_weights[2] # layernorm 2 lowercase_ = np.asarray(intermediate_weights[0][0] ) lowercase_ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(__lowerCamelCase ) , torch.tensor(__lowerCamelCase ) , ) # intermediate dense lowercase_ = np.asarray(intermediate_weights[1][0] ) lowercase_ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(__lowerCamelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(__lowerCamelCase ) , ) # intermediate out lowercase_ = np.asarray(intermediate_weights[4][0] ) lowercase_ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(__lowerCamelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(__lowerCamelCase ) , ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str , __lowerCamelCase: int , __lowerCamelCase: Dict ): '''simple docstring''' lowercase_ = torch_model.reformer # word embeds lowercase_ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(__lowerCamelCase ) , ) if isinstance(weights[3] , __lowerCamelCase ): lowercase_ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): lowercase_ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'{position_embeddings[emb_idx]} emb does not match' lowercase_ = nn.Parameter(torch.tensor(__lowerCamelCase ) ) lowercase_ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( __lowerCamelCase ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): lowercase_ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # output layer norm lowercase_ = np.asarray(weights[7][0] ) lowercase_ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(__lowerCamelCase ) , torch.tensor(__lowerCamelCase ) , ) # output embeddings lowercase_ = np.asarray(weights[9][0] ) lowercase_ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(__lowerCamelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(__lowerCamelCase ) , ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[str] , __lowerCamelCase: Any , __lowerCamelCase: List[Any] ): '''simple docstring''' lowercase_ = ReformerConfig.from_json_file(__lowerCamelCase ) print(F'Building PyTorch model from configuration: {config}' ) lowercase_ = ReformerModelWithLMHead(__lowerCamelCase ) with open(__lowerCamelCase , "rb" ) as f: lowercase_ = pickle.load(__lowerCamelCase )["weights"] set_model_weights_in_torch(__lowerCamelCase , __lowerCamelCase , config.hidden_size ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , __lowerCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--trax_model_pkl_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained Reformer model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
601
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class __A( UpperCAmelCase ): SCREAMING_SNAKE_CASE = '''speech_to_text''' SCREAMING_SNAKE_CASE = ['''past_key_values'''] SCREAMING_SNAKE_CASE = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : str , __UpperCamelCase : Tuple=1_0_0_0_0 , __UpperCamelCase : Union[str, Any]=1_2 , __UpperCamelCase : str=2_0_4_8 , __UpperCamelCase : Tuple=4 , __UpperCamelCase : int=6 , __UpperCamelCase : Dict=2_0_4_8 , __UpperCamelCase : Any=4 , __UpperCamelCase : Any=0.0 , __UpperCamelCase : Optional[int]=0.0 , __UpperCamelCase : Tuple=True , __UpperCamelCase : List[Any]=True , __UpperCamelCase : Union[str, Any]="relu" , __UpperCamelCase : Optional[int]=2_5_6 , __UpperCamelCase : str=0.1 , __UpperCamelCase : List[Any]=0.0 , __UpperCamelCase : Tuple=0.0 , __UpperCamelCase : Union[str, Any]=0.02 , __UpperCamelCase : str=2 , __UpperCamelCase : Dict=True , __UpperCamelCase : List[Any]=1 , __UpperCamelCase : List[str]=0 , __UpperCamelCase : Union[str, Any]=2 , __UpperCamelCase : Optional[Any]=6_0_0_0 , __UpperCamelCase : List[Any]=1_0_2_4 , __UpperCamelCase : Optional[int]=2 , __UpperCamelCase : int=(5, 5) , __UpperCamelCase : Any=1_0_2_4 , __UpperCamelCase : Any=8_0 , __UpperCamelCase : Dict=1 , **__UpperCamelCase : Optional[int] , ): lowerCamelCase_ = vocab_size lowerCamelCase_ = d_model lowerCamelCase_ = encoder_ffn_dim lowerCamelCase_ = encoder_layers lowerCamelCase_ = encoder_attention_heads lowerCamelCase_ = decoder_ffn_dim lowerCamelCase_ = decoder_layers lowerCamelCase_ = decoder_attention_heads lowerCamelCase_ = dropout lowerCamelCase_ = attention_dropout lowerCamelCase_ = activation_dropout lowerCamelCase_ = activation_function lowerCamelCase_ = init_std lowerCamelCase_ = encoder_layerdrop lowerCamelCase_ = decoder_layerdrop lowerCamelCase_ = use_cache lowerCamelCase_ = encoder_layers lowerCamelCase_ = scale_embedding # scale factor will be sqrt(d_model) if True lowerCamelCase_ = max_source_positions lowerCamelCase_ = max_target_positions lowerCamelCase_ = num_conv_layers lowerCamelCase_ = list(__UpperCamelCase ) lowerCamelCase_ = conv_channels lowerCamelCase_ = input_feat_per_channel lowerCamelCase_ = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` """ F'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' ) super().__init__( pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , is_encoder_decoder=__UpperCamelCase , decoder_start_token_id=__UpperCamelCase , **__UpperCamelCase , )
272
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowercase = { '''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''], '''processing_layoutlmv2''': ['''LayoutLMv2Processor'''], '''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''LayoutLMv2TokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''LayoutLMv2FeatureExtractor'''] lowercase = ['''LayoutLMv2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv2ForQuestionAnswering''', '''LayoutLMv2ForSequenceClassification''', '''LayoutLMv2ForTokenClassification''', '''LayoutLMv2Layer''', '''LayoutLMv2Model''', '''LayoutLMv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
272
1
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets UpperCamelCase = """\ @inproceedings{popovic-2015-chrf, title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\", month = sep, year = \"2015\", address = \"Lisbon, Portugal\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W15-3049\", doi = \"10.18653/v1/W15-3049\", pages = \"392--395\", } @inproceedings{popovic-2017-chrf, title = \"chr{F}++: words helping character n-grams\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Second Conference on Machine Translation\", month = sep, year = \"2017\", address = \"Copenhagen, Denmark\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W17-4770\", doi = \"10.18653/v1/W17-4770\", pages = \"612--618\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ UpperCamelCase = """\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. """ UpperCamelCase = """ Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: 'score' (float): The chrF (chrF++) score, 'char_order' (int): The character n-gram order, 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, 'beta' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): '''simple docstring''' def __lowercase ( self) -> Any: '''simple docstring''' if version.parse(scb.__version__) < version.parse("1.4.12"): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`.") return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/mjpost/sacreBLEU#chrf--chrf" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence"), "references": datasets.Sequence(datasets.Value("string" , id="sequence") , id="references"), }) , codebase_urls=["https://github.com/mjpost/sacreBLEU#chrf--chrf"] , reference_urls=[ "https://github.com/m-popovic/chrF", ] , ) def __lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = CHRF.CHAR_ORDER , UpperCAmelCase_ = CHRF.WORD_ORDER , UpperCAmelCase_ = CHRF.BETA , UpperCAmelCase_ = False , UpperCAmelCase_ = False , UpperCAmelCase_ = False , ) -> List[str]: '''simple docstring''' lowercase__: int = len(references[0]) if any(len(UpperCAmelCase_) != references_per_prediction for refs in references): raise ValueError("Sacrebleu requires the same number of references for each prediction") lowercase__: Union[str, Any] = [[refs[i] for refs in references] for i in range(UpperCAmelCase_)] lowercase__: Optional[Any] = CHRF(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) lowercase__: Union[str, Any] = sb_chrf.corpus_score(UpperCAmelCase_ , UpperCAmelCase_) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
120
"""simple docstring""" from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class _a ( lowercase_ ): '''simple docstring''' UpperCamelCase__ = """new-model""" if is_tf_available(): class _a ( lowercase_ ): '''simple docstring''' UpperCamelCase__ = NewModelConfig @require_tf class _a ( unittest.TestCase ): '''simple docstring''' @slow def __lowercase ( self) -> int: '''simple docstring''' lowercase__: Tuple = "bert-base-cased" lowercase__: List[Any] = AutoConfig.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowercase__: int = TFAutoModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) @slow def __lowercase ( self) -> Dict: '''simple docstring''' lowercase__: Optional[int] = "bert-base-cased" lowercase__: List[str] = AutoConfig.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowercase__: Optional[int] = TFAutoModelForPreTraining.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) @slow def __lowercase ( self) -> str: '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__: Dict = AutoConfig.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowercase__: str = TFAutoModelForCausalLM.from_pretrained(UpperCAmelCase_) lowercase__ , lowercase__: List[str] = TFAutoModelForCausalLM.from_pretrained(UpperCAmelCase_ , output_loading_info=UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) @slow def __lowercase ( self) -> List[Any]: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__: List[str] = AutoConfig.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowercase__: Dict = TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) @slow def __lowercase ( self) -> List[str]: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__: Tuple = AutoConfig.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowercase__: Optional[int] = TFAutoModelForMaskedLM.from_pretrained(UpperCAmelCase_) lowercase__ , lowercase__: int = TFAutoModelForMaskedLM.from_pretrained(UpperCAmelCase_ , output_loading_info=UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) @slow def __lowercase ( self) -> List[str]: '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__: Tuple = AutoConfig.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowercase__: Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase_) lowercase__ , lowercase__: str = TFAutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase_ , output_loading_info=UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) @slow def __lowercase ( self) -> Optional[Any]: '''simple docstring''' for model_name in ["bert-base-uncased"]: lowercase__: Tuple = AutoConfig.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowercase__: int = TFAutoModelForSequenceClassification.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) @slow def __lowercase ( self) -> Optional[Any]: '''simple docstring''' for model_name in ["bert-base-uncased"]: lowercase__: Tuple = AutoConfig.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowercase__: List[Any] = TFAutoModelForQuestionAnswering.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) @slow @require_tensorflow_probability def __lowercase ( self) -> Optional[int]: '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: lowercase__: List[Any] = AutoConfig.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowercase__: Union[str, Any] = TFAutoModelForTableQuestionAnswering.from_pretrained(UpperCAmelCase_) lowercase__ , lowercase__: Tuple = TFAutoModelForTableQuestionAnswering.from_pretrained( UpperCAmelCase_ , output_loading_info=UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) def __lowercase ( self) -> Tuple: '''simple docstring''' lowercase__: List[Any] = TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertEqual(model.num_parameters() , 14_410) self.assertEqual(model.num_parameters(only_trainable=UpperCAmelCase_) , 14_410) def __lowercase ( self) -> Optional[int]: '''simple docstring''' lowercase__: List[str] = TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertEqual(model.num_parameters() , 14_410) self.assertEqual(model.num_parameters(only_trainable=UpperCAmelCase_) , 14_410) def __lowercase ( self) -> Dict: '''simple docstring''' lowercase__: int = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny") self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowercase__: List[Any] = copy.deepcopy(model.config) lowercase__: Optional[Any] = ["FunnelBaseModel"] lowercase__: Union[str, Any] = TFAutoModel.from_config(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(UpperCAmelCase_) lowercase__: Union[str, Any] = TFAutoModel.from_pretrained(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) def __lowercase ( self) -> Dict: '''simple docstring''' try: AutoConfig.register("new-model" , UpperCAmelCase_) lowercase__: Any = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__): # Wrong config class will raise an error with self.assertRaises(UpperCAmelCase_): auto_class.register(UpperCAmelCase_ , UpperCAmelCase_) auto_class.register(UpperCAmelCase_ , UpperCAmelCase_) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase_): auto_class.register(UpperCAmelCase_ , UpperCAmelCase_) # Now that the config is registered, it can be used as any other config with the auto-API lowercase__: Tuple = BertModelTester(self).get_config() lowercase__: List[Any] = NewModelConfig(**tiny_config.to_dict()) lowercase__: Optional[int] = auto_class.from_config(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(UpperCAmelCase_) lowercase__: int = auto_class.from_pretrained(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def __lowercase ( self) -> Tuple: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase_ , "bert-base is not a local folder and is not a valid model identifier"): lowercase__: List[str] = TFAutoModel.from_pretrained("bert-base") def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase_ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"): lowercase__: Any = TFAutoModel.from_pretrained(UpperCAmelCase_ , revision="aaaaaa") def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase_ , "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin" , ): lowercase__: Any = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model") def __lowercase ( self) -> Tuple: '''simple docstring''' with self.assertRaisesRegex(UpperCAmelCase_ , "Use `from_pt=True` to load this model"): lowercase__: List[Any] = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only") def __lowercase ( self) -> str: '''simple docstring''' lowercase__: Tuple = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert") with RequestCounter() as counter: lowercase__: Dict = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert") self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0) # With a sharded checkpoint lowercase__: Union[str, Any] = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded") with RequestCounter() as counter: lowercase__: List[str] = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded") self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0)
120
1
"""simple docstring""" import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): __snake_case = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: __snake_case = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def _lowerCamelCase ( lowerCamelCase__ : str ): lowercase__ : Optional[Any] = (images / 2 + 0.5).clamp(0 , 1 ) lowercase__ : Optional[int] = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase__ : Dict = numpy_to_pil(lowerCamelCase__ ) return images def _lowerCamelCase ( lowerCamelCase__ : Dict ): if images.ndim == 3: lowercase__ : str = images[None, ...] lowercase__ : Any = (images * 2_55).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowercase__ : Tuple = [Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: lowercase__ : Tuple = [Image.fromarray(lowerCamelCase__ ) for image in images] return pil_images
200
"""simple docstring""" import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def _lowerCamelCase ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Path , lowerCamelCase__ : str = None , lowerCamelCase__ : str = None , lowerCamelCase__ : str = None , ): if config_name_or_path is None: lowercase__ : Tuple = """facebook/rag-token-base""" if model_type == """rag_token""" else """facebook/rag-sequence-base""" if generator_tokenizer_name_or_path is None: lowercase__ : List[Any] = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: lowercase__ : List[Any] = question_encoder_name_or_path lowercase__ : Any = RagTokenForGeneration if model_type == """rag_token""" else RagSequenceForGeneration # Save model. lowercase__ : Union[str, Any] = RagConfig.from_pretrained(lowerCamelCase__ ) lowercase__ : List[Any] = AutoConfig.from_pretrained(lowerCamelCase__ ) lowercase__ : Dict = AutoConfig.from_pretrained(lowerCamelCase__ ) lowercase__ : Union[str, Any] = gen_config lowercase__ : Any = question_encoder_config lowercase__ : str = model_class.from_pretrained_question_encoder_generator( lowerCamelCase__ , lowerCamelCase__ , config=lowerCamelCase__ ) rag_model.save_pretrained(lowerCamelCase__ ) # Sanity check. model_class.from_pretrained(lowerCamelCase__ ) # Save tokenizers. lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained(lowerCamelCase__ ) gen_tokenizer.save_pretrained(dest_dir / """generator_tokenizer/""" ) lowercase__ : Optional[int] = AutoTokenizer.from_pretrained(lowerCamelCase__ ) question_encoder_tokenizer.save_pretrained(dest_dir / """question_encoder_tokenizer/""" ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( '--model_type', choices=['rag_sequence', 'rag_token'], required=True, type=str, help='RAG model type: rag_sequence, rag_token', ) parser.add_argument('--dest', type=str, required=True, help='Path to the output checkpoint directory.') parser.add_argument('--generator_name_or_path', type=str, required=True, help='Generator model identifier') parser.add_argument( '--question_encoder_name_or_path', type=str, required=True, help='Question encoder model identifier' ) parser.add_argument( '--generator_tokenizer_name_or_path', type=str, help='Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``', ) parser.add_argument( '--question_encoder_tokenizer_name_or_path', type=str, help='Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``', ) parser.add_argument( '--config_name_or_path', type=str, help=( 'Identifier of the model config to use, if not provided, resolves to a base config for a given' ' ``model_type``' ), ) __snake_case = parser.parse_args() __snake_case = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
200
1
import os import string import sys __UpperCamelCase : Optional[Any] = 1 << 8 __UpperCamelCase : Any = { 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } __UpperCamelCase : int = KEYMAP['up'] __UpperCamelCase : str = KEYMAP['left'] if sys.platform == "win32": __UpperCamelCase : List[Any] = [] __UpperCamelCase : Any = { b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): __UpperCamelCase : List[str] = ord(str(i)) def snake_case_ ( ): if os.name == "nt": import msvcrt UpperCAmelCase_ : List[Any] = '''mbcs''' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__lowercase ) == 0: # Read the keystroke UpperCAmelCase_ : Optional[Any] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): UpperCAmelCase_ : str = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: UpperCAmelCase_ : List[Any] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['''mod_int'''] ) ) WIN_CH_BUFFER.append(__lowercase ) if ord(__lowercase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) UpperCAmelCase_ : str = chr(KEYMAP['''esc'''] ) except KeyError: UpperCAmelCase_ : int = cha[1] else: UpperCAmelCase_ : List[Any] = ch.decode(__lowercase ) else: UpperCAmelCase_ : str = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty UpperCAmelCase_ : List[Any] = sys.stdin.fileno() UpperCAmelCase_ : Union[str, Any] = termios.tcgetattr(__lowercase ) try: tty.setraw(__lowercase ) UpperCAmelCase_ : List[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(__lowercase , termios.TCSADRAIN , __lowercase ) return ch def snake_case_ ( ): UpperCAmelCase_ : Dict = get_raw_chars() if ord(__lowercase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__lowercase ) == KEYMAP["esc"]: UpperCAmelCase_ : Optional[Any] = get_raw_chars() if ord(__lowercase ) == KEYMAP["mod_int"]: UpperCAmelCase_ : Optional[int] = get_raw_chars() if ord(__lowercase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__lowercase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__lowercase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
641
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'encoder-decoder' A_ : Optional[int] = True def __init__( self : Dict , **__snake_case : Union[str, Any] ): '''simple docstring''' super().__init__(**__snake_case ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCAmelCase_ : int = kwargs.pop('''encoder''' ) UpperCAmelCase_ : List[Any] = encoder_config.pop('''model_type''' ) UpperCAmelCase_ : int = kwargs.pop('''decoder''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Optional[int] = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : List[Any] = True @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : Union[str, Any] ): '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) UpperCAmelCase_ : Dict = True UpperCAmelCase_ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : int = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Tuple = self.encoder.to_dict() UpperCAmelCase_ : Tuple = self.decoder.to_dict() UpperCAmelCase_ : Tuple = self.__class__.model_type return output
641
1
"""simple docstring""" from __future__ import annotations from typing import Any class a_ : def __init__( self : Union[str, Any] , snake_case__ : int ): lowerCAmelCase__ = num_of_nodes lowerCAmelCase__ = [] lowerCAmelCase__ = {} def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : int , snake_case__ : int , snake_case__ : int ): self.m_edges.append([u_node, v_node, weight] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: lowerCAmelCase__ = self.find_component(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : list[int] , snake_case__ : int , snake_case__ : int ): if component_size[u_node] <= component_size[v_node]: lowerCAmelCase__ = v_node component_size[v_node] += component_size[u_node] self.set_component(snake_case__ ) elif component_size[u_node] >= component_size[v_node]: lowerCAmelCase__ = self.find_component(snake_case__ ) component_size[u_node] += component_size[v_node] self.set_component(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowerCAmelCase__ = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = edge lowerCAmelCase__ = self.m_component[u] lowerCAmelCase__ = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowerCAmelCase__ = [u, v, w] for edge in minimum_weight_edge: if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = edge lowerCAmelCase__ = self.m_component[u] lowerCAmelCase__ = self.m_component[v] if u_component != v_component: mst_weight += w self.union(snake_case__ , snake_case__ , snake_case__ ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 lowerCAmelCase__ = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def _UpperCAmelCase ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
644
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __lowerCAmelCase : Optional[Any] = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" __lowerCAmelCase : str = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" __lowerCAmelCase : int = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" def remove_articles(lowerCamelCase__ ): lowerCAmelCase__ = re.compile(r"""\b(a|an|the)\b""" , re.UNICODE ) return re.sub(lowerCamelCase__ , """ """ , lowerCamelCase__ ) def white_space_fix(lowerCamelCase__ ): return " ".join(text.split() ) def remove_punc(lowerCamelCase__ ): lowerCAmelCase__ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowerCamelCase__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase__ ) ) ) ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return int(normalize_answer(lowerCamelCase__ ) == normalize_answer(lowerCamelCase__ ) ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = [any(compute_exact(lowerCamelCase__ , lowerCamelCase__ ) for ref in refs ) for pred, refs in zip(lowerCamelCase__ , lowerCamelCase__ )] return (sum(lowerCamelCase__ ) / len(lowerCamelCase__ )) * 100 def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = [rgram for rgrams in rgramslist for rgram in rgrams] lowerCAmelCase__ = Counter(lowerCamelCase__ ) lowerCAmelCase__ = Counter(lowerCamelCase__ ) lowerCAmelCase__ = Counter() for sgram, scount in sgramcounter.items(): lowerCAmelCase__ = scount * numref lowerCAmelCase__ = Counter(lowerCamelCase__ ) lowerCAmelCase__ = Counter() for cgram, ccount in cgramcounter.items(): lowerCAmelCase__ = ccount * numref # KEEP lowerCAmelCase__ = sgramcounter_rep & cgramcounter_rep lowerCAmelCase__ = keepgramcounter_rep & rgramcounter lowerCAmelCase__ = sgramcounter_rep & rgramcounter lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowerCAmelCase__ = 1 lowerCAmelCase__ = 1 if len(lowerCamelCase__ ) > 0: lowerCAmelCase__ = keeptmpscorea / len(lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) lowerCAmelCase__ = keeptmpscorea / sum(keepgramcounterall_rep.values() ) lowerCAmelCase__ = 0 if keepscore_precision > 0 or keepscore_recall > 0: lowerCAmelCase__ = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION lowerCAmelCase__ = sgramcounter_rep - cgramcounter_rep lowerCAmelCase__ = delgramcounter_rep - rgramcounter lowerCAmelCase__ = sgramcounter_rep - rgramcounter lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowerCAmelCase__ = 1 if len(lowerCamelCase__ ) > 0: lowerCAmelCase__ = deltmpscorea / len(lowerCamelCase__ ) # ADDITION lowerCAmelCase__ = set(lowerCamelCase__ ) - set(lowerCamelCase__ ) lowerCAmelCase__ = set(lowerCamelCase__ ) & set(lowerCamelCase__ ) lowerCAmelCase__ = set(lowerCamelCase__ ) - set(lowerCamelCase__ ) lowerCAmelCase__ = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowerCAmelCase__ = 1 lowerCAmelCase__ = 1 if len(lowerCamelCase__ ) > 0: lowerCAmelCase__ = addtmpscore / len(lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: lowerCAmelCase__ = addtmpscore / len(lowerCamelCase__ ) lowerCAmelCase__ = 0 if addscore_precision > 0 or addscore_recall > 0: lowerCAmelCase__ = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = len(lowerCamelCase__ ) lowerCAmelCase__ = ssent.split(""" """ ) lowerCAmelCase__ = csent.split(""" """ ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = [] for rsent in rsents: lowerCAmelCase__ = rsent.split(""" """ ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = [] ragramslist.append(lowerCamelCase__ ) for i in range(0 , len(lowerCamelCase__ ) - 1 ): if i < len(lowerCamelCase__ ) - 1: lowerCAmelCase__ = ragrams[i] + """ """ + ragrams[i + 1] ragrams.append(lowerCamelCase__ ) if i < len(lowerCamelCase__ ) - 2: lowerCAmelCase__ = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2] ragrams.append(lowerCamelCase__ ) if i < len(lowerCamelCase__ ) - 3: lowerCAmelCase__ = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2] + """ """ + ragrams[i + 3] ragrams.append(lowerCamelCase__ ) ragramslist.append(lowerCamelCase__ ) ragramslist.append(lowerCamelCase__ ) ragramslist.append(lowerCamelCase__ ) for i in range(0 , len(lowerCamelCase__ ) - 1 ): if i < len(lowerCamelCase__ ) - 1: lowerCAmelCase__ = sagrams[i] + """ """ + sagrams[i + 1] sagrams.append(lowerCamelCase__ ) if i < len(lowerCamelCase__ ) - 2: lowerCAmelCase__ = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2] sagrams.append(lowerCamelCase__ ) if i < len(lowerCamelCase__ ) - 3: lowerCAmelCase__ = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2] + """ """ + sagrams[i + 3] sagrams.append(lowerCamelCase__ ) for i in range(0 , len(lowerCamelCase__ ) - 1 ): if i < len(lowerCamelCase__ ) - 1: lowerCAmelCase__ = cagrams[i] + """ """ + cagrams[i + 1] cagrams.append(lowerCamelCase__ ) if i < len(lowerCamelCase__ ) - 2: lowerCAmelCase__ = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2] cagrams.append(lowerCamelCase__ ) if i < len(lowerCamelCase__ ) - 3: lowerCAmelCase__ = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2] + """ """ + cagrams[i + 3] cagrams.append(lowerCamelCase__ ) ((lowerCAmelCase__) , (lowerCAmelCase__) , (lowerCAmelCase__)) = SARIngram(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) ((lowerCAmelCase__) , (lowerCAmelCase__) , (lowerCAmelCase__)) = SARIngram(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) ((lowerCAmelCase__) , (lowerCAmelCase__) , (lowerCAmelCase__)) = SARIngram(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) ((lowerCAmelCase__) , (lowerCAmelCase__) , (lowerCAmelCase__)) = SARIngram(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 lowerCAmelCase__ = sum([delascore, delascore, delascore, delascore] ) / 4 lowerCAmelCase__ = sum([addascore, addascore, addascore, addascore] ) / 4 lowerCAmelCase__ = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = True , lowerCamelCase__ = "13a" , lowerCamelCase__ = True ): """simple docstring""" if lowercase: lowerCAmelCase__ = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: lowerCAmelCase__ = sacrebleu.metrics.bleu._get_tokenizer(lowerCamelCase__ )()(lowerCamelCase__ ) else: lowerCAmelCase__ = sacrebleu.TOKENIZERS[tokenizer]()(lowerCamelCase__ ) elif tokenizer == "moses": lowerCAmelCase__ = sacremoses.MosesTokenizer().tokenize(lowerCamelCase__ , return_str=lowerCamelCase__ , escape=lowerCamelCase__ ) elif tokenizer == "penn": lowerCAmelCase__ = sacremoses.MosesTokenizer().penn_tokenize(lowerCamelCase__ , return_str=lowerCamelCase__ ) else: lowerCAmelCase__ = sentence if not return_str: lowerCAmelCase__ = normalized_sent.split() return normalized_sent def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if not (len(lowerCamelCase__ ) == len(lowerCamelCase__ ) == len(lowerCamelCase__ )): raise ValueError("""Sources length must match predictions and references lengths.""" ) lowerCAmelCase__ = 0 for src, pred, refs in zip(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): sari_score += SARIsent(normalize(lowerCamelCase__ ) , normalize(lowerCamelCase__ ) , [normalize(lowerCamelCase__ ) for sent in refs] ) lowerCAmelCase__ = sari_score / len(lowerCamelCase__ ) return 100 * sari_score def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="exp" , lowerCamelCase__=None , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=False , ): """simple docstring""" lowerCAmelCase__ = len(references[0] ) if any(len(lowerCamelCase__ ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) lowerCAmelCase__ = [[refs[i] for refs in references] for i in range(lowerCamelCase__ )] lowerCAmelCase__ = sacrebleu.corpus_bleu( lowerCamelCase__ , lowerCamelCase__ , smooth_method=lowerCamelCase__ , smooth_value=lowerCamelCase__ , force=lowerCamelCase__ , lowercase=lowerCamelCase__ , use_effective_order=lowerCamelCase__ , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def _SCREAMING_SNAKE_CASE ( self : List[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=[ """https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py""", """https://github.com/cocoxu/simplification/blob/master/SARI.py""", """https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py""", """https://github.com/mjpost/sacreBLEU""", ] , reference_urls=[ """https://www.aclweb.org/anthology/Q16-1029.pdf""", """https://github.com/mjpost/sacreBLEU""", """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Dict , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] ): lowerCAmelCase__ = {} result.update({"""sari""": compute_sari(sources=snake_case__ , predictions=snake_case__ , references=snake_case__ )} ) result.update({"""sacrebleu""": compute_sacrebleu(predictions=snake_case__ , references=snake_case__ )} ) result.update({"""exact""": compute_em(predictions=snake_case__ , references=snake_case__ )} ) return result
644
1
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig A: int = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' UpperCAmelCase : str = question_encoder UpperCAmelCase : Tuple = generator UpperCAmelCase : Dict = self.question_encoder def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' if os.path.isfile(_SCREAMING_SNAKE_CASE ): raise ValueError(F"Provided path ({save_directory}) should be a directory, not a file" ) os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = os.path.join(_SCREAMING_SNAKE_CASE , """question_encoder_tokenizer""" ) UpperCAmelCase : Optional[Any] = os.path.join(_SCREAMING_SNAKE_CASE , """generator_tokenizer""" ) self.question_encoder.save_pretrained(_SCREAMING_SNAKE_CASE ) self.generator.save_pretrained(_SCREAMING_SNAKE_CASE ) @classmethod def SCREAMING_SNAKE_CASE ( cls , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer UpperCAmelCase : Optional[Any] = kwargs.pop("""config""" , _SCREAMING_SNAKE_CASE ) if config is None: UpperCAmelCase : Tuple = RagConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = AutoTokenizer.from_pretrained( _SCREAMING_SNAKE_CASE , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" ) UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained( _SCREAMING_SNAKE_CASE , config=config.generator , subfolder="""generator_tokenizer""" ) return cls(question_encoder=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ) def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' return self.current_tokenizer(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' return self.generator.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' return self.generator.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Any = self.question_encoder def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] = self.generator def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "longest" , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , **_SCREAMING_SNAKE_CASE , ) -> BatchEncoding: '''simple docstring''' warnings.warn( """`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """ """regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """ """context manager to prepare your targets. See the documentation of your specific tokenizer for more """ """details""" , _SCREAMING_SNAKE_CASE , ) if max_length is None: UpperCAmelCase : Tuple = self.current_tokenizer.model_max_length UpperCAmelCase : Any = self( _SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: UpperCAmelCase : Optional[int] = self.current_tokenizer.model_max_length UpperCAmelCase : str = self( text_target=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Any = labels["""input_ids"""] return model_inputs
713
"""simple docstring""" import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer A: List[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : Optional[int] = 'AutoTokenizer' __lowerCAmelCase : str = ['tokenizer'] __lowerCAmelCase : Any = { 'semantic_prompt': 1, 'coarse_prompt': 2, 'fine_prompt': 2, } def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> int: '''simple docstring''' super().__init__(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = speaker_embeddings @classmethod def SCREAMING_SNAKE_CASE ( cls , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="speaker_embeddings_path.json" , **_SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' if speaker_embeddings_dict_path is not None: UpperCAmelCase : Any = get_file_from_repo( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , subfolder=kwargs.pop("""subfolder""" , _SCREAMING_SNAKE_CASE ) , cache_dir=kwargs.pop("""cache_dir""" , _SCREAMING_SNAKE_CASE ) , force_download=kwargs.pop("""force_download""" , _SCREAMING_SNAKE_CASE ) , proxies=kwargs.pop("""proxies""" , _SCREAMING_SNAKE_CASE ) , resume_download=kwargs.pop("""resume_download""" , _SCREAMING_SNAKE_CASE ) , local_files_only=kwargs.pop("""local_files_only""" , _SCREAMING_SNAKE_CASE ) , use_auth_token=kwargs.pop("""use_auth_token""" , _SCREAMING_SNAKE_CASE ) , revision=kwargs.pop("""revision""" , _SCREAMING_SNAKE_CASE ) , ) if speaker_embeddings_path is None: logger.warning( F"`{os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`." ) UpperCAmelCase : Optional[int] = None else: with open(_SCREAMING_SNAKE_CASE ) as speaker_embeddings_json: UpperCAmelCase : List[str] = json.load(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase : List[str] = None UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return cls(tokenizer=_SCREAMING_SNAKE_CASE , speaker_embeddings=_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="speaker_embeddings_path.json" , _SCREAMING_SNAKE_CASE="speaker_embeddings" , _SCREAMING_SNAKE_CASE = False , **_SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: '''simple docstring''' if self.speaker_embeddings is not None: os.makedirs(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , """v2""" ) , exist_ok=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = {} UpperCAmelCase : Union[str, Any] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": UpperCAmelCase : Optional[Any] = self._load_voice_preset(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["""repo_or_path"""] , _SCREAMING_SNAKE_CASE , F"{prompt_key}_{key}" ) , voice_preset[key] , allow_pickle=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Optional[int] = os.path.join(_SCREAMING_SNAKE_CASE , F"{prompt_key}_{key}.npy" ) UpperCAmelCase : Tuple = tmp_dict with open(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , """w""" ) as fp: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) super().save_pretrained(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' UpperCAmelCase : Optional[int] = self.speaker_embeddings[voice_preset] UpperCAmelCase : List[Any] = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}]." ) UpperCAmelCase : List[str] = get_file_from_repo( self.speaker_embeddings.get("""repo_or_path""" , """/""" ) , voice_preset_paths[key] , subfolder=kwargs.pop("""subfolder""" , _SCREAMING_SNAKE_CASE ) , cache_dir=kwargs.pop("""cache_dir""" , _SCREAMING_SNAKE_CASE ) , force_download=kwargs.pop("""force_download""" , _SCREAMING_SNAKE_CASE ) , proxies=kwargs.pop("""proxies""" , _SCREAMING_SNAKE_CASE ) , resume_download=kwargs.pop("""resume_download""" , _SCREAMING_SNAKE_CASE ) , local_files_only=kwargs.pop("""local_files_only""" , _SCREAMING_SNAKE_CASE ) , use_auth_token=kwargs.pop("""use_auth_token""" , _SCREAMING_SNAKE_CASE ) , revision=kwargs.pop("""revision""" , _SCREAMING_SNAKE_CASE ) , ) if path is None: raise ValueError( F"`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings." ) UpperCAmelCase : List[str] = np.load(_SCREAMING_SNAKE_CASE ) return voice_preset_dict def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE = None ) -> List[str]: '''simple docstring''' for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F"Voice preset unrecognized, missing {key} as a key." ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) def __call__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="pt" , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ) -> Optional[int]: '''simple docstring''' if voice_preset is not None and not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): UpperCAmelCase : Dict = self._load_voice_preset(_SCREAMING_SNAKE_CASE ) else: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not voice_preset.endswith(""".npz""" ): UpperCAmelCase : Tuple = voice_preset + """.npz""" UpperCAmelCase : Union[str, Any] = np.load(_SCREAMING_SNAKE_CASE ) if voice_preset is not None: self._validate_voice_preset_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = self.tokenizer( _SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , padding="""max_length""" , max_length=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) if voice_preset is not None: UpperCAmelCase : List[Any] = voice_preset return encoded_text
359
0
def _snake_case (__lowercase): UpperCamelCase_ = 1 for i in range(1 , num + 1): fact *= i return fact def _snake_case (__lowercase): UpperCamelCase_ = 0 while number > 0: UpperCamelCase_ = number % 10 sum_of_digits += last_digit UpperCamelCase_ = number // 10 # Removing the last_digit from the given number return sum_of_digits def _snake_case (__lowercase = 100): UpperCamelCase_ = factorial(__lowercase) UpperCamelCase_ = split_and_add(__lowercase) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
23
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : '''simple docstring''' def __init__( self : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : Optional[Any]=7 , _UpperCAmelCase : int=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : Tuple=32 , _UpperCAmelCase : Optional[int]=5 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : Dict=37 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Union[str, Any]=1_28 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Optional[Any]=3 , _UpperCAmelCase : int=4 , _UpperCAmelCase : List[Any]=None , ): """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_input_mask UpperCAmelCase__ = use_token_type_ids UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_labels UpperCAmelCase__ = num_choices UpperCAmelCase__ = scope def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = self.prepare_config_and_inputs() UpperCAmelCase__ = True UpperCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = NezhaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) UpperCAmelCase__ = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) UpperCAmelCase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , ): """simple docstring""" UpperCAmelCase__ = True UpperCAmelCase__ = NezhaModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) UpperCAmelCase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , ) UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = NezhaForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = NezhaForNextSentencePrediction(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = NezhaForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , next_sentence_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = NezhaForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any ): """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = NezhaForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] ): """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = NezhaForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ): """simple docstring""" UpperCAmelCase__ = self.num_choices UpperCAmelCase__ = NezhaForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = config_and_inputs UpperCAmelCase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Any = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase_ : Tuple = ( { """feature-extraction""": NezhaModel, """fill-mask""": NezhaForMaskedLM, """question-answering""": NezhaForQuestionAnswering, """text-classification""": NezhaForSequenceClassification, """token-classification""": NezhaForTokenClassification, """zero-shot""": NezhaForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ : Union[str, Any] = True def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int]=False ): """simple docstring""" UpperCAmelCase__ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): UpperCAmelCase__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) UpperCAmelCase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = NezhaModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCAmelCase__ = None self.model_tester.create_and_check_model_as_decoder( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = NezhaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return UpperCAmelCase__ = True UpperCAmelCase__ = model_class(config=_UpperCAmelCase ) UpperCAmelCase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = torch.jit.trace( _UpperCAmelCase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , """bert.pt""" ) ) UpperCAmelCase__ = torch.jit.load(os.path.join(_UpperCAmelCase , """bert.pt""" ) , map_location=_UpperCAmelCase ) loaded(inputs_dict["""input_ids"""].to(_UpperCAmelCase ) , inputs_dict["""attention_mask"""].to(_UpperCAmelCase ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = NezhaModel.from_pretrained("""sijunhe/nezha-cn-base""" ) UpperCAmelCase__ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] UpperCAmelCase__ = torch.Size((1, 6, 7_68) ) self.assertEqual(output.shape , _UpperCAmelCase ) UpperCAmelCase__ = torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = NezhaForMaskedLM.from_pretrained("""sijunhe/nezha-cn-base""" ) UpperCAmelCase__ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] UpperCAmelCase__ = torch.Size((1, 6, 2_11_28) ) self.assertEqual(output.shape , _UpperCAmelCase ) UpperCAmelCase__ = torch.tensor( [[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1E-4 ) )
603
0
"""simple docstring""" import math def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = f'''Input value of [number={number}] must be an integer''' raise TypeError(_lowerCamelCase ) if number < 1: lowerCamelCase__ : Optional[int] = f'''Input value of [number={number}] must be > 0''' raise ValueError(_lowerCamelCase ) elif number == 1: return 3 elif number == 2: return 5 else: lowerCamelCase__ : Any = int(math.log(number // 3 , 2 ) ) + 2 lowerCamelCase__ : List[Any] = [3, 5] lowerCamelCase__ : List[Any] = 2 lowerCamelCase__ : List[Any] = 3 for block in range(1 , _lowerCamelCase ): for _ in range(_lowerCamelCase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): A_ : Dict = 0 try: A_ : Any = proth(number) except ValueError: print(f"ValueError: there is no {number}th Proth number") continue print(f"The {number}th Proth number: {value}")
708
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights lowerCamelCase__ : Tuple = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=lowerCamelCase_, cache_dir=lowerCamelCase_ ) lowerCamelCase__ : List[str] = [t[-1] for t in os.walk(os.path.join(lowerCamelCase_, os.listdir(lowerCamelCase_ )[0], 'snapshots' ) )] lowerCamelCase__ : Optional[int] = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Optional[int] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Any = 4 lowerCamelCase__ : Any = jax.device_count() lowerCamelCase__ : List[Any] = num_samples * [prompt] lowerCamelCase__ : Optional[int] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : int = replicate(lowerCamelCase_ ) lowerCamelCase__ : Any = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : int = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 4.1_514_745 ) < 1e-3 assert np.abs(np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 49_947.875 ) < 5e-1 lowerCamelCase__ : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCamelCase_ ) == num_samples def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='flax', safety_checker=lowerCamelCase_ ) lowerCamelCase__ : int = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : List[str] = jax.random.PRNGKey(0 ) lowerCamelCase__ : int = 5_0 lowerCamelCase__ : List[str] = jax.device_count() lowerCamelCase__ : Dict = num_samples * [prompt] lowerCamelCase__ : List[str] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Dict = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = shard(lowerCamelCase_ ) lowerCamelCase__ : str = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.05_652_401) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_383_808.2) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : List[Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Union[str, Any] = 5_0 lowerCamelCase__ : Any = jax.device_count() lowerCamelCase__ : Tuple = num_samples * [prompt] lowerCamelCase__ : List[str] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Any = replicate(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : int = shard(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Tuple = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa ) lowerCamelCase__ : Tuple = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Union[str, Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Optional[Any] = 5_0 lowerCamelCase__ : Tuple = jax.device_count() lowerCamelCase__ : Optional[int] = num_samples * [prompt] lowerCamelCase__ : str = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Optional[int] = replicate(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : List[str] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = FlaxDDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule='scaled_linear', set_alpha_to_one=lowerCamelCase_, steps_offset=1, ) lowerCamelCase__ , lowerCamelCase__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, scheduler=lowerCamelCase_, safety_checker=lowerCamelCase_, ) lowerCamelCase__ : List[str] = scheduler.create_state() lowerCamelCase__ : int = scheduler_state lowerCamelCase__ : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Optional[Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : int = 5_0 lowerCamelCase__ : Optional[Any] = jax.device_count() lowerCamelCase__ : Any = num_samples * [prompt] lowerCamelCase__ : Any = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Union[str, Any] = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Dict = shard(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.045_043_945) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_347_693.5) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : int = jax.device_count() lowerCamelCase__ : Dict = num_samples * [prompt] lowerCamelCase__ : str = jax.random.split(jax.random.PRNGKey(0 ), lowerCamelCase_ ) lowerCamelCase__ , lowerCamelCase__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_, ) lowerCamelCase__ : Union[str, Any] = replicate(lowerCamelCase_ ) lowerCamelCase__ : Dict = pipeline.prepare_inputs(lowerCamelCase_ ) lowerCamelCase__ : Tuple = shard(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : int = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention lowerCamelCase__ , lowerCamelCase__ : str = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_, use_memory_efficient_attention=lowerCamelCase_, ) lowerCamelCase__ : Dict = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipeline.prepare_inputs(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : Any = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : Any = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
696
0
from ..utils import DummyObject, requires_backends class lowerCamelCase_ ( metaclass=_SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["transformers", "torch", "note_seq"] def __init__( self : Tuple , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Optional[int] ): requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCAmelCase_ ( cls : List[Any] , *_lowerCAmelCase : Any , **_lowerCAmelCase : Union[str, Any] ): requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCAmelCase_ ( cls : List[str] , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Optional[Any] ): requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
31
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": A : List[Any] = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) A : List[Any] = parser.parse_args() A : int = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) A : Tuple = CLIPImageProcessor() A : int = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') A : Tuple = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
176
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ : List[str] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : int ): lowercase = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowercase = [144, 192, 240] lowercase = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowercase = [96, 120, 144] lowercase = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowercase = [64, 80, 96] lowercase = [16, 16, 24, 48, 64, 80, 320] lowercase = 0.05 lowercase = 2.0 if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = 512 lowercase = 16 lowercase = 21 lowercase = """pascal-voc-id2label.json""" else: lowercase = 1000 lowercase = """imagenet-1k-id2label.json""" lowercase = """huggingface/label-files""" lowercase = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type="""dataset""" ) , """r""" ) ) lowercase = {int(lowercase_ ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : Any=False ): for i in range(1 , 6 ): if F"""layer_{i}.""" in name: lowercase = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: lowercase = name.replace("""conv_1.""" , """conv_stem.""" ) if ".block." in name: lowercase = name.replace(""".block.""" , """.""" ) if "exp_1x1" in name: lowercase = name.replace("""exp_1x1""" , """expand_1x1""" ) if "red_1x1" in name: lowercase = name.replace("""red_1x1""" , """reduce_1x1""" ) if ".local_rep.conv_3x3." in name: lowercase = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" ) if ".local_rep.conv_1x1." in name: lowercase = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" ) if ".norm." in name: lowercase = name.replace(""".norm.""" , """.normalization.""" ) if ".conv." in name: lowercase = name.replace(""".conv.""" , """.convolution.""" ) if ".conv_proj." in name: lowercase = name.replace(""".conv_proj.""" , """.conv_projection.""" ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: lowercase = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" ) if "conv_3x3" in name: lowercase = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" ) if "reduce_1x1" in name: lowercase = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: lowercase = name.replace(F""".global_rep.{i}.weight""" , """.layernorm.weight""" ) if F""".global_rep.{i}.bias""" in name: lowercase = name.replace(F""".global_rep.{i}.bias""" , """.layernorm.bias""" ) if ".global_rep." in name: lowercase = name.replace(""".global_rep.""" , """.transformer.""" ) if ".pre_norm_mha.0." in name: lowercase = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" ) if ".pre_norm_mha.1.out_proj." in name: lowercase = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" ) if ".pre_norm_ffn.0." in name: lowercase = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" ) if ".pre_norm_ffn.1." in name: lowercase = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" ) if ".pre_norm_ffn.4." in name: lowercase = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" ) if ".transformer." in name: lowercase = name.replace(""".transformer.""" , """.transformer.layer.""" ) if ".aspp_layer." in name: lowercase = name.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in name: lowercase = name.replace(""".aspp_pool.""" , """.""" ) if "seg_head." in name: lowercase = name.replace("""seg_head.""" , """segmentation_head.""" ) if "segmentation_head.classifier.classifier." in name: lowercase = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" ) if "classifier.fc." in name: lowercase = name.replace("""classifier.fc.""" , """classifier.""" ) elif (not base_model) and ("segmentation_head." not in name): lowercase = """mobilevit.""" + name return name def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : str=False ): if base_model: lowercase = """""" else: lowercase = """mobilevit.""" for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowercase_ ) if key[:8] == "encoder.": lowercase = key[8:] if "qkv" in key: lowercase = key.split(""".""" ) lowercase = int(key_split[0][6:] ) - 1 lowercase = int(key_split[3] ) lowercase = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) lowercase = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowercase = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = val return orig_state_dict def SCREAMING_SNAKE_CASE ( ): lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : List[str]=False ): lowercase = get_mobilevit_config(lowercase_ ) # load original state_dict lowercase = torch.load(lowercase_ , map_location="""cpu""" ) # load 🤗 model if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = MobileViTForSemanticSegmentation(lowercase_ ).eval() else: lowercase = MobileViTForImageClassification(lowercase_ ).eval() lowercase = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) # Check outputs on an image, prepared by MobileViTImageProcessor lowercase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowercase = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowercase = model(**lowercase_ ) lowercase = outputs.logits if mobilevit_name.startswith("""deeplabv3_""" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowercase = torch.tensor( [ [[6.2_065, 6.1_292, 6.2_070], [6.1_079, 6.1_254, 6.1_747], [6.0_042, 6.1_071, 6.1_034]], [[-6.9_253, -6.8_653, -7.0_398], [-7.3_218, -7.3_983, -7.3_670], [-7.1_961, -7.2_482, -7.1_569]], [[-4.4_723, -4.4_348, -4.3_769], [-5.3_629, -5.4_632, -5.4_598], [-5.1_587, -5.3_402, -5.5_059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowercase = torch.tensor( [ [[5.4_449, 5.5_733, 5.6_314], [5.1_815, 5.3_930, 5.5_963], [5.1_656, 5.4_333, 5.4_853]], [[-9.4_423, -9.7_766, -9.6_714], [-9.1_581, -9.5_720, -9.5_519], [-9.1_006, -9.6_458, -9.5_703]], [[-7.7_721, -7.3_716, -7.1_583], [-8.4_599, -8.0_624, -7.7_944], [-8.4_172, -7.8_366, -7.5_025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowercase = torch.tensor( [ [[6.9_811, 6.9_743, 7.3_123], [7.1_777, 7.1_931, 7.3_938], [7.5_633, 7.8_050, 7.8_901]], [[-10.5_536, -10.2_332, -10.2_924], [-10.2_336, -9.8_624, -9.5_964], [-10.8_840, -10.8_158, -10.6_659]], [[-3.4_938, -3.0_631, -2.8_620], [-3.4_205, -2.8_135, -2.6_875], [-3.4_179, -2.7_945, -2.8_750]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , lowercase_ , atol=1E-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": lowercase = torch.tensor([-0.9_866, 0.2_392, -1.1_241] ) elif mobilevit_name == "mobilevit_xs": lowercase = torch.tensor([-2.4_761, -0.9_399, -1.9_587] ) elif mobilevit_name == "mobilevit_xxs": lowercase = torch.tensor([-1.9_364, -1.2_327, -0.4_653] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , lowercase_ , atol=1E-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: lowercase = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""" ) lowercase = model_mapping[mobilevit_name] image_processor.push_to_hub(lowercase_ , organization="""apple""" ) model.push_to_hub(lowercase_ , organization="""apple""" ) if __name__ == "__main__": lowercase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowercase_ : List[str] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
712
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : int = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = '''gpt_bigcode''' __A = ['''past_key_values'''] __A = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowerCAmelCase=5_0257 , _lowerCAmelCase=1024 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=None , _lowerCAmelCase="gelu_pytorch_tanh" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=5_0256 , _lowerCAmelCase=5_0256 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase = vocab_size lowercase = n_positions lowercase = n_embd lowercase = n_layer lowercase = n_head lowercase = n_inner lowercase = activation_function lowercase = resid_pdrop lowercase = embd_pdrop lowercase = attn_pdrop lowercase = layer_norm_epsilon lowercase = initializer_range lowercase = scale_attn_weights lowercase = use_cache lowercase = attention_softmax_in_fpaa lowercase = scale_attention_softmax_in_fpaa lowercase = multi_query lowercase = bos_token_id lowercase = eos_token_id super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
653
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A ( snake_case__ ): '''simple docstring''' a_ = ['''image_processor''', '''tokenizer'''] a_ = '''ChineseCLIPImageProcessor''' a_ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , _snake_case=None , _snake_case=None , **_snake_case ): _lowerCAmelCase : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _snake_case , ) _lowerCAmelCase : int = kwargs.pop("feature_extractor" ) _lowerCAmelCase : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_snake_case , _snake_case ) _lowerCAmelCase : Union[str, Any] = self.image_processor def __call__( self , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ): if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: _lowerCAmelCase : int = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) if images is not None: _lowerCAmelCase : Optional[Any] = self.image_processor(_snake_case , return_tensors=_snake_case , **_snake_case ) if text is not None and images is not None: _lowerCAmelCase : List[str] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) , tensor_type=_snake_case ) def SCREAMING_SNAKE_CASE__ ( self , *_snake_case , **_snake_case ): return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE__ ( self , *_snake_case , **_snake_case ): return self.tokenizer.decode(*_snake_case , **_snake_case ) @property def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Any = self.tokenizer.model_input_names _lowerCAmelCase : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def SCREAMING_SNAKE_CASE__ ( self ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _snake_case , ) return self.image_processor_class
424
class __A : '''simple docstring''' def __init__( self ): _lowerCAmelCase : Dict = "" _lowerCAmelCase : Optional[Any] = "" _lowerCAmelCase : List[Any] = [] def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case ): if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: _lowerCAmelCase : Optional[Any] = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: _lowerCAmelCase : Optional[int] = self.__min_dist_top_down_dp(_snake_case , n - 1 ) _lowerCAmelCase : List[str] = self.__min_dist_top_down_dp(m - 1 , _snake_case ) _lowerCAmelCase : str = self.__min_dist_top_down_dp(m - 1 , n - 1 ) _lowerCAmelCase : Optional[int] = 1 + min(_snake_case , _snake_case , _snake_case ) return self.dp[m][n] def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case ): _lowerCAmelCase : Union[str, Any] = worda _lowerCAmelCase : int = worda _lowerCAmelCase : Tuple = [[-1 for _ in range(len(_snake_case ) )] for _ in range(len(_snake_case ) )] return self.__min_dist_top_down_dp(len(_snake_case ) - 1 , len(_snake_case ) - 1 ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case ): _lowerCAmelCase : str = worda _lowerCAmelCase : Union[str, Any] = worda _lowerCAmelCase : str = len(_snake_case ) _lowerCAmelCase : List[Any] = len(_snake_case ) _lowerCAmelCase : str = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty _lowerCAmelCase : int = j elif j == 0: # second string is empty _lowerCAmelCase : Optional[Any] = i elif worda[i - 1] == worda[j - 1]: # last characters are equal _lowerCAmelCase : Union[str, Any] = self.dp[i - 1][j - 1] else: _lowerCAmelCase : Tuple = self.dp[i][j - 1] _lowerCAmelCase : Dict = self.dp[i - 1][j] _lowerCAmelCase : List[Any] = self.dp[i - 1][j - 1] _lowerCAmelCase : Tuple = 1 + min(_snake_case , _snake_case , _snake_case ) return self.dp[m][n] if __name__ == "__main__": snake_case = EditDistance() print("****************** Testing Edit Distance DP Algorithm ******************") print() snake_case = input("Enter the first string: ").strip() snake_case = input("Enter the second string: ").strip() print() print(F'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(F'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print("*************** End of Testing Edit Distance DP Algorithm ***************")
424
1
'''simple docstring''' import logging from transformers import PretrainedConfig a_ : str = logging.getLogger(__name__) a_ : List[str] = { "bertabs-finetuned-cnndm": "https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json", } class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = """bertabs""" def __init__( self , __magic_name__=3_05_22 , __magic_name__=5_12 , __magic_name__=6 , __magic_name__=5_12 , __magic_name__=8 , __magic_name__=5_12 , __magic_name__=0.2 , __magic_name__=6 , __magic_name__=7_68 , __magic_name__=8 , __magic_name__=20_48 , __magic_name__=0.2 , **__magic_name__ , ) -> List[str]: super().__init__(**__magic_name__ ) _a = vocab_size _a = max_pos _a = enc_layers _a = enc_hidden_size _a = enc_heads _a = enc_ff_size _a = enc_dropout _a = dec_layers _a = dec_hidden_size _a = dec_heads _a = dec_ff_size _a = dec_dropout
532
'''simple docstring''' from typing import Any def _A (lowerCAmelCase__ :list ) -> list[Any]: '''simple docstring''' if not input_list: return [] _a = [input_list.count(lowerCAmelCase__ ) for value in input_list] _a = max(lowerCAmelCase__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowerCAmelCase__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
532
1
"""simple docstring""" class lowercase__ : def __init__( self : Any , snake_case__ : Any , snake_case__ : Optional[Any] ): lowerCamelCase_ : str =name lowerCamelCase_ : Tuple =val def __str__( self : str ): return F"""{self.__class__.__name__}({self.name}, {self.val})""" def __lt__( self : Dict , snake_case__ : List[Any] ): return self.val < other.val class lowercase__ : def __init__( self : int , snake_case__ : int ): lowerCamelCase_ : Any ={} lowerCamelCase_ : Dict ={} lowerCamelCase_ : Union[str, Any] =self.build_heap(lowerCAmelCase__ ) def __getitem__( self : List[str] , snake_case__ : Union[str, Any] ): return self.get_value(lowerCAmelCase__ ) def UpperCAmelCase__ ( self : Any , snake_case__ : Any ): return (idx - 1) // 2 def UpperCAmelCase__ ( self : List[Any] , snake_case__ : List[Any] ): return idx * 2 + 1 def UpperCAmelCase__ ( self : Tuple , snake_case__ : Union[str, Any] ): return idx * 2 + 2 def UpperCAmelCase__ ( self : List[str] , snake_case__ : List[str] ): return self.heap_dict[key] def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : Any ): lowerCamelCase_ : Any =len(lowerCAmelCase__ ) - 1 lowerCamelCase_ : str =self.get_parent_idx(lowerCAmelCase__ ) for idx, i in enumerate(lowerCAmelCase__ ): lowerCamelCase_ : List[str] =idx lowerCamelCase_ : Union[str, Any] =i.val for i in range(lowerCAmelCase__ , -1 , -1 ): self.sift_down(lowerCAmelCase__ , lowerCAmelCase__ ) return array def UpperCAmelCase__ ( self : Dict , snake_case__ : Dict , snake_case__ : Dict ): while True: lowerCamelCase_ : Dict =self.get_left_child_idx(lowerCAmelCase__ ) # noqa: E741 lowerCamelCase_ : Optional[int] =self.get_right_child_idx(lowerCAmelCase__ ) lowerCamelCase_ : List[Any] =idx if l < len(lowerCAmelCase__ ) and array[l] < array[idx]: lowerCamelCase_ : Optional[int] =l if r < len(lowerCAmelCase__ ) and array[r] < array[smallest]: lowerCamelCase_ : Any =r if smallest != idx: lowerCamelCase_ , lowerCamelCase_ : Tuple =array[smallest], array[idx] ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) : Tuple =( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) lowerCamelCase_ : Any =smallest else: break def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : int ): lowerCamelCase_ : str =self.get_parent_idx(lowerCAmelCase__ ) while p >= 0 and self.heap[p] > self.heap[idx]: lowerCamelCase_ , lowerCamelCase_ : Tuple =self.heap[idx], self.heap[p] lowerCamelCase_ , lowerCamelCase_ : Tuple =( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) lowerCamelCase_ : str =p lowerCamelCase_ : Optional[int] =self.get_parent_idx(lowerCAmelCase__ ) def UpperCAmelCase__ ( self : Tuple ): return self.heap[0] def UpperCAmelCase__ ( self : List[str] ): lowerCamelCase_ , lowerCamelCase_ : str =self.heap[-1], self.heap[0] lowerCamelCase_ , lowerCamelCase_ : Tuple =( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) lowerCamelCase_ : str =self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def UpperCAmelCase__ ( self : List[Any] , snake_case__ : List[Any] ): self.heap.append(lowerCAmelCase__ ) lowerCamelCase_ : Optional[int] =len(self.heap ) - 1 lowerCamelCase_ : Union[str, Any] =node.val self.sift_up(len(self.heap ) - 1 ) def UpperCAmelCase__ ( self : Dict ): return len(self.heap ) == 0 def UpperCAmelCase__ ( self : Tuple , snake_case__ : str , snake_case__ : int ): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" lowerCamelCase_ : Any =new_value lowerCamelCase_ : List[str] =new_value self.sift_up(self.idx_of_element[node] ) A__ : Dict = Node('R', -1) A__ : Any = Node('B', 6) A__ : Optional[int] = Node('A', 3) A__ : Optional[int] = Node('X', 1) A__ : Dict = Node('E', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array A__ : Dict = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('Min Heap - before decrease key') for i in my_min_heap.heap: print(i) print('Min Heap - After decrease key of node [B -> -17]') my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
153
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = """transfo-xl""" SCREAMING_SNAKE_CASE_ : Optional[int] = ["""mems"""] SCREAMING_SNAKE_CASE_ : Optional[Any] = { """n_token""": """vocab_size""", """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowerCAmelCase__=267_735 , lowerCAmelCase__=[20_000, 40_000, 200_000] , lowerCAmelCase__=1_024 , lowerCAmelCase__=1_024 , lowerCAmelCase__=16 , lowerCAmelCase__=64 , lowerCAmelCase__=4_096 , lowerCAmelCase__=4 , lowerCAmelCase__=False , lowerCAmelCase__=18 , lowerCAmelCase__=1_600 , lowerCAmelCase__=1_000 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=0 , lowerCAmelCase__=-1 , lowerCAmelCase__=True , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=True , lowerCAmelCase__="normal" , lowerCAmelCase__=0.01 , lowerCAmelCase__=0.01 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1e-5 , lowerCAmelCase__=0 , **lowerCAmelCase__ , ) -> Any: SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = [] self.cutoffs.extend(lowerCAmelCase__ ) if proj_share_all_but_first: SCREAMING_SNAKE_CASE = [False] + [True] * len(self.cutoffs ) else: SCREAMING_SNAKE_CASE = [False] + [False] * len(self.cutoffs ) SCREAMING_SNAKE_CASE = d_model SCREAMING_SNAKE_CASE = d_embed SCREAMING_SNAKE_CASE = d_head SCREAMING_SNAKE_CASE = d_inner SCREAMING_SNAKE_CASE = div_val SCREAMING_SNAKE_CASE = pre_lnorm SCREAMING_SNAKE_CASE = n_layer SCREAMING_SNAKE_CASE = n_head SCREAMING_SNAKE_CASE = mem_len SCREAMING_SNAKE_CASE = same_length SCREAMING_SNAKE_CASE = attn_type SCREAMING_SNAKE_CASE = clamp_len SCREAMING_SNAKE_CASE = sample_softmax SCREAMING_SNAKE_CASE = adaptive SCREAMING_SNAKE_CASE = dropout SCREAMING_SNAKE_CASE = dropatt SCREAMING_SNAKE_CASE = untie_r SCREAMING_SNAKE_CASE = init SCREAMING_SNAKE_CASE = init_range SCREAMING_SNAKE_CASE = proj_init_std SCREAMING_SNAKE_CASE = init_std SCREAMING_SNAKE_CASE = layer_norm_epsilon super().__init__(eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def __A ( self ) -> List[str]: # Message copied from Transformer-XL documentation logger.info(F'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def __A ( self , lowerCAmelCase__ ) -> int: # Message copied from Transformer-XL documentation raise NotImplementedError( F'The model {self.model_type} is one of the few models that has no sequence length limit.' )
247
0
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A : Optional[Any] = logging.get_logger(__name__) __A : Union[str, Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all BART models at https://huggingface.co/models?filter=bart __A : List[str] = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, } __A : Union[str, Any] = { 'facebook/bart-base': 10_24, 'facebook/bart-large': 10_24, 'facebook/bart-large-mnli': 10_24, 'facebook/bart-large-cnn': 10_24, 'facebook/bart-large-xsum': 10_24, 'yjernite/bart_eli5': 10_24, } @lru_cache() def lowerCAmelCase_ ( ): a__ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) a__ = bs[:] a__ = 0 for b in range(2**8 ): if b not in bs: bs.append(a ) cs.append(2**8 + n ) n += 1 a__ = [chr(a ) for n in cs] return dict(zip(a , a ) ) def lowerCAmelCase_ ( a : Dict ): a__ = set() a__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) a__ = char return pairs class _UpperCamelCase ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE:List[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE:str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE:Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE:Dict = ['input_ids', 'attention_mask'] def __init__( self , _a , _a , _a="replace" , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=False , **_a , ): """simple docstring""" a__ = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else bos_token a__ = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else eos_token a__ = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else sep_token a__ = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else cls_token a__ = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else unk_token a__ = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else pad_token # Mask token behave like a normal word, i.e. include the space before it a__ = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token super().__init__( errors=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , add_prefix_space=_a , **_a , ) with open(_a , encoding='utf-8' ) as vocab_handle: a__ = json.load(_a ) a__ = {v: k for k, v in self.encoder.items()} a__ = errors # how to handle errors in decoding a__ = bytes_to_unicode() a__ = {v: k for k, v in self.byte_encoder.items()} with open(_a , encoding='utf-8' ) as merges_handle: a__ = merges_handle.read().split('\n' )[1:-1] a__ = [tuple(merge.split() ) for merge in bpe_merges] a__ = dict(zip(_a , range(len(_a ) ) ) ) a__ = {} a__ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions a__ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def lowercase__ ( self ): """simple docstring""" return len(self.encoder ) def lowercase__ ( self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self , _a ): """simple docstring""" if token in self.cache: return self.cache[token] a__ = tuple(_a ) a__ = get_pairs(_a ) if not pairs: return token while True: a__ = min(_a , key=lambda _a : self.bpe_ranks.get(_a , float('inf' ) ) ) if bigram not in self.bpe_ranks: break a__ , a__ = bigram a__ = [] a__ = 0 while i < len(_a ): try: a__ = word.index(_a , _a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) a__ = j if word[i] == first and i < len(_a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a__ = tuple(_a ) a__ = new_word if len(_a ) == 1: break else: a__ = get_pairs(_a ) a__ = ' '.join(_a ) a__ = word return word def lowercase__ ( self , _a ): """simple docstring""" a__ = [] for token in re.findall(self.pat , _a ): a__ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_a ).split(' ' ) ) return bpe_tokens def lowercase__ ( self , _a ): """simple docstring""" return self.encoder.get(_a , self.encoder.get(self.unk_token ) ) def lowercase__ ( self , _a ): """simple docstring""" return self.decoder.get(_a ) def lowercase__ ( self , _a ): """simple docstring""" a__ = ''.join(_a ) a__ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def lowercase__ ( self , _a , _a = None ): """simple docstring""" if not os.path.isdir(_a ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a__ = os.path.join( _a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) a__ = os.path.join( _a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_a , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_a , ensure_ascii=_a ) + '\n' ) a__ = 0 with open(_a , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _a : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) a__ = token_index writer.write(' '.join(_a ) + '\n' ) index += 1 return vocab_file, merge_file def lowercase__ ( self , _a , _a = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a__ = [self.cls_token_id] a__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self , _a , _a = None , _a = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1] def lowercase__ ( self , _a , _a = None ): """simple docstring""" a__ = [self.sep_token_id] a__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase__ ( self , _a , _a=False , **_a ): """simple docstring""" a__ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_a ) > 0 and not text[0].isspace()): a__ = ' ' + text return (text, kwargs)
126
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _UpperCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , _a , _a , _a = None , _a = None ): """simple docstring""" super().__init__() a__ = pad_token_id a__ = max_length a__ = vocab a__ = merges a__ = BytePairTokenizer(_a , _a , sequence_length=_a ) @classmethod def lowercase__ ( cls , _a , *_a , **_a ): """simple docstring""" a__ = [' '.join(_a ) for m in tokenizer.bpe_ranks.keys()] a__ = tokenizer.get_vocab() return cls(_a , _a , *_a , **_a ) @classmethod def lowercase__ ( cls , _a , *_a , **_a ): """simple docstring""" a__ = GPTaTokenizer.from_pretrained(_a , *_a , **_a ) return cls.from_tokenizer(_a , *_a , **_a ) @classmethod def lowercase__ ( cls , _a ): """simple docstring""" return cls(**_a ) def lowercase__ ( self ): """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowercase__ ( self , _a , _a = None ): """simple docstring""" a__ = self.tf_tokenizer(_a ) a__ = tf.ones_like(_a ) if self.pad_token_id is not None: # pad the tokens up to max length a__ = max_length if max_length is not None else self.max_length if max_length is not None: a__ , a__ = pad_model_inputs( _a , max_seq_length=_a , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
126
1
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class _lowerCAmelCase : A__ = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A__ = field( default=_lowercase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) A__ = field( default=_lowercase , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) A__ = field( default=_lowercase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) A__ = field( default=_lowercase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) A__ = field( default=_lowercase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) @dataclass class _lowerCAmelCase : A__ = field( default=_lowercase , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) A__ = field( default=_lowercase , metadata={'help': 'Evaluation language. Also train language if `train_language` is set to None.'} ) A__ = field( default=_lowercase , metadata={'help': 'Train language if it is different from the evaluation language.'} ) A__ = field( default=_lowercase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) A__ = field( default=_lowercase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) A__ = field( default=_lowercase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) A__ = field( default=_lowercase , metadata={'help': 'arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'} , ) A__ = field( default=_lowercase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) A__ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) A__ = field( default=_lowercase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) A__ = field( default=_lowercase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def __lowerCAmelCase ( ) -> Dict: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCAmelCase__ : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_xnli''' , UpperCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCAmelCase__ : List[str] = training_args.get_process_log_level() logger.setLevel(UpperCamelCase ) datasets.utils.logging.set_verbosity(UpperCamelCase ) transformers.utils.logging.set_verbosity(UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCAmelCase__ : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase__ : List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: lowerCAmelCase__ : str = load_dataset( '''xnli''' , model_args.language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: lowerCAmelCase__ : List[Any] = load_dataset( '''xnli''' , model_args.train_language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase__ : str = train_dataset.features['''label'''].names if training_args.do_eval: lowerCAmelCase__ : List[Any] = load_dataset( '''xnli''' , model_args.language , split='''validation''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase__ : Tuple = eval_dataset.features['''label'''].names if training_args.do_predict: lowerCAmelCase__ : Any = load_dataset( '''xnli''' , model_args.language , split='''test''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase__ : Dict = predict_dataset.features['''label'''].names # Labels lowerCAmelCase__ : List[str] = len(UpperCamelCase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase__ : int = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCamelCase , idalabel={str(UpperCamelCase ): label for i, label in enumerate(UpperCamelCase )} , labelaid={label: i for i, label in enumerate(UpperCamelCase )} , finetuning_task='''xnli''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase__ : Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase__ : List[str] = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: lowerCAmelCase__ : List[Any] = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCAmelCase__ : Optional[int] = False def preprocess_function(UpperCamelCase ): # Tokenize the texts return tokenizer( examples['''premise'''] , examples['''hypothesis'''] , padding=UpperCamelCase , max_length=data_args.max_seq_length , truncation=UpperCamelCase , ) if training_args.do_train: if data_args.max_train_samples is not None: lowerCAmelCase__ : int = min(len(UpperCamelCase ) , data_args.max_train_samples ) lowerCAmelCase__ : Dict = train_dataset.select(range(UpperCamelCase ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): lowerCAmelCase__ : Optional[int] = train_dataset.map( UpperCamelCase , batched=UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on train dataset''' , ) # Log a few random samples from the training set: for index in random.sample(range(len(UpperCamelCase ) ) , 3 ): logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCAmelCase__ : List[str] = min(len(UpperCamelCase ) , data_args.max_eval_samples ) lowerCAmelCase__ : List[Any] = eval_dataset.select(range(UpperCamelCase ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): lowerCAmelCase__ : int = eval_dataset.map( UpperCamelCase , batched=UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on validation dataset''' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: lowerCAmelCase__ : Dict = min(len(UpperCamelCase ) , data_args.max_predict_samples ) lowerCAmelCase__ : Any = predict_dataset.select(range(UpperCamelCase ) ) with training_args.main_process_first(desc='''prediction dataset map pre-processing''' ): lowerCAmelCase__ : Union[str, Any] = predict_dataset.map( UpperCamelCase , batched=UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on prediction dataset''' , ) # Get the metric function lowerCAmelCase__ : Optional[int] = evaluate.load('''xnli''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(UpperCamelCase ): lowerCAmelCase__ : List[str] = p.predictions[0] if isinstance(p.predictions , UpperCamelCase ) else p.predictions lowerCAmelCase__ : str = np.argmax(UpperCamelCase , axis=1 ) return metric.compute(predictions=UpperCamelCase , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCAmelCase__ : List[str] = default_data_collator elif training_args.fpaa: lowerCAmelCase__ : Tuple = DataCollatorWithPadding(UpperCamelCase , pad_to_multiple_of=8 ) else: lowerCAmelCase__ : Dict = None # Initialize our Trainer lowerCAmelCase__ : Optional[int] = Trainer( model=UpperCamelCase , args=UpperCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=UpperCamelCase , tokenizer=UpperCamelCase , data_collator=UpperCamelCase , ) # Training if training_args.do_train: lowerCAmelCase__ : Any = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase__ : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase__ : List[Any] = last_checkpoint lowerCAmelCase__ : Any = trainer.train(resume_from_checkpoint=UpperCamelCase ) lowerCAmelCase__ : Dict = train_result.metrics lowerCAmelCase__ : Optional[int] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCamelCase ) ) lowerCAmelCase__ : int = min(UpperCamelCase , len(UpperCamelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , UpperCamelCase ) trainer.save_metrics('''train''' , UpperCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCAmelCase__ : int = trainer.evaluate(eval_dataset=UpperCamelCase ) lowerCAmelCase__ : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCamelCase ) lowerCAmelCase__ : List[str] = min(UpperCamelCase , len(UpperCamelCase ) ) trainer.log_metrics('''eval''' , UpperCamelCase ) trainer.save_metrics('''eval''' , UpperCamelCase ) # Prediction if training_args.do_predict: logger.info('''*** Predict ***''' ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = trainer.predict(UpperCamelCase , metric_key_prefix='''predict''' ) lowerCAmelCase__ : Any = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(UpperCamelCase ) ) lowerCAmelCase__ : int = min(UpperCamelCase , len(UpperCamelCase ) ) trainer.log_metrics('''predict''' , UpperCamelCase ) trainer.save_metrics('''predict''' , UpperCamelCase ) lowerCAmelCase__ : Tuple = np.argmax(UpperCamelCase , axis=1 ) lowerCAmelCase__ : List[Any] = os.path.join(training_args.output_dir , '''predictions.txt''' ) if trainer.is_world_process_zero(): with open(UpperCamelCase , '''w''' ) as writer: writer.write('''index\tprediction\n''' ) for index, item in enumerate(UpperCamelCase ): lowerCAmelCase__ : Any = label_list[item] writer.write(F"""{index}\t{item}\n""" ) if __name__ == "__main__": main()
678
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class _lowerCAmelCase ( unittest.TestCase ): A__ = MODEL_FOR_CAUSAL_LM_MAPPING A__ = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def __magic_name__( self ): lowerCAmelCase__ : Tuple = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output lowerCAmelCase__ : Optional[int] = text_generator('''This is a test''' , do_sample=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) lowerCAmelCase__ : List[str] = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( __UpperCAmelCase , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) lowerCAmelCase__ : str = text_generator('''This is a test''' , do_sample=__UpperCAmelCase , num_return_sequences=2 , return_tensors=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ {'''generated_token_ids''': ANY(__UpperCAmelCase )}, {'''generated_token_ids''': ANY(__UpperCAmelCase )}, ] , ) lowerCAmelCase__ : List[Any] = text_generator.model.config.eos_token_id lowerCAmelCase__ : List[Any] = '''<pad>''' lowerCAmelCase__ : List[Any] = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=__UpperCAmelCase , num_return_sequences=2 , batch_size=2 , return_tensors=__UpperCAmelCase , ) self.assertEqual( __UpperCAmelCase , [ [ {'''generated_token_ids''': ANY(__UpperCAmelCase )}, {'''generated_token_ids''': ANY(__UpperCAmelCase )}, ], [ {'''generated_token_ids''': ANY(__UpperCAmelCase )}, {'''generated_token_ids''': ANY(__UpperCAmelCase )}, ], ] , ) @require_tf def __magic_name__( self ): lowerCAmelCase__ : int = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output lowerCAmelCase__ : List[Any] = text_generator('''This is a test''' , do_sample=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) lowerCAmelCase__ : List[str] = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ : Dict = TextGenerationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) return text_generator, ["This is a test", "Another test"] def __magic_name__( self ): lowerCAmelCase__ : Any = '''Hello I believe in''' lowerCAmelCase__ : List[Any] = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase__ : Optional[int] = text_generator(__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) lowerCAmelCase__ : List[str] = text_generator(__UpperCAmelCase , stop_sequence=''' fe''' ) self.assertEqual(__UpperCAmelCase , [{'''generated_text''': '''Hello I believe in fe'''}] ) def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ : str = text_generator.model lowerCAmelCase__ : Optional[int] = text_generator.tokenizer lowerCAmelCase__ : Tuple = text_generator('''This is a test''' ) self.assertEqual(__UpperCAmelCase , [{'''generated_text''': ANY(__UpperCAmelCase )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) lowerCAmelCase__ : Optional[int] = text_generator('''This is a test''' , return_full_text=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , [{'''generated_text''': ANY(__UpperCAmelCase )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) lowerCAmelCase__ : Dict = pipeline(task='''text-generation''' , model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , return_full_text=__UpperCAmelCase ) lowerCAmelCase__ : Dict = text_generator('''This is a test''' ) self.assertEqual(__UpperCAmelCase , [{'''generated_text''': ANY(__UpperCAmelCase )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) lowerCAmelCase__ : List[str] = text_generator('''This is a test''' , return_full_text=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , [{'''generated_text''': ANY(__UpperCAmelCase )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) lowerCAmelCase__ : Optional[int] = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ [{'''generated_text''': ANY(__UpperCAmelCase )}, {'''generated_text''': ANY(__UpperCAmelCase )}], [{'''generated_text''': ANY(__UpperCAmelCase )}, {'''generated_text''': ANY(__UpperCAmelCase )}], ] , ) if text_generator.tokenizer.pad_token is not None: lowerCAmelCase__ : List[str] = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ [{'''generated_text''': ANY(__UpperCAmelCase )}, {'''generated_text''': ANY(__UpperCAmelCase )}], [{'''generated_text''': ANY(__UpperCAmelCase )}, {'''generated_text''': ANY(__UpperCAmelCase )}], ] , ) with self.assertRaises(__UpperCAmelCase ): lowerCAmelCase__ : Any = text_generator('''test''' , return_full_text=__UpperCAmelCase , return_text=__UpperCAmelCase ) with self.assertRaises(__UpperCAmelCase ): lowerCAmelCase__ : Optional[int] = text_generator('''test''' , return_full_text=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) with self.assertRaises(__UpperCAmelCase ): lowerCAmelCase__ : str = text_generator('''test''' , return_text=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): lowerCAmelCase__ : str = text_generator('''''' ) self.assertEqual(__UpperCAmelCase , [{'''generated_text''': ANY(__UpperCAmelCase )}] ) else: with self.assertRaises((ValueError, AssertionError) ): lowerCAmelCase__ : List[str] = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. lowerCAmelCase__ : Optional[Any] = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) lowerCAmelCase__ : Optional[Any] = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(__UpperCAmelCase ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def __magic_name__( self ): import torch # Classic `model_kwargs` lowerCAmelCase__ : List[str] = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCAmelCase__ : Any = pipe('''This is a test''' ) self.assertEqual( __UpperCAmelCase , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) lowerCAmelCase__ : Dict = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCAmelCase__ : Union[str, Any] = pipe('''This is a test''' ) self.assertEqual( __UpperCAmelCase , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 lowerCAmelCase__ : str = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) lowerCAmelCase__ : Any = pipe('''This is a test''' ) self.assertEqual( __UpperCAmelCase , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def __magic_name__( self ): import torch lowerCAmelCase__ : List[str] = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def __magic_name__( self ): import torch lowerCAmelCase__ : Any = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=__UpperCAmelCase , top_p=0.5 ) def __magic_name__( self ): lowerCAmelCase__ : int = '''Hello world''' lowerCAmelCase__ : Union[str, Any] = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": lowerCAmelCase__ : List[Any] = logging.get_logger('''transformers.generation.tf_utils''' ) else: lowerCAmelCase__ : Dict = logging.get_logger('''transformers.generation.utils''' ) lowerCAmelCase__ : Optional[Any] = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(__UpperCAmelCase ) as cl: lowerCAmelCase__ : List[str] = text_generator(__UpperCAmelCase , max_length=10 , max_new_tokens=1 ) self.assertIn(__UpperCAmelCase , cl.out ) # The user only sets one -> no warning with CaptureLogger(__UpperCAmelCase ) as cl: lowerCAmelCase__ : Any = text_generator(__UpperCAmelCase , max_new_tokens=1 ) self.assertNotIn(__UpperCAmelCase , cl.out ) with CaptureLogger(__UpperCAmelCase ) as cl: lowerCAmelCase__ : Union[str, Any] = text_generator(__UpperCAmelCase , max_length=10 ) self.assertNotIn(__UpperCAmelCase , cl.out )
678
1
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] , __lowercase : Optional[int] , __lowercase : List[str]=3 , __lowercase : Optional[int]=32 , __lowercase : Tuple=3 , __lowercase : Tuple=10 , __lowercase : Dict=[10, 20, 30, 40] , __lowercase : Tuple=[1, 1, 2, 1] , __lowercase : Union[str, Any]=True , __lowercase : Any=True , __lowercase : List[Any]="relu" , __lowercase : List[Any]=3 , __lowercase : List[str]=None , ): '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embeddings_size UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = depths UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_act UpperCAmelCase_ = num_labels UpperCAmelCase_ = scope UpperCAmelCase_ = len(__lowercase ) def SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = self.get_config() return config, pixel_values def SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowercase : int , __lowercase : str ): '''simple docstring''' UpperCAmelCase_ = FlaxRegNetModel(config=__lowercase ) UpperCAmelCase_ = model(__lowercase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowercase : List[str] , __lowercase : List[str] ): '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = FlaxRegNetForImageClassification(config=__lowercase ) UpperCAmelCase_ = model(__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class _UpperCamelCase ( A_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase : str = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () lowerCamelCase : Dict = False lowerCamelCase : Any = False lowerCamelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ = FlaxRegNetModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase ) def SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' return def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(__lowercase ) UpperCAmelCase_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowercase ) def SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' def check_hidden_states_output(__lowercase : Dict , __lowercase : List[str] , __lowercase : List[Any] ): UpperCAmelCase_ = model_class(__lowercase ) UpperCAmelCase_ = model(**self._prepare_for_class(__lowercase , __lowercase ) ) UpperCAmelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ = self.model_tester.num_stages self.assertEqual(len(__lowercase ) , expected_num_stages + 1 ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ = self._prepare_for_class(__lowercase , __lowercase ) UpperCAmelCase_ = model_class(__lowercase ) @jax.jit def model_jitted(__lowercase : Tuple , **__lowercase : List[Any] ): return model(pixel_values=__lowercase , **__lowercase ) with self.subTest("""JIT Enabled""" ): UpperCAmelCase_ = model_jitted(**__lowercase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCAmelCase_ = model_jitted(**__lowercase ).to_tuple() self.assertEqual(len(__lowercase ) , len(__lowercase ) ) for jitted_output, output in zip(__lowercase , __lowercase ): self.assertEqual(jitted_output.shape , output.shape ) def A_( ): UpperCAmelCase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_flax class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ = FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=__lowercase , return_tensors="""np""" ) UpperCAmelCase_ = model(**__lowercase ) # verify the logits UpperCAmelCase_ = (1, 10_00) self.assertEqual(outputs.logits.shape , __lowercase ) UpperCAmelCase_ = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , __lowercase , atol=1e-4 ) )
486
from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase_ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = TFAutoModel.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = AutoModel.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase_ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = TFAutoModelForPreTraining.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = AutoModelForPreTraining.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = TFAutoModelForCausalLM.from_pretrained(__lowercase , from_pt=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ = TFAutoModelForCausalLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = AutoModelForCausalLM.from_pretrained(__lowercase , from_tf=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ = AutoModelForCausalLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = TFAutoModelWithLMHead.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = AutoModelWithLMHead.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = TFAutoModelForMaskedLM.from_pretrained(__lowercase , from_pt=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ = TFAutoModelForMaskedLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = AutoModelForMaskedLM.from_pretrained(__lowercase , from_tf=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ = AutoModelForMaskedLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(__lowercase , from_pt=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained(__lowercase , from_tf=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase_ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = TFAutoModelForSequenceClassification.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = AutoModelForSequenceClassification.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase_ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = TFAutoModelForQuestionAnswering.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = AutoModelForQuestionAnswering.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ = TFAutoModelWithLMHead.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) , 1_44_10 ) UpperCAmelCase_ = AutoModelWithLMHead.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) , 1_44_10 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ = TFAutoModelWithLMHead.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) , 1_44_10 ) UpperCAmelCase_ = AutoModelWithLMHead.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) , 1_44_10 )
486
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class __A ( unittest.TestCase ): def _snake_case (self , __magic_name__ ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): lowerCamelCase__ : Dict = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(__magic_name__ ) def _snake_case (self ): lowerCamelCase__ : Optional[int] = """sshleifer/tiny-gpt2""" lowerCamelCase__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__magic_name__ , multi_process=__magic_name__ , ) lowerCamelCase__ : List[str] = TensorFlowBenchmark(__magic_name__ ) lowerCamelCase__ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _snake_case (self ): lowerCamelCase__ : List[str] = """sgugger/tiny-distilbert-classification""" lowerCamelCase__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , only_pretrain_model=__magic_name__ , ) lowerCamelCase__ : List[str] = TensorFlowBenchmark(__magic_name__ ) lowerCamelCase__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _snake_case (self ): lowerCamelCase__ : Union[str, Any] = """sshleifer/tiny-gpt2""" lowerCamelCase__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , ) lowerCamelCase__ : Tuple = TensorFlowBenchmark(__magic_name__ ) lowerCamelCase__ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _snake_case (self ): lowerCamelCase__ : Optional[int] = """sshleifer/tiny-gpt2""" lowerCamelCase__ : int = AutoConfig.from_pretrained(__magic_name__ ) lowerCamelCase__ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__magic_name__ , multi_process=__magic_name__ , ) lowerCamelCase__ : str = TensorFlowBenchmark(__magic_name__ , [config] ) lowerCamelCase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _snake_case (self ): lowerCamelCase__ : List[Any] = """sshleifer/tiny-gpt2""" lowerCamelCase__ : Tuple = AutoConfig.from_pretrained(__magic_name__ ) lowerCamelCase__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , ) lowerCamelCase__ : Optional[Any] = TensorFlowBenchmark(__magic_name__ , [config] ) lowerCamelCase__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _snake_case (self ): lowerCamelCase__ : Tuple = """sshleifer/tiny-gpt2""" lowerCamelCase__ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , ) lowerCamelCase__ : Tuple = TensorFlowBenchmark(__magic_name__ ) lowerCamelCase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _snake_case (self ): lowerCamelCase__ : Tuple = """sshleifer/tiny-gpt2""" lowerCamelCase__ : Any = AutoConfig.from_pretrained(__magic_name__ ) lowerCamelCase__ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , ) lowerCamelCase__ : Optional[Any] = TensorFlowBenchmark(__magic_name__ , [config] ) lowerCamelCase__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _snake_case (self ): lowerCamelCase__ : int = """patrickvonplaten/t5-tiny-random""" lowerCamelCase__ : Optional[Any] = AutoConfig.from_pretrained(__magic_name__ ) lowerCamelCase__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , ) lowerCamelCase__ : Any = TensorFlowBenchmark(__magic_name__ , configs=[config] ) lowerCamelCase__ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , """Cannot do xla on CPU.""" ) def _snake_case (self ): lowerCamelCase__ : int = """sshleifer/tiny-gpt2""" lowerCamelCase__ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__magic_name__ , multi_process=__magic_name__ , ) lowerCamelCase__ : Union[str, Any] = TensorFlowBenchmark(__magic_name__ ) lowerCamelCase__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _snake_case (self ): lowerCamelCase__ : List[str] = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__magic_name__ , save_to_csv=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__magic_name__ , """inf_time.csv""" ) , inference_memory_csv_file=os.path.join(__magic_name__ , """inf_mem.csv""" ) , env_info_csv_file=os.path.join(__magic_name__ , """env.csv""" ) , multi_process=__magic_name__ , ) lowerCamelCase__ : Optional[Any] = TensorFlowBenchmark(__magic_name__ ) benchmark.run() self.assertTrue(Path(os.path.join(__magic_name__ , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(__magic_name__ , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(__magic_name__ , """env.csv""" ) ).exists() ) def _snake_case (self ): lowerCamelCase__ : Any = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(__magic_name__ ): self.assertTrue(hasattr(__magic_name__ , """sequential""" ) ) self.assertTrue(hasattr(__magic_name__ , """cumulative""" ) ) self.assertTrue(hasattr(__magic_name__ , """current""" ) ) self.assertTrue(hasattr(__magic_name__ , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__magic_name__ , """log.txt""" ) , log_print=__magic_name__ , trace_memory_line_by_line=__magic_name__ , eager_mode=__magic_name__ , multi_process=__magic_name__ , ) lowerCamelCase__ : List[str] = TensorFlowBenchmark(__magic_name__ ) lowerCamelCase__ : List[Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__magic_name__ , """log.txt""" ) ).exists() )
157
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( A_ , A_ , unittest.TestCase ): UpperCamelCase :Tuple = IFInpaintingSuperResolutionPipeline UpperCamelCase :int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase :Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} ) UpperCamelCase :Optional[Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def _snake_case (self ): return self._get_superresolution_dummy_components() def _snake_case (self , __magic_name__ , __magic_name__=0 ): if str(__magic_name__ ).startswith("""mps""" ): lowerCamelCase__ : Dict = torch.manual_seed(__magic_name__ ) else: lowerCamelCase__ : Tuple = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) lowerCamelCase__ : Dict = floats_tensor((1, 3, 16, 16) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) lowerCamelCase__ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) lowerCamelCase__ : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) lowerCamelCase__ : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _snake_case (self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _snake_case (self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _snake_case (self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def _snake_case (self ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _snake_case (self ): self._test_save_load_local() def _snake_case (self ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
157
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A ={ "configuration_upernet": ["UperNetConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys __A =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
704
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def snake_case__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Tuple = TFCamembertModel.from_pretrained('''jplu/tf-camembert-base''' ) __UpperCAmelCase : Dict = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __UpperCAmelCase : int = model(a_ )['''last_hidden_state'''] __UpperCAmelCase : Optional[int] = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , a_ ) # compare the actual values for a slice. __UpperCAmelCase : Union[str, Any] = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
241
0
'''simple docstring''' from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : Tuple ,*lowercase__ : Optional[int] ,**lowercase__ : List[str] ): super().__init__(*lowercase__ ,**lowercase__ ) self.check_model_type(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : List[Any]=None ,lowercase__ : Optional[int]=None ,lowercase__ : Tuple=None ,**lowercase__ : List[str] ): __lowercase , __lowercase = {}, {} if padding is not None: __lowercase = padding if truncation is not None: __lowercase = truncation if top_k is not None: __lowercase = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[Any] ,lowercase__ : Union["Image.Image", str] ,lowercase__ : str = None ,**lowercase__ : Any ): if isinstance(lowercase__ ,(Image.Image, str) ) and isinstance(lowercase__ ,lowercase__ ): __lowercase = {'''image''': image, '''question''': question} else: __lowercase = image __lowercase = super().__call__(lowercase__ ,**lowercase__ ) return results def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Optional[int] ,lowercase__ : Optional[int]=False ,lowercase__ : List[str]=False ): __lowercase = load_image(inputs['''image'''] ) __lowercase = self.tokenizer( inputs['''question'''] ,return_tensors=self.framework ,padding=lowercase__ ,truncation=lowercase__ ) __lowercase = self.image_processor(images=lowercase__ ,return_tensors=self.framework ) model_inputs.update(lowercase__ ) return model_inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : List[str] ): __lowercase = self.model(**lowercase__ ) return model_outputs def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : str ,lowercase__ : Any=5 ): if top_k > self.model.config.num_labels: __lowercase = self.model.config.num_labels if self.framework == "pt": __lowercase = model_outputs.logits.sigmoid()[0] __lowercase , __lowercase = probs.topk(lowercase__ ) else: raise ValueError(F"Unsupported framework: {self.framework}" ) __lowercase = scores.tolist() __lowercase = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowercase__ ,lowercase__ )]
41
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _A ( A__ ): """simple docstring""" __lowercase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def _A ( A__ ): """simple docstring""" __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(A__ , A__ , bias=A__ ) __lowercase = emb.weight.data return lin_layer def _A ( A__ , A__="facebook/mbart-large-en-ro" , A__=False , A__=False ): """simple docstring""" __lowercase = torch.load(A__ , map_location='''cpu''' )['''model'''] remove_ignore_keys_(A__ ) __lowercase = state_dict['''encoder.embed_tokens.weight'''].shape[0] __lowercase = MBartConfig.from_pretrained(A__ , vocab_size=A__ ) if mbart_aa and finetuned: __lowercase = '''relu''' __lowercase = state_dict['''decoder.embed_tokens.weight'''] __lowercase = MBartForConditionalGeneration(A__ ) model.model.load_state_dict(A__ ) if finetuned: __lowercase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
41
1
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class __lowerCamelCase : def __init__( self , snake_case_ , snake_case_=sys.maxsize ) -> Any: UpperCamelCase__ = 'bilinear' UpperCamelCase__ = max_size UpperCamelCase__ = short_edge_length def __call__( self , snake_case_ ) -> int: UpperCamelCase__ = [] for img in imgs: UpperCamelCase__ , UpperCamelCase__ = img.shape[:2] # later: provide list and randomly choose index for resize UpperCamelCase__ = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img UpperCamelCase__ = size * 1.0 / min(snake_case_ , snake_case_ ) if h < w: UpperCamelCase__ , UpperCamelCase__ = size, scale * w else: UpperCamelCase__ , UpperCamelCase__ = scale * h, size if max(snake_case_ , snake_case_ ) > self.max_size: UpperCamelCase__ = self.max_size * 1.0 / max(snake_case_ , snake_case_ ) UpperCamelCase__ = newh * scale UpperCamelCase__ = neww * scale UpperCamelCase__ = int(neww + 0.5 ) UpperCamelCase__ = int(newh + 0.5 ) if img.dtype == np.uinta: UpperCamelCase__ = Image.fromarray(snake_case_ ) UpperCamelCase__ = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) UpperCamelCase__ = np.asarray(snake_case_ ) else: UpperCamelCase__ = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw UpperCamelCase__ = nn.functional.interpolate( snake_case_ , (newh, neww) , mode=self.interp_method , align_corners=snake_case_ ).squeeze(0 ) img_augs.append(snake_case_ ) return img_augs class __lowerCamelCase : def __init__( self , snake_case_ ) -> Any: UpperCamelCase__ = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) UpperCamelCase__ = cfg.INPUT.FORMAT UpperCamelCase__ = cfg.SIZE_DIVISIBILITY UpperCamelCase__ = cfg.PAD_VALUE UpperCamelCase__ = cfg.INPUT.MAX_SIZE_TEST UpperCamelCase__ = cfg.MODEL.DEVICE UpperCamelCase__ = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCamelCase__ = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCamelCase__ = lambda snake_case_ : (x - self.pixel_mean) / self.pixel_std def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: UpperCamelCase__ = tuple(max(snake_case_ ) for s in zip(*[img.shape for img in images] ) ) UpperCamelCase__ = [im.shape[-2:] for im in images] UpperCamelCase__ = [ nn.functional.pad( snake_case_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(snake_case_ , snake_case_ ) ] return torch.stack(snake_case_ ), torch.tensor(snake_case_ ) def __call__( self , snake_case_ , snake_case_=False ) -> List[str]: with torch.no_grad(): if not isinstance(snake_case_ , snake_case_ ): UpperCamelCase__ = [images] if single_image: assert len(snake_case_ ) == 1 for i in range(len(snake_case_ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(snake_case_ , images.pop(snake_case_ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( snake_case_ , torch.as_tensor(img_tensorize(images.pop(snake_case_ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge UpperCamelCase__ = torch.tensor([im.shape[:2] for im in images] ) UpperCamelCase__ = self.aug(snake_case_ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic UpperCamelCase__ = [self.normalizer(snake_case_ ) for x in images] # now pad them to do the following operations UpperCamelCase__ , UpperCamelCase__ = self.pad(snake_case_ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad UpperCamelCase__ = torch.true_divide(snake_case_ , snake_case_ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" assert torch.isfinite(SCREAMING_SNAKE_CASE ).all(), "Box tensor contains infinite or NaN!" UpperCamelCase__ , UpperCamelCase__ = box_size tensor[:, 0].clamp_(min=0 , max=SCREAMING_SNAKE_CASE ) tensor[:, 1].clamp_(min=0 , max=SCREAMING_SNAKE_CASE ) tensor[:, 2].clamp_(min=0 , max=SCREAMING_SNAKE_CASE ) tensor[:, 3].clamp_(min=0 , max=SCREAMING_SNAKE_CASE )
20
"""simple docstring""" from __future__ import annotations from typing import Generic, TypeVar A__ : Any= TypeVar("""T""") class __lowerCamelCase ( Generic[T] ): def __init__( self , snake_case_ ) -> None: UpperCamelCase__ = data UpperCamelCase__ = self UpperCamelCase__ = 0 class __lowerCamelCase ( Generic[T] ): def __init__( self ) -> None: # map from node name to the node object UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: # create a new set with x as its member UpperCamelCase__ = DisjointSetTreeNode(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> DisjointSetTreeNode[T]: # find the set x belongs to (with path-compression) UpperCamelCase__ = self.map[data] if elem_ref != elem_ref.parent: UpperCamelCase__ = self.find_set(elem_ref.parent.data ) return elem_ref.parent def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: # helper function for union operation if nodea.rank > nodea.rank: UpperCamelCase__ = nodea else: UpperCamelCase__ = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: # merge 2 disjoint sets self.link(self.find_set(snake_case_ ) , self.find_set(snake_case_ ) ) class __lowerCamelCase ( Generic[T] ): def __init__( self ) -> None: # connections: map from the node to the neighbouring nodes (with weights) UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: # add a node ONLY if its not present in the graph if node not in self.connections: UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> None: # add an edge with the given weight self.add_node(snake_case_ ) self.add_node(snake_case_ ) UpperCamelCase__ = weight UpperCamelCase__ = weight def SCREAMING_SNAKE_CASE__ ( self ) -> GraphUndirectedWeighted[T]: UpperCamelCase__ = [] UpperCamelCase__ = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda snake_case_ : x[2] ) # creating the disjoint set UpperCamelCase__ = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(snake_case_ ) # MST generation UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edges[index] index += 1 UpperCamelCase__ = disjoint_set.find_set(snake_case_ ) UpperCamelCase__ = disjoint_set.find_set(snake_case_ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(snake_case_ , snake_case_ , snake_case_ ) disjoint_set.union(snake_case_ , snake_case_ ) return graph
20
1
'''simple docstring''' import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput A_ = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _snake_case ( _a ): def __init__( self : Union[str, Any] ,*SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Optional[int]=None ,SCREAMING_SNAKE_CASE__ : Optional[Any]=None ,SCREAMING_SNAKE_CASE__ : Optional[Any]=None ,**SCREAMING_SNAKE_CASE__ : Dict ): super().__init__(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:List[str] = eval_examples SCREAMING_SNAKE_CASE:Optional[int] = post_process_function SCREAMING_SNAKE_CASE:List[str] = quant_trainer_args SCREAMING_SNAKE_CASE:Optional[Any] = 128 # default number of calibration samples def __UpperCamelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): if calib_dataset is None and self.calib_dataset is None: raise ValueError("Trainer: calibration requires an calib_dataset." ) SCREAMING_SNAKE_CASE:Optional[int] = calib_dataset if calib_dataset is not None else self.calib_dataset SCREAMING_SNAKE_CASE:List[Any] = self._remove_unused_columns(SCREAMING_SNAKE_CASE__ ,description="Calibration" ) return DataLoader( SCREAMING_SNAKE_CASE__ ,batch_size=self.args.eval_batch_size ,collate_fn=self.data_collator ,drop_last=self.args.dataloader_drop_last ,num_workers=self.args.dataloader_num_workers ,pin_memory=self.args.dataloader_pin_memory ,shuffle=SCREAMING_SNAKE_CASE__ ,) def __UpperCamelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ): SCREAMING_SNAKE_CASE:List[Any] = self.train_dataset if calib_dataset is None else calib_dataset SCREAMING_SNAKE_CASE:Optional[Any] = self.get_calib_dataloader(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Dict = self.model quant_trainer.configure_model(SCREAMING_SNAKE_CASE__ ,self.quant_trainer_args ,calib=SCREAMING_SNAKE_CASE__ ) model.eval() quant_trainer.enable_calibration(SCREAMING_SNAKE_CASE__ ) logger.info("***** Running calibration *****" ) logger.info(F''' Num examples = {self.calib_num}''' ) logger.info(F''' Batch size = {calib_dataloader.batch_size}''' ) for step, inputs in enumerate(SCREAMING_SNAKE_CASE__ ): # Prediction step SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Union[str, Any] = self.prediction_step(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,prediction_loss_only=SCREAMING_SNAKE_CASE__ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(SCREAMING_SNAKE_CASE__ ,self.quant_trainer_args ) SCREAMING_SNAKE_CASE:Optional[Any] = model def __UpperCamelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : List[Any]=None ,SCREAMING_SNAKE_CASE__ : Optional[Any]=None ,SCREAMING_SNAKE_CASE__ : Optional[Any]=None ,SCREAMING_SNAKE_CASE__ : str = "eval" ): SCREAMING_SNAKE_CASE:List[Any] = self.eval_dataset if eval_dataset is None else eval_dataset SCREAMING_SNAKE_CASE:Optional[int] = self.get_eval_dataloader(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Any = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE:str = self.compute_metrics SCREAMING_SNAKE_CASE:Union[str, Any] = None SCREAMING_SNAKE_CASE:int = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE:str = eval_loop( SCREAMING_SNAKE_CASE__ ,description="Evaluation" ,prediction_loss_only=True if compute_metrics is None else None ,ignore_keys=SCREAMING_SNAKE_CASE__ ,) finally: SCREAMING_SNAKE_CASE:Dict = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: SCREAMING_SNAKE_CASE:Optional[Any] = self.post_process_function(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,output.predictions ) SCREAMING_SNAKE_CASE:List[Any] = self.compute_metrics(SCREAMING_SNAKE_CASE__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): SCREAMING_SNAKE_CASE:Union[str, Any] = metrics.pop(SCREAMING_SNAKE_CASE__ ) self.log(SCREAMING_SNAKE_CASE__ ) else: SCREAMING_SNAKE_CASE:int = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) SCREAMING_SNAKE_CASE:int = self.callback_handler.on_evaluate(self.args ,self.state ,self.control ,SCREAMING_SNAKE_CASE__ ) return metrics def __UpperCamelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : List[str]=None ,SCREAMING_SNAKE_CASE__ : str = "test" ): SCREAMING_SNAKE_CASE:List[str] = self.get_test_dataloader(SCREAMING_SNAKE_CASE__ ) # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE:List[str] = self.compute_metrics SCREAMING_SNAKE_CASE:int = None SCREAMING_SNAKE_CASE:Union[str, Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE:Optional[int] = eval_loop( SCREAMING_SNAKE_CASE__ ,description="Prediction" ,prediction_loss_only=True if compute_metrics is None else None ,ignore_keys=SCREAMING_SNAKE_CASE__ ,) finally: SCREAMING_SNAKE_CASE:Dict = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output SCREAMING_SNAKE_CASE:Optional[Any] = self.post_process_function(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,output.predictions ,"predict" ) SCREAMING_SNAKE_CASE:Dict = self.compute_metrics(SCREAMING_SNAKE_CASE__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): SCREAMING_SNAKE_CASE:int = metrics.pop(SCREAMING_SNAKE_CASE__ ) return PredictionOutput(predictions=predictions.predictions ,label_ids=predictions.label_ids ,metrics=SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : List[Any]="./" ): SCREAMING_SNAKE_CASE:str = self.eval_dataset SCREAMING_SNAKE_CASE:Optional[int] = self.get_eval_dataloader(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Any = next(iter(SCREAMING_SNAKE_CASE__ ) ) # saving device - to make it consistent SCREAMING_SNAKE_CASE:List[Any] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) # convert to tuple SCREAMING_SNAKE_CASE:int = tuple(v.to(SCREAMING_SNAKE_CASE__ ) for k, v in batch.items() ) logger.info("Converting model to be onnx compatible" ) from pytorch_quantization.nn import TensorQuantizer SCREAMING_SNAKE_CASE:str = True SCREAMING_SNAKE_CASE:Optional[Any] = self.model.to(SCREAMING_SNAKE_CASE__ ) model.eval() model.float() SCREAMING_SNAKE_CASE:Any = model.module if hasattr(SCREAMING_SNAKE_CASE__ ,"module" ) else model quant_trainer.configure_model(SCREAMING_SNAKE_CASE__ ,self.quant_trainer_args ) SCREAMING_SNAKE_CASE:Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,"model.onnx" ) logger.info(F'''exporting model to {output_model_file}''' ) SCREAMING_SNAKE_CASE:Optional[Any] = {0: "batch_size", 1: "seq_len"} torch.onnx.export( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,export_params=SCREAMING_SNAKE_CASE__ ,opset_version=13 ,do_constant_folding=SCREAMING_SNAKE_CASE__ ,input_names=["input_ids", "attention_mask", "token_type_ids"] ,output_names=["output_start_logits", "output_end_logits"] ,dynamic_axes={ "input_ids": axes, "attention_mask": axes, "token_type_ids": axes, "output_start_logits": axes, "output_end_logits": axes, } ,verbose=SCREAMING_SNAKE_CASE__ ,) logger.info("onnx export finished" )
143
'''simple docstring''' def A_ ( snake_case = 1000 ): SCREAMING_SNAKE_CASE:Tuple = 2**power SCREAMING_SNAKE_CASE:Optional[int] = str(snake_case ) SCREAMING_SNAKE_CASE:int = list(snake_case ) SCREAMING_SNAKE_CASE:Optional[Any] = 0 for i in list_num: sum_of_num += int(snake_case ) return sum_of_num if __name__ == "__main__": A_ = int(input("Enter the power of 2: ").strip()) print("2 ^ ", power, " = ", 2**power) A_ = solution(power) print("Sum of the digits is: ", result)
143
1
"""simple docstring""" from __future__ import annotations def lowerCamelCase ( _snake_case ,_snake_case = None ): UpperCAmelCase__ : List[Any] = word_bank or [] # create a table UpperCAmelCase__ : int = len(_snake_case ) + 1 UpperCAmelCase__ : list[list[list[str]]] = [] for _ in range(_snake_case ): table.append([] ) # seed value UpperCAmelCase__ : List[Any] = [[]] # because empty string has empty combination # iterate through the indices for i in range(_snake_case ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_snake_case )] == word: UpperCAmelCase__ : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_snake_case )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_snake_case )]: combination.reverse() return table[len(_snake_case )] if __name__ == "__main__": print(all_construct('jwajalapa', ['jwa', 'j', 'w', 'a', 'la', 'lapa'])) print(all_construct('rajamati', ['s', 'raj', 'amat', 'raja', 'ma', 'i', 't'])) print( all_construct( 'hexagonosaurus', ['h', 'ex', 'hex', 'ag', 'ago', 'ru', 'auru', 'rus', 'go', 'no', 'o', 's'], ) )
254
"""simple docstring""" import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a : def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=32 , UpperCamelCase_=3 , UpperCamelCase_=4 , UpperCamelCase_=[10, 20, 30, 40] , UpperCamelCase_=[2, 2, 3, 2] , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=10 , UpperCamelCase_=0.02 , UpperCamelCase_=["stage2", "stage3", "stage4"] , UpperCamelCase_=[2, 3, 4] , UpperCamelCase_=None , ): UpperCAmelCase__ : Tuple = parent UpperCAmelCase__ : List[str] = batch_size UpperCAmelCase__ : Tuple = image_size UpperCAmelCase__ : List[Any] = num_channels UpperCAmelCase__ : List[str] = num_stages UpperCAmelCase__ : Optional[int] = hidden_sizes UpperCAmelCase__ : int = depths UpperCAmelCase__ : List[str] = is_training UpperCAmelCase__ : Optional[int] = use_labels UpperCAmelCase__ : Union[str, Any] = intermediate_size UpperCAmelCase__ : List[str] = hidden_act UpperCAmelCase__ : int = num_labels UpperCAmelCase__ : int = initializer_range UpperCAmelCase__ : Optional[Any] = out_features UpperCAmelCase__ : Tuple = out_indices UpperCAmelCase__ : Dict = scope def __snake_case ( self ): UpperCAmelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Tuple = None if self.use_labels: UpperCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase__ : List[str] = self.get_config() return config, pixel_values, labels def __snake_case ( self ): return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): UpperCAmelCase__ : Optional[Any] = ConvNextModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCAmelCase__ : int = model(UpperCamelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): UpperCAmelCase__ : str = ConvNextForImageClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCAmelCase__ : Tuple = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): UpperCAmelCase__ : List[str] = ConvNextBackbone(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCAmelCase__ : Optional[int] = model(UpperCamelCase_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Dict = ConvNextBackbone(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCAmelCase__ : Optional[Any] = model(UpperCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __snake_case ( self ): UpperCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = config_and_inputs UpperCAmelCase__ : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class a ( lowercase , lowercase , unittest.TestCase ): UpperCamelCase : Optional[Any] = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) UpperCamelCase : Optional[int] = ( {"""feature-extraction""": ConvNextModel, """image-classification""": ConvNextForImageClassification} if is_torch_available() else {} ) UpperCamelCase : str = True UpperCamelCase : Union[str, Any] = False UpperCamelCase : Any = False UpperCamelCase : Union[str, Any] = False UpperCamelCase : Optional[Any] = False def __snake_case ( self ): UpperCAmelCase__ : str = ConvNextModelTester(self ) UpperCAmelCase__ : Any = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def __snake_case ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __snake_case ( self ): return @unittest.skip(reason='ConvNext does not use inputs_embeds' ) def __snake_case ( self ): pass @unittest.skip(reason='ConvNext does not support input and output embeddings' ) def __snake_case ( self ): pass @unittest.skip(reason='ConvNext does not use feedforward chunking' ) def __snake_case ( self ): pass def __snake_case ( self ): UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : str = model_class(UpperCamelCase_ ) UpperCAmelCase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : List[str] = [*signature.parameters.keys()] UpperCAmelCase__ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def __snake_case ( self ): UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def __snake_case ( self ): UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCamelCase_ ) def __snake_case ( self ): def check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): UpperCAmelCase__ : List[Any] = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase__ : Optional[Any] = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) UpperCAmelCase__ : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase__ : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : List[Any] = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ : str = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def __snake_case ( self ): UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ ) @slow def __snake_case ( self ): for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : List[Any] = ConvNextModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def lowerCamelCase ( ): UpperCAmelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a ( unittest.TestCase ): @cached_property def __snake_case ( self ): return AutoImageProcessor.from_pretrained('facebook/convnext-tiny-224' ) if is_vision_available() else None @slow def __snake_case ( self ): UpperCAmelCase__ : Optional[Any] = ConvNextForImageClassification.from_pretrained('facebook/convnext-tiny-224' ).to(UpperCamelCase_ ) UpperCAmelCase__ : str = self.default_image_processor UpperCAmelCase__ : List[Any] = prepare_img() UpperCAmelCase__ : str = image_processor(images=UpperCamelCase_ , return_tensors='pt' ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Optional[Any] = model(**UpperCamelCase_ ) # verify the logits UpperCAmelCase__ : Any = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) UpperCAmelCase__ : Optional[int] = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1E-4 ) ) @require_torch class a ( unittest.TestCase , lowercase ): UpperCamelCase : str = (ConvNextBackbone,) if is_torch_available() else () UpperCamelCase : List[str] = ConvNextConfig UpperCamelCase : Tuple = False def __snake_case ( self ): UpperCAmelCase__ : List[str] = ConvNextModelTester(self )
254
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class a ( metaclass=lowerCamelCase__ ): """simple docstring""" __UpperCAmelCase = ["""transformers""", """torch""", """note_seq"""] def __init__( self : Optional[Any] , *snake_case_ : Optional[int] , **snake_case_ : int ): '''simple docstring''' requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def __magic_name__ ( cls : Tuple , *snake_case_ : int , **snake_case_ : Optional[int] ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def __magic_name__ ( cls : Any , *snake_case_ : Any , **snake_case_ : Any ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
347
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __snake_case ( _lowerCAmelCase : Optional[int] ) -> Dict: return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __snake_case ( _lowerCAmelCase : Tuple ) -> Optional[Any]: A_ : Optional[Any] = create_tensor(_lowerCAmelCase ) A_ : Dict = gather(_lowerCAmelCase ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def __snake_case ( _lowerCAmelCase : List[Any] ) -> Any: A_ : int = [state.process_index] A_ : Union[str, Any] = gather_object(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == state.num_processes, f"{gathered_obj}, {len(_lowerCAmelCase )} != {state.num_processes}" assert gathered_obj == list(range(state.num_processes ) ), f"{gathered_obj} != {list(range(state.num_processes ) )}" def __snake_case ( _lowerCAmelCase : Union[str, Any] ) -> Optional[Any]: A_ : List[str] = create_tensor(_lowerCAmelCase ) A_ : Optional[Any] = broadcast(_lowerCAmelCase ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def __snake_case ( _lowerCAmelCase : Dict ) -> str: # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: A_ : Tuple = torch.arange(state.num_processes + 1 ).to(state.device ) else: A_ : List[str] = torch.arange(state.num_processes ).to(state.device ) A_ : Any = pad_across_processes(_lowerCAmelCase ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def __snake_case ( _lowerCAmelCase : List[Any] ) -> Tuple: # For now runs on only two processes if state.num_processes != 2: return A_ : str = create_tensor(_lowerCAmelCase ) A_ : int = reduce(_lowerCAmelCase , "sum" ) A_ : Optional[Any] = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase ), f"{reduced_tensor} != {truth_tensor}" def __snake_case ( _lowerCAmelCase : Union[str, Any] ) -> Dict: # For now runs on only two processes if state.num_processes != 2: return A_ : List[str] = create_tensor(_lowerCAmelCase ) A_ : Tuple = reduce(_lowerCAmelCase , "mean" ) A_ : List[str] = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase ), f"{reduced_tensor} != {truth_tensor}" def __snake_case ( _lowerCAmelCase : List[str] ) -> Dict: # For xla_spawn (TPUs) main() def __snake_case ( ) -> List[str]: A_ : Tuple = PartialState() state.print(f"State: {state}" ) state.print("testing gather" ) test_gather(_lowerCAmelCase ) state.print("testing gather_object" ) test_gather_object(_lowerCAmelCase ) state.print("testing broadcast" ) test_broadcast(_lowerCAmelCase ) state.print("testing pad_across_processes" ) test_pad_across_processes(_lowerCAmelCase ) state.print("testing reduce_sum" ) test_reduce_sum(_lowerCAmelCase ) state.print("testing reduce_mean" ) test_reduce_mean(_lowerCAmelCase ) if __name__ == "__main__": main()
454
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a_ :Tuple = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[str] = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys a_ :Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
709
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging a_ :str = logging.get_logger(__name__) a_ :List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED a_ :Union[str, Any] = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } a_ :Any = { 'allenai/led-base-16384': 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def a ( ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) SCREAMING_SNAKE_CASE__ : str = bs[:] SCREAMING_SNAKE_CASE__ : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(A__ ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE__ : str = [chr(A__ ) for n in cs] return dict(zip(A__ , A__ ) ) def a ( A__ ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = set() SCREAMING_SNAKE_CASE__ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = char return pairs class lowercase ( _UpperCAmelCase ): lowerCamelCase : int = VOCAB_FILES_NAMES lowerCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , _lowercase : Dict , _lowercase : Optional[int] , _lowercase : Any="replace" , _lowercase : List[Any]="<s>" , _lowercase : int="</s>" , _lowercase : Tuple="</s>" , _lowercase : Tuple="<s>" , _lowercase : Tuple="<unk>" , _lowercase : List[Any]="<pad>" , _lowercase : List[Any]="<mask>" , _lowercase : Optional[int]=False , **_lowercase : Optional[Any] , ): SCREAMING_SNAKE_CASE__ : Tuple = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else bos_token SCREAMING_SNAKE_CASE__ : Any = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else eos_token SCREAMING_SNAKE_CASE__ : Any = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else sep_token SCREAMING_SNAKE_CASE__ : List[Any] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else cls_token SCREAMING_SNAKE_CASE__ : int = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else unk_token SCREAMING_SNAKE_CASE__ : List[Any] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE__ : List[str] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( errors=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , add_prefix_space=_lowercase , **_lowercase , ) with open(_lowercase , encoding='''utf-8''' ) as vocab_handle: SCREAMING_SNAKE_CASE__ : Tuple = json.load(_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE__ : Tuple = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE__ : Dict = bytes_to_unicode() SCREAMING_SNAKE_CASE__ : str = {v: k for k, v in self.byte_encoder.items()} with open(_lowercase , encoding='''utf-8''' ) as merges_handle: SCREAMING_SNAKE_CASE__ : Dict = merges_handle.read().split('''\n''' )[1:-1] SCREAMING_SNAKE_CASE__ : Dict = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE__ : Optional[Any] = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = {} SCREAMING_SNAKE_CASE__ : Union[str, Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE__ : Optional[int] = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowercase__ ( self : Optional[Any] ): return len(self.encoder ) def lowercase__ ( self : Tuple ): return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self : Tuple , _lowercase : List[Any] ): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE__ : Optional[int] = tuple(_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = get_pairs(_lowercase ) if not pairs: return token while True: SCREAMING_SNAKE_CASE__ : Tuple = min(_lowercase , key=lambda _lowercase : self.bpe_ranks.get(_lowercase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = bigram SCREAMING_SNAKE_CASE__ : List[str] = [] SCREAMING_SNAKE_CASE__ : Tuple = 0 while i < len(_lowercase ): try: SCREAMING_SNAKE_CASE__ : Optional[Any] = word.index(_lowercase , _lowercase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE__ : Dict = j if word[i] == first and i < len(_lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE__ : List[Any] = tuple(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = new_word if len(_lowercase ) == 1: break else: SCREAMING_SNAKE_CASE__ : Any = get_pairs(_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = ''' '''.join(_lowercase ) SCREAMING_SNAKE_CASE__ : int = word return word def lowercase__ ( self : Optional[Any] , _lowercase : List[Any] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] for token in re.findall(self.pat , _lowercase ): SCREAMING_SNAKE_CASE__ : Optional[Any] = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowercase ).split(''' ''' ) ) return bpe_tokens def lowercase__ ( self : int , _lowercase : List[str] ): return self.encoder.get(_lowercase , self.encoder.get(self.unk_token ) ) def lowercase__ ( self : int , _lowercase : int ): return self.decoder.get(_lowercase ) def lowercase__ ( self : List[str] , _lowercase : Optional[int] ): SCREAMING_SNAKE_CASE__ : int = ''''''.join(_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def lowercase__ ( self : List[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE__ : int = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowercase , ensure_ascii=_lowercase ) + '''\n''' ) SCREAMING_SNAKE_CASE__ : str = 0 with open(_lowercase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowercase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) SCREAMING_SNAKE_CASE__ : str = token_index writer.write(''' '''.join(_lowercase ) + '''\n''' ) index += 1 return vocab_file, merge_file def lowercase__ ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE__ : Optional[Any] = [self.cls_token_id] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) if token_ids_a is None: return [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1, 1] + ([0] * len(_lowercase )) + [1] def lowercase__ ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE__ : Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase__ ( self : Dict , _lowercase : Dict , _lowercase : List[str]=False , **_lowercase : Optional[int] ): SCREAMING_SNAKE_CASE__ : str = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_lowercase ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE__ : Any = ''' ''' + text return (text, kwargs) def lowercase__ ( self : int , _lowercase : Union[Dict[str, EncodedInput], BatchEncoding] , _lowercase : Optional[int] = None , _lowercase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , _lowercase : Optional[int] = None , _lowercase : Optional[bool] = None , ): SCREAMING_SNAKE_CASE__ : Any = super()._pad( encoded_inputs=_lowercase , max_length=_lowercase , padding_strategy=_lowercase , pad_to_multiple_of=_lowercase , return_attention_mask=_lowercase , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE__ : str = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE__ : List[str] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE__ : Union[str, Any] = len(encoded_inputs['''global_attention_mask'''] ) != len(_lowercase ) if needs_to_be_padded: SCREAMING_SNAKE_CASE__ : Dict = len(_lowercase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE__ : Any = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE__ : int = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
250
0
import inspect import unittest class lowerCAmelCase_ ( unittest.TestCase ): def snake_case ( self ): try: import diffusers # noqa: F401 except ImportError: assert False def snake_case ( self ): import diffusers from diffusers.dependency_versions_table import deps SCREAMING_SNAKE_CASE_ : List[str] = inspect.getmembers(snake_case__ ,inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": SCREAMING_SNAKE_CASE_ : int = 'k-diffusion' elif backend == "invisible_watermark": SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'invisible-watermark' assert backend in deps, F'{backend} is not in the deps table!'
105
def _A ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list ): _enforce_args(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if n == 0: return 0 UpperCamelCase :Union[str, Any] = float('''-inf''' ) for i in range(1 , n + 1 ): UpperCamelCase :str = max( SCREAMING_SNAKE_CASE__ , prices[i - 1] + naive_cut_rod_recursive(n - i , SCREAMING_SNAKE_CASE__ ) ) return max_revue def _A ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list ): _enforce_args(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Dict = [float('''-inf''' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _A ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list ): if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: UpperCamelCase :Dict = float('''-inf''' ) for i in range(1 , n + 1 ): UpperCamelCase :Union[str, Any] = max( SCREAMING_SNAKE_CASE__ , prices[i - 1] + _top_down_cut_rod_recursive(n - i , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , ) UpperCamelCase :str = max_revenue return max_rev[n] def _A ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list ): _enforce_args(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. UpperCamelCase :List[str] = [float('''-inf''' ) for _ in range(n + 1 )] UpperCamelCase :Dict = 0 for i in range(1 , n + 1 ): UpperCamelCase :Optional[Any] = max_rev[i] for j in range(1 , i + 1 ): UpperCamelCase :Optional[Any] = max(SCREAMING_SNAKE_CASE__ , prices[j - 1] + max_rev[i - j] ) UpperCamelCase :Tuple = max_revenue_i return max_rev[n] def _A ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list ): if n < 0: UpperCamelCase :Any = F'''n must be greater than or equal to 0. Got n = {n}''' raise ValueError(SCREAMING_SNAKE_CASE__ ) if n > len(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Union[str, Any] = ( '''Each integral piece of rod must have a corresponding price. ''' F'''Got n = {n} but length of prices = {len(SCREAMING_SNAKE_CASE__ )}''' ) raise ValueError(SCREAMING_SNAKE_CASE__ ) def _A ( ): UpperCamelCase :Dict = [6, 10, 12, 15, 20, 23] UpperCamelCase :List[str] = len(SCREAMING_SNAKE_CASE__ ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. UpperCamelCase :str = 36 UpperCamelCase :int = top_down_cut_rod(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Union[str, Any] = bottom_up_cut_rod(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCamelCase :str = naive_cut_rod_recursive(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
658
0
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters __a: int = (7_20, 12_80) # Height, Width __a: Any = (0.4, 0.6) # if height or width lower than this scale, drop it. __a: Optional[int] = 1 / 1_00 __a: Any = """""" __a: List[Any] = """""" __a: List[Any] = """""" __a: Any = 2_50 def __UpperCamelCase ( ): lowercase__ , lowercase__ : Union[str, Any] = get_dataset(UpperCAmelCase , UpperCAmelCase ) for index in range(UpperCAmelCase ): lowercase__ : Tuple = random.sample(range(len(UpperCAmelCase ) ) , 4 ) lowercase__ , lowercase__ , lowercase__ : int = update_image_and_anno( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , filter_scale=UpperCAmelCase , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowercase__ : Tuple = random_chars(32 ) lowercase__ : Any = path.split(os.sep )[-1].rsplit('''.''' , 1 )[0] lowercase__ : int = F"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(F"""{file_root}.jpg""" , UpperCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) lowercase__ : List[str] = [] for anno in new_annos: lowercase__ : Any = anno[3] - anno[1] lowercase__ : Tuple = anno[4] - anno[2] lowercase__ : Optional[Any] = anno[1] + width / 2 lowercase__ : int = anno[2] + height / 2 lowercase__ : Dict = F"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(UpperCAmelCase ) with open(F"""{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : Union[str, Any] = [] lowercase__ : str = [] for label_file in glob.glob(os.path.join(UpperCAmelCase , '''*.txt''' ) ): lowercase__ : int = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(UpperCAmelCase ) as in_file: lowercase__ : Optional[int] = in_file.readlines() lowercase__ : List[str] = os.path.join(UpperCAmelCase , F"""{label_name}.jpg""" ) lowercase__ : Any = [] for obj_list in obj_lists: lowercase__ : int = obj_list.rstrip('''\n''' ).split(''' ''' ) lowercase__ : Optional[Any] = float(obj[1] ) - float(obj[3] ) / 2 lowercase__ : Optional[int] = float(obj[2] ) - float(obj[4] ) / 2 lowercase__ : Any = float(obj[1] ) + float(obj[3] ) / 2 lowercase__ : Dict = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(UpperCAmelCase ) labels.append(UpperCAmelCase ) return img_paths, labels def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 0.0 , ): lowercase__ : Dict = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) lowercase__ : List[Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowercase__ : Any = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowercase__ : List[Any] = int(scale_x * output_size[1] ) lowercase__ : List[str] = int(scale_y * output_size[0] ) lowercase__ : Any = [] lowercase__ : Dict = [] for i, index in enumerate(UpperCAmelCase ): lowercase__ : str = all_img_list[index] path_list.append(UpperCAmelCase ) lowercase__ : Dict = all_annos[index] lowercase__ : List[Any] = cva.imread(UpperCAmelCase ) if i == 0: # top-left lowercase__ : Union[str, Any] = cva.resize(UpperCAmelCase , (divid_point_x, divid_point_y) ) lowercase__ : Optional[Any] = img for bbox in img_annos: lowercase__ : int = bbox[1] * scale_x lowercase__ : Optional[Any] = bbox[2] * scale_y lowercase__ : Optional[int] = bbox[3] * scale_x lowercase__ : Union[str, Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right lowercase__ : Union[str, Any] = cva.resize(UpperCAmelCase , (output_size[1] - divid_point_x, divid_point_y) ) lowercase__ : Tuple = img for bbox in img_annos: lowercase__ : int = scale_x + bbox[1] * (1 - scale_x) lowercase__ : Optional[int] = bbox[2] * scale_y lowercase__ : Dict = scale_x + bbox[3] * (1 - scale_x) lowercase__ : Optional[Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left lowercase__ : Union[str, Any] = cva.resize(UpperCAmelCase , (divid_point_x, output_size[0] - divid_point_y) ) lowercase__ : Dict = img for bbox in img_annos: lowercase__ : Tuple = bbox[1] * scale_x lowercase__ : Union[str, Any] = scale_y + bbox[2] * (1 - scale_y) lowercase__ : List[str] = bbox[3] * scale_x lowercase__ : Any = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right lowercase__ : List[Any] = cva.resize( UpperCAmelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) lowercase__ : Any = img for bbox in img_annos: lowercase__ : Optional[int] = scale_x + bbox[1] * (1 - scale_x) lowercase__ : Optional[Any] = scale_y + bbox[2] * (1 - scale_y) lowercase__ : int = scale_x + bbox[3] * (1 - scale_x) lowercase__ : List[Any] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: lowercase__ : List[Any] = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def __UpperCamelCase ( UpperCAmelCase ): assert number_char > 1, "The number of character should greater than 1" lowercase__ : int = ascii_lowercase + digits return "".join(random.choice(UpperCAmelCase ) for _ in range(UpperCAmelCase ) ) if __name__ == "__main__": main() print("""DONE ✅""")
428
'''simple docstring''' from __future__ import annotations def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ , lowercase__ : Tuple = position lowercase__ : int = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowercase__ : Tuple = [] for position in positions: lowercase__ , lowercase__ : Union[str, Any] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(UpperCAmelCase ) return permissible_positions def __UpperCamelCase ( UpperCAmelCase ): return not any(elem == 0 for row in board for elem in row ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): if is_complete(UpperCAmelCase ): return True for position in get_valid_pos(UpperCAmelCase , len(UpperCAmelCase ) ): lowercase__ , lowercase__ : List[Any] = position if board[y][x] == 0: lowercase__ : Optional[Any] = curr + 1 if open_knight_tour_helper(UpperCAmelCase , UpperCAmelCase , curr + 1 ): return True lowercase__ : Tuple = 0 return False def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Any = [[0 for i in range(UpperCAmelCase )] for j in range(UpperCAmelCase )] for i in range(UpperCAmelCase ): for j in range(UpperCAmelCase ): lowercase__ : Optional[Any] = 1 if open_knight_tour_helper(UpperCAmelCase , (i, j) , 1 ): return board lowercase__ : Union[str, Any] = 0 lowercase__ : List[str] = F"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
428
1
"""simple docstring""" from __future__ import annotations import numpy as np def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->tuple[np.ndarray, np.ndarray]: _lowerCamelCase, _lowerCamelCase : List[str] = np.shape(SCREAMING_SNAKE_CASE_ ) if rows != columns: _lowerCamelCase : int = ( '''\'table\' has to be of square shaped array but got a ''' F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : List[str] = np.zeros((rows, columns) ) _lowerCamelCase : str = np.zeros((rows, columns) ) for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): _lowerCamelCase : Optional[int] = sum(lower[i][k] * upper[k][j] for k in range(SCREAMING_SNAKE_CASE_ ) ) if upper[j][j] == 0: raise ArithmeticError('''No LU decomposition exists''' ) _lowerCamelCase : Optional[int] = (table[i][j] - total) / upper[j][j] _lowerCamelCase : Any = 1 for j in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _lowerCamelCase : Any = sum(lower[i][k] * upper[k][j] for k in range(SCREAMING_SNAKE_CASE_ ) ) _lowerCamelCase : Dict = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
434
"""simple docstring""" from collections.abc import Callable import numpy as np def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->np.array: _lowerCamelCase : Tuple = int(np.ceil((x_end - xa) / step_size ) ) _lowerCamelCase : List[str] = np.zeros((n + 1,) ) _lowerCamelCase : Optional[int] = ya _lowerCamelCase : List[str] = xa for k in range(SCREAMING_SNAKE_CASE_ ): _lowerCamelCase : str = y[k] + step_size * ode_func(SCREAMING_SNAKE_CASE_ , y[k] ) _lowerCamelCase : int = y[k] + ( (step_size / 2) * (ode_func(SCREAMING_SNAKE_CASE_ , y[k] ) + ode_func(x + step_size , SCREAMING_SNAKE_CASE_ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
434
1
"""simple docstring""" # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCamelCase : int = { "configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"], "tokenization_cpmant": ["CpmAntTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : str = [ "CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST", "CpmAntForCausalLM", "CpmAntModel", "CpmAntPreTrainedModel", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
645
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class UpperCAmelCase_ ( _a): def __init__( self ) -> Any: lowercase__ : Tuple = [] def _UpperCAmelCase ( self , a , a , a , **a ) -> Any: self.events.append('on_init_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[int]: self.events.append('on_train_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: self.events.append('on_train_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_epoch_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[Any]: self.events.append('on_epoch_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_step_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> str: self.events.append('on_step_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_evaluate' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Tuple: self.events.append('on_predict' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Union[str, Any]: self.events.append('on_save' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: self.events.append('on_log' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Any: self.events.append('on_prediction_step' ) @require_torch class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> str: lowercase__ : str = tempfile.mkdtemp() def _UpperCAmelCase ( self ) -> Dict: shutil.rmtree(self.output_dir ) def _UpperCAmelCase ( self , a=0 , a=0 , a=6_4 , a=6_4 , a=None , a=False , **a ) -> int: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. lowercase__ : str = RegressionDataset(length=a ) lowercase__ : Any = RegressionDataset(length=a ) lowercase__ : Optional[Any] = RegressionModelConfig(a=a , b=a ) lowercase__ : Union[str, Any] = RegressionPreTrainedModel(a ) lowercase__ : Tuple = TrainingArguments(self.output_dir , disable_tqdm=a , report_to=[] , **a ) return Trainer( a , a , train_dataset=a , eval_dataset=a , callbacks=a , ) def _UpperCAmelCase ( self , a , a ) -> Union[str, Any]: self.assertEqual(len(a ) , len(a ) ) # Order doesn't matter lowercase__ : Optional[int] = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ ) lowercase__ : Tuple = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ ) for cba, cba in zip(a , a ): if isinstance(a , a ) and isinstance(a , a ): self.assertEqual(a , a ) elif isinstance(a , a ) and not isinstance(a , a ): self.assertEqual(a , cba.__class__ ) elif not isinstance(a , a ) and isinstance(a , a ): self.assertEqual(cba.__class__ , a ) else: self.assertEqual(a , a ) def _UpperCAmelCase ( self , a ) -> Optional[Any]: lowercase__ : Dict = ['on_init_end', 'on_train_begin'] lowercase__ : List[Any] = 0 lowercase__ : Optional[int] = len(trainer.get_eval_dataloader() ) lowercase__ : Tuple = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate'] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(a ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : int = self.get_trainer() lowercase__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # Callbacks passed at init are added to the default callbacks lowercase__ : str = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowercase__ : List[Any] = self.get_trainer(disable_tqdm=a ) lowercase__ : Optional[Any] = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : int = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowercase__ : List[str] = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(a ) expected_callbacks.remove(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) lowercase__ : Optional[Any] = self.get_trainer() lowercase__ : List[Any] = trainer.pop_callback(a ) self.assertEqual(cb.__class__ , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) trainer.add_callback(a ) expected_callbacks.insert(0 , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # We can also add, pop, or remove by instance lowercase__ : int = self.get_trainer() lowercase__ : List[str] = trainer.callback_handler.callbacks[0] trainer.remove_callback(a ) expected_callbacks.remove(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) lowercase__ : Tuple = self.get_trainer() lowercase__ : Dict = trainer.callback_handler.callbacks[0] lowercase__ : Union[str, Any] = trainer.pop_callback(a ) self.assertEqual(a , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) trainer.add_callback(a ) expected_callbacks.insert(0 , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) def _UpperCAmelCase ( self ) -> Tuple: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' , category=a ) lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() lowercase__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # Independent log/save/eval lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() lowercase__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' ) trainer.train() lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : int = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' ) trainer.train() lowercase__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # A bit of everything lowercase__ : Any = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=1_0 , eval_steps=5 , evaluation_strategy='steps' , ) trainer.train() lowercase__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: lowercase__ : str = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(a ) in warn_mock.call_args[0][0]
645
1
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
445
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : Optional[int] = logging.get_logger(__name__) snake_case : Optional[Any] = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'wavlm' def __init__( self , _lowerCamelCase=32 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-5 , _lowerCamelCase="group" , _lowerCamelCase="gelu" , _lowerCamelCase=(512, 512, 512, 512, 512, 512, 512) , _lowerCamelCase=(5, 2, 2, 2, 2, 2, 2) , _lowerCamelCase=(10, 3, 3, 3, 3, 2, 2) , _lowerCamelCase=False , _lowerCamelCase=128 , _lowerCamelCase=16 , _lowerCamelCase=320 , _lowerCamelCase=800 , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.05 , _lowerCamelCase=10 , _lowerCamelCase=2 , _lowerCamelCase=0.0 , _lowerCamelCase=10 , _lowerCamelCase=320 , _lowerCamelCase=2 , _lowerCamelCase=0.1 , _lowerCamelCase=100 , _lowerCamelCase=256 , _lowerCamelCase=256 , _lowerCamelCase=0.1 , _lowerCamelCase="mean" , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=256 , _lowerCamelCase=(512, 512, 512, 512, 1500) , _lowerCamelCase=(5, 3, 3, 1, 1) , _lowerCamelCase=(1, 2, 3, 1, 1) , _lowerCamelCase=512 , _lowerCamelCase=80 , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=2 , _lowerCamelCase=False , _lowerCamelCase=3 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=None , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase ) a :Union[str, Any] = hidden_size a :List[Any] = feat_extract_norm a :Tuple = feat_extract_activation a :Tuple = list(_lowerCamelCase ) a :Optional[Any] = list(_lowerCamelCase ) a :Optional[Any] = list(_lowerCamelCase ) a :int = conv_bias a :Tuple = num_buckets a :Tuple = max_bucket_distance a :int = num_conv_pos_embeddings a :List[str] = num_conv_pos_embedding_groups a :Tuple = len(self.conv_dim ) a :Any = num_hidden_layers a :Tuple = intermediate_size a :Any = hidden_act a :List[str] = num_attention_heads a :int = hidden_dropout a :Optional[Any] = attention_dropout a :Dict = activation_dropout a :Any = feat_proj_dropout a :Dict = final_dropout a :int = layerdrop a :Tuple = layer_norm_eps a :Union[str, Any] = initializer_range a :Union[str, Any] = num_ctc_classes a :Optional[Any] = vocab_size a :str = do_stable_layer_norm a :Dict = use_weighted_layer_sum a :Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a :List[Any] = apply_spec_augment a :Optional[int] = mask_time_prob a :Optional[Any] = mask_time_length a :Tuple = mask_time_min_masks a :Dict = mask_feature_prob a :List[Any] = mask_feature_length # parameters for pretraining with codevector quantized representations a :Tuple = num_codevectors_per_group a :List[str] = num_codevector_groups a :List[Any] = contrastive_logits_temperature a :Union[str, Any] = num_negatives a :Union[str, Any] = codevector_dim a :Dict = proj_codevector_dim a :Union[str, Any] = diversity_loss_weight # ctc loss a :Dict = ctc_loss_reduction a :Optional[int] = ctc_zero_infinity # adapter a :Any = add_adapter a :str = adapter_kernel_size a :Tuple = adapter_stride a :Dict = num_adapter_layers a :Any = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. a :Tuple = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. a :List[Any] = list(_lowerCamelCase ) a :Optional[int] = list(_lowerCamelCase ) a :List[str] = list(_lowerCamelCase ) a :Optional[int] = xvector_output_dim @property def SCREAMING_SNAKE_CASE__ ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
445
1
"""simple docstring""" def __magic_name__ ( __snake_case : int = 1000 ) -> int: lowercase , lowercase : Optional[Any] = 1, 1 lowercase : int = [] for i in range(1 , n + 1 ): lowercase : List[str] = prev_numerator + 2 * prev_denominator lowercase : int = prev_numerator + prev_denominator if len(str(__snake_case ) ) > len(str(__snake_case ) ): result.append(__snake_case ) lowercase : Tuple = numerator lowercase : List[Any] = denominator return len(__snake_case ) if __name__ == "__main__": print(F"{solution() = }")
518
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _A : int = logging.get_logger(__name__) _A : int = { """alibaba-damo/mgp-str-base""": """https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json""", } class a__ ( a_ ): __lowerCAmelCase = """mgp-str""" def __init__( self , _a=[32, 128] , _a=4 , _a=3 , _a=27 , _a=38 , _a=50_257 , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=4.0 , _a=True , _a=False , _a=1E-5 , _a=0.0 , _a=0.0 , _a=0.0 , _a=False , _a=0.0_2 , **_a , ): super().__init__(**_a ) lowercase : Tuple = image_size lowercase : Optional[Any] = patch_size lowercase : List[str] = num_channels lowercase : Optional[int] = max_token_length lowercase : List[Any] = num_character_labels lowercase : int = num_bpe_labels lowercase : Any = num_wordpiece_labels lowercase : Optional[Any] = hidden_size lowercase : Optional[int] = num_hidden_layers lowercase : int = num_attention_heads lowercase : List[Any] = mlp_ratio lowercase : Optional[int] = distilled lowercase : List[Any] = layer_norm_eps lowercase : Any = drop_rate lowercase : List[Any] = qkv_bias lowercase : int = attn_drop_rate lowercase : Union[str, Any] = drop_path_rate lowercase : Optional[Any] = output_aa_attentions lowercase : Dict = initializer_range
518
1
from __future__ import annotations import numpy as np def _A ( _lowercase ) -> int: """simple docstring""" return np.maximum(0 , _lowercase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
1
"""simple docstring""" def UpperCAmelCase_ ( __a : float , __a : float ): '''simple docstring''' if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
437
0
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor UpperCamelCase : Dict = logging.get_logger(__name__) class UpperCamelCase__ (UpperCamelCase__ ): '''simple docstring''' def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ): warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" ,__A ,) super().__init__(*__A ,**__A )
714
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=7 ,_lowerCAmelCase=3 ,_lowerCAmelCase=18 ,_lowerCAmelCase=30 ,_lowerCAmelCase=4_00 ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=[0.5, 0.5, 0.5] ,_lowerCAmelCase=[0.5, 0.5, 0.5] ,): lowerCamelCase__ = size if size is not None else {"""shortest_edge""": 18} lowerCamelCase__ = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = num_channels lowerCamelCase__ = image_size lowerCamelCase__ = min_resolution lowerCamelCase__ = max_resolution lowerCamelCase__ = do_resize lowerCamelCase__ = size lowerCamelCase__ = do_center_crop lowerCamelCase__ = crop_size lowerCamelCase__ = do_normalize lowerCamelCase__ = image_mean lowerCamelCase__ = image_std def UpperCamelCase_ ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCamelCase__ (a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = LevitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ): lowerCamelCase__ = LevitImageProcessingTester(self ) @property def UpperCamelCase_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ): lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase ,"""image_mean""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""image_std""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""do_center_crop""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""size""" ) ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} ) lowerCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} ) def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ): # Initialize image_processing lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase ,Image.Image ) # Test not batched input lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCamelCase_ ( self ): # Initialize image_processing lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ,numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase ,np.ndarray ) # Test not batched input lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCamelCase_ ( self ): # Initialize image_processing lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ,torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase ,torch.Tensor ) # Test not batched input lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,)
9
0
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='%(message)s') def a_ ( lowerCAmelCase_ : np.ndarray ): return input_array.reshape((input_array.size, 1) ) def a_ ( lowerCAmelCase_ : np.ndarray, lowerCAmelCase_ : np.ndarray, lowerCAmelCase_ : int ): __lowerCAmelCase = np.nan for i in range(lowerCAmelCase_ ): __lowerCAmelCase = features[:, labels == i] __lowerCAmelCase = data.mean(1 ) # Centralize the data of class i __lowerCAmelCase = data - column_reshape(lowerCAmelCase_ ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(lowerCAmelCase_, centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) __lowerCAmelCase = np.dot(lowerCAmelCase_, centered_data.T ) return covariance_sum / features.shape[1] def a_ ( lowerCAmelCase_ : np.ndarray, lowerCAmelCase_ : np.ndarray, lowerCAmelCase_ : int ): __lowerCAmelCase = features.mean(1 ) __lowerCAmelCase = np.nan for i in range(lowerCAmelCase_ ): __lowerCAmelCase = features[:, labels == i] __lowerCAmelCase = data.shape[1] __lowerCAmelCase = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(lowerCAmelCase_ ) - column_reshape(lowerCAmelCase_ ), (column_reshape(lowerCAmelCase_ ) - column_reshape(lowerCAmelCase_ )).T, ) else: # If covariance_sum is np.nan (i.e. first loop) __lowerCAmelCase = device_data * np.dot( column_reshape(lowerCAmelCase_ ) - column_reshape(lowerCAmelCase_ ), (column_reshape(lowerCAmelCase_ ) - column_reshape(lowerCAmelCase_ )).T, ) return covariance_sum / features.shape[1] def a_ ( lowerCAmelCase_ : np.ndarray, lowerCAmelCase_ : int ): # Check if the features have been loaded if features.any(): __lowerCAmelCase = features.mean(1 ) # Center the dataset __lowerCAmelCase = features - np.reshape(lowerCAmelCase_, (data_mean.size, 1) ) __lowerCAmelCase = np.dot(lowerCAmelCase_, centered_data.T ) / features.shape[1] __lowerCAmelCase , __lowerCAmelCase = np.linalg.eigh(lowerCAmelCase_ ) # Take all the columns in the reverse order (-1), and then takes only the first __lowerCAmelCase = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space __lowerCAmelCase = np.dot(filtered_eigenvectors.T, lowerCAmelCase_ ) logging.info('Principal Component Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR, format='%(message)s', force=lowerCAmelCase_ ) logging.error('Dataset empty' ) raise AssertionError def a_ ( lowerCAmelCase_ : np.ndarray, lowerCAmelCase_ : np.ndarray, lowerCAmelCase_ : int, lowerCAmelCase_ : int ): assert classes > dimensions # Check if features have been already loaded if features.any: __lowerCAmelCase , __lowerCAmelCase = eigh( covariance_between_classes(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ), covariance_within_classes(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ), ) __lowerCAmelCase = eigenvectors[:, ::-1][:, :dimensions] __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = np.linalg.svd(lowerCAmelCase_ ) __lowerCAmelCase = svd_matrix[:, 0:dimensions] __lowerCAmelCase = np.dot(filtered_svd_matrix.T, lowerCAmelCase_ ) logging.info('Linear Discriminant Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR, format='%(message)s', force=lowerCAmelCase_ ) logging.error('Dataset empty' ) raise AssertionError def a_ ( ): # Create dummy dataset with 2 classes and 3 features __lowerCAmelCase = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) __lowerCAmelCase = np.array([0, 0, 0, 1, 1] ) __lowerCAmelCase = 2 __lowerCAmelCase = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(lowerCAmelCase_ ) as error_info: __lowerCAmelCase = linear_discriminant_analysis( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) if isinstance(lowerCAmelCase_, np.ndarray ): raise AssertionError( 'Did not raise AssertionError for dimensions > classes' ) assert error_info.type is AssertionError def a_ ( ): __lowerCAmelCase = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) __lowerCAmelCase = 2 __lowerCAmelCase = np.array([[6.9282_0323, 8.6602_5404, 10.3923_0485], [3.0, 3.0, 3.0]] ) with pytest.raises(lowerCAmelCase_ ) as error_info: __lowerCAmelCase = principal_component_analysis(lowerCAmelCase_, lowerCAmelCase_ ) if not np.allclose(lowerCAmelCase_, lowerCAmelCase_ ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
53
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: lowerCamelCase__ = None lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', }, 'tokenizer_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json', }, } lowerCamelCase__ = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } lowerCamelCase__ = '▁' # Segments (not really needed) lowerCamelCase__ = 0 lowerCamelCase__ = 1 lowerCamelCase__ = 2 lowerCamelCase__ = 3 lowerCamelCase__ = 4 class UpperCamelCase ( snake_case__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = """left""" __UpperCamelCase = XLNetTokenizer def __init__( self : List[str] ,_lowerCAmelCase : List[Any]=None ,_lowerCAmelCase : Optional[Any]=None ,_lowerCAmelCase : Optional[Any]=False ,_lowerCAmelCase : int=True ,_lowerCAmelCase : List[str]=False ,_lowerCAmelCase : Union[str, Any]="<s>" ,_lowerCAmelCase : str="</s>" ,_lowerCAmelCase : Tuple="<unk>" ,_lowerCAmelCase : Tuple="<sep>" ,_lowerCAmelCase : str="<pad>" ,_lowerCAmelCase : Any="<cls>" ,_lowerCAmelCase : Any="<mask>" ,_lowerCAmelCase : List[Any]=["<eop>", "<eod>"] ,**_lowerCAmelCase : Any ,): """simple docstring""" __snake_case = AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else mask_token super().__init__( vocab_file=_lowerCAmelCase ,tokenizer_file=_lowerCAmelCase ,do_lower_case=_lowerCAmelCase ,remove_space=_lowerCAmelCase ,keep_accents=_lowerCAmelCase ,bos_token=_lowerCAmelCase ,eos_token=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,additional_special_tokens=_lowerCAmelCase ,**_lowerCAmelCase ,) __snake_case = 3 __snake_case = do_lower_case __snake_case = remove_space __snake_case = keep_accents __snake_case = vocab_file __snake_case = False if not self.vocab_file else True def UpperCamelCase_ ( self : str ,_lowerCAmelCase : List[int] ,_lowerCAmelCase : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCamelCase_ ( self : Any ,_lowerCAmelCase : List[int] ,_lowerCAmelCase : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCamelCase_ ( self : List[Any] ,_lowerCAmelCase : str ,_lowerCAmelCase : Optional[str] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __snake_case = os.path.join( _lowerCAmelCase ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ): copyfile(self.vocab_file ,_lowerCAmelCase ) return (out_vocab_file,)
524
0
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowercase = logging.get_logger(__name__) lowercase = {"""vocab_file""": """spiece.model"""} lowercase = { """vocab_file""": { """TsinghuaAI/CPM-Generate""": """https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model""", } } class SCREAMING_SNAKE_CASE_ ( _lowercase): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<sep>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<cls>" , lowerCamelCase__="<mask>" , lowerCamelCase__=["<eop>", "<eod>"] , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> None: '''simple docstring''' snake_case__ : int = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__) if isinstance(lowerCamelCase__ , lowerCamelCase__) else mask_token snake_case__ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase__ , remove_space=lowerCamelCase__ , keep_accents=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , additional_special_tokens=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) snake_case__ : Optional[Any] = 3 snake_case__ : Tuple = do_lower_case snake_case__ : List[str] = remove_space snake_case__ : Any = keep_accents snake_case__ : str = vocab_file snake_case__ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowerCamelCase__) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation.") snake_case__ : List[Any] = jieba snake_case__ : Union[str, Any] = str.maketrans(" \n" , "\u2582\u2583") @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def UpperCAmelCase ( self) -> str: '''simple docstring''' return len(self.sp_model) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' snake_case__ : Union[str, Any] = {self.convert_ids_to_tokens(lowerCamelCase__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Any: '''simple docstring''' snake_case__ : Optional[Any] = self.__dict__.copy() snake_case__ : Any = None return state def __setstate__( self , lowerCamelCase__) -> int: '''simple docstring''' snake_case__ : List[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs"): snake_case__ : Optional[int] = {} snake_case__ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def UpperCAmelCase ( self , lowerCamelCase__) -> int: '''simple docstring''' if self.remove_space: snake_case__ : Tuple = " ".join(inputs.strip().split()) else: snake_case__ : Tuple = inputs snake_case__ : str = outputs.replace("``" , "\"").replace("''" , "\"") if not self.keep_accents: snake_case__ : Optional[Any] = unicodedata.normalize("NFKD" , lowerCamelCase__) snake_case__ : List[Any] = "".join([c for c in outputs if not unicodedata.combining(lowerCamelCase__)]) if self.do_lower_case: snake_case__ : str = outputs.lower() return outputs def UpperCAmelCase ( self , lowerCamelCase__) -> List[str]: '''simple docstring''' snake_case__ : List[Any] = self.preprocess_text(lowerCamelCase__) snake_case__ : Dict = self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__) snake_case__ : Tuple = [] for piece in pieces: if len(lowerCamelCase__) > 1 and piece[-1] == str(",") and piece[-2].isdigit(): snake_case__ : Any = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase__ , "")) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: snake_case__ : Optional[Any] = cur_pieces[1:] else: snake_case__ : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(lowerCamelCase__) else: new_pieces.append(lowerCamelCase__) return new_pieces def UpperCAmelCase ( self , lowerCamelCase__) -> Tuple: '''simple docstring''' return self.sp_model.PieceToId(lowerCamelCase__) def UpperCAmelCase ( self , lowerCamelCase__) -> Optional[int]: '''simple docstring''' return self.sp_model.IdToPiece(lowerCamelCase__) def UpperCAmelCase ( self , lowerCamelCase__) -> int: '''simple docstring''' snake_case__ : Tuple = "".join(lowerCamelCase__).replace(lowerCamelCase__ , " ").strip() return out_string def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None) -> List[int]: '''simple docstring''' snake_case__ : List[str] = [self.sep_token_id] snake_case__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__) if token_ids_a is not None: return ([0] * len(lowerCamelCase__)) + [1] + ([0] * len(lowerCamelCase__)) + [1, 1] return ([0] * len(lowerCamelCase__)) + [1, 1] def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None) -> List[int]: '''simple docstring''' snake_case__ : str = [self.sep_token_id] snake_case__ : int = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase__): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return snake_case__ : Optional[int] = os.path.join( lowerCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowerCamelCase__) elif not os.path.isfile(self.vocab_file): with open(lowerCamelCase__ , "wb") as fi: snake_case__ : Any = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__) return (out_vocab_file,) def UpperCAmelCase ( self , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' snake_case__ : Optional[Any] = super()._decode(*lowerCamelCase__ , **lowerCamelCase__) snake_case__ : int = text.replace(" " , "").replace("\u2582" , " ").replace("\u2583" , "\n") return text
713
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase): '''simple docstring''' def UpperCAmelCase ( self) -> Any: '''simple docstring''' snake_case__ : Dict = "ylacombe/bark-small" snake_case__ : str = tempfile.mkdtemp() snake_case__ : Optional[int] = "en_speaker_1" snake_case__ : Any = "This is a test string" snake_case__ : str = "speaker_embeddings_path.json" snake_case__ : str = "speaker_embeddings" def UpperCAmelCase ( self , **lowerCamelCase__) -> Union[str, Any]: '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCamelCase__) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname) def UpperCAmelCase ( self) -> int: '''simple docstring''' snake_case__ : int = self.get_tokenizer() snake_case__ : List[str] = BarkProcessor(tokenizer=lowerCamelCase__) processor.save_pretrained(self.tmpdirname) snake_case__ : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) @slow def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' snake_case__ : Tuple = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) snake_case__ : Optional[Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)") snake_case__ : List[Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' snake_case__ : List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) snake_case__ : Optional[int] = 35 snake_case__ : Tuple = 2 snake_case__ : Union[str, Any] = 8 snake_case__ : Union[str, Any] = { "semantic_prompt": np.ones(lowerCamelCase__), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len)), "fine_prompt": np.ones((nb_codebooks_total, seq_len)), } # test providing already loaded voice_preset snake_case__ : List[Any] = processor(text=self.input_string , voice_preset=lowerCamelCase__) snake_case__ : List[Any] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCamelCase__ , np.array([])).tolist()) # test loading voice preset from npz file snake_case__ : Union[str, Any] = os.path.join(self.tmpdirname , "file.npz") np.savez(lowerCamelCase__ , **lowerCamelCase__) snake_case__ : Optional[int] = processor(text=self.input_string , voice_preset=lowerCamelCase__) snake_case__ : Optional[Any] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCamelCase__ , np.array([])).tolist()) # test loading voice preset from the hub snake_case__ : Dict = processor(text=self.input_string , voice_preset=self.voice_preset) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' snake_case__ : Any = self.get_tokenizer() snake_case__ : int = BarkProcessor(tokenizer=lowerCamelCase__) snake_case__ : List[str] = processor(text=self.input_string) snake_case__ : int = tokenizer( self.input_string , padding="max_length" , max_length=256 , add_special_tokens=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist())
150
0
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , ): UpperCAmelCase_ = cipher_alphabet or [chr(lowerCAmelCase__ ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) UpperCAmelCase_ = { "a": 0.08497, "b": 0.01492, "c": 0.02202, "d": 0.04253, "e": 0.11162, "f": 0.02228, "g": 0.02015, "h": 0.06094, "i": 0.07546, "j": 0.00153, "k": 0.01292, "l": 0.04025, "m": 0.02406, "n": 0.06749, "o": 0.07507, "p": 0.01929, "q": 0.00095, "r": 0.07587, "s": 0.06327, "t": 0.09356, "u": 0.02758, "v": 0.00978, "w": 0.02560, "x": 0.00150, "y": 0.01994, "z": 0.00077, } else: # Custom frequencies dictionary UpperCAmelCase_ = frequencies_dict if not case_sensitive: UpperCAmelCase_ = ciphertext.lower() # Chi squared statistic values UpperCAmelCase_ = {} # cycle through all of the shifts for shift in range(len(lowerCAmelCase__ ) ): UpperCAmelCase_ = "" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet UpperCAmelCase_ = (alphabet_letters.index(letter.lower() ) - shift) % len( lowerCAmelCase__ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter UpperCAmelCase_ = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: UpperCAmelCase_ = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message UpperCAmelCase_ = decrypted_with_shift.lower().count(lowerCAmelCase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCAmelCase_ = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCAmelCase_ = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message UpperCAmelCase_ = decrypted_with_shift.count(lowerCAmelCase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCAmelCase_ = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCAmelCase_ = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary UpperCAmelCase_ = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(lowerCAmelCase__ ) -> tuple[float, str]: return chi_squared_statistic_values[key] UpperCAmelCase_ = min( lowerCAmelCase__ , key=lowerCAmelCase__ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
82
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def lowerCAmelCase( __lowerCamelCase ): __a = [] for line in lines: __a = re.sub(r'#.*' , '' , __lowerCamelCase ) # remove comments if line: filtered_lines.append(__lowerCamelCase ) __a = '\n'.join(__lowerCamelCase ) # Make a hash from all this code __a = full_str.encode('utf-8' ) return shaaaa(__lowerCamelCase ).hexdigest() # get importable module names and hash for caching lowerCamelCase_ : int = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowerCamelCase_ : List[Any] = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowerCamelCase_ : int = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name lowerCamelCase_ : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
559
0
def __lowercase ( snake_case ): """simple docstring""" if len(snake_case ) <= 1: return [tuple(snake_case )] __magic_name__ :str = [] def generate(snake_case, snake_case ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1, snake_case ) for i in range(k - 1 ): if k % 2 == 0: # k is even __magic_name__ , __magic_name__ :Optional[int] = arr[k - 1], arr[i] else: # k is odd __magic_name__ , __magic_name__ :List[Any] = arr[k - 1], arr[0] generate(k - 1, snake_case ) generate(len(snake_case ), snake_case ) return res if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : List[Any] = input("""Enter numbers separated by a comma:\n""").strip() SCREAMING_SNAKE_CASE__ : Union[str, Any] = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
180
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow SCREAMING_SNAKE_CASE__ : List[str] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ """text-classification""", """language-modeling""", """summarization""", """token-classification""", """question-answering""", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) SCREAMING_SNAKE_CASE__ : int = logging.getLogger() def __lowercase ( ): """simple docstring""" __magic_name__ :int = argparse.ArgumentParser() parser.add_argument('''-f''' ) __magic_name__ :Tuple = parser.parse_args() return args.f def __lowercase ( snake_case, snake_case="eval" ): """simple docstring""" __magic_name__ :str = os.path.join(snake_case, f'''{split}_results.json''' ) if os.path.exists(snake_case ): with open(snake_case, '''r''' ) as f: return json.load(snake_case ) raise ValueError(f'''can\'t find {path}''' ) SCREAMING_SNAKE_CASE__ : Tuple = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCamelCase_ ( lowerCamelCase ): def A ( self ): """simple docstring""" __magic_name__ :Optional[Any] = self.get_auto_remove_tmp_dir() __magic_name__ :Optional[Any] = F''' run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(__lowerCAmelCase , '''argv''' , __lowerCAmelCase ): run_flax_glue.main() __magic_name__ :int = get_results(__lowerCAmelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def A ( self ): """simple docstring""" __magic_name__ :List[str] = self.get_auto_remove_tmp_dir() __magic_name__ :Tuple = F''' run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(__lowerCAmelCase , '''argv''' , __lowerCAmelCase ): run_clm_flax.main() __magic_name__ :int = get_results(__lowerCAmelCase ) self.assertLess(result['''eval_perplexity'''] , 1_0_0 ) @slow def A ( self ): """simple docstring""" __magic_name__ :Union[str, Any] = self.get_auto_remove_tmp_dir() __magic_name__ :List[str] = F''' run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate '''.split() with patch.object(__lowerCAmelCase , '''argv''' , __lowerCAmelCase ): run_summarization_flax.main() __magic_name__ :int = get_results(__lowerCAmelCase , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 1_0 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def A ( self ): """simple docstring""" __magic_name__ :Dict = self.get_auto_remove_tmp_dir() __magic_name__ :Optional[Any] = F''' run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 '''.split() with patch.object(__lowerCAmelCase , '''argv''' , __lowerCAmelCase ): run_mlm_flax.main() __magic_name__ :int = get_results(__lowerCAmelCase ) self.assertLess(result['''eval_perplexity'''] , 4_2 ) @slow def A ( self ): """simple docstring""" __magic_name__ :Tuple = self.get_auto_remove_tmp_dir() __magic_name__ :List[Any] = F''' run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(__lowerCAmelCase , '''argv''' , __lowerCAmelCase ): run_ta_mlm_flax.main() __magic_name__ :Dict = get_results(__lowerCAmelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def A ( self ): """simple docstring""" # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu __magic_name__ :int = 7 if get_gpu_count() > 1 else 2 __magic_name__ :str = self.get_auto_remove_tmp_dir() __magic_name__ :str = F''' run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 '''.split() with patch.object(__lowerCAmelCase , '''argv''' , __lowerCAmelCase ): run_flax_ner.main() __magic_name__ :Any = get_results(__lowerCAmelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def A ( self ): """simple docstring""" __magic_name__ :Union[str, Any] = self.get_auto_remove_tmp_dir() __magic_name__ :int = F''' run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 '''.split() with patch.object(__lowerCAmelCase , '''argv''' , __lowerCAmelCase ): run_qa.main() __magic_name__ :int = get_results(__lowerCAmelCase ) self.assertGreaterEqual(result['''eval_f1'''] , 3_0 ) self.assertGreaterEqual(result['''eval_exact'''] , 3_0 )
180
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class snake_case__ ( metaclass=a_): a_ = ['''flax'''] def __init__( self : List[Any] , *_A : Tuple , **_A : Optional[int] ) -> str: requires_backends(self , ['''flax'''] ) @classmethod def A ( cls : int , *_A : List[Any] , **_A : str ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) @classmethod def A ( cls : List[str] , *_A : Optional[int] , **_A : str ) -> List[Any]: requires_backends(cls , ['''flax'''] ) class snake_case__ ( metaclass=a_): a_ = ['''flax'''] def __init__( self : List[str] , *_A : Optional[Any] , **_A : Any ) -> Optional[int]: requires_backends(self , ['''flax'''] ) @classmethod def A ( cls : Any , *_A : Optional[Any] , **_A : Union[str, Any] ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def A ( cls : Optional[int] , *_A : Optional[Any] , **_A : str ) -> str: requires_backends(cls , ['''flax'''] ) class snake_case__ ( metaclass=a_): a_ = ['''flax'''] def __init__( self : List[str] , *_A : List[Any] , **_A : List[str] ) -> str: requires_backends(self , ['''flax'''] ) @classmethod def A ( cls : Optional[Any] , *_A : List[str] , **_A : Tuple ) -> Tuple: requires_backends(cls , ['''flax'''] ) @classmethod def A ( cls : List[Any] , *_A : List[str] , **_A : List[str] ) -> List[Any]: requires_backends(cls , ['''flax'''] ) class snake_case__ ( metaclass=a_): a_ = ['''flax'''] def __init__( self : Optional[int] , *_A : int , **_A : List[str] ) -> Dict: requires_backends(self , ['''flax'''] ) @classmethod def A ( cls : Tuple , *_A : Optional[Any] , **_A : str ) -> List[str]: requires_backends(cls , ['''flax'''] ) @classmethod def A ( cls : Tuple , *_A : Optional[int] , **_A : Optional[int] ) -> str: requires_backends(cls , ['''flax'''] ) class snake_case__ ( metaclass=a_): a_ = ['''flax'''] def __init__( self : Tuple , *_A : Optional[Any] , **_A : Dict ) -> int: requires_backends(self , ['''flax'''] ) @classmethod def A ( cls : List[str] , *_A : List[str] , **_A : Optional[Any] ) -> Tuple: requires_backends(cls , ['''flax'''] ) @classmethod def A ( cls : Optional[int] , *_A : int , **_A : Optional[Any] ) -> int: requires_backends(cls , ['''flax'''] ) class snake_case__ ( metaclass=a_): a_ = ['''flax'''] def __init__( self : Optional[int] , *_A : Optional[int] , **_A : Tuple ) -> List[Any]: requires_backends(self , ['''flax'''] ) @classmethod def A ( cls : List[Any] , *_A : List[Any] , **_A : Any ) -> List[str]: requires_backends(cls , ['''flax'''] ) @classmethod def A ( cls : str , *_A : Dict , **_A : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) class snake_case__ ( metaclass=a_): a_ = ['''flax'''] def __init__( self : int , *_A : Union[str, Any] , **_A : Union[str, Any] ) -> Union[str, Any]: requires_backends(self , ['''flax'''] ) @classmethod def A ( cls : int , *_A : Optional[int] , **_A : str ) -> List[str]: requires_backends(cls , ['''flax'''] ) @classmethod def A ( cls : Optional[int] , *_A : Any , **_A : List[str] ) -> List[str]: requires_backends(cls , ['''flax'''] ) class snake_case__ ( metaclass=a_): a_ = ['''flax'''] def __init__( self : Optional[Any] , *_A : List[Any] , **_A : Optional[int] ) -> Dict: requires_backends(self , ['''flax'''] ) @classmethod def A ( cls : int , *_A : List[Any] , **_A : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) @classmethod def A ( cls : List[str] , *_A : Dict , **_A : List[Any] ) -> str: requires_backends(cls , ['''flax'''] ) class snake_case__ ( metaclass=a_): a_ = ['''flax'''] def __init__( self : Tuple , *_A : Dict , **_A : Dict ) -> Dict: requires_backends(self , ['''flax'''] ) @classmethod def A ( cls : Dict , *_A : Tuple , **_A : Optional[int] ) -> Tuple: requires_backends(cls , ['''flax'''] ) @classmethod def A ( cls : Optional[int] , *_A : Dict , **_A : List[Any] ) -> Tuple: requires_backends(cls , ['''flax'''] ) class snake_case__ ( metaclass=a_): a_ = ['''flax'''] def __init__( self : List[Any] , *_A : str , **_A : Optional[int] ) -> Tuple: requires_backends(self , ['''flax'''] ) @classmethod def A ( cls : List[Any] , *_A : Tuple , **_A : Any ) -> str: requires_backends(cls , ['''flax'''] ) @classmethod def A ( cls : Union[str, Any] , *_A : Union[str, Any] , **_A : List[Any] ) -> Tuple: requires_backends(cls , ['''flax'''] ) class snake_case__ ( metaclass=a_): a_ = ['''flax'''] def __init__( self : Tuple , *_A : Dict , **_A : Dict ) -> Optional[int]: requires_backends(self , ['''flax'''] ) @classmethod def A ( cls : Dict , *_A : Tuple , **_A : Union[str, Any] ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def A ( cls : List[str] , *_A : Union[str, Any] , **_A : Union[str, Any] ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) class snake_case__ ( metaclass=a_): a_ = ['''flax'''] def __init__( self : Union[str, Any] , *_A : Any , **_A : Optional[int] ) -> List[str]: requires_backends(self , ['''flax'''] ) @classmethod def A ( cls : int , *_A : List[Any] , **_A : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def A ( cls : Optional[int] , *_A : Union[str, Any] , **_A : str ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) class snake_case__ ( metaclass=a_): a_ = ['''flax'''] def __init__( self : List[str] , *_A : int , **_A : Union[str, Any] ) -> str: requires_backends(self , ['''flax'''] ) @classmethod def A ( cls : List[str] , *_A : int , **_A : List[str] ) -> Tuple: requires_backends(cls , ['''flax'''] ) @classmethod def A ( cls : List[Any] , *_A : Any , **_A : Optional[int] ) -> Any: requires_backends(cls , ['''flax'''] )
541
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''facebook/xlm-roberta-xl''': '''https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json''', '''facebook/xlm-roberta-xxl''': '''https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json''', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class a__ ( a_ ): '''simple docstring''' A : Tuple = '''xlm-roberta-xl''' def __init__( self : Union[str, Any] , lowerCAmelCase_ : Tuple=250_880 , lowerCAmelCase_ : Optional[int]=2_560 , lowerCAmelCase_ : Optional[Any]=36 , lowerCAmelCase_ : List[str]=32 , lowerCAmelCase_ : Optional[Any]=10_240 , lowerCAmelCase_ : Union[str, Any]="gelu" , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Optional[int]=514 , lowerCAmelCase_ : List[str]=1 , lowerCAmelCase_ : Optional[Any]=0.02 , lowerCAmelCase_ : List[str]=1E-05 , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : List[str]=0 , lowerCAmelCase_ : List[Any]=2 , lowerCAmelCase_ : Optional[int]="absolute" , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Tuple=None , **lowerCAmelCase_ : List[str] , ) -> str: super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) __A= vocab_size __A= hidden_size __A= num_hidden_layers __A= num_attention_heads __A= hidden_act __A= intermediate_size __A= hidden_dropout_prob __A= attention_probs_dropout_prob __A= max_position_embeddings __A= type_vocab_size __A= initializer_range __A= layer_norm_eps __A= position_embedding_type __A= use_cache __A= classifier_dropout class a__ ( a_ ): '''simple docstring''' @property def lowerCAmelCase ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __A= {0: 'batch', 1: 'choice', 2: 'sequence'} else: __A= {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
186
0
def lowerCamelCase__ ( ): """simple docstring""" for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = 1 SCREAMING_SNAKE_CASE : Optional[Any] = 2 while i * i <= n: SCREAMING_SNAKE_CASE : str = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def lowerCamelCase__ ( ): """simple docstring""" return next(i for i in triangle_number_generator() if count_divisors(lowercase ) > 500 ) if __name__ == "__main__": print(solution())
488
def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
488
1
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __UpperCamelCase : int = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' __UpperCamelCase : Dict = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' __UpperCamelCase : Tuple = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowercase__ ( datasets.Metric): def __A ( self : Optional[int] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def __A ( self : int , UpperCamelCase__ : List[List[List[str]]] , UpperCamelCase__ : List[List[str]] , UpperCamelCase__ : int = 1 , UpperCamelCase__ : int = 4 , ): '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=UpperCamelCase__ , hypotheses=UpperCamelCase__ , min_len=UpperCamelCase__ , max_len=UpperCamelCase__ ) }
248
def A ( _lowercase = 1_000_000 ): SCREAMING_SNAKE_CASE : Optional[int] = set(range(3 , _lowercase , 2 ) ) primes.add(2 ) for p in range(3 , _lowercase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _lowercase , _lowercase ) ) ) SCREAMING_SNAKE_CASE : int = [float(_lowercase ) for n in range(limit + 1 )] for p in primes: for n in range(_lowercase , limit + 1 , _lowercase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f"""{solution() = }""")
248
1
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class _UpperCAmelCase ( unittest.TestCase ): a = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def _lowerCamelCase ( self , a__ , a__ , a__ ): A_ : Union[str, Any] = hf_hub_download( repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) A_ : List[str] = VideoClassificationPipeline(model=a__ , image_processor=a__ , top_k=2 ) A_ : int = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def _lowerCamelCase ( self , a__ , a__ ): for example in examples: A_ : Optional[int] = video_classifier(a__ ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) @require_torch def _lowerCamelCase ( self ): A_ : Tuple = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" A_ : Optional[Any] = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} ) A_ : int = pipeline( """video-classification""" , model=a__ , feature_extractor=a__ , frame_sampling_rate=4 ) A_ : str = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) A_ : int = video_classifier(a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}] , ) A_ : Union[str, Any] = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}], [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}], ] , ) @require_tf def _lowerCamelCase ( self ): pass
481
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _UpperCAmelCase : def __init__( self , a__ , a__=13 , a__=30 , a__=2 , a__=3 , a__=True , a__=True , a__=32 , a__=5 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=10 , a__=0.02 , a__=3 , a__=0.6 , a__=None , ): A_ : int = parent A_ : Optional[int] = batch_size A_ : Any = image_size A_ : Optional[int] = patch_size A_ : int = num_channels A_ : str = is_training A_ : str = use_labels A_ : str = hidden_size A_ : Union[str, Any] = num_hidden_layers A_ : Tuple = num_attention_heads A_ : Any = intermediate_size A_ : List[Any] = hidden_act A_ : List[Any] = hidden_dropout_prob A_ : Optional[int] = attention_probs_dropout_prob A_ : str = type_sequence_label_size A_ : int = initializer_range A_ : List[Any] = mask_ratio A_ : str = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) A_ : Optional[Any] = (image_size // patch_size) ** 2 A_ : List[Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _lowerCamelCase ( self ): A_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : int = None if self.use_labels: A_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Any = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def _lowerCamelCase ( self , a__ , a__ , a__ ): A_ : Optional[int] = ViTMAEModel(config=a__ ) model.to(a__ ) model.eval() A_ : int = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , a__ , a__ , a__ ): A_ : int = ViTMAEForPreTraining(a__ ) model.to(a__ ) model.eval() A_ : Optional[Any] = model(a__ ) A_ : Dict = (self.image_size // self.patch_size) ** 2 A_ : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images A_ : Optional[int] = 1 A_ : Any = ViTMAEForPreTraining(a__ ) model.to(a__ ) model.eval() A_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : List[Any] = model(a__ ) A_ : Optional[int] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def _lowerCamelCase ( self ): A_ : Optional[Any] = self.prepare_config_and_inputs() A_ , A_ , A_ : Any = config_and_inputs A_ : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): a = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () a = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} a = False a = False a = False a = False def _lowerCamelCase ( self ): A_ : int = ViTMAEModelTester(self ) A_ : List[Any] = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def _lowerCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): A_ , A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Dict = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , nn.Linear ) ) def _lowerCamelCase ( self ): A_ , A_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Any = model_class(a__ ) A_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : Dict = [*signature.parameters.keys()] A_ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , a__ ) def _lowerCamelCase ( self ): A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def _lowerCamelCase ( self ): A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a__ ) def _lowerCamelCase ( self , a__ , a__ , a__ ): # make masks reproducible np.random.seed(2 ) A_ : Optional[Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) A_ : List[str] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) A_ : Optional[Any] = torch.from_numpy(a__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument A_ : Any = pt_noise super().check_pt_tf_models(a__ , a__ , a__ ) def _lowerCamelCase ( self ): A_ , A_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[Any] = model_class(a__ ) model.to(a__ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A_ : Union[str, Any] = model(**self._prepare_for_class(a__ , a__ ) ) A_ : int = outputs[0].cpu().numpy() A_ : Union[str, Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a__ ) A_ : Union[str, Any] = model_class.from_pretrained(a__ ) model.to(a__ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A_ : Optional[int] = model(**self._prepare_for_class(a__ , a__ ) ) # Make sure we don't have nans A_ : Optional[int] = after_outputs[0].cpu().numpy() A_ : str = 0 A_ : Optional[int] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a__ , 1E-5 ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def _lowerCamelCase ( self ): pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def _lowerCamelCase ( self ): pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def _lowerCamelCase ( self ): pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def _lowerCamelCase ( self ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _lowerCamelCase ( self ): pass @slow def _lowerCamelCase ( self ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Union[str, Any] = ViTMAEModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def _lowerCAmelCase ( ): '''simple docstring''' A_ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self ): return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def _lowerCamelCase ( self ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) A_ : Union[str, Any] = ViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ).to(a__ ) A_ : Optional[Any] = self.default_image_processor A_ : Union[str, Any] = prepare_img() A_ : Union[str, Any] = image_processor(images=a__ , return_tensors="""pt""" ).to(a__ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) A_ : Optional[int] = ViTMAEConfig() A_ : Tuple = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) A_ : Tuple = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): A_ : Dict = model(**a__ , noise=torch.from_numpy(a__ ).to(device=a__ ) ) # verify the logits A_ : Tuple = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , a__ ) A_ : List[str] = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(a__ ) , atol=1E-4 ) )
481
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase = { "configuration_swiftformer": [ "SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwiftFormerConfig", "SwiftFormerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "SwiftFormerForImageClassification", "SwiftFormerModel", "SwiftFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
66
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase = { """configuration_upernet""": ["""UperNetConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """UperNetForSemanticSegmentation""", """UperNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
259
0
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" __snake_case : str = [r"""h\.\d+\.attn\.bias""", r"""h\.\d+\.attn\.masked_bias"""] @register_to_config def __init__( self :int , __lowercase :int , __lowercase :int , __lowercase :Optional[int] = None , __lowercase :int = 5_0257 , __lowercase :int = 1024 , __lowercase :int = 768 , __lowercase :int = 12 , __lowercase :int = 12 , __lowercase :Optional[int] = None , __lowercase :str = "gelu_new" , __lowercase :float = 0.1 , __lowercase :float = 0.1 , __lowercase :float = 0.1 , __lowercase :float = 1e-5 , __lowercase :float = 0.02 , __lowercase :bool = True , __lowercase :bool = True , __lowercase :bool = False , __lowercase :bool = False , ): super().__init__() __lowerCamelCase : List[Any] =prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and' f' `n_embd`: {n_embd} are not equal.' ) __lowerCamelCase : Optional[int] =prefix_inner_dim __lowerCamelCase : Tuple =prefix_hidden_dim __lowerCamelCase : Dict =( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) __lowerCamelCase : str =( nn.Linear(self.prefix_hidden_dim , lowerCAmelCase_ ) if self.prefix_hidden_dim is not None else nn.Identity() ) __lowerCamelCase : List[Any] =GPTaConfig( vocab_size=lowerCAmelCase_ , n_positions=lowerCAmelCase_ , n_embd=lowerCAmelCase_ , n_layer=lowerCAmelCase_ , n_head=lowerCAmelCase_ , n_inner=lowerCAmelCase_ , activation_function=lowerCAmelCase_ , resid_pdrop=lowerCAmelCase_ , embd_pdrop=lowerCAmelCase_ , attn_pdrop=lowerCAmelCase_ , layer_norm_epsilon=lowerCAmelCase_ , initializer_range=lowerCAmelCase_ , scale_attn_weights=lowerCAmelCase_ , use_cache=lowerCAmelCase_ , scale_attn_by_inverse_layer_idx=lowerCAmelCase_ , reorder_and_upcast_attn=lowerCAmelCase_ , ) __lowerCamelCase : int =GPTaLMHeadModel(lowerCAmelCase_ ) def __lowercase ( self :int , __lowercase :torch.Tensor , __lowercase :torch.Tensor , __lowercase :Optional[torch.Tensor] = None , __lowercase :Optional[torch.Tensor] = None , ): __lowerCamelCase : str =self.transformer.transformer.wte(lowerCAmelCase_ ) __lowerCamelCase : Optional[Any] =self.encode_prefix(lowerCAmelCase_ ) __lowerCamelCase : Union[str, Any] =self.decode_prefix(lowerCAmelCase_ ) __lowerCamelCase : List[str] =torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: __lowerCamelCase : Union[str, Any] =self.get_dummy_token(input_ids.shape[0] , input_ids.device ) __lowerCamelCase : Any =torch.cat((dummy_token, input_ids) , dim=1 ) __lowerCamelCase : Tuple =self.transformer(inputs_embeds=lowerCAmelCase_ , labels=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def __lowercase ( self :Optional[int] , __lowercase :int , __lowercase :torch.device ): return torch.zeros(lowerCAmelCase_ , self.prefix_length , dtype=torch.intaa , device=lowerCAmelCase_ ) def __lowercase ( self :List[str] , __lowercase :List[Any] ): return self.encode_prefix(lowerCAmelCase_ ) @torch.no_grad() def __lowercase ( self :Tuple , __lowercase :str , __lowercase :Dict , __lowercase :Union[str, Any] ): __lowerCamelCase : Union[str, Any] =torch.split(lowerCAmelCase_ , 1 , dim=0 ) __lowerCamelCase : int =[] __lowerCamelCase : Any =[] for feature in features: __lowerCamelCase : Dict =self.decode_prefix(feature.to(lowerCAmelCase_ ) ) # back to the clip feature # Only support beam search for now __lowerCamelCase , __lowerCamelCase : Dict =self.generate_beam( input_embeds=lowerCAmelCase_ , device=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) __lowerCamelCase : Optional[Any] =torch.stack(lowerCAmelCase_ ) __lowerCamelCase : Tuple =torch.stack(lowerCAmelCase_ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def __lowercase ( self :int , __lowercase :List[str]=None , __lowercase :Tuple=None , __lowercase :str=None , __lowercase :int = 5 , __lowercase :int = 67 , __lowercase :float = 1.0 , __lowercase :Optional[int] = None , ): __lowerCamelCase : int =eos_token_id __lowerCamelCase : str =None __lowerCamelCase : Dict =None __lowerCamelCase : Optional[Any] =torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_ , dtype=torch.int ) __lowerCamelCase : Any =torch.zeros(lowerCAmelCase_ , device=lowerCAmelCase_ , dtype=torch.bool ) if input_embeds is not None: __lowerCamelCase : Tuple =input_embeds else: __lowerCamelCase : List[str] =self.transformer.transformer.wte(lowerCAmelCase_ ) for i in range(lowerCAmelCase_ ): __lowerCamelCase : Any =self.transformer(inputs_embeds=lowerCAmelCase_ ) __lowerCamelCase : int =outputs.logits __lowerCamelCase : Dict =logits[:, -1, :] / (temperature if temperature > 0 else 1.0) __lowerCamelCase : List[Any] =logits.softmax(-1 ).log() if scores is None: __lowerCamelCase , __lowerCamelCase : int =logits.topk(lowerCAmelCase_ , -1 ) __lowerCamelCase : Any =generated.expand(lowerCAmelCase_ , *generated.shape[1:] ) __lowerCamelCase , __lowerCamelCase : List[Any] =next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: __lowerCamelCase : Optional[int] =next_tokens else: __lowerCamelCase : str =tokens.expand(lowerCAmelCase_ , *tokens.shape[1:] ) __lowerCamelCase : Any =torch.cat((tokens, next_tokens) , dim=1 ) else: __lowerCamelCase : Tuple =-float(np.inf ) __lowerCamelCase : List[Any] =0 __lowerCamelCase : int =scores[:, None] + logits seq_lengths[~is_stopped] += 1 __lowerCamelCase : Tuple =scores_sum / seq_lengths[:, None] __lowerCamelCase , __lowerCamelCase : List[str] =scores_sum_average.view(-1 ).topk(lowerCAmelCase_ , -1 ) __lowerCamelCase : Any =next_tokens // scores_sum.shape[1] __lowerCamelCase : Tuple =seq_lengths[next_tokens_source] __lowerCamelCase : List[str] =next_tokens % scores_sum.shape[1] __lowerCamelCase : Optional[int] =next_tokens.unsqueeze(1 ) __lowerCamelCase : List[Any] =tokens[next_tokens_source] __lowerCamelCase : List[Any] =torch.cat((tokens, next_tokens) , dim=1 ) __lowerCamelCase : Tuple =generated[next_tokens_source] __lowerCamelCase : List[str] =scores_sum_average * seq_lengths __lowerCamelCase : Optional[int] =is_stopped[next_tokens_source] __lowerCamelCase : Tuple =self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) __lowerCamelCase : List[Any] =torch.cat((generated, next_token_embed) , dim=1 ) __lowerCamelCase : int =is_stopped + next_tokens.eq(lowerCAmelCase_ ).squeeze() if is_stopped.all(): break __lowerCamelCase : Union[str, Any] =scores / seq_lengths __lowerCamelCase : Dict =scores.argsort(descending=lowerCAmelCase_ ) # tokens tensors are already padded to max_seq_length __lowerCamelCase : List[Any] =[tokens[i] for i in order] __lowerCamelCase : str =torch.stack(lowerCAmelCase_ , dim=0 ) __lowerCamelCase : Optional[int] =torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
712
"""simple docstring""" def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __lowerCamelCase : Optional[Any] =len(SCREAMING_SNAKE_CASE ) __lowerCamelCase : Union[str, Any] =[[0] * n for i in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): __lowerCamelCase : Union[str, Any] =y_points[i] for i in range(2 , SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCamelCase : List[Any] =( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
363
0
"""simple docstring""" from math import isqrt def __snake_case ( SCREAMING_SNAKE_CASE: int ): """simple docstring""" return all(number % divisor != 0 for divisor in range(2 , isqrt(__UpperCamelCase ) + 1 ) ) def __snake_case ( SCREAMING_SNAKE_CASE: Tuple = 10**6 ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 7 while prime_candidate < max_prime: primes_count += is_prime(__UpperCamelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f'{solution() = }')
580
"""simple docstring""" import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class _lowercase ( unittest.TestCase ): _lowerCamelCase = inspect.getfile(accelerate.test_utils ) _lowerCamelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) _lowerCamelCase = ['''accelerate''', '''launch'''] _lowerCamelCase = Path.home() / '''.cache/huggingface/accelerate''' _lowerCamelCase = '''default_config.yaml''' _lowerCamelCase = config_folder / config_file _lowerCamelCase = config_folder / '''_default_config.yaml''' _lowerCamelCase = Path('''tests/test_configs''' ) @classmethod def lowerCAmelCase__ ( cls ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowerCAmelCase__ ( cls ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowerCAmelCase__ ( self ): __magic_name__ = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowerCAmelCase__ ( self ): for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=UpperCamelCase_ ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(UpperCamelCase_ ), self.test_file_path] , env=os.environ.copy() ) def lowerCAmelCase__ ( self ): execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class _lowercase ( unittest.TestCase ): _lowerCamelCase = '''test-tpu''' _lowerCamelCase = '''us-central1-a''' _lowerCamelCase = '''ls''' _lowerCamelCase = ['''accelerate''', '''tpu-config'''] _lowerCamelCase = '''cd /usr/share''' _lowerCamelCase = '''tests/test_samples/test_command_file.sh''' _lowerCamelCase = '''Running gcloud compute tpus tpu-vm ssh''' def lowerCAmelCase__ ( self ): __magic_name__ = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=UpperCamelCase_ , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , UpperCamelCase_ , ) def lowerCAmelCase__ ( self ): __magic_name__ = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=UpperCamelCase_ , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , UpperCamelCase_ , ) def lowerCAmelCase__ ( self ): __magic_name__ = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=UpperCamelCase_ ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase_ , ) def lowerCAmelCase__ ( self ): __magic_name__ = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=UpperCamelCase_ , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , UpperCamelCase_ , ) def lowerCAmelCase__ ( self ): __magic_name__ = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo "Hello World"''', '''--debug''', ] , return_stdout=UpperCamelCase_ , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , UpperCamelCase_ , ) def lowerCAmelCase__ ( self ): __magic_name__ = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=UpperCamelCase_ , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase_ , ) def lowerCAmelCase__ ( self ): __magic_name__ = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=UpperCamelCase_ , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase_ , ) def lowerCAmelCase__ ( self ): __magic_name__ = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=UpperCamelCase_ , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase_ , ) def lowerCAmelCase__ ( self ): __magic_name__ = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=UpperCamelCase_ , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase_ , )
490
0
from ..utils import DummyObject, requires_backends class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> int: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> str: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Any: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Any: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> int: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Any: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> List[Any]: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Any: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Optional[int]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> List[str]: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Optional[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Dict: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Any: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Dict: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> str: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Dict: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> List[str]: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> str: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Optional[int]: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Any: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Optional[int]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> List[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Optional[int]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Dict: """simple docstring""" requires_backends(cls , ["torch"]) def _lowerCamelCase ( *A_ : Tuple , **A_ : str ) -> str: '''simple docstring''' requires_backends(A_ , ["torch"] ) def _lowerCamelCase ( *A_ : Any , **A_ : Optional[int] ) -> Tuple: '''simple docstring''' requires_backends(A_ , ["torch"] ) def _lowerCamelCase ( *A_ : Dict , **A_ : Dict ) -> int: '''simple docstring''' requires_backends(A_ , ["torch"] ) def _lowerCamelCase ( *A_ : Dict , **A_ : Optional[int] ) -> Dict: '''simple docstring''' requires_backends(A_ , ["torch"] ) def _lowerCamelCase ( *A_ : Dict , **A_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' requires_backends(A_ , ["torch"] ) def _lowerCamelCase ( *A_ : Any , **A_ : Any ) -> Tuple: '''simple docstring''' requires_backends(A_ , ["torch"] ) def _lowerCamelCase ( *A_ : int , **A_ : Union[str, Any] ) -> int: '''simple docstring''' requires_backends(A_ , ["torch"] ) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Optional[int]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Optional[int]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> str: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> List[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> List[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> List[str]: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> List[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> List[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Optional[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Dict: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Any: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> List[str]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> List[str]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> int: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Dict: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> List[str]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> str: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> str: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Optional[int]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> str: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> List[str]: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Optional[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> List[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> int: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> int: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> List[str]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Dict: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> str: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> List[str]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Optional[int]: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> List[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> List[str]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> List[Any]: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> List[Any]: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> List[str]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Optional[int]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Dict: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> str: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> str: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> int: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> str: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Dict: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> int: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> int: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> str: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> List[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> List[str]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Dict: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Dict: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Optional[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Dict: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> int: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> List[str]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> str: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Dict: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Dict: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> str: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Dict: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Any: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> List[Any]: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> List[str]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Optional[int]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Any: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Optional[int]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> str: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Optional[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Optional[int]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Optional[int]: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Tuple: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> List[Any]: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Dict: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> List[str]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> str: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> List[Any]: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> str: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> str: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> str: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Optional[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> int: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> str: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Any: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Dict: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> List[str]: """simple docstring""" requires_backends(cls , ["torch"]) class lowercase__( metaclass=snake_case__ ): '''simple docstring''' snake_case__ = ['''torch'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> str: """simple docstring""" requires_backends(cls , ["torch"])
582
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class lowercase__( tf.keras.optimizers.schedules.LearningRateSchedule ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1.0 , __SCREAMING_SNAKE_CASE = None , ) -> Optional[Any]: """simple docstring""" super().__init__() UpperCamelCase__ : Tuple =initial_learning_rate UpperCamelCase__ : List[str] =warmup_steps UpperCamelCase__ : List[Any] =power UpperCamelCase__ : Optional[Any] =decay_schedule_fn UpperCamelCase__ : List[str] =name def __call__( self , __SCREAMING_SNAKE_CASE) -> List[str]: """simple docstring""" with tf.name_scope(self.name or "WarmUp") as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. UpperCamelCase__ : Optional[Any] =tf.cast(__SCREAMING_SNAKE_CASE , tf.floataa) UpperCamelCase__ : Tuple =tf.cast(self.warmup_steps , tf.floataa) UpperCamelCase__ : Optional[int] =global_step_float / warmup_steps_float UpperCamelCase__ : List[Any] =self.initial_learning_rate * tf.math.pow(__SCREAMING_SNAKE_CASE , self.power) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps) , name=__SCREAMING_SNAKE_CASE , ) def UpperCAmelCase ( self) -> Optional[Any]: """simple docstring""" return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _lowerCamelCase ( A_ : float , A_ : int , A_ : int , A_ : float = 0.0 , A_ : float = 0.9 , A_ : float = 0.999 , A_ : float = 1E-8 , A_ : Optional[float] = None , A_ : Optional[float] = None , A_ : float = 0.0 , A_ : float = 1.0 , A_ : Optional[List[str]] = None , ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Dict =tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=A_ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=A_ , ) if num_warmup_steps: UpperCamelCase__ : Dict =WarmUp( initial_learning_rate=A_ , decay_schedule_fn=A_ , warmup_steps=A_ , ) if weight_decay_rate > 0.0: UpperCamelCase__ : Union[str, Any] =AdamWeightDecay( learning_rate=A_ , weight_decay_rate=A_ , beta_a=A_ , beta_a=A_ , epsilon=A_ , clipnorm=A_ , global_clipnorm=A_ , exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"] , include_in_weight_decay=A_ , ) else: UpperCamelCase__ : List[Any] =tf.keras.optimizers.Adam( learning_rate=A_ , beta_a=A_ , beta_a=A_ , epsilon=A_ , clipnorm=A_ , global_clipnorm=A_ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class lowercase__( snake_case__ ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE = 0.0_01 , __SCREAMING_SNAKE_CASE = 0.9 , __SCREAMING_SNAKE_CASE = 0.9_99 , __SCREAMING_SNAKE_CASE = 1E-7 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = 0.0 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "AdamWeightDecay" , **__SCREAMING_SNAKE_CASE , ) -> Dict: """simple docstring""" super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Optional[Any] =weight_decay_rate UpperCamelCase__ : Dict =include_in_weight_decay UpperCamelCase__ : int =exclude_from_weight_decay @classmethod def UpperCAmelCase ( cls , __SCREAMING_SNAKE_CASE) -> List[Any]: """simple docstring""" UpperCamelCase__ : Optional[int] ={"WarmUp": WarmUp} return super(__SCREAMING_SNAKE_CASE , cls).from_config(__SCREAMING_SNAKE_CASE , custom_objects=__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> Optional[int]: """simple docstring""" super(__SCREAMING_SNAKE_CASE , self)._prepare_local(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) UpperCamelCase__ : Any =tf.constant( self.weight_decay_rate , name="adam_weight_decay_rate") def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> Any: """simple docstring""" UpperCamelCase__ : List[str] =self._do_use_weight_decay(var.name) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["weight_decay_rate"] , use_locking=self._use_locking , ) return tf.no_op() def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE) -> Optional[int]: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ : List[str] =list(zip(*__SCREAMING_SNAKE_CASE)) return super(__SCREAMING_SNAKE_CASE , self).apply_gradients(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) , name=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> Tuple: """simple docstring""" if apply_state is None: return self._decayed_lr_t[var_dtype], {} UpperCamelCase__ : Optional[int] =apply_state or {} UpperCamelCase__ : Optional[Any] =apply_state.get((var_device, var_dtype)) if coefficients is None: UpperCamelCase__ : Any =self._fallback_apply_state(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) UpperCamelCase__ : int =coefficients return coefficients["lr_t"], {"apply_state": apply_state} def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None) -> Optional[int]: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ : List[Any] =self._get_lr(var.device , var.dtype.base_dtype , __SCREAMING_SNAKE_CASE) UpperCamelCase__ : str =self._decay_weights_op(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) with tf.control_dependencies([decay]): return super(__SCREAMING_SNAKE_CASE , self)._resource_apply_dense(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None) -> Dict: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ : Any =self._get_lr(var.device , var.dtype.base_dtype , __SCREAMING_SNAKE_CASE) UpperCamelCase__ : List[Any] =self._decay_weights_op(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) with tf.control_dependencies([decay]): return super(__SCREAMING_SNAKE_CASE , self)._resource_apply_sparse(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self) -> Optional[int]: """simple docstring""" UpperCamelCase__ : Any =super().get_config() config.update({"weight_decay_rate": self.weight_decay_rate}) return config def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE) -> Optional[Any]: """simple docstring""" if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) is not None: return False return True class lowercase__( snake_case__ ): '''simple docstring''' def __init__( self) -> int: """simple docstring""" UpperCamelCase__ : str =[] UpperCamelCase__ : List[str] =None @property def UpperCAmelCase ( self) -> List[str]: """simple docstring""" if self._accum_steps is None: UpperCamelCase__ : Any =tf.Variable( tf.constant(0 , dtype=tf.intaa) , trainable=__SCREAMING_SNAKE_CASE , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def UpperCAmelCase ( self) -> Optional[int]: """simple docstring""" if not self._gradients: raise ValueError("The accumulator should be called first to initialize the gradients") return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , __SCREAMING_SNAKE_CASE) -> Any: """simple docstring""" if not self._gradients: UpperCamelCase__ : Any =self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(__SCREAMING_SNAKE_CASE) , trainable=__SCREAMING_SNAKE_CASE , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ]) if len(__SCREAMING_SNAKE_CASE) != len(self._gradients): raise ValueError(F'''Expected {len(self._gradients)} gradients, but got {len(__SCREAMING_SNAKE_CASE)}''') for accum_gradient, gradient in zip(self._gradients , __SCREAMING_SNAKE_CASE): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(__SCREAMING_SNAKE_CASE) self._accum_steps.assign_add(1) def UpperCAmelCase ( self) -> Tuple: """simple docstring""" if not self._gradients: return self._accum_steps.assign(0) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(__SCREAMING_SNAKE_CASE))
582
1
'''simple docstring''' import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class a_ ( UpperCamelCase__ ): def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_12 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase="None" , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=None , ): a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = use_token_type_ids a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = num_choices a_ = relative_attention a_ = position_biased_input a_ = pos_att_type a_ = scope def lowerCAmelCase__ ( self ): a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ = None if self.use_input_mask: a_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a_ = None a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a_ = ids_tensor([self.batch_size] , self.num_choices ) a_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def lowerCAmelCase__ ( self , UpperCAmelCase ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): a_ = DebertaVaModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() a_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase )[0] a_ = model(UpperCAmelCase , token_type_ids=UpperCAmelCase )[0] a_ = model(UpperCAmelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): a_ = DebertaVaForMaskedLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() a_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): a_ = self.num_labels a_ = DebertaVaForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() a_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(UpperCAmelCase ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): a_ = self.num_labels a_ = DebertaVaForTokenClassification(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() a_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): a_ = DebertaVaForQuestionAnswering(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() a_ = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): a_ = DebertaVaForMultipleChoice(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() a_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a_ = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self ): a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class a_ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): lowerCamelCase__ : Tuple = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) lowerCamelCase__ : int = ( { 'feature-extraction': DebertaVaModel, 'fill-mask': DebertaVaForMaskedLM, 'question-answering': DebertaVaForQuestionAnswering, 'text-classification': DebertaVaForSequenceClassification, 'token-classification': DebertaVaForTokenClassification, 'zero-shot': DebertaVaForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : Tuple = True lowerCamelCase__ : Tuple = False lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : List[str] = False lowerCamelCase__ : Dict = False def lowerCAmelCase__ ( self ): a_ = DebertaVaModelTester(self ) a_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*UpperCAmelCase ) @slow def lowerCAmelCase__ ( self ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = DebertaVaModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class a_ ( unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def lowerCAmelCase__ ( self ): pass @slow def lowerCAmelCase__ ( self ): a_ = DebertaVaModel.from_pretrained("""microsoft/deberta-v2-xlarge""" ) a_ = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) a_ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): a_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase )[0] # compare the actual values for a slice. a_ = torch.tensor( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCAmelCase , atol=1e-4 ) , f'''{output[:, 1:4, 1:4]}''' )
263
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowercase__ =argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) lowercase__ =parser.parse_args() lowercase__ =UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowercase__ =CLIPImageProcessor() lowercase__ =CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') lowercase__ =UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
263
1
"""simple docstring""" from heapq import heappop, heappush import numpy as np def lowerCamelCase_( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , )-> tuple[float | int, list[tuple[int, int]]]: _SCREAMING_SNAKE_CASE : int = grid.shape _SCREAMING_SNAKE_CASE : str = [-1, 1, 0, 0] _SCREAMING_SNAKE_CASE : Any = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] _SCREAMING_SNAKE_CASE : Any = [(0, source)], set() _SCREAMING_SNAKE_CASE : str = np.full((rows, cols) , np.inf ) _SCREAMING_SNAKE_CASE : Dict = 0 _SCREAMING_SNAKE_CASE : List[Any] = np.empty((rows, cols) , dtype=__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : str = None while queue: (_SCREAMING_SNAKE_CASE) : Any = heappop(__SCREAMING_SNAKE_CASE ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: _SCREAMING_SNAKE_CASE : Optional[Any] = [] while (x, y) != source: path.append((x, y) ) _SCREAMING_SNAKE_CASE : Optional[int] = predecessors[x, y] path.append(__SCREAMING_SNAKE_CASE ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__SCREAMING_SNAKE_CASE ) ): _SCREAMING_SNAKE_CASE : Tuple = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: _SCREAMING_SNAKE_CASE : Optional[Any] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__SCREAMING_SNAKE_CASE , (dist + 1, (nx, ny)) ) _SCREAMING_SNAKE_CASE : Any = dist + 1 _SCREAMING_SNAKE_CASE : Optional[int] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
716
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
635
0
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def A__ (snake_case : Dict , snake_case : List[Any] , snake_case : Dict , snake_case : List[Any] , snake_case : List[Any] ) -> List[str]: # Load configuration defined in the metadata file with open(snake_case ) as metadata_file: __UpperCamelCase : Optional[int] = json.load(snake_case ) __UpperCamelCase : List[str] = LukeConfig(use_entity_aware_attention=snake_case , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path __UpperCamelCase : Union[str, Any] = torch.load(snake_case , map_location="""cpu""" )["""module"""] # Load the entity vocab file __UpperCamelCase : Union[str, Any] = load_original_entity_vocab(snake_case ) # add an entry for [MASK2] __UpperCamelCase : Any = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __UpperCamelCase : Any = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks __UpperCamelCase : Optional[int] = AddedToken("""<ent>""" , lstrip=snake_case , rstrip=snake_case ) __UpperCamelCase : List[Any] = AddedToken("""<ent2>""" , lstrip=snake_case , rstrip=snake_case ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(snake_case ) with open(os.path.join(snake_case , """tokenizer_config.json""" ) , """r""" ) as f: __UpperCamelCase : int = json.load(snake_case ) __UpperCamelCase : Optional[Any] = """MLukeTokenizer""" with open(os.path.join(snake_case , """tokenizer_config.json""" ) , """w""" ) as f: json.dump(snake_case , snake_case ) with open(os.path.join(snake_case , MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(snake_case , snake_case ) __UpperCamelCase : List[str] = MLukeTokenizer.from_pretrained(snake_case ) # Initialize the embeddings of the special tokens __UpperCamelCase : Tuple = tokenizer.convert_tokens_to_ids(["""@"""] )[0] __UpperCamelCase : Any = tokenizer.convert_tokens_to_ids(["""#"""] )[0] __UpperCamelCase : str = state_dict["""embeddings.word_embeddings.weight"""] __UpperCamelCase : List[str] = word_emb[ent_init_index].unsqueeze(0 ) __UpperCamelCase : List[Any] = word_emb[enta_init_index].unsqueeze(0 ) __UpperCamelCase : int = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __UpperCamelCase : List[Any] = state_dict[bias_name] __UpperCamelCase : Optional[int] = decoder_bias[ent_init_index].unsqueeze(0 ) __UpperCamelCase : Any = decoder_bias[enta_init_index].unsqueeze(0 ) __UpperCamelCase : Dict = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __UpperCamelCase : Any = F'''encoder.layer.{layer_index}.attention.self.''' __UpperCamelCase : Union[str, Any] = state_dict[prefix + matrix_name] __UpperCamelCase : Any = state_dict[prefix + matrix_name] __UpperCamelCase : Optional[int] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __UpperCamelCase : List[str] = state_dict["""entity_embeddings.entity_embeddings.weight"""] __UpperCamelCase : Union[str, Any] = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) __UpperCamelCase : str = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __UpperCamelCase : Optional[int] = state_dict["""entity_predictions.bias"""] __UpperCamelCase : Optional[Any] = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) __UpperCamelCase : Any = torch.cat([entity_prediction_bias, entity_mask_bias] ) __UpperCamelCase : Any = LukeForMaskedLM(config=snake_case ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) __UpperCamelCase : str = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): __UpperCamelCase : Union[str, Any] = state_dict[key] else: __UpperCamelCase : Union[str, Any] = state_dict[key] __UpperCamelCase , __UpperCamelCase : Optional[Any] = model.load_state_dict(snake_case , strict=snake_case ) if set(snake_case ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(snake_case ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __UpperCamelCase : Tuple = MLukeTokenizer.from_pretrained(snake_case , task="""entity_classification""" ) __UpperCamelCase : Union[str, Any] = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" __UpperCamelCase : Any = (0, 9) __UpperCamelCase : List[Any] = tokenizer(snake_case , entity_spans=[span] , return_tensors="""pt""" ) __UpperCamelCase : Tuple = model(**snake_case ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __UpperCamelCase : Union[str, Any] = torch.Size((1, 33, 7_68) ) __UpperCamelCase : List[str] = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __UpperCamelCase : int = torch.Size((1, 1, 7_68) ) __UpperCamelCase : List[Any] = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , snake_case , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction __UpperCamelCase : Any = MLukeTokenizer.from_pretrained(snake_case ) __UpperCamelCase : Tuple = """Tokyo is the capital of <mask>.""" __UpperCamelCase : str = (24, 30) __UpperCamelCase : int = tokenizer(snake_case , entity_spans=[span] , return_tensors="""pt""" ) __UpperCamelCase : int = model(**snake_case ) __UpperCamelCase : str = encoding["""input_ids"""][0].tolist() __UpperCamelCase : Any = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) __UpperCamelCase : List[str] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(snake_case ) __UpperCamelCase : Dict = outputs.entity_logits[0][0].argmax().item() __UpperCamelCase : int = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(snake_case ) ) model.save_pretrained(snake_case ) def A__ (snake_case : Tuple ) -> Optional[int]: __UpperCamelCase : Union[str, Any] = ["""[MASK]""", """[PAD]""", """[UNK]"""] __UpperCamelCase : List[str] = [json.loads(snake_case ) for line in open(snake_case )] __UpperCamelCase : Optional[int] = {} for entry in data: __UpperCamelCase : Tuple = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __UpperCamelCase : Dict = entity_id break __UpperCamelCase : List[str] = F'''{language}:{entity_name}''' __UpperCamelCase : int = entity_id return new_mapping if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) a__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
279
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset a__ = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class SCREAMING_SNAKE_CASE_ ( nn.Module ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" super().__init__() __UpperCamelCase : Tuple = torchvision.models.resnetaaa(pretrained=lowerCAmelCase ) __UpperCamelCase : Union[str, Any] = list(model.children() )[:-2] __UpperCamelCase : List[str] = nn.Sequential(*lowerCAmelCase ) __UpperCamelCase : Optional[int] = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : Optional[Any] ) -> List[str]: """simple docstring""" __UpperCamelCase : Dict = self.pool(self.model(lowerCAmelCase ) ) __UpperCamelCase : Dict = torch.flatten(lowerCAmelCase , start_dim=2 ) __UpperCamelCase : Optional[int] = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class SCREAMING_SNAKE_CASE_ ( _UpperCamelCase ): """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" __UpperCamelCase : Dict = [json.loads(lowerCAmelCase ) for l in open(lowerCAmelCase )] __UpperCamelCase : Optional[Any] = os.path.dirname(lowerCAmelCase ) __UpperCamelCase : Optional[int] = tokenizer __UpperCamelCase : Dict = labels __UpperCamelCase : int = len(lowerCAmelCase ) __UpperCamelCase : List[str] = max_seq_length __UpperCamelCase : int = transforms def __len__( self : Union[str, Any] ) -> List[Any]: """simple docstring""" return len(self.data ) def __getitem__( self : Optional[Any] , lowerCAmelCase : List[Any] ) -> int: """simple docstring""" __UpperCamelCase : Optional[Any] = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=lowerCAmelCase ) ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Tuple = sentence[0], sentence[1:-1], sentence[-1] __UpperCamelCase : Optional[int] = sentence[: self.max_seq_length] __UpperCamelCase : List[str] = torch.zeros(self.n_classes ) __UpperCamelCase : List[str] = 1 __UpperCamelCase : List[Any] = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" ) __UpperCamelCase : Dict = self.transforms(lowerCAmelCase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCamelCase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __UpperCamelCase : List[Any] = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def A__ (snake_case : int ) -> Optional[int]: __UpperCamelCase : str = [len(row["""sentence"""] ) for row in batch] __UpperCamelCase , __UpperCamelCase : Optional[int] = len(snake_case ), max(snake_case ) __UpperCamelCase : List[str] = torch.zeros(snake_case , snake_case , dtype=torch.long ) __UpperCamelCase : Tuple = torch.zeros(snake_case , snake_case , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(snake_case , snake_case ) ): __UpperCamelCase : Optional[Any] = input_row["""sentence"""] __UpperCamelCase : Any = 1 __UpperCamelCase : List[Any] = torch.stack([row["""image"""] for row in batch] ) __UpperCamelCase : Tuple = torch.stack([row["""label"""] for row in batch] ) __UpperCamelCase : Tuple = torch.stack([row["""image_start_token"""] for row in batch] ) __UpperCamelCase : List[str] = torch.stack([row["""image_end_token"""] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def A__ () -> Optional[Any]: return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def A__ () -> Union[str, Any]: return transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46777044, 0.44531429, 0.40661017] , std=[0.12221994, 0.12145835, 0.14380469] , ), ] )
279
1
"""simple docstring""" from math import isqrt, loga def lowercase ( UpperCamelCase : int ): """simple docstring""" A__ : Optional[int] =[True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , UpperCamelCase , UpperCamelCase ): A__ : Dict =False return [i for i in range(2 , UpperCamelCase ) if is_prime[i]] def lowercase ( UpperCamelCase : int = 800800 , UpperCamelCase : int = 800800 ): """simple docstring""" A__ : List[str] =degree * loga(UpperCamelCase ) A__ : Any =int(UpperCamelCase ) A__ : Optional[int] =calculate_prime_numbers(UpperCamelCase ) A__ : List[str] =0 A__ : Optional[int] =0 A__ : int =len(UpperCamelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f"""{solution() = }""")
715
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A : Optional[Any] = { "configuration_resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig", "ResNetOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ "RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "ResNetForImageClassification", "ResNetModel", "ResNetPreTrainedModel", "ResNetBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ "TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFResNetForImageClassification", "TFResNetModel", "TFResNetPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ "FlaxResNetForImageClassification", "FlaxResNetModel", "FlaxResNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __A : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure)
595
0
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class a__ ( __SCREAMING_SNAKE_CASE ): snake_case__ = 0 snake_case__ = False snake_case__ = 3.0 class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[int]) -> Dict: """simple docstring""" self.assertDictEqual(MockClass().to_kwargs() ,{}) self.assertDictEqual(MockClass(a=2).to_kwargs() ,{'''a''': 2}) self.assertDictEqual(MockClass(a=2 ,b=snake_case_).to_kwargs() ,{'''a''': 2, '''b''': True}) self.assertDictEqual(MockClass(a=2 ,c=2.25).to_kwargs() ,{'''a''': 2, '''c''': 2.25}) @require_cuda def __UpperCamelCase ( self : List[str]) -> str: """simple docstring""" _lowerCAmelCase:int = GradScalerKwargs(init_scale=1024 ,growth_factor=2) AcceleratorState._reset_state() _lowerCAmelCase:List[str] = Accelerator(mixed_precision='''fp16''' ,kwargs_handlers=[scaler_handler]) print(accelerator.use_fpaa) _lowerCAmelCase:Any = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale ,1024.0) self.assertEqual(scaler._growth_factor ,2.0) # Check the other values are at the default self.assertEqual(scaler._backoff_factor ,0.5) self.assertEqual(scaler._growth_interval ,2000) self.assertEqual(scaler._enabled ,snake_case_) @require_multi_gpu def __UpperCamelCase ( self : int) -> str: """simple docstring""" _lowerCAmelCase:Optional[Any] = ['''torchrun''', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__)] execute_subprocess_async(snake_case_ ,env=os.environ.copy()) if __name__ == "__main__": UpperCamelCase__ = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) UpperCamelCase__ = Accelerator(kwargs_handlers=[ddp_scaler]) UpperCamelCase__ = torch.nn.Linear(1_0_0, 2_0_0) UpperCamelCase__ = accelerator.prepare(model) # Check the values changed in kwargs UpperCamelCase__ = '''''' UpperCamelCase__ = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
227
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def UpperCamelCase ( lowercase_ : float , lowercase_ : float ) -> tuple: '''simple docstring''' if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
72
0
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: _snake_case = old_name if "patch_embed" in old_name: _snake_case , _snake_case , _snake_case = old_name.split('''.''' ) if layer == "0": _snake_case = old_name.replace('''0''' , '''convolution1''' ) elif layer == "1": _snake_case = old_name.replace('''1''' , '''batchnorm_before''' ) elif layer == "3": _snake_case = old_name.replace('''3''' , '''convolution2''' ) else: _snake_case = old_name.replace('''4''' , '''batchnorm_after''' ) if "network" in old_name and re.search(R'''\d\.\d''' , UpperCAmelCase__ ): _snake_case = R'''\b\d{2}\b''' if bool(re.search(UpperCAmelCase__ , UpperCAmelCase__ ) ): _snake_case = re.search(R'''\d\.\d\d.''' , UpperCAmelCase__ ).group() else: _snake_case = re.search(R'''\d\.\d.''' , UpperCAmelCase__ ).group() if int(match[0] ) < 6: _snake_case = old_name.replace(UpperCAmelCase__ , '''''' ) _snake_case = trimmed_name.replace('''network''' , match[0] + '''.meta4D_layers.blocks.''' + match[2:-1] ) _snake_case = '''intermediate_stages.''' + trimmed_name else: _snake_case = old_name.replace(UpperCAmelCase__ , '''''' ) if int(match[2] ) < num_meta4D_last_stage: _snake_case = trimmed_name.replace('''network''' , '''meta4D_layers.blocks.''' + match[2] ) else: _snake_case = str(int(match[2] ) - num_meta4D_last_stage ) _snake_case = trimmed_name.replace('''network''' , '''meta3D_layers.blocks.''' + layer_index ) if "norm1" in old_name: _snake_case = trimmed_name.replace('''norm1''' , '''layernorm1''' ) elif "norm2" in old_name: _snake_case = trimmed_name.replace('''norm2''' , '''layernorm2''' ) elif "fc1" in old_name: _snake_case = trimmed_name.replace('''fc1''' , '''linear_in''' ) elif "fc2" in old_name: _snake_case = trimmed_name.replace('''fc2''' , '''linear_out''' ) _snake_case = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(R'''.\d.''' , UpperCAmelCase__ ): _snake_case = old_name.replace('''network''' , '''intermediate_stages''' ) if "fc" in new_name: _snake_case = new_name.replace('''fc''' , '''convolution''' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): _snake_case = new_name.replace('''norm1''' , '''batchnorm_before''' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): _snake_case = new_name.replace('''norm2''' , '''batchnorm_after''' ) if "proj" in new_name: _snake_case = new_name.replace('''proj''' , '''projection''' ) if "dist_head" in new_name: _snake_case = new_name.replace('''dist_head''' , '''distillation_classifier''' ) elif "head" in new_name: _snake_case = new_name.replace('''head''' , '''classifier''' ) elif "patch_embed" in new_name: _snake_case = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": _snake_case = new_name.replace('''norm''' , '''layernorm''' ) _snake_case = '''efficientformer.''' + new_name else: _snake_case = '''efficientformer.encoder.''' + new_name return new_name def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[int]: for key in checkpoint.copy().keys(): _snake_case = checkpoint.pop(UpperCAmelCase__ ) _snake_case = val return checkpoint def snake_case ( ) -> Optional[int]: _snake_case = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _snake_case = Image.open(requests.get(UpperCAmelCase__ , stream=UpperCAmelCase__ ).raw ) return image def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: _snake_case = torch.load(UpperCAmelCase__ , map_location='''cpu''' )['''model'''] _snake_case = EfficientFormerConfig.from_json_file(UpperCAmelCase__ ) _snake_case = EfficientFormerForImageClassificationWithTeacher(UpperCAmelCase__ ) _snake_case = '''_'''.join(checkpoint_path.split('''/''' )[-1].split('''.''' )[0].split('''_''' )[:-1] ) _snake_case = config.depths[-1] - config.num_metaad_blocks + 1 _snake_case = convert_torch_checkpoint(UpperCAmelCase__ , UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) model.eval() _snake_case = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image _snake_case = prepare_img() _snake_case = 256 _snake_case = 224 _snake_case = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size} , crop_size={'''height''': crop_size, '''width''': crop_size} , resample=pillow_resamplings['''bicubic'''] , ) _snake_case = processor(images=UpperCAmelCase__ , return_tensors='''pt''' ).pixel_values # original processing pipeline _snake_case = Compose( [ Resize(UpperCAmelCase__ , interpolation=pillow_resamplings['''bicubic'''] ), CenterCrop(UpperCAmelCase__ ), ToTensor(), Normalize(UpperCAmelCase__ , UpperCAmelCase__ ), ] ) _snake_case = image_transforms(UpperCAmelCase__ ).unsqueeze(0 ) assert torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ ) _snake_case = model(UpperCAmelCase__ ) _snake_case = outputs.logits _snake_case = (1, 1000) if "l1" in model_name: _snake_case = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10] , UpperCAmelCase__ , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: _snake_case = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10] , UpperCAmelCase__ , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: _snake_case = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( f"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(UpperCAmelCase__ ) print(f"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print('''Pushing model to the hub...''' ) model.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message='''Add model''' , use_temp_dir=UpperCAmelCase__ , ) processor.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message='''Add image processor''' , use_temp_dir=UpperCAmelCase__ , ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to EfficientFormer pytorch checkpoint.''', ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for EfficientFormer model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) parser.set_defaults(push_to_hub=True) snake_case = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
714
"""simple docstring""" import requests snake_case = '''https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=''' def snake_case ( lowerCAmelCase_ ) -> None: # fetching a list of articles in json format _snake_case = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['''articles'''] , 1 ): print(f"""{i}.) {article['title']}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='''<Your BBC News API key goes here>''')
404
0
def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = [0 for i in range(len(_SCREAMING_SNAKE_CASE ) )] # initialize interval's left pointer and right pointer __lowercase , __lowercase = 0, 0 for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): # case when current index is inside the interval if i <= right_pointer: __lowercase = min(right_pointer - i + 1 , z_result[i - left_pointer] ) __lowercase = min_edge while go_next(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: __lowercase , __lowercase = i, i + z_result[i] - 1 return z_result def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return i + z_result[i] < len(_SCREAMING_SNAKE_CASE ) and s[z_result[i]] == s[i + z_result[i]] def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string __lowercase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_SCREAMING_SNAKE_CASE ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
402
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor snake_case__ : Optional[Any] = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' def __init__( self : Dict , *lowerCamelCase : List[Any] , **lowerCamelCase : int ): '''simple docstring''' warnings.warn( "The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use MobileViTImageProcessor instead." , lowerCamelCase , ) super().__init__(*lowerCamelCase , **lowerCamelCase )
402
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE__ : Any = {'''configuration_yolos''': ['''YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''YolosConfig''', '''YolosOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Dict = ['''YolosFeatureExtractor'''] SCREAMING_SNAKE_CASE__ : Optional[int] = ['''YolosImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[int] = [ '''YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''YolosForObjectDetection''', '''YolosModel''', '''YolosPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
710
"""simple docstring""" from collections import Counter from timeit import timeit def A_ ( UpperCAmelCase__ = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def A_ ( UpperCAmelCase__ = "" ) -> bool: if len(UpperCAmelCase__ ) == 0: return True a : Union[str, Any] = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string a : dict[str, int] = {} for character in lower_case_input_str: a : Optional[Any] = character_freq_dict.get(UpperCAmelCase__ , 0 ) + 1 a : Any = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def A_ ( UpperCAmelCase__ = "" ) -> None: print('\nFor string = ' , UpperCAmelCase__ , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(UpperCAmelCase__ ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(UpperCAmelCase__ ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Union[str, Any] = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) SCREAMING_SNAKE_CASE__ : List[Any] = can_string_be_rearranged_as_palindrome_counter(check_str) print(F'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
509
0
'''simple docstring''' def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> List[Any]: lowerCamelCase_ = '' for i in table: res += inp[i - 1] return res def _UpperCamelCase ( __UpperCamelCase ) -> Tuple: return data[1:] + data[0] def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> List[Any]: lowerCamelCase_ = '' for i in range(len(__UpperCamelCase ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: lowerCamelCase_ = int('0b' + data[0] + data[-1] ,2 ) lowerCamelCase_ = int('0b' + data[1:3] ,2 ) return bin(s[row][col] )[2:] def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int: lowerCamelCase_ = message[:4] lowerCamelCase_ = message[4:] lowerCamelCase_ = apply_table(__UpperCamelCase ,__UpperCamelCase ) lowerCamelCase_ = xor(__UpperCamelCase ,__UpperCamelCase ) lowerCamelCase_ = apply_sbox(__UpperCamelCase ,temp[:4] ) # noqa: E741 lowerCamelCase_ = apply_sbox(__UpperCamelCase ,temp[4:] ) lowerCamelCase_ = '0' * (2 - len(__UpperCamelCase )) + l # noqa: E741 lowerCamelCase_ = '0' * (2 - len(__UpperCamelCase )) + r lowerCamelCase_ = apply_table(l + r ,__UpperCamelCase ) lowerCamelCase_ = xor(__UpperCamelCase ,__UpperCamelCase ) return temp + right if __name__ == "__main__": A_ = input("Enter 10 bit key: ") A_ = input("Enter 8 bit message: ") A_ = [6, 3, 7, 4, 8, 5, 10, 9] A_ = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] A_ = [2, 4, 3, 1] A_ = [2, 6, 3, 1, 4, 8, 5, 7] A_ = [4, 1, 3, 5, 7, 2, 8, 6] A_ = [4, 1, 2, 3, 2, 3, 4, 1] A_ = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] A_ = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation A_ = apply_table(key, paa_table) A_ = temp[:5] A_ = temp[5:] A_ = left_shift(left) A_ = left_shift(right) A_ = apply_table(left + right, pa_table) A_ = left_shift(left) A_ = left_shift(right) A_ = left_shift(left) A_ = left_shift(right) A_ = apply_table(left + right, pa_table) # encryption A_ = apply_table(message, IP) A_ = function(expansion, sa, sa, keya, temp) A_ = temp[4:] + temp[:4] A_ = function(expansion, sa, sa, keya, temp) A_ = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption A_ = apply_table(CT, IP) A_ = function(expansion, sa, sa, keya, temp) A_ = temp[4:] + temp[:4] A_ = function(expansion, sa, sa, keya, temp) A_ = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
42
from math import sqrt def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' must been an int and positive" __A = True # 0 and 1 are none primes. if number <= 1: __A = False for divisor in range(2 , int(round(sqrt(a_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __A = False break # precondition assert isinstance(a_ , a_ ), "'status' must been from type bool" return status def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __A = list(range(2 , n + 1 ) ) __A = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(a_ ) ): for j in range(i + 1 , len(a_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __A = 0 # filters actual prime numbers. __A = [x for x in begin_list if x != 0] # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" __A = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(a_ ): ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and number >= 0, "'number' must been an int and >= 0" __A = [] # this list will be returns of the function. # potential prime number factors. __A = 2 __A = number if number == 0 or number == 1: ans.append(a_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(a_ ): while quotient != 1: if is_prime(a_ ) and (quotient % factor == 0): ans.append(a_ ) quotient /= factor else: factor += 1 else: ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = max(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = min(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> int: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , a_ ), "compare bust been from type bool" return number % 2 == 0 def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , a_ ), "compare bust been from type bool" return number % 2 != 0 def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and (number > 2) and is_even(a_ ) ), "'number' must been an int, even and > 2" __A = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __A = get_prime_numbers(a_ ) __A = len(a_ ) # run variable for while-loops. __A = 0 __A = None # exit variable. for break up the loops __A = True while i < len_pn and loop: __A = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __A = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(a_ , a_ ) and (len(a_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __A = 0 while numbera != 0: __A = numbera % numbera __A = numbera __A = rest # precondition assert isinstance(a_ , a_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def UpperCAmelCase ( a_ , a_ ) -> List[str]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __A = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __A = prime_factorization(a_ ) __A = prime_factorization(a_ ) elif numbera == 1 or numbera == 1: __A = [] __A = [] __A = max(a_ , a_ ) __A = 0 __A = 0 __A = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __A = prime_fac_a.count(a_ ) __A = prime_fac_a.count(a_ ) for _ in range(max(a_ , a_ ) ): ans *= n else: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # precondition assert isinstance(a_ , a_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'number' must been a positive int" __A = 0 __A = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(a_ ): ans += 1 # precondition assert isinstance(a_ , a_ ) and is_prime( a_ ), "'ans' must been a prime number and from type int" return ans def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" assert ( is_prime(a_ ) and is_prime(a_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __A = p_number_a + 1 # jump to the next number __A = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(a_ ): number += 1 while number < p_number_a: ans.append(a_ ) number += 1 # fetch the next prime number. while not is_prime(a_ ): number += 1 # precondition assert ( isinstance(a_ , a_ ) and ans[0] != p_number_a and ans[len(a_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 1), "'n' must been int and >= 1" __A = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(a_ ) # precondition assert ans[0] == 1 and ans[len(a_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" assert isinstance(a_ , a_ ) and ( number > 1 ), "'number' must been an int and >= 1" __A = get_divisors(a_ ) # precondition assert ( isinstance(a_ , a_ ) and (divisors[0] == 1) and (divisors[len(a_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def UpperCAmelCase ( a_ , a_ ) -> str: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __A = gcd(abs(a_ ) , abs(a_ ) ) # precondition assert ( isinstance(a_ , a_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been a int and >= 0" __A = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been an int and >= 0" __A = 0 __A = 1 __A = 1 # this will be return for _ in range(n - 1 ): __A = ans ans += fiba __A = tmp return ans
55
0
"""simple docstring""" from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : List[str]): '''simple docstring''' if isinstance(lowercase_ , lowercase_): SCREAMING_SNAKE_CASE_ : List[str] = [label.strip() for label in labels.split(''',''') if label.strip()] return labels def __call__( self : Optional[Any] , lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : str): '''simple docstring''' if len(lowercase_) == 0 or len(lowercase_) == 0: raise ValueError('''You must include at least one label and at least one sequence.''') if hypothesis_template.format(labels[0]) == hypothesis_template: raise ValueError( ( '''The provided hypothesis_template "{}" was not able to be formatted with the target labels. ''' '''Make sure the passed template includes formatting syntax such as {{}} where the label should go.''' ).format(lowercase_)) if isinstance(lowercase_ , lowercase_): SCREAMING_SNAKE_CASE_ : Dict = [sequences] SCREAMING_SNAKE_CASE_ : int = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowercase_)] for label in labels]) return sequence_pairs, sequences @add_end_docstrings(UpperCAmelCase__ ) class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : Dict=ZeroShotClassificationArgumentHandler() , *lowercase_ : List[str] , **lowercase_ : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = args_parser super().__init__(*lowercase_ , **lowercase_) if self.entailment_id == -1: logger.warning( '''Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to ''' '''-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.''') @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith('''entail'''): return ind return -1 def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : Optional[Any] , lowercase_ : List[str]=True , lowercase_ : Tuple=True , lowercase_ : str=TruncationStrategy.ONLY_FIRST , **lowercase_ : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( '''Tokenizer was not supporting padding necessary for zero-shot, attempting to use ''' ''' `pad_token=eos_token`''') SCREAMING_SNAKE_CASE_ : int = self.tokenizer.eos_token try: SCREAMING_SNAKE_CASE_ : Tuple = self.tokenizer( lowercase_ , add_special_tokens=lowercase_ , return_tensors=lowercase_ , padding=lowercase_ , truncation=lowercase_ , ) except Exception as e: if "too short" in str(lowercase_): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. SCREAMING_SNAKE_CASE_ : List[str] = self.tokenizer( lowercase_ , add_special_tokens=lowercase_ , return_tensors=lowercase_ , padding=lowercase_ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **lowercase_ : str): '''simple docstring''' if kwargs.get('''multi_class''' , lowercase_) is not None: SCREAMING_SNAKE_CASE_ : Tuple = kwargs['''multi_class'''] logger.warning( '''The `multi_class` argument has been deprecated and renamed to `multi_label`. ''' '''`multi_class` will be removed in a future version of Transformers.''') SCREAMING_SNAKE_CASE_ : Optional[Any] = {} if "candidate_labels" in kwargs: SCREAMING_SNAKE_CASE_ : List[str] = self._args_parser._parse_labels(kwargs['''candidate_labels''']) if "hypothesis_template" in kwargs: SCREAMING_SNAKE_CASE_ : str = kwargs['''hypothesis_template'''] SCREAMING_SNAKE_CASE_ : Union[str, Any] = {} if "multi_label" in kwargs: SCREAMING_SNAKE_CASE_ : int = kwargs['''multi_label'''] return preprocess_params, {}, postprocess_params def __call__( self : Tuple , lowercase_ : Union[str, List[str]] , *lowercase_ : Tuple , **lowercase_ : int , ): '''simple docstring''' if len(lowercase_) == 0: pass elif len(lowercase_) == 1 and "candidate_labels" not in kwargs: SCREAMING_SNAKE_CASE_ : Optional[int] = args[0] else: raise ValueError(F'Unable to understand extra arguments {args}') return super().__call__(lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : Optional[Any] , lowercase_ : Any=None , lowercase_ : Optional[int]="This example is {}."): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = self._args_parser(lowercase_ , lowercase_ , lowercase_) for i, (candidate_label, sequence_pair) in enumerate(zip(lowercase_ , lowercase_)): SCREAMING_SNAKE_CASE_ : Optional[Any] = self._parse_and_tokenize([sequence_pair]) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowercase_) - 1, **model_input, } def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = inputs['''candidate_label'''] SCREAMING_SNAKE_CASE_ : Optional[Any] = inputs['''sequence'''] SCREAMING_SNAKE_CASE_ : int = {k: inputs[k] for k in self.tokenizer.model_input_names} SCREAMING_SNAKE_CASE_ : str = self.model(**lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = { '''candidate_label''': candidate_label, '''sequence''': sequence, '''is_last''': inputs['''is_last'''], **outputs, } return model_outputs def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : str=False): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = [outputs['''candidate_label'''] for outputs in model_outputs] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [outputs['''sequence'''] for outputs in model_outputs] SCREAMING_SNAKE_CASE_ : Dict = np.concatenate([output['''logits'''].numpy() for output in model_outputs]) SCREAMING_SNAKE_CASE_ : Tuple = logits.shape[0] SCREAMING_SNAKE_CASE_ : int = len(lowercase_) SCREAMING_SNAKE_CASE_ : str = N // n SCREAMING_SNAKE_CASE_ : str = logits.reshape((num_sequences, n, -1)) if multi_label or len(lowercase_) == 1: # softmax over the entailment vs. contradiction dim for each label independently SCREAMING_SNAKE_CASE_ : int = self.entailment_id SCREAMING_SNAKE_CASE_ : Optional[Any] = -1 if entailment_id == 0 else 0 SCREAMING_SNAKE_CASE_ : Optional[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]] SCREAMING_SNAKE_CASE_ : List[str] = np.exp(lowercase_) / np.exp(lowercase_).sum(-1 , keepdims=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels SCREAMING_SNAKE_CASE_ : int = reshaped_outputs[..., self.entailment_id] SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.exp(lowercase_) / np.exp(lowercase_).sum(-1 , keepdims=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = list(reversed(scores[0].argsort())) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
176
"""simple docstring""" from __future__ import annotations import requests def _A (__a ) -> dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = f'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(__a ).json() def _A (__a = 10 ) -> list[dict]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' SCREAMING_SNAKE_CASE_ : Dict = requests.get(__a ).json()[:max_stories] return [get_hackernews_story(__a ) for story_id in story_ids] def _A (__a = 10 ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = hackernews_top_stories(__a ) return "\n".join('''* [{title}]({url})'''.format(**__a ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
176
1
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowercase_ : List[Any] = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) lowercase_ : Dict = parser.parse_args() lowercase_ : int = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowercase_ : Any = CLIPImageProcessor() lowercase_ : str = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') lowercase_ : int = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
64
import math def A_ ( _UpperCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A_ ( _UpperCAmelCase = 0.1 ): SCREAMING_SNAKE_CASE_: Union[str, Any] = 3 SCREAMING_SNAKE_CASE_: Optional[int] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_UpperCAmelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
671
0
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def lowercase__( __SCREAMING_SNAKE_CASE : Dataset , __SCREAMING_SNAKE_CASE : Dict[str, str] ): lowercase_ : Optional[int] = args.log_outputs lowercase_ : Any = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric lowercase_ : str = load_metric('wer' ) lowercase_ : List[str] = load_metric('cer' ) # compute metrics lowercase_ : str = wer.compute(references=result['target'] , predictions=result['prediction'] ) lowercase_ : Optional[int] = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results lowercase_ : Dict = F'''WER: {wer_result}\nCER: {cer_result}''' print(__SCREAMING_SNAKE_CASE ) with open(F'''{dataset_id}_eval_results.txt''' , 'w' ) as f: f.write(__SCREAMING_SNAKE_CASE ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowercase_ : Union[str, Any] = F'''log_{dataset_id}_predictions.txt''' lowercase_ : Tuple = F'''log_{dataset_id}_targets.txt''' with open(__SCREAMING_SNAKE_CASE , 'w' ) as p, open(__SCREAMING_SNAKE_CASE , 'w' ) as t: # mapping function to write output def write_to_file(__SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] ): p.write(F'''{i}''' + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(F'''{i}''' + '\n' ) t.write(batch['target'] + '\n' ) result.map(__SCREAMING_SNAKE_CASE , with_indices=__SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ : Tuple = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowercase_ : List[str] = re.sub(__SCREAMING_SNAKE_CASE , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowercase_ : Union[str, Any] = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: lowercase_ : str = ' '.join(text.split(__SCREAMING_SNAKE_CASE ) ) return text def lowercase__( __SCREAMING_SNAKE_CASE : Tuple ): # load dataset lowercase_ : Optional[Any] = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=__SCREAMING_SNAKE_CASE ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowercase_ : int = AutoFeatureExtractor.from_pretrained(args.model_id ) lowercase_ : str = feature_extractor.sampling_rate # resample audio lowercase_ : Optional[Any] = dataset.cast_column('audio' , Audio(sampling_rate=__SCREAMING_SNAKE_CASE ) ) # load eval pipeline if args.device is None: lowercase_ : Dict = 0 if torch.cuda.is_available() else -1 lowercase_ : str = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(__SCREAMING_SNAKE_CASE : Union[str, Any] ): lowercase_ : List[str] = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowercase_ : Optional[Any] = prediction['text'] lowercase_ : int = normalize_text(batch['sentence'] ) return batch # run inference on all examples lowercase_ : Optional[int] = dataset.map(__SCREAMING_SNAKE_CASE , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) __SCREAMING_SNAKE_CASE =parser.parse_args() main(args)
477
"""simple docstring""" import numpy as np def lowercase__( __SCREAMING_SNAKE_CASE : np.array ): return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
477
1
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def __init__(self : List[str] , UpperCamelCase : Tuple , UpperCamelCase : Optional[int]=3 , UpperCamelCase : Optional[int]=32 , UpperCamelCase : List[str]=3 , UpperCamelCase : Tuple=10 , UpperCamelCase : Any=[10, 20, 30, 40] , UpperCamelCase : Dict=[1, 1, 2, 1] , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : Tuple=True , UpperCamelCase : Tuple="relu" , UpperCamelCase : Union[str, Any]=3 , UpperCamelCase : Dict=None , ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = num_channels lowercase__ = embeddings_size lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_act lowercase__ = num_labels lowercase__ = scope lowercase__ = len(UpperCamelCase ) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = self.get_config() return config, pixel_values def UpperCamelCase__ (self : Dict ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCamelCase__ (self : Dict , UpperCamelCase : Dict , UpperCamelCase : List[str] ): '''simple docstring''' lowercase__ = FlaxRegNetModel(config=UpperCamelCase ) lowercase__ = model(UpperCamelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCamelCase__ (self : Any , UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = FlaxRegNetForImageClassification(config=UpperCamelCase ) lowercase__ = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ ,lowercase__ = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () lowerCAmelCase__ : List[str] = False lowerCAmelCase__ : Tuple = False lowerCAmelCase__ : int = False def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' lowercase__ = FlaxRegNetModelTester(self ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase ) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ (self : int ): '''simple docstring''' return def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def UpperCamelCase__ (self : Dict ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def UpperCamelCase__ (self : int ): '''simple docstring''' pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' pass def UpperCamelCase__ (self : Any ): '''simple docstring''' lowercase__ ,lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase ) lowercase__ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def UpperCamelCase__ (self : Dict ): '''simple docstring''' def check_hidden_states_output(UpperCamelCase : List[Any] , UpperCamelCase : Tuple , UpperCamelCase : List[Any] ): lowercase__ = model_class(UpperCamelCase ) lowercase__ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) lowercase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase ) , expected_num_stages + 1 ) lowercase__ ,lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Any ): '''simple docstring''' lowercase__ ,lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase__ = self._prepare_for_class(UpperCamelCase , UpperCamelCase ) lowercase__ = model_class(UpperCamelCase ) @jax.jit def model_jitted(UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): return model(pixel_values=UpperCamelCase , **UpperCamelCase ) with self.subTest('''JIT Enabled''' ): lowercase__ = model_jitted(**UpperCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowercase__ = model_jitted(**UpperCamelCase ).to_tuple() self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) ) for jitted_output, output in zip(UpperCamelCase , UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def _SCREAMING_SNAKE_CASE () -> Optional[Any]: """simple docstring""" lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=UpperCamelCase , return_tensors='''np''' ) lowercase__ = model(**UpperCamelCase ) # verify the logits lowercase__ = (1, 1000) self.assertEqual(outputs.logits.shape , UpperCamelCase ) lowercase__ = jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1E-4 ) )
460
'''simple docstring''' from math import sqrt def _SCREAMING_SNAKE_CASE (A = 1_000_000 ) -> int: """simple docstring""" lowercase__ = 0 lowercase__ = 0 lowercase__ = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(A , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"""{solution() = }""")
460
1
"""simple docstring""" from __future__ import annotations def lowerCAmelCase (__UpperCamelCase : str , __UpperCamelCase : Dict ): """simple docstring""" __UpperCamelCase =sorted(numsa + numsa ) __UpperCamelCase =divmod(len(__UpperCamelCase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __lowercase = [float(x) for x in input('''Enter the elements of first array: ''').split()] __lowercase = [float(x) for x in input('''Enter the elements of second array: ''').split()] print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
714
"""simple docstring""" def lowerCAmelCase (__UpperCamelCase : int = 1_0_0_0_0_0_0 ): """simple docstring""" __UpperCamelCase =1 __UpperCamelCase =1 __UpperCamelCase ={1: 1} for inputa in range(2 , __UpperCamelCase ): __UpperCamelCase =0 __UpperCamelCase =inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __UpperCamelCase =(3 * number) + 1 counter += 1 if inputa not in counters: __UpperCamelCase =counter if counter > pre_counter: __UpperCamelCase =inputa __UpperCamelCase =counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
296
0
from collections import defaultdict class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _A , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 __SCREAMING_SNAKE_CASE = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(_A ) ) ] __SCREAMING_SNAKE_CASE = defaultdict(_A ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 __SCREAMING_SNAKE_CASE = (1 << len(_A )) - 1 def _A ( self , _A , _A ): '''simple docstring''' if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement __SCREAMING_SNAKE_CASE = self.count_ways_until(_A , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. __SCREAMING_SNAKE_CASE = total_ways_util return self.dp[mask][task_no] def _A ( self , _A ): '''simple docstring''' for i in range(len(_A ) ): for j in task_performed[i]: self.task[j].append(_A ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": lowerCAmelCase__ : str =5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. lowerCAmelCase__ : Optional[Any] =[[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
148
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase__ : Any ={ '''configuration_mask2former''': [ '''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Mask2FormerConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : List[str] =['''Mask2FormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : List[str] =[ '''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Mask2FormerForUniversalSegmentation''', '''Mask2FormerModel''', '''Mask2FormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCAmelCase__ : List[str] =_LazyModule(__name__, globals()['''__file__'''], _import_structure)
148
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Optional[Any] = { '''configuration_mobilebert''': [ '''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileBertConfig''', '''MobileBertOnnxConfig''', ], '''tokenization_mobilebert''': ['''MobileBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = ['''MobileBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ '''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileBertForMaskedLM''', '''MobileBertForMultipleChoice''', '''MobileBertForNextSentencePrediction''', '''MobileBertForPreTraining''', '''MobileBertForQuestionAnswering''', '''MobileBertForSequenceClassification''', '''MobileBertForTokenClassification''', '''MobileBertLayer''', '''MobileBertModel''', '''MobileBertPreTrainedModel''', '''load_tf_weights_in_mobilebert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = [ '''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileBertForMaskedLM''', '''TFMobileBertForMultipleChoice''', '''TFMobileBertForNextSentencePrediction''', '''TFMobileBertForPreTraining''', '''TFMobileBertForQuestionAnswering''', '''TFMobileBertForSequenceClassification''', '''TFMobileBertForTokenClassification''', '''TFMobileBertMainLayer''', '''TFMobileBertModel''', '''TFMobileBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
680
'''simple docstring''' # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers a : Optional[Any] = float('''nan''') class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : Optional[int] ): """simple docstring""" __snake_case = sys.stdout __snake_case = open(a_ , "a" ) def __getattr__( self : str , a_ : List[Any] ): """simple docstring""" return getattr(self.stdout , a_ ) def A ( self : Union[str, Any] , a_ : List[Any] ): """simple docstring""" self.stdout.write(a_ ) # strip tqdm codes self.file.write(re.sub(r"^.*\r" , "" , a_ , 0 , re.M ) ) def __UpperCAmelCase ( _UpperCAmelCase : int=80 , _UpperCAmelCase : Any=False ) -> Optional[int]: __snake_case = [] # deal with critical env vars __snake_case = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: __snake_case = os.environ.get(_UpperCAmelCase , _UpperCAmelCase ) if val is not None: cmd.append(F'''{key}={val}''' ) # python executable (not always needed if the script is executable) __snake_case = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(_UpperCAmelCase ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes __snake_case = [] __snake_case = "" while len(_UpperCAmelCase ) > 0: current_line += F'''{cmd.pop(0 )} ''' if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(_UpperCAmelCase ) __snake_case = "" return "\\\n".join(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Tuple: # unwrap multi-line input __snake_case = re.sub(R"[\\\n]+" , " " , args.base_cmd ) # remove --output_dir if any and set our own __snake_case = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd ) args.base_cmd += F''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir __snake_case = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> str: # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 1_00 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) __snake_case = subprocess.run(_UpperCAmelCase , capture_output=_UpperCAmelCase , text=_UpperCAmelCase ) if verbose: print("STDOUT" , result.stdout ) print("STDERR" , result.stderr ) # save the streams __snake_case = variation.replace(" " , "-" ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stdout.txt''' , "w" ) as f: f.write(result.stdout ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stderr.txt''' , "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(F'''{output_dir}/all_results.json''' , "r" , encoding="utf-8" ) as f: __snake_case = json.load(_UpperCAmelCase ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , ) -> Dict: __snake_case = [] __snake_case = [] __snake_case = F'''{id}: {variation:<{longest_variation_len}}''' __snake_case = F'''{preamble}: ''' __snake_case = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(_UpperCAmelCase ) , desc=_UpperCAmelCase , leave=_UpperCAmelCase ): __snake_case = process_run_single( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = single_run_metrics[target_metric_key] if not math.isnan(_UpperCAmelCase ): metrics.append(_UpperCAmelCase ) results.append(_UpperCAmelCase ) outcome += "✓" else: outcome += "✘" __snake_case = F'''\33[2K\r{outcome}''' if len(_UpperCAmelCase ) > 0: __snake_case = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} __snake_case = round(mean_metrics[target_metric_key] , 2 ) __snake_case = F'''{outcome} {mean_target}''' if len(_UpperCAmelCase ) > 1: results_str += F''' {tuple(round(_UpperCAmelCase , 2 ) for x in results )}''' print(_UpperCAmelCase ) __snake_case = variation return mean_metrics else: print(_UpperCAmelCase ) return {variation_key: variation, target_metric_key: nan} def __UpperCAmelCase ( ) -> Optional[int]: __snake_case = torch.cuda.get_device_properties(torch.device("cuda" ) ) return F''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> List[Any]: __snake_case = pd.DataFrame(_UpperCAmelCase ) __snake_case = "variation" __snake_case = "diff_%" __snake_case = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan __snake_case = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(_UpperCAmelCase ): # as a fallback, use the minimal value as the sentinel __snake_case = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(_UpperCAmelCase ): __snake_case = df.apply( lambda _UpperCAmelCase : round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="columns" , ) # re-order columns __snake_case = [variation_key, target_metric_key, diff_key, *report_metric_keys] __snake_case = df.reindex(_UpperCAmelCase , axis="columns" ) # reorder cols # capitalize __snake_case = df.rename(str.capitalize , axis="columns" ) # make the cols as narrow as possible __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "<br>" ) , axis="columns" ) __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "\n" ) , axis="columns" ) __snake_case = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] print("\n\n".join(_UpperCAmelCase ) ) def __UpperCAmelCase ( ) -> Dict: __snake_case = argparse.ArgumentParser() parser.add_argument( "--base-cmd" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Base cmd" , ) parser.add_argument( "--variations" , default=_UpperCAmelCase , type=_UpperCAmelCase , nargs="+" , required=_UpperCAmelCase , help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'" , ) parser.add_argument( "--base-variation" , default=_UpperCAmelCase , type=_UpperCAmelCase , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , ) parser.add_argument( "--target-metric-key" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , ) parser.add_argument( "--report-metric-keys" , default="" , type=_UpperCAmelCase , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples" , ) parser.add_argument( "--repeat-times" , default=1 , type=_UpperCAmelCase , help="How many times to re-run each variation - an average will be reported" , ) parser.add_argument( "--output_dir" , default="output_benchmark" , type=_UpperCAmelCase , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , ) parser.add_argument( "--verbose" , default=_UpperCAmelCase , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , ) __snake_case = parser.parse_args() __snake_case = args.output_dir Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) __snake_case = get_base_command(_UpperCAmelCase , _UpperCAmelCase ) # split each dimension into its --foo variations __snake_case = [list(map(str.strip , re.split(R"\|" , _UpperCAmelCase ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __snake_case = list(map(str.strip , map(" ".join , itertools.product(*_UpperCAmelCase ) ) ) ) __snake_case = max(len(_UpperCAmelCase ) for x in variations ) # split wanted keys __snake_case = args.report_metric_keys.split() # capture prints into a log file for convenience __snake_case = F'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(F'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(F'''and this script\'s output is also piped into {report_fn}''' ) __snake_case = Tee(_UpperCAmelCase ) print(F'''\n*** Running {len(_UpperCAmelCase )} benchmarks:''' ) print(F'''Base command: {" ".join(_UpperCAmelCase )}''' ) __snake_case = "variation" __snake_case = [] for id, variation in enumerate(tqdm(_UpperCAmelCase , desc="Total completion: " , leave=_UpperCAmelCase ) ): __snake_case = base_cmd + variation.split() results.append( process_run( id + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.repeat_times , _UpperCAmelCase , args.verbose , ) ) process_results(_UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.base_variation , _UpperCAmelCase ) if __name__ == "__main__": main()
680
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowercase_ = logging.get_logger(__name__) lowercase_ = {"""vocab_file""": """spiece.model"""} lowercase_ = { """vocab_file""": { """TsinghuaAI/CPM-Generate""": """https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model""", } } class __UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : Union[str, Any] , _A : Tuple , _A : int=False , _A : List[str]=True , _A : Any=False , _A : Optional[Any]="<s>" , _A : Optional[int]="</s>" , _A : List[Any]="<unk>" , _A : Optional[int]="<sep>" , _A : str="<pad>" , _A : Optional[Any]="<cls>" , _A : Tuple="<mask>" , _A : Dict=["<eop>", "<eod>"] , _A : Optional[Dict[str, Any]] = None , **_A : Tuple , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token __SCREAMING_SNAKE_CASE : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) __SCREAMING_SNAKE_CASE : List[str] = 3 __SCREAMING_SNAKE_CASE : Tuple = do_lower_case __SCREAMING_SNAKE_CASE : Any = remove_space __SCREAMING_SNAKE_CASE : Any = keep_accents __SCREAMING_SNAKE_CASE : str = vocab_file __SCREAMING_SNAKE_CASE : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowercase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) __SCREAMING_SNAKE_CASE : Optional[int] = jieba __SCREAMING_SNAKE_CASE : Dict = str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def UpperCAmelCase__ ( self : str ): """simple docstring""" return len(self.sp_model ) def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = self.__dict__.copy() __SCREAMING_SNAKE_CASE : List[Any] = None return state def __setstate__( self : Tuple , _A : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __SCREAMING_SNAKE_CASE : Dict = {} __SCREAMING_SNAKE_CASE : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase__ ( self : Union[str, Any] , _A : str ): """simple docstring""" if self.remove_space: __SCREAMING_SNAKE_CASE : List[str] = " ".join(inputs.strip().split() ) else: __SCREAMING_SNAKE_CASE : Tuple = inputs __SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.replace('''``''' , '''\"''' ).replace('''\'\'''' , '''\"''' ) if not self.keep_accents: __SCREAMING_SNAKE_CASE : List[Any] = unicodedata.normalize('''NFKD''' , _lowercase ) __SCREAMING_SNAKE_CASE : List[Any] = "".join([c for c in outputs if not unicodedata.combining(_lowercase )] ) if self.do_lower_case: __SCREAMING_SNAKE_CASE : Dict = outputs.lower() return outputs def UpperCAmelCase__ ( self : List[Any] , _A : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.preprocess_text(_lowercase ) __SCREAMING_SNAKE_CASE : Any = self.sp_model.encode(_lowercase , out_type=_lowercase ) __SCREAMING_SNAKE_CASE : Tuple = [] for piece in pieces: if len(_lowercase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): __SCREAMING_SNAKE_CASE : str = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowercase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __SCREAMING_SNAKE_CASE : List[Any] = cur_pieces[1:] else: __SCREAMING_SNAKE_CASE : Dict = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_lowercase ) else: new_pieces.append(_lowercase ) return new_pieces def UpperCAmelCase__ ( self : Dict , _A : Tuple ): """simple docstring""" return self.sp_model.PieceToId(_lowercase ) def UpperCAmelCase__ ( self : Optional[int] , _A : List[Any] ): """simple docstring""" return self.sp_model.IdToPiece(_lowercase ) def UpperCAmelCase__ ( self : int , _A : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = "".join(_lowercase ).replace(_lowercase , ''' ''' ).strip() return out_string def UpperCAmelCase__ ( self : Any , _A : List[int] , _A : Optional[List[int]] = None ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] __SCREAMING_SNAKE_CASE : Tuple = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase__ ( self : int , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) if token_ids_a is not None: return ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1, 1] return ([0] * len(_lowercase )) + [1, 1] def UpperCAmelCase__ ( self : Optional[Any] , _A : List[int] , _A : Optional[List[int]] = None ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = [self.sep_token_id] __SCREAMING_SNAKE_CASE : List[Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCAmelCase__ ( self : Tuple , _A : str , _A : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __SCREAMING_SNAKE_CASE : Tuple = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowercase ) elif not os.path.isfile(self.vocab_file ): with open(_lowercase , '''wb''' ) as fi: __SCREAMING_SNAKE_CASE : Tuple = self.sp_model.serialized_model_proto() fi.write(_lowercase ) return (out_vocab_file,) def UpperCAmelCase__ ( self : List[str] , *_A : int , **_A : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = super()._decode(*_lowercase , **_lowercase ) __SCREAMING_SNAKE_CASE : List[Any] = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
74
"""simple docstring""" import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def lowercase__ ( lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : Any ) -> Any: # Initialise PyTorch model lowerCAmelCase__ : Any = MobileBertConfig.from_json_file(lowerCamelCase ) print(F"Building PyTorch model from configuration: {config}" ) lowerCAmelCase__ : str = MobileBertForPreTraining(lowerCamelCase ) # Load weights from tf checkpoint lowerCAmelCase__ : Union[str, Any] = load_tf_weights_in_mobilebert(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , lowerCamelCase ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __UpperCAmelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
308
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() a__ : Dict = logging.get_logger(__name__) def _UpperCamelCase ( __A ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = DPTConfig() if "large" in checkpoint_url: UpperCamelCase__ = 1024 UpperCamelCase__ = 4096 UpperCamelCase__ = 24 UpperCamelCase__ = 16 UpperCamelCase__ = [5, 11, 17, 23] UpperCamelCase__ = [256, 512, 1024, 1024] UpperCamelCase__ = (1, 384, 384) if "ade" in checkpoint_url: UpperCamelCase__ = True UpperCamelCase__ = 150 UpperCamelCase__ = "huggingface/label-files" UpperCamelCase__ = "ade20k-id2label.json" UpperCamelCase__ = json.load(open(cached_download(hf_hub_url(__A , __A , repo_type="dataset" ) ) , "r" ) ) UpperCamelCase__ = {int(__A ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} UpperCamelCase__ = [1, 150, 480, 480] return config, expected_shape def _UpperCamelCase ( __A ) -> Any: '''simple docstring''' UpperCamelCase__ = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(__A , __A ) def _UpperCamelCase ( __A ) -> int: '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCamelCase__ = name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: UpperCamelCase__ = name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: UpperCamelCase__ = name.replace("patch_embed" , "patch_embeddings" ) if "pos_embed" in name: UpperCamelCase__ = name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: UpperCamelCase__ = name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: UpperCamelCase__ = name.replace("proj" , "projection" ) if "blocks" in name: UpperCamelCase__ = name.replace("blocks" , "layer" ) if "mlp.fc1" in name: UpperCamelCase__ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: UpperCamelCase__ = name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name: UpperCamelCase__ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: UpperCamelCase__ = name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: UpperCamelCase__ = name.replace("scratch.output_conv" , "head" ) if "scratch" in name: UpperCamelCase__ = name.replace("scratch" , "neck" ) if "layer1_rn" in name: UpperCamelCase__ = name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: UpperCamelCase__ = name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: UpperCamelCase__ = name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: UpperCamelCase__ = name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: UpperCamelCase__ = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCamelCase__ = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: UpperCamelCase__ = name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: UpperCamelCase__ = name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: UpperCamelCase__ = name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: UpperCamelCase__ = name.replace("conv1" , "convolution1" ) if "conv2" in name: UpperCamelCase__ = name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCamelCase__ = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: UpperCamelCase__ = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: UpperCamelCase__ = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: UpperCamelCase__ = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCamelCase__ = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: UpperCamelCase__ = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: UpperCamelCase__ = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: UpperCamelCase__ = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: UpperCamelCase__ = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: UpperCamelCase__ = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: UpperCamelCase__ = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: UpperCamelCase__ = name.replace("pretrained" , "dpt" ) if "bn" in name: UpperCamelCase__ = name.replace("bn" , "batch_norm" ) if "head" in name: UpperCamelCase__ = name.replace("head" , "head.head" ) if "encoder.norm" in name: UpperCamelCase__ = name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: UpperCamelCase__ = name.replace("auxlayer" , "auxiliary_head.head" ) return name def _UpperCamelCase ( __A , __A ) -> List[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) UpperCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ = in_proj_weight[: config.hidden_size, :] UpperCamelCase__ = in_proj_bias[: config.hidden_size] UpperCamelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ = in_proj_bias[-config.hidden_size :] def _UpperCamelCase ( ) -> Dict: '''simple docstring''' UpperCamelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCamelCase__ = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def _UpperCamelCase ( __A , __A , __A , __A ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ = get_dpt_config(__A ) # load original state_dict from URL UpperCamelCase__ = torch.hub.load_state_dict_from_url(__A , map_location="cpu" ) # remove certain keys remove_ignore_keys_(__A ) # rename keys for key in state_dict.copy().keys(): UpperCamelCase__ = state_dict.pop(__A ) UpperCamelCase__ = val # read in qkv matrices read_in_q_k_v(__A , __A ) # load HuggingFace model UpperCamelCase__ = DPTForSemanticSegmentation(__A ) if "ade" in checkpoint_url else DPTForDepthEstimation(__A ) model.load_state_dict(__A ) model.eval() # Check outputs on an image UpperCamelCase__ = 480 if "ade" in checkpoint_url else 384 UpperCamelCase__ = DPTImageProcessor(size=__A ) UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(__A , return_tensors="pt" ) # forward pass UpperCamelCase__ = model(**__A ).logits if "ade" in checkpoint_url else model(**__A ).predicted_depth # Assert logits UpperCamelCase__ = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: UpperCamelCase__ = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(__A ) assert ( torch.allclose(outputs[0, 0, :3, :3] , __A , atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , __A ) ) Path(__A ).mkdir(exist_ok=__A ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__A ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__A ) if push_to_hub: print("Pushing model to hub..." ) model.push_to_hub( repo_path_or_name=Path(__A , __A ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=__A , ) image_processor.push_to_hub( repo_path_or_name=Path(__A , __A ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=__A , ) if __name__ == "__main__": a__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) a__ : Union[str, Any] = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
223
'''simple docstring''' import os from pathlib import Path def _UpperCamelCase ( ) -> Tuple: '''simple docstring''' from torch.utils.cpp_extension import load UpperCamelCase__ = Path(__A ).resolve().parent.parent.parent / "kernels" / "deformable_detr" UpperCamelCase__ = [ root / filename for filename in [ "vision.cpp", os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ), os.path.join("cuda" , "ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention" , __A , with_cuda=__A , extra_include_paths=[str(__A )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
223
1
"""simple docstring""" from queue import PriorityQueue from typing import Any import numpy as np def __lowerCAmelCase ( __UpperCamelCase : dict , __UpperCamelCase : str , __UpperCamelCase : set , __UpperCamelCase : set , __UpperCamelCase : dict , __UpperCamelCase : dict , __UpperCamelCase : PriorityQueue , __UpperCamelCase : dict , __UpperCamelCase : float | int , ): '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue snake_case_ : List[Any] = cst_fwd.get(__UpperCamelCase , np.inf ) snake_case_ : Optional[int] = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) snake_case_ : List[str] = new_cost_f snake_case_ : int = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: snake_case_ : Optional[int] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : dict , __UpperCamelCase : dict ): '''simple docstring''' snake_case_ : List[Any] = -1 snake_case_ : List[Any] = set() snake_case_ : Union[str, Any] = set() snake_case_ : List[str] = {source: 0} snake_case_ : Optional[int] = {destination: 0} snake_case_ : List[Any] = {source: None} snake_case_ : str = {destination: None} snake_case_ : PriorityQueue[Any] = PriorityQueue() snake_case_ : PriorityQueue[Any] = PriorityQueue() snake_case_ : List[str] = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): snake_case_ , snake_case_ : Dict = queue_forward.get() visited_forward.add(__UpperCamelCase ) snake_case_ , snake_case_ : Dict = queue_backward.get() visited_backward.add(__UpperCamelCase ) snake_case_ : Optional[Any] = pass_and_relaxation( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) snake_case_ : int = pass_and_relaxation( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: snake_case_ : List[str] = shortest_distance return shortest_path_distance __lowerCAmelCase : Union[str, Any] = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } __lowerCAmelCase : Tuple = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
58
"""simple docstring""" import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput __lowerCAmelCase : Tuple = '''scheduler_config.json''' class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = 1 _lowerCamelCase = 2 _lowerCamelCase = 3 _lowerCamelCase = 4 _lowerCamelCase = 5 @dataclass class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = 42 class _lowerCAmelCase : """simple docstring""" _lowerCamelCase = SCHEDULER_CONFIG_NAME _lowerCamelCase = ['''dtype'''] _lowerCamelCase = [] _lowerCamelCase = True @classmethod def UpperCAmelCase__ ( cls , _lowercase = None , _lowercase = None , _lowercase=False , **_lowercase , ) -> Any: '''simple docstring''' snake_case_ , snake_case_ : int = cls.load_config( pretrained_model_name_or_path=_lowercase , subfolder=_lowercase , return_unused_kwargs=_lowercase , **_lowercase , ) snake_case_ , snake_case_ : Dict = cls.from_config(_lowercase , return_unused_kwargs=_lowercase , **_lowercase ) if hasattr(_lowercase , """create_state""" ) and getattr(_lowercase , """has_state""" , _lowercase ): snake_case_ : Any = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def UpperCAmelCase__ ( self , _lowercase , _lowercase = False , **_lowercase ) -> Optional[Any]: '''simple docstring''' self.save_config(save_directory=_lowercase , push_to_hub=_lowercase , **_lowercase ) @property def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return self._get_compatibles() @classmethod def UpperCAmelCase__ ( cls ) -> Dict: '''simple docstring''' snake_case_ : Union[str, Any] = list(set([cls.__name__] + cls._compatibles ) ) snake_case_ : str = importlib.import_module(__name__.split(""".""" )[0] ) snake_case_ : Optional[int] = [ getattr(_lowercase , _lowercase ) for c in compatible_classes_str if hasattr(_lowercase , _lowercase ) ] return compatible_classes def __lowerCAmelCase ( __UpperCamelCase : jnp.ndarray , __UpperCamelCase : Tuple[int] ): '''simple docstring''' assert len(__UpperCamelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(__UpperCamelCase ) - x.ndim) ) , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Any=0.999 , __UpperCamelCase : Optional[int]=jnp.floataa ): '''simple docstring''' def alpha_bar(__UpperCamelCase : Optional[int] ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 snake_case_ : Optional[Any] = [] for i in range(__UpperCamelCase ): snake_case_ : Dict = i / num_diffusion_timesteps snake_case_ : Union[str, Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(__UpperCamelCase ) / alpha_bar(__UpperCamelCase ) , __UpperCamelCase ) ) return jnp.array(__UpperCamelCase , dtype=__UpperCamelCase ) @flax.struct.dataclass class _lowerCAmelCase : """simple docstring""" _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 @classmethod def UpperCAmelCase__ ( cls , _lowercase ) -> int: '''simple docstring''' snake_case_ : Any = scheduler.config if config.trained_betas is not None: snake_case_ : Optional[Any] = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": snake_case_ : int = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. snake_case_ : str = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule snake_case_ : int = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( f'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}' ) snake_case_ : Optional[Any] = 1.0 - betas snake_case_ : Any = jnp.cumprod(_lowercase , axis=0 ) return cls( alphas=_lowercase , betas=_lowercase , alphas_cumprod=_lowercase , ) def __lowerCAmelCase ( __UpperCamelCase : CommonSchedulerState , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray ): '''simple docstring''' snake_case_ : Tuple = state.alphas_cumprod snake_case_ : Optional[int] = alphas_cumprod[timesteps] ** 0.5 snake_case_ : Dict = sqrt_alpha_prod.flatten() snake_case_ : int = broadcast_to_shape_from_left(__UpperCamelCase , original_samples.shape ) snake_case_ : Optional[Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 snake_case_ : Dict = sqrt_one_minus_alpha_prod.flatten() snake_case_ : Tuple = broadcast_to_shape_from_left(__UpperCamelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def __lowerCAmelCase ( __UpperCamelCase : CommonSchedulerState , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray ): '''simple docstring''' snake_case_ , snake_case_ : str = get_sqrt_alpha_prod(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ : Any = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __lowerCAmelCase ( __UpperCamelCase : CommonSchedulerState , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray ): '''simple docstring''' snake_case_ , snake_case_ : List[Any] = get_sqrt_alpha_prod(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ : Any = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
58
1
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class _SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" _SCREAMING_SNAKE_CASE =42 _SCREAMING_SNAKE_CASE =42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
716
"""simple docstring""" def SCREAMING_SNAKE_CASE ( lowerCamelCase_): assert column_title.isupper() a__ = 0 a__ = len(lowerCamelCase_) - 1 a__ = 0 while index >= 0: a__ = (ord(column_title[index]) - 64) * pow(26 , lowerCamelCase_) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
200
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class _lowerCamelCase ( datasets.BeamBasedBuilder ): def UpperCamelCase_ ( self ) -> Optional[int]: return datasets.DatasetInfo( features=datasets.Features({'''content''': datasets.Value('''string''' )} ) , supervised_keys=lowerCAmelCase , ) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase ) -> Dict: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_dummy_examples()} )] def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase ) -> str: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(lowerCAmelCase ) class _lowerCamelCase ( datasets.BeamBasedBuilder ): def UpperCamelCase_ ( self ) -> List[str]: return datasets.DatasetInfo( features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) , supervised_keys=lowerCAmelCase , ) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase ) -> List[str]: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_nested_examples()} ) ] def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase ) -> List[str]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(lowerCAmelCase ) def A__ ( ): return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] def A__ ( ): return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] class _lowerCamelCase ( UpperCamelCase_ ): @require_beam def UpperCamelCase_ ( self ) -> str: SCREAMING_SNAKE_CASE__: Optional[int]= len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE__: str= DummyBeamDataset(cache_dir=lowerCAmelCase , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(lowerCAmelCase , builder.name , '''default''' , '''0.0.0''' , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) SCREAMING_SNAKE_CASE__: str= builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , lowerCAmelCase ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , lowerCAmelCase ) self.assertDictEqual(dset['''train'''][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(lowerCAmelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def UpperCamelCase_ ( self ) -> int: import apache_beam as beam SCREAMING_SNAKE_CASE__: Tuple= beam.io.parquetio.WriteToParquet SCREAMING_SNAKE_CASE__: List[Any]= len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE__: str= DummyBeamDataset(cache_dir=lowerCAmelCase , beam_runner='''DirectRunner''' ) with patch('''apache_beam.io.parquetio.WriteToParquet''' ) as write_parquet_mock: SCREAMING_SNAKE_CASE__: Union[str, Any]= partial(lowerCAmelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( lowerCAmelCase , builder.name , '''default''' , '''0.0.0''' , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( lowerCAmelCase , builder.name , '''default''' , '''0.0.0''' , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) SCREAMING_SNAKE_CASE__: Optional[Any]= builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , lowerCAmelCase ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , lowerCAmelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['''train''']['''content'''] ) , sorted(['''foo''', '''bar''', '''foobar'''] ) ) self.assertTrue( os.path.exists(os.path.join(lowerCAmelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def UpperCamelCase_ ( self ) -> List[str]: with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE__: List[str]= DummyBeamDataset(cache_dir=lowerCAmelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def UpperCamelCase_ ( self ) -> List[str]: SCREAMING_SNAKE_CASE__: int= len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE__: Tuple= NestedBeamDataset(cache_dir=lowerCAmelCase , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(lowerCAmelCase , builder.name , '''default''' , '''0.0.0''' , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) ) SCREAMING_SNAKE_CASE__: List[str]= builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , lowerCAmelCase ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , lowerCAmelCase ) self.assertDictEqual(dset['''train'''][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(lowerCAmelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset
64
"""simple docstring""" def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(F'''{price_plus_tax(100, 0.25) = }''') print(F'''{price_plus_tax(125.50, 0.05) = }''')
530
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = '''dandelin/vilt-b32-finetuned-vqa''' UpperCamelCase_ = ( '''This is a tool that answers a question about an image. It takes an input named `image` which should be the ''' '''image containing the information, as well as a `question` which should be the question in English. It ''' '''returns a text that is the answer to the question.''' ) UpperCamelCase_ = '''image_qa''' UpperCamelCase_ = AutoProcessor UpperCamelCase_ = AutoModelForVisualQuestionAnswering UpperCamelCase_ = ['''image''', '''text'''] UpperCamelCase_ = ['''text'''] def __init__( self : Optional[int] , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> Dict: '''simple docstring''' requires_backends(self , ['''vision'''] ) super().__init__(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Tuple , UpperCAmelCase : "Image" , UpperCAmelCase : str ) -> Tuple: '''simple docstring''' return self.pre_processor(UpperCAmelCase , UpperCAmelCase , return_tensors='''pt''' ) def A__ ( self : Dict , UpperCAmelCase : List[str] ) -> Optional[int]: '''simple docstring''' with torch.no_grad(): return self.model(**UpperCAmelCase ).logits def A__ ( self : Dict , UpperCAmelCase : Tuple ) -> List[str]: '''simple docstring''' lowercase : str =outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
8
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE = parse(importlib.metadata.version('torch')) def lowercase_ ( __A : Union[str, Version] , __A : str , __A : str ) -> Union[str, Any]: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) lowercase : Any =STR_OPERATION_TO_FUNC[operation] if isinstance(__A , __A ): lowercase : List[Any] =parse(importlib.metadata.version(__A ) ) return operation(__A , parse(__A ) ) def lowercase_ ( __A : str , __A : str ) -> Tuple: """simple docstring""" return compare_versions(__A , __A , __A )
8
1
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset from utils import logger class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = params UpperCAmelCase_ = np.array(_UpperCAmelCase ) UpperCAmelCase_ = np.array([len(_UpperCAmelCase ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : str , _UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' return (self.token_ids[index], self.lengths[index]) def __len__( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return len(self.lengths ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def lowercase__ ( self : str ) -> Any: '''simple docstring''' UpperCAmelCase_ = self.params.max_model_input_size UpperCAmelCase_ = self.lengths > max_len logger.info(F"""Splitting {sum(_UpperCAmelCase )} too long sequences.""" ) def divide_chunks(_UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ): return [l[i : i + n] for i in range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase )] UpperCAmelCase_ = [] UpperCAmelCase_ = [] if self.params.mlm: UpperCAmelCase_ , UpperCAmelCase_ = self.params.special_tok_ids["cls_token"], self.params.special_tok_ids["sep_token"] else: UpperCAmelCase_ , UpperCAmelCase_ = self.params.special_tok_ids["bos_token"], self.params.special_tok_ids["eos_token"] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: UpperCAmelCase_ = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: UpperCAmelCase_ = np.insert(_UpperCAmelCase , 0 , _UpperCAmelCase ) if sub_s[-1] != sep_id: UpperCAmelCase_ = np.insert(_UpperCAmelCase , len(_UpperCAmelCase ) , _UpperCAmelCase ) assert len(_UpperCAmelCase ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(_UpperCAmelCase ) new_tok_ids.extend(_UpperCAmelCase ) new_lengths.extend([len(_UpperCAmelCase ) for l in sub_seqs] ) UpperCAmelCase_ = np.array(_UpperCAmelCase ) UpperCAmelCase_ = np.array(_UpperCAmelCase ) def lowercase__ ( self : Any ) -> Dict: '''simple docstring''' UpperCAmelCase_ = len(self ) UpperCAmelCase_ = self.lengths > 11 UpperCAmelCase_ = self.token_ids[indices] UpperCAmelCase_ = self.lengths[indices] UpperCAmelCase_ = len(self ) logger.info(F"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' if "unk_token" not in self.params.special_tok_ids: return else: UpperCAmelCase_ = self.params.special_tok_ids["unk_token"] UpperCAmelCase_ = len(self ) UpperCAmelCase_ = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) UpperCAmelCase_ = (unk_occs / self.lengths) < 0.5 UpperCAmelCase_ = self.token_ids[indices] UpperCAmelCase_ = self.lengths[indices] UpperCAmelCase_ = len(self ) logger.info(F"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def lowercase__ ( self : Any ) -> Any: '''simple docstring''' if not self.params.is_master: return logger.info(F"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def lowercase__ ( self : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' UpperCAmelCase_ = [t[0] for t in batch] UpperCAmelCase_ = [t[1] for t in batch] assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) # Max for paddings UpperCAmelCase_ = max(_UpperCAmelCase ) # Pad token ids if self.params.mlm: UpperCAmelCase_ = self.params.special_tok_ids["pad_token"] else: UpperCAmelCase_ = self.params.special_tok_ids["unk_token"] UpperCAmelCase_ = [list(t.astype(_UpperCAmelCase ) ) + [pad_idx] * (max_seq_len_ - len(_UpperCAmelCase )) for t in token_ids] assert len(tk_ ) == len(_UpperCAmelCase ) assert all(len(_UpperCAmelCase ) == max_seq_len_ for t in tk_ ) UpperCAmelCase_ = torch.tensor(tk_ ) # (bs, max_seq_len_) UpperCAmelCase_ = torch.tensor(_UpperCAmelCase ) # (bs) return tk_t, lg_t
82
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def __UpperCamelCase ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ) ) def __UpperCamelCase ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray ): if dataset.ndim != value_array.ndim: __a : Optional[Any] = ( '''Wrong input data\'s dimensions... ''' f"dataset : {dataset.ndim}, value_array : {value_array.ndim}" ) raise ValueError(lowerCAmelCase__ ) try: if dataset.shape[1] != value_array.shape[1]: __a : Optional[int] = ( '''Wrong input data\'s shape... ''' f"dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}" ) raise ValueError(lowerCAmelCase__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: __a : Tuple = ( '''Input data have different datatype... ''' f"dataset : {dataset.dtype}, value_array : {value_array.dtype}" ) raise TypeError(lowerCAmelCase__ ) __a : Optional[Any] = [] for value in value_array: __a : Union[str, Any] = euclidean(lowerCAmelCase__ , dataset[0] ) __a : List[Any] = dataset[0].tolist() for dataset_value in dataset[1:]: __a : List[str] = euclidean(lowerCAmelCase__ , lowerCAmelCase__ ) if dist > temp_dist: __a : List[Any] = temp_dist __a : Optional[Any] = dataset_value.tolist() answer.append([vector, dist] ) return answer def __UpperCamelCase ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray ): return np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) / (norm(lowerCAmelCase__ ) * norm(lowerCAmelCase__ )) if __name__ == "__main__": import doctest doctest.testmod()
521
0
def _UpperCamelCase ( lowerCAmelCase_ ) ->str: return "".join([hex(lowerCAmelCase_ )[2:].zfill(2 ).upper() for byte in list(lowerCAmelCase_ )] ) def _UpperCamelCase ( lowerCAmelCase_ ) ->bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(lowerCAmelCase_ ) % 2) != 0: raise ValueError( """Base16 encoded data is invalid: Data does not have an even number of hex digits.""" ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowerCAmelCase_ ) <= set("""0123456789ABCDEF""" ): raise ValueError( """Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.""" ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 1_6 ) for i in range(0 , len(lowerCAmelCase_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
717
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __lowercase ( unittest.TestCase ): def _lowercase ( self : Any ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = torch.nn.Linear(1_0 , 1_0 ) UpperCAmelCase = torch.optim.SGD(model.parameters() , 0.1 ) UpperCAmelCase = Accelerator() UpperCAmelCase = accelerator.prepare(__lowerCamelCase ) try: pickle.loads(pickle.dumps(__lowerCamelCase ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
627
0
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCAmelCase ( __lowercase,unittest.TestCase ): A__ : List[str] = RoCBertTokenizer A__ : str = None A__ : Dict = False A__ : Dict = True A__ : Any = filter_non_english def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" super().setUp() _snake_case = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] _snake_case = {} _snake_case = {} for i, value in enumerate(UpperCAmelCase__ ): _snake_case = i _snake_case = i _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] ) _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer: json.dump(UpperCAmelCase__ , UpperCAmelCase__ , ensure_ascii=UpperCAmelCase__ ) with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer: json.dump(UpperCAmelCase__ , UpperCAmelCase__ , ensure_ascii=UpperCAmelCase__ ) def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _snake_case = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) _snake_case = tokenizer.tokenize('''你好[SEP]你是谁''' ) self.assertListEqual(UpperCAmelCase__ , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase__ ) , [5, 6, 2, 5, 7, 8] ) def __UpperCAmelCase ( self : int ): """simple docstring""" _snake_case = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" _snake_case = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self : Tuple ): """simple docstring""" _snake_case = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" _snake_case = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" _snake_case = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self : Any ): """simple docstring""" _snake_case = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self : Tuple ): """simple docstring""" _snake_case = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" _snake_case = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self : Tuple ): """simple docstring""" _snake_case = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def __UpperCAmelCase ( self : str ): """simple docstring""" _snake_case = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] _snake_case = {} for i, token in enumerate(UpperCAmelCase__ ): _snake_case = i _snake_case = RoCBertWordpieceTokenizer(vocab=UpperCAmelCase__ , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def __UpperCAmelCase ( self : List[str] ): """simple docstring""" self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def __UpperCAmelCase ( self : Tuple ): """simple docstring""" self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def __UpperCAmelCase ( self : Dict ): """simple docstring""" _snake_case = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCAmelCase__ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) if self.test_rust_tokenizer: _snake_case = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(UpperCAmelCase__ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _snake_case = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) _snake_case = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" _snake_case = tokenizer_r.encode_plus( UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , ) _snake_case = tokenizer_r.do_lower_case if hasattr(UpperCAmelCase__ , '''do_lower_case''' ) else False _snake_case = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), '''Allen'''), ((2_1, 2_3), '''##NL'''), ((2_3, 2_4), '''##P'''), ((2_5, 3_3), '''sentence'''), ((3_3, 3_4), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), '''allen'''), ((2_1, 2_3), '''##nl'''), ((2_3, 2_4), '''##p'''), ((2_5, 3_3), '''sentence'''), ((3_3, 3_4), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _snake_case = ['''的''', '''人''', '''有'''] _snake_case = ''''''.join(UpperCAmelCase__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _snake_case = True _snake_case = self.tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) _snake_case = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) _snake_case = tokenizer_p.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _snake_case = tokenizer_r.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _snake_case = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase__ ) _snake_case = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _snake_case = False _snake_case = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) _snake_case = self.tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) _snake_case = tokenizer_r.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _snake_case = tokenizer_p.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _snake_case = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase__ ) _snake_case = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase__ ) # it is expected that only the first Chinese character is not preceded by "##". _snake_case = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(UpperCAmelCase__ ) ] self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" _snake_case = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) _snake_case = tokenizer.encode('''你好''' , add_special_tokens=UpperCAmelCase__ ) _snake_case = tokenizer.encode('''你是谁''' , add_special_tokens=UpperCAmelCase__ ) _snake_case = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ ) _snake_case = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ , UpperCAmelCase__ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" _snake_case = self.get_tokenizers(do_lower_case=UpperCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): _snake_case = '''你好,你是谁''' _snake_case = tokenizer.tokenize(UpperCAmelCase__ ) _snake_case = tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) _snake_case = tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase__ ) _snake_case = tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase__ ) _snake_case = tokenizer.prepare_for_model( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _snake_case = tokenizer.encode_plus(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ )
103
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case =logging.get_logger(__name__) __snake_case ={ """bigcode/gpt_bigcode-santacoder""": """https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json""", } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Optional[Any] = '''gpt_bigcode''' lowerCamelCase : Any = ['''past_key_values'''] lowerCamelCase : List[Any] = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : List[str] , UpperCAmelCase__ : List[str]=5_0_2_5_7 , UpperCAmelCase__ : List[str]=1_0_2_4 , UpperCAmelCase__ : Optional[Any]=7_6_8 , UpperCAmelCase__ : int=1_2 , UpperCAmelCase__ : List[str]=1_2 , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[int]="gelu_pytorch_tanh" , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : str=0.1 , UpperCAmelCase__ : List[str]=1E-5 , UpperCAmelCase__ : int=0.02 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Dict=5_0_2_5_6 , UpperCAmelCase__ : Any=5_0_2_5_6 , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Union[str, Any]=True , **UpperCAmelCase__ : int , ) -> List[str]: lowerCAmelCase = vocab_size lowerCAmelCase = n_positions lowerCAmelCase = n_embd lowerCAmelCase = n_layer lowerCAmelCase = n_head lowerCAmelCase = n_inner lowerCAmelCase = activation_function lowerCAmelCase = resid_pdrop lowerCAmelCase = embd_pdrop lowerCAmelCase = attn_pdrop lowerCAmelCase = layer_norm_epsilon lowerCAmelCase = initializer_range lowerCAmelCase = scale_attn_weights lowerCAmelCase = use_cache lowerCAmelCase = attention_softmax_in_fpaa lowerCAmelCase = scale_attention_softmax_in_fpaa lowerCAmelCase = multi_query lowerCAmelCase = bos_token_id lowerCAmelCase = eos_token_id super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ )
133
0
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class __A ( enum.Enum ): __A = 0 __A = 1 __A = 2 @add_end_docstrings(a ) class __A ( a ): __A = """ In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> """ def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ): super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. lowerCamelCase =None if self.model.config.prefix is not None: lowerCamelCase =self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. lowerCamelCase =self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. lowerCamelCase , lowerCamelCase , lowerCamelCase =self._sanitize_parameters(prefix=UpperCAmelCase_ , **self._forward_params ) lowerCamelCase ={**self._preprocess_params, **preprocess_params} lowerCamelCase ={**self._forward_params, **forward_params} def _snake_case ( self , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , **UpperCAmelCase_ , ): lowerCamelCase ={} if prefix is not None: lowerCamelCase =prefix if prefix: lowerCamelCase =self.tokenizer( UpperCAmelCase_ , padding=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=self.framework ) lowerCamelCase =prefix_inputs["""input_ids"""].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" """ [None, 'hole']""" ) lowerCamelCase =handle_long_generation preprocess_params.update(UpperCAmelCase_ ) lowerCamelCase =generate_kwargs lowerCamelCase ={} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_full_text`""" ) if return_tensors is not None: raise ValueError("""`return_full_text` is mutually exclusive with `return_tensors`""" ) lowerCamelCase =ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_tensors`""" ) lowerCamelCase =ReturnType.TENSORS if return_type is not None: lowerCamelCase =return_type if clean_up_tokenization_spaces is not None: lowerCamelCase =clean_up_tokenization_spaces if stop_sequence is not None: lowerCamelCase =self.tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) lowerCamelCase =stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _snake_case ( self , *UpperCAmelCase_ , **UpperCAmelCase_ ): # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"""add_space_before_punct_symbol""": True} ) return super()._parse_and_tokenize(*UpperCAmelCase_ , **UpperCAmelCase_ ) def __call__( self , UpperCAmelCase_ , **UpperCAmelCase_ ): return super().__call__(UpperCAmelCase_ , **UpperCAmelCase_ ) def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_="" , UpperCAmelCase_=None , **UpperCAmelCase_ ): lowerCamelCase =self.tokenizer( prefix + prompt_text , padding=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=self.framework ) lowerCamelCase =prompt_text if handle_long_generation == "hole": lowerCamelCase =inputs["""input_ids"""].shape[-1] if "max_new_tokens" in generate_kwargs: lowerCamelCase =generate_kwargs["""max_new_tokens"""] else: lowerCamelCase =generate_kwargs.get("""max_length""" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("""We cannot infer how many new tokens are expected""" ) if cur_len + new_tokens > self.tokenizer.model_max_length: lowerCamelCase =self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( """We cannot use `hole` to handle this generation the number of desired tokens exceeds the""" """ models max length""" ) lowerCamelCase =inputs["""input_ids"""][:, -keep_length:] if "attention_mask" in inputs: lowerCamelCase =inputs["""attention_mask"""][:, -keep_length:] return inputs def _snake_case ( self , UpperCAmelCase_ , **UpperCAmelCase_ ): lowerCamelCase =model_inputs["""input_ids"""] lowerCamelCase =model_inputs.get("""attention_mask""" , UpperCAmelCase_ ) # Allow empty prompts if input_ids.shape[1] == 0: lowerCamelCase =None lowerCamelCase =None lowerCamelCase =1 else: lowerCamelCase =input_ids.shape[0] lowerCamelCase =model_inputs.pop("""prompt_text""" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. lowerCamelCase =generate_kwargs.pop("""prefix_length""" , 0 ) if prefix_length > 0: lowerCamelCase ="""max_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].max_new_tokens is not None ) if not has_max_new_tokens: lowerCamelCase =generate_kwargs.get("""max_length""" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length lowerCamelCase ="""min_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL lowerCamelCase =self.model.generate(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCamelCase =generated_sequence.shape[0] if self.framework == "pt": lowerCamelCase =generated_sequence.reshape(UpperCAmelCase_ , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": lowerCamelCase =tf.reshape(UpperCAmelCase_ , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_=ReturnType.FULL_TEXT , UpperCAmelCase_=True ): lowerCamelCase =model_outputs["""generated_sequence"""][0] lowerCamelCase =model_outputs["""input_ids"""] lowerCamelCase =model_outputs["""prompt_text"""] lowerCamelCase =generated_sequence.numpy().tolist() lowerCamelCase =[] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: lowerCamelCase ={"""generated_token_ids""": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text lowerCamelCase =self.tokenizer.decode( UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: lowerCamelCase =0 else: lowerCamelCase =len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ , ) ) if return_type == ReturnType.FULL_TEXT: lowerCamelCase =prompt_text + text[prompt_length:] else: lowerCamelCase =text[prompt_length:] lowerCamelCase ={"""generated_text""": all_text} records.append(UpperCAmelCase_ ) return records
269
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore UpperCAmelCase__ : List[Any] =list(good_file_paths()) assert filepaths, "good_file_paths() failed!" UpperCAmelCase__ : Dict =[file for file in filepaths if file != file.lower()] if upper_files: print(F"{len(upper_files)} files contain uppercase characters:") print('''\n'''.join(upper_files) + '''\n''') UpperCAmelCase__ : Dict =[file for file in filepaths if ''' ''' in file] if space_files: print(F"{len(space_files)} files contain space characters:") print('''\n'''.join(space_files) + '''\n''') UpperCAmelCase__ : Dict =[file for file in filepaths if '''-''' in file] if hyphen_files: print(F"{len(hyphen_files)} files contain hyphen characters:") print('''\n'''.join(hyphen_files) + '''\n''') UpperCAmelCase__ : Optional[int] =[file for file in filepaths if os.sep not in file] if nodir_files: print(F"{len(nodir_files)} files are not in a directory:") print('''\n'''.join(nodir_files) + '''\n''') UpperCAmelCase__ : str =len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
269
1
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def __UpperCAmelCase ( __a : int = 3 ) -> qiskit.result.counts.Counts: """simple docstring""" if isinstance(__a ,__a ): raise TypeError('''number of qubits must be a integer.''' ) if number_of_qubits <= 0: raise ValueError('''number of qubits must be > 0.''' ) if math.floor(__a ) != number_of_qubits: raise ValueError('''number of qubits must be exact integer.''' ) if number_of_qubits > 10: raise ValueError('''number of qubits too large to simulate(>10).''' ) _a : Union[str, Any] = QuantumRegister(__a ,'''qr''' ) _a : List[Any] = ClassicalRegister(__a ,'''cr''' ) _a : str = QuantumCircuit(__a ,__a ) _a : Any = number_of_qubits for i in range(__a ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(__a ): quantum_circuit.cp(np.pi / 2 ** (counter - j) ,__a ,__a ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(__a ,number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(__a ,__a ) # simulate with 10000 shots _a : Any = Aer.get_backend('''qasm_simulator''' ) _a : Optional[int] = execute(__a ,__a ,shots=10_000 ) return job.result().get_counts(__a ) if __name__ == "__main__": print( f'''Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}''' )
14
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params __UpperCamelCase : int = getLogger(__name__) __UpperCamelCase : int = """cuda""" if torch.cuda.is_available() else """cpu""" def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: List[str], SCREAMING_SNAKE_CASE__: str, SCREAMING_SNAKE_CASE__: str, SCREAMING_SNAKE_CASE__: int = 8, SCREAMING_SNAKE_CASE__: str = DEFAULT_DEVICE, SCREAMING_SNAKE_CASE__: Any=False, SCREAMING_SNAKE_CASE__: Tuple="summarization", SCREAMING_SNAKE_CASE__: List[Any]=None, **SCREAMING_SNAKE_CASE__: int, ) -> Dict: """simple docstring""" __a = Path(SCREAMING_SNAKE_CASE__ ).open('w', encoding='utf-8' ) __a = str(SCREAMING_SNAKE_CASE__ ) __a = AutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) if fpaa: __a = model.half() __a = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. __a = time.time() # update config with task specific params use_task_specific_params(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) if prefix is None: __a = prefix or getattr(model.config, 'prefix', '' ) or '' for examples_chunk in tqdm(list(chunks(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) ) ): __a = [prefix + text for text in examples_chunk] __a = tokenizer(SCREAMING_SNAKE_CASE__, return_tensors='pt', truncation=SCREAMING_SNAKE_CASE__, padding='longest' ).to(SCREAMING_SNAKE_CASE__ ) __a = model.generate( input_ids=batch.input_ids, attention_mask=batch.attention_mask, **SCREAMING_SNAKE_CASE__, ) __a = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__, skip_special_tokens=SCREAMING_SNAKE_CASE__, clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) for hypothesis in dec: fout.write(hypothesis + '\n' ) fout.flush() fout.close() __a = int(time.time() - start_time ) # seconds __a = len(SCREAMING_SNAKE_CASE__ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs, 4 )} def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' ) def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: Optional[int]=True ) -> List[Any]: """simple docstring""" __a = argparse.ArgumentParser() parser.add_argument('model_name', type=SCREAMING_SNAKE_CASE__, help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('input_path', type=SCREAMING_SNAKE_CASE__, help='like cnn_dm/test.source' ) parser.add_argument('save_path', type=SCREAMING_SNAKE_CASE__, help='where to save summaries' ) parser.add_argument('--reference_path', type=SCREAMING_SNAKE_CASE__, required=SCREAMING_SNAKE_CASE__, help='like cnn_dm/test.target' ) parser.add_argument('--score_path', type=SCREAMING_SNAKE_CASE__, required=SCREAMING_SNAKE_CASE__, default='metrics.json', help='where to save metrics' ) parser.add_argument('--device', type=SCREAMING_SNAKE_CASE__, required=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='cuda, cuda:1, cpu etc.' ) parser.add_argument( '--prefix', type=SCREAMING_SNAKE_CASE__, required=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='will be added to the begininng of src examples' ) parser.add_argument('--task', type=SCREAMING_SNAKE_CASE__, default='summarization', help='used for task_specific_params + metrics' ) parser.add_argument('--bs', type=SCREAMING_SNAKE_CASE__, default=8, required=SCREAMING_SNAKE_CASE__, help='batch size' ) parser.add_argument( '--n_obs', type=SCREAMING_SNAKE_CASE__, default=-1, required=SCREAMING_SNAKE_CASE__, help='How many observations. Defaults to all.' ) parser.add_argument('--fp16', action='store_true' ) parser.add_argument('--dump-args', action='store_true', help='print the custom hparams with the results' ) parser.add_argument( '--info', nargs='?', type=SCREAMING_SNAKE_CASE__, const=datetime_now(), help=( 'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.' ' lang=en-ru. If no value is passed, the current datetime string will be used.' ), ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __a , __a = parser.parse_known_args() __a = parse_numeric_n_bool_cl_kwargs(SCREAMING_SNAKE_CASE__ ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) __a = [' ' + x.rstrip() if 't5' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __a = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('Can\'t mix --fp16 and --device cpu' ) __a = generate_summaries_or_translations( SCREAMING_SNAKE_CASE__, args.save_path, args.model_name, batch_size=args.bs, device=args.device, fpaa=args.fpaa, task=args.task, prefix=args.prefix, **SCREAMING_SNAKE_CASE__, ) if args.reference_path is None: return {} # Compute scores __a = calculate_bleu if 'translation' in args.task else calculate_rouge __a = [x.rstrip() for x in open(args.save_path ).readlines()] __a = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(SCREAMING_SNAKE_CASE__ )] __a = score_fn(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) scores.update(SCREAMING_SNAKE_CASE__ ) if args.dump_args: scores.update(SCREAMING_SNAKE_CASE__ ) if args.info: __a = args.info if verbose: print(SCREAMING_SNAKE_CASE__ ) if args.score_path is not None: json.dump(SCREAMING_SNAKE_CASE__, open(args.score_path, 'w' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
448
0
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING a__ = logging.get_logger(__name__) @add_end_docstrings(__lowercase ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __init__( self , *_a , **_a ) -> Optional[Any]: super().__init__(*_a , **_a ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def __lowercase ( self , _a=None ) -> str: _a : int = {} if top_k is not None: _a : List[str] = top_k return {}, {}, postprocess_params def __call__( self , _a , **_a ) -> List[Any]: return super().__call__(_a , **_a ) def __lowercase ( self , _a ) -> Optional[Any]: _a : List[Any] = load_image(_a ) _a : List[str] = self.image_processor(images=_a , return_tensors=self.framework ) return model_inputs def __lowercase ( self , _a ) -> Any: _a : Tuple = self.model(**_a ) return model_outputs def __lowercase ( self , _a , _a=5 ) -> Union[str, Any]: if top_k > self.model.config.num_labels: _a : Union[str, Any] = self.model.config.num_labels if self.framework == "pt": _a : Optional[int] = model_outputs.logits.softmax(-1 )[0] _a : Dict = probs.topk(_a ) elif self.framework == "tf": _a : Optional[int] = stable_softmax(model_outputs.logits , axis=-1 )[0] _a : Tuple = tf.math.top_k(_a , k=_a ) _a : int = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) _a : int = scores.tolist() _a : Optional[int] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_a , _a )]
700
import os def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" with open(os.path.dirname(__a ) + '''/grid.txt''' ) as f: _a : str = [] # noqa: E741 for _ in range(20 ): l.append([int(__a ) for x in f.readline().split()] ) _a : List[str] = 0 # right for i in range(20 ): for j in range(17 ): _a : Union[str, Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: _a : Any = temp # down for i in range(17 ): for j in range(20 ): _a : List[str] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: _a : int = temp # diagonal 1 for i in range(17 ): for j in range(17 ): _a : List[Any] = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: _a : List[str] = temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): _a : Tuple = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: _a : Optional[int] = temp return maximum if __name__ == "__main__": print(solution())
578
0
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowercase , _lowercase=3 , _lowercase=3_2 , _lowercase=3 , _lowercase=1_0 , _lowercase=[1_0, 2_0, 3_0, 4_0] , _lowercase=[1, 1, 2, 1] , _lowercase=True , _lowercase=True , _lowercase="relu" , _lowercase=3 , _lowercase=None , ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : str = batch_size snake_case_ : Union[str, Any] = image_size snake_case_ : str = num_channels snake_case_ : Union[str, Any] = embeddings_size snake_case_ : Tuple = hidden_sizes snake_case_ : int = depths snake_case_ : int = is_training snake_case_ : Dict = use_labels snake_case_ : List[str] = hidden_act snake_case_ : List[str] = num_labels snake_case_ : Optional[Any] = scope snake_case_ : Tuple = len(_lowercase ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ : Tuple = None if self.use_labels: snake_case_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ : Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Any = TFResNetModel(config=_lowercase ) snake_case_ : Tuple = model(_lowercase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Dict: '''simple docstring''' snake_case_ : Union[str, Any] = self.num_labels snake_case_ : Optional[Any] = TFResNetForImageClassification(_lowercase ) snake_case_ : Optional[int] = model(_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : str = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ : Dict = config_and_inputs snake_case_ : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _lowerCamelCase = ( {'''feature-extraction''': TFResNetModel, '''image-classification''': TFResNetForImageClassification} if is_tf_available() else {} ) _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : List[str] = TFResNetModelTester(self ) snake_case_ : List[Any] = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ , snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Optional[Any] = model_class(_lowercase ) snake_case_ : List[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : Any = [*signature.parameters.keys()] snake_case_ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowercase ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' def check_hidden_states_output(_lowercase , _lowercase , _lowercase ): snake_case_ : str = model_class(_lowercase ) snake_case_ : Tuple = model(**self._prepare_for_class(_lowercase , _lowercase ) ) snake_case_ : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case_ : Any = self.model_tester.num_stages self.assertEqual(len(_lowercase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case_ , snake_case_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Optional[Any] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case_ : List[str] = layer_type snake_case_ : Any = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ : Tuple = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowercase ) @slow def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : str = TFResNetModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Optional[int] = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) snake_case_ : str = self.default_image_processor snake_case_ : Optional[Any] = prepare_img() snake_case_ : Dict = image_processor(images=_lowercase , return_tensors="""tf""" ) # forward pass snake_case_ : Dict = model(**_lowercase ) # verify the logits snake_case_ : str = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _lowercase ) snake_case_ : Optional[Any] = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _lowercase , atol=1E-4 ) )
58
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
684
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) snake_case_ = logging.getLogger(__name__) @dataclass class a__ : __magic_name__ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __magic_name__ : Optional[str] = field( default=_lowercase, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __magic_name__ : Optional[str] = field( default=_lowercase, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __magic_name__ : Optional[str] = field( default=_lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) __magic_name__ : bool = field(default=_lowercase, metadata={"help": "Whether tp freeze the encoder."} ) __magic_name__ : bool = field(default=_lowercase, metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class a__ : __magic_name__ : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) __magic_name__ : Optional[str] = field( default="summarization", metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"}, ) __magic_name__ : Optional[int] = field( default=10_24, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) __magic_name__ : Optional[int] = field( default=1_28, metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) __magic_name__ : Optional[int] = field( default=1_42, metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) }, ) __magic_name__ : Optional[int] = field( default=1_42, metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) __magic_name__ : Optional[int] = field(default=-1, metadata={"help": "# training examples. -1 means use all."} ) __magic_name__ : Optional[int] = field(default=-1, metadata={"help": "# validation examples. -1 means use all."} ) __magic_name__ : Optional[int] = field(default=-1, metadata={"help": "# test examples. -1 means use all."} ) __magic_name__ : Optional[str] = field(default=_lowercase, metadata={"help": "Source language id for translation."} ) __magic_name__ : Optional[str] = field(default=_lowercase, metadata={"help": "Target language id for translation."} ) __magic_name__ : Optional[int] = field(default=_lowercase, metadata={"help": "# num_beams to use for evaluation."} ) __magic_name__ : bool = field( default=_lowercase, metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."}, ) def __lowercase (_SCREAMING_SNAKE_CASE :Any , _SCREAMING_SNAKE_CASE :Union[str, Any] , _SCREAMING_SNAKE_CASE :Tuple ): logger.info(F'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(F''' {key} = {metrics[key]}''' ) save_json(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , F'''{split}_results.json''' ) ) def __lowercase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = parser.parse_args_into_dataclasses() check_output_dir(_SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , _SCREAMING_SNAKE_CASE ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE : Optional[Any] = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_SCREAMING_SNAKE_CASE , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: SCREAMING_SNAKE_CASE : List[str] = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_SCREAMING_SNAKE_CASE , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : List[Any] = tokenizer.lang_code_to_id[data_args.tgt_lang] else: SCREAMING_SNAKE_CASE : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_SCREAMING_SNAKE_CASE ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) SCREAMING_SNAKE_CASE : Any = SeqaSeqDataset # Get datasets SCREAMING_SNAKE_CASE : List[Any] = ( dataset_class( _SCREAMING_SNAKE_CASE , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) SCREAMING_SNAKE_CASE : Union[str, Any] = ( dataset_class( _SCREAMING_SNAKE_CASE , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) SCREAMING_SNAKE_CASE : List[Any] = ( dataset_class( _SCREAMING_SNAKE_CASE , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer SCREAMING_SNAKE_CASE : Tuple = ( build_compute_metrics_fn(data_args.task , _SCREAMING_SNAKE_CASE ) if training_args.predict_with_generate else None ) SCREAMING_SNAKE_CASE : Tuple = SeqaSeqTrainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , data_args=_SCREAMING_SNAKE_CASE , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , data_collator=SeqaSeqDataCollator( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE : Any = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) SCREAMING_SNAKE_CASE : Any = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) SCREAMING_SNAKE_CASE : List[Any] = train_result.metrics SCREAMING_SNAKE_CASE : Optional[Any] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , _SCREAMING_SNAKE_CASE , training_args.output_dir ) all_metrics.update(_SCREAMING_SNAKE_CASE ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) SCREAMING_SNAKE_CASE : Optional[Any] = trainer.evaluate(metric_key_prefix='''val''' ) SCREAMING_SNAKE_CASE : List[Any] = data_args.n_val SCREAMING_SNAKE_CASE : str = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , _SCREAMING_SNAKE_CASE , training_args.output_dir ) all_metrics.update(_SCREAMING_SNAKE_CASE ) if training_args.do_predict: logger.info('''*** Predict ***''' ) SCREAMING_SNAKE_CASE : List[str] = trainer.predict(test_dataset=_SCREAMING_SNAKE_CASE , metric_key_prefix='''test''' ) SCREAMING_SNAKE_CASE : List[str] = test_output.metrics SCREAMING_SNAKE_CASE : Dict = data_args.n_test if trainer.is_world_process_zero(): SCREAMING_SNAKE_CASE : Union[str, Any] = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , _SCREAMING_SNAKE_CASE , training_args.output_dir ) all_metrics.update(_SCREAMING_SNAKE_CASE ) if training_args.predict_with_generate: SCREAMING_SNAKE_CASE : int = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Any = lmap(str.strip , _SCREAMING_SNAKE_CASE ) write_txt_file(_SCREAMING_SNAKE_CASE , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(_SCREAMING_SNAKE_CASE , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def __lowercase (_SCREAMING_SNAKE_CASE :List[Any] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
355
'''simple docstring''' import os from datetime import datetime as dt from github import Github snake_case_ = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def __lowercase (): SCREAMING_SNAKE_CASE : List[Any] = Github(os.environ['''GITHUB_TOKEN'''] ) SCREAMING_SNAKE_CASE : List[str] = g.get_repo('''huggingface/diffusers''' ) SCREAMING_SNAKE_CASE : List[str] = repo.get_issues(state='''open''' ) for issue in open_issues: SCREAMING_SNAKE_CASE : List[Any] = sorted(issue.get_comments() , key=lambda _SCREAMING_SNAKE_CASE : i.created_at , reverse=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[int] = comments[0] if len(_SCREAMING_SNAKE_CASE ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
355
1
def a ( snake_case__: list ): '''simple docstring''' lowercase_ = len(snake_case__ ) for _ in range(snake_case__ ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: lowercase_ , lowercase_ = arr[i + 1], arr[i] return arr if __name__ == "__main__": __a = list(range(1_0, 0, -1)) print(f"Original: {arr}. Sorted: {odd_even_transposition(arr)}")
97
from __future__ import annotations from math import pi, sqrt def a ( snake_case__: float , snake_case__: float ): '''simple docstring''' if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
97
1
# Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union __a = re.compile(R"""^(?P<major>\d+)""" R"""\.(?P<minor>\d+)""" R"""\.(?P<patch>\d+)$""") @total_ordering @dataclass class __lowercase : UpperCamelCase = 42 UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None def _lowercase ( self : List[Any] ) -> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = _str_to_version_tuple(self.version_str ) def __repr__( self : Optional[int] ) -> Dict: """simple docstring""" return F"""{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}""" @property def _lowercase ( self : Any ) -> Union[str, Any]: """simple docstring""" return self.major, self.minor, self.patch def _lowercase ( self : Dict , __lowerCamelCase : int ) -> Dict: """simple docstring""" if isinstance(__lowerCamelCase , __lowerCamelCase ): return Version(__lowerCamelCase ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): return other raise TypeError(F"""{other} (type {type(__lowerCamelCase )}) cannot be compared to version.""" ) def __eq__( self : int , __lowerCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" try: UpperCAmelCase = self._validate_operand(__lowerCamelCase ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : Union[str, Any] , __lowerCamelCase : Dict ) -> Optional[int]: """simple docstring""" UpperCAmelCase = self._validate_operand(__lowerCamelCase ) return self.tuple < other.tuple def __hash__( self : Optional[Any] ) -> Any: """simple docstring""" return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def _lowercase ( cls : List[str] , __lowerCamelCase : str ) -> List[str]: """simple docstring""" UpperCAmelCase = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def _lowercase ( self : Optional[Any] ) -> str: """simple docstring""" return self.version_str def _UpperCamelCase ( lowerCAmelCase_ ) ->Any: UpperCAmelCase = _VERSION_REG.match(lowerCAmelCase_ ) if not res: raise ValueError(F"""Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits.""" ) return tuple(int(lowerCAmelCase_ ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] ) def _UpperCamelCase ( lowerCAmelCase_ ) ->List[Any]: return ".".join(str(lowerCAmelCase_ ) for v in version_tuple )
627
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class __lowercase : def __init__( self : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any]=1_3 , __lowerCamelCase : Optional[Any]=3_0 , __lowerCamelCase : Any=2 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : str=True , __lowerCamelCase : str=True , __lowerCamelCase : Union[str, Any]=3_2 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Optional[int]=4 , __lowerCamelCase : Union[str, Any]=3_7 , __lowerCamelCase : str="gelu" , __lowerCamelCase : str=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : str=1_0 , __lowerCamelCase : Union[str, Any]=0.02 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Any=2 , ) -> Tuple: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = scope UpperCAmelCase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) UpperCAmelCase = (image_size // patch_size) ** 2 UpperCAmelCase = num_patches + 2 def _lowercase ( self : Tuple ) -> int: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def _lowercase ( self : Tuple ) -> str: """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _lowercase ( self : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : int ) -> Any: """simple docstring""" UpperCAmelCase = TFDeiTModel(config=__lowerCamelCase ) UpperCAmelCase = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = TFDeiTForMaskedImageModeling(config=__lowerCamelCase ) UpperCAmelCase = model(__lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase = 1 UpperCAmelCase = TFDeiTForMaskedImageModeling(__lowerCamelCase ) UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase = model(__lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _lowercase ( self : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : int ) -> Any: """simple docstring""" UpperCAmelCase = self.type_sequence_label_size UpperCAmelCase = TFDeiTForImageClassification(__lowerCamelCase ) UpperCAmelCase = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase = 1 UpperCAmelCase = TFDeiTForImageClassification(__lowerCamelCase ) UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowercase ( self : Tuple ) -> List[str]: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __lowercase ( __snake_case , __snake_case , unittest.TestCase ): UpperCamelCase = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) UpperCamelCase = ( { '''feature-extraction''': TFDeiTModel, '''image-classification''': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def _lowercase ( self : str ) -> str: """simple docstring""" UpperCAmelCase = TFDeiTModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=3_7 ) def _lowercase ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def _lowercase ( self : List[Any] ) -> Dict: """simple docstring""" pass def _lowercase ( self : str ) -> List[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(__lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , tf.keras.layers.Dense ) ) def _lowercase ( self : Optional[Any] ) -> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(__lowerCamelCase ) UpperCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _lowercase ( self : Optional[int] ) -> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowercase ( self : Any ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__lowerCamelCase ) def _lowercase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) def _lowercase ( self : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any=False ) -> int: """simple docstring""" UpperCAmelCase = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def _lowercase ( self : Optional[int] ) -> str: """simple docstring""" for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = TFDeiTModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _UpperCamelCase ( ) ->Tuple: UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __lowercase ( unittest.TestCase ): @cached_property def _lowercase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def _lowercase ( self : Optional[int] ) -> List[str]: """simple docstring""" UpperCAmelCase = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=__lowerCamelCase , return_tensors="""tf""" ) # forward pass UpperCAmelCase = model(**__lowerCamelCase ) # verify the logits UpperCAmelCase = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) UpperCAmelCase = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
627
1
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def A_ ( _lowerCAmelCase ) -> int: monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set() ) @pytest.fixture def A_ ( _lowerCAmelCase ) -> Dict: class A__ : def __init__( self , A_ ): '''simple docstring''' UpperCamelCase : List[str] = metric_id class A__ : _UpperCAmelCase :Optional[int] = [MetricMock(__snake_case ) for metric_id in ['accuracy', 'mse', 'precision', 'codeparrot/apps_metric']] def __UpperCamelCase( self ): '''simple docstring''' return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock() ) @pytest.mark.parametrize( "func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: if "tmp_path" in args: UpperCamelCase : str = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(_lowerCAmelCase , match="https://huggingface.co/docs/evaluate" ): func(*_lowerCAmelCase )
629
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class A__ : @staticmethod def __UpperCamelCase( *A_ , **A_ ): '''simple docstring''' pass def A_ ( _lowerCAmelCase ) -> str: UpperCamelCase : Tuple = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def A_ ( _lowerCAmelCase ) -> Dict: UpperCamelCase : Dict = np.array(_lowerCAmelCase ) UpperCamelCase : Union[str, Any] = npimg.shape return {"hash": hashimage(_lowerCAmelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class A__ ( unittest.TestCase ): _UpperCAmelCase :Any = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) _UpperCAmelCase :str = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[int] = MaskGenerationPipeline(model=A_ , image_processor=A_ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __UpperCamelCase( self , A_ , A_ ): '''simple docstring''' pass @require_tf @unittest.skip("Image segmentation not implemented in TF" ) def __UpperCamelCase( self ): '''simple docstring''' pass @slow @require_torch def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = pipeline("mask-generation" , model="facebook/sam-vit-huge" ) UpperCamelCase : Tuple = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg" , points_per_batch=256 ) # Shortening by hashing UpperCamelCase : str = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(A_ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.04_44}, {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.0_21}, {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.01_67}, {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.01_32}, {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.00_53}, {"mask": {"hash": "e2d0b7a0b7", "shape": (480, 640)}, "scores": 0.99_67}, {"mask": {"hash": "453c7844bd", "shape": (480, 640)}, "scores": 0.9_93}, {"mask": {"hash": "3d44f2926d", "shape": (480, 640)}, "scores": 0.99_09}, {"mask": {"hash": "64033ddc3f", "shape": (480, 640)}, "scores": 0.98_79}, {"mask": {"hash": "801064ff79", "shape": (480, 640)}, "scores": 0.98_34}, {"mask": {"hash": "6172f276ef", "shape": (480, 640)}, "scores": 0.97_16}, {"mask": {"hash": "b49e60e084", "shape": (480, 640)}, "scores": 0.96_12}, {"mask": {"hash": "a811e775fd", "shape": (480, 640)}, "scores": 0.95_99}, {"mask": {"hash": "a6a8ebcf4b", "shape": (480, 640)}, "scores": 0.95_52}, {"mask": {"hash": "9d8257e080", "shape": (480, 640)}, "scores": 0.95_32}, {"mask": {"hash": "32de6454a8", "shape": (480, 640)}, "scores": 0.95_16}, {"mask": {"hash": "af3d4af2c8", "shape": (480, 640)}, "scores": 0.94_99}, {"mask": {"hash": "3c6db475fb", "shape": (480, 640)}, "scores": 0.94_83}, {"mask": {"hash": "c290813fb9", "shape": (480, 640)}, "scores": 0.94_64}, {"mask": {"hash": "b6f0b8f606", "shape": (480, 640)}, "scores": 0.9_43}, {"mask": {"hash": "92ce16bfdf", "shape": (480, 640)}, "scores": 0.9_43}, {"mask": {"hash": "c749b25868", "shape": (480, 640)}, "scores": 0.94_08}, {"mask": {"hash": "efb6cab859", "shape": (480, 640)}, "scores": 0.93_35}, {"mask": {"hash": "1ff2eafb30", "shape": (480, 640)}, "scores": 0.93_26}, {"mask": {"hash": "788b798e24", "shape": (480, 640)}, "scores": 0.92_62}, {"mask": {"hash": "abea804f0e", "shape": (480, 640)}, "scores": 0.89_99}, {"mask": {"hash": "7b9e8ddb73", "shape": (480, 640)}, "scores": 0.89_86}, {"mask": {"hash": "cd24047c8a", "shape": (480, 640)}, "scores": 0.89_84}, {"mask": {"hash": "6943e6bcbd", "shape": (480, 640)}, "scores": 0.88_73}, {"mask": {"hash": "b5f47c9191", "shape": (480, 640)}, "scores": 0.88_71} ] , ) # fmt: on @require_torch @slow def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dict = "facebook/sam-vit-huge" UpperCamelCase : str = pipeline("mask-generation" , model=A_ ) UpperCamelCase : str = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing UpperCamelCase : Tuple = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(A_ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.04_44}, {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.02_10}, {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.01_67}, {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.01_32}, {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.00_53}, ] , )
629
1
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) _SCREAMING_SNAKE_CASE : Any = logging.getLogger() def __lowerCAmelCase ( __magic_name__ ): _lowercase: Any = {} _lowercase: Optional[Any] = os.path.join(__magic_name__ , "all_results.json" ) if os.path.exists(__magic_name__ ): with open(__magic_name__ , "r" ) as f: _lowercase: Any = json.load(__magic_name__ ) else: raise ValueError(f"can't find {path}" ) return results _SCREAMING_SNAKE_CASE : Dict = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class A ( lowerCamelCase_ ): '''simple docstring''' def UpperCAmelCase__ ( self : Dict): import xla_spawn _lowercase: Tuple = self.get_auto_remove_tmp_dir() _lowercase: Dict = f"\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(_UpperCamelCase , "argv" , _UpperCamelCase): _lowercase: Optional[Any] = time() xla_spawn.main() _lowercase: Optional[int] = time() _lowercase: Union[str, Any] = get_results(_UpperCamelCase) self.assertGreaterEqual(result["eval_accuracy"] , 0.7_5) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500) def UpperCAmelCase__ ( self : str): import xla_spawn _lowercase: str = "\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n ".split() with patch.object(_UpperCamelCase , "argv" , _UpperCamelCase): xla_spawn.main()
712
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase : List[Any] = ShapEImgaImgPipeline lowerCamelCase : List[Any] = ["""image"""] lowerCamelCase : Optional[int] = ["""image"""] lowerCamelCase : List[str] = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] lowerCamelCase : Optional[Any] = False @property def UpperCAmelCase__ ( self : Union[str, Any]): return 32 @property def UpperCAmelCase__ ( self : Any): return 32 @property def UpperCAmelCase__ ( self : Tuple): return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self : List[Any]): return 8 @property def UpperCAmelCase__ ( self : Tuple): torch.manual_seed(0) _lowercase: str = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) _lowercase: Union[str, Any] = CLIPVisionModel(_UpperCamelCase) return model @property def UpperCAmelCase__ ( self : int): _lowercase: Optional[Any] = CLIPImageProcessor( crop_size=224 , do_center_crop=_UpperCamelCase , do_normalize=_UpperCamelCase , do_resize=_UpperCamelCase , image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , resample=3 , size=224 , ) return image_processor @property def UpperCAmelCase__ ( self : Optional[Any]): torch.manual_seed(0) _lowercase: Optional[int] = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "embedding_proj_norm_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } _lowercase: List[str] = PriorTransformer(**_UpperCamelCase) return model @property def UpperCAmelCase__ ( self : Any): torch.manual_seed(0) _lowercase: Optional[int] = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } _lowercase: List[str] = ShapERenderer(**_UpperCamelCase) return model def UpperCAmelCase__ ( self : str): _lowercase: Optional[Any] = self.dummy_prior _lowercase: Any = self.dummy_image_encoder _lowercase: str = self.dummy_image_processor _lowercase: Optional[Any] = self.dummy_renderer _lowercase: int = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1_024 , prediction_type="sample" , use_karras_sigmas=_UpperCamelCase , clip_sample=_UpperCamelCase , clip_sample_range=1.0 , ) _lowercase: Optional[Any] = { "prior": prior, "image_encoder": image_encoder, "image_processor": image_processor, "renderer": renderer, "scheduler": scheduler, } return components def UpperCAmelCase__ ( self : Union[str, Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any]=0): _lowercase: Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCamelCase)).to(_UpperCamelCase) if str(_UpperCamelCase).startswith("mps"): _lowercase: str = torch.manual_seed(_UpperCamelCase) else: _lowercase: str = torch.Generator(device=_UpperCamelCase).manual_seed(_UpperCamelCase) _lowercase: List[str] = { "image": input_image, "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def UpperCAmelCase__ ( self : Union[str, Any]): _lowercase: Any = "cpu" _lowercase: int = self.get_dummy_components() _lowercase: Dict = self.pipeline_class(**_UpperCamelCase) _lowercase: Tuple = pipe.to(_UpperCamelCase) pipe.set_progress_bar_config(disable=_UpperCamelCase) _lowercase: Dict = pipe(**self.get_dummy_inputs(_UpperCamelCase)) _lowercase: List[str] = output.images[0] _lowercase: int = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _lowercase: Optional[Any] = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase__ ( self : List[Any]): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def UpperCAmelCase__ ( self : Optional[int]): _lowercase: int = torch_device == "cpu" _lowercase: str = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCamelCase , relax_max_difference=_UpperCamelCase , ) def UpperCAmelCase__ ( self : str): _lowercase: Any = self.get_dummy_components() _lowercase: Dict = self.pipeline_class(**_UpperCamelCase) _lowercase: Any = pipe.to(_UpperCamelCase) pipe.set_progress_bar_config(disable=_UpperCamelCase) _lowercase: List[str] = 1 _lowercase: Dict = 2 _lowercase: str = self.get_dummy_inputs(_UpperCamelCase) for key in inputs.keys(): if key in self.batch_params: _lowercase: List[str] = batch_size * [inputs[key]] _lowercase: Optional[Any] = pipe(**_UpperCamelCase , num_images_per_prompt=_UpperCamelCase)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase__ ( self : List[Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : List[Any]): _lowercase: Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/corgi.png") _lowercase: int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_img2img_out.npy") _lowercase: Tuple = ShapEImgaImgPipeline.from_pretrained("openai/shap-e-img2img") _lowercase: Union[str, Any] = pipe.to(_UpperCamelCase) pipe.set_progress_bar_config(disable=_UpperCamelCase) _lowercase: Union[str, Any] = torch.Generator(device=_UpperCamelCase).manual_seed(0) _lowercase: Tuple = pipe( _UpperCamelCase , generator=_UpperCamelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
206
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase_ = logging.get_logger(__name__) class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''pixel_values'''] def __init__( self : str , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : bool = True , **_A : Dict , ): """simple docstring""" super().__init__(**_A ) __SCREAMING_SNAKE_CASE : List[Any] = size if size is not None else {'''height''': 384, '''width''': 384} __SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(_A , default_to_square=_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = do_resize __SCREAMING_SNAKE_CASE : List[Any] = size __SCREAMING_SNAKE_CASE : Optional[int] = resample __SCREAMING_SNAKE_CASE : Optional[Any] = do_rescale __SCREAMING_SNAKE_CASE : str = rescale_factor __SCREAMING_SNAKE_CASE : List[str] = do_normalize __SCREAMING_SNAKE_CASE : Dict = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __SCREAMING_SNAKE_CASE : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD __SCREAMING_SNAKE_CASE : Dict = do_convert_rgb def UpperCAmelCase__ ( self : int , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[Any] , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(_A , default_to_square=_A ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) __SCREAMING_SNAKE_CASE : int = (size['''height'''], size['''width''']) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def UpperCAmelCase__ ( self : Dict , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCAmelCase__ ( self : Union[str, Any] , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ): """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCAmelCase__ ( self : int , _A : ImageInput , _A : Optional[bool] = None , _A : Optional[Dict[str, int]] = None , _A : PILImageResampling = None , _A : Optional[bool] = None , _A : Optional[float] = None , _A : Optional[bool] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : bool = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : int , ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE : List[str] = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize __SCREAMING_SNAKE_CASE : Optional[int] = image_mean if image_mean is not None else self.image_mean __SCREAMING_SNAKE_CASE : str = image_std if image_std is not None else self.image_std __SCREAMING_SNAKE_CASE : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __SCREAMING_SNAKE_CASE : Any = size if size is not None else self.size __SCREAMING_SNAKE_CASE : List[Any] = get_size_dict(_A , default_to_square=_A ) __SCREAMING_SNAKE_CASE : Any = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __SCREAMING_SNAKE_CASE : Optional[Any] = [convert_to_rgb(_A ) for image in images] # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE : Dict = [to_numpy_array(_A ) for image in images] if do_resize: __SCREAMING_SNAKE_CASE : List[Any] = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_rescale: __SCREAMING_SNAKE_CASE : Union[str, Any] = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: __SCREAMING_SNAKE_CASE : Tuple = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] __SCREAMING_SNAKE_CASE : int = [to_channel_dimension_format(_A , _A ) for image in images] __SCREAMING_SNAKE_CASE : Union[str, Any] = BatchFeature(data={'''pixel_values''': images} , tensor_type=_A ) return encoded_outputs
74
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = 42 class __UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" @register_to_config def __init__( self : Dict , _A : int = 16 , _A : int = 88 , _A : Optional[int] = None , _A : Optional[int] = None , _A : int = 1 , _A : float = 0.0 , _A : int = 32 , _A : Optional[int] = None , _A : bool = False , _A : Optional[int] = None , _A : str = "geglu" , _A : bool = True , _A : bool = True , ): """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE : Dict = num_attention_heads __SCREAMING_SNAKE_CASE : Optional[int] = attention_head_dim __SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads * attention_head_dim __SCREAMING_SNAKE_CASE : Tuple = in_channels __SCREAMING_SNAKE_CASE : str = torch.nn.GroupNorm(num_groups=_A , num_channels=_A , eps=1e-6 , affine=_A ) __SCREAMING_SNAKE_CASE : List[Any] = nn.Linear(_A , _A ) # 3. Define transformers blocks __SCREAMING_SNAKE_CASE : List[Any] = nn.ModuleList( [ BasicTransformerBlock( _A , _A , _A , dropout=_A , cross_attention_dim=_A , activation_fn=_A , attention_bias=_A , double_self_attention=_A , norm_elementwise_affine=_A , ) for d in range(_A ) ] ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.Linear(_A , _A ) def UpperCAmelCase__ ( self : str , _A : Dict , _A : int=None , _A : Tuple=None , _A : Dict=None , _A : List[Any]=1 , _A : Union[str, Any]=None , _A : bool = True , ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[Any] = hidden_states.shape __SCREAMING_SNAKE_CASE : Any = batch_frames // num_frames __SCREAMING_SNAKE_CASE : Dict = hidden_states __SCREAMING_SNAKE_CASE : str = hidden_states[None, :].reshape(_A , _A , _A , _A , _A ) __SCREAMING_SNAKE_CASE : List[Any] = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.norm(_A ) __SCREAMING_SNAKE_CASE : List[str] = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , _A , _A ) __SCREAMING_SNAKE_CASE : List[Any] = self.proj_in(_A ) # 2. Blocks for block in self.transformer_blocks: __SCREAMING_SNAKE_CASE : Optional[Any] = block( _A , encoder_hidden_states=_A , timestep=_A , cross_attention_kwargs=_A , class_labels=_A , ) # 3. Output __SCREAMING_SNAKE_CASE : Any = self.proj_out(_A ) __SCREAMING_SNAKE_CASE : List[str] = ( hidden_states[None, None, :] .reshape(_A , _A , _A , _A , _A ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_states.reshape(_A , _A , _A , _A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=_A )
74
1
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa A : str = logging.getLogger(__name__) class UpperCamelCase( __UpperCAmelCase ): snake_case_ : Any = "summarization" snake_case_ : List[str] = ["loss"] snake_case_ : List[str] = ROUGE_KEYS snake_case_ : int = "rouge2" def __init__( self : List[str] , SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : List[str] ) -> Dict: '''simple docstring''' if hparams.sortish_sampler and hparams.gpus > 1: __snake_case = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("Dynamic Batch size does not work for multi-gpu training" ) if hparams.sortish_sampler: raise ValueError("--sortish_sampler and --max_tokens_per_batch may not be used simultaneously" ) super().__init__(_lowerCamelCase , num_labels=_lowerCamelCase , mode=self.mode , **_lowerCamelCase ) use_task_specific_params(self.model , "summarization" ) save_git_info(self.hparams.output_dir ) __snake_case = Path(self.output_dir ) / "metrics.json" __snake_case = Path(self.output_dir ) / "hparams.pkl" pickle_save(self.hparams , self.hparams_save_path ) __snake_case = 0 __snake_case = defaultdict(_lowerCamelCase ) __snake_case = self.config.model_type __snake_case = self.config.tgt_vocab_size if self.model_type == "fsmt" else self.config.vocab_size __snake_case = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } __snake_case = { "train": self.hparams.n_train, "val": self.hparams.n_val, "test": self.hparams.n_test, } __snake_case = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} __snake_case = { "train": self.hparams.max_target_length, "val": self.hparams.val_max_target_length, "test": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], f'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) __snake_case = get_git_info()["repo_sha"] __snake_case = hparams.num_workers __snake_case = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _lowerCamelCase ): __snake_case = self.tokenizer.lang_code_to_id[hparams.tgt_lang] __snake_case = self.decoder_start_token_id __snake_case = ( SeqaSeqDataset if hasattr(self.tokenizer , "prepare_seq2seq_batch" ) else LegacySeqaSeqDataset ) __snake_case = False __snake_case = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: __snake_case = self.hparams.eval_max_gen_length else: __snake_case = self.model.config.max_length __snake_case = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE : Dict[str, torch.Tensor] ) -> Any: '''simple docstring''' __snake_case = { k: self.tokenizer.batch_decode(v.tolist() ) if "mask" not in k else v.shape for k, v in batch.items() } save_json(_lowerCamelCase , Path(self.output_dir ) / "text_batch.json" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / "tok_batch.json" ) __snake_case = True return readable_batch def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : List[str] ) -> Any: '''simple docstring''' return self.model(_lowerCamelCase , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE : List[int] ) -> str: '''simple docstring''' __snake_case = self.tokenizer.batch_decode( _lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) return lmap(str.strip , _lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE : dict ) -> str: '''simple docstring''' __snake_case = self.tokenizer.pad_token_id __snake_case , __snake_case = batch["input_ids"], batch["attention_mask"] __snake_case = batch["labels"] if isinstance(self.model , _lowerCamelCase ): __snake_case = self.model._shift_right(_lowerCamelCase ) else: __snake_case = shift_tokens_right(_lowerCamelCase , _lowerCamelCase ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero __snake_case = decoder_input_ids self.save_readable_batch(_lowerCamelCase ) __snake_case = self(_lowerCamelCase , attention_mask=_lowerCamelCase , decoder_input_ids=_lowerCamelCase , use_cache=_lowerCamelCase ) __snake_case = outputs["logits"] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id __snake_case = nn.CrossEntropyLoss(ignore_index=_lowerCamelCase ) assert lm_logits.shape[-1] == self.vocab_size __snake_case = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: __snake_case = nn.functional.log_softmax(_lowerCamelCase , dim=-1 ) __snake_case , __snake_case = label_smoothed_nll_loss( _lowerCamelCase , _lowerCamelCase , self.hparams.label_smoothing , ignore_index=_lowerCamelCase ) return (loss,) @property def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[int]: '''simple docstring''' return self.tokenizer.pad_token_id def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]: '''simple docstring''' __snake_case = self._step(_lowerCamelCase ) __snake_case = dict(zip(self.loss_names , _lowerCamelCase ) ) # tokens per batch __snake_case = batch["input_ids"].ne(self.pad ).sum() + batch["labels"].ne(self.pad ).sum() __snake_case = batch["input_ids"].shape[0] __snake_case = batch["input_ids"].eq(self.pad ).sum() __snake_case = batch["input_ids"].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] ) -> str: '''simple docstring''' return self._generative_step(_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int]="val" ) -> str: '''simple docstring''' self.step_count += 1 __snake_case = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} __snake_case = losses["loss"] __snake_case = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["gen_time", "gen_len"] } __snake_case = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) __snake_case = torch.tensor(_lowerCamelCase ).type_as(_lowerCamelCase ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_lowerCamelCase ) __snake_case = {f'''{prefix}_avg_{k}''': x for k, x in losses.items()} __snake_case = self.step_count self.metrics[prefix].append(_lowerCamelCase ) # callback writes this to self.metrics_save_path __snake_case = flatten_list([x["preds"] for x in outputs] ) return { "log": all_metrics, "preds": preds, f'''{prefix}_loss''': loss, f'''{prefix}_{self.val_metric}''': metric_tensor, } def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Dict: '''simple docstring''' return calculate_rouge(_lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE : dict ) -> Dict: '''simple docstring''' __snake_case = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') __snake_case = self.model.generate( batch["input_ids"] , attention_mask=batch["attention_mask"] , use_cache=_lowerCamelCase , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) __snake_case = (time.time() - ta) / batch["input_ids"].shape[0] __snake_case = self.ids_to_clean_text(_lowerCamelCase ) __snake_case = self.ids_to_clean_text(batch["labels"] ) __snake_case = self._step(_lowerCamelCase ) __snake_case = dict(zip(self.loss_names , _lowerCamelCase ) ) __snake_case = self.calc_generative_metrics(_lowerCamelCase , _lowerCamelCase ) __snake_case = np.mean(lmap(_lowerCamelCase , _lowerCamelCase ) ) base_metrics.update(gen_time=_lowerCamelCase , gen_len=_lowerCamelCase , preds=_lowerCamelCase , target=_lowerCamelCase , **_lowerCamelCase ) return base_metrics def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]: '''simple docstring''' return self._generative_step(_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[int]: '''simple docstring''' return self.validation_epoch_end(_lowerCamelCase , prefix="test" ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] ) -> str: '''simple docstring''' __snake_case = self.n_obs[type_path] __snake_case = self.target_lens[type_path] __snake_case = self.dataset_class( self.tokenizer , type_path=_lowerCamelCase , n_obs=_lowerCamelCase , max_target_length=_lowerCamelCase , **self.dataset_kwargs , ) return dataset def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : bool = False ) -> Optional[int]: '''simple docstring''' __snake_case = self.get_dataset(_lowerCamelCase ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": __snake_case = dataset.make_sortish_sampler(_lowerCamelCase , distributed=self.hparams.gpus > 1 ) return DataLoader( _lowerCamelCase , batch_size=_lowerCamelCase , collate_fn=dataset.collate_fn , shuffle=_lowerCamelCase , num_workers=self.num_workers , sampler=_lowerCamelCase , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": __snake_case = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( _lowerCamelCase , batch_sampler=_lowerCamelCase , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _lowerCamelCase , batch_size=_lowerCamelCase , collate_fn=dataset.collate_fn , shuffle=_lowerCamelCase , num_workers=self.num_workers , sampler=_lowerCamelCase , ) def SCREAMING_SNAKE_CASE_ ( self : str ) -> Union[str, Any]: '''simple docstring''' __snake_case = self.get_dataloader("train" , batch_size=self.hparams.train_batch_size , shuffle=_lowerCamelCase ) return dataloader def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Tuple: '''simple docstring''' return self.get_dataloader("val" , batch_size=self.hparams.eval_batch_size ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Any: '''simple docstring''' return self.get_dataloader("test" , batch_size=self.hparams.eval_batch_size ) @staticmethod def SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> str: '''simple docstring''' BaseTransformer.add_model_specific_args(_lowerCamelCase , _lowerCamelCase ) add_generic_args(_lowerCamelCase , _lowerCamelCase ) parser.add_argument( "--max_source_length" , default=1_0_2_4 , type=_lowerCamelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--max_target_length" , default=5_6 , type=_lowerCamelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--val_max_target_length" , default=1_4_2 , type=_lowerCamelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--test_max_target_length" , default=1_4_2 , type=_lowerCamelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument("--freeze_encoder" , action="store_true" ) parser.add_argument("--freeze_embeds" , action="store_true" ) parser.add_argument("--sortish_sampler" , action="store_true" , default=_lowerCamelCase ) parser.add_argument("--overwrite_output_dir" , action="store_true" , default=_lowerCamelCase ) parser.add_argument("--max_tokens_per_batch" , type=_lowerCamelCase , default=_lowerCamelCase ) parser.add_argument("--logger_name" , type=_lowerCamelCase , choices=["default", "wandb", "wandb_shared"] , default="default" ) parser.add_argument("--n_train" , type=_lowerCamelCase , default=-1 , required=_lowerCamelCase , help="# examples. -1 means use all." ) parser.add_argument("--n_val" , type=_lowerCamelCase , default=5_0_0 , required=_lowerCamelCase , help="# examples. -1 means use all." ) parser.add_argument("--n_test" , type=_lowerCamelCase , default=-1 , required=_lowerCamelCase , help="# examples. -1 means use all." ) parser.add_argument( "--task" , type=_lowerCamelCase , default="summarization" , required=_lowerCamelCase , help="# examples. -1 means use all." ) parser.add_argument("--label_smoothing" , type=_lowerCamelCase , default=0.0 , required=_lowerCamelCase ) parser.add_argument("--src_lang" , type=_lowerCamelCase , default="" , required=_lowerCamelCase ) parser.add_argument("--tgt_lang" , type=_lowerCamelCase , default="" , required=_lowerCamelCase ) parser.add_argument("--eval_beams" , type=_lowerCamelCase , default=_lowerCamelCase , required=_lowerCamelCase ) parser.add_argument( "--val_metric" , type=_lowerCamelCase , default=_lowerCamelCase , required=_lowerCamelCase , choices=["bleu", "rouge2", "loss", None] ) parser.add_argument("--eval_max_gen_length" , type=_lowerCamelCase , default=_lowerCamelCase , help="never generate more than n tokens" ) parser.add_argument("--save_top_k" , type=_lowerCamelCase , default=1 , required=_lowerCamelCase , help="How many checkpoints to save" ) parser.add_argument( "--early_stopping_patience" , type=_lowerCamelCase , default=-1 , required=_lowerCamelCase , help=( "-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So" " val_check_interval will effect it." ) , ) return parser class UpperCamelCase( __UpperCAmelCase ): snake_case_ : Dict = "translation" snake_case_ : Optional[Any] = ["loss"] snake_case_ : Optional[int] = ["bleu"] snake_case_ : int = "bleu" def __init__( self : Any , SCREAMING_SNAKE_CASE : Optional[int] , **SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' super().__init__(_lowerCamelCase , **_lowerCamelCase ) __snake_case = hparams.src_lang __snake_case = hparams.tgt_lang def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return calculate_bleu(_lowerCamelCase , _lowerCamelCase ) def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase=None ) -> List[str]: '''simple docstring''' Path(args.output_dir ).mkdir(exist_ok=_lowerCAmelCase ) check_output_dir(_lowerCAmelCase , expected_items=3 ) if model is None: if "summarization" in args.task: __snake_case = SummarizationModule(_lowerCAmelCase ) else: __snake_case = TranslationModule(_lowerCAmelCase ) __snake_case = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("/tmp" ) or str(args.output_dir ).startswith("/var" ) ): __snake_case = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger __snake_case = os.environ.get("WANDB_PROJECT" , _lowerCAmelCase ) __snake_case = WandbLogger(name=model.output_dir.name , project=_lowerCAmelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger __snake_case = WandbLogger(name=model.output_dir.name , project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: __snake_case = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: __snake_case = False __snake_case = args.val_metric == "loss" __snake_case = generic_train( _lowerCAmelCase , _lowerCAmelCase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , _lowerCAmelCase ) , early_stopping_callback=_lowerCAmelCase , logger=_lowerCAmelCase , ) pickle_save(model.hparams , model.output_dir / "hparams.pkl" ) if not args.do_predict: return model __snake_case = "" __snake_case = sorted(glob.glob(os.path.join(args.output_dir , "*.ckpt" ) , recursive=_lowerCAmelCase ) ) if checkpoints: __snake_case = checkpoints[-1] __snake_case = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": A : List[str] = argparse.ArgumentParser() A : Optional[Any] = pl.Trainer.add_argparse_args(parser) A : Tuple = SummarizationModule.add_model_specific_args(parser, os.getcwd()) A : int = parser.parse_args() main(args)
701
import os from datetime import datetime as dt from github import Github A : Union[str, Any] = [ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def _lowerCAmelCase ( ) -> str: '''simple docstring''' __snake_case = Github(os.environ["GITHUB_TOKEN"] ) __snake_case = g.get_repo("huggingface/diffusers" ) __snake_case = repo.get_issues(state="open" ) for issue in open_issues: __snake_case = sorted(issue.get_comments() , key=lambda _lowerCAmelCase : i.created_at , reverse=_lowerCAmelCase ) __snake_case = comments[0] if len(_lowerCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="closed" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="open" ) issue.remove_from_labels("stale" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) issue.add_to_labels("stale" ) if __name__ == "__main__": main()
473
0
"""simple docstring""" import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class a__ ( UpperCamelCase_ ): snake_case__ = '''MCTCTFeatureExtractor''' snake_case__ = '''AutoTokenizer''' def __init__( self : int ,a__ : Union[str, Any] ,a__ : List[str]) -> Any: """simple docstring""" super().__init__(a__ ,a__) _lowerCAmelCase:Any = self.feature_extractor _lowerCAmelCase:int = False def __call__( self : Union[str, Any] ,*a__ : int ,**a__ : Dict) -> Union[str, Any]: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*a__ ,**a__) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''') _lowerCAmelCase:Tuple = kwargs.pop('''raw_speech''') else: _lowerCAmelCase:Dict = kwargs.pop('''audio''' ,a__) _lowerCAmelCase:int = kwargs.pop('''sampling_rate''' ,a__) _lowerCAmelCase:Union[str, Any] = kwargs.pop('''text''' ,a__) if len(a__) > 0: _lowerCAmelCase:Optional[Any] = args[0] _lowerCAmelCase:Union[str, Any] = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''') if audio is not None: _lowerCAmelCase:int = self.feature_extractor(a__ ,*a__ ,sampling_rate=a__ ,**a__) if text is not None: _lowerCAmelCase:List[Any] = self.tokenizer(a__ ,**a__) if text is None: return inputs elif audio is None: return encodings else: _lowerCAmelCase:Optional[int] = encodings['''input_ids'''] return inputs def __UpperCamelCase ( self : Optional[int] ,*a__ : str ,**a__ : int) -> Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*a__ ,**a__) def __UpperCamelCase ( self : Tuple ,*a__ : List[str] ,**a__ : int) -> Optional[Any]: """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*a__ ,**a__) _lowerCAmelCase:Any = kwargs.pop('''input_features''' ,a__) _lowerCAmelCase:int = kwargs.pop('''labels''' ,a__) if len(a__) > 0: _lowerCAmelCase:Any = args[0] _lowerCAmelCase:str = args[1:] if input_features is not None: _lowerCAmelCase:List[str] = self.feature_extractor.pad(a__ ,*a__ ,**a__) if labels is not None: _lowerCAmelCase:Tuple = self.tokenizer.pad(a__ ,**a__) if labels is None: return input_features elif input_features is None: return labels else: _lowerCAmelCase:int = labels['''input_ids'''] return input_features def __UpperCamelCase ( self : Tuple ,*a__ : List[Any] ,**a__ : Any) -> List[Any]: """simple docstring""" return self.tokenizer.decode(*a__ ,**a__) @contextmanager def __UpperCamelCase ( self : Optional[Any]) -> Dict: """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''') _lowerCAmelCase:Dict = True _lowerCAmelCase:Optional[Any] = self.tokenizer yield _lowerCAmelCase:List[str] = self.feature_extractor _lowerCAmelCase:Any = False
227
"""simple docstring""" import math from collections.abc import Callable def UpperCAmelCase ( snake_case : Callable[[float], float] , snake_case : float , snake_case : float ): _lowerCAmelCase:float = xa _lowerCAmelCase:float = xa while True: if x_n == x_na or function(snake_case ) == function(snake_case ): raise ZeroDivisionError('''float division by zero, could not find root''' ) _lowerCAmelCase:float = x_na - ( function(snake_case ) / ((function(snake_case ) - function(snake_case )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na _lowerCAmelCase:Optional[int] = x_na _lowerCAmelCase:Dict = x_na def UpperCAmelCase ( snake_case : float ): return math.pow(snake_case , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
227
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: lowercase__ =None lowercase__ =logging.get_logger(__name__) lowercase__ ={'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowercase__ ={ 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } lowercase__ ={ 'google/fnet-base': 5_12, 'google/fnet-large': 5_12, } lowercase__ ='▁' class a_ ( UpperCamelCase__ ): lowerCamelCase__ : Dict = VOCAB_FILES_NAMES lowerCamelCase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Tuple = ['input_ids', 'token_type_ids'] lowerCamelCase__ : Any = FNetTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase="<unk>" , UpperCAmelCase="[SEP]" , UpperCAmelCase="<pad>" , UpperCAmelCase="[CLS]" , UpperCAmelCase="[MASK]" , **UpperCAmelCase , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. a_ = ( AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase , normalized=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token ) super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , remove_space=UpperCAmelCase , keep_accents=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , **UpperCAmelCase , ) a_ = do_lower_case a_ = remove_space a_ = keep_accents a_ = vocab_file a_ = False if not self.vocab_file else True def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None ): a_ = [self.sep_token_id] a_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None ): a_ = [self.sep_token_id] a_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None ): if not os.path.isdir(UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return a_ = os.path.join( UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
701
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowercase__ ='pt' elif is_tf_available(): lowercase__ ='tf' else: lowercase__ ='jax' class a_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase__ : int = PerceiverTokenizer lowerCamelCase__ : Optional[int] = False def lowerCAmelCase__ ( self ): super().setUp() a_ = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCAmelCase__ ( self ): return PerceiverTokenizer.from_pretrained("""deepmind/language-perceiver""" ) def lowerCAmelCase__ ( self , **UpperCAmelCase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=20 , UpperCAmelCase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. a_ = [] for i in range(len(UpperCAmelCase ) ): try: a_ = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) a_ = list(filter(lambda UpperCAmelCase : re.match(R"""^[ a-zA-Z]+$""" , t[1] ) , UpperCAmelCase ) ) a_ = list(filter(lambda UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCAmelCase ) , UpperCAmelCase ) ) if max_length is not None and len(UpperCAmelCase ) > max_length: a_ = toks[:max_length] if min_length is not None and len(UpperCAmelCase ) < min_length and len(UpperCAmelCase ) > 0: while len(UpperCAmelCase ) < min_length: a_ = toks + toks # toks_str = [t[1] for t in toks] a_ = [t[0] for t in toks] # Ensure consistency a_ = tokenizer.decode(UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase ) if " " not in output_txt and len(UpperCAmelCase ) > 1: a_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCAmelCase ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCAmelCase ) ) if with_prefix_space: a_ = """ """ + output_txt a_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) return output_txt, output_ids def lowerCAmelCase__ ( self ): a_ = self.perceiver_tokenizer a_ = """Unicode €.""" a_ = tokenizer(UpperCAmelCase ) a_ = [4, 91, 1_16, 1_11, 1_05, 1_17, 1_06, 1_07, 38, 2_32, 1_36, 1_78, 52, 5] self.assertEqual(encoded["""input_ids"""] , UpperCAmelCase ) # decoding a_ = tokenizer.decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , """[CLS]Unicode €.[SEP]""" ) a_ = tokenizer("""e è é ê ë""" ) a_ = [4, 1_07, 38, 2_01, 1_74, 38, 2_01, 1_75, 38, 2_01, 1_76, 38, 2_01, 1_77, 5] self.assertEqual(encoded["""input_ids"""] , UpperCAmelCase ) # decoding a_ = tokenizer.decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , """[CLS]e è é ê ë[SEP]""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """[CLS]e è é ê ë[SEP]""" ) def lowerCAmelCase__ ( self ): a_ = self.perceiver_tokenizer a_ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off a_ = [4, 71, 38, 1_14, 1_17, 1_16, 1_09, 38, 1_18, 1_03, 1_20, 1_03, 1_09, 1_20, 1_03, 1_18, 1_10, 38, 1_08, 1_17, 1_20, 38, 1_21, 1_23, 1_15, 1_15, 1_03, 1_20, 1_11, 1_28, 1_03, 1_22, 1_11, 1_17, 1_16, 52, 5, 0] # fmt: on a_ = tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) if FRAMEWORK != "jax": a_ = list(batch.input_ids.numpy()[0] ) else: a_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowerCAmelCase__ ( self ): a_ = self.perceiver_tokenizer a_ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] a_ = tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , UpperCAmelCase ) self.assertIn("""attention_mask""" , UpperCAmelCase ) self.assertNotIn("""decoder_input_ids""" , UpperCAmelCase ) self.assertNotIn("""decoder_attention_mask""" , UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = self.perceiver_tokenizer a_ = [ """Summary of the text.""", """Another summary.""", ] a_ = tokenizer( text_target=UpperCAmelCase , max_length=32 , padding="""max_length""" , truncation=UpperCAmelCase , return_tensors=UpperCAmelCase ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def lowerCAmelCase__ ( self ): # safety check on max_len default value so we are sure the test works a_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test a_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc a_ = tempfile.mkdtemp() a_ = """ He is very happy, UNwant\u00E9d,running""" a_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) tokenizer.save_pretrained(UpperCAmelCase ) a_ = tokenizer.__class__.from_pretrained(UpperCAmelCase ) a_ = after_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) shutil.rmtree(UpperCAmelCase ) a_ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc a_ = tempfile.mkdtemp() a_ = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) a_ = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) a_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) tokenizer.save_pretrained(UpperCAmelCase ) a_ = tokenizer.__class__.from_pretrained(UpperCAmelCase ) a_ = after_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) a_ = tokenizer.__class__.from_pretrained(UpperCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: a_ = json.load(UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: a_ = json.load(UpperCAmelCase ) a_ = [f'''<extra_id_{i}>''' for i in range(1_25 )] a_ = added_tokens_extra_ids + [ """an_additional_special_token""" ] a_ = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(UpperCAmelCase , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(UpperCAmelCase , UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(UpperCAmelCase , UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files a_ = tokenizer_class.from_pretrained( UpperCAmelCase , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained a_ = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=UpperCAmelCase )] a_ = tokenizer_class.from_pretrained( UpperCAmelCase , additional_special_tokens=UpperCAmelCase , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def lowerCAmelCase__ ( self ): a_ = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_78] ) , """�""" ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens a_ = self.get_tokenizers(fast=UpperCAmelCase , do_lower_case=UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): a_ = ["""[CLS]""", """t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """s""", """t""", """[SEP]"""] a_ = tokenizer.convert_tokens_to_string(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
511
0
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class lowerCamelCase__ ( _A): """simple docstring""" def __init__( self : Dict , __lowerCAmelCase : List[str]=0.01 , __lowerCAmelCase : Optional[Any]=10_00 ) -> Tuple: _A = p_stop _A = max_length def __iter__( self : Tuple ) -> int: _A = 0 _A = False while not stop and count < self.max_length: yield count count += 1 _A = random.random() < self.p_stop class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def snake_case_ ( self : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any]=False , __lowerCAmelCase : str=True ) -> Optional[int]: _A = [ BatchSamplerShard(__lowerCAmelCase , 2 , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) for i in range(2 ) ] _A = [list(__lowerCAmelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__lowerCAmelCase ) for shard in batch_sampler_shards] , [len(__lowerCAmelCase ) for e in expected] ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : Union[str, Any] ) -> Dict: # Check the shards when the dataset is a round multiple of total batch size. _A = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) _A = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _A = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) _A = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _A = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) _A = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _A = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) _A = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is very small. _A = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) _A = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : Optional[Any] ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of batch size. _A = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) _A = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. _A = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) _A = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _A = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) _A = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) # Check the shards when the dataset is very small. _A = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _A = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) _A = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _A = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) def snake_case_ ( self : Optional[int] ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of total batch size. _A = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) _A = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _A = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) _A = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _A = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) _A = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _A = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) _A = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is very small. _A = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [[[0, 1]], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) _A = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) def snake_case_ ( self : str ) -> Dict: # Check the shards when the dataset is a round multiple of batch size. _A = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) _A = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. _A = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) _A = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _A = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) _A = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is very small. _A = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _A = [[[0, 1]], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) _A = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _A = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) def snake_case_ ( self : List[Any] ) -> Any: _A = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] _A = [BatchSamplerShard(__lowerCAmelCase , 2 , __lowerCAmelCase , even_batches=__lowerCAmelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Any=2 , __lowerCAmelCase : str=False ) -> Any: random.seed(__lowerCAmelCase ) _A = list(__lowerCAmelCase ) _A = [ IterableDatasetShard( __lowerCAmelCase , batch_size=__lowerCAmelCase , drop_last=__lowerCAmelCase , num_processes=__lowerCAmelCase , process_index=__lowerCAmelCase , split_batches=__lowerCAmelCase , ) for i in range(__lowerCAmelCase ) ] _A = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__lowerCAmelCase ) iterable_dataset_lists.append(list(__lowerCAmelCase ) ) _A = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _A = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) self.assertTrue(len(__lowerCAmelCase ) % shard_batch_size == 0 ) _A = [] for idx in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__lowerCAmelCase ) < len(__lowerCAmelCase ): reference += reference self.assertListEqual(__lowerCAmelCase , reference[: len(__lowerCAmelCase )] ) def snake_case_ ( self : int ) -> str: _A = 42 _A = RandomIterableDataset() self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) # Edge case with a very small dataset _A = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) def snake_case_ ( self : Dict ) -> str: _A = BatchSampler(range(16 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _A = SkipBatchSampler(__lowerCAmelCase , 2 ) self.assertListEqual(list(__lowerCAmelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def snake_case_ ( self : Dict ) -> List[str]: _A = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def snake_case_ ( self : Any ) -> List[Any]: _A = DataLoader(list(range(16 ) ) , batch_size=4 ) _A = skip_first_batches(__lowerCAmelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def snake_case_ ( self : Dict ) -> Any: _A = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def snake_case_ ( self : List[Any] ) -> List[str]: Accelerator() _A = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
2
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'andreasmadsen/efficient_mlm_m0.40': ( 'https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json' ), } class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "roberta-prelayernorm" def __init__( self , __lowerCamelCase=5_0_2_6_5 , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=2 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-12 , __lowerCamelCase=1 , __lowerCamelCase=0 , __lowerCamelCase=2 , __lowerCamelCase="absolute" , __lowerCamelCase=True , __lowerCamelCase=None , **__lowerCamelCase , ) -> Optional[int]: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase) _A : str = vocab_size _A : Union[str, Any] = hidden_size _A : Optional[int] = num_hidden_layers _A : Optional[Any] = num_attention_heads _A : List[Any] = hidden_act _A : Dict = intermediate_size _A : Tuple = hidden_dropout_prob _A : Optional[int] = attention_probs_dropout_prob _A : str = max_position_embeddings _A : Dict = type_vocab_size _A : str = initializer_range _A : str = layer_norm_eps _A : List[Any] = position_embedding_type _A : Union[str, Any] = use_cache _A : Union[str, Any] = classifier_dropout class lowerCAmelCase__ ( a): '''simple docstring''' @property def _lowerCamelCase ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _A : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: _A : Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
503
0
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def A_( A , A , A , A , A ): # Load configuration defined in the metadata file with open(A ) as metadata_file: UpperCAmelCase_ = json.load(A ) UpperCAmelCase_ = LukeConfig(use_entity_aware_attention=A , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path UpperCAmelCase_ = torch.load(A , map_location="""cpu""" )["""module"""] # Load the entity vocab file UpperCAmelCase_ = load_original_entity_vocab(A ) # add an entry for [MASK2] UpperCAmelCase_ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 UpperCAmelCase_ = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks UpperCAmelCase_ = AddedToken("""<ent>""" , lstrip=A , rstrip=A ) UpperCAmelCase_ = AddedToken("""<ent2>""" , lstrip=A , rstrip=A ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(A ) with open(os.path.join(A , """tokenizer_config.json""" ) , """r""" ) as f: UpperCAmelCase_ = json.load(A ) UpperCAmelCase_ = """MLukeTokenizer""" with open(os.path.join(A , """tokenizer_config.json""" ) , """w""" ) as f: json.dump(A , A ) with open(os.path.join(A , MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(A , A ) UpperCAmelCase_ = MLukeTokenizer.from_pretrained(A ) # Initialize the embeddings of the special tokens UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(["""@"""] )[0] UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(["""#"""] )[0] UpperCAmelCase_ = state_dict["""embeddings.word_embeddings.weight"""] UpperCAmelCase_ = word_emb[ent_init_index].unsqueeze(0 ) UpperCAmelCase_ = word_emb[enta_init_index].unsqueeze(0 ) UpperCAmelCase_ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: UpperCAmelCase_ = state_dict[bias_name] UpperCAmelCase_ = decoder_bias[ent_init_index].unsqueeze(0 ) UpperCAmelCase_ = decoder_bias[enta_init_index].unsqueeze(0 ) UpperCAmelCase_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: UpperCAmelCase_ = f"""encoder.layer.{layer_index}.attention.self.""" UpperCAmelCase_ = state_dict[prefix + matrix_name] UpperCAmelCase_ = state_dict[prefix + matrix_name] UpperCAmelCase_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks UpperCAmelCase_ = state_dict["""entity_embeddings.entity_embeddings.weight"""] UpperCAmelCase_ = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) UpperCAmelCase_ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' UpperCAmelCase_ = state_dict["""entity_predictions.bias"""] UpperCAmelCase_ = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) UpperCAmelCase_ = torch.cat([entity_prediction_bias, entity_mask_bias] ) UpperCAmelCase_ = LukeForMaskedLM(config=A ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) UpperCAmelCase_ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): UpperCAmelCase_ = state_dict[key] else: UpperCAmelCase_ = state_dict[key] UpperCAmelCase_ , UpperCAmelCase_ = model.load_state_dict(A , strict=A ) if set(A ) != {"luke.embeddings.position_ids"}: raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(A ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs UpperCAmelCase_ = MLukeTokenizer.from_pretrained(A , task="""entity_classification""" ) UpperCAmelCase_ = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" UpperCAmelCase_ = (0, 9) UpperCAmelCase_ = tokenizer(A , entity_spans=[span] , return_tensors="""pt""" ) UpperCAmelCase_ = model(**A ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base UpperCAmelCase_ = torch.Size((1, 33, 768) ) UpperCAmelCase_ = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , A , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base UpperCAmelCase_ = torch.Size((1, 1, 768) ) UpperCAmelCase_ = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , A , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction UpperCAmelCase_ = MLukeTokenizer.from_pretrained(A ) UpperCAmelCase_ = """Tokyo is the capital of <mask>.""" UpperCAmelCase_ = (24, 30) UpperCAmelCase_ = tokenizer(A , entity_spans=[span] , return_tensors="""pt""" ) UpperCAmelCase_ = model(**A ) UpperCAmelCase_ = encoding["""input_ids"""][0].tolist() UpperCAmelCase_ = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) UpperCAmelCase_ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(A ) UpperCAmelCase_ = outputs.entity_logits[0][0].argmax().item() UpperCAmelCase_ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(A ) ) model.save_pretrained(A ) def A_( A ): UpperCAmelCase_ = ["""[MASK]""", """[PAD]""", """[UNK]"""] UpperCAmelCase_ = [json.loads(A ) for line in open(A )] UpperCAmelCase_ = {} for entry in data: UpperCAmelCase_ = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: UpperCAmelCase_ = entity_id break UpperCAmelCase_ = f"""{language}:{entity_name}""" UpperCAmelCase_ = entity_id return new_mapping if __name__ == "__main__": UpperCamelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) UpperCamelCase__ : Optional[Any] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
486
from torch import nn class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __lowercase : List[str] , __lowercase : Dict ): '''simple docstring''' super().__init__() UpperCAmelCase_ = class_size UpperCAmelCase_ = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) UpperCAmelCase_ = nn.Linear(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE ( self : Any , __lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ = self.mlp(__lowercase ) return logits
486
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
7
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : Optional[int] = { "huggingface/time-series-transformer-tourism-monthly": ( "https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class A ( UpperCAmelCase ): a_ = '''time_series_transformer''' a_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : str , __a : Optional[int] = None , __a : Optional[int] = None , __a : str = "student_t" , __a : str = "nll" , __a : int = 1 , __a : List[int] = [1, 2, 3, 4, 5, 6, 7] , __a : Optional[Union[str, bool]] = "mean" , __a : int = 0 , __a : int = 0 , __a : int = 0 , __a : int = 0 , __a : Optional[List[int]] = None , __a : Optional[List[int]] = None , __a : int = 3_2 , __a : int = 3_2 , __a : int = 2 , __a : int = 2 , __a : int = 2 , __a : int = 2 , __a : bool = True , __a : str = "gelu" , __a : int = 6_4 , __a : float = 0.1 , __a : float = 0.1 , __a : float = 0.1 , __a : float = 0.1 , __a : float = 0.1 , __a : int = 1_0_0 , __a : float = 0.0_2 , __a : Optional[int]=True , **__a : str , ) -> int: # time series specific configuration __UpperCAmelCase = prediction_length __UpperCAmelCase = context_length or prediction_length __UpperCAmelCase = distribution_output __UpperCAmelCase = loss __UpperCAmelCase = input_size __UpperCAmelCase = num_time_features __UpperCAmelCase = lags_sequence __UpperCAmelCase = scaling __UpperCAmelCase = num_dynamic_real_features __UpperCAmelCase = num_static_real_features __UpperCAmelCase = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(__a ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) __UpperCAmelCase = cardinality else: __UpperCAmelCase = [0] if embedding_dimension and num_static_categorical_features > 0: if len(__a ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) __UpperCAmelCase = embedding_dimension else: __UpperCAmelCase = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] __UpperCAmelCase = num_parallel_samples # Transformer architecture configuration __UpperCAmelCase = input_size * len(__a ) + self._number_of_features __UpperCAmelCase = d_model __UpperCAmelCase = encoder_attention_heads __UpperCAmelCase = decoder_attention_heads __UpperCAmelCase = encoder_ffn_dim __UpperCAmelCase = decoder_ffn_dim __UpperCAmelCase = encoder_layers __UpperCAmelCase = decoder_layers __UpperCAmelCase = dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation_dropout __UpperCAmelCase = encoder_layerdrop __UpperCAmelCase = decoder_layerdrop __UpperCAmelCase = activation_function __UpperCAmelCase = init_std __UpperCAmelCase = use_cache super().__init__(is_encoder_decoder=__a , **__a ) @property def snake_case__ ( self : List[Any] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
262
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = {"""configuration_timm_backbone""": ["""TimmBackboneConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["""TimmBackbone"""] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
711
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser( description=( """Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""roberta""", choices=["""roberta""", """gpt2"""]) parser.add_argument("""--model_name""", default="""roberta-large""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_roberta_048131723.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") __UpperCAmelCase = parser.parse_args() if args.model_type == "roberta": __UpperCAmelCase = RobertaForMaskedLM.from_pretrained(args.model_name) __UpperCAmelCase = """roberta""" elif args.model_type == "gpt2": __UpperCAmelCase = GPTaLMHeadModel.from_pretrained(args.model_name) __UpperCAmelCase = """transformer""" __UpperCAmelCase = model.state_dict() __UpperCAmelCase = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: __UpperCAmelCase = state_dict[F"""{prefix}.{param_name}"""] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: __UpperCAmelCase = F"""{prefix}.embeddings.{w}.weight""" __UpperCAmelCase = state_dict[param_name] for w in ["weight", "bias"]: __UpperCAmelCase = F"""{prefix}.embeddings.LayerNorm.{w}""" __UpperCAmelCase = state_dict[param_name] # Transformer Blocks # __UpperCAmelCase = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: __UpperCAmelCase = state_dict[ F"""{prefix}.h.{teacher_idx}.{layer}.{w}""" ] __UpperCAmelCase = state_dict[F"""{prefix}.h.{teacher_idx}.attn.bias"""] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: __UpperCAmelCase = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}""" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: __UpperCAmelCase = state_dict[F"""{layer}"""] if args.vocab_transform: for w in ["weight", "bias"]: __UpperCAmelCase = state_dict[F"""lm_head.dense.{w}"""] __UpperCAmelCase = state_dict[F"""lm_head.layer_norm.{w}"""] elif args.model_type == "gpt2": for w in ["weight", "bias"]: __UpperCAmelCase = state_dict[F"""{prefix}.ln_f.{w}"""] __UpperCAmelCase = state_dict["""lm_head.weight"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
582
0