code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCAmelCase = {"""processing_wav2vec2_with_lm""": ["""Wav2Vec2ProcessorWithLM"""]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
174
"""simple docstring""" # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers lowerCAmelCase = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
174
1
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class __A( __lowerCamelCase ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=0 ): UpperCamelCase__ = 1.0 if scale is None else scale UpperCamelCase__ = 0.0 if loc is None else loc super().__init__(SCREAMING_SNAKE_CASE_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=SCREAMING_SNAKE_CASE_ )] ) @property def UpperCAmelCase_ (self ): return self.base_dist.mean * self.scale + self.loc @property def UpperCAmelCase_ (self ): return self.base_dist.variance * self.scale**2 @property def UpperCAmelCase_ (self ): return self.variance.sqrt() class __A( nn.Module ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = args_dim UpperCamelCase__ = nn.ModuleList([nn.Linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for dim in args_dim.values()] ) UpperCamelCase__ = domain_map def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = [proj(SCREAMING_SNAKE_CASE_ ) for proj in self.proj] return self.domain_map(*SCREAMING_SNAKE_CASE_ ) class __A( nn.Module ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ ): super().__init__() UpperCamelCase__ = function def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ): return self.function(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) class __A: """simple docstring""" SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 def __init__(self , SCREAMING_SNAKE_CASE_ = 1 ): UpperCamelCase__ = dim UpperCamelCase__ = {k: dim * self.args_dim[k] for k in self.args_dim} def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): if self.dim == 1: return self.distribution_class(*SCREAMING_SNAKE_CASE_ ) else: return Independent(self.distribution_class(*SCREAMING_SNAKE_CASE_ ) , 1 ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , ): UpperCamelCase__ = self._base_distribution(SCREAMING_SNAKE_CASE_ ) if loc is None and scale is None: return distr else: return AffineTransformed(SCREAMING_SNAKE_CASE_ , loc=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , event_dim=self.event_dim ) @property def UpperCAmelCase_ (self ): return () if self.dim == 1 else (self.dim,) @property def UpperCAmelCase_ (self ): return len(self.event_shape ) @property def UpperCAmelCase_ (self ): return 0.0 def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): return ParameterProjection( in_features=SCREAMING_SNAKE_CASE_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def UpperCAmelCase_ (self , *SCREAMING_SNAKE_CASE_ ): raise NotImplementedError() @staticmethod def UpperCAmelCase_ (SCREAMING_SNAKE_CASE_ ): return (x + torch.sqrt(torch.square(SCREAMING_SNAKE_CASE_ ) + 4.0 )) / 2.0 class __A( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = {"""df""": 1, """loc""": 1, """scale""": 1} SCREAMING_SNAKE_CASE__ = StudentT @classmethod def UpperCAmelCase_ (cls , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = cls.squareplus(SCREAMING_SNAKE_CASE_ ).clamp_min(torch.finfo(scale.dtype ).eps ) UpperCamelCase__ = 2.0 + cls.squareplus(SCREAMING_SNAKE_CASE_ ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class __A( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = {"""loc""": 1, """scale""": 1} SCREAMING_SNAKE_CASE__ = Normal @classmethod def UpperCAmelCase_ (cls , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = cls.squareplus(SCREAMING_SNAKE_CASE_ ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class __A( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = {"""total_count""": 1, """logits""": 1} SCREAMING_SNAKE_CASE__ = NegativeBinomial @classmethod def UpperCAmelCase_ (cls , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = cls.squareplus(SCREAMING_SNAKE_CASE_ ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ , UpperCamelCase__ = distr_args if self.dim == 1: return self.distribution_class(total_count=SCREAMING_SNAKE_CASE_ , logits=SCREAMING_SNAKE_CASE_ ) else: return Independent(self.distribution_class(total_count=SCREAMING_SNAKE_CASE_ , logits=SCREAMING_SNAKE_CASE_ ) , 1 ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None ): UpperCamelCase__ , UpperCamelCase__ = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
714
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed lowerCamelCase_ = { '''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), '''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), '''bert''': (BertConfig, BertForMaskedLM, BertTokenizer), '''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def __magic_name__ ( __a : Any ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def __magic_name__ ( __a : List[Any] , __a : Any ): '''simple docstring''' if args.student_type == "roberta": UpperCamelCase__ = False elif args.student_type == "gpt2": UpperCamelCase__ = False def __magic_name__ ( __a : int , __a : Dict ): '''simple docstring''' if args.student_type == "roberta": UpperCamelCase__ = False def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = argparse.ArgumentParser(description="""Training""" ) parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""" ) parser.add_argument( """--dump_path""" , type=__a , required=__a , help="""The output directory (log, checkpoints, parameters, etc.)""" ) parser.add_argument( """--data_file""" , type=__a , required=__a , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , ) parser.add_argument( """--student_type""" , type=__a , choices=["""distilbert""", """roberta""", """gpt2"""] , required=__a , help="""The student type (DistilBERT, RoBERTa).""" , ) parser.add_argument("""--student_config""" , type=__a , required=__a , help="""Path to the student configuration.""" ) parser.add_argument( """--student_pretrained_weights""" , default=__a , type=__a , help="""Load student initialization checkpoint.""" ) parser.add_argument( """--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=__a , help="""Teacher type (BERT, RoBERTa).""" ) parser.add_argument("""--teacher_name""" , type=__a , required=__a , help="""The teacher model.""" ) parser.add_argument("""--temperature""" , default=2.0 , type=__a , help="""Temperature for the softmax temperature.""" ) parser.add_argument( """--alpha_ce""" , default=0.5 , type=__a , help="""Linear weight for the distillation loss. Must be >=0.""" ) parser.add_argument( """--alpha_mlm""" , default=0.0 , type=__a , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , ) parser.add_argument("""--alpha_clm""" , default=0.5 , type=__a , help="""Linear weight for the CLM loss. Must be >=0.""" ) parser.add_argument("""--alpha_mse""" , default=0.0 , type=__a , help="""Linear weight of the MSE loss. Must be >=0.""" ) parser.add_argument( """--alpha_cos""" , default=0.0 , type=__a , help="""Linear weight of the cosine embedding loss. Must be >=0.""" ) parser.add_argument( """--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" ) parser.add_argument( """--mlm_mask_prop""" , default=0.15 , type=__a , help="""Proportion of tokens for which we need to make a prediction.""" , ) parser.add_argument("""--word_mask""" , default=0.8 , type=__a , help="""Proportion of tokens to mask out.""" ) parser.add_argument("""--word_keep""" , default=0.1 , type=__a , help="""Proportion of tokens to keep.""" ) parser.add_argument("""--word_rand""" , default=0.1 , type=__a , help="""Proportion of tokens to randomly replace.""" ) parser.add_argument( """--mlm_smoothing""" , default=0.7 , type=__a , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , ) parser.add_argument("""--token_counts""" , type=__a , help="""The token counts in the data_file for MLM.""" ) parser.add_argument( """--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , ) parser.add_argument( """--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , ) parser.add_argument( """--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , ) parser.add_argument("""--n_epoch""" , type=__a , default=3 , help="""Number of pass on the whole dataset.""" ) parser.add_argument("""--batch_size""" , type=__a , default=5 , help="""Batch size (for each process).""" ) parser.add_argument( """--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , ) parser.add_argument( """--gradient_accumulation_steps""" , type=__a , default=50 , help="""Gradient accumulation for larger training batches.""" , ) parser.add_argument("""--warmup_prop""" , default=0.05 , type=__a , help="""Linear warmup proportion.""" ) parser.add_argument("""--weight_decay""" , default=0.0 , type=__a , help="""Weight decay if we apply some.""" ) parser.add_argument("""--learning_rate""" , default=5E-4 , type=__a , help="""The initial learning rate for Adam.""" ) parser.add_argument("""--adam_epsilon""" , default=1E-6 , type=__a , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , default=5.0 , type=__a , help="""Max gradient norm.""" ) parser.add_argument("""--initializer_range""" , default=0.02 , type=__a , help="""Random initialization range.""" ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=__a , default="""O1""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_gpu""" , type=__a , default=1 , help="""Number of GPUs in the node.""" ) parser.add_argument("""--local_rank""" , type=__a , default=-1 , help="""Distributed training - Local rank""" ) parser.add_argument("""--seed""" , type=__a , default=56 , help="""Random seed""" ) parser.add_argument("""--log_interval""" , type=__a , default=500 , help="""Tensorboard logging interval.""" ) parser.add_argument("""--checkpoint_interval""" , type=__a , default=4_000 , help="""Checkpoint interval.""" ) UpperCamelCase__ = parser.parse_args() sanity_checks(__a ) # ARGS # init_gpu_params(__a ) set_seed(__a ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite" """ itUse `--force` if you want to overwrite it""" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"Experiment will be dumped and logged in {args.dump_path}" ) # SAVE PARAMS # logger.info(f"Param: {args}" ) with open(os.path.join(args.dump_path , """parameters.json""" ) , """w""" ) as f: json.dump(vars(__a ) , __a , indent=4 ) git_log(args.dump_path ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = MODEL_CLASSES[args.student_type] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCamelCase__ = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCamelCase__ = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCamelCase__ = tokenizer.all_special_tokens.index(__a ) UpperCamelCase__ = tokenizer.all_special_ids[idx] logger.info(f"Special tokens {special_tok_ids}" ) UpperCamelCase__ = special_tok_ids UpperCamelCase__ = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"Loading data from {args.data_file}" ) with open(args.data_file , """rb""" ) as fp: UpperCamelCase__ = pickle.load(__a ) if args.mlm: logger.info(f"Loading token counts from {args.token_counts} (already pre-computed)" ) with open(args.token_counts , """rb""" ) as fp: UpperCamelCase__ = pickle.load(__a ) UpperCamelCase__ = np.maximum(__a , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCamelCase__ = 0.0 # do not predict special tokens UpperCamelCase__ = torch.from_numpy(__a ) else: UpperCamelCase__ = None UpperCamelCase__ = LmSeqsDataset(params=__a , data=__a ) logger.info("""Data loader created.""" ) # STUDENT # logger.info(f"Loading student config from {args.student_config}" ) UpperCamelCase__ = student_config_class.from_pretrained(args.student_config ) UpperCamelCase__ = True if args.student_pretrained_weights is not None: logger.info(f"Loading pretrained weights from {args.student_pretrained_weights}" ) UpperCamelCase__ = student_model_class.from_pretrained(args.student_pretrained_weights , config=__a ) else: UpperCamelCase__ = student_model_class(__a ) if args.n_gpu > 0: student.to(f"cuda:{args.local_rank}" ) logger.info("""Student loaded.""" ) # TEACHER # UpperCamelCase__ = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__a ) if args.n_gpu > 0: teacher.to(f"cuda:{args.local_rank}" ) logger.info(f"Teacher loaded from {args.teacher_name}." ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(__a , __a ) if args.freeze_token_type_embds: freeze_token_type_embeddings(__a , __a ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCamelCase__ = Distiller( params=__a , dataset=__a , token_probs=__a , student=__a , teacher=__a ) distiller.train() logger.info("""Let's go get some drinks.""" ) if __name__ == "__main__": main()
86
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : Tuple = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } __UpperCamelCase : Optional[Any] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = {} with open(lowerCamelCase , """r""" ) as file: for line_number, line in enumerate(lowerCamelCase ): __lowercase = line.strip() if line: __lowercase = line.split() __lowercase = line_number __lowercase = words[0] __lowercase = value return result def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' for attribute in key.split(""".""" ): __lowercase = getattr(lowerCamelCase , lowerCamelCase ) __lowercase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCamelCase ): __lowercase = PARAM_MAPPING[full_name.split(""".""" )[-1]] __lowercase = """param""" if weight_type is not None and weight_type != "param": __lowercase = getattr(lowerCamelCase , lowerCamelCase ).shape elif weight_type is not None and weight_type == "param": __lowercase = hf_pointer for attribute in hf_param_name.split(""".""" ): __lowercase = getattr(lowerCamelCase , lowerCamelCase ) __lowercase = shape_pointer.shape # let's reduce dimension __lowercase = value[0] else: __lowercase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": __lowercase = value elif weight_type == "weight_g": __lowercase = value elif weight_type == "weight_v": __lowercase = value elif weight_type == "bias": __lowercase = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): __lowercase = getattr(lowerCamelCase , lowerCamelCase ) __lowercase = value else: __lowercase = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCamelCase ): __lowercase = PARAM_MAPPING[full_name.split(""".""" )[-1]] __lowercase = """param""" if weight_type is not None and weight_type != "param": __lowercase = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __lowercase = """.""".join([key, hf_param_name] ) else: __lowercase = key __lowercase = value if """lm_head""" in full_key else value[0] __UpperCamelCase : Tuple = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ): '''simple docstring''' __lowercase = False for key, mapped_key in MAPPING.items(): __lowercase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __lowercase = True if "*" in mapped_key: __lowercase = name.split(lowerCamelCase )[0].split(""".""" )[-2] __lowercase = mapped_key.replace("""*""" , lowerCamelCase ) if "weight_g" in name: __lowercase = """weight_g""" elif "weight_v" in name: __lowercase = """weight_v""" elif "bias" in name: __lowercase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowercase = """weight""" else: __lowercase = None if hf_dict is not None: rename_dict(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: set_recursively(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) return is_used return is_used def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [] __lowercase = fairseq_model.state_dict() __lowercase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __lowercase = False if "conv_layers" in name: load_conv_layer( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) __lowercase = True else: __lowercase = load_wavaveca_layer(lowerCamelCase , lowerCamelCase , lowerCamelCase ) if not is_used: unused_weights.append(lowerCamelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = full_name.split("""conv_layers.""" )[-1] __lowercase = name.split(""".""" ) __lowercase = int(items[0] ) __lowercase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __lowercase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __lowercase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) __lowercase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) __lowercase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowerCamelCase ) @torch.no_grad() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=False ): '''simple docstring''' if config_path is not None: __lowercase = WavaVecaConfig.from_pretrained(lowerCamelCase ) else: __lowercase = WavaVecaConfig() if is_seq_class: __lowercase = read_txt_into_dict(lowerCamelCase ) __lowercase = idalabel __lowercase = WavaVecaForSequenceClassification(lowerCamelCase ) __lowercase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCamelCase , return_attention_mask=lowerCamelCase , ) feature_extractor.save_pretrained(lowerCamelCase ) elif is_finetuned: if dict_path: __lowercase = Dictionary.load(lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowercase = target_dict.pad_index __lowercase = target_dict.bos_index __lowercase = target_dict.eos_index __lowercase = len(target_dict.symbols ) __lowercase = os.path.join(lowerCamelCase , """vocab.json""" ) if not os.path.isdir(lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCamelCase ) ) return os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) __lowercase = target_dict.indices # fairseq has the <pad> and <s> switched __lowercase = 0 __lowercase = 1 with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowerCamelCase , lowerCamelCase ) __lowercase = WavaVecaCTCTokenizer( lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCamelCase , ) __lowercase = True if config.feat_extract_norm == """layer""" else False __lowercase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCamelCase , return_attention_mask=lowerCamelCase , ) __lowercase = WavaVecaProcessor(feature_extractor=lowerCamelCase , tokenizer=lowerCamelCase ) processor.save_pretrained(lowerCamelCase ) __lowercase = WavaVecaForCTC(lowerCamelCase ) else: __lowercase = WavaVecaForPreTraining(lowerCamelCase ) if is_finetuned or is_seq_class: __lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __lowercase = argparse.Namespace(task="""audio_pretraining""" ) __lowercase = fairseq.tasks.setup_task(lowerCamelCase ) __lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCamelCase ) __lowercase = model[0].eval() recursively_load_weights(lowerCamelCase , lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) __UpperCamelCase : Optional[Any] = parser.parse_args() __UpperCamelCase : List[Any] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
80
'''simple docstring''' from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class a : """simple docstring""" def __init__( self , snake_case_ , ): '''simple docstring''' __UpperCAmelCase: List[Any] = parent __UpperCAmelCase: Dict = 13 __UpperCAmelCase: Optional[int] = 7 __UpperCAmelCase: List[str] = 30 __UpperCAmelCase: List[Any] = self.seq_length + self.mem_len __UpperCAmelCase: int = 15 __UpperCAmelCase: Optional[int] = True __UpperCAmelCase: List[str] = True __UpperCAmelCase: Union[str, Any] = 99 __UpperCAmelCase: Optional[int] = [10, 50, 80] __UpperCAmelCase: str = 32 __UpperCAmelCase: Optional[Any] = 32 __UpperCAmelCase: Union[str, Any] = 4 __UpperCAmelCase: int = 8 __UpperCAmelCase: str = 128 __UpperCAmelCase: str = 2 __UpperCAmelCase: Tuple = 2 __UpperCAmelCase: Union[str, Any] = None __UpperCAmelCase: str = 1 __UpperCAmelCase: Optional[Any] = 0 __UpperCAmelCase: int = 3 __UpperCAmelCase: Dict = self.vocab_size - 1 __UpperCAmelCase: int = 0.0_1 def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase: Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase: List[str] = None if self.use_labels: __UpperCAmelCase: int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase: Optional[int] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def lowercase_ ( self ): '''simple docstring''' random.seed(self.seed ) tf.random.set_seed(self.seed ) def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Dict = TFTransfoXLModel(snake_case_ ) __UpperCAmelCase, __UpperCAmelCase: List[str] = model(snake_case_ ).to_tuple() __UpperCAmelCase: Tuple = {"""input_ids""": input_ids_a, """mems""": mems_a} __UpperCAmelCase, __UpperCAmelCase: Optional[Any] = model(snake_case_ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: str = TFTransfoXLLMHeadModel(snake_case_ ) __UpperCAmelCase, __UpperCAmelCase: Optional[int] = model(snake_case_ ).to_tuple() __UpperCAmelCase: Optional[Any] = {"""input_ids""": input_ids_a, """labels""": lm_labels} __UpperCAmelCase, __UpperCAmelCase: Tuple = model(snake_case_ ).to_tuple() __UpperCAmelCase, __UpperCAmelCase: Dict = model([input_ids_a, mems_a] ).to_tuple() __UpperCAmelCase: Union[str, Any] = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} __UpperCAmelCase, __UpperCAmelCase: List[str] = model(snake_case_ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Optional[int] = TFTransfoXLForSequenceClassification(snake_case_ ) __UpperCAmelCase: List[Any] = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Optional[int] = self.prepare_config_and_inputs() ((__UpperCAmelCase), (__UpperCAmelCase), (__UpperCAmelCase), (__UpperCAmelCase)): Dict = config_and_inputs __UpperCAmelCase: List[str] = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class a ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): """simple docstring""" __lowerCAmelCase = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __lowerCAmelCase = () if is_tf_available() else () __lowerCAmelCase = ( { """feature-extraction""": TFTransfoXLModel, """text-classification""": TFTransfoXLForSequenceClassification, """text-generation""": TFTransfoXLLMHeadModel, """zero-shot""": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Dict = TFTransfoXLModelTester(self ) __UpperCAmelCase: Any = ConfigTester(self , config_class=snake_case_ , d_embed=37 ) def lowercase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ): '''simple docstring''' self.model_tester.set_seed() __UpperCAmelCase: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*snake_case_ ) def lowercase_ ( self ): '''simple docstring''' self.model_tester.set_seed() __UpperCAmelCase: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*snake_case_ ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*snake_case_ ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase, __UpperCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase: str = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: __UpperCAmelCase: int = model_class(snake_case_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: __UpperCAmelCase: Any = model.get_output_embeddings() assert isinstance(snake_case_ , tf.keras.layers.Layer ) __UpperCAmelCase: int = model.get_bias() assert name is None else: __UpperCAmelCase: Optional[int] = model.get_output_embeddings() assert x is None __UpperCAmelCase: str = model.get_bias() assert name is None def lowercase_ ( self ): '''simple docstring''' pass @slow def lowercase_ ( self ): '''simple docstring''' for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase: str = TFTransfoXLModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def lowercase_ ( self ): '''simple docstring''' pass @require_tf class a ( unittest.TestCase ): """simple docstring""" @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off __UpperCAmelCase: str = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off __UpperCAmelCase: Dict = [33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0,33,1,1857,2,1,1009,4,1109,1_1739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> __UpperCAmelCase: Dict = model.generate(snake_case_ , max_length=200 , do_sample=snake_case_ ) self.assertListEqual(output_ids[0].numpy().tolist() , snake_case_ )
523
0
'''simple docstring''' import torch from torch import nn class UpperCAmelCase_ ( nn.Module ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=1 , lowercase_=False): super().__init__() snake_case_ : Any = n_token snake_case_ : str = d_embed snake_case_ : Optional[int] = d_proj snake_case_ : Tuple = cutoffs + [n_token] snake_case_ : int = [0] + self.cutoffs snake_case_ : Optional[int] = div_val snake_case_ : str = self.cutoffs[0] snake_case_ : Optional[Any] = len(self.cutoffs) - 1 snake_case_ : Union[str, Any] = self.shortlist_size + self.n_clusters if self.n_clusters > 0: snake_case_ : Union[str, Any] = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed)) snake_case_ : Union[str, Any] = nn.Parameter(torch.zeros(self.n_clusters)) snake_case_ : Tuple = nn.ModuleList() snake_case_ : List[Any] = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCAmelCase__ , UpperCAmelCase__))) else: self.out_projs.append(UpperCAmelCase__) self.out_layers.append(nn.Linear(UpperCAmelCase__ , UpperCAmelCase__)) else: for i in range(len(self.cutoffs)): snake_case_ : str = self.cutoff_ends[i], self.cutoff_ends[i + 1] snake_case_ : Optional[Any] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCAmelCase__ , UpperCAmelCase__))) self.out_layers.append(nn.Linear(UpperCAmelCase__ , r_idx - l_idx)) snake_case_ : Optional[int] = keep_order def snake_case__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_): if proj is None: snake_case_ : Dict = nn.functional.linear(UpperCAmelCase__ , UpperCAmelCase__ , bias=UpperCAmelCase__) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: snake_case_ : Optional[Any] = nn.functional.linear(UpperCAmelCase__ , proj.t().contiguous()) snake_case_ : Any = nn.functional.linear(UpperCAmelCase__ , UpperCAmelCase__ , bias=UpperCAmelCase__) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def snake_case__ ( self , lowercase_ , lowercase_=None , lowercase_=False): if labels is not None: # Shift so that tokens < n predict n snake_case_ : Tuple = hidden[..., :-1, :].contiguous() snake_case_ : Union[str, Any] = labels[..., 1:].contiguous() snake_case_ : Any = hidden.view(-1 , hidden.size(-1)) snake_case_ : Any = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError("Input and labels should have the same size in the batch dimension.") else: snake_case_ : int = hidden.view(-1 , hidden.size(-1)) if self.n_clusters == 0: snake_case_ : str = self._compute_logit(UpperCAmelCase__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) if labels is not None: snake_case_ : Tuple = labels != -1_00 snake_case_ : Optional[Any] = torch.zeros_like(UpperCAmelCase__ , dtype=hidden.dtype , device=hidden.device) snake_case_ : Any = ( -nn.functional.log_softmax(UpperCAmelCase__ , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1) ) else: snake_case_ : Any = nn.functional.log_softmax(UpperCAmelCase__ , dim=-1) else: # construct weights and biases snake_case_ : Any = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: snake_case_ : Optional[int] = self.cutoff_ends[i], self.cutoff_ends[i + 1] snake_case_ : List[Any] = self.out_layers[0].weight[l_idx:r_idx] snake_case_ : str = self.out_layers[0].bias[l_idx:r_idx] else: snake_case_ : Union[str, Any] = self.out_layers[i].weight snake_case_ : List[str] = self.out_layers[i].bias if i == 0: snake_case_ : List[str] = torch.cat([weight_i, self.cluster_weight] , dim=0) snake_case_ : int = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(UpperCAmelCase__) biases.append(UpperCAmelCase__) snake_case_ : Dict = weights[0], biases[0], self.out_projs[0] snake_case_ : Dict = self._compute_logit(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) snake_case_ : Optional[int] = nn.functional.log_softmax(UpperCAmelCase__ , dim=1) if labels is None: snake_case_ : List[str] = hidden.new_empty((head_logit.size(0), self.n_token)) else: snake_case_ : Optional[Any] = torch.zeros_like(UpperCAmelCase__ , dtype=hidden.dtype , device=hidden.device) snake_case_ : Optional[int] = 0 snake_case_ : Dict = [0] + self.cutoffs for i in range(len(UpperCAmelCase__) - 1): snake_case_ : Optional[int] = cutoff_values[i], cutoff_values[i + 1] if labels is not None: snake_case_ : Optional[int] = (labels >= l_idx) & (labels < r_idx) snake_case_ : Optional[Any] = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue snake_case_ : Any = labels.index_select(0 , UpperCAmelCase__) - l_idx snake_case_ : str = head_logprob.index_select(0 , UpperCAmelCase__) snake_case_ : Dict = hidden.index_select(0 , UpperCAmelCase__) else: snake_case_ : Dict = hidden if i == 0: if labels is not None: snake_case_ : int = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1) else: snake_case_ : str = head_logprob[:, : self.cutoffs[0]] else: snake_case_ : Tuple = weights[i], biases[i], self.out_projs[i] snake_case_ : Dict = self._compute_logit(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) snake_case_ : Dict = nn.functional.log_softmax(UpperCAmelCase__ , dim=1) snake_case_ : Any = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: snake_case_ : Any = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None]).squeeze(1) else: snake_case_ : Dict = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i snake_case_ : List[Any] = logprob_i if labels is not None: if (hasattr(self , "keep_order") and self.keep_order) or keep_order: out.index_copy_(0 , UpperCAmelCase__ , -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def snake_case__ ( self , lowercase_): if self.n_clusters == 0: snake_case_ : Optional[Any] = self._compute_logit(UpperCAmelCase__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) return nn.functional.log_softmax(UpperCAmelCase__ , dim=-1) else: # construct weights and biases snake_case_ : Optional[Any] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: snake_case_ : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] snake_case_ : List[str] = self.out_layers[0].weight[l_idx:r_idx] snake_case_ : Optional[Any] = self.out_layers[0].bias[l_idx:r_idx] else: snake_case_ : Any = self.out_layers[i].weight snake_case_ : Optional[Any] = self.out_layers[i].bias if i == 0: snake_case_ : Optional[int] = torch.cat([weight_i, self.cluster_weight] , dim=0) snake_case_ : Any = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(UpperCAmelCase__) biases.append(UpperCAmelCase__) snake_case_ : Optional[Any] = weights[0], biases[0], self.out_projs[0] snake_case_ : int = self._compute_logit(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) snake_case_ : Optional[int] = hidden.new_empty((head_logit.size(0), self.n_token)) snake_case_ : List[Any] = nn.functional.log_softmax(UpperCAmelCase__ , dim=1) snake_case_ : int = [0] + self.cutoffs for i in range(len(UpperCAmelCase__) - 1): snake_case_ : Union[str, Any] = cutoff_values[i], cutoff_values[i + 1] if i == 0: snake_case_ : int = head_logprob[:, : self.cutoffs[0]] else: snake_case_ : Dict = weights[i], biases[i], self.out_projs[i] snake_case_ : Tuple = self._compute_logit(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) snake_case_ : List[Any] = nn.functional.log_softmax(UpperCAmelCase__ , dim=1) snake_case_ : Tuple = head_logprob[:, -i] + tail_logprob_i snake_case_ : Any = logprob_i return out
718
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase_ ( snake_case__ ): UpperCAmelCase_ = """ClapFeatureExtractor""" UpperCAmelCase_ = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , lowercase_ , lowercase_): super().__init__(lowercase_ , lowercase_) def __call__( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_): snake_case_ : Any = kwargs.pop("sampling_rate" , lowercase_) if text is None and audios is None: raise ValueError("You have to specify either text or audios. Both cannot be none.") if text is not None: snake_case_ : Optional[int] = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_) if audios is not None: snake_case_ : Any = self.feature_extractor( lowercase_ , sampling_rate=lowercase_ , return_tensors=lowercase_ , **lowercase_) if text is not None and audios is not None: snake_case_ : Dict = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase_) , tensor_type=lowercase_) def snake_case__ ( self , *lowercase_ , **lowercase_): return self.tokenizer.batch_decode(*lowercase_ , **lowercase_) def snake_case__ ( self , *lowercase_ , **lowercase_): return self.tokenizer.decode(*lowercase_ , **lowercase_) @property def snake_case__ ( self): snake_case_ : Union[str, Any] = self.tokenizer.model_input_names snake_case_ : int = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names))
92
0
"""simple docstring""" import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class snake_case__ ( unittest.TestCase ): def a__ ( self , lowerCamelCase , lowerCamelCase ): __a = jnp.ones((batch_size, length) ) / length return scores def a__ ( self ): __a = None __a = 20 __a = self._get_uniform_logits(batch_size=2 , length=lowerCamelCase ) # tweak scores to not be uniform anymore __a = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch __a = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax __a = jax.nn.softmax(lowerCamelCase , axis=-1 ) __a = FlaxTemperatureLogitsWarper(temperature=0.5 ) __a = FlaxTemperatureLogitsWarper(temperature=1.3 ) __a = jax.nn.softmax(temp_dist_warper_sharper(lowerCamelCase , scores.copy() , cur_len=lowerCamelCase ) , axis=-1 ) __a = jax.nn.softmax(temp_dist_warper_smoother(lowerCamelCase , scores.copy() , cur_len=lowerCamelCase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def a__ ( self ): __a = None __a = 10 __a = 2 # create ramp distribution __a = np.broadcast_to(np.arange(lowerCamelCase )[None, :] , (batch_size, vocab_size) ).copy() __a = ramp_logits[1:, : vocab_size // 2] + vocab_size __a = FlaxTopKLogitsWarper(3 ) __a = top_k_warp(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case __a = 5 __a = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) __a = np.broadcast_to(np.arange(lowerCamelCase )[None, :] , (batch_size, length) ).copy() __a = top_k_warp_safety_check(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def a__ ( self ): __a = None __a = 10 __a = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) __a = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) __a = FlaxTopPLogitsWarper(0.8 ) __a = np.exp(top_p_warp(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 __a = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # check edge cases with negative and extreme logits __a = np.broadcast_to(np.arange(lowerCamelCase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme __a = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept __a = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) __a = top_p_warp(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def a__ ( self ): __a = 20 __a = 4 __a = 0 __a = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCamelCase ) # check that min length is applied at length 5 __a = ids_tensor((batch_size, 20) , vocab_size=20 ) __a = 5 __a = self._get_uniform_logits(lowerCamelCase , lowerCamelCase ) __a = min_dist_processor(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf" )] ) # check that min length is not applied anymore at length 15 __a = self._get_uniform_logits(lowerCamelCase , lowerCamelCase ) __a = 15 __a = min_dist_processor(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase ) self.assertFalse(jnp.isinf(lowerCamelCase ).any() ) def a__ ( self ): __a = 20 __a = 4 __a = 0 __a = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCamelCase ) # check that all scores are -inf except the bos_token_id score __a = ids_tensor((batch_size, 1) , vocab_size=20 ) __a = 1 __a = self._get_uniform_logits(lowerCamelCase , lowerCamelCase ) __a = logits_processor(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 __a = 3 __a = self._get_uniform_logits(lowerCamelCase , lowerCamelCase ) __a = logits_processor(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase ) self.assertFalse(jnp.isinf(lowerCamelCase ).any() ) def a__ ( self ): __a = 20 __a = 4 __a = 0 __a = 5 __a = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCamelCase , eos_token_id=lowerCamelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached __a = ids_tensor((batch_size, 4) , vocab_size=20 ) __a = 4 __a = self._get_uniform_logits(lowerCamelCase , lowerCamelCase ) __a = logits_processor(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached __a = 3 __a = self._get_uniform_logits(lowerCamelCase , lowerCamelCase ) __a = logits_processor(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase ) self.assertFalse(jnp.isinf(lowerCamelCase ).any() ) def a__ ( self ): __a = 4 __a = 10 __a = 15 __a = 2 __a = 1 __a = 15 # dummy input_ids and scores __a = ids_tensor((batch_size, sequence_length) , lowerCamelCase ) __a = input_ids.copy() __a = self._get_uniform_logits(lowerCamelCase , lowerCamelCase ) __a = scores.copy() # instantiate all dist processors __a = FlaxTemperatureLogitsWarper(temperature=0.5 ) __a = FlaxTopKLogitsWarper(3 ) __a = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors __a = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCamelCase ) __a = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCamelCase ) __a = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCamelCase , eos_token_id=lowerCamelCase ) __a = 10 # no processor list __a = temp_dist_warp(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase ) __a = top_k_warp(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase ) __a = top_p_warp(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase ) __a = min_dist_proc(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase ) __a = bos_dist_proc(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase ) __a = eos_dist_proc(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase ) # with processor list __a = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) __a = processor(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase ) # scores should be equal self.assertTrue(jnp.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def a__ ( self ): __a = 4 __a = 10 __a = 15 __a = 2 __a = 1 __a = 15 # dummy input_ids and scores __a = ids_tensor((batch_size, sequence_length) , lowerCamelCase ) __a = input_ids.copy() __a = self._get_uniform_logits(lowerCamelCase , lowerCamelCase ) __a = scores.copy() # instantiate all dist processors __a = FlaxTemperatureLogitsWarper(temperature=0.5 ) __a = FlaxTopKLogitsWarper(3 ) __a = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors __a = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCamelCase ) __a = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCamelCase ) __a = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCamelCase , eos_token_id=lowerCamelCase ) __a = 10 # no processor list def run_no_processor_list(lowerCamelCase , lowerCamelCase , lowerCamelCase ): __a = temp_dist_warp(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase ) __a = top_k_warp(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase ) __a = top_p_warp(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase ) __a = min_dist_proc(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase ) __a = bos_dist_proc(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase ) __a = eos_dist_proc(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase ) return scores # with processor list def run_processor_list(lowerCamelCase , lowerCamelCase , lowerCamelCase ): __a = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) __a = processor(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase ) return scores __a = jax.jit(lowerCamelCase ) __a = jax.jit(lowerCamelCase ) __a = jitted_run_no_processor_list(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __a = jitted_run_processor_list(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # scores should be equal self.assertTrue(jnp.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
528
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def _lowerCamelCase( ): raise RuntimeError("CUDA out of memory." ) class snake_case__ ( nn.Module ): def __init__( self ): super().__init__() __a = nn.Linear(3 , 4 ) __a = nn.BatchNormad(4 ) __a = nn.Linear(4 , 5 ) def a__ ( self , lowerCamelCase ): return self.lineara(self.batchnorm(self.lineara(lowerCamelCase ) ) ) class snake_case__ ( unittest.TestCase ): def a__ ( self ): __a = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowerCamelCase ): nonlocal batch_sizes batch_sizes.append(lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowerCamelCase , [128, 64, 32, 16, 8] ) def a__ ( self ): __a = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowerCamelCase , lowerCamelCase ): nonlocal batch_sizes batch_sizes.append(lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __a , __a = mock_training_loop_function("hello" ) self.assertListEqual(lowerCamelCase , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, "hello"] ) def a__ ( self ): @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(lowerCamelCase ): pass with self.assertRaises(lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] ) def a__ ( self ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowerCamelCase ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] ) def a__ ( self ): @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowerCamelCase , lowerCamelCase , lowerCamelCase ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowerCamelCase ) as cm: mock_training_loop_function(128 , "hello" , "world" ) self.assertIn("Batch size was passed into `f`" , cm.exception.args[0] ) self.assertIn("`f(arg1='hello', arg2='world')" , cm.exception.args[0] ) def a__ ( self ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowerCamelCase ): raise ValueError("Oops, we had an error!" ) with self.assertRaises(lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn("Oops, we had an error!" , cm.exception.args[0] ) @require_cuda def a__ ( self ): __a = torch.cuda.memory_allocated() __a = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowerCamelCase ) __a = release_memory(lowerCamelCase ) self.assertEqual(torch.cuda.memory_allocated() , lowerCamelCase )
528
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { '''Salesforce/blip-vqa-base''': '''https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json''', '''Salesforce/blip-vqa-capfit-large''': ( '''https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json''' ), '''Salesforce/blip-image-captioning-base''': ( '''https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json''' ), '''Salesforce/blip-image-captioning-large''': ( '''https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json''' ), '''Salesforce/blip-itm-base-coco''': '''https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json''', '''Salesforce/blip-itm-large-coco''': '''https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json''', '''Salesforce/blip-itm-base-flikr''': '''https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json''', '''Salesforce/blip-itm-large-flikr''': ( '''https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json''' ), } class a_ ( UpperCamelCase_ ): _snake_case = """blip_text_model""" def __init__(self , __a=3_0_5_2_4 , __a=7_6_8 , __a=7_6_8 , __a=3_0_7_2 , __a=7_6_8 , __a=1_2 , __a=8 , __a=5_1_2 , __a="gelu" , __a=1E-12 , __a=0.0 , __a=0.0 , __a=0.02 , __a=3_0_5_2_2 , __a=2 , __a=0 , __a=1_0_2 , __a=True , __a=True , **__a , ) -> Tuple: """simple docstring""" super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , sep_token_id=__a , **__a , ) __snake_case : int = vocab_size __snake_case : Tuple = hidden_size __snake_case : Optional[Any] = encoder_hidden_size __snake_case : Tuple = intermediate_size __snake_case : Any = projection_dim __snake_case : Any = hidden_dropout_prob __snake_case : List[str] = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Any = max_position_embeddings __snake_case : Any = layer_norm_eps __snake_case : str = hidden_act __snake_case : str = initializer_range __snake_case : int = attention_probs_dropout_prob __snake_case : Any = is_decoder __snake_case : str = use_cache @classmethod def SCREAMING_SNAKE_CASE__ (cls , __a , **__a) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__a) __snake_case : List[str] = cls.get_config_dict(__a , **__a) # get the text config dict if we are loading from BlipConfig if config_dict.get('model_type') == "blip": __snake_case : str = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(__a , **__a) class a_ ( UpperCamelCase_ ): _snake_case = """blip_vision_model""" def __init__(self , __a=7_6_8 , __a=3_0_7_2 , __a=5_1_2 , __a=1_2 , __a=1_2 , __a=3_8_4 , __a=1_6 , __a="gelu" , __a=1E-5 , __a=0.0 , __a=1E-10 , **__a , ) -> int: """simple docstring""" super().__init__(**__a) __snake_case : Tuple = hidden_size __snake_case : Any = intermediate_size __snake_case : int = projection_dim __snake_case : List[Any] = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : List[str] = patch_size __snake_case : Any = image_size __snake_case : Optional[Any] = initializer_range __snake_case : List[str] = attention_dropout __snake_case : List[Any] = layer_norm_eps __snake_case : Optional[int] = hidden_act @classmethod def SCREAMING_SNAKE_CASE__ (cls , __a , **__a) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__a) __snake_case : Dict = cls.get_config_dict(__a , **__a) # get the vision config dict if we are loading from BlipConfig if config_dict.get('model_type') == "blip": __snake_case : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(__a , **__a) class a_ ( UpperCamelCase_ ): _snake_case = """blip""" _snake_case = True def __init__(self , __a=None , __a=None , __a=5_1_2 , __a=2.6_592 , __a=2_5_6 , **__a , ) -> List[str]: """simple docstring""" super().__init__(**__a) if text_config is None: __snake_case : str = {} logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.') if vision_config is None: __snake_case : Dict = {} logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.') __snake_case : Union[str, Any] = BlipTextConfig(**__a) __snake_case : List[str] = BlipVisionConfig(**__a) __snake_case : List[Any] = self.vision_config.hidden_size __snake_case : Union[str, Any] = projection_dim __snake_case : Any = logit_scale_init_value __snake_case : Tuple = 1.0 __snake_case : Optional[int] = 0.02 __snake_case : Union[str, Any] = image_text_hidden_size @classmethod def SCREAMING_SNAKE_CASE__ (cls , __a , __a , **__a) -> Any: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__a) def SCREAMING_SNAKE_CASE__ (self) -> Any: """simple docstring""" __snake_case : Union[str, Any] = copy.deepcopy(self.__dict__) __snake_case : Tuple = self.text_config.to_dict() __snake_case : List[str] = self.vision_config.to_dict() __snake_case : str = self.__class__.model_type return output
702
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( A : float , A : list[float] ) -> float: """simple docstring""" if discount_rate < 0: raise ValueError('Discount rate cannot be negative' ) if not cash_flows: raise ValueError('Cash flows list cannot be empty' ) __snake_case : List[str] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(A ) ) return round(A , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
61
0
"""simple docstring""" from __future__ import annotations import collections import pprint from pathlib import Path def lowercase (SCREAMING_SNAKE_CASE_ : str ) -> str: return "".join(sorted(SCREAMING_SNAKE_CASE_ ) ) def lowercase (SCREAMING_SNAKE_CASE_ : str ) -> list[str]: return word_by_signature[signature(SCREAMING_SNAKE_CASE_ )] __UpperCamelCase = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') __UpperCamelCase = sorted({word.strip().lower() for word in data.splitlines()}) __UpperCamelCase = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": __UpperCamelCase = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
247
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __UpperCamelCase = '''\ @inproceedings{popovic-2015-chrf, title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation", month = sep, year = "2015", address = "Lisbon, Portugal", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W15-3049", doi = "10.18653/v1/W15-3049", pages = "392--395", } @inproceedings{popovic-2017-chrf, title = "chr{F}++: words helping character n-grams", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Second Conference on Machine Translation", month = sep, year = "2017", address = "Copenhagen, Denmark", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W17-4770", doi = "10.18653/v1/W17-4770", pages = "612--618", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __UpperCamelCase = '''\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. ''' __UpperCamelCase = ''' Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: \'score\' (float): The chrF (chrF++) score, \'char_order\' (int): The character n-gram order, \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, \'beta\' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def __A ( self ) -> List[str]: if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = CHRF.CHAR_ORDER , lowerCAmelCase__ = CHRF.WORD_ORDER , lowerCAmelCase__ = CHRF.BETA , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , ) -> Optional[Any]: SCREAMING_SNAKE_CASE = len(references[0] ) if any(len(lowerCAmelCase__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) SCREAMING_SNAKE_CASE = [[refs[i] for refs in references] for i in range(lowerCAmelCase__ )] SCREAMING_SNAKE_CASE = CHRF(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = sb_chrf.corpus_score(lowerCAmelCase__ , lowerCAmelCase__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
247
1
"""simple docstring""" def lowerCAmelCase_ ( ): '''simple docstring''' __lowerCamelCase : List[str] =[31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] __lowerCamelCase : List[Any] =6 __lowerCamelCase : Any =1 __lowerCamelCase : int =1901 __lowerCamelCase : Optional[int] =0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 __lowerCamelCase : int =day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 __lowerCamelCase : Dict =day - 29 else: if day > days_per_month[month - 1]: month += 1 __lowerCamelCase : List[str] =day - days_per_month[month - 2] if month > 12: year += 1 __lowerCamelCase : Any =1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
718
"""simple docstring""" import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor _UpperCamelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" def __init__( self :List[str] , *__lowercase :int , **__lowercase :Any ): warnings.warn( '''The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use FlavaImageProcessor instead.''' , __lowercase , ) super().__init__(*__lowercase , **__lowercase )
363
0
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class lowercase__ : '''simple docstring''' def __init__( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=13 , _UpperCAmelCase : List[Any]=7 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : List[Any]=99 , _UpperCAmelCase : int=64 , _UpperCAmelCase : int=32 , _UpperCAmelCase : int=5 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : Tuple=37 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : str=None , ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_token_type_ids UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = embedding_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = num_labels UpperCAmelCase_ = num_choices UpperCAmelCase_ = scope def lowercase__ ( self : Dict ) -> str: '''simple docstring''' UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ = None if self.use_token_type_ids: UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : List[Any] ) -> Any: '''simple docstring''' return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def lowercase__ ( self : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MobileBertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) UpperCAmelCase_ = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase__ ( self : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any ) -> str: '''simple docstring''' UpperCAmelCase_ = MobileBertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = MobileBertForNextSentencePrediction(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = MobileBertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , next_sentence_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' UpperCAmelCase_ = MobileBertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileBertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileBertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.num_choices UpperCAmelCase_ = MobileBertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': MobileBertModel, '''fill-mask''': MobileBertForMaskedLM, '''question-answering''': MobileBertForQuestionAnswering, '''text-classification''': MobileBertForSequenceClassification, '''token-classification''': MobileBertForTokenClassification, '''zero-shot''': MobileBertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase = True def lowercase__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int]=False ) -> Any: '''simple docstring''' UpperCAmelCase_ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): UpperCAmelCase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) UpperCAmelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def lowercase__ ( self : List[str] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = MobileBertModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def lowercase__ ( self : List[Any] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_UpperCAmelCase ) def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_UpperCAmelCase ) def lowercase__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_UpperCAmelCase ) def lowercase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_UpperCAmelCase ) def lowercase__ ( self : Tuple ) -> Any: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_UpperCAmelCase ) def lowercase__ ( self : Dict ) -> str: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_UpperCAmelCase ) def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_UpperCAmelCase ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_UpperCAmelCase ) def a__ ( lowerCAmelCase__ ): return torch.tensor( lowerCAmelCase__ , dtype=torch.long , device=lowerCAmelCase__ , ) lowerCamelCase = 1e-3 @require_torch @require_sentencepiece @require_tokenizers class lowercase__ ( unittest.TestCase ): '''simple docstring''' @slow def lowercase__ ( self : Dict ) -> Dict: '''simple docstring''' UpperCAmelCase_ = MobileBertModel.from_pretrained("google/mobilebert-uncased" ).to(_UpperCAmelCase ) UpperCAmelCase_ = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): UpperCAmelCase_ = model(_UpperCAmelCase )[0] UpperCAmelCase_ = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [ [ [-2.4736526e07, 8.2691656e04, 1.6521838e05], [-5.7541704e-01, 3.9056022e00, 4.4011507e00], [2.6047359e00, 1.5677652e00, -1.7324188e-01], ] ] , device=_UpperCAmelCase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE UpperCAmelCase_ = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) UpperCAmelCase_ = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
82
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ : List[str] = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[int] = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys SCREAMING_SNAKE_CASE__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
85
0
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class lowercase__( snake_case__ ): '''simple docstring''' snake_case__ = 42 class lowercase__( snake_case__ , snake_case__ ): '''simple docstring''' snake_case__ = True @register_to_config def __init__( self , __SCREAMING_SNAKE_CASE = 3 , __SCREAMING_SNAKE_CASE = 3 , __SCREAMING_SNAKE_CASE = ("DownEncoderBlock2D",) , __SCREAMING_SNAKE_CASE = ("UpDecoderBlock2D",) , __SCREAMING_SNAKE_CASE = (64,) , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = "silu" , __SCREAMING_SNAKE_CASE = 4 , __SCREAMING_SNAKE_CASE = 32 , __SCREAMING_SNAKE_CASE = 32 , __SCREAMING_SNAKE_CASE = 0.1_82_15 , ) -> List[str]: """simple docstring""" super().__init__() # pass init params to Encoder UpperCamelCase__ : Any =Encoder( in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , down_block_types=__SCREAMING_SNAKE_CASE , block_out_channels=__SCREAMING_SNAKE_CASE , layers_per_block=__SCREAMING_SNAKE_CASE , act_fn=__SCREAMING_SNAKE_CASE , norm_num_groups=__SCREAMING_SNAKE_CASE , double_z=__SCREAMING_SNAKE_CASE , ) # pass init params to Decoder UpperCamelCase__ : List[Any] =Decoder( in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , up_block_types=__SCREAMING_SNAKE_CASE , block_out_channels=__SCREAMING_SNAKE_CASE , layers_per_block=__SCREAMING_SNAKE_CASE , norm_num_groups=__SCREAMING_SNAKE_CASE , act_fn=__SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : Dict =nn.Convad(2 * latent_channels , 2 * latent_channels , 1) UpperCamelCase__ : Dict =nn.Convad(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1) UpperCamelCase__ : str =False UpperCamelCase__ : str =False # only relevant if vae tiling is enabled UpperCamelCase__ : Optional[Any] =self.config.sample_size UpperCamelCase__ : Union[str, Any] =( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple)) else self.config.sample_size ) UpperCamelCase__ : Optional[Any] =int(sample_size / (2 ** (len(self.config.block_out_channels) - 1))) UpperCamelCase__ : Any =0.25 def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False) -> Optional[int]: """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , (Encoder, Decoder)): UpperCamelCase__ : int =value def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE = True) -> Dict: """simple docstring""" UpperCamelCase__ : int =use_tiling def UpperCAmelCase ( self) -> Optional[int]: """simple docstring""" self.enable_tiling(__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self) -> int: """simple docstring""" UpperCamelCase__ : Tuple =True def UpperCAmelCase ( self) -> str: """simple docstring""" UpperCamelCase__ : str =False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCAmelCase ( self) -> Dict[str, AttentionProcessor]: """simple docstring""" UpperCamelCase__ : Optional[Any] ={} def fn_recursive_add_processors(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): if hasattr(__SCREAMING_SNAKE_CASE , "set_processor"): UpperCamelCase__ : Any =module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) return processors for name, module in self.named_children(): fn_recursive_add_processors(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) return processors def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE) -> Dict: """simple docstring""" UpperCamelCase__ : List[str] =len(self.attn_processors.keys()) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) and len(__SCREAMING_SNAKE_CASE) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(__SCREAMING_SNAKE_CASE)} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''') def fn_recursive_attn_processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): if hasattr(__SCREAMING_SNAKE_CASE , "set_processor"): if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): module.set_processor(__SCREAMING_SNAKE_CASE) else: module.set_processor(processor.pop(F'''{name}.processor''')) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) for name, module in self.named_children(): fn_recursive_attn_processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self) -> Optional[int]: """simple docstring""" self.set_attn_processor(AttnProcessor()) @apply_forward_hook def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True) -> AutoencoderKLOutput: """simple docstring""" if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE) if self.use_slicing and x.shape[0] > 1: UpperCamelCase__ : List[str] =[self.encoder(__SCREAMING_SNAKE_CASE) for x_slice in x.split(1)] UpperCamelCase__ : Optional[int] =torch.cat(__SCREAMING_SNAKE_CASE) else: UpperCamelCase__ : List[Any] =self.encoder(__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Any =self.quant_conv(__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Union[str, Any] =DiagonalGaussianDistribution(__SCREAMING_SNAKE_CASE) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE) UpperCamelCase__ : str =self.post_quant_conv(__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Optional[int] =self.decoder(__SCREAMING_SNAKE_CASE) if not return_dict: return (dec,) return DecoderOutput(sample=__SCREAMING_SNAKE_CASE) @apply_forward_hook def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if self.use_slicing and z.shape[0] > 1: UpperCamelCase__ : List[Any] =[self._decode(__SCREAMING_SNAKE_CASE).sample for z_slice in z.split(1)] UpperCamelCase__ : Any =torch.cat(__SCREAMING_SNAKE_CASE) else: UpperCamelCase__ : Any =self._decode(__SCREAMING_SNAKE_CASE).sample if not return_dict: return (decoded,) return DecoderOutput(sample=__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> List[Any]: """simple docstring""" UpperCamelCase__ : List[str] =min(a.shape[2] , b.shape[2] , __SCREAMING_SNAKE_CASE) for y in range(__SCREAMING_SNAKE_CASE): UpperCamelCase__ : Optional[int] =a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> Dict: """simple docstring""" UpperCamelCase__ : Dict =min(a.shape[3] , b.shape[3] , __SCREAMING_SNAKE_CASE) for x in range(__SCREAMING_SNAKE_CASE): UpperCamelCase__ : Optional[int] =a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True) -> AutoencoderKLOutput: """simple docstring""" UpperCamelCase__ : List[str] =int(self.tile_sample_min_size * (1 - self.tile_overlap_factor)) UpperCamelCase__ : Optional[int] =int(self.tile_latent_min_size * self.tile_overlap_factor) UpperCamelCase__ : Optional[int] =self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. UpperCamelCase__ : int =[] for i in range(0 , x.shape[2] , __SCREAMING_SNAKE_CASE): UpperCamelCase__ : List[Any] =[] for j in range(0 , x.shape[3] , __SCREAMING_SNAKE_CASE): UpperCamelCase__ : Dict =x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] UpperCamelCase__ : Optional[int] =self.encoder(__SCREAMING_SNAKE_CASE) UpperCamelCase__ : str =self.quant_conv(__SCREAMING_SNAKE_CASE) row.append(__SCREAMING_SNAKE_CASE) rows.append(__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Optional[Any] =[] for i, row in enumerate(__SCREAMING_SNAKE_CASE): UpperCamelCase__ : Union[str, Any] =[] for j, tile in enumerate(__SCREAMING_SNAKE_CASE): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCamelCase__ : Tuple =self.blend_v(rows[i - 1][j] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) if j > 0: UpperCamelCase__ : List[Any] =self.blend_h(row[j - 1] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) result_row.append(tile[:, :, :row_limit, :row_limit]) result_rows.append(torch.cat(__SCREAMING_SNAKE_CASE , dim=3)) UpperCamelCase__ : Optional[Any] =torch.cat(__SCREAMING_SNAKE_CASE , dim=2) UpperCamelCase__ : Optional[Any] =DiagonalGaussianDistribution(__SCREAMING_SNAKE_CASE) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" UpperCamelCase__ : Optional[int] =int(self.tile_latent_min_size * (1 - self.tile_overlap_factor)) UpperCamelCase__ : Dict =int(self.tile_sample_min_size * self.tile_overlap_factor) UpperCamelCase__ : Any =self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. UpperCamelCase__ : Union[str, Any] =[] for i in range(0 , z.shape[2] , __SCREAMING_SNAKE_CASE): UpperCamelCase__ : Tuple =[] for j in range(0 , z.shape[3] , __SCREAMING_SNAKE_CASE): UpperCamelCase__ : Optional[Any] =z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] UpperCamelCase__ : Optional[int] =self.post_quant_conv(__SCREAMING_SNAKE_CASE) UpperCamelCase__ : int =self.decoder(__SCREAMING_SNAKE_CASE) row.append(__SCREAMING_SNAKE_CASE) rows.append(__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Any =[] for i, row in enumerate(__SCREAMING_SNAKE_CASE): UpperCamelCase__ : int =[] for j, tile in enumerate(__SCREAMING_SNAKE_CASE): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCamelCase__ : Tuple =self.blend_v(rows[i - 1][j] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) if j > 0: UpperCamelCase__ : List[Any] =self.blend_h(row[j - 1] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) result_row.append(tile[:, :, :row_limit, :row_limit]) result_rows.append(torch.cat(__SCREAMING_SNAKE_CASE , dim=3)) UpperCamelCase__ : Any =torch.cat(__SCREAMING_SNAKE_CASE , dim=2) if not return_dict: return (dec,) return DecoderOutput(sample=__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" UpperCamelCase__ : int =sample UpperCamelCase__ : Dict =self.encode(__SCREAMING_SNAKE_CASE).latent_dist if sample_posterior: UpperCamelCase__ : Dict =posterior.sample(generator=__SCREAMING_SNAKE_CASE) else: UpperCamelCase__ : Tuple =posterior.mode() UpperCamelCase__ : str =self.decode(__SCREAMING_SNAKE_CASE).sample if not return_dict: return (dec,) return DecoderOutput(sample=__SCREAMING_SNAKE_CASE)
582
from math import factorial __UpperCAmelCase = {str(digit): factorial(digit) for digit in range(10)} def _lowerCamelCase ( A_ : int ) -> int: '''simple docstring''' if not isinstance(A_ , A_ ): raise TypeError("Parameter number must be int" ) if number < 0: raise ValueError("Parameter number must be greater than or equal to 0" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(A_ ) ) def _lowerCamelCase ( A_ : int = 6_0 , A_ : int = 1_0_0_0_0_0_0 ) -> int: '''simple docstring''' if not isinstance(A_ , A_ ) or not isinstance(A_ , A_ ): raise TypeError("Parameters chain_length and number_limit must be int" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( "Parameters chain_length and number_limit must be greater than 0" ) # the counter for the chains with the exact desired length UpperCamelCase__ : str =0 # the cached sizes of the previous chains UpperCamelCase__ : dict[int, int] ={} for start_chain_element in range(1 , A_ ): # The temporary set will contain the elements of the chain UpperCamelCase__ : Any =set() UpperCamelCase__ : Optional[Any] =0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. UpperCamelCase__ : str =start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(A_ ) chain_set_length += 1 UpperCamelCase__ : Tuple =digit_factorial_sum(A_ ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] UpperCamelCase__ : List[str] =chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution()}""")
582
1
def UpperCamelCase_ ( __a ) -> list: a__ : Union[str, Any] = [0] * len(__a ) for i in range(1 , len(__a ) ): # use last results for better performance - dynamic programming a__ : Dict = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: a__ : List[Any] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 a__ : Any = j return prefix_result def UpperCamelCase_ ( __a ) -> int: return max(prefix_function(__a ) ) if __name__ == "__main__": import doctest doctest.testmod()
37
from __future__ import annotations from math import pi def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" if (inductance, frequency, reactance).count(0) != 1: raise ValueError("""One and only one argument must be 0""") if inductance < 0: raise ValueError("""Inductance cannot be negative""") if frequency < 0: raise ValueError("""Frequency cannot be negative""") if reactance < 0: raise ValueError("""Inductive reactance cannot be negative""") if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("""Exactly one argument must be 0""") if __name__ == "__main__": import doctest doctest.testmod()
648
0
import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( lowercase: str , lowercase: dict ) -> str: '''simple docstring''' _UpperCamelCase: Union[str, Any] = BeautifulSoup(requests.get(lowercase , params=lowercase ).content , '''html.parser''' ) _UpperCamelCase: Dict = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) _UpperCamelCase: Optional[int] = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": UpperCAmelCase_ = { '''title''': ( '''Precisely geometry controlled microsupercapacitors for ultrahigh areal ''' '''capacitance, volumetric capacitance, and energy density''' ), '''journal''': '''Chem. Mater.''', '''volume''': 3_0, '''pages''': '''3979-3990''', '''year''': 2_0_1_8, '''hl''': '''en''', } print(get_citation('''https://scholar.google.com/scholar_lookup''', params=params))
264
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __magic_name__ ( __a , __a , __a , unittest.TestCase ): """simple docstring""" lowerCAmelCase : Optional[int] = StableDiffusionInpaintPipeline lowerCAmelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS lowerCAmelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCAmelCase : str = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase : Tuple = frozenset([] ) def lowerCAmelCase ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) _UpperCamelCase: List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_lowercase , ) _UpperCamelCase: List[str] = PNDMScheduler(skip_prk_steps=_lowercase ) torch.manual_seed(0 ) _UpperCamelCase: List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _UpperCamelCase: Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) _UpperCamelCase: Optional[int] = CLIPTextModel(_lowercase ) _UpperCamelCase: Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _UpperCamelCase: Optional[Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowerCAmelCase ( self : Optional[int] , _lowercase : Any , _lowercase : int=0 ): """simple docstring""" _UpperCamelCase: Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase ) _UpperCamelCase: Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCamelCase: Optional[int] = Image.fromarray(np.uinta(_lowercase ) ).convert('''RGB''' ).resize((64, 64) ) _UpperCamelCase: Optional[Any] = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(_lowercase ).startswith('''mps''' ): _UpperCamelCase: Dict = torch.manual_seed(_lowercase ) else: _UpperCamelCase: Union[str, Any] = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) _UpperCamelCase: List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase ( self : List[str] ): """simple docstring""" _UpperCamelCase: Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase: str = self.get_dummy_components() _UpperCamelCase: Any = StableDiffusionInpaintPipeline(**_lowercase ) _UpperCamelCase: Any = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) _UpperCamelCase: Tuple = self.get_dummy_inputs(_lowercase ) _UpperCamelCase: List[Any] = sd_pipe(**_lowercase ).images _UpperCamelCase: Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase: List[str] = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self : Union[str, Any] ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Dict ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Dict ): """simple docstring""" _UpperCamelCase: Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _UpperCamelCase: Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _UpperCamelCase: Dict = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) _UpperCamelCase: Optional[Any] = '''stabilityai/stable-diffusion-2-inpainting''' _UpperCamelCase: Optional[Any] = StableDiffusionInpaintPipeline.from_pretrained(_lowercase , safety_checker=_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() _UpperCamelCase: List[str] = '''Face of a yellow cat, high resolution, sitting on a park bench''' _UpperCamelCase: List[Any] = torch.manual_seed(0 ) _UpperCamelCase: str = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , generator=_lowercase , output_type='''np''' , ) _UpperCamelCase: Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def lowerCAmelCase ( self : List[Any] ): """simple docstring""" _UpperCamelCase: Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _UpperCamelCase: Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _UpperCamelCase: str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) _UpperCamelCase: Optional[Any] = '''stabilityai/stable-diffusion-2-inpainting''' _UpperCamelCase: int = StableDiffusionInpaintPipeline.from_pretrained( _lowercase , torch_dtype=torch.floataa , safety_checker=_lowercase , ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() _UpperCamelCase: Optional[Any] = '''Face of a yellow cat, high resolution, sitting on a park bench''' _UpperCamelCase: Dict = torch.manual_seed(0 ) _UpperCamelCase: int = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , generator=_lowercase , output_type='''np''' , ) _UpperCamelCase: Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def lowerCAmelCase ( self : Any ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase: Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _UpperCamelCase: Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _UpperCamelCase: Optional[int] = '''stabilityai/stable-diffusion-2-inpainting''' _UpperCamelCase: Union[str, Any] = PNDMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' ) _UpperCamelCase: Optional[int] = StableDiffusionInpaintPipeline.from_pretrained( _lowercase , safety_checker=_lowercase , scheduler=_lowercase , torch_dtype=torch.floataa , ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _UpperCamelCase: Optional[int] = '''Face of a yellow cat, high resolution, sitting on a park bench''' _UpperCamelCase: Union[str, Any] = torch.manual_seed(0 ) _UpperCamelCase: Union[str, Any] = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , generator=_lowercase , num_inference_steps=2 , output_type='''np''' , ) _UpperCamelCase: Dict = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
264
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Dict = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class A__ ( A__ ): A__ = '''levit''' def __init__( self : Optional[Any] , _a : Optional[int]=224 , _a : List[Any]=3 , _a : Union[str, Any]=3 , _a : str=2 , _a : Tuple=1 , _a : List[Any]=16 , _a : int=[128, 256, 384] , _a : Any=[4, 8, 12] , _a : Union[str, Any]=[4, 4, 4] , _a : Optional[int]=[16, 16, 16] , _a : Dict=0 , _a : Tuple=[2, 2, 2] , _a : int=[2, 2, 2] , _a : List[Any]=0.02 , **_a : str , ) -> str: '''simple docstring''' super().__init__(**_a ) _SCREAMING_SNAKE_CASE =image_size _SCREAMING_SNAKE_CASE =num_channels _SCREAMING_SNAKE_CASE =kernel_size _SCREAMING_SNAKE_CASE =stride _SCREAMING_SNAKE_CASE =padding _SCREAMING_SNAKE_CASE =hidden_sizes _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =depths _SCREAMING_SNAKE_CASE =key_dim _SCREAMING_SNAKE_CASE =drop_path_rate _SCREAMING_SNAKE_CASE =patch_size _SCREAMING_SNAKE_CASE =attention_ratio _SCREAMING_SNAKE_CASE =mlp_ratio _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =[ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class A__ ( A__ ): A__ = version.parse('1.11' ) @property def A ( self : Any ) -> List[Any]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return 1e-4
405
def lowerCamelCase_ ( UpperCamelCase__ : int, UpperCamelCase__ : int ): '''simple docstring''' if b == 0: return 1 if (b % 2) == 0: return actual_power(UpperCamelCase__, int(b / 2 ) ) * actual_power(UpperCamelCase__, int(b / 2 ) ) else: return a * actual_power(UpperCamelCase__, int(b / 2 ) ) * actual_power(UpperCamelCase__, int(b / 2 ) ) def lowerCamelCase_ ( UpperCamelCase__ : int, UpperCamelCase__ : int ): '''simple docstring''' if b < 0: return 1 / actual_power(UpperCamelCase__, UpperCamelCase__ ) return actual_power(UpperCamelCase__, UpperCamelCase__ ) if __name__ == "__main__": print(power(-2, -3))
240
0
def _a ( __lowercase , __lowercase ) -> str: """simple docstring""" return "\n".join( F"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
567
def _a ( __lowercase ) -> int: """simple docstring""" if not isinstance(__lowercase , __lowercase ): raise ValueError('Input must be an integer' ) if input_num <= 0: raise ValueError('Input must be positive' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
567
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ = logging.get_logger(__name__) A_ = '''▁''' A_ = {'''vocab_file''': '''sentencepiece.bpe.model'''} A_ = { '''vocab_file''': { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model''' ), } } A_ = { '''xlm-roberta-base''': 5_1_2, '''xlm-roberta-large''': 5_1_2, '''xlm-roberta-large-finetuned-conll02-dutch''': 5_1_2, '''xlm-roberta-large-finetuned-conll02-spanish''': 5_1_2, '''xlm-roberta-large-finetuned-conll03-english''': 5_1_2, '''xlm-roberta-large-finetuned-conll03-german''': 5_1_2, } class snake_case ( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase : Any = VOCAB_FILES_NAMES UpperCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : str = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str]="<s>" , lowerCAmelCase_ : str="</s>" , lowerCAmelCase_ : str="</s>" , lowerCAmelCase_ : List[str]="<s>" , lowerCAmelCase_ : str="<unk>" , lowerCAmelCase_ : Union[str, Any]="<pad>" , lowerCAmelCase_ : List[str]="<mask>" , lowerCAmelCase_ : Optional[Dict[str, Any]] = None , **lowerCAmelCase_ : int , ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token SCREAMING_SNAKE_CASE_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) SCREAMING_SNAKE_CASE_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE_ = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = len(self.sp_model ) + self.fairseq_offset SCREAMING_SNAKE_CASE_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.__dict__.copy() SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = self.sp_model.serialized_model_proto() return state def __setstate__( self : List[Any] , lowerCAmelCase_ : Any ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _lowercase ( self : List[Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] SCREAMING_SNAKE_CASE_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : int , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1, 1] + ([0] * len(_UpperCamelCase )) + [1] def _lowercase ( self : List[str] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _lowercase ( self : List[str] ) -> Tuple: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowercase ( self : Dict , lowerCAmelCase_ : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def _lowercase ( self : List[str] , lowerCAmelCase_ : Tuple ) -> Optional[Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE_ = self.sp_model.PieceToId(_UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _lowercase ( self : Optional[int] , lowerCAmelCase_ : Any ) -> int: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _lowercase ( self : Any , lowerCAmelCase_ : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ = ''''''.join(_UpperCamelCase ).replace(_UpperCamelCase , ''' ''' ).strip() return out_string def _lowercase ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE_ = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE_ = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
393
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(a ) , """Tatoeba directory does not exist.""" ) class lowercase ( unittest.TestCase ): @cached_property def __snake_case( self : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = tempfile.mkdtemp() return TatoebaConverter(save_dir=_UpperCamelCase ) @slow def __snake_case( self : Tuple ) -> Tuple: '''simple docstring''' self.resolver.convert_models(["heb-eng"] ) @slow def __snake_case( self : List[Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.resolver.write_model_card("opus-mt-he-en" , dry_run=_UpperCamelCase ) assert mmeta["long_pair"] == "heb-eng"
403
0
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) snake_case_ : Union[str, Any] = "hf-internal-testing/tiny-random-bert" snake_case_ : Dict = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") snake_case_ : Dict = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class snake_case_ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: lowerCamelCase_ : Optional[Any] = cached_file(__magic_name__ , __magic_name__ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(__magic_name__ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(__magic_name__ , __magic_name__ ) ) ) with open(os.path.join(__magic_name__ , "refs" , "main" ) ) as f: lowerCamelCase_ : List[Any] = f.read() self.assertEqual(__magic_name__ , os.path.join(__magic_name__ , "snapshots" , __magic_name__ , __magic_name__ ) ) self.assertTrue(os.path.isfile(__magic_name__ ) ) # File is cached at the same place the second time. lowerCamelCase_ : str = cached_file(__magic_name__ , __magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) # Using a specific revision to test the full commit hash. lowerCamelCase_ : List[Any] = cached_file(__magic_name__ , __magic_name__ , revision="9b8c223" ) self.assertEqual(__magic_name__ , os.path.join(__magic_name__ , "snapshots" , __magic_name__ , __magic_name__ ) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: with self.assertRaisesRegex(__magic_name__ , "is not a valid model identifier" ): lowerCamelCase_ : Any = cached_file("tiny-random-bert" , __magic_name__ ) with self.assertRaisesRegex(__magic_name__ , "is not a valid git identifier" ): lowerCamelCase_ : List[str] = cached_file(__magic_name__ , __magic_name__ , revision="aaaa" ) with self.assertRaisesRegex(__magic_name__ , "does not appear to have a file named" ): lowerCamelCase_ : Union[str, Any] = cached_file(__magic_name__ , "conf" ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: with self.assertRaisesRegex(__magic_name__ , "does not appear to have a file named" ): lowerCamelCase_ : Tuple = cached_file(__magic_name__ , "conf" ) with open(os.path.join(__magic_name__ , "refs" , "main" ) ) as f: lowerCamelCase_ : Union[str, Any] = f.read() self.assertTrue(os.path.isfile(os.path.join(__magic_name__ , ".no_exist" , __magic_name__ , "conf" ) ) ) lowerCamelCase_ : Any = cached_file(__magic_name__ , "conf" , _raise_exceptions_for_missing_entries=__magic_name__ ) self.assertIsNone(__magic_name__ ) lowerCamelCase_ : Tuple = cached_file(__magic_name__ , "conf" , local_files_only=__magic_name__ , _raise_exceptions_for_missing_entries=__magic_name__ ) self.assertIsNone(__magic_name__ ) lowerCamelCase_ : Union[str, Any] = mock.Mock() lowerCamelCase_ : List[str] = 500 lowerCamelCase_ : Any = {} lowerCamelCase_ : str = HTTPError lowerCamelCase_ : int = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=__magic_name__ ) as mock_head: lowerCamelCase_ : Any = cached_file(__magic_name__ , "conf" , _raise_exceptions_for_connection_errors=__magic_name__ ) self.assertIsNone(__magic_name__ ) # This check we did call the fake head request mock_head.assert_called() def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , __magic_name__ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , __magic_name__ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , __magic_name__ ) ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(__magic_name__ , "is not a valid model identifier" ): get_file_from_repo("bert-base-case" , __magic_name__ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(__magic_name__ , "is not a valid git identifier" ): get_file_from_repo("bert-base-cased" , __magic_name__ , revision="ahaha" ) lowerCamelCase_ : Union[str, Any] = get_file_from_repo("bert-base-cased" , __magic_name__ ) # The name is the cached name which is not very easy to test, so instead we load the content. lowerCamelCase_ : int = json.loads(open(__magic_name__ , "r" ).read() ) self.assertEqual(config["hidden_size"] , 768 ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase_ : Dict = Path(__magic_name__ ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(__magic_name__ , "a.txt" ) , str(__magic_name__ ) ) self.assertIsNone(get_file_from_repo(__magic_name__ , "b.txt" ) )
253
from collections.abc import Generator from math import sin def __a ( __UpperCAmelCase : bytes ) -> bytes: """simple docstring""" if len(__UpperCAmelCase ) != 32: raise ValueError("Input must be of length 32" ) lowerCamelCase_ : Optional[Any] = b"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def __a ( __UpperCAmelCase : int ) -> bytes: """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) lowerCamelCase_ : Tuple = format(__UpperCAmelCase , "08x" )[-8:] lowerCamelCase_ : int = b"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def __a ( __UpperCAmelCase : bytes ) -> bytes: """simple docstring""" lowerCamelCase_ : int = b"" for char in message: bit_string += format(__UpperCAmelCase , "08b" ).encode("utf-8" ) lowerCamelCase_ : Optional[int] = format(len(__UpperCAmelCase ) , "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__UpperCAmelCase ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def __a ( __UpperCAmelCase : bytes ) -> Generator[list[int], None, None]: """simple docstring""" if len(__UpperCAmelCase ) % 512 != 0: raise ValueError("Input must have length that's a multiple of 512" ) for pos in range(0 , len(__UpperCAmelCase ) , 512 ): lowerCamelCase_ : Union[str, Any] = bit_string[pos : pos + 512] lowerCamelCase_ : Any = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def __a ( __UpperCAmelCase : int ) -> int: """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) lowerCamelCase_ : Dict = format(__UpperCAmelCase , "032b" ) lowerCamelCase_ : Dict = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(__UpperCAmelCase , 2 ) def __a ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> int: """simple docstring""" return (a + b) % 2**32 def __a ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> int: """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def __a ( __UpperCAmelCase : bytes ) -> bytes: """simple docstring""" lowerCamelCase_ : int = preprocess(__UpperCAmelCase ) lowerCamelCase_ : Union[str, Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states lowerCamelCase_ : List[str] = 0X67_452_301 lowerCamelCase_ : Optional[int] = 0XEF_CDA_B89 lowerCamelCase_ : str = 0X98_BAD_CFE lowerCamelCase_ : Optional[int] = 0X10_325_476 lowerCamelCase_ : Union[str, Any] = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__UpperCAmelCase ): lowerCamelCase_ : Optional[int] = aa lowerCamelCase_ : List[str] = ba lowerCamelCase_ : Optional[int] = ca lowerCamelCase_ : List[Any] = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f lowerCamelCase_ : Dict = d ^ (b & (c ^ d)) lowerCamelCase_ : Any = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f lowerCamelCase_ : Any = c ^ (d & (b ^ c)) lowerCamelCase_ : List[Any] = (5 * i + 1) % 16 elif i <= 47: lowerCamelCase_ : List[Any] = b ^ c ^ d lowerCamelCase_ : int = (3 * i + 5) % 16 else: lowerCamelCase_ : str = c ^ (b | not_aa(__UpperCAmelCase )) lowerCamelCase_ : int = (7 * i) % 16 lowerCamelCase_ : List[str] = (f + a + added_consts[i] + block_words[g]) % 2**32 lowerCamelCase_ : Union[str, Any] = d lowerCamelCase_ : Optional[int] = c lowerCamelCase_ : Union[str, Any] = b lowerCamelCase_ : List[str] = sum_aa(__UpperCAmelCase , left_rotate_aa(__UpperCAmelCase , shift_amounts[i] ) ) # Add hashed chunk to running total lowerCamelCase_ : Tuple = sum_aa(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : List[str] = sum_aa(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : Dict = sum_aa(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : Optional[int] = sum_aa(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : Optional[int] = reformat_hex(__UpperCAmelCase ) + reformat_hex(__UpperCAmelCase ) + reformat_hex(__UpperCAmelCase ) + reformat_hex(__UpperCAmelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
253
1
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __lowerCAmelCase : Any = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: __lowerCAmelCase : List[Any] = json.load(f) @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self : List[str] , _snake_case : List[Any] ): return FSMTTokenizer.from_pretrained(_snake_case ) def snake_case_ ( self : Any , _snake_case : List[str] ): __lowercase : str = FSMTForConditionalGeneration.from_pretrained(_snake_case ).to(_snake_case ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['''en-ru''', 26.0], ['''ru-en''', 22.0], ['''en-de''', 22.0], ['''de-en''', 29.0], ] ) @slow def snake_case_ ( self : Tuple , _snake_case : int , _snake_case : Union[str, Any] ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality __lowercase : Tuple = F'facebook/wmt19-{pair}' __lowercase : Tuple = self.get_tokenizer(_snake_case ) __lowercase : Dict = self.get_model(_snake_case ) __lowercase : Dict = bleu_data[pair]['''src'''] __lowercase : Any = bleu_data[pair]['''tgt'''] __lowercase : Any = tokenizer(_snake_case , return_tensors='''pt''' , truncation=_snake_case , padding='''longest''' ).to(_snake_case ) __lowercase : Optional[int] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) __lowercase : Any = tokenizer.batch_decode( _snake_case , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case ) __lowercase : Tuple = calculate_bleu(_snake_case , _snake_case ) print(_snake_case ) self.assertGreaterEqual(scores['''bleu'''] , _snake_case )
509
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : List[Any] = logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : Optional[int] = '''rwkv''' A__ : int = {'''max_position_embeddings''': '''context_length'''} def __init__( self : List[str] , _snake_case : List[Any]=5_0277 , _snake_case : List[Any]=1024 , _snake_case : Optional[int]=4096 , _snake_case : str=32 , _snake_case : Dict=None , _snake_case : Any=None , _snake_case : str=1E-5 , _snake_case : str=0 , _snake_case : Union[str, Any]=0 , _snake_case : List[Any]=6 , _snake_case : Any=False , _snake_case : int=True , **_snake_case : Optional[Any] , ): __lowercase : Dict = vocab_size __lowercase : Tuple = context_length __lowercase : str = hidden_size __lowercase : Tuple = num_hidden_layers __lowercase : Dict = attention_hidden_size if attention_hidden_size is not None else hidden_size __lowercase : Dict = intermediate_size if intermediate_size is not None else 4 * hidden_size __lowercase : Optional[Any] = layer_norm_epsilon __lowercase : List[str] = rescale_every __lowercase : Union[str, Any] = use_cache __lowercase : Dict = bos_token_id __lowercase : Optional[int] = eos_token_id super().__init__( tie_word_embeddings=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case )
509
1
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model SCREAMING_SNAKE_CASE__ : Optional[Any] = "0.12" # assumed parallelism: 8 if is_torch_available(): import torch def _a ( lowercase__ : Optional[Any] , lowercase__ : Tuple , lowercase__ : List[str]=None ): '''simple docstring''' if rng is None: SCREAMING_SNAKE_CASE__ : Optional[int] = random.Random() SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 for dim in shape: total_dims *= dim SCREAMING_SNAKE_CASE__ : Tuple = [] for _ in range(lowercase__ ): values.append(rng.randint(0 , vocab_size - 1 ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.array(lowercase__ , dtype=jnp.intaa ).reshape(lowercase__ ) return output def _a ( lowercase__ : Optional[Any] , lowercase__ : int=None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = ids_tensor(lowercase__ , vocab_size=2 , rng=lowercase__ ) # make sure that at least one token is attended to for each batch SCREAMING_SNAKE_CASE__ : List[Any] = 1 return attn_mask @require_flax class snake_case : lowercase_ = None lowercase_ = () def __lowercase( self : str )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 SCREAMING_SNAKE_CASE__ : str = 2 SCREAMING_SNAKE_CASE__ : int = inputs['input_ids'].shape[-1] // 2 SCREAMING_SNAKE_CASE__ : Any = inputs['input_ids'][:max_batch_size, :sequence_length] SCREAMING_SNAKE_CASE__ : Optional[Any] = jnp.ones_like(a_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens SCREAMING_SNAKE_CASE__ : Union[str, Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` SCREAMING_SNAKE_CASE__ : Tuple = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def __lowercase( self : List[str] )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE__ : int = False SCREAMING_SNAKE_CASE__ : str = max_length SCREAMING_SNAKE_CASE__ : Dict = 0 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE__ : Any = model_class(a_ ) SCREAMING_SNAKE_CASE__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE__ : Optional[Any] = getattr(a_ , a_ ) SCREAMING_SNAKE_CASE__ : List[str] = pt_model_class(a_ ).eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] = load_flax_weights_in_pytorch_model(a_ , flax_model.params ) SCREAMING_SNAKE_CASE__ : Dict = flax_model.generate(a_ ).sequences SCREAMING_SNAKE_CASE__ : str = pt_model.generate(torch.tensor(a_ , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: SCREAMING_SNAKE_CASE__ : List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def __lowercase( self : Optional[Any] )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE__ : List[str] = False SCREAMING_SNAKE_CASE__ : str = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE__ : Optional[Any] = model_class(a_ ) SCREAMING_SNAKE_CASE__ : str = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) SCREAMING_SNAKE_CASE__ : List[str] = jit(model.generate ) SCREAMING_SNAKE_CASE__ : Dict = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __lowercase( self : Tuple )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE__ : List[str] = True SCREAMING_SNAKE_CASE__ : str = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE__ : List[str] = model_class(a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) SCREAMING_SNAKE_CASE__ : Any = jit(model.generate ) SCREAMING_SNAKE_CASE__ : str = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __lowercase( self : int )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE__ : int = False SCREAMING_SNAKE_CASE__ : str = max_length SCREAMING_SNAKE_CASE__ : Any = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE__ : Dict = model_class(a_ ) SCREAMING_SNAKE_CASE__ : str = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = jit(model.generate ) SCREAMING_SNAKE_CASE__ : Tuple = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __lowercase( self : Union[str, Any] )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : Union[str, Any] = max_length SCREAMING_SNAKE_CASE__ : Tuple = 2 SCREAMING_SNAKE_CASE__ : Tuple = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE__ : List[Any] = model_class(a_ ) SCREAMING_SNAKE_CASE__ : Dict = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def __lowercase( self : Any )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE__ : str = True SCREAMING_SNAKE_CASE__ : int = max_length SCREAMING_SNAKE_CASE__ : List[str] = 0.8 SCREAMING_SNAKE_CASE__ : Tuple = 10 SCREAMING_SNAKE_CASE__ : str = 0.3 SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 SCREAMING_SNAKE_CASE__ : Any = 8 SCREAMING_SNAKE_CASE__ : Dict = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE__ : Optional[Any] = model_class(a_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) SCREAMING_SNAKE_CASE__ : Any = jit(model.generate ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __lowercase( self : Dict )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE__ : Union[str, Any] = max_length SCREAMING_SNAKE_CASE__ : Tuple = 1 SCREAMING_SNAKE_CASE__ : Optional[Any] = 8 SCREAMING_SNAKE_CASE__ : str = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE__ : Dict = model_class(a_ ) SCREAMING_SNAKE_CASE__ : Dict = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = jit(model.generate ) SCREAMING_SNAKE_CASE__ : Optional[Any] = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __lowercase( self : Optional[Any] )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE__ : List[Any] = max_length SCREAMING_SNAKE_CASE__ : Tuple = 2 SCREAMING_SNAKE_CASE__ : List[Any] = 1 SCREAMING_SNAKE_CASE__ : Any = 8 SCREAMING_SNAKE_CASE__ : Optional[int] = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE__ : List[Any] = model_class(a_ ) SCREAMING_SNAKE_CASE__ : int = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = jit(model.generate ) SCREAMING_SNAKE_CASE__ : int = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __lowercase( self : str )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE__ : List[str] = attention_mask.at[(0, 0)].set(0 ) SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : Optional[int] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE__ : str = model_class(a_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model.generate(a_ , attention_mask=a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = jit(model.generate ) SCREAMING_SNAKE_CASE__ : Tuple = jit_generate(a_ , attention_mask=a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __lowercase( self : List[str] )-> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE__ : List[Any] = attention_mask.at[(0, 0)].set(0 ) SCREAMING_SNAKE_CASE__ : List[str] = True SCREAMING_SNAKE_CASE__ : Dict = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE__ : Dict = model_class(a_ ) SCREAMING_SNAKE_CASE__ : int = model.generate(a_ , attention_mask=a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = jit(model.generate ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = jit_generate(a_ , attention_mask=a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __lowercase( self : Any )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE__ : List[str] = attention_mask.at[(0, 0)].set(0 ) SCREAMING_SNAKE_CASE__ : Any = 2 SCREAMING_SNAKE_CASE__ : List[Any] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE__ : Tuple = model_class(a_ ) SCREAMING_SNAKE_CASE__ : Any = model.generate(a_ , attention_mask=a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = jit(model.generate ) SCREAMING_SNAKE_CASE__ : Dict = jit_generate(a_ , attention_mask=a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class snake_case ( unittest.TestCase ): def __lowercase( self : Optional[Any] )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-bert' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = FlaxAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = 'Hello world' SCREAMING_SNAKE_CASE__ : List[str] = tokenizer(a_ , return_tensors='np' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(a_ , 'do_samples' ): model.generate(a_ , do_samples=a_ ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(a_ , 'foo' ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = {'foo': 'bar'} model.generate(a_ , **a_ )
713
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : int = logging.get_logger(__name__) def _a ( lowercase__ : Union[str, Any] , lowercase__ : Union[str, Any]=False , lowercase__ : str=False , lowercase__ : Dict=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''transformer.blocks.{i}.norm1.weight''', f'''vilt.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm1.bias''', f'''vilt.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.weight''', f'''vilt.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.bias''', f'''vilt.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.weight''', f'''vilt.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.bias''', f'''vilt.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.mlp.fc1.weight''', f'''vilt.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc1.bias''', f'''vilt.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.weight''', f'''vilt.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.bias''', f'''vilt.encoder.layer.{i}.output.dense.bias''') ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def _a ( lowercase__ : List[str] , lowercase__ : Dict ): '''simple docstring''' for i in range(config.num_hidden_layers ): SCREAMING_SNAKE_CASE__ : Dict = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ : Optional[Any] = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE__ : Any = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE__ : List[str] = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE__ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE__ : Tuple = in_proj_bias[-config.hidden_size :] def _a ( lowercase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def _a ( lowercase__ : int , lowercase__ : int , lowercase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = dct.pop(lowercase__ ) SCREAMING_SNAKE_CASE__ : Any = val @torch.no_grad() def _a ( lowercase__ : Dict , lowercase__ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = ViltConfig(image_size=3_84 , patch_size=32 , tie_word_embeddings=lowercase__ ) SCREAMING_SNAKE_CASE__ : List[str] = False SCREAMING_SNAKE_CASE__ : Tuple = False SCREAMING_SNAKE_CASE__ : List[str] = False SCREAMING_SNAKE_CASE__ : str = False if "vqa" in checkpoint_url: SCREAMING_SNAKE_CASE__ : Any = True SCREAMING_SNAKE_CASE__ : str = 31_29 SCREAMING_SNAKE_CASE__ : Optional[Any] = 'huggingface/label-files' SCREAMING_SNAKE_CASE__ : int = 'vqa2-id2label.json' SCREAMING_SNAKE_CASE__ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='dataset' ) , 'r' ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = {int(lowercase__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ : Dict = idalabel SCREAMING_SNAKE_CASE__ : str = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ : List[str] = ViltForQuestionAnswering(lowercase__ ) elif "nlvr" in checkpoint_url: SCREAMING_SNAKE_CASE__ : Optional[int] = True SCREAMING_SNAKE_CASE__ : List[str] = 2 SCREAMING_SNAKE_CASE__ : Dict = {0: 'False', 1: 'True'} SCREAMING_SNAKE_CASE__ : Dict = {v: k for k, v in config.idalabel.items()} SCREAMING_SNAKE_CASE__ : Tuple = 3 SCREAMING_SNAKE_CASE__ : int = ViltForImagesAndTextClassification(lowercase__ ) elif "irtr" in checkpoint_url: SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : str = ViltForImageAndTextRetrieval(lowercase__ ) elif "mlm_itm" in checkpoint_url: SCREAMING_SNAKE_CASE__ : int = True SCREAMING_SNAKE_CASE__ : Optional[int] = ViltForMaskedLM(lowercase__ ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys SCREAMING_SNAKE_CASE__ : Any = torch.hub.load_state_dict_from_url(lowercase__ , map_location='cpu' )['state_dict'] SCREAMING_SNAKE_CASE__ : Any = create_rename_keys(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ ) if mlm_model or irtr_model: SCREAMING_SNAKE_CASE__ : Any = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) # load state dict into HuggingFace model model.eval() if mlm_model: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = model.load_state_dict(lowercase__ , strict=lowercase__ ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(lowercase__ ) # Define processor SCREAMING_SNAKE_CASE__ : str = ViltImageProcessor(size=3_84 ) SCREAMING_SNAKE_CASE__ : List[Any] = BertTokenizer.from_pretrained('bert-base-uncased' ) SCREAMING_SNAKE_CASE__ : List[Any] = ViltProcessor(lowercase__ , lowercase__ ) # Forward pass on example inputs (image + text) if nlvr_model: SCREAMING_SNAKE_CASE__ : List[str] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=lowercase__ ).raw ) SCREAMING_SNAKE_CASE__ : Any = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=lowercase__ ).raw ) SCREAMING_SNAKE_CASE__ : Tuple = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) SCREAMING_SNAKE_CASE__ : List[Any] = processor(lowercase__ , lowercase__ , return_tensors='pt' ) SCREAMING_SNAKE_CASE__ : List[str] = processor(lowercase__ , lowercase__ , return_tensors='pt' ) SCREAMING_SNAKE_CASE__ : List[Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: SCREAMING_SNAKE_CASE__ : Tuple = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=lowercase__ ).raw ) if mlm_model: SCREAMING_SNAKE_CASE__ : Optional[Any] = 'a bunch of [MASK] laying on a [MASK].' else: SCREAMING_SNAKE_CASE__ : Optional[Any] = 'How many cats are there?' SCREAMING_SNAKE_CASE__ : Optional[Any] = processor(lowercase__ , lowercase__ , return_tensors='pt' ) SCREAMING_SNAKE_CASE__ : str = model(**lowercase__ ) # Verify outputs if mlm_model: SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.Size([1, 11, 3_05_22] ) SCREAMING_SNAKE_CASE__ : List[str] = torch.tensor([-12.5061, -12.5123, -12.5174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowercase__ , atol=1E-4 ) # verify masked token prediction equals "cats" SCREAMING_SNAKE_CASE__ : Union[str, Any] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: SCREAMING_SNAKE_CASE__ : str = torch.Size([1, 31_29] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor([-15.9495, -18.1472, -10.3041] ) assert torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowercase__ , atol=1E-4 ) # verify vqa prediction equals "2" SCREAMING_SNAKE_CASE__ : List[Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: SCREAMING_SNAKE_CASE__ : Optional[int] = torch.Size([1, 2] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor([-2.8721, 2.1291] ) assert torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase__ ) processor.save_pretrained(lowercase__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) SCREAMING_SNAKE_CASE__ : List[Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
636
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
178
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def UpperCamelCase ( lowercase_ ) -> Any: '''simple docstring''' lowercase__ : Optional[Any] = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase__ : List[str] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowercase__ : Optional[int] = 4 lowercase__ : Optional[Any] = 48 lowercase__ : int = """pixelshuffle_aux""" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase__ : List[str] = [6, 6, 6, 6] lowercase__ : Any = 60 lowercase__ : Tuple = [6, 6, 6, 6] lowercase__ : Dict = """pixelshuffledirect""" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase__ : Tuple = 4 lowercase__ : Any = """nearest+conv""" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowercase__ : str = 1 lowercase__ : Optional[int] = 1 lowercase__ : Optional[int] = 1_26 lowercase__ : Any = 7 lowercase__ : int = 255.0 lowercase__ : List[Any] = """""" return config def UpperCamelCase ( lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: lowercase__ : Dict = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase__ : Dict = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" ) if "layers" in name: lowercase__ : List[str] = name.replace("""layers""" , """encoder.stages""" ) if "residual_group.blocks" in name: lowercase__ : Optional[int] = name.replace("""residual_group.blocks""" , """layers""" ) if "attn.proj" in name: lowercase__ : int = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowercase__ : Tuple = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase__ : int = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase__ : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase__ : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase__ : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: lowercase__ : Any = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: lowercase__ : Optional[Any] = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: lowercase__ : Dict = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: lowercase__ : Union[str, Any] = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if "patch_embed.proj" in name: lowercase__ : List[Any] = name.replace("""patch_embed.proj""" , """patch_embed.projection""" ) if name == "norm.weight": lowercase__ : Union[str, Any] = """layernorm.weight""" if name == "norm.bias": lowercase__ : List[str] = """layernorm.bias""" if "conv_first" in name: lowercase__ : Union[str, Any] = name.replace("""conv_first""" , """first_convolution""" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowercase__ : List[Any] = name.replace("""conv_last""" , """final_convolution""" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowercase__ : Optional[int] = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" ) if "upsample.0" in name: lowercase__ : Dict = name.replace("""upsample.0""" , """upsample.convolution_0""" ) if "upsample.2" in name: lowercase__ : Optional[Any] = name.replace("""upsample.2""" , """upsample.convolution_1""" ) lowercase__ : List[str] = """upsample.""" + name elif config.upsampler == "pixelshuffledirect": lowercase__ : Optional[Any] = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" ) lowercase__ : int = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" ) else: pass else: lowercase__ : str = """swin2sr.""" + name return name def UpperCamelCase ( lowercase_ , lowercase_ ) -> int: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase__ : str = orig_state_dict.pop(lowercase_ ) if "qkv" in key: lowercase__ : Any = key.split(""".""" ) lowercase__ : List[Any] = int(key_split[1] ) lowercase__ : Dict = int(key_split[4] ) lowercase__ : Optional[Any] = config.embed_dim if "weight" in key: lowercase__ : List[str] = val[:dim, :] lowercase__ : List[str] = val[dim : dim * 2, :] lowercase__ : Optional[Any] = val[-dim:, :] else: lowercase__ : Optional[Any] = val[:dim] lowercase__ : List[Any] = val[dim : dim * 2] lowercase__ : Optional[int] = val[-dim:] pass else: lowercase__ : Optional[Any] = val return orig_state_dict def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' lowercase__ : Dict = get_config(lowercase_ ) lowercase__ : Any = SwinaSRForImageSuperResolution(lowercase_ ) model.eval() lowercase__ : List[str] = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" ) lowercase__ : Union[str, Any] = convert_state_dict(lowercase_ , lowercase_ ) lowercase__ , lowercase__ : Dict = model.load_state_dict(lowercase_ , strict=lowercase_ ) if len(lowercase_ ) > 0: raise ValueError("""Missing keys when converting: {}""".format(lowercase_ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'Unexpected key {key} in state_dict' ) # verify values lowercase__ : Any = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true""" lowercase__ : Any = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert("""RGB""" ) lowercase__ : Any = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowercase__ : Optional[int] = 1_26 if """Jpeg""" in checkpoint_url else 2_56 lowercase__ : Union[str, Any] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowercase__ : Dict = transforms(lowercase_ ).unsqueeze(0 ) if config.num_channels == 1: lowercase__ : Any = pixel_values[:, 0, :, :].unsqueeze(1 ) lowercase__ : Union[str, Any] = model(lowercase_ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowercase__ : Optional[Any] = torch.Size([1, 3, 5_12, 5_12] ) lowercase__ : Optional[Any] = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase__ : List[str] = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowercase__ : Optional[Any] = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase__ : Tuple = torch.Size([1, 3, 5_12, 5_12] ) lowercase__ : int = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase__ : Tuple = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowercase_ , atol=1E-3 ) print("""Looks ok!""" ) lowercase__ : str = { """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": ( """swin2SR-classical-sr-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": ( """swin2SR-classical-sr-x4-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": ( """swin2SR-compressed-sr-x4-48""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": ( """swin2SR-lightweight-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": ( """swin2SR-realworld-sr-x4-64-bsrgan-psnr""" ), } lowercase__ : str = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase_ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowercase_ ) if push_to_hub: model.push_to_hub(F'caidas/{model_name}' ) processor.push_to_hub(F'caidas/{model_name}' ) if __name__ == "__main__": lowerCamelCase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""", type=str, help="""URL of the original Swin2SR checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""") lowerCamelCase__ : Any = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
12
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCAmelCase_ : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Union[str, Any] = ["""GPTSw3Tokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys lowerCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
718
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase_ : List[str] = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase__ = '''yolos''' def __init__( self : int , lowercase__ : List[str]=768 , lowercase__ : Optional[Any]=12 , lowercase__ : Union[str, Any]=12 , lowercase__ : Any=3_072 , lowercase__ : List[Any]="gelu" , lowercase__ : Dict=0.0 , lowercase__ : Any=0.0 , lowercase__ : Dict=0.0_2 , lowercase__ : Tuple=1e-12 , lowercase__ : str=[512, 864] , lowercase__ : Dict=16 , lowercase__ : int=3 , lowercase__ : Optional[Any]=True , lowercase__ : List[Any]=100 , lowercase__ : str=True , lowercase__ : str=False , lowercase__ : List[str]=1 , lowercase__ : Dict=5 , lowercase__ : str=2 , lowercase__ : Optional[int]=5 , lowercase__ : Optional[int]=2 , lowercase__ : Optional[Any]=0.1 , **lowercase__ : Union[str, Any] , ) ->Tuple: '''simple docstring''' super().__init__(**lowercase__ ) _UpperCamelCase : Optional[int] = hidden_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : Optional[Any] = num_attention_heads _UpperCamelCase : Optional[int] = intermediate_size _UpperCamelCase : Union[str, Any] = hidden_act _UpperCamelCase : Tuple = hidden_dropout_prob _UpperCamelCase : Any = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = initializer_range _UpperCamelCase : str = layer_norm_eps _UpperCamelCase : Optional[int] = image_size _UpperCamelCase : int = patch_size _UpperCamelCase : Dict = num_channels _UpperCamelCase : List[str] = qkv_bias _UpperCamelCase : Dict = num_detection_tokens _UpperCamelCase : int = use_mid_position_embeddings _UpperCamelCase : int = auxiliary_loss # Hungarian matcher _UpperCamelCase : Tuple = class_cost _UpperCamelCase : str = bbox_cost _UpperCamelCase : str = giou_cost # Loss coefficients _UpperCamelCase : List[str] = bbox_loss_coefficient _UpperCamelCase : str = giou_loss_coefficient _UpperCamelCase : str = eos_coefficient class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase__ = version.parse('''1.11''' ) @property def snake_case__ ( self : Union[str, Any] ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def snake_case__ ( self : Any ) ->float: '''simple docstring''' return 1e-4 @property def snake_case__ ( self : List[str] ) ->int: '''simple docstring''' return 12
204
0
"""simple docstring""" import functools def _snake_case ( __snake_case : str , __snake_case : str ): """simple docstring""" _lowerCamelCase : int = len(__snake_case ) _lowerCamelCase : List[Any] = len(__snake_case ) @functools.cache def min_distance(__snake_case : int , __snake_case : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa _lowerCamelCase : Optional[int] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , __snake_case ) , 1 + min_distance(__snake_case , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
88
"""simple docstring""" from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def _snake_case ( __snake_case : float , __snake_case : float , __snake_case : bool = False ): """simple docstring""" if radian_mode: return [magnitude * cos(__snake_case ), magnitude * sin(__snake_case )] return [magnitude * cos(radians(__snake_case ) ), magnitude * sin(radians(__snake_case ) )] def _snake_case ( __snake_case : NDArray[floataa] , __snake_case : NDArray[floataa] , __snake_case : float = 10**-1 ): """simple docstring""" _lowerCamelCase : NDArray[floataa] = cross(__snake_case , __snake_case ) _lowerCamelCase : float = sum(__snake_case ) return abs(__snake_case ) < eps if __name__ == "__main__": # Test to check if it works UpperCAmelCase = array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) UpperCAmelCase = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg UpperCAmelCase = array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) UpperCAmelCase = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg UpperCAmelCase = array([[0, -2000], [0, -1200], [0, 1_5600], [0, -1_2400]]) UpperCAmelCase = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
88
1
import math lowerCAmelCase__ = 1_0 lowerCAmelCase__ = 7 lowerCAmelCase__ = BALLS_PER_COLOUR * NUM_COLOURS def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int = 2_0 ) -> str: '''simple docstring''' A__ = math.comb(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A__ = math.comb(NUM_BALLS - BALLS_PER_COLOUR , SCREAMING_SNAKE_CASE_ ) A__ = NUM_COLOURS * (1 - missing_colour / total) return F'{result:.9f}' if __name__ == "__main__": print(solution(2_0))
626
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class a__ ( unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) A__ = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" A__ = model(lowercase )["last_hidden_state"] A__ = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , lowercase ) # compare the actual values for a slice. A__ = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
626
1
import json import sys def __lowerCAmelCase ( _A ,_A ): """simple docstring""" with open(_A ,encoding="""utf-8""" ) as f: _lowercase = json.load(_A ) _lowercase = ["""<details>""", """<summary>Show updated benchmarks!</summary>""", """ """] for benchmark_name in sorted(_A ): _lowercase = results[benchmark_name] _lowercase = benchmark_name.split("""/""" )[-1] output_md.append(f'''### Benchmark: {benchmark_file_name}''' ) _lowercase = """| metric |""" _lowercase = """|--------|""" _lowercase = """| new / old (diff) |""" for metric_name in sorted(_A ): _lowercase = benchmark_res[metric_name] _lowercase = metric_vals["""new"""] _lowercase = metric_vals.get("""old""" ,_A ) _lowercase = metric_vals.get("""diff""" ,_A ) _lowercase = f''' {new_val:f}''' if isinstance(_A ,(int, float) ) else """None""" if old_val is not None: val_str += f''' / {old_val:f}''' if isinstance(_A ,(int, float) ) else "None" if dif_val is not None: val_str += f''' ({dif_val:f})''' if isinstance(_A ,(int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("""</details>""" ) with open(_A ,"""w""" ,encoding="""utf-8""" ) as f: f.writelines("""\n""".join(_A ) ) if __name__ == "__main__": A_: Optional[Any] = sys.argv[1] A_: List[str] = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
398
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _lowercase ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ): '''simple docstring''' _lowercase = tf.convert_to_tensor( [ [ 8.2_220_991, # 3rd highest value; idx. 0 -0.5_620_044, 5.23_229_752, 4.0_386_393, -6.8_798_378, -0.54_785_802, -3.2_012_153, 2.92_777_176, 1.88_171_953, 7.35_341_276, # 5th highest value; idx. 9 8.43_207_833, # 2nd highest value; idx. 10 -9.85_711_836, -5.96_209_236, -1.13_039_161, -7.1_115_294, -0.8_369_633, -5.3_186_408, 7.06_427_407, 0.81_369_344, -0.82_023_817, -5.9_179_796, 0.58_813_443, -6.99_778_438, 4.71_551_189, -0.18_771_637, 7.44_020_759, # 4th highest value; idx. 25 9.38_450_987, # 1st highest value; idx. 26 2.12_662_941, -9.32_562_038, 2.35_652_522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58_425_518, 4.53_139_238, -5.57_510_464, -6.28_030_699, -7.19_529_503, -4.02_122_551, 1.39_337_037, -6.06_707_057, 1.59_480_517, -9.643_119, 0.03_907_799, 0.67_231_762, -8.88_206_726, 6.27_115_922, # 4th highest value; idx. 13 2.28_520_723, 4.82_767_506, 4.30_421_368, 8.8_275_313, # 2nd highest value; idx. 17 5.44_029_958, # 5th highest value; idx. 18 -4.4_735_794, 7.38_579_536, # 3rd highest value; idx. 20 -2.91_051_663, 2.61_946_077, -2.5_674_762, -9.48_959_302, -4.02_922_645, -1.35_416_918, 9.67_702_323, # 1st highest value; idx. 27 -5.89_478_553, 1.85_370_467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) _lowercase = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above _lowercase = tf.convert_to_tensor( [8.222_099, 7.3_534_126, 8.432_078, 7.4_402_075, 9.38_451, 6.271_159, 8.827_531, 5.4_402_995, 7.3_857_956, 9.677_023] , dtype=tf.floataa , ) # expected non filtered values as noted above _lowercase = tf_top_k_top_p_filtering(UpperCAmelCase , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) _lowercase = output[output != -float("""inf""" )] _lowercase = tf.cast( tf.where(tf.not_equal(UpperCAmelCase , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , rtol=1e-12 ) tf.debugging.assert_equal(UpperCAmelCase , UpperCAmelCase ) @require_tf class _lowercase ( unittest.TestCase , _UpperCAmelCase ): """simple docstring""" if is_tf_available(): lowerCAmelCase__ = { 'AutoModelForCausalLM': TFAutoModelForCausalLM, 'AutoModelForSpeechSeq2Seq': TFAutoModelForSpeechSeqaSeq, 'AutoModelForSeq2SeqLM': TFAutoModelForSeqaSeqLM, 'AutoModelForVision2Seq': TFAutoModelForVisionaSeq, 'LogitsProcessorList': TFLogitsProcessorList, 'MinLengthLogitsProcessor': TFMinLengthLogitsProcessor, 'create_tensor_fn': tf.convert_to_tensor, 'floats_tensor': floats_tensor, 'return_tensors': 'tf', } @slow def _UpperCAmelCase ( self ): '''simple docstring''' _lowercase = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) _lowercase = 2 _lowercase = 2 class _lowercase ( tf.Module ): """simple docstring""" def __init__( self , UpperCAmelCase ): '''simple docstring''' super(UpperCAmelCase , self ).__init__() _lowercase = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=UpperCAmelCase , ) def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ): '''simple docstring''' _lowercase = self.model.generate( input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , max_new_tokens=UpperCAmelCase , return_dict_in_generate=UpperCAmelCase , ) return {"sequences": outputs["sequences"]} _lowercase = [[2, 0], [102, 103]] _lowercase = [[1, 0], [1, 1]] _lowercase = DummyModel(model=UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(UpperCAmelCase , UpperCAmelCase , signatures={"""serving_default""": dummy_model.serving} ) _lowercase = tf.saved_model.load(UpperCAmelCase ).signatures["""serving_default"""] for batch_size in range(1 , len(UpperCAmelCase ) + 1 ): _lowercase = { """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } _lowercase = serving_func(**UpperCAmelCase )["""sequences"""] _lowercase = test_model.generate(**UpperCAmelCase , max_new_tokens=UpperCAmelCase ) tf.debugging.assert_equal(UpperCAmelCase , UpperCAmelCase ) @slow def _UpperCAmelCase ( self ): '''simple docstring''' _lowercase = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) _lowercase = 1 _lowercase = 2 class _lowercase ( tf.Module ): """simple docstring""" def __init__( self , UpperCAmelCase ): '''simple docstring''' super(UpperCAmelCase , self ).__init__() _lowercase = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=UpperCAmelCase , ) def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ): '''simple docstring''' _lowercase = self.model.generate( input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , max_new_tokens=UpperCAmelCase , return_dict_in_generate=UpperCAmelCase , ) return {"sequences": outputs["sequences"]} _lowercase = [[2], [102, 103]] _lowercase = [[1], [1, 1]] _lowercase = DummyModel(model=UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(UpperCAmelCase , UpperCAmelCase , signatures={"""serving_default""": dummy_model.serving} ) _lowercase = tf.saved_model.load(UpperCAmelCase ).signatures["""serving_default"""] for input_row in range(len(UpperCAmelCase ) ): _lowercase = { """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } _lowercase = serving_func(**UpperCAmelCase )["""sequences"""] _lowercase = test_model.generate(**UpperCAmelCase , max_new_tokens=UpperCAmelCase ) tf.debugging.assert_equal(UpperCAmelCase , UpperCAmelCase ) @slow @require_tensorflow_text def _UpperCAmelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=UpperCAmelCase ) class _lowercase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self ): '''simple docstring''' super().__init__() _lowercase = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(UpperCAmelCase , """spiece.model""" ) , """rb""" ).read() ) _lowercase = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def _UpperCAmelCase ( self , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ): '''simple docstring''' _lowercase = self.tokenizer.tokenize(UpperCAmelCase ) _lowercase , _lowercase = text.pad_model_inputs( UpperCAmelCase , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) _lowercase = self.model.generate(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase ) return self.tokenizer.detokenize(UpperCAmelCase ) _lowercase = CompleteSentenceTransformer() _lowercase = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) _lowercase = complete_model(UpperCAmelCase ) _lowercase = tf.keras.Model(UpperCAmelCase , UpperCAmelCase ) keras_model.save(UpperCAmelCase ) def _UpperCAmelCase ( self ): '''simple docstring''' _lowercase = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 10, """temperature""": 0.7, } _lowercase = 14 _lowercase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) _lowercase = """Hello, my dog is cute and""" _lowercase = tokenizer(UpperCAmelCase , return_tensors="""tf""" ) _lowercase = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) _lowercase = 638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) _lowercase = model.generate(**UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) _lowercase = [638, 198] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) _lowercase = model.generate(**UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def _UpperCAmelCase ( self ): '''simple docstring''' _lowercase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) _lowercase = """Hugging Face is a technology company based in New York and Paris.""" _lowercase = bart_tokenizer(UpperCAmelCase , return_tensors="""tf""" ).input_ids _lowercase = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) _lowercase = bart_model.generate(UpperCAmelCase ).numpy() class _lowercase ( _UpperCAmelCase ): """simple docstring""" def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ): '''simple docstring''' return super().call(UpperCAmelCase , **UpperCAmelCase ) _lowercase = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) _lowercase = bart_model.generate(UpperCAmelCase , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(UpperCAmelCase , UpperCAmelCase ) ) class _lowercase ( bart_model.model.encoder.__class__ ): """simple docstring""" def _UpperCAmelCase ( self , UpperCAmelCase , **UpperCAmelCase ): '''simple docstring''' return super().call(UpperCAmelCase , **UpperCAmelCase ) _lowercase = FakeEncoder(bart_model.config , bart_model.model.shared ) _lowercase = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) _lowercase = bart_model.generate(UpperCAmelCase ).numpy() with self.assertRaises(UpperCAmelCase ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(UpperCAmelCase , foo="""bar""" )
398
1
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase__ ( _a ): def __init__( self : str , A_ : Any , A_ : Union[str, Any]=1_3 , A_ : str=7 , A_ : Tuple=True , A_ : Any=True , A_ : Dict=True , A_ : str=True , A_ : Optional[Any]=9_9 , A_ : int=3_2 , A_ : Dict=5 , A_ : Union[str, Any]=4 , A_ : Tuple=3_7 , A_ : Any="gelu" , A_ : List[str]=0.1 , A_ : int=0.1 , A_ : List[Any]=5_1_2 , A_ : Optional[Any]=1_6 , A_ : Optional[int]=2 , A_ : Any=0.02 , A_ : int=False , A_ : Any=True , A_ : Optional[Any]="None" , A_ : int=3 , A_ : Any=4 , A_ : Union[str, Any]=None , ): '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = relative_attention __lowercase = position_biased_input __lowercase = pos_att_type __lowercase = scope def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , A_ : int ): '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) , [] ) def SCREAMING_SNAKE_CASE_ ( self : int , A_ : List[str] , A_ : List[Any] , A_ : str , A_ : str , A_ : Tuple , A_ : Tuple , A_ : Dict ): '''simple docstring''' __lowercase = DebertaVaModel(config=A_ ) model.to(A_ ) model.eval() __lowercase = model(A_ , attention_mask=A_ , token_type_ids=A_ )[0] __lowercase = model(A_ , token_type_ids=A_ )[0] __lowercase = model(A_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , A_ : List[str] , A_ : Any , A_ : str , A_ : Dict , A_ : Tuple , A_ : List[Any] , A_ : Optional[int] ): '''simple docstring''' __lowercase = DebertaVaForMaskedLM(config=A_ ) model.to(A_ ) model.eval() __lowercase = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self : str , A_ : int , A_ : List[Any] , A_ : str , A_ : Any , A_ : Any , A_ : Dict , A_ : int ): '''simple docstring''' __lowercase = self.num_labels __lowercase = DebertaVaForSequenceClassification(A_ ) model.to(A_ ) model.eval() __lowercase = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(A_ ) def SCREAMING_SNAKE_CASE_ ( self : Dict , A_ : str , A_ : str , A_ : Dict , A_ : Tuple , A_ : List[Any] , A_ : Union[str, Any] , A_ : int ): '''simple docstring''' __lowercase = self.num_labels __lowercase = DebertaVaForTokenClassification(config=A_ ) model.to(A_ ) model.eval() __lowercase = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , A_ : Union[str, Any] , A_ : Dict , A_ : Optional[Any] , A_ : Tuple , A_ : int , A_ : Union[str, Any] , A_ : Union[str, Any] ): '''simple docstring''' __lowercase = DebertaVaForQuestionAnswering(config=A_ ) model.to(A_ ) model.eval() __lowercase = model( A_ , attention_mask=A_ , token_type_ids=A_ , start_positions=A_ , end_positions=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , A_ : Tuple , A_ : Any , A_ : Optional[Any] , A_ : Tuple , A_ : Any , A_ : str , A_ : List[str] ): '''simple docstring''' __lowercase = DebertaVaForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = model( A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( _a , _a , unittest.TestCase ): a : Optional[int] = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) a : int = ( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) a : Tuple = True a : List[Any] = False a : Dict = False a : Any = False a : Union[str, Any] = False def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' __lowercase = DebertaVaModelTester(self ) __lowercase = ConfigTester(self , config_class=A_ , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*A_ ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*A_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*A_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*A_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*A_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*A_ ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = DebertaVaModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' pass @slow def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' __lowercase = DebertaVaModel.from_pretrained("""microsoft/deberta-v2-xlarge""" ) __lowercase = torch.tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(A_ , attention_mask=A_ )[0] # compare the actual values for a slice. __lowercase = torch.tensor( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , A_ , atol=1e-4 ) , F'''{output[:, 1:4, 1:4]}''' )
702
"""simple docstring""" import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class lowerCamelCase__ ( _a ): def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' __lowercase = tempfile.mkdtemp() __lowercase = 5 # Realm tok __lowercase = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """test""", """question""", """this""", """is""", """the""", """first""", """second""", """third""", """fourth""", """fifth""", """record""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __lowercase = os.path.join(self.tmpdirname , """realm_tokenizer""" ) os.makedirs(A_ , exist_ok=A_ ) __lowercase = os.path.join(A_ , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) __lowercase = os.path.join(self.tmpdirname , """realm_block_records""" ) os.makedirs(A_ , exist_ok=A_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , """realm_tokenizer""" ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' __lowercase = RealmConfig(num_block_records=self.num_block_records ) return config def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' __lowercase = Dataset.from_dict( { """id""": ["""0""", """1"""], """question""": ["""foo""", """bar"""], """answers""": [["""Foo""", """Bar"""], ["""Bar"""]], } ) return dataset def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' __lowercase = np.array( [ B"""This is the first record""", B"""This is the second record""", B"""This is the third record""", B"""This is the fourth record""", B"""This is the fifth record""", B"""This is a longer longer longer record""", ] , dtype=A_ , ) return block_records def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' __lowercase = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' __lowercase = self.get_config() __lowercase = self.get_dummy_retriever() __lowercase = retriever.tokenizer __lowercase = np.array([0, 3] , dtype="""long""" ) __lowercase = tokenizer(["""Test question"""] ).input_ids __lowercase = tokenizer( ["""the fourth"""] , add_special_tokens=A_ , return_token_type_ids=A_ , return_attention_mask=A_ , ).input_ids __lowercase = config.reader_seq_len __lowercase , __lowercase , __lowercase , __lowercase = retriever( A_ , A_ , answer_ids=A_ , max_length=A_ , return_tensors="""np""" ) self.assertEqual(len(A_ ) , 2 ) self.assertEqual(len(A_ ) , 2 ) self.assertEqual(len(A_ ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 1_0) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 1_0) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """first""", """record""", """[SEP]"""] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """fourth""", """record""", """[SEP]"""] , ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' __lowercase = self.get_config() __lowercase = self.get_dummy_retriever() __lowercase = retriever.tokenizer __lowercase = np.array([0, 3, 5] , dtype="""long""" ) __lowercase = tokenizer(["""Test question"""] ).input_ids __lowercase = tokenizer( ["""the fourth""", """longer longer"""] , add_special_tokens=A_ , return_token_type_ids=A_ , return_attention_mask=A_ , ).input_ids __lowercase = config.reader_seq_len __lowercase , __lowercase , __lowercase , __lowercase = retriever( A_ , A_ , answer_ids=A_ , max_length=A_ , return_tensors="""np""" ) self.assertEqual([False, True, True] , A_ ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , A_ ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , A_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) # Test local path __lowercase = retriever.from_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) self.assertEqual(retriever.block_records[0] , B"""This is the first record""" ) # Test mocked remote path with patch("""transformers.models.realm.retrieval_realm.hf_hub_download""" ) as mock_hf_hub_download: __lowercase = os.path.join( os.path.join(self.tmpdirname , """realm_block_records""" ) , _REALM_BLOCK_RECORDS_FILENAME ) __lowercase = RealmRetriever.from_pretrained("""google/realm-cc-news-pretrained-openqa""" ) self.assertEqual(retriever.block_records[0] , B"""This is the first record""" )
442
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase__( snake_case_ , unittest.TestCase ): UpperCamelCase : int = UnCLIPImageVariationPipeline UpperCamelCase : List[str] = IMAGE_VARIATION_PARAMS - {"height", "width", "guidance_scale"} UpperCamelCase : List[Any] = IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase : Optional[int] = [ "generator", "return_dict", "decoder_num_inference_steps", "super_res_num_inference_steps", ] UpperCamelCase : int = False @property def __magic_name__ ( self ): """simple docstring""" return 3_2 @property def __magic_name__ ( self ): """simple docstring""" return 3_2 @property def __magic_name__ ( self ): """simple docstring""" return self.time_input_dim @property def __magic_name__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def __magic_name__ ( self ): """simple docstring""" return 1_0_0 @property def __magic_name__ ( self ): """simple docstring""" __lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def __magic_name__ ( self ): """simple docstring""" torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(__UpperCAmelCase ) @property def __magic_name__ ( self ): """simple docstring""" torch.manual_seed(0 ) __lowercase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=3_2 , intermediate_size=3_7 , patch_size=1 , ) return CLIPVisionModelWithProjection(__UpperCAmelCase ) @property def __magic_name__ ( self ): """simple docstring""" torch.manual_seed(0 ) __lowercase = { """clip_embeddings_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """cross_attention_dim""": self.cross_attention_dim, } __lowercase = UnCLIPTextProjModel(**__UpperCAmelCase ) return model @property def __magic_name__ ( self ): """simple docstring""" torch.manual_seed(0 ) __lowercase = { """sample_size""": 3_2, # RGB in channels """in_channels""": 3, # Out channels is double in channels because predicts mean and variance """out_channels""": 6, """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": """identity""", } __lowercase = UNetaDConditionModel(**__UpperCAmelCase ) return model @property def __magic_name__ ( self ): """simple docstring""" return { "sample_size": 6_4, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def __magic_name__ ( self ): """simple docstring""" torch.manual_seed(0 ) __lowercase = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def __magic_name__ ( self ): """simple docstring""" torch.manual_seed(1 ) __lowercase = UNetaDModel(**self.dummy_super_res_kwargs ) return model def __magic_name__ ( self ): """simple docstring""" __lowercase = self.dummy_decoder __lowercase = self.dummy_text_proj __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_super_res_first __lowercase = self.dummy_super_res_last __lowercase = UnCLIPScheduler( variance_type="""learned_range""" , prediction_type="""epsilon""" , num_train_timesteps=1_0_0_0 , ) __lowercase = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""epsilon""" , num_train_timesteps=1_0_0_0 , ) __lowercase = CLIPImageProcessor(crop_size=3_2 , size=3_2 ) __lowercase = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase=0 , __UpperCAmelCase=True ): """simple docstring""" __lowercase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) if str(__UpperCAmelCase ).startswith("""mps""" ): __lowercase = torch.manual_seed(__UpperCAmelCase ) else: __lowercase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) if pil_image: __lowercase = input_image * 0.5 + 0.5 __lowercase = input_image.clamp(0 , 1 ) __lowercase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __lowercase = DiffusionPipeline.numpy_to_pil(__UpperCAmelCase )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def __magic_name__ ( self ): """simple docstring""" __lowercase = """cpu""" __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**__UpperCAmelCase ) __lowercase = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __lowercase = self.get_dummy_inputs(__UpperCAmelCase , pil_image=__UpperCAmelCase ) __lowercase = pipe(**__UpperCAmelCase ) __lowercase = output.images __lowercase = self.get_dummy_inputs(__UpperCAmelCase , pil_image=__UpperCAmelCase ) __lowercase = pipe( **__UpperCAmelCase , return_dict=__UpperCAmelCase , )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __lowercase = np.array( [ 0.99_97, 0.00_02, 0.99_97, 0.99_97, 0.99_69, 0.00_23, 0.99_97, 0.99_69, 0.99_70, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __magic_name__ ( self ): """simple docstring""" __lowercase = """cpu""" __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**__UpperCAmelCase ) __lowercase = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __lowercase = self.get_dummy_inputs(__UpperCAmelCase , pil_image=__UpperCAmelCase ) __lowercase = pipe(**__UpperCAmelCase ) __lowercase = output.images __lowercase = self.get_dummy_inputs(__UpperCAmelCase , pil_image=__UpperCAmelCase ) __lowercase = pipe( **__UpperCAmelCase , return_dict=__UpperCAmelCase , )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __lowercase = np.array([0.99_97, 0.00_03, 0.99_97, 0.99_97, 0.99_70, 0.00_24, 0.99_97, 0.99_71, 0.99_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __magic_name__ ( self ): """simple docstring""" __lowercase = """cpu""" __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**__UpperCAmelCase ) __lowercase = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __lowercase = self.get_dummy_inputs(__UpperCAmelCase , pil_image=__UpperCAmelCase ) __lowercase = [ pipeline_inputs["""image"""], pipeline_inputs["""image"""], ] __lowercase = pipe(**__UpperCAmelCase ) __lowercase = output.images __lowercase = self.get_dummy_inputs(__UpperCAmelCase , pil_image=__UpperCAmelCase ) __lowercase = [ tuple_pipeline_inputs["""image"""], tuple_pipeline_inputs["""image"""], ] __lowercase = pipe( **__UpperCAmelCase , return_dict=__UpperCAmelCase , )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 6_4, 6_4, 3) __lowercase = np.array( [ 0.99_97, 0.99_89, 0.00_08, 0.00_21, 0.99_60, 0.00_18, 0.00_14, 0.00_02, 0.99_33, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __magic_name__ ( self ): """simple docstring""" __lowercase = torch.device("""cpu""" ) class lowerCamelCase__: UpperCamelCase : Any = 1 __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**__UpperCAmelCase ) __lowercase = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __lowercase = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) __lowercase = pipe.decoder.dtype __lowercase = 1 __lowercase = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) __lowercase = pipe.prepare_latents( __UpperCAmelCase , dtype=__UpperCAmelCase , device=__UpperCAmelCase , generator=__UpperCAmelCase , latents=__UpperCAmelCase , scheduler=DummyScheduler() ) __lowercase = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) __lowercase = pipe.prepare_latents( __UpperCAmelCase , dtype=__UpperCAmelCase , device=__UpperCAmelCase , generator=__UpperCAmelCase , latents=__UpperCAmelCase , scheduler=DummyScheduler() ) __lowercase = self.get_dummy_inputs(__UpperCAmelCase , pil_image=__UpperCAmelCase ) __lowercase = pipe( **__UpperCAmelCase , decoder_latents=__UpperCAmelCase , super_res_latents=__UpperCAmelCase ).images __lowercase = self.get_dummy_inputs(__UpperCAmelCase , pil_image=__UpperCAmelCase ) # Don't pass image, instead pass embedding __lowercase = pipeline_inputs.pop("""image""" ) __lowercase = pipe.image_encoder(__UpperCAmelCase ).image_embeds __lowercase = pipe( **__UpperCAmelCase , decoder_latents=__UpperCAmelCase , super_res_latents=__UpperCAmelCase , image_embeddings=__UpperCAmelCase , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def __magic_name__ ( self ): """simple docstring""" __lowercase = torch_device == """cpu""" # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor __lowercase = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=__UpperCAmelCase , expected_max_diff=__UpperCAmelCase ) @skip_mps def __magic_name__ ( self ): """simple docstring""" __lowercase = torch_device == """cpu""" __lowercase = True __lowercase = [ """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] self._test_inference_batch_single_identical( test_max_difference=__UpperCAmelCase , relax_max_difference=__UpperCAmelCase , additional_params_copy_to_batched_inputs=__UpperCAmelCase , ) def __magic_name__ ( self ): """simple docstring""" __lowercase = [ """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes __lowercase = [2, 3] self._test_inference_batch_consistent( batch_sizes=__UpperCAmelCase , additional_params_copy_to_batched_inputs=__UpperCAmelCase , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=__UpperCAmelCase ) @skip_mps def __magic_name__ ( self ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent() @skip_mps def __magic_name__ ( self ): """simple docstring""" return super().test_save_load_local() @skip_mps def __magic_name__ ( self ): """simple docstring""" return super().test_save_load_optional_components() @slow @require_torch_gpu class lowerCamelCase__( unittest.TestCase ): def __magic_name__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self ): """simple docstring""" __lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png""" ) __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/unclip/karlo_v1_alpha_cat_variation_fp16.npy""" ) __lowercase = UnCLIPImageVariationPipeline.from_pretrained( """kakaobrain/karlo-v1-alpha-image-variations""" , torch_dtype=torch.floataa ) __lowercase = pipeline.to(__UpperCAmelCase ) pipeline.set_progress_bar_config(disable=__UpperCAmelCase ) __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = pipeline( __UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase , 1_5 )
566
'''simple docstring''' from __future__ import annotations def lowercase__ ( __UpperCamelCase : list[int] ): '''simple docstring''' if len(__UpperCamelCase ) == 0: return array __lowercase , __lowercase = min(__UpperCamelCase ), max(__UpperCamelCase ) # Compute the variables __lowercase = _max - _min + 1 __lowercase , __lowercase = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: __lowercase = i - _min __lowercase = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. __lowercase = 0 for i in range(__UpperCamelCase ): while holes_repeat[i] > 0: __lowercase = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() snake_case : Dict = input('Enter numbers separated by comma:\n') snake_case : List[str] = [int(x) for x in user_input.split(',')] print(pigeon_sort(unsorted))
566
1
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Optional[Any] ) -> Any: _lowerCamelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) _lowerCamelCase = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(lowerCamelCase_ ) _lowerCamelCase = -1 _lowerCamelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) _lowerCamelCase = model.generate(lowerCamelCase_ , max_new_tokens=1_0 , do_sample=lowerCamelCase_ ) _lowerCamelCase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _lowerCamelCase = TextStreamer(lowerCamelCase_ ) model.generate(lowerCamelCase_ , max_new_tokens=1_0 , do_sample=lowerCamelCase_ , streamer=lowerCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowerCamelCase = cs.out[:-1] self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def _snake_case ( self : Dict ) -> Tuple: _lowerCamelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) _lowerCamelCase = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(lowerCamelCase_ ) _lowerCamelCase = -1 _lowerCamelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) _lowerCamelCase = model.generate(lowerCamelCase_ , max_new_tokens=1_0 , do_sample=lowerCamelCase_ ) _lowerCamelCase = tokenizer.decode(greedy_ids[0] ) _lowerCamelCase = TextIteratorStreamer(lowerCamelCase_ ) _lowerCamelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} _lowerCamelCase = Thread(target=model.generate , kwargs=lowerCamelCase_ ) thread.start() _lowerCamelCase = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def _snake_case ( self : List[str] ) -> str: _lowerCamelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) _lowerCamelCase = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(lowerCamelCase_ ) _lowerCamelCase = -1 _lowerCamelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) _lowerCamelCase = model.generate(lowerCamelCase_ , max_new_tokens=1_0 , do_sample=lowerCamelCase_ ) _lowerCamelCase = greedy_ids[:, input_ids.shape[1] :] _lowerCamelCase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _lowerCamelCase = TextStreamer(lowerCamelCase_ , skip_prompt=lowerCamelCase_ ) model.generate(lowerCamelCase_ , max_new_tokens=1_0 , do_sample=lowerCamelCase_ , streamer=lowerCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowerCamelCase = cs.out[:-1] self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def _snake_case ( self : Union[str, Any] ) -> Union[str, Any]: _lowerCamelCase = AutoTokenizer.from_pretrained('distilgpt2' ) _lowerCamelCase = AutoModelForCausalLM.from_pretrained('distilgpt2' ).to(lowerCamelCase_ ) _lowerCamelCase = -1 _lowerCamelCase = torch.ones((1, 5) , device=lowerCamelCase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: _lowerCamelCase = TextStreamer(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) model.generate(lowerCamelCase_ , max_new_tokens=1 , do_sample=lowerCamelCase_ , streamer=lowerCamelCase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _lowerCamelCase = cs.out[:-1] # Remove the final "\n" _lowerCamelCase = tokenizer(lowerCamelCase_ , return_tensors='pt' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _snake_case ( self : Any ) -> List[Any]: _lowerCamelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) _lowerCamelCase = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(lowerCamelCase_ ) _lowerCamelCase = -1 _lowerCamelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) _lowerCamelCase = TextIteratorStreamer(lowerCamelCase_ , timeout=0.001 ) _lowerCamelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} _lowerCamelCase = Thread(target=model.generate , kwargs=lowerCamelCase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowerCamelCase_ ): _lowerCamelCase = '''''' for new_text in streamer: streamer_text += new_text
718
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() A = logging.get_logger(__name__) def lowerCamelCase ( UpperCamelCase : str ) -> List[str]: _lowerCamelCase = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224' , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) _lowerCamelCase = MaskFormerConfig(backbone_config=UpperCamelCase ) _lowerCamelCase = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok _lowerCamelCase = 8_47 _lowerCamelCase = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok _lowerCamelCase = 1_50 _lowerCamelCase = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok _lowerCamelCase = 1_71 _lowerCamelCase = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO _lowerCamelCase = 1_33 _lowerCamelCase = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok _lowerCamelCase = 19 _lowerCamelCase = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok _lowerCamelCase = 65 _lowerCamelCase = 'mapillary-vistas-id2label.json' _lowerCamelCase = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type='dataset' ) , 'r' ) ) _lowerCamelCase = {int(UpperCamelCase ): v for k, v in idalabel.items()} return config def lowerCamelCase ( UpperCamelCase : Any ) -> Any: _lowerCamelCase = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') ) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') ) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') ) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') ) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def lowerCamelCase ( UpperCamelCase : str , UpperCamelCase : Tuple , UpperCamelCase : Union[str, Any] ) -> Optional[Any]: _lowerCamelCase = dct.pop(UpperCamelCase ) _lowerCamelCase = val def lowerCamelCase ( UpperCamelCase : Dict , UpperCamelCase : List[Any] ) -> Union[str, Any]: _lowerCamelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _lowerCamelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _lowerCamelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) _lowerCamelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase = in_proj_weight[:dim, :] _lowerCamelCase = in_proj_bias[: dim] _lowerCamelCase = in_proj_weight[ dim : dim * 2, : ] _lowerCamelCase = in_proj_bias[ dim : dim * 2 ] _lowerCamelCase = in_proj_weight[ -dim :, : ] _lowerCamelCase = in_proj_bias[-dim :] # fmt: on def lowerCamelCase ( UpperCamelCase : int , UpperCamelCase : Union[str, Any] ) -> str: # fmt: off _lowerCamelCase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) _lowerCamelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase = in_proj_weight[: hidden_size, :] _lowerCamelCase = in_proj_bias[:config.hidden_size] _lowerCamelCase = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase = in_proj_weight[-hidden_size :, :] _lowerCamelCase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) _lowerCamelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase = in_proj_weight[: hidden_size, :] _lowerCamelCase = in_proj_bias[:config.hidden_size] _lowerCamelCase = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase = in_proj_weight[-hidden_size :, :] _lowerCamelCase = in_proj_bias[-hidden_size :] # fmt: on def lowerCamelCase ( ) -> torch.Tensor: _lowerCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCamelCase = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase ( UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : bool = False ) -> Dict: _lowerCamelCase = get_maskformer_config(UpperCamelCase ) # load original state_dict with open(UpperCamelCase , 'rb' ) as f: _lowerCamelCase = pickle.load(UpperCamelCase ) _lowerCamelCase = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _lowerCamelCase = create_rename_keys(UpperCamelCase ) for src, dest in rename_keys: rename_key(UpperCamelCase , UpperCamelCase , UpperCamelCase ) read_in_swin_q_k_v(UpperCamelCase , config.backbone_config ) read_in_decoder_q_k_v(UpperCamelCase , UpperCamelCase ) # update to torch tensors for key, value in state_dict.items(): _lowerCamelCase = torch.from_numpy(UpperCamelCase ) # load 🤗 model _lowerCamelCase = MaskFormerForInstanceSegmentation(UpperCamelCase ) model.eval() for name, param in model.named_parameters(): print(UpperCamelCase , param.shape ) _lowerCamelCase , _lowerCamelCase = model.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(UpperCamelCase ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results _lowerCamelCase = prepare_img() if "vistas" in model_name: _lowerCamelCase = 65 elif "cityscapes" in model_name: _lowerCamelCase = 6_55_35 else: _lowerCamelCase = 2_55 _lowerCamelCase = True if 'ade' in model_name else False _lowerCamelCase = MaskFormerImageProcessor(ignore_index=UpperCamelCase , reduce_labels=UpperCamelCase ) _lowerCamelCase = image_processor(UpperCamelCase , return_tensors='pt' ) _lowerCamelCase = model(**UpperCamelCase ) print('Logits:' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _lowerCamelCase = torch.tensor( [[3.6_353, -4.4_770, -2.6_065], [0.5_081, -4.2_394, -3.5_343], [2.1_909, -5.0_353, -1.9_323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) model.save_pretrained(UpperCamelCase ) image_processor.save_pretrained(UpperCamelCase ) if push_to_hub: print('Pushing model and image processor to the hub...' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
234
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : Dict = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Tuple = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys UpperCAmelCase_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class _SCREAMING_SNAKE_CASE ( snake_case ): lowerCamelCase_ = 'markuplm' def __init__( self : List[Any] , snake_case_ : List[str]=3_0522 , snake_case_ : str=768 , snake_case_ : str=12 , snake_case_ : Optional[Any]=12 , snake_case_ : Any=3072 , snake_case_ : Dict="gelu" , snake_case_ : Dict=0.1 , snake_case_ : Optional[int]=0.1 , snake_case_ : int=512 , snake_case_ : Optional[Any]=2 , snake_case_ : int=0.02 , snake_case_ : Optional[Any]=1E-12 , snake_case_ : Dict=0 , snake_case_ : Optional[int]=0 , snake_case_ : Union[str, Any]=2 , snake_case_ : List[Any]=256 , snake_case_ : Union[str, Any]=1024 , snake_case_ : Optional[Any]=216 , snake_case_ : Optional[Any]=1001 , snake_case_ : Tuple=32 , snake_case_ : str=50 , snake_case_ : int="absolute" , snake_case_ : List[Any]=True , snake_case_ : List[Any]=None , **snake_case_ : Optional[Any] , ): """simple docstring""" super().__init__( pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ , ) A : int = vocab_size A : Dict = hidden_size A : str = num_hidden_layers A : List[Any] = num_attention_heads A : int = hidden_act A : List[Any] = intermediate_size A : Optional[Any] = hidden_dropout_prob A : Tuple = attention_probs_dropout_prob A : str = max_position_embeddings A : Dict = type_vocab_size A : Optional[int] = initializer_range A : Optional[Any] = layer_norm_eps A : Any = position_embedding_type A : List[Any] = use_cache A : List[str] = classifier_dropout # additional properties A : Optional[Any] = max_depth A : Tuple = max_xpath_tag_unit_embeddings A : str = max_xpath_subs_unit_embeddings A : Dict = tag_pad_id A : Dict = subs_pad_id A : List[str] = xpath_unit_hidden_size
256
0
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowercase ( unittest.TestCase ): def _lowercase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowercase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase = 1 UpperCAmelCase = 3 UpperCAmelCase = (3_2, 3_2) UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCamelCase ) return image @property def _lowercase ( self : Dict ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , ) return model @property def _lowercase ( self : int ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def _lowercase ( self : Union[str, Any] ) -> Any: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , ) return RobertaSeriesModelWithTransformation(__lowerCamelCase ) @property def _lowercase ( self : Optional[int] ) -> Tuple: """simple docstring""" def extract(*__lowerCamelCase : Dict , **__lowerCamelCase : Dict ): class __lowercase : def __init__( self : Optional[Any] ) -> str: """simple docstring""" UpperCAmelCase = torch.ones([0] ) def _lowercase ( self : str , __lowerCamelCase : List[Any] ) -> Tuple: """simple docstring""" self.pixel_values.to(__lowerCamelCase ) return self return Out() return extract def _lowercase ( self : Tuple ) -> Dict: """simple docstring""" UpperCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.dummy_cond_unet UpperCAmelCase = PNDMScheduler(skip_prk_steps=__lowerCamelCase ) UpperCAmelCase = self.dummy_vae UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) UpperCAmelCase = 7_7 UpperCAmelCase = self.dummy_image.to(__lowerCamelCase ) UpperCAmelCase = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk UpperCAmelCase = AltDiffusionImgaImgPipeline( unet=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=self.dummy_extractor , ) UpperCAmelCase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__lowerCamelCase ) UpperCAmelCase = alt_pipe.to(__lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCAmelCase = """A painting of a squirrel eating a burger""" UpperCAmelCase = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) UpperCAmelCase = alt_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=__lowerCamelCase , ) UpperCAmelCase = output.images UpperCAmelCase = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) UpperCAmelCase = alt_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=__lowerCamelCase , return_dict=__lowerCamelCase , )[0] UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) UpperCAmelCase = np.array([0.4_427, 0.3_731, 0.4_249, 0.4_941, 0.4_546, 0.4_148, 0.4_193, 0.4_666, 0.4_499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _lowercase ( self : Dict ) -> Tuple: """simple docstring""" UpperCAmelCase = self.dummy_cond_unet UpperCAmelCase = PNDMScheduler(skip_prk_steps=__lowerCamelCase ) UpperCAmelCase = self.dummy_vae UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) UpperCAmelCase = 7_7 UpperCAmelCase = self.dummy_image.to(__lowerCamelCase ) # put models in fp16 UpperCAmelCase = unet.half() UpperCAmelCase = vae.half() UpperCAmelCase = bert.half() # make sure here that pndm scheduler skips prk UpperCAmelCase = AltDiffusionImgaImgPipeline( unet=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=self.dummy_extractor , ) UpperCAmelCase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__lowerCamelCase ) UpperCAmelCase = alt_pipe.to(__lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCAmelCase = """A painting of a squirrel eating a burger""" UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = alt_pipe( [prompt] , generator=__lowerCamelCase , num_inference_steps=2 , output_type="""np""" , image=__lowerCamelCase , ).images assert image.shape == (1, 3_2, 3_2, 3) @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _lowercase ( self : Dict ) -> Dict: """simple docstring""" UpperCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) # resize to resolution that is divisible by 8 but not 16 or 32 UpperCAmelCase = init_image.resize((7_6_0, 5_0_4) ) UpperCAmelCase = """BAAI/AltDiffusion""" UpperCAmelCase = AltDiffusionImgaImgPipeline.from_pretrained( __lowerCamelCase , safety_checker=__lowerCamelCase , ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing() UpperCAmelCase = """A fantasy landscape, trending on artstation""" UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , strength=0.75 , guidance_scale=7.5 , generator=__lowerCamelCase , output_type="""np""" , ) UpperCAmelCase = output.images[0] UpperCAmelCase = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 7_6_0, 3) UpperCAmelCase = np.array([0.9_358, 0.9_397, 0.9_599, 0.9_901, 1.0_000, 1.0_000, 0.9_882, 1.0_000, 1.0_000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): def _lowercase ( self : str ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) UpperCAmelCase = init_image.resize((7_6_8, 5_1_2) ) UpperCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" ) UpperCAmelCase = """BAAI/AltDiffusion""" UpperCAmelCase = AltDiffusionImgaImgPipeline.from_pretrained( __lowerCamelCase , safety_checker=__lowerCamelCase , ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing() UpperCAmelCase = """A fantasy landscape, trending on artstation""" UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , strength=0.75 , guidance_scale=7.5 , generator=__lowerCamelCase , output_type="""np""" , ) UpperCAmelCase = output.images[0] assert image.shape == (5_1_2, 7_6_8, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
627
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available __a = {"""tokenization_herbert""": ["""HerbertTokenizer"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["""HerbertTokenizerFast"""] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys __a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
627
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer _UpperCamelCase : List[str] = logging.get_logger(__name__) _UpperCamelCase : List[str] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _UpperCamelCase : Union[str, Any] = { 'vocab_file': { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt' ), } } _UpperCamelCase : Optional[int] = { 'junnyu/roformer_chinese_small': 1_536, 'junnyu/roformer_chinese_base': 1_536, 'junnyu/roformer_chinese_char_small': 512, 'junnyu/roformer_chinese_char_base': 512, 'junnyu/roformer_small_discriminator': 128, 'junnyu/roformer_small_generator': 128, } _UpperCamelCase : str = { 'junnyu/roformer_chinese_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_base': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_base': {'do_lower_case': True}, 'junnyu/roformer_small_discriminator': {'do_lower_case': True}, 'junnyu/roformer_small_generator': {'do_lower_case': True}, } class snake_case__ ( UpperCamelCase): a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = PRETRAINED_INIT_CONFIGURATION a_ = RoFormerTokenizer def __init__( self : Optional[Any] , _A : List[str]=None , _A : Union[str, Any]=None , _A : Tuple=True , _A : List[Any]="[UNK]" , _A : str="[SEP]" , _A : int="[PAD]" , _A : Optional[int]="[CLS]" , _A : Union[str, Any]="[MASK]" , _A : str=True , _A : Any=None , **_A : Dict , ) -> List[str]: super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) UpperCAmelCase_ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , _A ) != do_lower_case or pre_tok_state.get('''strip_accents''' , _A ) != strip_accents ): UpperCAmelCase_ : Dict = getattr(_A , pre_tok_state.pop('''type''' ) ) UpperCAmelCase_ : Union[str, Any] = do_lower_case UpperCAmelCase_ : Optional[Any] = strip_accents UpperCAmelCase_ : int = pre_tok_class(**_A ) UpperCAmelCase_ : List[str] = do_lower_case def __getstate__( self : Dict ) -> Dict: UpperCAmelCase_ : List[str] = self.__dict__.copy() UpperCAmelCase_ : List[str] = BertPreTokenizer() return state def __setstate__( self : List[Any] , _A : Tuple ) -> List[str]: UpperCAmelCase_ : Any = d UpperCAmelCase_ : List[str] = self.__dict__['''_tokenizer'''].get_vocab() UpperCAmelCase_ : Dict = PreTokenizer.custom(JiebaPreTokenizer(_A ) ) def A ( self : Optional[int] , _A : List[Any] , _A : int=None ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A ( self : Dict , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase_ : Any = [self.sep_token_id] UpperCAmelCase_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : int , _A : str , _A : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase_ : Optional[int] = self._tokenizer.model.save(_A , name=_A ) return tuple(_A ) def A ( self : Union[str, Any] , _A : List[str] , _A : Any=None , _A : List[Any]=None , _A : List[str]=False , **_A : List[Any] , ) -> str: UpperCAmelCase_ : Optional[Any] = BertPreTokenizer() return super().save_pretrained(_A , _A , _A , _A , **_A )
541
'''simple docstring''' def __UpperCAmelCase ( A : list ) -> list: if len(A ) <= 1: return lst UpperCAmelCase_ : List[str] = 1 while i < len(A ): if lst[i - 1] <= lst[i]: i += 1 else: UpperCAmelCase_ , UpperCAmelCase_ : Dict = lst[i], lst[i - 1] i -= 1 if i == 0: UpperCAmelCase_ : Dict = 1 return lst if __name__ == "__main__": _UpperCamelCase : int = input('Enter numbers separated by a comma:\n').strip() _UpperCamelCase : Union[str, Any] = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
541
1
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py lowerCamelCase__ = """.""" if __name__ == "__main__": lowerCamelCase__ = os.path.join(REPO_PATH, """utils/documentation_tests.txt""") lowerCamelCase__ = [] lowerCamelCase__ = [] with open(doctest_file_path) as fp: for line in fp: lowerCamelCase__ = line.strip() lowerCamelCase__ = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: lowerCamelCase__ = """\n""".join(non_existent_paths) raise ValueError(f'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''') if all_paths != sorted(all_paths): raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
291
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowerCamelCase__ = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""DPTFeatureExtractor"""] lowerCamelCase__ = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
291
1
import argparse import os import re SCREAMING_SNAKE_CASE = 'src/transformers' # Pattern that looks at the indentation in a line. SCREAMING_SNAKE_CASE = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. SCREAMING_SNAKE_CASE = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. SCREAMING_SNAKE_CASE = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. SCREAMING_SNAKE_CASE = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. SCREAMING_SNAKE_CASE = re.compile(r'\[([^\]]+)\]') def a (lowerCAmelCase__ ): __a = _re_indent.search(lowerCAmelCase__ ) return "" if search is None else search.groups()[0] def a (lowerCAmelCase__ , lowerCAmelCase__="" , lowerCAmelCase__=None , lowerCAmelCase__=None ): __a = 0 __a = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(lowerCAmelCase__ ): index += 1 __a = ["""\n""".join(lines[:index] )] else: __a = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __a = [lines[index]] index += 1 while index < len(lowerCAmelCase__ ) and (end_prompt is None or not lines[index].startswith(lowerCAmelCase__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowerCAmelCase__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(lowerCAmelCase__ ) ) if index < len(lowerCAmelCase__ ) - 1: __a = [lines[index + 1]] index += 1 else: __a = [] else: blocks.append("""\n""".join(lowerCAmelCase__ ) ) __a = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowerCAmelCase__ ) > 0: blocks.append("""\n""".join(lowerCAmelCase__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCAmelCase__ ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def a (lowerCAmelCase__ ): def _inner(lowerCAmelCase__ ): return key(lowerCAmelCase__ ).lower().replace("""_""" , """""" ) return _inner def a (lowerCAmelCase__ , lowerCAmelCase__=None ): # If no key is provided, we use a noop. def noop(lowerCAmelCase__ ): return x if key is None: __a = noop # Constants are all uppercase, they go first. __a = [obj for obj in objects if key(lowerCAmelCase__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __a = [obj for obj in objects if key(lowerCAmelCase__ )[0].isupper() and not key(lowerCAmelCase__ ).isupper()] # Functions begin with a lowercase, they go last. __a = [obj for obj in objects if not key(lowerCAmelCase__ )[0].isupper()] __a = ignore_underscore(lowerCAmelCase__ ) return sorted(lowerCAmelCase__ , key=lowerCAmelCase__ ) + sorted(lowerCAmelCase__ , key=lowerCAmelCase__ ) + sorted(lowerCAmelCase__ , key=lowerCAmelCase__ ) def a (lowerCAmelCase__ ): # This inner function sort imports between [ ]. def _replace(lowerCAmelCase__ ): __a = match.groups()[0] if "," not in imports: return f'''[{imports}]''' __a = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __a = keys[:-1] return "[" + ", ".join([f'''"{k}"''' for k in sort_objects(lowerCAmelCase__ )] ) + "]" __a = import_statement.split("""\n""" ) if len(lowerCAmelCase__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __a = 2 if lines[1].strip() == """[""" else 1 __a = [(i, _re_strip_line.search(lowerCAmelCase__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __a = sort_objects(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x[1] ) __a = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowerCAmelCase__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __a = _re_bracket_content.sub(_replace , lines[1] ) else: __a = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __a = keys[:-1] __a = get_indent(lines[1] ) + """, """.join([f'''"{k}"''' for k in sort_objects(lowerCAmelCase__ )] ) return "\n".join(lowerCAmelCase__ ) else: # Finally we have to deal with imports fitting on one line __a = _re_bracket_content.sub(_replace , lowerCAmelCase__ ) return import_statement def a (lowerCAmelCase__ , lowerCAmelCase__=True ): with open(lowerCAmelCase__ , encoding="""utf-8""" ) as f: __a = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __a = split_code_in_indented_blocks( lowerCAmelCase__ , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowerCAmelCase__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __a = main_blocks[block_idx] __a = block.split("""\n""" ) # Get to the start of the imports. __a = 0 while line_idx < len(lowerCAmelCase__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __a = len(lowerCAmelCase__ ) else: line_idx += 1 if line_idx >= len(lowerCAmelCase__ ): continue # Ignore beginning and last line: they don't contain anything. __a = """\n""".join(block_lines[line_idx:-1] ) __a = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __a = split_code_in_indented_blocks(lowerCAmelCase__ , indent_level=lowerCAmelCase__ ) # We have two categories of import key: list or _import_structure[key].append/extend __a = _re_direct_key if """_import_structure = {""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __a = [(pattern.search(lowerCAmelCase__ ).groups()[0] if pattern.search(lowerCAmelCase__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __a = [(i, key) for i, key in enumerate(lowerCAmelCase__ ) if key is not None] __a = [x[0] for x in sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __a = 0 __a = [] for i in range(len(lowerCAmelCase__ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: __a = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(lowerCAmelCase__ ) count += 1 # And we put our main block back together with its first and last line. __a = """\n""".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(lowerCAmelCase__ ): if check_only: return True else: print(f'''Overwriting {file}.''' ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write("""\n""".join(lowerCAmelCase__ ) ) def a (lowerCAmelCase__=True ): __a = [] for root, _, files in os.walk(lowerCAmelCase__ ): if "__init__.py" in files: __a = sort_imports(os.path.join(lowerCAmelCase__ , """__init__.py""" ) , check_only=lowerCAmelCase__ ) if result: __a = [os.path.join(lowerCAmelCase__ , """__init__.py""" )] if len(lowerCAmelCase__ ) > 0: raise ValueError(f'''Would overwrite {len(lowerCAmelCase__ )} files, run `make style`.''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') SCREAMING_SNAKE_CASE = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
99
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
99
1
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch a__ : Dict = random.Random() def snake_case (UpperCamelCase : str , UpperCamelCase : Optional[int]=1.0 , UpperCamelCase : Any=None , UpperCamelCase : Optional[int]=None ): '''simple docstring''' if rng is None: lowerCamelCase__ = global_rng lowerCamelCase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self : Dict , a_ : str , a_ : List[str]=7 , a_ : str=4_00 , a_ : int=20_00 , a_ : Any=1 , a_ : Tuple=0.0 , a_ : Dict=1_60_00 , a_ : List[Any]=True , a_ : Optional[Any]=80 , a_ : int=16 , a_ : Any=64 , a_ : int="hann_window" , a_ : int=80 , a_ : List[Any]=76_00 , a_ : Optional[Any]=1e-10 , a_ : Dict=True , ): """simple docstring""" lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = min_seq_length lowerCamelCase__ = max_seq_length lowerCamelCase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCamelCase__ = feature_size lowerCamelCase__ = padding_value lowerCamelCase__ = sampling_rate lowerCamelCase__ = do_normalize lowerCamelCase__ = num_mel_bins lowerCamelCase__ = hop_length lowerCamelCase__ = win_length lowerCamelCase__ = win_function lowerCamelCase__ = fmin lowerCamelCase__ = fmax lowerCamelCase__ = mel_floor lowerCamelCase__ = return_attention_mask def _UpperCamelCase ( self : Dict ): """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def _UpperCamelCase ( self : List[str] , a_ : int=False , a_ : Any=False ): """simple docstring""" def _flatten(a_ : int ): return list(itertools.chain(*a_ ) ) if equal_length: lowerCamelCase__ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCamelCase__ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCamelCase__ = [np.asarray(a_ ) for x in speech_inputs] return speech_inputs def _UpperCamelCase ( self : Optional[Any] , a_ : Optional[Any]=False , a_ : List[str]=False ): """simple docstring""" if equal_length: lowerCamelCase__ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCamelCase__ = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCamelCase__ = [np.asarray(a_ ) for x in speech_inputs] return speech_inputs @require_torch class lowercase ( __a , unittest.TestCase ): """simple docstring""" snake_case_ = SpeechTaFeatureExtractor def _UpperCamelCase ( self : Tuple ): """simple docstring""" lowerCamelCase__ = SpeechTaFeatureExtractionTester(self ) def _UpperCamelCase ( self : List[str] , a_ : List[str] ): """simple docstring""" self.assertTrue(np.all(np.mean(a_ , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(a_ , axis=0 ) - 1 ) < 1e-3 ) ) def _UpperCamelCase ( self : Dict ): """simple docstring""" lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCamelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCamelCase__ = [np.asarray(a_ ) for speech_input in speech_inputs] # Test not batched input lowerCamelCase__ = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values lowerCamelCase__ = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) # Test batched lowerCamelCase__ = feat_extract(a_ , return_tensors="""np""" ).input_values lowerCamelCase__ = feat_extract(a_ , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(a_ , a_ ): self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) def _UpperCamelCase ( self : Tuple ): """simple docstring""" lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCamelCase__ = ["""longest""", """max_length""", """do_not_pad"""] lowerCamelCase__ = [None, 16_00, None] for max_length, padding in zip(a_ , a_ ): lowerCamelCase__ = feat_extract(a_ , padding=a_ , max_length=a_ , return_tensors="""np""" ) lowerCamelCase__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self.assertTrue(input_values[0][8_00:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self.assertTrue(input_values[0][10_00:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def _UpperCamelCase ( self : int ): """simple docstring""" lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase__ = range(8_00 , 14_00 , 2_00 ) lowerCamelCase__ = [floats_list((1, x) )[0] for x in lengths] lowerCamelCase__ = ["""longest""", """max_length""", """do_not_pad"""] lowerCamelCase__ = [None, 16_00, None] for max_length, padding in zip(a_ , a_ ): lowerCamelCase__ = feat_extract(a_ , max_length=a_ , padding=a_ ) lowerCamelCase__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def _UpperCamelCase ( self : Dict ): """simple docstring""" lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCamelCase__ = feat_extract( a_ , truncation=a_ , max_length=10_00 , padding="""max_length""" , return_tensors="""np""" ) lowerCamelCase__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def _UpperCamelCase ( self : Tuple ): """simple docstring""" lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCamelCase__ = feat_extract( a_ , truncation=a_ , max_length=10_00 , padding="""longest""" , return_tensors="""np""" ) lowerCamelCase__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 10_00) ) lowerCamelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCamelCase__ = feat_extract( a_ , truncation=a_ , max_length=20_00 , padding="""longest""" , return_tensors="""np""" ) lowerCamelCase__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 12_00) ) def _UpperCamelCase ( self : int ): """simple docstring""" lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase__ = np.random.rand(1_00 ).astype(np.floataa ) lowerCamelCase__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCamelCase__ = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCamelCase__ = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _UpperCamelCase ( self : List[str] ): """simple docstring""" lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCamelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCamelCase__ = [np.asarray(a_ ) for speech_input in speech_inputs] # Test feature size lowerCamelCase__ = feature_extractor(audio_target=a_ , padding=a_ , return_tensors="""np""" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input lowerCamelCase__ = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_values lowerCamelCase__ = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) # Test batched lowerCamelCase__ = feature_extractor(a_ , return_tensors="""np""" ).input_values lowerCamelCase__ = feature_extractor(a_ , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(a_ , a_ ): self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. lowerCamelCase__ = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] lowerCamelCase__ = np.asarray(a_ ) lowerCamelCase__ = feature_extractor(a_ , return_tensors="""np""" ).input_values lowerCamelCase__ = feature_extractor(a_ , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(a_ , a_ ): self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) def _UpperCamelCase ( self : Tuple ): """simple docstring""" lowerCamelCase__ = self.feat_extract_tester.prepare_inputs_for_target() lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) lowerCamelCase__ = feat_extract.model_input_names[0] lowerCamelCase__ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(a_ ) == len(a_ ) for x, y in zip(a_ , processed_features[input_name] ) ) ) lowerCamelCase__ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=a_ ) lowerCamelCase__ = BatchFeature({input_name: speech_inputs} , tensor_type="""np""" ) lowerCamelCase__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCamelCase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _UpperCamelCase ( self : List[str] ): """simple docstring""" lowerCamelCase__ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=a_ ) lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) lowerCamelCase__ = feat_extract.model_input_names[0] lowerCamelCase__ = BatchFeature({input_name: speech_inputs} , tensor_type="""pt""" ) lowerCamelCase__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCamelCase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _UpperCamelCase ( self : List[Any] ): """simple docstring""" lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) lowerCamelCase__ = self.feat_extract_tester.prepare_inputs_for_target() lowerCamelCase__ = feat_extract.model_input_names[0] lowerCamelCase__ = BatchFeature({input_name: speech_inputs} ) lowerCamelCase__ = feat_extract.num_mel_bins # hack! lowerCamelCase__ = feat_extract.pad(a_ , padding="""longest""" , return_tensors="""np""" )[input_name] lowerCamelCase__ = feat_extract.pad(a_ , padding="""longest""" , return_tensors="""pt""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def _UpperCamelCase ( self : int ): """simple docstring""" lowerCamelCase__ = self.feat_extract_dict lowerCamelCase__ = True lowerCamelCase__ = self.feature_extraction_class(**a_ ) lowerCamelCase__ = self.feat_extract_tester.prepare_inputs_for_target() lowerCamelCase__ = [len(a_ ) for x in speech_inputs] lowerCamelCase__ = feat_extract.model_input_names[0] lowerCamelCase__ = BatchFeature({input_name: speech_inputs} ) lowerCamelCase__ = feat_extract.num_mel_bins # hack! lowerCamelCase__ = feat_extract.pad(a_ , padding="""longest""" , return_tensors="""np""" ) self.assertIn("""attention_mask""" , a_ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , a_ ) def _UpperCamelCase ( self : Dict ): """simple docstring""" lowerCamelCase__ = self.feat_extract_dict lowerCamelCase__ = True lowerCamelCase__ = self.feature_extraction_class(**a_ ) lowerCamelCase__ = self.feat_extract_tester.prepare_inputs_for_target() lowerCamelCase__ = [len(a_ ) for x in speech_inputs] lowerCamelCase__ = feat_extract.model_input_names[0] lowerCamelCase__ = BatchFeature({input_name: speech_inputs} ) lowerCamelCase__ = min(a_ ) lowerCamelCase__ = feat_extract.num_mel_bins # hack! lowerCamelCase__ = feat_extract.pad( a_ , padding="""max_length""" , max_length=a_ , truncation=a_ , return_tensors="""np""" ) self.assertIn("""attention_mask""" , a_ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def _UpperCamelCase ( self : Dict , a_ : Any ): """simple docstring""" from datasets import load_dataset lowerCamelCase__ = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech lowerCamelCase__ = ds.sort("""id""" ).select(range(a_ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def _UpperCamelCase ( self : Dict ): """simple docstring""" lowerCamelCase__ = torch.tensor( [2.3_804e-03, 2.0_752e-03, 1.9_836e-03, 2.1_057e-03, 1.6_174e-03, 3.0_518e-04, 9.1_553e-05, 3.3_569e-04, 9.7_656e-04, 1.8_311e-03, 2.0_142e-03, 2.1_057e-03, 1.7_395e-03, 4.5_776e-04, -3.9_673e-04, 4.5_776e-04, 1.0_071e-03, 9.1_553e-05, 4.8_828e-04, 1.1_597e-03, 7.3_242e-04, 9.4_604e-04, 1.8_005e-03, 1.8_311e-03, 8.8_501e-04, 4.2_725e-04, 4.8_828e-04, 7.3_242e-04, 1.0_986e-03, 2.1_057e-03] ) # fmt: on lowerCamelCase__ = self._load_datasamples(1 ) lowerCamelCase__ = SpeechTaFeatureExtractor() lowerCamelCase__ = feature_extractor(a_ , return_tensors="""pt""" ).input_values self.assertEquals(input_values.shape , (1, 9_36_80) ) self.assertTrue(torch.allclose(input_values[0, :30] , a_ , atol=1e-6 ) ) def _UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" lowerCamelCase__ = torch.tensor( [-2.6_8_7_0, -3.0_1_0_4, -3.1_3_5_6, -3.5_3_5_2, -3.0_0_4_4, -3.0_3_5_3, -3.4_7_1_9, -3.6_7_7_7, -3.1_5_2_0, -2.9_4_3_5, -2.6_5_5_3, -2.8_7_9_5, -2.9_9_4_4, -2.5_9_2_1, -3.0_2_7_9, -3.0_3_8_6, -3.0_8_6_4, -3.1_2_9_1, -3.2_3_5_3, -2.7_4_4_4, -2.6_8_3_1, -2.7_2_8_7, -3.1_7_6_1, -3.1_5_7_1, -3.2_7_2_6, -3.0_5_8_2, -3.1_0_0_7, -3.4_5_3_3, -3.4_6_9_5, -3.0_9_9_8] ) # fmt: on lowerCamelCase__ = self._load_datasamples(1 ) lowerCamelCase__ = SpeechTaFeatureExtractor() lowerCamelCase__ = feature_extractor(audio_target=a_ , return_tensors="""pt""" ).input_values self.assertEquals(input_values.shape , (1, 3_66, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , a_ , atol=1e-4 ) )
706
from __future__ import annotations from scipy.special import comb # type: ignore class lowercase : """simple docstring""" def __init__( self : Optional[int] , a_ : list[tuple[float, float]] ): """simple docstring""" lowerCamelCase__ = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. lowerCamelCase__ = len(a_ ) - 1 def _UpperCamelCase ( self : Union[str, Any] , a_ : float ): """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." lowerCamelCase__ = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , a_ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(a_ ) , 5 ) == 1 return output_values def _UpperCamelCase ( self : int , a_ : float ): """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." lowerCamelCase__ = self.basis_function(a_ ) lowerCamelCase__ = 0.0 lowerCamelCase__ = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def _UpperCamelCase ( self : str , a_ : float = 0.0_1 ): """simple docstring""" from matplotlib import pyplot as plt # type: ignore lowerCamelCase__ = [] # x coordinates of points to plot lowerCamelCase__ = [] # y coordinates of points to plot lowerCamelCase__ = 0.0 while t <= 1: lowerCamelCase__ = self.bezier_curve_function(a_ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size lowerCamelCase__ = [i[0] for i in self.list_of_points] lowerCamelCase__ = [i[1] for i in self.list_of_points] plt.plot( a_ , a_ , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(a_ , a_ , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
235
0
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ = "▁" UpperCAmelCase__ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = BigBirdTokenizer __snake_case = BigBirdTokenizerFast __snake_case = True __snake_case = True def __lowerCAmelCase ( self : int ) ->Optional[Any]: """simple docstring""" super().setUp() a = self.tokenizer_class(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" a = '''<s>''' a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''[MASK]''' ) self.assertEqual(len(__UpperCAmelCase ) , 1_004 ) def __lowerCAmelCase ( self : List[Any] ) ->Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def __lowerCAmelCase ( self : str ) ->Any: """simple docstring""" if not self.test_rust_tokenizer: return a = self.get_tokenizer() a = self.get_rust_tokenizer() a = '''I was born in 92000, and this is falsé.''' a = tokenizer.tokenize(__UpperCAmelCase ) a = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) a = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) a = self.get_rust_tokenizer() a = tokenizer.encode(__UpperCAmelCase ) a = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] ) ->Optional[Any]: """simple docstring""" a = BigBirdTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) a = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) a = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) a = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) @slow def __lowerCAmelCase ( self : str ) ->Union[str, Any]: """simple docstring""" a = '''Hello World!''' a = [65, 18_536, 2_260, 101, 66] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def __lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" a = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off a = [65, 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, 66] # noqa: E231 # fmt: on self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @require_torch @slow def __lowerCAmelCase ( self : Dict ) ->Dict: """simple docstring""" import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence a = list(self.big_tokenizer.get_vocab().keys() )[:10] a = ''' '''.join(__UpperCAmelCase ) a = self.big_tokenizer.encode_plus(__UpperCAmelCase , return_tensors='''pt''' , return_token_type_ids=__UpperCAmelCase ) a = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=__UpperCAmelCase ) a = BigBirdConfig(attention_type='''original_full''' ) a = BigBirdModel(__UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__UpperCAmelCase ) model(**__UpperCAmelCase ) @slow def __lowerCAmelCase ( self : Optional[Any] ) ->Optional[int]: """simple docstring""" a = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) a = tokenizer.decode(tokenizer('''Paris is the [MASK].''' ).input_ids ) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''' ) @slow def __lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" a = {'''input_ids''': [[65, 39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114, 66], [65, 448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
117
from __future__ import annotations UpperCAmelCase__ = list[tuple[int, int]] UpperCAmelCase__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCAmelCase__ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class lowercase_ : '''simple docstring''' def __init__( self : Dict , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : float , __UpperCAmelCase : Node | None , ) ->int: """simple docstring""" a = pos_x a = pos_y a = (pos_y, pos_x) a = goal_x a = goal_y a = g_cost a = parent a = self.calculate_heuristic() def __lowerCAmelCase ( self : Any ) ->float: """simple docstring""" a = abs(self.pos_x - self.goal_x ) a = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : Any , __UpperCAmelCase : Tuple ) ->bool: """simple docstring""" return self.f_cost < other.f_cost class lowercase_ : '''simple docstring''' def __init__( self : Optional[Any] , __UpperCAmelCase : tuple[int, int] , __UpperCAmelCase : tuple[int, int] ) ->Dict: """simple docstring""" a = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __UpperCAmelCase ) a = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , __UpperCAmelCase ) a = [self.start] a = [] a = False def __lowerCAmelCase ( self : str ) ->Path | None: """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() a = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: a = True return self.retrace_path(__UpperCAmelCase ) self.closed_nodes.append(__UpperCAmelCase ) a = self.get_successors(__UpperCAmelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(__UpperCAmelCase ) else: # retrieve the best current path a = self.open_nodes.pop(self.open_nodes.index(__UpperCAmelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(__UpperCAmelCase ) else: self.open_nodes.append(__UpperCAmelCase ) if not self.reached: return [self.start.pos] return None def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : Node ) ->list[Node]: """simple docstring""" a = [] for action in delta: a = parent.pos_x + action[1] a = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__UpperCAmelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( __UpperCAmelCase , __UpperCAmelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __UpperCAmelCase , ) ) return successors def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Node | None ) ->Path: """simple docstring""" a = node a = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) a = current_node.parent path.reverse() return path if __name__ == "__main__": UpperCAmelCase__ = (0, 0) UpperCAmelCase__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") UpperCAmelCase__ = GreedyBestFirst(init, goal) UpperCAmelCase__ = greedy_bf.search() if path: for pos_x, pos_y in path: UpperCAmelCase__ = 2 for elem in grid: print(elem)
117
1
"""simple docstring""" import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger lowercase__ = get_logger(__name__) class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase = None ): _lowerCamelCase : Optional[Any] = ( os.path.join(lowercase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) _lowerCamelCase : str = Extractor def A_ ( self , lowercase ): from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" _lowerCamelCase : Any = os.path.abspath(lowercase ) return os.path.join(self.extract_dir , hash_url_to_filename(lowercase ) ) def A_ ( self , lowercase , lowercase ): return force_extract or ( not os.path.isfile(lowercase ) and not (os.path.isdir(lowercase ) and os.listdir(lowercase )) ) def A_ ( self , lowercase , lowercase = False ): _lowerCamelCase : Optional[Any] = self.extractor.infer_extractor_format(lowercase ) if not extractor_format: return input_path _lowerCamelCase : List[str] = self._get_output_path(lowercase ) if self._do_extract(lowercase , lowercase ): self.extractor.extract(lowercase , lowercase , lowercase ) return output_path class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @classmethod @abstractmethod def A_ ( cls , lowercase , **lowercase ): ... @staticmethod @abstractmethod def A_ ( lowercase , lowercase ): ... class lowerCAmelCase__ ( lowercase, lowercase ): '''simple docstring''' lowerCamelCase__ = [] @staticmethod def A_ ( lowercase , lowercase ): with open(lowercase , 'rb' ) as f: return f.read(lowercase ) @classmethod def A_ ( cls , lowercase , lowercase = b"" ): if not magic_number: _lowerCamelCase : List[str] = max(len(lowercase ) for cls_magic_number in cls.magic_numbers ) try: _lowerCamelCase : List[Any] = cls.read_magic_number(lowercase , lowercase ) except OSError: return False return any(magic_number.startswith(lowercase ) for cls_magic_number in cls.magic_numbers ) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @classmethod def A_ ( cls , lowercase , **lowercase ): return tarfile.is_tarfile(lowercase ) @staticmethod def A_ ( lowercase , lowercase ): def resolved(lowercase ) -> str: return os.path.realpath(os.path.abspath(lowercase ) ) def badpath(lowercase , lowercase ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(lowercase , lowercase ) ).startswith(lowercase ) def badlink(lowercase , lowercase ) -> bool: # Links are interpreted relative to the directory containing the link _lowerCamelCase : Tuple = resolved(os.path.join(lowercase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=lowercase ) _lowerCamelCase : str = resolved(lowercase ) for finfo in members: if badpath(finfo.name , lowercase ): logger.error(F'''Extraction of {finfo.name} is blocked (illegal path)''' ) elif finfo.issym() and badlink(lowercase , lowercase ): logger.error(F'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' ) elif finfo.islnk() and badlink(lowercase , lowercase ): logger.error(F'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' ) else: yield finfo @staticmethod def A_ ( lowercase , lowercase ): os.makedirs(lowercase , exist_ok=lowercase ) _lowerCamelCase : str = tarfile.open(lowercase ) tar_file.extractall(lowercase , members=TarExtractor.safemembers(lowercase , lowercase ) ) tar_file.close() class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = [B"""\x1F\x8B"""] @staticmethod def A_ ( lowercase , lowercase ): with gzip.open(lowercase , 'rb' ) as gzip_file: with open(lowercase , 'wb' ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = [ B"""PK\x03\x04""", B"""PK\x05\x06""", # empty archive B"""PK\x07\x08""", # spanned archive ] @classmethod def A_ ( cls , lowercase , lowercase = b"" ): if super().is_extractable(lowercase , magic_number=lowercase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(lowercase , 'rb' ) as fp: _lowerCamelCase : List[Any] = _EndRecData(lowercase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: _lowerCamelCase : Union[str, Any] = fp.read(lowercase ) # CD is where we expect it to be if len(lowercase ) == sizeCentralDir: _lowerCamelCase : Dict = struct.unpack(lowercase , lowercase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def A_ ( lowercase , lowercase ): os.makedirs(lowercase , exist_ok=lowercase ) with zipfile.ZipFile(lowercase , 'r' ) as zip_file: zip_file.extractall(lowercase ) zip_file.close() class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = [B"""\xFD\x37\x7A\x58\x5A\x00"""] @staticmethod def A_ ( lowercase , lowercase ): with lzma.open(lowercase ) as compressed_file: with open(lowercase , 'wb' ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = [B"""Rar!\x1a\x07\x00""", B"""Rar!\x1a\x07\x01\x00"""] # RAR_ID # RAR5_ID @staticmethod def A_ ( lowercase , lowercase ): if not config.RARFILE_AVAILABLE: raise ImportError('Please pip install rarfile' ) import rarfile os.makedirs(lowercase , exist_ok=lowercase ) _lowerCamelCase : int = rarfile.RarFile(lowercase ) rf.extractall(lowercase ) rf.close() class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = [B"""\x28\xb5\x2F\xFD"""] @staticmethod def A_ ( lowercase , lowercase ): if not config.ZSTANDARD_AVAILABLE: raise ImportError('Please pip install zstandard' ) import zstandard as zstd _lowerCamelCase : List[Any] = zstd.ZstdDecompressor() with open(lowercase , 'rb' ) as ifh, open(lowercase , 'wb' ) as ofh: dctx.copy_stream(lowercase , lowercase ) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = [B"""\x42\x5A\x68"""] @staticmethod def A_ ( lowercase , lowercase ): with bza.open(lowercase , 'rb' ) as compressed_file: with open(lowercase , 'wb' ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = [B"""\x37\x7A\xBC\xAF\x27\x1C"""] @staticmethod def A_ ( lowercase , lowercase ): if not config.PY7ZR_AVAILABLE: raise ImportError('Please pip install py7zr' ) import pyazr os.makedirs(lowercase , exist_ok=lowercase ) with pyazr.SevenZipFile(lowercase , 'r' ) as archive: archive.extractall(lowercase ) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = [B"""\x04\x22\x4D\x18"""] @staticmethod def A_ ( lowercase , lowercase ): if not config.LZ4_AVAILABLE: raise ImportError('Please pip install lz4' ) import lza.frame with lza.frame.open(lowercase , 'rb' ) as compressed_file: with open(lowercase , 'wb' ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def A_ ( cls ): return max( len(lowercase ) for extractor in cls.extractors.values() if issubclass(lowercase , lowercase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def A_ ( lowercase , lowercase ): try: return MagicNumberBaseExtractor.read_magic_number(lowercase , magic_number_length=lowercase ) except OSError: return b"" @classmethod def A_ ( cls , lowercase , lowercase = False ): warnings.warn( 'Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ' 'Use \'infer_extractor_format\' instead.' , category=lowercase , ) _lowerCamelCase : List[str] = cls.infer_extractor_format(lowercase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def A_ ( cls , lowercase ): # <Added version="2.4.0"/> _lowerCamelCase : Tuple = cls._get_magic_number_max_length() _lowerCamelCase : List[str] = cls._read_magic_number(lowercase , lowercase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(lowercase , magic_number=lowercase ): return extractor_format @classmethod def A_ ( cls , lowercase , lowercase , lowercase = None , lowercase = "deprecated" , ): os.makedirs(os.path.dirname(lowercase ) , exist_ok=lowercase ) # Prevent parallel extractions _lowerCamelCase : str = str(Path(lowercase ).with_suffix('.lock' ) ) with FileLock(lowercase ): shutil.rmtree(lowercase , ignore_errors=lowercase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(lowercase , lowercase ): # passed as positional arg warnings.warn( 'Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ' 'Use \'extractor_format\' instead.' , category=lowercase , ) _lowerCamelCase : Tuple = extractor if extractor != 'deprecated' else extractor_format else: _lowerCamelCase : Optional[Any] = cls.extractors[extractor_format] return extractor.extract(lowercase , lowercase ) else: warnings.warn( 'Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ' 'exception in 3.0.0.' , category=lowercase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(lowercase ): return extractor.extract(lowercase , lowercase )
492
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """realm""" def __init__( self , lowercase=30522 , lowercase=768 , lowercase=128 , lowercase=12 , lowercase=12 , lowercase=8 , lowercase=3072 , lowercase="gelu_new" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=256 , lowercase=10 , lowercase=1E-3 , lowercase=5 , lowercase=320 , lowercase=13353718 , lowercase=5000 , lowercase=1 , lowercase=0 , lowercase=2 , **lowercase , ): super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) # Common config _lowerCamelCase : str = vocab_size _lowerCamelCase : Dict = max_position_embeddings _lowerCamelCase : int = hidden_size _lowerCamelCase : Optional[Any] = retriever_proj_size _lowerCamelCase : Dict = num_hidden_layers _lowerCamelCase : Any = num_attention_heads _lowerCamelCase : int = num_candidates _lowerCamelCase : List[Any] = intermediate_size _lowerCamelCase : int = hidden_act _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : Dict = attention_probs_dropout_prob _lowerCamelCase : Union[str, Any] = initializer_range _lowerCamelCase : List[Any] = type_vocab_size _lowerCamelCase : int = layer_norm_eps # Reader config _lowerCamelCase : Tuple = span_hidden_size _lowerCamelCase : int = max_span_width _lowerCamelCase : Tuple = reader_layer_norm_eps _lowerCamelCase : Union[str, Any] = reader_beam_size _lowerCamelCase : Union[str, Any] = reader_seq_len # Retrieval config _lowerCamelCase : Optional[Any] = num_block_records _lowerCamelCase : str = searcher_beam_size
492
1
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase_ : def __init__( self : int , _A : int , _A : Dict=13 , _A : Optional[Any]=32 , _A : List[str]=3 , _A : Tuple=4 , _A : Union[str, Any]=[10, 20, 30, 40] , _A : Optional[int]=[2, 2, 3, 2] , _A : Union[str, Any]=True , _A : str=True , _A : List[Any]=37 , _A : List[str]="gelu" , _A : str=10 , _A : Optional[Any]=0.02 , _A : Optional[Any]=["stage2", "stage3", "stage4"] , _A : Any=[2, 3, 4] , _A : Union[str, Any]=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = num_channels _UpperCamelCase = num_stages _UpperCamelCase = hidden_sizes _UpperCamelCase = depths _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = num_labels _UpperCamelCase = initializer_range _UpperCamelCase = out_features _UpperCamelCase = out_indices _UpperCamelCase = scope def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : int ): return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def UpperCamelCase_ ( self : Optional[Any] , _A : Optional[int] , _A : Union[str, Any] , _A : Dict ): _UpperCamelCase = ConvNextModel(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCamelCase_ ( self : Optional[int] , _A : Optional[Any] , _A : Tuple , _A : int ): _UpperCamelCase = ConvNextForImageClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : List[str] , _A : Union[str, Any] , _A : Dict , _A : Any ): _UpperCamelCase = ConvNextBackbone(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _UpperCamelCase = None _UpperCamelCase = ConvNextBackbone(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) UpperCAmelCase = ( {"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = ConvNextModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def UpperCamelCase_ ( self : str ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self : str ): return @unittest.skip(reason='''ConvNext does not use inputs_embeds''' ) def UpperCamelCase_ ( self : Union[str, Any] ): pass @unittest.skip(reason='''ConvNext does not support input and output embeddings''' ) def UpperCamelCase_ ( self : Optional[Any] ): pass @unittest.skip(reason='''ConvNext does not use feedforward chunking''' ) def UpperCamelCase_ ( self : Optional[int] ): pass def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(_A ) _UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_A ) def UpperCamelCase_ ( self : List[str] ): def check_hidden_states_output(_A : int , _A : Optional[int] , _A : Dict ): _UpperCamelCase = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(_A , _A ) ) _UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase = True check_hidden_states_output(_A , _A , _A ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def UpperCamelCase_ ( self : List[str] ): for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = ConvNextModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def _snake_case ( ): _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self : int ): return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(_A ) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): _UpperCamelCase = model(**_A ) # verify the logits _UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _A ) _UpperCamelCase = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase, __lowercase ): UpperCAmelCase = (ConvNextBackbone,) if is_torch_available() else () UpperCAmelCase = ConvNextConfig UpperCAmelCase = False def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = ConvNextModelTester(self )
10
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self : List[str] , A__ : List[Any] , A__ : int=7 , A__ : Union[str, Any]=3 , A__ : List[str]=30 , A__ : Optional[int]=4_00 , A__ : Optional[Any]=True , A__ : Optional[int]=None , A__ : Optional[Any]=True , A__ : Any=[0.5, 0.5, 0.5] , A__ : int=[0.5, 0.5, 0.5] , A__ : Any=True , A__ : int=1 / 2_55 , A__ : List[str]=True , ) -> Dict: '''simple docstring''' snake_case_ : int = size if size is not None else {"shortest_edge": 18, "longest_edge": 13_33} snake_case_ : Any = parent snake_case_ : Optional[int] = batch_size snake_case_ : List[Any] = num_channels snake_case_ : Union[str, Any] = min_resolution snake_case_ : List[Any] = max_resolution snake_case_ : Tuple = do_resize snake_case_ : Dict = size snake_case_ : Optional[Any] = do_normalize snake_case_ : int = image_mean snake_case_ : List[Any] = image_std snake_case_ : Tuple = do_rescale snake_case_ : Any = rescale_factor snake_case_ : Optional[int] = do_pad def UpperCAmelCase__ ( self : int ) -> List[str]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase__ ( self : Optional[int] , A__ : Optional[int] , A__ : Any=False ) -> Optional[Any]: '''simple docstring''' if not batched: snake_case_ : Any = image_inputs[0] if isinstance(A__ , Image.Image ): snake_case_ ,snake_case_ : Dict = image.size else: snake_case_ ,snake_case_ : int = image.shape[1], image.shape[2] if w < h: snake_case_ : Dict = int(self.size["shortest_edge"] * h / w ) snake_case_ : Optional[int] = self.size["shortest_edge"] elif w > h: snake_case_ : Optional[int] = self.size["shortest_edge"] snake_case_ : str = int(self.size["shortest_edge"] * w / h ) else: snake_case_ : Optional[int] = self.size["shortest_edge"] snake_case_ : List[Any] = self.size["shortest_edge"] else: snake_case_ : str = [] for image in image_inputs: snake_case_ ,snake_case_ : Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case_ : List[Any] = max(A__ , key=lambda A__ : item[0] )[0] snake_case_ : int = max(A__ , key=lambda A__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case__ ( _UpperCamelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = ConditionalDetrImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Tuple ) -> Dict: '''simple docstring''' snake_case_ : List[str] = ConditionalDetrImageProcessingTester(self ) @property def UpperCAmelCase__ ( self : Dict ) -> Tuple: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : Any ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A__ , "image_mean" ) ) self.assertTrue(hasattr(A__ , "image_std" ) ) self.assertTrue(hasattr(A__ , "do_normalize" ) ) self.assertTrue(hasattr(A__ , "do_resize" ) ) self.assertTrue(hasattr(A__ , "size" ) ) def UpperCAmelCase__ ( self : List[str] ) -> Tuple: '''simple docstring''' snake_case_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 13_33} ) self.assertEqual(image_processor.do_pad , A__ ) snake_case_ : Optional[int] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A__ ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , A__ ) def UpperCAmelCase__ ( self : str ) -> Optional[int]: '''simple docstring''' pass def UpperCAmelCase__ ( self : Dict ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ ) for image in image_inputs: self.assertIsInstance(A__ , Image.Image ) # Test not batched input snake_case_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(A__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ ,snake_case_ : List[Any] = self.image_processor_tester.get_expected_values(A__ , batched=A__ ) snake_case_ : int = image_processing(A__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self : int ) -> Any: '''simple docstring''' snake_case_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ , numpify=A__ ) for image in image_inputs: self.assertIsInstance(A__ , np.ndarray ) # Test not batched input snake_case_ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case_ ,snake_case_ : List[str] = self.image_processor_tester.get_expected_values(A__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : Optional[int] = image_processing(A__ , return_tensors="pt" ).pixel_values snake_case_ ,snake_case_ : Dict = self.image_processor_tester.get_expected_values(A__ , batched=A__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self : Tuple ) -> str: '''simple docstring''' snake_case_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ , torchify=A__ ) for image in image_inputs: self.assertIsInstance(A__ , torch.Tensor ) # Test not batched input snake_case_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case_ ,snake_case_ : List[Any] = self.image_processor_tester.get_expected_values(A__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : Any = image_processing(A__ , return_tensors="pt" ).pixel_values snake_case_ ,snake_case_ : int = self.image_processor_tester.get_expected_values(A__ , batched=A__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCAmelCase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case_ : Optional[Any] = json.loads(f.read() ) snake_case_ : int = {"image_id": 3_97_69, "annotations": target} # encode them snake_case_ : Optional[int] = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) snake_case_ : Any = image_processing(images=A__ , annotations=A__ , return_tensors="pt" ) # verify pixel values snake_case_ : List[Any] = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , A__ ) snake_case_ : List[str] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , A__ , atol=1E-4 ) ) # verify area snake_case_ : Tuple = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , A__ ) ) # verify boxes snake_case_ : Any = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , A__ ) snake_case_ : str = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , A__ , atol=1E-3 ) ) # verify image_id snake_case_ : List[Any] = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , A__ ) ) # verify is_crowd snake_case_ : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , A__ ) ) # verify class_labels snake_case_ : Any = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , A__ ) ) # verify orig_size snake_case_ : Any = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , A__ ) ) # verify size snake_case_ : List[str] = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , A__ ) ) @slow def UpperCAmelCase__ ( self : int ) -> str: '''simple docstring''' snake_case_ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case_ : Any = json.loads(f.read() ) snake_case_ : Optional[Any] = {"file_name": "000000039769.png", "image_id": 3_97_69, "segments_info": target} snake_case_ : int = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case_ : Union[str, Any] = ConditionalDetrImageProcessor(format="coco_panoptic" ) snake_case_ : str = image_processing(images=A__ , annotations=A__ , masks_path=A__ , return_tensors="pt" ) # verify pixel values snake_case_ : int = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , A__ ) snake_case_ : str = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , A__ , atol=1E-4 ) ) # verify area snake_case_ : Optional[int] = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , A__ ) ) # verify boxes snake_case_ : str = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , A__ ) snake_case_ : str = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , A__ , atol=1E-3 ) ) # verify image_id snake_case_ : List[str] = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , A__ ) ) # verify is_crowd snake_case_ : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , A__ ) ) # verify class_labels snake_case_ : Optional[int] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , A__ ) ) # verify masks snake_case_ : Union[str, Any] = 82_28_73 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , A__ ) # verify orig_size snake_case_ : Dict = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , A__ ) ) # verify size snake_case_ : str = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , A__ ) )
666
0
_snake_case = [ '''DownloadConfig''', '''DownloadManager''', '''DownloadMode''', '''StreamingDownloadManager''', ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
170
from maths.prime_factors import prime_factors def __lowerCamelCase ( _lowercase ) -> int: if not isinstance(_lowercase , _lowercase ): UpperCamelCase = F'Input value of [number={number}] must be an integer' raise TypeError(_lowercase ) if number < 1: raise ValueError('Input must be a positive integer' ) return -1 if len(prime_factors(_lowercase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
170
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Union[str, Any] = { "configuration_upernet": ["UperNetConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[Any] = [ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
567
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCAmelCase : int = logging.get_logger(__name__) UpperCAmelCase : Tuple = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: '''simple docstring''' for attribute in key.split(""".""" ): lowercase_ = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: lowercase_ = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: lowercase_ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase_ = value elif weight_type == "weight_g": lowercase_ = value elif weight_type == "weight_v": lowercase_ = value elif weight_type == "bias": lowercase_ = value else: lowercase_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = [] lowercase_ = fairseq_model.state_dict() lowercase_ = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): lowercase_ = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) lowercase_ = True else: for key, mapped_key in MAPPING.items(): lowercase_ = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowercase_ = True if "*" in mapped_key: lowercase_ = name.split(__lowerCAmelCase )[0].split(""".""" )[-2] lowercase_ = mapped_key.replace("""*""" , __lowerCAmelCase ) if "weight_g" in name: lowercase_ = """weight_g""" elif "weight_v" in name: lowercase_ = """weight_v""" elif "weight" in name: lowercase_ = """weight""" elif "bias" in name: lowercase_ = """bias""" else: lowercase_ = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = full_name.split("""conv_layers.""" )[-1] lowercase_ = name.split(""".""" ) lowercase_ = int(items[0] ) lowercase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = SEWConfig() if is_finetuned: lowercase_ = model.wav_encoder.wav_model.cfg else: lowercase_ = model.cfg lowercase_ = fs_config.conv_bias lowercase_ = eval(fs_config.conv_feature_layers ) lowercase_ = [x[0] for x in conv_layers] lowercase_ = [x[1] for x in conv_layers] lowercase_ = [x[2] for x in conv_layers] lowercase_ = """gelu""" lowercase_ = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" lowercase_ = 0.0 lowercase_ = fs_config.activation_fn.name lowercase_ = fs_config.encoder_embed_dim lowercase_ = 0.02 lowercase_ = fs_config.encoder_ffn_embed_dim lowercase_ = 1E-5 lowercase_ = fs_config.encoder_layerdrop lowercase_ = fs_config.encoder_attention_heads lowercase_ = fs_config.conv_pos_groups lowercase_ = fs_config.conv_pos lowercase_ = len(__lowerCAmelCase ) lowercase_ = fs_config.encoder_layers lowercase_ = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: lowercase_ = model.cfg lowercase_ = fs_config.final_dropout lowercase_ = fs_config.layerdrop lowercase_ = fs_config.activation_dropout lowercase_ = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 lowercase_ = fs_config.attention_dropout lowercase_ = fs_config.dropout_input lowercase_ = fs_config.dropout lowercase_ = fs_config.mask_channel_length lowercase_ = fs_config.mask_channel_prob lowercase_ = fs_config.mask_length lowercase_ = fs_config.mask_prob lowercase_ = """Wav2Vec2FeatureExtractor""" lowercase_ = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=True ) -> Union[str, Any]: '''simple docstring''' if is_finetuned: lowercase_ , lowercase_ , lowercase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: lowercase_ , lowercase_ , lowercase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: lowercase_ = SEWConfig.from_pretrained(__lowerCAmelCase ) else: lowercase_ = convert_config(model[0] , __lowerCAmelCase ) lowercase_ = model[0].eval() lowercase_ = True if config.feat_extract_norm == """layer""" else False lowercase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) if is_finetuned: if dict_path: lowercase_ = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase_ = target_dict.pad_index lowercase_ = target_dict.bos_index lowercase_ = target_dict.pad_index lowercase_ = target_dict.bos_index lowercase_ = target_dict.eos_index lowercase_ = len(target_dict.symbols ) lowercase_ = os.path.join(__lowerCAmelCase , """vocab.json""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , __lowerCAmelCase ) lowercase_ = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , ) lowercase_ = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) lowercase_ = SEWForCTC(__lowerCAmelCase ) else: lowercase_ = SEWModel(__lowerCAmelCase ) feature_extractor.save_pretrained(__lowerCAmelCase ) recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) hf_model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase : int = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) UpperCAmelCase : str = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
567
1
'''simple docstring''' import math import os import sys def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[Any] = """""" try: with open(lowerCamelCase__ , """rb""" ) as binary_file: A_ : Dict = binary_file.read() for dat in data: A_ : int = f'{dat:08b}' result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' lexicon.pop(lowerCamelCase__ ) A_ : Dict = last_match_id if math.loga(lowerCamelCase__ ).is_integer(): for curr_key in lexicon: A_ : int = """0""" + lexicon[curr_key] A_ : Union[str, Any] = bin(lowerCamelCase__ )[2:] def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Union[str, Any] = {"""0""": """0""", """1""": """1"""} A_ : Any = """""", """""" A_ : Optional[int] = len(lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue A_ : Optional[int] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) index += 1 A_ : List[str] = """""" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": A_ : int = lexicon[curr_string] result += last_match_id return result def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Any = os.path.getsize(lowerCamelCase__ ) A_ : Dict = bin(lowerCamelCase__ )[2:] A_ : Dict = len(lowerCamelCase__ ) return "0" * (length_length - 1) + file_length_binary + compressed def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : List[str] = 8 try: with open(lowerCamelCase__ , """wb""" ) as opened_file: A_ : str = [ to_write[i : i + byte_length] for i in range(0 , len(lowerCamelCase__ ) , lowerCamelCase__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(lowerCamelCase__ , 2 ).to_bytes(1 , byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Union[str, Any] = read_file_binary(lowerCamelCase__ ) A_ : Union[str, Any] = compress_data(lowerCamelCase__ ) A_ : int = add_file_length(lowerCamelCase__ , lowerCamelCase__ ) write_file_binary(lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
708
'''simple docstring''' import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowerCamelCase :Any = [ '''kernels/rwkv/wkv_cuda.cu''', '''kernels/rwkv/wkv_op.cpp''', '''kernels/deformable_detr/ms_deform_attn.h''', '''kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh''', '''models/graphormer/algos_graphormer.pyx''', ] def a ( lowerCamelCase__ ): '''simple docstring''' for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowerCamelCase :Tuple = argparse.ArgumentParser() parser.add_argument('''--check_lib''', action='''store_true''', help='''Whether to check the build or the actual package.''') lowerCamelCase :List[Any] = parser.parse_args() if args.check_lib: lowerCamelCase :Union[str, Any] = importlib.import_module('''transformers''') lowerCamelCase :Union[str, Any] = Path(transformers_module.__file__).parent else: lowerCamelCase :List[str] = Path.cwd() / '''build/lib/transformers''' if not test_custom_files_are_present(transformers_path): raise ValueError('''The built release does not contain the custom files. Fix this before going further!''')
686
0
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class SCREAMING_SNAKE_CASE (a__ ): def __init__( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' __A : int = path_or_paths __A : List[str] = split if split or isinstance(_UpperCAmelCase , _UpperCAmelCase) else 'train' __A : Any = features __A : Dict = cache_dir __A : List[str] = keep_in_memory __A : Union[str, Any] = streaming __A : Tuple = num_proc __A : Union[str, Any] = kwargs @abstractmethod def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass class SCREAMING_SNAKE_CASE (a__ ): def __init__( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' __A : Dict = features __A : Any = cache_dir __A : str = keep_in_memory __A : Optional[Any] = streaming __A : List[str] = num_proc __A : List[Any] = kwargs @abstractmethod def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass
8
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : List[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE__ : Union[str, Any] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } SCREAMING_SNAKE_CASE__ : List[Any] = { '''camembert-base''': 5_1_2, } SCREAMING_SNAKE_CASE__ : Any = '''▁''' class a__( snake_case__ ): a_ : Tuple = VOCAB_FILES_NAMES a_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP a_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : str = ['''input_ids''', '''attention_mask'''] a_ : Union[str, Any] = CamembertTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **_UpperCAmelCase , ) -> str: # Mask token behave like a normal word, i.e. include the space before it snake_case__ =AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) snake_case__ =vocab_file snake_case__ =False if not self.vocab_file else True def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ =[self.cls_token_id] snake_case__ =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> List[int]: snake_case__ =[self.sep_token_id] snake_case__ =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case__ =os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
538
0
def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if not head: return True # split the list to two parts lowerCamelCase : int = head.next, head while fast and fast.next: lowerCamelCase : List[str] = fast.next.next lowerCamelCase : Tuple = slow.next lowerCamelCase : Any = slow.next lowerCamelCase : List[str] = None # Don't forget here! But forget still works! # reverse the second part lowerCamelCase : Optional[Any] = None while second: lowerCamelCase : List[Any] = second.next lowerCamelCase : Optional[Any] = node lowerCamelCase : Optional[Any] = second lowerCamelCase : Union[str, Any] = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False lowerCamelCase : List[str] = node.next lowerCamelCase : Tuple = head.next return True def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) lowerCamelCase : Optional[Any] = head while fast and fast.next: lowerCamelCase : str = fast.next.next, slow.next # 2. Push the second half into the stack lowerCamelCase : Any = [slow.val] while slow.next: lowerCamelCase : int = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False lowerCamelCase : Union[str, Any] = cur.next return True def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if not head or not head.next: return True lowerCamelCase : List[Any] = {} lowerCamelCase : str = 0 while head: if head.val in d: d[head.val].append(SCREAMING_SNAKE_CASE_ ) else: lowerCamelCase : int = [pos] lowerCamelCase : Union[str, Any] = head.next pos += 1 lowerCamelCase : Optional[int] = pos - 1 lowerCamelCase : List[str] = 0 for v in d.values(): if len(SCREAMING_SNAKE_CASE_ ) % 2 != 0: middle += 1 else: lowerCamelCase : List[str] = 0 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): if v[i] + v[len(SCREAMING_SNAKE_CASE_ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
714
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch _snake_case = logging.get_logger(__name__) @dataclass class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __A=False , __A=False , __A=6.0 , __A=None , __A=False , __A=False , __A=None , __A="fp4" , __A=False , **__A , ): """simple docstring""" lowerCamelCase : Optional[Any] = load_in_abit lowerCamelCase : List[Any] = load_in_abit lowerCamelCase : List[str] = llm_inta_threshold lowerCamelCase : Dict = llm_inta_skip_modules lowerCamelCase : Optional[int] = llm_inta_enable_fpaa_cpu_offload lowerCamelCase : int = llm_inta_has_fpaa_weight lowerCamelCase : Tuple = bnb_abit_quant_type lowerCamelCase : str = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: lowerCamelCase : Dict = torch.floataa elif isinstance(__A , __A ): lowerCamelCase : Optional[int] = getattr(__A , __A ) elif isinstance(__A , torch.dtype ): lowerCamelCase : str = bnb_abit_compute_dtype else: raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype" ) self.post_init() def _snake_case ( self ): """simple docstring""" if not isinstance(self.llm_inta_threshold , __A ): raise ValueError("llm_int8_threshold must be a float" ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , __A ): raise ValueError("llm_int8_skip_modules must be a list of strings" ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , __A ): raise ValueError("llm_int8_enable_fp32_cpu_offload must be a boolean" ) if not isinstance(self.llm_inta_has_fpaa_weight , __A ): raise ValueError("llm_int8_has_fp16_weight must be a boolean" ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError("bnb_4bit_compute_dtype must be torch.dtype" ) if not isinstance(self.bnb_abit_quant_type , __A ): raise ValueError("bnb_4bit_quant_type must be a string" ) if not isinstance(self.bnb_abit_use_double_quant , __A ): raise ValueError("bnb_4bit_use_double_quant must be a boolean" ) if self.load_in_abit and not version.parse(importlib.metadata.version("bitsandbytes" ) ) >= version.parse( "0.39.0" ): raise ValueError( "4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version" ) def _snake_case ( self ): """simple docstring""" return self.load_in_abit or self.load_in_abit def _snake_case ( self ): """simple docstring""" if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def _snake_case ( cls , __A , __A , **__A ): """simple docstring""" lowerCamelCase : Tuple = cls(**__A ) lowerCamelCase : Union[str, Any] = [] for key, value in kwargs.items(): if hasattr(__A , __A ): setattr(__A , __A , __A ) to_remove.append(__A ) for key in to_remove: kwargs.pop(__A , __A ) if return_unused_kwargs: return config, kwargs else: return config def _snake_case ( self , __A ): """simple docstring""" with open(__A , "w" , encoding="utf-8" ) as writer: lowerCamelCase : str = self.to_dict() lowerCamelCase : Any = json.dumps(__A , indent=2 , sort_keys=__A ) + "\n" writer.write(__A ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Tuple = copy.deepcopy(self.__dict__ ) lowerCamelCase : Optional[Any] = str(output["bnb_4bit_compute_dtype"] ).split("." )[1] return output def __repr__( self ): """simple docstring""" return F"""{self.__class__.__name__} {self.to_json_string()}""" def _snake_case ( self , __A = True ): """simple docstring""" if use_diff is True: lowerCamelCase : Optional[int] = self.to_diff_dict() else: lowerCamelCase : List[str] = self.to_dict() return json.dumps(__A , indent=2 , sort_keys=__A ) + "\n" def _snake_case ( self ): """simple docstring""" lowerCamelCase : int = self.to_dict() # get the default config dict lowerCamelCase : Union[str, Any] = BitsAndBytesConfig().to_dict() lowerCamelCase : Union[str, Any] = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: lowerCamelCase : List[str] = value return serializable_config_dict
231
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig _SCREAMING_SNAKE_CASE : Optional[Any] = { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class UpperCamelCase__ ( __lowerCamelCase ): a__ : Union[str, Any] = 'albert' def __init__( self : Tuple, __lowerCamelCase : Any=3_00_00, __lowerCamelCase : int=1_28, __lowerCamelCase : int=40_96, __lowerCamelCase : List[str]=12, __lowerCamelCase : List[str]=1, __lowerCamelCase : str=64, __lowerCamelCase : Any=1_63_84, __lowerCamelCase : str=1, __lowerCamelCase : Tuple="gelu_new", __lowerCamelCase : Optional[int]=0, __lowerCamelCase : Optional[int]=0, __lowerCamelCase : Optional[int]=5_12, __lowerCamelCase : List[str]=2, __lowerCamelCase : Dict=0.02, __lowerCamelCase : Optional[Any]=1e-12, __lowerCamelCase : Dict=0.1, __lowerCamelCase : Tuple="absolute", __lowerCamelCase : Tuple=0, __lowerCamelCase : Optional[Any]=2, __lowerCamelCase : int=3, **__lowerCamelCase : str, ) -> str: super().__init__(pad_token_id=__lowerCamelCase, bos_token_id=__lowerCamelCase, eos_token_id=__lowerCamelCase, **__lowerCamelCase ) UpperCamelCase__ : Any = vocab_size UpperCamelCase__ : str = embedding_size UpperCamelCase__ : Union[str, Any] = hidden_size UpperCamelCase__ : str = num_hidden_layers UpperCamelCase__ : Dict = num_hidden_groups UpperCamelCase__ : str = num_attention_heads UpperCamelCase__ : List[Any] = inner_group_num UpperCamelCase__ : Optional[int] = hidden_act UpperCamelCase__ : Tuple = intermediate_size UpperCamelCase__ : str = hidden_dropout_prob UpperCamelCase__ : List[Any] = attention_probs_dropout_prob UpperCamelCase__ : int = max_position_embeddings UpperCamelCase__ : List[Any] = type_vocab_size UpperCamelCase__ : Dict = initializer_range UpperCamelCase__ : Tuple = layer_norm_eps UpperCamelCase__ : Optional[Any] = classifier_dropout_prob UpperCamelCase__ : List[Any] = position_embedding_type class UpperCamelCase__ ( __lowerCamelCase ): @property def __lowercase( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCamelCase__ : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCamelCase__ : Dict = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
344
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch _SCREAMING_SNAKE_CASE : Any = """sshleifer/bart-tiny-random""" _SCREAMING_SNAKE_CASE : List[str] = """patrickvonplaten/t5-tiny-random""" @require_torch class UpperCamelCase__ ( unittest.TestCase ): @cached_property def __lowercase( self : str ) -> Dict: return AutoConfig.from_pretrained(__lowerCamelCase ) def __lowercase( self : Optional[int] ) -> int: UpperCamelCase__ ,*UpperCamelCase__ : Dict = create_student_by_copying_alternating_layers(__lowerCamelCase, tempfile.mkdtemp(), e=1, d=1 ) self.assertEqual(student.config.num_hidden_layers, 1 ) def __lowercase( self : List[Any] ) -> Optional[Any]: UpperCamelCase__ ,*UpperCamelCase__ : Optional[Any] = create_student_by_copying_alternating_layers(__lowerCamelCase, tempfile.mkdtemp(), e=1, d=__lowerCamelCase ) def __lowercase( self : str ) -> List[Any]: UpperCamelCase__ ,*UpperCamelCase__ : str = create_student_by_copying_alternating_layers(__lowerCamelCase, tempfile.mkdtemp(), e=1, d=__lowerCamelCase ) self.assertEqual(student.config.encoder_layers, 1 ) self.assertEqual(student.config.decoder_layers, self.teacher_config.encoder_layers ) def __lowercase( self : Union[str, Any] ) -> int: UpperCamelCase__ ,*UpperCamelCase__ : int = create_student_by_copying_alternating_layers(__lowerCamelCase, tempfile.mkdtemp(), e=1, d=1 ) self.assertEqual(student.config.encoder_layers, 1 ) self.assertEqual(student.config.decoder_layers, 1 ) def __lowercase( self : Union[str, Any] ) -> Tuple: with self.assertRaises(__lowerCamelCase ): create_student_by_copying_alternating_layers(__lowerCamelCase, tempfile.mkdtemp(), e=__lowerCamelCase, d=__lowerCamelCase )
344
1
from math import ceil def __lowercase ( __lowerCAmelCase : int = 1_0_0_1 ): a__ = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): a__ = 2 * i + 1 a__ = 2 * i a__ = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: snake_case : Tuple = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
720
def __lowercase ( __lowerCAmelCase : int ): a__ = generate_pascal_triangle(__lowerCAmelCase ) for row_idx in range(__lowerCAmelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [] for current_row_idx in range(__lowerCAmelCase ): a__ = populate_current_row(__lowerCAmelCase , __lowerCAmelCase ) triangle.append(__lowerCAmelCase ) return triangle def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : int ): a__ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 a__ , a__ = 1, 1 for current_col_idx in range(1 , __lowerCAmelCase ): calculate_current_element( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return current_row def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : list[int] , __lowerCAmelCase : int , __lowerCAmelCase : int , ): a__ = triangle[current_row_idx - 1][current_col_idx - 1] a__ = triangle[current_row_idx - 1][current_col_idx] a__ = above_to_left_elt + above_to_right_elt def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [[1]] for row_index in range(1 , __lowerCAmelCase ): a__ = [0] + result[-1] + [0] a__ = row_index + 1 # Calculate the number of distinct elements in a row a__ = sum(divmod(__lowerCAmelCase , 2 ) ) a__ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] a__ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() a__ = row_first_half + row_second_half result.append(__lowerCAmelCase ) return result def __lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowerCAmelCase : Callable , __lowerCAmelCase : int ) -> None: a__ = F'{func.__name__}({value})' a__ = timeit(F'__main__.{call}' , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'{call:38} -- {timing:.4f} seconds' ) for value in range(1_5 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
657
0
'''simple docstring''' def _lowercase ( __A ,__A ): '''simple docstring''' __UpperCamelCase = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = 0 while b > 0: if b & 1: __UpperCamelCase = ((res % c) + (a % c)) % c a += a b >>= 1 return res
601
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = '''microsoft/speecht5_tts''' __SCREAMING_SNAKE_CASE = ( '''This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ''' '''text to read (in English) and returns a waveform object containing the sound.''' ) __SCREAMING_SNAKE_CASE = '''text_reader''' __SCREAMING_SNAKE_CASE = SpeechTaProcessor __SCREAMING_SNAKE_CASE = SpeechTaForTextToSpeech __SCREAMING_SNAKE_CASE = SpeechTaHifiGan __SCREAMING_SNAKE_CASE = ['''text'''] __SCREAMING_SNAKE_CASE = ['''audio'''] def __lowerCamelCase ( self ) -> Optional[int]: if self.post_processor is None: __UpperCamelCase = """microsoft/speecht5_hifigan""" super().setup() def __lowerCamelCase ( self , lowercase , lowercase=None ) -> List[str]: __UpperCamelCase = self.pre_processor(text=lowercase , return_tensors="""pt""" , truncation=lowercase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) __UpperCamelCase = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) __UpperCamelCase = torch.tensor(embeddings_dataset[7_3_0_5]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __lowerCamelCase ( self , lowercase ) -> Optional[Any]: with torch.no_grad(): return self.model.generate_speech(**lowercase ) def __lowerCamelCase ( self , lowercase ) -> int: with torch.no_grad(): return self.post_processor(lowercase ).cpu().detach()
601
1
"""simple docstring""" from PIL import Image def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): __lowercase : Tuple = (2_59 * (level + 2_55)) / (2_55 * (2_59 - level)) def contrast(__UpperCamelCase ) -> int: return int(1_28 + factor * (c - 1_28) ) return img.point(__UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 a_ = change_contrast(img, 1_7_0) cont_img.save('image_data/lena_high_contrast.png', format='png')
710
"""simple docstring""" def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : Tuple = len(__UpperCamelCase ) for _ in range(__UpperCamelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __lowercase ,__lowercase : str = arr[i + 1], arr[i] return arr if __name__ == "__main__": a_ = list(range(1_0, 0, -1)) print(F"Original: {arr}. Sorted: {odd_even_transposition(arr)}")
523
0
'''simple docstring''' from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker SCREAMING_SNAKE_CASE = 'CompVis/stable-diffusion-v1-1' SCREAMING_SNAKE_CASE = 'CompVis/stable-diffusion-v1-2' SCREAMING_SNAKE_CASE = 'CompVis/stable-diffusion-v1-3' SCREAMING_SNAKE_CASE = 'CompVis/stable-diffusion-v1-4' class UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : AutoencoderKL , UpperCAmelCase : CLIPTextModel , UpperCAmelCase : CLIPTokenizer , UpperCAmelCase : UNetaDConditionModel , UpperCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase : StableDiffusionSafetyChecker , UpperCAmelCase : CLIPImageProcessor , UpperCAmelCase : bool = True , ) -> Union[str, Any]: '''simple docstring''' super()._init_() lowercase : Tuple =StableDiffusionPipeline.from_pretrained(UpperCAmelCase_ ) lowercase : List[str] =StableDiffusionPipeline.from_pretrained(UpperCAmelCase_ ) lowercase : Optional[Any] =StableDiffusionPipeline.from_pretrained(UpperCAmelCase_ ) lowercase : str =StableDiffusionPipeline( vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , requires_safety_checker=UpperCAmelCase_ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def A__ ( self : Optional[Any] ) -> Dict[str, Any]: '''simple docstring''' return {k: getattr(self , UpperCAmelCase_ ) for k in self.config.keys() if not k.startswith('''_''' )} def A__ ( self : Any , UpperCAmelCase : Optional[Union[str, int]] = "auto" ) -> Tuple: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase : Tuple =self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase_ ) def A__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' self.enable_attention_slicing(UpperCAmelCase_ ) @torch.no_grad() def A__ ( self : Dict , UpperCAmelCase : Union[str, List[str]] , UpperCAmelCase : int = 512 , UpperCAmelCase : int = 512 , UpperCAmelCase : int = 50 , UpperCAmelCase : float = 7.5 , UpperCAmelCase : Optional[Union[str, List[str]]] = None , UpperCAmelCase : Optional[int] = 1 , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[torch.Generator] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[str] = "pil" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase : int = 1 , **UpperCAmelCase : Optional[int] , ) -> Dict: '''simple docstring''' return self.pipea( prompt=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , **UpperCAmelCase_ , ) @torch.no_grad() def A__ ( self : int , UpperCAmelCase : Union[str, List[str]] , UpperCAmelCase : int = 512 , UpperCAmelCase : int = 512 , UpperCAmelCase : int = 50 , UpperCAmelCase : float = 7.5 , UpperCAmelCase : Optional[Union[str, List[str]]] = None , UpperCAmelCase : Optional[int] = 1 , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[torch.Generator] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[str] = "pil" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase : int = 1 , **UpperCAmelCase : int , ) -> int: '''simple docstring''' return self.pipea( prompt=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , **UpperCAmelCase_ , ) @torch.no_grad() def A__ ( self : Optional[Any] , UpperCAmelCase : Union[str, List[str]] , UpperCAmelCase : int = 512 , UpperCAmelCase : int = 512 , UpperCAmelCase : int = 50 , UpperCAmelCase : float = 7.5 , UpperCAmelCase : Optional[Union[str, List[str]]] = None , UpperCAmelCase : Optional[int] = 1 , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[torch.Generator] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[str] = "pil" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase : int = 1 , **UpperCAmelCase : Dict , ) -> List[str]: '''simple docstring''' return self.pipea( prompt=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , **UpperCAmelCase_ , ) @torch.no_grad() def A__ ( self : Any , UpperCAmelCase : Union[str, List[str]] , UpperCAmelCase : int = 512 , UpperCAmelCase : int = 512 , UpperCAmelCase : int = 50 , UpperCAmelCase : float = 7.5 , UpperCAmelCase : Optional[Union[str, List[str]]] = None , UpperCAmelCase : Optional[int] = 1 , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[torch.Generator] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[str] = "pil" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase : int = 1 , **UpperCAmelCase : List[str] , ) -> List[str]: '''simple docstring''' return self.pipea( prompt=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , **UpperCAmelCase_ , ) @torch.no_grad() def A__ ( self : str , UpperCAmelCase : Union[str, List[str]] , UpperCAmelCase : int = 512 , UpperCAmelCase : int = 512 , UpperCAmelCase : int = 50 , UpperCAmelCase : float = 7.5 , UpperCAmelCase : Optional[Union[str, List[str]]] = None , UpperCAmelCase : Optional[int] = 1 , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[torch.Generator] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[str] = "pil" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase : int = 1 , **UpperCAmelCase : List[Any] , ) -> List[str]: '''simple docstring''' lowercase : Dict ="cuda" if torch.cuda.is_available() else "cpu" self.to(UpperCAmelCase_ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f'`height` and `width` must be divisible by 8 but are {height} and {width}.' ) # Get first result from Stable Diffusion Checkpoint v1.1 lowercase : int =self.textaimg_sda_a( prompt=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , **UpperCAmelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.2 lowercase : Any =self.textaimg_sda_a( prompt=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , **UpperCAmelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.3 lowercase : Dict =self.textaimg_sda_a( prompt=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , **UpperCAmelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.4 lowercase : Tuple =self.textaimg_sda_a( prompt=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , **UpperCAmelCase_ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
94
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["image_processor", "tokenizer"] lowercase_ = "CLIPImageProcessor" lowercase_ = ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast") def __init__(self : List[Any] , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[Any]=None , **UpperCAmelCase_ : List[str]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase_ , ) lowerCamelCase__: int =kwargs.pop("feature_extractor") lowerCamelCase__: int =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(UpperCAmelCase_ , UpperCAmelCase_) def __call__(self : List[Any] , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : int=None , **UpperCAmelCase_ : Any) ->Union[str, Any]: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none.") if text is not None: lowerCamelCase__: List[Any] =self.tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_) if images is not None: lowerCamelCase__: int =self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_) if text is not None and images is not None: lowerCamelCase__: str =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase_) , tensor_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Optional[Any]) ->Dict: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Any) ->Optional[Any]: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_) @property def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] =self.tokenizer.model_input_names lowerCamelCase__: str =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
59
0
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class __lowerCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( F'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='utf-8' , check=_lowerCAmelCase , ) assert hasattr(self , 'env' ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = { 'enabled': True, 'processes_per_host': 8, } __UpperCamelCase = { 'enabled': True, 'parameters': { 'microbatches': 4, 'placement_strategy': 'spread', 'pipeline': 'interleaved', 'optimize': 'speed', 'partitions': 4, 'ddp': True, }, } __UpperCamelCase = {'smdistributed': {'modelparallel': smp_options}, 'mpi': mpi_options} __UpperCamelCase = 'trainer' if self.script == 'run_glue.py' else 'smtrainer' # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'{self.env.base_job_name}-{instance_count}-smp-{name_extension}' , instance_count=_lowerCAmelCase , instance_type=self.instance_type , debugger_hook_config=_lowerCAmelCase , hyperparameters={ **self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path, 'max_steps': 500, } , metric_definitions=self.env.metric_definitions , distribution=_lowerCAmelCase , py_version='py36' , ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' TrainingJobAnalytics(_lowerCAmelCase ).export_csv(F'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(1,)] ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.create_estimator(_lowerCAmelCase ) # run training estimator.fit() # result dataframe __UpperCamelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) __UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __UpperCamelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'{estimator.latest_training_job.name}.json' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , _lowerCAmelCase )
709
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : List[str] = { "snap-research/efficientformer-l1-300": ( "https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = "efficientformer" def __init__( self , __UpperCAmelCase = [3, 2, 6, 4] , __UpperCAmelCase = [48, 96, 224, 448] , __UpperCAmelCase = [True, True, True, True] , __UpperCAmelCase = 448 , __UpperCAmelCase = 32 , __UpperCAmelCase = 4 , __UpperCAmelCase = 7 , __UpperCAmelCase = 5 , __UpperCAmelCase = 8 , __UpperCAmelCase = 4 , __UpperCAmelCase = 0.0 , __UpperCAmelCase = 16 , __UpperCAmelCase = 3 , __UpperCAmelCase = 3 , __UpperCAmelCase = 3 , __UpperCAmelCase = 2 , __UpperCAmelCase = 1 , __UpperCAmelCase = 0.0 , __UpperCAmelCase = 1 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = 1E-5 , __UpperCAmelCase = "gelu" , __UpperCAmelCase = 0.0_2 , __UpperCAmelCase = 1E-12 , __UpperCAmelCase = 224 , __UpperCAmelCase = 1E-05 , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = hidden_sizes __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = depths __UpperCamelCase = mlp_expansion_ratio __UpperCamelCase = downsamples __UpperCamelCase = dim __UpperCamelCase = key_dim __UpperCamelCase = attention_ratio __UpperCamelCase = resolution __UpperCamelCase = pool_size __UpperCamelCase = downsample_patch_size __UpperCamelCase = downsample_stride __UpperCamelCase = downsample_pad __UpperCamelCase = drop_path_rate __UpperCamelCase = num_metaad_blocks __UpperCamelCase = distillation __UpperCamelCase = use_layer_scale __UpperCamelCase = layer_scale_init_value __UpperCamelCase = image_size __UpperCamelCase = batch_norm_eps
293
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline SCREAMING_SNAKE_CASE : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''} SCREAMING_SNAKE_CASE : Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase ( self : Dict ): torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) A = PNDMScheduler(skip_prk_steps=UpperCamelCase__ ) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) A = CLIPTextModel(UpperCamelCase__ ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any]=0 ): A = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) A = image.cpu().permute(0 , 2 , 3 , 1 )[0] A = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert('RGB' ) if str(UpperCamelCase__ ).startswith('mps' ): A = torch.manual_seed(UpperCamelCase__ ) else: A = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'image_guidance_scale': 1, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self : List[Any] ): A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ ) A = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A = self.get_dummy_inputs(UpperCamelCase__ ) A = sd_pipe(**UpperCamelCase__ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A = np.array([0.7_526, 0.3_750, 0.4_547, 0.6_117, 0.5_866, 0.5_016, 0.4_327, 0.5_642, 0.4_815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase ( self : List[str] ): A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ ) A = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A = self.get_dummy_inputs(UpperCamelCase__ ) A = 'french fries' A = sd_pipe(**UpperCamelCase__ , negative_prompt=UpperCamelCase__ ) A = output.images A = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A = np.array([0.7_511, 0.3_642, 0.4_553, 0.6_236, 0.5_797, 0.5_013, 0.4_343, 0.5_611, 0.4_831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase ( self : Any ): A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ ) A = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A = self.get_dummy_inputs(UpperCamelCase__ ) A = [inputs['prompt']] * 2 A = np.array(inputs['image'] ).astype(np.floataa ) / 255.0 A = torch.from_numpy(UpperCamelCase__ ).unsqueeze(0 ).to(UpperCamelCase__ ) A = image / 2 + 0.5 A = image.permute(0 , 3 , 1 , 2 ) A = image.repeat(2 , 1 , 1 , 1 ) A = sd_pipe(**UpperCamelCase__ ).images A = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) A = np.array([0.5_812, 0.5_748, 0.5_222, 0.5_908, 0.5_695, 0.7_174, 0.6_804, 0.5_523, 0.5_579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase ( self : Any ): A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' ) A = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ ) A = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A = self.get_dummy_inputs(UpperCamelCase__ ) A = sd_pipe(**UpperCamelCase__ ).images A = image[0, -3:, -3:, -1] A = [round(UpperCamelCase__ , 4 ) for x in image_slice.flatten().tolist()] print(','.join([str(UpperCamelCase__ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) A = np.array([0.7_417, 0.3_842, 0.4_732, 0.5_776, 0.5_891, 0.5_139, 0.4_052, 0.5_673, 0.4_986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase ( self : Any ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def UpperCamelCase ( self : List[Any] ): A = self.get_dummy_components() A = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ ) A = VaeImageProcessor(do_resize=UpperCamelCase__ , do_normalize=UpperCamelCase__ ) A = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A = pipe(**self.get_dummy_inputs_by_type(UpperCamelCase__ , input_image_type='pt' ) )[0] A = components['vae'] A = self.get_dummy_inputs_by_type(UpperCamelCase__ , input_image_type='pt' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): A = vae.encode(inputs[image_param] ).latent_dist.mode() A = pipe(**UpperCamelCase__ )[0] A = np.abs(out - out_latents_inputs ).max() self.assertLess(UpperCamelCase__ , 1e-4 , 'passing latents as image input generate different result from passing image' ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : List[Any] , UpperCamelCase__ : Optional[int]=0 ): A = torch.manual_seed(UpperCamelCase__ ) A = load_image( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' ) A = { 'prompt': 'turn him into a cyborg', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'image_guidance_scale': 1.0, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self : Optional[int] ): A = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() A = self.get_inputs() A = pipe(**UpperCamelCase__ ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) A = np.array([0.5_902, 0.6_015, 0.6_027, 0.5_983, 0.6_092, 0.6_061, 0.5_765, 0.5_785, 0.5_555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def UpperCamelCase ( self : Tuple ): A = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=UpperCamelCase__ ) A = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() A = self.get_inputs() A = pipe(**UpperCamelCase__ ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) A = np.array([0.6_578, 0.6_817, 0.6_972, 0.6_761, 0.6_856, 0.6_916, 0.6_428, 0.6_516, 0.6_301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def UpperCamelCase ( self : Dict ): A = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=UpperCamelCase__ ) A = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() A = self.get_inputs() A = pipe(**UpperCamelCase__ ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) A = np.array([0.3_828, 0.3_834, 0.3_818, 0.3_792, 0.3_865, 0.3_752, 0.3_792, 0.3_847, 0.3_753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def UpperCamelCase ( self : Tuple ): A = 0 def callback_fn(UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : torch.FloatTensor ) -> None: A = True nonlocal number_of_steps number_of_steps += 1 if step == 1: A = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) A = latents[0, -3:, -3:, -1] A = np.array([-0.2_463, -0.4_644, -0.9_756, 1.5_176, 1.4_414, 0.7_866, 0.9_897, 0.8_521, 0.7_983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: A = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) A = latents[0, -3:, -3:, -1] A = np.array([-0.2_644, -0.4_626, -0.9_653, 1.5_176, 1.4_551, 0.7_686, 0.9_805, 0.8_452, 0.8_115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 A = False A = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) A = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() A = self.get_inputs() pipe(**UpperCamelCase__ , callback=UpperCamelCase__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def UpperCamelCase ( self : List[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) A = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A = self.get_inputs() A = pipe(**UpperCamelCase__ ) A = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def UpperCamelCase ( self : Any ): A = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 A = inputs['image'].resize((504, 504) ) A = 'timbrooks/instruct-pix2pix' A = StableDiffusionInstructPixaPixPipeline.from_pretrained( UpperCamelCase__ , safety_checker=UpperCamelCase__ , ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() A = pipe(**UpperCamelCase__ ) A = output.images[0] A = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) A = np.array([0.2_726, 0.2_529, 0.2_664, 0.2_655, 0.2_641, 0.2_642, 0.2_591, 0.2_649, 0.2_590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
699
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = '''blenderbot-small''' SCREAMING_SNAKE_CASE : Any = ['''past_key_values'''] SCREAMING_SNAKE_CASE : List[str] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : List[str] , UpperCamelCase__ : Optional[Any]=50265 , UpperCamelCase__ : Optional[int]=512 , UpperCamelCase__ : int=8 , UpperCamelCase__ : Optional[int]=2048 , UpperCamelCase__ : Optional[Any]=16 , UpperCamelCase__ : Optional[Any]=8 , UpperCamelCase__ : List[Any]=2048 , UpperCamelCase__ : int=16 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : int=True , UpperCamelCase__ : Optional[Any]="gelu" , UpperCamelCase__ : Any=512 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Union[str, Any]=0.0 , UpperCamelCase__ : Dict=0.02 , UpperCamelCase__ : Optional[Any]=1 , UpperCamelCase__ : Any=False , UpperCamelCase__ : Dict=0 , UpperCamelCase__ : Optional[int]=1 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : Dict=2 , **UpperCamelCase__ : List[str] , ): A = vocab_size A = max_position_embeddings A = d_model A = encoder_ffn_dim A = encoder_layers A = encoder_attention_heads A = decoder_ffn_dim A = decoder_layers A = decoder_attention_heads A = dropout A = attention_dropout A = activation_dropout A = activation_function A = init_std A = encoder_layerdrop A = decoder_layerdrop A = use_cache A = encoder_layers A = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , forced_eos_token_id=UpperCamelCase__ , **UpperCamelCase__ , ) class _UpperCAmelCase ( __lowercase ): '''simple docstring''' @property def UpperCamelCase ( self : List[Any] ): if self.task in ["default", "seq2seq-lm"]: A = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: A = {0: 'batch'} A = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: A = {0: 'batch', 1: 'decoder_sequence'} A = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase__ , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. A = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: A , A = self.num_layers for i in range(UpperCamelCase__ ): A = {0: 'batch', 2: 'past_sequence + sequence'} A = {0: 'batch', 2: 'past_sequence + sequence'} else: A = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def UpperCamelCase ( self : int ): if self.task in ["default", "seq2seq-lm"]: A = super().outputs else: A = super(UpperCamelCase__ , self ).outputs if self.use_past: A , A = self.num_layers for i in range(UpperCamelCase__ ): A = {0: 'batch', 2: 'past_sequence + sequence'} A = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def UpperCamelCase ( self : int , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Generate decoder inputs A = seq_length if not self.use_past else 1 A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} A = dict(**UpperCamelCase__ , **UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A , A = common_inputs['input_ids'].shape A = common_inputs['decoder_input_ids'].shape[1] A , A = self.num_attention_heads A = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) A = decoder_seq_length + 3 A = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) A = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(UpperCamelCase__ , UpperCamelCase__ )] , dim=1 ) A = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered A , A = self.num_layers A = min(UpperCamelCase__ , UpperCamelCase__ ) A = max(UpperCamelCase__ , UpperCamelCase__ ) - min_num_layers A = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(UpperCamelCase__ ): common_inputs["past_key_values"].append( ( torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), ) ) # TODO: test this. A = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(UpperCamelCase__ , UpperCamelCase__ ): common_inputs["past_key_values"].append((torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) ) return common_inputs def UpperCamelCase ( self : Tuple , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A , A = common_inputs['input_ids'].shape # Not using the same length for past_key_values A = seqlen + 2 A , A = self.num_layers A , A = self.num_attention_heads A = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) A = common_inputs['attention_mask'].dtype A = torch.cat( [common_inputs['attention_mask'], torch.ones(UpperCamelCase__ , UpperCamelCase__ , dtype=UpperCamelCase__ )] , dim=1 ) A = [ (torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) for _ in range(UpperCamelCase__ ) ] return common_inputs def UpperCamelCase ( self : List[str] , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A = tokenizer.num_special_tokens_to_add(UpperCamelCase__ ) A = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase__ ) # Generate dummy inputs according to compute batch and sequence A = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size A = dict(tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ ) ) return common_inputs def UpperCamelCase ( self : Any , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: A = self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) elif self.task == "causal-lm": A = self._generate_dummy_inputs_for_causal_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) else: A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) return common_inputs def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Tuple ): if self.task in ["default", "seq2seq-lm"]: A = super()._flatten_past_key_values_(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: A = super(UpperCamelCase__ , self )._flatten_past_key_values_( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
699
1
"""simple docstring""" import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __SCREAMING_SNAKE_CASE : def __init__( self :Tuple ,__UpperCAmelCase :str ,__UpperCAmelCase :Tuple=3 ,__UpperCAmelCase :Optional[int]=32 ,__UpperCAmelCase :Optional[int]=3 ,__UpperCAmelCase :Any=10 ,__UpperCAmelCase :str=[8, 16, 32, 64] ,__UpperCAmelCase :str=[1, 1, 2, 1] ,__UpperCAmelCase :List[Any]=True ,__UpperCAmelCase :List[Any]=True ,__UpperCAmelCase :Optional[Any]="relu" ,__UpperCAmelCase :Any=3 ,__UpperCAmelCase :str=None ,__UpperCAmelCase :Union[str, Any]=["stage2", "stage3", "stage4"] ,__UpperCAmelCase :Union[str, Any]=[2, 3, 4] ,__UpperCAmelCase :Union[str, Any]=1 ,) -> List[str]: """simple docstring""" lowerCamelCase__ : List[str] = parent lowerCamelCase__ : List[Any] = batch_size lowerCamelCase__ : Optional[int] = image_size lowerCamelCase__ : Any = num_channels lowerCamelCase__ : Any = embeddings_size lowerCamelCase__ : Tuple = hidden_sizes lowerCamelCase__ : Optional[int] = depths lowerCamelCase__ : List[str] = is_training lowerCamelCase__ : Tuple = use_labels lowerCamelCase__ : Dict = hidden_act lowerCamelCase__ : List[str] = num_labels lowerCamelCase__ : Tuple = scope lowerCamelCase__ : List[Any] = len(__UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = out_features lowerCamelCase__ : List[str] = out_indices lowerCamelCase__ : List[Any] = num_groups def lowercase_ ( self :Optional[Any] ) -> Tuple: """simple docstring""" lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[Any] = None if self.use_labels: lowerCamelCase__ : Dict = ids_tensor([self.batch_size] ,self.num_labels ) lowerCamelCase__ : List[str] = self.get_config() return config, pixel_values, labels def lowercase_ ( self :str ) -> Any: """simple docstring""" return BitConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,out_features=self.out_features ,out_indices=self.out_indices ,num_groups=self.num_groups ,) def lowercase_ ( self :List[Any] ,__UpperCAmelCase :Optional[int] ,__UpperCAmelCase :Tuple ,__UpperCAmelCase :Tuple ) -> List[Any]: """simple docstring""" lowerCamelCase__ : str = BitModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCamelCase__ : Optional[Any] = model(__UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def lowercase_ ( self :int ,__UpperCAmelCase :int ,__UpperCAmelCase :int ,__UpperCAmelCase :Optional[int] ) -> Optional[int]: """simple docstring""" lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : Union[str, Any] = BitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCamelCase__ : str = model(__UpperCAmelCase ,labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def lowercase_ ( self :Any ,__UpperCAmelCase :Dict ,__UpperCAmelCase :Optional[int] ,__UpperCAmelCase :str ) -> str: """simple docstring""" lowerCamelCase__ : int = BitBackbone(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCamelCase__ : List[str] = model(__UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCamelCase__ : str = None lowerCamelCase__ : Optional[int] = BitBackbone(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCamelCase__ : List[Any] = model(__UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def lowercase_ ( self :int ) -> Optional[int]: """simple docstring""" lowerCamelCase__ : Optional[int] = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = config_and_inputs lowerCamelCase__ : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): UpperCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () UpperCAmelCase = ( {'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification} if is_torch_available() else {} ) UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def lowercase_ ( self :List[str] ) -> Any: """simple docstring""" lowerCamelCase__ : Any = BitModelTester(self ) lowerCamelCase__ : Any = ConfigTester(self ,config_class=__UpperCAmelCase ,has_text_modality=__UpperCAmelCase ) def lowercase_ ( self :Optional[Any] ) -> Dict: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self :List[Any] ) -> Dict: """simple docstring""" return @unittest.skip(reason='''Bit does not output attentions''' ) def lowercase_ ( self :List[Any] ) -> str: """simple docstring""" pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def lowercase_ ( self :List[Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def lowercase_ ( self :Tuple ) -> List[Any]: """simple docstring""" pass def lowercase_ ( self :Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = model_class(__UpperCAmelCase ) lowerCamelCase__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : int = [*signature.parameters.keys()] lowerCamelCase__ : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,__UpperCAmelCase ) def lowercase_ ( self :str ) -> List[str]: """simple docstring""" lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowercase_ ( self :Optional[int] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__UpperCAmelCase ) def lowercase_ ( self :List[str] ) -> List[str]: """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Any = model_class(config=__UpperCAmelCase ) for name, module in model.named_modules(): if isinstance(__UpperCAmelCase ,(nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) ,msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" ,) self.assertTrue( torch.all(module.bias == 0 ) ,msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" ,) def lowercase_ ( self :List[str] ) -> Dict: """simple docstring""" def check_hidden_states_output(__UpperCAmelCase :Tuple ,__UpperCAmelCase :str ,__UpperCAmelCase :Tuple ): lowerCamelCase__ : List[str] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(**self._prepare_for_class(__UpperCAmelCase ,__UpperCAmelCase ) ) lowerCamelCase__ : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase__ : Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(__UpperCAmelCase ) ,expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) lowerCamelCase__ , lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Any = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCamelCase__ : List[Any] = layer_type lowerCamelCase__ : Tuple = True check_hidden_states_output(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : Optional[Any] = True check_hidden_states_output(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def lowercase_ ( self :Optional[int] ) -> Optional[int]: """simple docstring""" pass def lowercase_ ( self :Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def lowercase_ ( self :Union[str, Any] ) -> Optional[Any]: """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Optional[int] = BitModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def __a ( ): """simple docstring""" lowerCamelCase__ : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def lowercase_ ( self :Tuple ) -> Dict: """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase_ ( self :List[Any] ) -> int: """simple docstring""" lowerCamelCase__ : Optional[int] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__UpperCAmelCase ) lowerCamelCase__ : Any = self.default_image_processor lowerCamelCase__ : Optional[int] = prepare_img() lowerCamelCase__ : List[Any] = image_processor(images=__UpperCAmelCase ,return_tensors='''pt''' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCamelCase__ : Union[str, Any] = model(**__UpperCAmelCase ) # verify the logits lowerCamelCase__ : int = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape ,__UpperCAmelCase ) lowerCamelCase__ : int = torch.tensor([[-0.6_526, -0.5_263, -1.4_398]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__UpperCAmelCase ,atol=1E-4 ) ) @require_torch class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase , unittest.TestCase ): UpperCAmelCase = (BitBackbone,) if is_torch_available() else () UpperCAmelCase = BitConfig UpperCAmelCase = False def lowercase_ ( self :List[str] ) -> int: """simple docstring""" lowerCamelCase__ : Any = BitModelTester(self )
121
"""simple docstring""" import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def __a ( _lowercase ): """simple docstring""" lowerCamelCase__ : Any = os.path.join(args.tf_model_dir , '''parameters.json''' ) lowerCamelCase__ : Optional[Any] = json.loads(open(_lowercase ).read() ) if not params: raise ValueError( f"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith('''.pt''' ): lowerCamelCase__ : Any = args.output + '''.pt''' lowerCamelCase__ : List[str] = OrderedDict() with tf.device('''/CPU:0''' ): lowerCamelCase__ : List[str] = tf.train.load_checkpoint(args.tf_model_dir ) lowerCamelCase__ : Tuple = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowerCamelCase__ : Any = reader.get_tensor(_lowercase ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): lowerCamelCase__ : Tuple = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): lowerCamelCase__ : Union[str, Any] = 8 lowerCamelCase__ : Optional[Any] = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowerCamelCase__ : List[str] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__ : List[str] = torch.tensor(_lowercase ) elif key_name.startswith('''model/moe''' ): lowerCamelCase__ : Dict = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): lowerCamelCase__ : Any = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player lowerCamelCase__ : int = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__ : List[Any] = torch.tensor(_lowercase ) elif key_name.endswith('''/softmlp/kernel''' ): lowerCamelCase__ : Optional[Any] = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player lowerCamelCase__ : List[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__ : Dict = torch.tensor(_lowercase ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): lowerCamelCase__ : Optional[int] = key_name[-9:-7] for i in range(16 ): lowerCamelCase__ : str = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) lowerCamelCase__ : Union[str, Any] = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowerCamelCase__ : Optional[int] = torch.tensor(_lowercase ) elif key_name.startswith('''model/mlp''' ): lowerCamelCase__ : Dict = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): lowerCamelCase__ : Dict = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player lowerCamelCase__ : Any = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__ : Tuple = torch.tensor(_lowercase ) elif key_name.endswith('''/p1/bias''' ): lowerCamelCase__ : Union[str, Any] = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player lowerCamelCase__ : Dict = vnp.copy() # same because it is one dimensional lowerCamelCase__ : Union[str, Any] = torch.tensor(_lowercase ) elif key_name.endswith('''/p2/kernel''' ): lowerCamelCase__ : Tuple = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player lowerCamelCase__ : Union[str, Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__ : Any = torch.tensor(_lowercase ) elif key_name.endswith('''/p2/bias''' ): lowerCamelCase__ : int = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player lowerCamelCase__ : Dict = vnp.copy() # same because it is one dimensional lowerCamelCase__ : List[Any] = torch.tensor(_lowercase ) elif key_name.startswith('''model/ln''' ): lowerCamelCase__ : Tuple = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowerCamelCase__ : Union[str, Any] = '''model.blocks.%d.feed_forward.norm.bias''' % player lowerCamelCase__ : Tuple = vnp.copy() # same because it is one dimensional lowerCamelCase__ : int = torch.tensor(_lowercase ) elif key_name.endswith('''/g''' ): lowerCamelCase__ : Tuple = '''model.blocks.%d.feed_forward.norm.weight''' % player lowerCamelCase__ : Union[str, Any] = vnp.copy() # same because it is one dimensional lowerCamelCase__ : List[str] = torch.tensor(_lowercase ) elif key_name.startswith('''model/att''' ): lowerCamelCase__ : str = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): lowerCamelCase__ : List[Any] = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowerCamelCase__ : Optional[Any] = state[:, 0, :, :] lowerCamelCase__ : int = state[:, 1, :, :] lowerCamelCase__ : Optional[int] = state[:, 2, :, :] lowerCamelCase__ : str = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__ : str = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__ : Tuple = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__ : Optional[Any] = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player lowerCamelCase__ : Dict = torch.tensor(_lowercase ) lowerCamelCase__ : str = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player lowerCamelCase__ : Optional[int] = torch.tensor(_lowercase ) lowerCamelCase__ : Union[str, Any] = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player lowerCamelCase__ : int = torch.tensor(_lowercase ) elif key_name.endswith('''/o/kernel''' ): lowerCamelCase__ : List[str] = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player lowerCamelCase__ : Any = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__ : Any = torch.tensor(_lowercase ) elif key_name.startswith('''model/an''' ): lowerCamelCase__ : str = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowerCamelCase__ : int = '''model.blocks.%d.self_attn.norm.bias''' % player lowerCamelCase__ : Tuple = vnp.copy() # same because it is one dimensional lowerCamelCase__ : Optional[Any] = torch.tensor(_lowercase ) elif key_name.endswith('''/g''' ): lowerCamelCase__ : int = '''model.blocks.%d.self_attn.norm.weight''' % player lowerCamelCase__ : Union[str, Any] = vnp.copy() # same because it is one dimensional lowerCamelCase__ : Any = torch.tensor(_lowercase ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): lowerCamelCase__ : Optional[int] = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] lowerCamelCase__ : List[Any] = '''model.%s.weight''' % nlayer lowerCamelCase__ : List[Any] = vnp.copy() # same in embedded lowerCamelCase__ : Optional[int] = torch.tensor(_lowercase ) if key_name.startswith('''model/wte''' ): lowerCamelCase__ : str = '''lm_head.weight''' lowerCamelCase__ : Dict = vnp.copy() # same in embedded lowerCamelCase__ : List[str] = torch.tensor(_lowercase ) elif key_name.startswith('''model/wob''' ): lowerCamelCase__ : List[Any] = '''final_logits_bias''' lowerCamelCase__ : List[str] = vnp.copy() # same in embedded lowerCamelCase__ : int = state.reshape((1, -1) ) lowerCamelCase__ : Optional[int] = torch.tensor(_lowercase ) elif key_name == "model/dense/kernel": lowerCamelCase__ : List[Any] = '''model.last_project.weight''' lowerCamelCase__ : List[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__ : Dict = torch.tensor(_lowercase ) elif key_name == "model/dense_1/bias": lowerCamelCase__ : Dict = '''model.last_project.bias''' lowerCamelCase__ : Tuple = vnp.copy() # same because it is one dimensional lowerCamelCase__ : Dict = torch.tensor(_lowercase ) torch.save(_lowercase , args.output ) if __name__ == "__main__": UpperCAmelCase : Tuple = argparse.ArgumentParser( description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model") parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model") UpperCAmelCase : Any = parser.parse_args() convert_tf_gptsan_to_pt(args)
121
1
'''simple docstring''' from math import sqrt def _lowerCAmelCase ( lowercase : int = 1_0_0_0_0_0_0 ) ->int: """simple docstring""" lowercase__ = 0 lowercase__ = 0 lowercase__ = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(lowercase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
161
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _lowerCAmelCase ( lowercase : str , lowercase : str , **lowercase : Tuple ) ->Tuple: """simple docstring""" lowercase__ = AutoConfig.from_pretrained(lowercase , **lowercase ) lowercase__ = AutoModelForSeqaSeqLM.from_config(lowercase ) model.save_pretrained(lowercase ) AutoTokenizer.from_pretrained(lowercase ).save_pretrained(lowercase ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
161
1
"""simple docstring""" def snake_case__ ( _SCREAMING_SNAKE_CASE ) ->bool: if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True UpperCAmelCase__ = 4 UpperCAmelCase__ = (1 << p) - 1 for _ in range(p - 2 ): UpperCAmelCase__ = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
422
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self ): UpperCAmelCase__ = tempfile.mkdtemp() # fmt: off UpperCAmelCase__ = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest"""] # fmt: on UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) UpperCAmelCase__ = { """do_resize""": True, """size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.5, 0.5, 0.5], """image_std""": [0.5, 0.5, 0.5], } UpperCAmelCase__ = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__lowercase , __lowercase ) def A__ ( self , **__lowercase ): return BertTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def A__ ( self , **__lowercase ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def A__ ( self ): shutil.rmtree(self.tmpdirname ) def A__ ( self ): UpperCAmelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase__ = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def A__ ( self ): UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def A__ ( self ): UpperCAmelCase__ = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCAmelCase__ = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 ) UpperCAmelCase__ = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def A__ ( self ): UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = image_processor(__lowercase , return_tensors="""np""" ) UpperCAmelCase__ = processor(images=__lowercase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A__ ( self ): UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) UpperCAmelCase__ = """lower newer""" UpperCAmelCase__ = processor(text=__lowercase ) UpperCAmelCase__ = tokenizer(__lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A__ ( self ): UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) UpperCAmelCase__ = """lower newer""" UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with self.assertRaises(__lowercase ): processor() def A__ ( self ): UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) UpperCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase__ = processor.batch_decode(__lowercase ) UpperCAmelCase__ = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def A__ ( self ): UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) UpperCAmelCase__ = """lower newer""" UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
422
1
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __UpperCAmelCase = random.Random() def UpperCamelCase ( snake_case__ : List[Any] , snake_case__ : str=1.0 , snake_case__ : int=None , snake_case__ : Union[str, Any]=None ) -> Any: if rng is None: UpperCamelCase : int = global_rng UpperCamelCase : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=400, SCREAMING_SNAKE_CASE_=2000, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=1_6000, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, ) -> List[str]: UpperCamelCase : Dict = parent UpperCamelCase : Dict = batch_size UpperCamelCase : Any = min_seq_length UpperCamelCase : Optional[int] = max_seq_length UpperCamelCase : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase : Tuple = feature_size UpperCamelCase : Any = padding_value UpperCamelCase : Tuple = sampling_rate UpperCamelCase : Optional[Any] = return_attention_mask UpperCamelCase : Optional[Any] = do_normalize def snake_case_ ( self ) -> Union[str, Any]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def snake_case_ ( self, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False ) -> Union[str, Any]: def _flatten(SCREAMING_SNAKE_CASE_ ): return list(itertools.chain(*SCREAMING_SNAKE_CASE_ ) ) if equal_length: UpperCamelCase : List[str] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCamelCase : Union[str, Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: UpperCamelCase : str = [np.asarray(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs] return speech_inputs class lowerCAmelCase_ ( a__ , unittest.TestCase ): UpperCAmelCase__ : Any = WavaVecaFeatureExtractor def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Tuple = WavaVecaFeatureExtractionTester(self ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: self.assertTrue(np.all(np.mean(SCREAMING_SNAKE_CASE_, axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(SCREAMING_SNAKE_CASE_, axis=0 ) - 1 ) < 1e-3 ) ) def snake_case_ ( self ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus UpperCamelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase : Any = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : Dict = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs] # Test not batched input UpperCamelCase : List[Any] = feat_extract(speech_inputs[0], return_tensors='np' ).input_values UpperCamelCase : Union[str, Any] = feat_extract(np_speech_inputs[0], return_tensors='np' ).input_values self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) # Test batched UpperCamelCase : List[Any] = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values UpperCamelCase : int = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase : Optional[int] = np.asarray(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values UpperCamelCase : Dict = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) def snake_case_ ( self ) -> int: UpperCamelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Dict = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : str = ['longest', 'max_length', 'do_not_pad'] UpperCamelCase : Any = [None, 1600, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[Any] = feat_extract(SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, return_tensors='np' ) UpperCamelCase : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def snake_case_ ( self ) -> Tuple: UpperCamelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Tuple = range(800, 1400, 200 ) UpperCamelCase : str = [floats_list((1, x) )[0] for x in lengths] UpperCamelCase : int = ['longest', 'max_length', 'do_not_pad'] UpperCamelCase : List[str] = [None, 1600, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Tuple = feat_extract(SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : int = feat_extract( SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=1000, padding='max_length', return_tensors='np' ) UpperCamelCase : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def snake_case_ ( self ) -> List[Any]: UpperCamelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : Any = feat_extract( SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=1000, padding='longest', return_tensors='np' ) UpperCamelCase : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) UpperCamelCase : str = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : Any = feat_extract( SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=2000, padding='longest', return_tensors='np' ) UpperCamelCase : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def snake_case_ ( self ) -> str: import torch UpperCamelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Dict = np.random.rand(100 ).astype(np.floataa ) UpperCamelCase : Dict = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase : Union[str, Any] = feature_extractor.pad([{'input_values': inputs}], return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCamelCase : Any = feature_extractor.pad([{'input_values': inputs}], return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def snake_case_ ( self ) -> Tuple: # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: UpperCamelCase : int = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask, config.feat_extract_norm == 'layer' )
40
"""simple docstring""" from __future__ import annotations from collections.abc import Callable SCREAMING_SNAKE_CASE_ = list[list[float | int]] def lowercase__ ( lowerCAmelCase : Matrix , lowerCAmelCase : Matrix ) -> Matrix: """simple docstring""" UpperCAmelCase = len(lowerCAmelCase ) UpperCAmelCase = [[0 for _ in range(size + 1 )] for _ in range(lowerCAmelCase )] UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 42 for row in range(lowerCAmelCase ): for col in range(lowerCAmelCase ): UpperCAmelCase = matrix[row][col] UpperCAmelCase = vector[row][0] UpperCAmelCase = 0 UpperCAmelCase = 0 while row < size and col < size: # pivoting UpperCAmelCase = max((abs(augmented[rowa][col] ), rowa) for rowa in range(lowerCAmelCase , lowerCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: UpperCAmelCase , UpperCAmelCase = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , lowerCAmelCase ): UpperCAmelCase = augmented[rowa][col] / augmented[row][col] UpperCAmelCase = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , lowerCAmelCase ): for row in range(lowerCAmelCase ): UpperCAmelCase = augmented[row][col] / augmented[col][col] for cola in range(lowerCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(lowerCAmelCase ) ] def lowercase__ ( lowerCAmelCase : list[int] ) -> Callable[[int], int]: """simple docstring""" UpperCAmelCase = len(lowerCAmelCase ) UpperCAmelCase = [[0 for _ in range(lowerCAmelCase )] for _ in range(lowerCAmelCase )] UpperCAmelCase = [[0] for _ in range(lowerCAmelCase )] UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 42 for x_val, y_val in enumerate(lowerCAmelCase ): for col in range(lowerCAmelCase ): UpperCAmelCase = (x_val + 1) ** (size - col - 1) UpperCAmelCase = y_val UpperCAmelCase = solve(lowerCAmelCase , lowerCAmelCase ) def interpolated_func(lowerCAmelCase : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(lowerCAmelCase ) ) return interpolated_func def lowercase__ ( lowerCAmelCase : int ) -> int: """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowercase__ ( lowerCAmelCase : Callable[[int], int] = question_function , lowerCAmelCase : int = 10 ) -> int: """simple docstring""" UpperCAmelCase = [func(lowerCAmelCase ) for x_val in range(1 , order + 1 )] UpperCAmelCase = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] UpperCAmelCase = 0 UpperCAmelCase = 42 UpperCAmelCase = 42 for poly in polynomials: UpperCAmelCase = 1 while func(lowerCAmelCase ) == poly(lowerCAmelCase ): x_val += 1 ret += poly(lowerCAmelCase ) return ret if __name__ == "__main__": print(F'{solution() = }')
373
0
"""simple docstring""" import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( '''The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion''' ) A = None A = { '''7B''': 11_008, '''13B''': 13_824, '''30B''': 17_920, '''65B''': 22_016, '''70B''': 28_672, } A = { '''7B''': 1, '''7Bf''': 1, '''13B''': 2, '''13Bf''': 2, '''30B''': 4, '''65B''': 8, '''70B''': 8, '''70Bf''': 8, } def __A ( a_ :Dict , a_ :str=1 , a_ :List[str]=2_56) -> Optional[int]: return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of) def __A ( a_ :List[str]) -> Optional[int]: with open(a_ , '''r''') as f: return json.load(a_) def __A ( a_ :List[Any] , a_ :List[Any]) -> str: with open(a_ , '''w''') as f: json.dump(a_ , a_) def __A ( a_ :int , a_ :Dict , a_ :List[Any] , a_ :Any=True) -> Tuple: os.makedirs(a_ , exist_ok=a_) __a : Any = os.path.join(a_ , '''tmp''') os.makedirs(a_ , exist_ok=a_) __a : Union[str, Any] = read_json(os.path.join(a_ , '''params.json''')) __a : List[str] = NUM_SHARDS[model_size] __a : Union[str, Any] = params['''n_layers'''] __a : List[Any] = params['''n_heads'''] __a : Any = n_heads // num_shards __a : Tuple = params['''dim'''] __a : List[Any] = dim // n_heads __a : List[Any] = 1_00_00.0 __a : List[Any] = 1.0 / (base ** (torch.arange(0 , a_ , 2).float() / dims_per_head)) if "n_kv_heads" in params: __a : int = params['''n_kv_heads'''] # for GQA / MQA __a : Optional[Any] = n_heads_per_shard // num_key_value_heads __a : Any = dim // num_key_value_heads else: # compatibility with other checkpoints __a : List[Any] = n_heads __a : int = n_heads_per_shard __a : Union[str, Any] = dim # permute for sliced rotary def permute(a_ :Any , a_ :Optional[int]=n_heads , a_ :Any=dim , a_ :int=dim): return w.view(a_ , dima // n_heads // 2 , 2 , a_).transpose(1 , 2).reshape(a_ , a_) print(F"""Fetching all parameters from the checkpoint at {input_base_path}.""") # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) __a : Any = torch.load(os.path.join(a_ , '''consolidated.00.pth''') , map_location='''cpu''') else: # Sharded __a : Dict = [ torch.load(os.path.join(a_ , F"""consolidated.{i:02d}.pth""") , map_location='''cpu''') for i in range(a_) ] __a : Tuple = 0 __a : Any = {'''weight_map''': {}} for layer_i in range(a_): __a : Optional[int] = F"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded __a : Tuple = { F"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute( loaded[F"""layers.{layer_i}.attention.wq.weight"""]), F"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute( loaded[F"""layers.{layer_i}.attention.wk.weight"""]), F"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[F"""layers.{layer_i}.attention.wv.weight"""], F"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[F"""layers.{layer_i}.attention.wo.weight"""], F"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w1.weight"""], F"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w2.weight"""], F"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w3.weight"""], F"""model.layers.{layer_i}.input_layernorm.weight""": loaded[F"""layers.{layer_i}.attention_norm.weight"""], F"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[F"""layers.{layer_i}.ffn_norm.weight"""], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. __a : int = { F"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][ F"""layers.{layer_i}.attention_norm.weight""" ].clone(), F"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][ F"""layers.{layer_i}.ffn_norm.weight""" ].clone(), } __a : Union[str, Any] = permute( torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wq.weight"""].view(a_ , a_ , a_) for i in range(a_) ] , dim=0 , ).reshape(a_ , a_)) __a : Optional[Any] = permute( torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wk.weight"""].view( a_ , a_ , a_) for i in range(a_) ] , dim=0 , ).reshape(a_ , a_) , a_ , a_ , a_ , ) __a : Dict = torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wv.weight"""].view( a_ , a_ , a_) for i in range(a_) ] , dim=0 , ).reshape(a_ , a_) __a : Dict = torch.cat( [loaded[i][F"""layers.{layer_i}.attention.wo.weight"""] for i in range(a_)] , dim=1) __a : List[Any] = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(a_)] , dim=0) __a : List[Any] = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(a_)] , dim=1) __a : List[str] = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(a_)] , dim=0) __a : Union[str, Any] = inv_freq for k, v in state_dict.items(): __a : List[Any] = filename param_count += v.numel() torch.save(a_ , os.path.join(a_ , a_)) __a : List[Any] = F"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded __a : Optional[int] = { '''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''], '''model.norm.weight''': loaded['''norm.weight'''], '''lm_head.weight''': loaded['''output.weight'''], } else: __a : List[Any] = { '''model.norm.weight''': loaded[0]['''norm.weight'''], '''model.embed_tokens.weight''': torch.cat( [loaded[i]['''tok_embeddings.weight'''] for i in range(a_)] , dim=1), '''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(a_)] , dim=0), } for k, v in state_dict.items(): __a : Any = filename param_count += v.numel() torch.save(a_ , os.path.join(a_ , a_)) # Write configs __a : Optional[int] = {'''total_size''': param_count * 2} write_json(a_ , os.path.join(a_ , '''pytorch_model.bin.index.json''')) __a : Union[str, Any] = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1 __a : Any = params['''multiple_of'''] if '''multiple_of''' in params else 2_56 __a : Optional[int] = LlamaConfig( hidden_size=a_ , intermediate_size=compute_intermediate_size(a_ , a_ , a_) , num_attention_heads=params['''n_heads'''] , num_hidden_layers=params['''n_layers'''] , rms_norm_eps=params['''norm_eps'''] , num_key_value_heads=a_ , ) config.save_pretrained(a_) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('''Loading the checkpoint in a Llama model.''') __a : str = LlamaForCausalLM.from_pretrained(a_ , torch_dtype=torch.floataa , low_cpu_mem_usage=a_) # Avoid saving this as part of the config. del model.config._name_or_path print('''Saving in the Transformers format.''') model.save_pretrained(a_ , safe_serialization=a_) shutil.rmtree(a_) def __A ( a_ :Any , a_ :str) -> int: # Initialize the tokenizer based on the `spm` model __a : Optional[int] = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(F"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""") __a : str = tokenizer_class(a_) tokenizer.save_pretrained(a_) def __A ( ) -> Tuple: __a : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--input_dir''' , help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' , ) parser.add_argument( '''--model_size''' , choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] , ) parser.add_argument( '''--output_dir''' , help='''Location to write HF model and tokenizer''' , ) parser.add_argument('''--safe_serialization''' , type=a_ , help='''Whether or not to save using `safetensors`.''') __a : Optional[Any] = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) __a : Optional[Any] = os.path.join(args.input_dir , '''tokenizer.model''') write_tokenizer(args.output_dir , a_) if __name__ == "__main__": main()
705
"""simple docstring""" import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=2 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=36 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=6 , _UpperCAmelCase=6 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , _UpperCAmelCase=1000 , ): __a : Dict = parent __a : Optional[int] = batch_size __a : Optional[int] = num_channels __a : List[Any] = image_size __a : int = patch_size __a : Tuple = text_seq_length __a : Dict = is_training __a : str = use_input_mask __a : Optional[int] = use_token_type_ids __a : List[Any] = use_labels __a : Tuple = vocab_size __a : str = hidden_size __a : Any = num_hidden_layers __a : List[str] = num_attention_heads __a : str = intermediate_size __a : int = hidden_act __a : List[Any] = hidden_dropout_prob __a : Tuple = attention_probs_dropout_prob __a : Tuple = max_position_embeddings __a : List[Any] = type_vocab_size __a : int = type_sequence_label_size __a : str = initializer_range __a : Dict = coordinate_size __a : int = shape_size __a : int = num_labels __a : Optional[int] = num_choices __a : Any = scope __a : Any = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __a : Optional[int] = text_seq_length __a : str = (image_size // patch_size) ** 2 + 1 __a : Tuple = self.text_seq_length + self.image_seq_length def _lowerCamelCase ( self ): __a : List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __a : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __a : Optional[Any] = bbox[i, j, 3] __a : Union[str, Any] = bbox[i, j, 1] __a : Tuple = t if bbox[i, j, 2] < bbox[i, j, 0]: __a : Optional[int] = bbox[i, j, 2] __a : Optional[int] = bbox[i, j, 0] __a : str = t __a : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : Union[str, Any] = None if self.use_input_mask: __a : int = random_attention_mask([self.batch_size, self.text_seq_length] ) __a : int = None if self.use_token_type_ids: __a : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __a : Optional[int] = None __a : Dict = None if self.use_labels: __a : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __a : int = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Union[str, Any] = LayoutLMvaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() # text + image __a : Union[str, Any] = model(_UpperCAmelCase , pixel_values=_UpperCAmelCase ) __a : List[Any] = model( _UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __a : Optional[int] = model(_UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __a : List[str] = model(_UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __a : int = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __a : Tuple = model(pixel_values=_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Optional[Any] = self.num_labels __a : Optional[Any] = LayoutLMvaForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : Union[str, Any] = model( _UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : List[str] = self.num_labels __a : int = LayoutLMvaForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : List[str] = model( _UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : List[Any] = LayoutLMvaForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : List[str] = model( _UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self ): __a : Optional[int] = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : List[Any] = config_and_inputs __a : Optional[int] = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) __lowerCAmelCase = ( {'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel} if is_torch_available() else {} ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def _lowerCamelCase ( self ): __a : str = LayoutLMvaModelTester(self ) __a : int = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): __a : int = copy.deepcopy(_UpperCAmelCase ) if model_class in get_values(_UpperCAmelCase ): __a : List[str] = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(_UpperCAmelCase , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_UpperCAmelCase ): __a : Dict = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) elif model_class in get_values(_UpperCAmelCase ): __a : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) __a : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) elif model_class in [ *get_values(_UpperCAmelCase ), ]: __a : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) elif model_class in [ *get_values(_UpperCAmelCase ), ]: __a : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=_UpperCAmelCase , ) return inputs_dict def _lowerCamelCase ( self ): self.config_tester.run_common_tests() def _lowerCamelCase ( self ): __a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __a : Optional[Any] = type self.model_tester.create_and_check_model(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) @slow def _lowerCamelCase ( self ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : Tuple = LayoutLMvaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def __A ( ) -> Dict: __a : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCamelCase ( self ): return LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase ) if is_vision_available() else None @slow def _lowerCamelCase ( self ): __a : List[Any] = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(_UpperCAmelCase ) __a : Dict = self.default_image_processor __a : Tuple = prepare_img() __a : Optional[Any] = image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ).pixel_values.to(_UpperCAmelCase ) __a : Tuple = torch.tensor([[1, 2]] ) __a : Dict = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __a : Tuple = model( input_ids=input_ids.to(_UpperCAmelCase ) , bbox=bbox.to(_UpperCAmelCase ) , pixel_values=pixel_values.to(_UpperCAmelCase ) , ) # verify the logits __a : Any = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , _UpperCAmelCase ) __a : Union[str, Any] = torch.tensor( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
101
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { """Salesforce/blip-vqa-base""": """https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json""", """Salesforce/blip-vqa-capfit-large""": ( """https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json""" ), """Salesforce/blip-image-captioning-base""": ( """https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json""" ), """Salesforce/blip-image-captioning-large""": ( """https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json""" ), """Salesforce/blip-itm-base-coco""": """https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json""", """Salesforce/blip-itm-large-coco""": """https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json""", """Salesforce/blip-itm-base-flikr""": """https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json""", """Salesforce/blip-itm-large-flikr""": ( """https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json""" ), } class A_ ( a_ ): _SCREAMING_SNAKE_CASE = """blip_text_model""" def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str=3_05_24 , __SCREAMING_SNAKE_CASE : Any=7_68 , __SCREAMING_SNAKE_CASE : List[Any]=7_68 , __SCREAMING_SNAKE_CASE : Tuple=30_72 , __SCREAMING_SNAKE_CASE : Any=7_68 , __SCREAMING_SNAKE_CASE : Tuple=12 , __SCREAMING_SNAKE_CASE : Dict=8 , __SCREAMING_SNAKE_CASE : int=5_12 , __SCREAMING_SNAKE_CASE : List[Any]="gelu" , __SCREAMING_SNAKE_CASE : int=1E-12 , __SCREAMING_SNAKE_CASE : Tuple=0.0 , __SCREAMING_SNAKE_CASE : Tuple=0.0 , __SCREAMING_SNAKE_CASE : Dict=0.02 , __SCREAMING_SNAKE_CASE : Optional[int]=3_05_22 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : List[str]=0 , __SCREAMING_SNAKE_CASE : Optional[int]=1_02 , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Dict=True , **__SCREAMING_SNAKE_CASE : str , ): super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , sep_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __a = vocab_size __a = hidden_size __a = encoder_hidden_size __a = intermediate_size __a = projection_dim __a = hidden_dropout_prob __a = num_hidden_layers __a = num_attention_heads __a = max_position_embeddings __a = layer_norm_eps __a = hidden_act __a = initializer_range __a = attention_probs_dropout_prob __a = is_decoder __a = use_cache @classmethod def _UpperCAmelCase ( cls : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , **__SCREAMING_SNAKE_CASE : int ): cls._set_token_in_kwargs(__SCREAMING_SNAKE_CASE ) __a , __a = cls.get_config_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) # get the text config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": __a = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class A_ ( a_ ): _SCREAMING_SNAKE_CASE = """blip_vision_model""" def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : str=7_68 , __SCREAMING_SNAKE_CASE : Optional[Any]=30_72 , __SCREAMING_SNAKE_CASE : List[Any]=5_12 , __SCREAMING_SNAKE_CASE : int=12 , __SCREAMING_SNAKE_CASE : Optional[Any]=12 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3_84 , __SCREAMING_SNAKE_CASE : str=16 , __SCREAMING_SNAKE_CASE : Optional[Any]="gelu" , __SCREAMING_SNAKE_CASE : Union[str, Any]=1E-5 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , __SCREAMING_SNAKE_CASE : List[Any]=1E-10 , **__SCREAMING_SNAKE_CASE : List[str] , ): super().__init__(**__SCREAMING_SNAKE_CASE ) __a = hidden_size __a = intermediate_size __a = projection_dim __a = num_hidden_layers __a = num_attention_heads __a = patch_size __a = image_size __a = initializer_range __a = attention_dropout __a = layer_norm_eps __a = hidden_act @classmethod def _UpperCAmelCase ( cls : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , **__SCREAMING_SNAKE_CASE : str ): cls._set_token_in_kwargs(__SCREAMING_SNAKE_CASE ) __a , __a = cls.get_config_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) # get the vision config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": __a = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class A_ ( a_ ): _SCREAMING_SNAKE_CASE = """blip""" _SCREAMING_SNAKE_CASE = True def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : int=5_12 , __SCREAMING_SNAKE_CASE : List[Any]=2.65_92 , __SCREAMING_SNAKE_CASE : Any=2_56 , **__SCREAMING_SNAKE_CASE : Any , ): super().__init__(**__SCREAMING_SNAKE_CASE ) if text_config is None: __a = {} logger.info("`text_config` is `None`. Initializing the `BlipTextConfig` with default values." ) if vision_config is None: __a = {} logger.info("`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values." ) __a = BlipTextConfig(**__SCREAMING_SNAKE_CASE ) __a = BlipVisionConfig(**__SCREAMING_SNAKE_CASE ) __a = self.vision_config.hidden_size __a = projection_dim __a = logit_scale_init_value __a = 1.0 __a = 0.02 __a = image_text_hidden_size @classmethod def _UpperCAmelCase ( cls : Any , __SCREAMING_SNAKE_CASE : BlipTextConfig , __SCREAMING_SNAKE_CASE : BlipVisionConfig , **__SCREAMING_SNAKE_CASE : List[Any] ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Union[str, Any] ): __a = copy.deepcopy(self.__dict__ ) __a = self.text_config.to_dict() __a = self.vision_config.to_dict() __a = self.__class__.model_type return output
197
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) def __A ( _A , _A , _A , _A ): """simple docstring""" __a = original_name.split("." )[0] __a = key.split("." ) __a = int(key_list[key_list.index(_A ) - 2] ) __a = int(key_list[key_list.index(_A ) - 1] ) __a = orig_block_num - offset __a = key.replace(f"""{orig_block_num}.{layer_num}.{original_name}""" , f"""block.{new_block_num}.{layer_num}.{new_name}""" ) return key def __A ( _A ): """simple docstring""" __a = OrderedDict() __a , __a = 0, 0 for key, value in state_dict.items(): if key.startswith("network" ): __a = key.replace("network" , "poolformer.encoder" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias" ) and "patch_embed" not in key: patch_emb_offset += 1 __a = key[: key.find("proj" )] __a = key.replace(_A , f"""patch_embeddings.{total_embed_found}.""" ) __a = key.replace("proj" , "projection" ) if key.endswith("bias" ): total_embed_found += 1 if "patch_embeddings" in key: __a = "poolformer.encoder." + key if "mlp.fc1" in key: __a = replace_key_with_offset(_A , _A , "mlp.fc1" , "output.conv1" ) if "mlp.fc2" in key: __a = replace_key_with_offset(_A , _A , "mlp.fc2" , "output.conv2" ) if "norm1" in key: __a = replace_key_with_offset(_A , _A , "norm1" , "before_norm" ) if "norm2" in key: __a = replace_key_with_offset(_A , _A , "norm2" , "after_norm" ) if "layer_scale_1" in key: __a = replace_key_with_offset(_A , _A , "layer_scale_1" , "layer_scale_1" ) if "layer_scale_2" in key: __a = replace_key_with_offset(_A , _A , "layer_scale_2" , "layer_scale_2" ) if "head" in key: __a = key.replace("head" , "classifier" ) __a = value return new_state_dict def __A ( ): """simple docstring""" __a = "http://images.cocodataset.org/val2017/000000039769.jpg" __a = Image.open(requests.get(_A , stream=_A ).raw ) return image @torch.no_grad() def __A ( _A , _A , _A ): """simple docstring""" __a = PoolFormerConfig() # set attributes based on model_name __a = "huggingface/label-files" __a = model_name[-3:] __a = 1000 __a = "imagenet-1k-id2label.json" __a = (1, 1000) # set config attributes __a = json.load(open(hf_hub_download(_A , _A , repo_type="dataset" ) , "r" ) ) __a = {int(_A ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} if size == "s12": __a = [2, 2, 6, 2] __a = [64, 128, 320, 512] __a = 4.0 __a = 0.9 elif size == "s24": __a = [4, 4, 12, 4] __a = [64, 128, 320, 512] __a = 4.0 __a = 0.9 elif size == "s36": __a = [6, 6, 18, 6] __a = [64, 128, 320, 512] __a = 4.0 __a = 1E-6 __a = 0.9 elif size == "m36": __a = [6, 6, 18, 6] __a = [96, 192, 384, 768] __a = 4.0 __a = 1E-6 __a = 0.95 elif size == "m48": __a = [8, 8, 24, 8] __a = [96, 192, 384, 768] __a = 4.0 __a = 1E-6 __a = 0.95 else: raise ValueError(f"""Size {size} not supported""" ) # load image processor __a = PoolFormerImageProcessor(crop_pct=_A ) # Prepare image __a = prepare_img() __a = image_processor(images=_A , return_tensors="pt" ).pixel_values logger.info(f"""Converting model {model_name}...""" ) # load original state dict __a = torch.load(_A , map_location=torch.device("cpu" ) ) # rename keys __a = rename_keys(_A ) # create HuggingFace model and load state dict __a = PoolFormerForImageClassification(_A ) model.load_state_dict(_A ) model.eval() # Define image processor __a = PoolFormerImageProcessor(crop_pct=_A ) __a = image_processor(images=prepare_img() , return_tensors="pt" ).pixel_values # forward pass __a = model(_A ) __a = outputs.logits # define expected logit slices for different models if size == "s12": __a = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": __a = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": __a = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": __a = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": __a = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(f"""Size {size} not supported""" ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , _A , atol=1E-2 ) # finally, save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_A ).mkdir(exist_ok=_A ) model.save_pretrained(_A ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_A ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""poolformer_s12""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) SCREAMING_SNAKE_CASE : Any = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
197
1
"""simple docstring""" from __future__ import annotations _SCREAMING_SNAKE_CASE = """Muhammad Umer Farooq""" _SCREAMING_SNAKE_CASE = """MIT""" _SCREAMING_SNAKE_CASE = """1.0.0""" _SCREAMING_SNAKE_CASE = """Muhammad Umer Farooq""" _SCREAMING_SNAKE_CASE = """contact@muhammadumerfarooq.me""" _SCREAMING_SNAKE_CASE = """Alpha""" import re from html.parser import HTMLParser from urllib import parse import requests class __magic_name__ ( lowercase__ ): def __init__( self : int , snake_case_ : str ): super().__init__() __snake_case = [] __snake_case = domain def lowerCAmelCase ( self : List[str] , snake_case_ : str , snake_case_ : list[tuple[str, str | None]] ): # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: __snake_case = parse.urljoin(self.domain , snake_case_ ) self.urls.append(snake_case_ ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return ".".join(get_sub_domain_name(SCREAMING_SNAKE_CASE ).split("." )[-2:] ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return parse.urlparse(SCREAMING_SNAKE_CASE ).netloc def __UpperCamelCase ( SCREAMING_SNAKE_CASE = "https://github.com" ) -> list[str]: """simple docstring""" __snake_case = get_domain_name(SCREAMING_SNAKE_CASE ) # Initialize the parser __snake_case = Parser(SCREAMING_SNAKE_CASE ) try: # Open URL __snake_case = requests.get(SCREAMING_SNAKE_CASE ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through __snake_case = set() for link in parser.urls: # open URL. # read = requests.get(link) try: __snake_case = requests.get(SCREAMING_SNAKE_CASE ) # Get the valid email. __snake_case = re.findall("[a-zA-Z0-9]+@" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(SCREAMING_SNAKE_CASE ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = emails_from_url("""https://github.com""") print(F"""{len(emails)} emails found:""") print("""\n""".join(sorted(emails)))
705
"""simple docstring""" from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __UpperCamelCase ( ) -> tuple[list[int], int]: """simple docstring""" __snake_case = [randint(-10_00 , 10_00 ) for i in range(10 )] __snake_case = randint(-50_00 , 50_00 ) return (arr, r) _SCREAMING_SNAKE_CASE = make_dataset() def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> tuple[int, ...]: """simple docstring""" for triplet in permutations(SCREAMING_SNAKE_CASE , 3 ): if sum(SCREAMING_SNAKE_CASE ) == target: return tuple(sorted(SCREAMING_SNAKE_CASE ) ) return (0, 0, 0) def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> tuple[int, int, int]: """simple docstring""" arr.sort() __snake_case = len(SCREAMING_SNAKE_CASE ) for i in range(n - 1 ): __snake_case , __snake_case = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __UpperCamelCase ( ) -> tuple[float, float]: """simple docstring""" __snake_case = "\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n" __snake_case = "\ntriplet_sum1(*dataset)\n" __snake_case = "\ntriplet_sum2(*dataset)\n" __snake_case = repeat(setup=SCREAMING_SNAKE_CASE , stmt=SCREAMING_SNAKE_CASE , repeat=5 , number=1_00_00 ) __snake_case = repeat(setup=SCREAMING_SNAKE_CASE , stmt=SCREAMING_SNAKE_CASE , repeat=5 , number=1_00_00 ) return (min(SCREAMING_SNAKE_CASE ), min(SCREAMING_SNAKE_CASE )) if __name__ == "__main__": from doctest import testmod testmod() _SCREAMING_SNAKE_CASE = solution_times() print(F"""The time for naive implementation is {times[0]}.""") print(F"""The time for optimized implementation is {times[1]}.""")
614
0
"""simple docstring""" import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __magic_name__ : Optional[int] = Mapping[str, np.ndarray] __magic_name__ : Any = Mapping[str, Any] # Is a nested dict. __magic_name__ : List[Any] = 0.0_1 @dataclasses.dataclass(frozen=lowerCamelCase ) class __snake_case : __a = 42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. __a = 42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. __a = 42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. __a = 42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. __a = 42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions __a = None # Optional remark about the protein. Included as a comment in output PDB # files __a = None # Templates used to generate this protein (prediction-only) __a = None # Chain corresponding to each parent __a = None def a_ ( lowercase__ :str ): __lowerCamelCase = r"""(\[[A-Z]+\]\n)""" __lowerCamelCase = [tag.strip() for tag in re.split(lowercase__, lowercase__ ) if len(lowercase__ ) > 0] __lowerCamelCase = zip(tags[0::2], [l.split("""\n""" ) for l in tags[1::2]] ) __lowerCamelCase = ["N", "CA", "C"] __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None for g in groups: if "[PRIMARY]" == g[0]: __lowerCamelCase = g[1][0].strip() for i in range(len(lowercase__ ) ): if seq[i] not in residue_constants.restypes: __lowerCamelCase = """X""" # FIXME: strings are immutable __lowerCamelCase = np.array( [residue_constants.restype_order.get(lowercase__, residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: __lowerCamelCase = [] for axis in range(3 ): tertiary.append(list(map(lowercase__, g[1][axis].split() ) ) ) __lowerCamelCase = np.array(lowercase__ ) __lowerCamelCase = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(lowercase__ ): __lowerCamelCase = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: __lowerCamelCase = np.array(list(map({"""-""": 0, """+""": 1}.get, g[1][0].strip() ) ) ) __lowerCamelCase = np.zeros( ( len(lowercase__ ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(lowercase__ ): __lowerCamelCase = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=lowercase__, atom_mask=lowercase__, aatype=lowercase__, residue_index=np.arange(len(lowercase__ ) ), b_factors=lowercase__, ) def a_ ( lowercase__ :Protein, lowercase__ :int = 0 ): __lowerCamelCase = [] __lowerCamelCase = prot.remark if remark is not None: pdb_headers.append(f'REMARK {remark}' ) __lowerCamelCase = prot.parents __lowerCamelCase = prot.parents_chain_index if parents is not None and parents_chain_index is not None: __lowerCamelCase = [p for i, p in zip(lowercase__, lowercase__ ) if i == chain_id] if parents is None or len(lowercase__ ) == 0: __lowerCamelCase = ["""N/A"""] pdb_headers.append(f'PARENT {" ".join(lowercase__ )}' ) return pdb_headers def a_ ( lowercase__ :Protein, lowercase__ :str ): __lowerCamelCase = [] __lowerCamelCase = pdb_str.split("""\n""" ) __lowerCamelCase = prot.remark if remark is not None: out_pdb_lines.append(f'REMARK {remark}' ) __lowerCamelCase = 42 if prot.parents is not None and len(prot.parents ) > 0: __lowerCamelCase = [] if prot.parents_chain_index is not None: __lowerCamelCase = {} for p, i in zip(prot.parents, prot.parents_chain_index ): parent_dict.setdefault(str(lowercase__ ), [] ) parent_dict[str(lowercase__ )].append(lowercase__ ) __lowerCamelCase = max([int(lowercase__ ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): __lowerCamelCase = parent_dict.get(str(lowercase__ ), ["""N/A"""] ) parents_per_chain.append(lowercase__ ) else: parents_per_chain.append(list(prot.parents ) ) else: __lowerCamelCase = [["""N/A"""]] def make_parent_line(lowercase__ :Sequence[str] ) -> str: return f'PARENT {" ".join(lowercase__ )}' out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) __lowerCamelCase = 0 for i, l in enumerate(lowercase__ ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(lowercase__ ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(lowercase__ ): __lowerCamelCase = parents_per_chain[chain_counter] else: __lowerCamelCase = ["""N/A"""] out_pdb_lines.append(make_parent_line(lowercase__ ) ) return "\n".join(lowercase__ ) def a_ ( lowercase__ :Protein ): __lowerCamelCase = residue_constants.restypes + ["""X"""] def res_atoa(lowercase__ :int ) -> str: return residue_constants.restype_atoa.get(restypes[r], """UNK""" ) __lowerCamelCase = residue_constants.atom_types __lowerCamelCase = [] __lowerCamelCase = prot.atom_mask __lowerCamelCase = prot.aatype __lowerCamelCase = prot.atom_positions __lowerCamelCase = prot.residue_index.astype(np.intaa ) __lowerCamelCase = prot.b_factors __lowerCamelCase = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("""Invalid aatypes.""" ) __lowerCamelCase = get_pdb_headers(lowercase__ ) if len(lowercase__ ) > 0: pdb_lines.extend(lowercase__ ) __lowerCamelCase = aatype.shape[0] __lowerCamelCase = 1 __lowerCamelCase = 0 __lowerCamelCase = string.ascii_uppercase __lowerCamelCase = None # Add all atom sites. for i in range(lowercase__ ): __lowerCamelCase = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(lowercase__, atom_positions[i], atom_mask[i], b_factors[i] ): if mask < 0.5: continue __lowerCamelCase = """ATOM""" __lowerCamelCase = atom_name if len(lowercase__ ) == 4 else f' {atom_name}' __lowerCamelCase = """""" __lowerCamelCase = """""" __lowerCamelCase = 1.00 __lowerCamelCase = atom_name[0] # Protein supports only C, N, O, S, this works. __lowerCamelCase = """""" __lowerCamelCase = """A""" if chain_index is not None: __lowerCamelCase = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! __lowerCamelCase = ( f'{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}' f'{res_name_a:>3} {chain_tag:>1}' f'{residue_index[i]:>4}{insertion_code:>1} ' f'{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}' f'{occupancy:>6.2f}{b_factor:>6.2f} ' f'{element:>2}{charge:>2}' ) pdb_lines.append(lowercase__ ) atom_index += 1 __lowerCamelCase = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: __lowerCamelCase = True __lowerCamelCase = chain_index[i + 1] if should_terminate: # Close the chain. __lowerCamelCase = """TER""" __lowerCamelCase = ( f'{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}' ) pdb_lines.append(lowercase__ ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(lowercase__, lowercase__ ) ) pdb_lines.append("""END""" ) pdb_lines.append("""""" ) return "\n".join(lowercase__ ) def a_ ( lowercase__ :Protein ): return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def a_ ( lowercase__ :FeatureDict, lowercase__ :ModelOutput, lowercase__ :Optional[np.ndarray] = None, lowercase__ :Optional[np.ndarray] = None, lowercase__ :Optional[str] = None, lowercase__ :Optional[Sequence[str]] = None, lowercase__ :Optional[Sequence[int]] = None, ): return Protein( aatype=features["""aatype"""], atom_positions=result["""final_atom_positions"""], atom_mask=result["""final_atom_mask"""], residue_index=features["""residue_index"""] + 1, b_factors=b_factors if b_factors is not None else np.zeros_like(result["""final_atom_mask"""] ), chain_index=lowercase__, remark=lowercase__, parents=lowercase__, parents_chain_index=lowercase__, )
281
"""simple docstring""" __magic_name__ : Optional[Any] = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def a_ ( lowercase__ :bytes ): # Make sure the supplied data is a bytes-like object if not isinstance(lowercase__, lowercase__ ): __lowerCamelCase = f'a bytes-like object is required, not \'{data.__class__.__name__}\'' raise TypeError(lowercase__ ) __lowerCamelCase = """""".join(bin(lowercase__ )[2:].zfill(8 ) for byte in data ) __lowerCamelCase = len(lowercase__ ) % 6 != 0 if padding_needed: # The padding that will be added later __lowerCamelCase = B"""=""" * ((6 - len(lowercase__ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(lowercase__ ) % 6) else: __lowerCamelCase = B"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6], 2 )] for index in range(0, len(lowercase__ ), 6 ) ).encode() + padding ) def a_ ( lowercase__ :str ): # Make sure encoded_data is either a string or a bytes-like object if not isinstance(lowercase__, lowercase__ ) and not isinstance(lowercase__, lowercase__ ): __lowerCamelCase = ( """argument should be a bytes-like object or ASCII string, """ f'not \'{encoded_data.__class__.__name__}\'' ) raise TypeError(lowercase__ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(lowercase__, lowercase__ ): try: __lowerCamelCase = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) __lowerCamelCase = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(lowercase__ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one __lowerCamelCase = encoded_data[:-padding] __lowerCamelCase = """""".join( bin(B64_CHARSET.index(lowercase__ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: __lowerCamelCase = """""".join( bin(B64_CHARSET.index(lowercase__ ) )[2:].zfill(6 ) for char in encoded_data ) __lowerCamelCase = [ int(binary_stream[index : index + 8], 2 ) for index in range(0, len(lowercase__ ), 8 ) ] return bytes(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
281
1
from manim import * class _lowerCamelCase( _a ): def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : str = Rectangle(height=0.5, width=0.5) _lowercase : List[Any] = Rectangle(height=0.4_6, width=0.4_6).set_stroke(width=0) _lowercase : Optional[Any] = [mem.copy() for i in range(6)] _lowercase : Optional[Any] = [mem.copy() for i in range(6)] _lowercase : Optional[Any] = VGroup(*lowerCamelCase).arrange(lowerCamelCase, buff=0) _lowercase : Dict = VGroup(*lowerCamelCase).arrange(lowerCamelCase, buff=0) _lowercase : Tuple = VGroup(lowerCamelCase, lowerCamelCase).arrange(lowerCamelCase, buff=0) _lowercase : List[str] = Text('CPU', font_size=24) _lowercase : Optional[Any] = Group(lowerCamelCase, lowerCamelCase).arrange(lowerCamelCase, buff=0.5, aligned_edge=lowerCamelCase) cpu.move_to([-2.5, -0.5, 0]) self.add(lowerCamelCase) _lowercase : List[Any] = [mem.copy() for i in range(1)] _lowercase : List[Any] = VGroup(*lowerCamelCase).arrange(lowerCamelCase, buff=0) _lowercase : List[Any] = Text('GPU', font_size=24) _lowercase : Optional[Any] = Group(lowerCamelCase, lowerCamelCase).arrange(lowerCamelCase, buff=0.5, aligned_edge=lowerCamelCase) gpu.align_to(lowerCamelCase, lowerCamelCase) gpu.set_x(gpu.get_x() - 1) self.add(lowerCamelCase) _lowercase : Tuple = [mem.copy() for i in range(6)] _lowercase : str = VGroup(*lowerCamelCase).arrange(lowerCamelCase, buff=0) _lowercase : List[str] = Text('Model', font_size=24) _lowercase : Optional[Any] = Group(lowerCamelCase, lowerCamelCase).arrange(lowerCamelCase, buff=0.5, aligned_edge=lowerCamelCase) model.move_to([3, -1.0, 0]) self.play( Create(lowerCamelCase, run_time=1), Create(lowerCamelCase, run_time=1), Create(lowerCamelCase, run_time=1), ) _lowercase : int = MarkupText( F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''', font_size=24, ) _lowercase : Tuple = Square(side_length=2.2) key.move_to([-5, 2, 0]) _lowercase : Any = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''', font_size=18, ) key_text.move_to([-5, 2.4, 0]) step_a.move_to([2, 2, 0]) self.play(Write(lowerCamelCase, run_time=2.5), Write(lowerCamelCase), Write(lowerCamelCase)) self.add(lowerCamelCase) _lowercase : str = [] _lowercase : Tuple = [] _lowercase : Optional[Any] = [] for i, rect in enumerate(lowerCamelCase): _lowercase : Tuple = Rectangle(height=0.4_6, width=0.4_6).set_stroke(width=0.0).set_fill(lowerCamelCase, opacity=0.7) cpu_target.move_to(lowerCamelCase) cpu_target.generate_target() _lowercase : int = 0.4_6 / 4 _lowercase : str = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT), buff=0.0_2, direction=lowerCamelCase) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target, direction=lowerCamelCase, buff=0.0) else: cpu_target.target.next_to(cpu_targs[i - 1].target, direction=lowerCamelCase, buff=0.0) cpu_targs.append(lowerCamelCase) first_animations.append(rect.animate(run_time=0.5).set_stroke(lowerCamelCase)) second_animations.append(MoveToTarget(lowerCamelCase, run_time=1.5)) self.play(*lowerCamelCase) self.play(*lowerCamelCase) self.wait()
354
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=7, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=99, lowerCamelCase=32, lowerCamelCase=5, lowerCamelCase=4, lowerCamelCase=37, lowerCamelCase="gelu", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=5_12, lowerCamelCase=16, lowerCamelCase=2, lowerCamelCase=0.0_2, lowerCamelCase=False, lowerCamelCase=True, lowerCamelCase="None", lowerCamelCase=3, lowerCamelCase=4, lowerCamelCase=None, ) -> Optional[Any]: """simple docstring""" _lowercase : Union[str, Any] = parent _lowercase : Optional[Any] = batch_size _lowercase : Optional[Any] = seq_length _lowercase : Dict = is_training _lowercase : Optional[Any] = use_input_mask _lowercase : Optional[int] = use_token_type_ids _lowercase : str = use_labels _lowercase : List[Any] = vocab_size _lowercase : Dict = hidden_size _lowercase : Any = num_hidden_layers _lowercase : Union[str, Any] = num_attention_heads _lowercase : int = intermediate_size _lowercase : List[str] = hidden_act _lowercase : Tuple = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : int = max_position_embeddings _lowercase : Any = type_vocab_size _lowercase : Tuple = type_sequence_label_size _lowercase : List[Any] = initializer_range _lowercase : Optional[Any] = num_labels _lowercase : Tuple = num_choices _lowercase : Dict = relative_attention _lowercase : Optional[int] = position_biased_input _lowercase : str = pos_att_type _lowercase : Optional[Any] = scope def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : int = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowercase : Union[str, Any] = None if self.use_input_mask: _lowercase : int = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) _lowercase : Tuple = None if self.use_token_type_ids: _lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowercase : Union[str, Any] = None _lowercase : Tuple = None _lowercase : str = None if self.use_labels: _lowercase : List[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowercase : str = ids_tensor([self.batch_size], self.num_choices) _lowercase : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" return DebertaVaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, relative_attention=self.relative_attention, position_biased_input=self.position_biased_input, pos_att_type=self.pos_att_type, ) def UpperCamelCase ( self, lowerCamelCase) -> int: """simple docstring""" self.parent.assertListEqual(list(result.loss.size()), []) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : List[str] = DebertaVaModel(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : int = model(lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase)[0] _lowercase : Optional[int] = model(lowerCamelCase, token_type_ids=lowerCamelCase)[0] _lowercase : Dict = model(lowerCamelCase)[0] self.parent.assertListEqual(list(sequence_output.size()), [self.batch_size, self.seq_length, self.hidden_size]) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> List[Any]: """simple docstring""" _lowercase : List[Any] = DebertaVaForMaskedLM(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : str = model(lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : Optional[int] = self.num_labels _lowercase : Any = DebertaVaForSequenceClassification(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Any = model(lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase) self.parent.assertListEqual(list(result.logits.size()), [self.batch_size, self.num_labels]) self.check_loss_output(lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : Union[str, Any] = self.num_labels _lowercase : Optional[int] = DebertaVaForTokenClassification(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[Any] = model(lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = DebertaVaForQuestionAnswering(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Union[str, Any] = model( lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, start_positions=lowerCamelCase, end_positions=lowerCamelCase, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : Any = DebertaVaForMultipleChoice(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[int] = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : List[Any] = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : int = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : str = model( lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Any = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : List[str] = config_and_inputs _lowercase : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase( _a, _a, unittest.TestCase ): lowercase_ : Any = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) lowercase_ : Any = ( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) lowercase_ : int = True lowercase_ : str = False lowercase_ : str = False lowercase_ : str = False lowercase_ : List[Any] = False def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[Any] = DebertaVaModelTester(self) _lowercase : List[Any] = ConfigTester(self, config_class=lowerCamelCase, hidden_size=37) def UpperCamelCase ( self) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowerCamelCase) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowerCamelCase) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowerCamelCase) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowerCamelCase) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*lowerCamelCase) @slow def UpperCamelCase ( self) -> List[str]: """simple docstring""" for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Dict = DebertaVaModel.from_pretrained(lowerCamelCase) self.assertIsNotNone(lowerCamelCase) @require_torch @require_sentencepiece @require_tokenizers class _lowerCamelCase( unittest.TestCase ): @unittest.skip(reason='Model not available yet') def UpperCamelCase ( self) -> Tuple: """simple docstring""" pass @slow def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Dict = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge') _lowercase : str = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]]) _lowercase : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): _lowercase : Tuple = model(lowerCamelCase, attention_mask=lowerCamelCase)[0] # compare the actual values for a slice. _lowercase : int = torch.tensor( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], lowerCamelCase, atol=1E-4), F'''{output[:, 1:4, 1:4]}''')
354
1
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. _SCREAMING_SNAKE_CASE : Optional[Any] = [p / w for p, w in zip(__lowerCamelCase, __lowerCamelCase )] # Creating a copy of the list and sorting profit/weight in ascending order _SCREAMING_SNAKE_CASE : Dict = sorted(__lowerCamelCase ) # declaring useful variables _SCREAMING_SNAKE_CASE : List[Any] = len(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = 0 _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 _SCREAMING_SNAKE_CASE : List[str] = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight _SCREAMING_SNAKE_CASE : Optional[int] = sorted_profit_by_weight[length - i - 1] _SCREAMING_SNAKE_CASE : Union[str, Any] = profit_by_weight.index(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( 'Input profits, weights, and then max_weight (all positive ints) separated by ' 'spaces.' ) UpperCamelCase__ =[int(x) for x in input('Input profits separated by spaces: ').split()] UpperCamelCase__ =[int(x) for x in input('Input weights separated by spaces: ').split()] UpperCamelCase__ =int(input('Max weight allowed: ')) # Function Call calc_profit(profit, weight, max_weight)
249
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
249
1
'''simple docstring''' import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCAmelCase_ : Tuple = logging.get_logger(__name__) lowerCAmelCase_ : str = { '''artists_file''': '''artists.json''', '''lyrics_file''': '''lyrics.json''', '''genres_file''': '''genres.json''', } lowerCAmelCase_ : Union[str, Any] = { '''artists_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json''', }, '''genres_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json''', }, '''lyrics_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json''', }, } lowerCAmelCase_ : Dict = { '''jukebox''': 512, } class __lowerCAmelCase ( __a ): snake_case : List[str] = VOCAB_FILES_NAMES snake_case : Tuple = PRETRAINED_VOCAB_FILES_MAP snake_case : List[Any] = PRETRAINED_LYRIC_TOKENS_SIZES snake_case : str = ["""input_ids""", """attention_mask"""] def __init__(self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=["v3", "v2", "v2"] , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=5 , lowerCAmelCase__="<|endoftext|>" , **lowerCAmelCase__ , ): _UpperCAmelCase : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token super().__init__( unk_token=lowerCAmelCase__ , n_genres=lowerCAmelCase__ , version=lowerCAmelCase__ , max_n_lyric_tokens=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCAmelCase : Dict = version _UpperCAmelCase : Optional[int] = max_n_lyric_tokens _UpperCAmelCase : Any = n_genres with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: _UpperCAmelCase : str = json.load(lowerCAmelCase__ ) with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: _UpperCAmelCase : Optional[int] = json.load(lowerCAmelCase__ ) with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: _UpperCAmelCase : Union[str, Any] = json.load(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 7_9: _UpperCAmelCase : int = oov.replace(r"""\-'""" , r"""\-+'""" ) _UpperCAmelCase : Dict = regex.compile(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = {v: k for k, v in self.artists_encoder.items()} _UpperCAmelCase : Dict = {v: k for k, v in self.genres_encoder.items()} _UpperCAmelCase : int = {v: k for k, v in self.lyrics_encoder.items()} @property def snake_case_ (self ): return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def snake_case_ (self ): return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Optional[int] = [self.artists_encoder.get(lowerCAmelCase__ , 0 ) for artist in list_artists] for genres in range(len(lowerCAmelCase__ ) ): _UpperCAmelCase : Optional[Any] = [self.genres_encoder.get(lowerCAmelCase__ , 0 ) for genre in list_genres[genres]] _UpperCAmelCase : Dict = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) _UpperCAmelCase : Optional[Any] = [[self.lyrics_encoder.get(lowerCAmelCase__ , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def snake_case_ (self , lowerCAmelCase__ ): return list(lowerCAmelCase__ ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self.prepare_for_tokenization(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : str = self._tokenize(lowerCAmelCase__ ) return artist, genre, lyrics def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ): for idx in range(len(self.version ) ): if self.version[idx] == "v3": _UpperCAmelCase : int = artists[idx].lower() _UpperCAmelCase : int = [genres[idx].lower()] else: _UpperCAmelCase : List[str] = self._normalize(artists[idx] ) + """.v2""" _UpperCAmelCase : Tuple = [ self._normalize(lowerCAmelCase__ ) + """.v2""" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": _UpperCAmelCase : Dict = regex.compile(r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" ) _UpperCAmelCase : Optional[Any] = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" _UpperCAmelCase : Union[str, Any] = {vocab[index]: index + 1 for index in range(len(lowerCAmelCase__ ) )} _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : List[str] = len(lowerCAmelCase__ ) + 1 _UpperCAmelCase : List[str] = self.vocab _UpperCAmelCase : List[Any] = {v: k for k, v in self.vocab.items()} _UpperCAmelCase : str = """""" else: _UpperCAmelCase : List[str] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" ) _UpperCAmelCase : Dict = self._run_strip_accents(lowerCAmelCase__ ) _UpperCAmelCase : str = lyrics.replace("""\\""" , """\n""" ) _UpperCAmelCase : int = self.out_of_vocab.sub("""""" , lowerCAmelCase__ ), [], [] return artists, genres, lyrics def snake_case_ (self , lowerCAmelCase__ ): _UpperCAmelCase : Union[str, Any] = unicodedata.normalize("""NFD""" , lowerCAmelCase__ ) _UpperCAmelCase : Any = [] for char in text: _UpperCAmelCase : Tuple = unicodedata.category(lowerCAmelCase__ ) if cat == "Mn": continue output.append(lowerCAmelCase__ ) return "".join(lowerCAmelCase__ ) def snake_case_ (self , lowerCAmelCase__ ): _UpperCAmelCase : List[str] = ( [chr(lowerCAmelCase__ ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(lowerCAmelCase__ ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(lowerCAmelCase__ ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["""."""] ) _UpperCAmelCase : List[Any] = frozenset(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = re.compile(r"""_+""" ) _UpperCAmelCase : str = """""".join([c if c in accepted else """_""" for c in text.lower()] ) _UpperCAmelCase : int = pattern.sub("""_""" , lowerCAmelCase__ ).strip("""_""" ) return text def snake_case_ (self , lowerCAmelCase__ ): return " ".join(lowerCAmelCase__ ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ): # Convert to TensorType if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Optional[int] = TensorType(lowerCAmelCase__ ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf _UpperCAmelCase : List[Any] = tf.constant _UpperCAmelCase : Tuple = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch _UpperCAmelCase : Tuple = torch.tensor _UpperCAmelCase : List[str] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 _UpperCAmelCase : str = jnp.array _UpperCAmelCase : Any = _is_jax else: _UpperCAmelCase : List[str] = np.asarray _UpperCAmelCase : List[str] = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: _UpperCAmelCase : Optional[int] = [inputs] if not is_tensor(lowerCAmelCase__ ): _UpperCAmelCase : Optional[Any] = as_tensor(lowerCAmelCase__ ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" ) return inputs def __call__(self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="" , lowerCAmelCase__="pt" ): _UpperCAmelCase : Dict = [0, 0, 0] _UpperCAmelCase : int = [artist] * len(self.version ) _UpperCAmelCase : Any = [genres] * len(self.version ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.tokenize(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : int = self._convert_token_to_id(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Dict = [-INFINITY] * len(full_tokens[-1] ) _UpperCAmelCase : Optional[int] = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=lowerCAmelCase__ ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ = None ): if not os.path.isdir(lowerCAmelCase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _UpperCAmelCase : Optional[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=lowerCAmelCase__ ) ) _UpperCAmelCase : Optional[int] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=lowerCAmelCase__ ) ) _UpperCAmelCase : Dict = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=lowerCAmelCase__ ) ) return (artists_file, genres_file, lyrics_file) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : List[str] = self.artists_decoder.get(lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = [self.genres_decoder.get(lowerCAmelCase__ ) for genre in genres_index] _UpperCAmelCase : Dict = [self.lyrics_decoder.get(lowerCAmelCase__ ) for character in lyric_index] return artist, genres, lyrics
156
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase_ : Dict = logging.getLogger(__name__) def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): return (preds == labels).mean() @dataclass class __lowerCAmelCase : snake_case : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) snake_case : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) snake_case : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) snake_case : Optional[str] = field( default=__a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __lowerCAmelCase : snake_case : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) snake_case : str = field(metadata={"""help""": """Should contain the data files for the task."""} ) snake_case : int = field( default=1_2_8 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) snake_case : bool = field( default=__a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def __A ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCAmelCase_ ) # Set seed set_seed(training_args.seed ) try: _UpperCAmelCase : Union[str, Any] = processors[data_args.task_name]() _UpperCAmelCase : int = processor.get_labels() _UpperCAmelCase : Optional[int] = len(lowerCAmelCase_ ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase_ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCAmelCase : Optional[int] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , ) # Get datasets _UpperCAmelCase : int = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCAmelCase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _UpperCAmelCase : Tuple = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCAmelCase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(lowerCAmelCase_ ) -> Dict: _UpperCAmelCase : Optional[Any] = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(lowerCAmelCase_ , p.label_ids )} # Data collator _UpperCAmelCase : List[str] = DataCollatorWithPadding(lowerCAmelCase_ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCAmelCase : List[Any] = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=lowerCAmelCase_ , eval_dataset=lowerCAmelCase_ , compute_metrics=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCAmelCase : Any = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _UpperCAmelCase : int = trainer.evaluate() _UpperCAmelCase : List[str] = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_master(): with open(lowerCAmelCase_ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , lowerCAmelCase_ , lowerCAmelCase_ ) writer.write("""%s = %s\n""" % (key, value) ) results.update(lowerCAmelCase_ ) return results def __A ( lowerCAmelCase_ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
156
1
'''simple docstring''' import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase =logging.get_logger(__name__) UpperCamelCase ={ "google/owlvit-base-patch32": "https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json", "google/owlvit-base-patch16": "https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json", "google/owlvit-large-patch14": "https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json", } class A ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __a : List[str] = '''owlvit_text_model''' def __init__( self , __lowerCAmelCase=4_94_08 , __lowerCAmelCase=5_12 , __lowerCAmelCase=20_48 , __lowerCAmelCase=12 , __lowerCAmelCase=8 , __lowerCAmelCase=16 , __lowerCAmelCase="quick_gelu" , __lowerCAmelCase=1E-5 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1.0 , __lowerCAmelCase=0 , __lowerCAmelCase=4_94_06 , __lowerCAmelCase=4_94_07 , **__lowerCAmelCase , ): super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) UpperCamelCase_ : int = vocab_size UpperCamelCase_ : List[str] = hidden_size UpperCamelCase_ : Tuple = intermediate_size UpperCamelCase_ : Optional[int] = num_hidden_layers UpperCamelCase_ : List[Any] = num_attention_heads UpperCamelCase_ : int = max_position_embeddings UpperCamelCase_ : List[str] = hidden_act UpperCamelCase_ : Dict = layer_norm_eps UpperCamelCase_ : Optional[Any] = attention_dropout UpperCamelCase_ : str = initializer_range UpperCamelCase_ : Optional[Any] = initializer_factor @classmethod def _UpperCAmelCase ( cls , __lowerCAmelCase , **__lowerCAmelCase ): cls._set_token_in_kwargs(__lowerCAmelCase ) UpperCamelCase_ , UpperCamelCase_ : Any = cls.get_config_dict(__lowerCAmelCase , **__lowerCAmelCase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": UpperCamelCase_ : Optional[Any] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__lowerCAmelCase , **__lowerCAmelCase ) class A ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __a : Dict = '''owlvit_vision_model''' def __init__( self , __lowerCAmelCase=7_68 , __lowerCAmelCase=30_72 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3 , __lowerCAmelCase=7_68 , __lowerCAmelCase=32 , __lowerCAmelCase="quick_gelu" , __lowerCAmelCase=1E-5 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1.0 , **__lowerCAmelCase , ): super().__init__(**__lowerCAmelCase ) UpperCamelCase_ : List[Any] = hidden_size UpperCamelCase_ : Tuple = intermediate_size UpperCamelCase_ : Optional[int] = num_hidden_layers UpperCamelCase_ : Any = num_attention_heads UpperCamelCase_ : Tuple = num_channels UpperCamelCase_ : Optional[Any] = image_size UpperCamelCase_ : Tuple = patch_size UpperCamelCase_ : List[Any] = hidden_act UpperCamelCase_ : List[str] = layer_norm_eps UpperCamelCase_ : List[Any] = attention_dropout UpperCamelCase_ : Union[str, Any] = initializer_range UpperCamelCase_ : Dict = initializer_factor @classmethod def _UpperCAmelCase ( cls , __lowerCAmelCase , **__lowerCAmelCase ): cls._set_token_in_kwargs(__lowerCAmelCase ) UpperCamelCase_ , UpperCamelCase_ : List[Any] = cls.get_config_dict(__lowerCAmelCase , **__lowerCAmelCase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": UpperCamelCase_ : List[str] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__lowerCAmelCase , **__lowerCAmelCase ) class A ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __a : List[Any] = '''owlvit''' __a : Union[str, Any] = True def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=5_12 , __lowerCAmelCase=2.65_92 , __lowerCAmelCase=True , **__lowerCAmelCase , ): super().__init__(**__lowerCAmelCase ) if text_config is None: UpperCamelCase_ : Optional[int] = {} logger.info("""text_config is None. Initializing the OwlViTTextConfig with default values.""" ) if vision_config is None: UpperCamelCase_ : Optional[int] = {} logger.info("""vision_config is None. initializing the OwlViTVisionConfig with default values.""" ) UpperCamelCase_ : List[Any] = OwlViTTextConfig(**__lowerCAmelCase ) UpperCamelCase_ : Tuple = OwlViTVisionConfig(**__lowerCAmelCase ) UpperCamelCase_ : Optional[int] = projection_dim UpperCamelCase_ : int = logit_scale_init_value UpperCamelCase_ : Optional[int] = return_dict UpperCamelCase_ : List[str] = 1.0 @classmethod def _UpperCAmelCase ( cls , __lowerCAmelCase , **__lowerCAmelCase ): cls._set_token_in_kwargs(__lowerCAmelCase ) UpperCamelCase_ , UpperCamelCase_ : Any = cls.get_config_dict(__lowerCAmelCase , **__lowerCAmelCase ) if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__lowerCAmelCase , **__lowerCAmelCase ) @classmethod def _UpperCAmelCase ( cls , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ): UpperCamelCase_ : int = {} UpperCamelCase_ : Dict = text_config UpperCamelCase_ : Union[str, Any] = vision_config return cls.from_dict(__lowerCAmelCase , **__lowerCAmelCase ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Optional[int] = copy.deepcopy(self.__dict__ ) UpperCamelCase_ : List[str] = self.text_config.to_dict() UpperCamelCase_ : str = self.vision_config.to_dict() UpperCamelCase_ : Any = self.__class__.model_type return output class A ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def _UpperCAmelCase ( self ): return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ] ) @property def _UpperCAmelCase ( self ): return OrderedDict( [ ("""logits_per_image""", {0: """batch"""}), ("""logits_per_text""", {0: """batch"""}), ("""text_embeds""", {0: """batch"""}), ("""image_embeds""", {0: """batch"""}), ] ) @property def _UpperCAmelCase ( self ): return 1E-4 def _UpperCAmelCase ( self , __lowerCAmelCase , __lowerCAmelCase = -1 , __lowerCAmelCase = -1 , __lowerCAmelCase = None , ): UpperCamelCase_ : Tuple = super().generate_dummy_inputs( processor.tokenizer , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , framework=__lowerCAmelCase ) UpperCamelCase_ : int = super().generate_dummy_inputs( processor.image_processor , batch_size=__lowerCAmelCase , framework=__lowerCAmelCase ) return {**text_input_dict, **image_input_dict} @property def _UpperCAmelCase ( self ): return 14
208
'''simple docstring''' UpperCamelCase ="Input must be a string of 8 numbers plus letter" UpperCamelCase ="TRWAGMYFPDXBNJZSQVHLCKE" def snake_case ( a_ : str ) -> bool: """simple docstring""" if not isinstance(a_ , a_ ): UpperCamelCase_ : List[str] = f"Expected string as input, found {type(a_ ).__name__}" raise TypeError(a_ ) UpperCamelCase_ : int = spanish_id.replace("""-""" , """""" ).upper() if len(a_ ) != 9: raise ValueError(a_ ) try: UpperCamelCase_ : List[str] = int(spanish_id_clean[0:8] ) UpperCamelCase_ : Any = spanish_id_clean[8] except ValueError as ex: raise ValueError(a_ ) from ex if letter.isdigit(): raise ValueError(a_ ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
208
1
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowercase ( __SCREAMING_SNAKE_CASE ): lowercase_ : Optional[int] =(UnCLIPScheduler,) def A__ ( self ,**A__): lowercase = { '''num_train_timesteps''': 1_0_0_0, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**_a) return config def A__ ( self): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_a) def A__ ( self): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_a) def A__ ( self): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_a) def A__ ( self): for clip_sample_range in [1, 5, 1_0, 2_0]: self.check_over_configs(clip_sample_range=_a) def A__ ( self): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_a) def A__ ( self): for time_step in [0, 5_0_0, 9_9_9]: for prev_timestep in [None, 5, 1_0_0, 2_5_0, 5_0_0, 7_5_0]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_a ,prev_timestep=_a) def A__ ( self): lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config(variance_type='''fixed_small_log''') lowercase = scheduler_class(**_a) assert torch.sum(torch.abs(scheduler._get_variance(0) - 1.0_000E-10)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7) - 0.0549625)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9) - 0.9994987)) < 1E-5 def A__ ( self): lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config(variance_type='''learned_range''') lowercase = scheduler_class(**_a) lowercase = 0.5 assert scheduler._get_variance(1 ,predicted_variance=_a) - -10.1712790 < 1E-5 assert scheduler._get_variance(4_8_7 ,predicted_variance=_a) - -5.7998052 < 1E-5 assert scheduler._get_variance(9_9_9 ,predicted_variance=_a) - -0.0010011 < 1E-5 def A__ ( self): lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config() lowercase = scheduler_class(**_a) lowercase = scheduler.timesteps lowercase = self.dummy_model() lowercase = self.dummy_sample_deter lowercase = torch.manual_seed(0) for i, t in enumerate(_a): # 1. predict noise residual lowercase = model(_a ,_a) # 2. predict previous mean of sample x_t-1 lowercase = scheduler.step(_a ,_a ,_a ,generator=_a).prev_sample lowercase = pred_prev_sample lowercase = torch.sum(torch.abs(_a)) lowercase = torch.mean(torch.abs(_a)) assert abs(result_sum.item() - 252.2682495) < 1E-2 assert abs(result_mean.item() - 0.3284743) < 1E-3 def A__ ( self): lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config() lowercase = scheduler_class(**_a) scheduler.set_timesteps(2_5) lowercase = scheduler.timesteps lowercase = self.dummy_model() lowercase = self.dummy_sample_deter lowercase = torch.manual_seed(0) for i, t in enumerate(_a): # 1. predict noise residual lowercase = model(_a ,_a) if i + 1 == timesteps.shape[0]: lowercase = None else: lowercase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowercase = scheduler.step( _a ,_a ,_a ,prev_timestep=_a ,generator=_a).prev_sample lowercase = pred_prev_sample lowercase = torch.sum(torch.abs(_a)) lowercase = torch.mean(torch.abs(_a)) assert abs(result_sum.item() - 258.2044983) < 1E-2 assert abs(result_mean.item() - 0.3362038) < 1E-3 def A__ ( self): pass def A__ ( self): pass
721
from __future__ import annotations def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if len(lowerCAmelCase__ ) < 2: raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' ) if any(i <= 0 for i in nums ): raise ValueError('''All values must be greater than 0''' ) lowercase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
633
0
_a : Tuple = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} _a : List[Any] = ["a", "b", "c", "d", "e"] def UpperCamelCase__ ( _A: Dict , _A: Any , _A: List[Any] ): '''simple docstring''' __lowerCamelCase = start # add current to visited visited.append(a_ ) __lowerCamelCase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __lowerCamelCase = topological_sort(a_ , a_ , a_ ) # if all neighbors visited add current to sort sort.append(a_ ) # if all vertices haven't been visited select a new one to visit if len(a_ ) != len(a_ ): for vertice in vertices: if vertice not in visited: __lowerCamelCase = topological_sort(a_ , a_ , a_ ) # return sort return sort if __name__ == "__main__": _a : Any = topological_sort('a', [], []) print(sort)
479
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase__ : Union[str, Any] = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys lowerCamelCase__ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
698
0
'''simple docstring''' import colorsys from PIL import Image # type: ignore def __UpperCAmelCase ( a_: float, a_: float, a_: int ): _UpperCAmelCase : List[Any] = x _UpperCAmelCase : Optional[Any] = y for step in range(a_ ): # noqa: B007 _UpperCAmelCase : Dict = a * a - b * b + x _UpperCAmelCase : List[str] = 2 * a * b + y _UpperCAmelCase : str = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def __UpperCAmelCase ( a_: float ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def __UpperCAmelCase ( a_: float ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(a_, 1, 1 ) ) def __UpperCAmelCase ( a_: int = 800, a_: int = 600, a_: float = -0.6, a_: float = 0, a_: float = 3.2, a_: int = 50, a_: bool = True, ): _UpperCAmelCase : Any = Image.new("RGB", (image_width, image_height) ) _UpperCAmelCase : int = img.load() # loop through the image-coordinates for image_x in range(a_ ): for image_y in range(a_ ): # determine the figure-coordinates based on the image-coordinates _UpperCAmelCase : str = figure_width / image_width * image_height _UpperCAmelCase : List[Any] = figure_center_x + (image_x / image_width - 0.5) * figure_width _UpperCAmelCase : Optional[Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height _UpperCAmelCase : Optional[int] = get_distance(a_, a_, a_ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: _UpperCAmelCase : List[str] = get_color_coded_rgb(a_ ) else: _UpperCAmelCase : str = get_black_and_white_rgb(a_ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure __a = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
257
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : List[str] = '''big_bird''' def __init__( self : Union[str, Any] , lowerCAmelCase__ : List[Any]=5_0_3_5_8 , lowerCAmelCase__ : Dict=7_6_8 , lowerCAmelCase__ : List[str]=1_2 , lowerCAmelCase__ : List[Any]=1_2 , lowerCAmelCase__ : str=3_0_7_2 , lowerCAmelCase__ : Any="gelu_new" , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : Optional[int]=4_0_9_6 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : str=0.02 , lowerCAmelCase__ : List[str]=1e-12 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : List[Any]=0 , lowerCAmelCase__ : str=1 , lowerCAmelCase__ : Tuple=2 , lowerCAmelCase__ : Dict=6_6 , lowerCAmelCase__ : Optional[int]="block_sparse" , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : Tuple=6_4 , lowerCAmelCase__ : Optional[int]=3 , lowerCAmelCase__ : Dict=None , **lowerCAmelCase__ : str , ) -> Tuple: """simple docstring""" super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , sep_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCAmelCase : int = vocab_size _UpperCAmelCase : str = max_position_embeddings _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : int = num_hidden_layers _UpperCAmelCase : Any = num_attention_heads _UpperCAmelCase : List[str] = intermediate_size _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : List[Any] = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Optional[Any] = layer_norm_eps _UpperCAmelCase : Union[str, Any] = use_cache _UpperCAmelCase : Dict = rescale_embeddings _UpperCAmelCase : List[Any] = attention_type _UpperCAmelCase : str = use_bias _UpperCAmelCase : Optional[Any] = block_size _UpperCAmelCase : Optional[Any] = num_random_blocks _UpperCAmelCase : Optional[Any] = classifier_dropout class A__ ( UpperCamelCase ): """simple docstring""" @property def _lowerCAmelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCAmelCase : Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
257
1
"""simple docstring""" import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Any = MobileBertConfig.from_json_file(__UpperCamelCase ) print(F"Building PyTorch model from configuration: {config}" ) UpperCAmelCase__ : Union[str, Any] = MobileBertForPreTraining(__UpperCamelCase ) # Load weights from tf checkpoint UpperCAmelCase__ : Union[str, Any] = load_tf_weights_in_mobilebert(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , __UpperCamelCase ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--mobilebert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained MobileBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCAmelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
65
from functools import reduce __a = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def lowerCamelCase__ ( _lowercase = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda _lowercase , _lowercase : str(int(_lowercase ) * int(_lowercase ) ) , n[i : i + 13] ) ) for i in range(len(_lowercase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
30
0
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast a : Union[str, Any] = datasets.utils.logging.get_logger(__name__) @dataclass class _UpperCamelCase ( datasets.BuilderConfig ): '''simple docstring''' __lowercase : Tuple = 1_0000 __lowercase : Dict = None __lowercase : List[Any] = None class _UpperCamelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' __lowercase : str = ParquetConfig def A__ ( self ): return datasets.DatasetInfo(features=self.config.features ) def A__ ( self , __lowercase ): if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) UpperCAmelCase__ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowercase_ , (str, list, tuple) ): UpperCAmelCase__ = data_files if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase__ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive UpperCAmelCase__ = [dl_manager.iter_files(lowercase_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] UpperCAmelCase__ = [] for split_name, files in data_files.items(): if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase__ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive UpperCAmelCase__ = [dl_manager.iter_files(lowercase_ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(lowercase_ ): with open(lowercase_ , """rb""" ) as f: UpperCAmelCase__ = datasets.Features.from_arrow_schema(pq.read_schema(lowercase_ ) ) break splits.append(datasets.SplitGenerator(name=lowercase_ , gen_kwargs={"""files""": files} ) ) return splits def A__ ( self , __lowercase ): if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example UpperCAmelCase__ = table_cast(lowercase_ , self.info.features.arrow_schema ) return pa_table def A__ ( self , __lowercase ): UpperCAmelCase__ = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowercase_ ) ): with open(lowercase_ , """rb""" ) as f: UpperCAmelCase__ = pq.ParquetFile(lowercase_ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): UpperCAmelCase__ = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F'''{file_idx}_{batch_idx}''', self._cast_table(lowercase_ ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowercase_ )}: {e}''' ) raise
704
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _UpperCamelCase ( __UpperCamelCase ): '''simple docstring''' def A__ ( self , __lowercase ): with open(__lowercase , encoding="""utf-8""" ) as input_file: UpperCAmelCase__ = re.compile(r"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" ) UpperCAmelCase__ = input_file.read() UpperCAmelCase__ = regexp.search(__lowercase ) return match def A__ ( self , __lowercase ): with open(__lowercase , encoding="""utf-8""" ) as input_file: UpperCAmelCase__ = re.compile(r"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL ) UpperCAmelCase__ = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCAmelCase__ = regexp.finditer(__lowercase ) UpperCAmelCase__ = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def A__ ( self ): UpperCAmelCase__ = Path("""./datasets""" ) UpperCAmelCase__ = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__lowercase ) ): raise AssertionError(F'''open(...) must use utf-8 encoding in {dataset}''' ) def A__ ( self ): UpperCAmelCase__ = Path("""./datasets""" ) UpperCAmelCase__ = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_print_statements(str(__lowercase ) ): raise AssertionError(F'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
422
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.linear_k': 'encoder.layers.*.self_attn.linear_k', 'self_attn.linear_v': 'encoder.layers.*.self_attn.linear_v', 'self_attn.linear_q': 'encoder.layers.*.self_attn.linear_q', 'self_attn.pos_bias_u': 'encoder.layers.*.self_attn.pos_bias_u', 'self_attn.pos_bias_v': 'encoder.layers.*.self_attn.pos_bias_v', 'self_attn.linear_out': 'encoder.layers.*.self_attn.linear_out', 'self_attn.linear_pos': 'encoder.layers.*.self_attn.linear_pos', 'self_attn.rotary_emb': 'encoder.embed_positions', 'self_attn_layer_norm': 'encoder.layers.*.self_attn_layer_norm', 'conv_module.pointwise_conv1': 'encoder.layers.*.conv_module.pointwise_conv1', 'conv_module.pointwise_conv2': 'encoder.layers.*.conv_module.pointwise_conv2', 'conv_module.depthwise_conv': 'encoder.layers.*.conv_module.depthwise_conv', 'conv_module.batch_norm': 'encoder.layers.*.conv_module.batch_norm', 'conv_module.layer_norm': 'encoder.layers.*.conv_module.layer_norm', 'ffn1.w_1': 'encoder.layers.*.ffn1.intermediate_dense', 'ffn1.w_2': 'encoder.layers.*.ffn1.output_dense', 'ffn1.layer_norm': 'encoder.layers.*.ffn1_layer_norm', 'ffn2.w_1': 'encoder.layers.*.ffn2.intermediate_dense', 'ffn2.w_2': 'encoder.layers.*.ffn2.output_dense', 'ffn2.layer_norm': 'encoder.layers.*.ffn2_layer_norm', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } SCREAMING_SNAKE_CASE_ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Tuple , lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[str] ) -> Dict: for attribute in key.split("." ): _UpperCAmelCase : Optional[int] = getattr(lowerCAmelCase , lowerCAmelCase ) if weight_type is not None: _UpperCAmelCase : Dict = getattr(lowerCAmelCase , lowerCAmelCase ).shape else: _UpperCAmelCase : Optional[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _UpperCAmelCase : Dict = value elif weight_type == "weight_g": _UpperCAmelCase : Any = value elif weight_type == "weight_v": _UpperCAmelCase : int = value elif weight_type == "bias": _UpperCAmelCase : str = value elif weight_type == "running_mean": _UpperCAmelCase : str = value elif weight_type == "running_var": _UpperCAmelCase : Any = value elif weight_type == "num_batches_tracked": _UpperCAmelCase : List[str] = value elif weight_type == "inv_freq": _UpperCAmelCase : List[Any] = value else: _UpperCAmelCase : Tuple = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: str , lowerCAmelCase: Union[str, Any] ) -> str: _UpperCAmelCase : Any = [] _UpperCAmelCase : Dict = fairseq_model.state_dict() _UpperCAmelCase : Optional[Any] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): _UpperCAmelCase : Optional[int] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , hf_model.config.feat_extract_norm == "group" , ) _UpperCAmelCase : Any = True else: for key, mapped_key in MAPPING.items(): _UpperCAmelCase : Dict = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _UpperCAmelCase : str = True if "*" in mapped_key: _UpperCAmelCase : Optional[int] = name.split(lowerCAmelCase )[0].split("." )[-2] _UpperCAmelCase : Tuple = mapped_key.replace("*" , lowerCAmelCase ) if "pos_bias_u" in name: _UpperCAmelCase : Optional[Any] = None elif "pos_bias_v" in name: _UpperCAmelCase : Tuple = None elif "weight_g" in name: _UpperCAmelCase : List[Any] = "weight_g" elif "weight_v" in name: _UpperCAmelCase : List[Any] = "weight_v" elif "bias" in name: _UpperCAmelCase : Any = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj _UpperCAmelCase : Tuple = "weight" elif "running_mean" in name: _UpperCAmelCase : Dict = "running_mean" elif "inv_freq" in name: _UpperCAmelCase : str = "inv_freq" elif "running_var" in name: _UpperCAmelCase : Any = "running_var" elif "num_batches_tracked" in name: _UpperCAmelCase : Any = "num_batches_tracked" else: _UpperCAmelCase : List[Any] = None set_recursively(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) continue if not is_used: unused_weights.append(lowerCAmelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: Optional[int] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[str] , lowerCAmelCase: Optional[int] ) -> Union[str, Any]: _UpperCAmelCase : Optional[Any] = full_name.split("conv_layers." )[-1] _UpperCAmelCase : Optional[Any] = name.split("." ) _UpperCAmelCase : str = int(items[0] ) _UpperCAmelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _UpperCAmelCase : Optional[Any] = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _UpperCAmelCase : Any = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _UpperCAmelCase : Optional[Any] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _UpperCAmelCase : Dict = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowerCAmelCase ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Tuple , lowerCAmelCase: Optional[int] , lowerCAmelCase: List[Any]=None , lowerCAmelCase: Tuple=None , lowerCAmelCase: str=True ) -> Tuple: if config_path is not None: _UpperCAmelCase : Optional[int] = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase , hidden_act="swish" ) else: _UpperCAmelCase : str = WavaVecaConformerConfig() if "rope" in checkpoint_path: _UpperCAmelCase : List[Any] = "rotary" if is_finetuned: if dict_path: _UpperCAmelCase : Any = Dictionary.load(lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _UpperCAmelCase : str = target_dict.pad_index _UpperCAmelCase : Dict = target_dict.bos_index _UpperCAmelCase : Optional[Any] = target_dict.eos_index _UpperCAmelCase : List[str] = len(target_dict.symbols ) _UpperCAmelCase : Tuple = os.path.join(lowerCAmelCase , "vocab.json" ) if not os.path.isdir(lowerCAmelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCAmelCase ) ) return os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) _UpperCAmelCase : int = target_dict.indices # fairseq has the <pad> and <s> switched _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 1 with open(lowerCAmelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(lowerCAmelCase , lowerCAmelCase ) _UpperCAmelCase : int = WavaVecaCTCTokenizer( lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowerCAmelCase , ) _UpperCAmelCase : Dict = True if config.feat_extract_norm == "layer" else False _UpperCAmelCase : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=lowerCAmelCase , return_attention_mask=lowerCAmelCase , ) _UpperCAmelCase : str = WavaVecaProcessor(feature_extractor=lowerCAmelCase , tokenizer=lowerCAmelCase ) processor.save_pretrained(lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = WavaVecaConformerForCTC(lowerCAmelCase ) else: _UpperCAmelCase : List[Any] = WavaVecaConformerForPreTraining(lowerCAmelCase ) if is_finetuned: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _UpperCAmelCase : List[Any] = argparse.Namespace(task="audio_pretraining" ) _UpperCAmelCase : List[str] = fairseq.tasks.setup_task(lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase ) _UpperCAmelCase : int = model[0].eval() recursively_load_weights(lowerCAmelCase , lowerCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
300
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[str] , lowerCAmelCase: str , lowerCAmelCase: str ) -> Union[str, Any]: # Construct model if gpta_config_file == "": _UpperCAmelCase : Optional[int] = GPTaConfig() else: _UpperCAmelCase : Optional[Any] = GPTaConfig.from_json_file(lowerCAmelCase ) _UpperCAmelCase : Optional[int] = GPTaModel(lowerCAmelCase ) # Load weights from numpy load_tf_weights_in_gpta(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save pytorch-model _UpperCAmelCase : Dict = pytorch_dump_folder_path + "/" + WEIGHTS_NAME _UpperCAmelCase : Optional[int] = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , lowerCAmelCase ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
300
1
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A_ : Tuple = logging.get_logger(__name__) def UpperCAmelCase__ ( UpperCAmelCase__ :nn.ModuleList , UpperCAmelCase__ :nn.ModuleList , UpperCAmelCase__ :List[int] ): '''simple docstring''' a = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ), F"""{len(UpperCAmelCase__ )} != {len(UpperCAmelCase__ )}""" dest_layers.load_state_dict(layers_to_copy.state_dict() ) A_ : int = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A_ : Tuple = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def UpperCAmelCase__ ( UpperCAmelCase__ :int , UpperCAmelCase__ :str ): '''simple docstring''' try: a = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"""no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first""" F""" {n_student}""" ) return list(range(UpperCAmelCase__ ) ) def UpperCAmelCase__ ( UpperCAmelCase__ :Union[str, Any] , UpperCAmelCase__ :int ): '''simple docstring''' if n_student > n_teacher: raise ValueError(F"""Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}""" ) elif n_teacher == n_student: return list(range(UpperCAmelCase__ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def UpperCAmelCase__ ( UpperCAmelCase__ :Union[str, PreTrainedModel] , UpperCAmelCase__ :Union[str, Path] = "student" , UpperCAmelCase__ :Union[int, None] = None , UpperCAmelCase__ :Union[int, None] = None , UpperCAmelCase__ :int=False , UpperCAmelCase__ :Dict=None , UpperCAmelCase__ :Optional[int]=None , **UpperCAmelCase__ :Any , ): '''simple docstring''' a = "encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher." assert (e is not None) or (d is not None), _msg if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): AutoTokenizer.from_pretrained(UpperCAmelCase__ ).save_pretrained(UpperCAmelCase__ ) # purely for convenience a = AutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase__ ).eval() else: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ), F"""teacher must be a model or string got type {type(UpperCAmelCase__ )}""" a = teacher.config.to_diff_dict() try: a , a = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: a = teacher_e if d is None: a = teacher_d init_kwargs.update({"encoder_layers": e, "decoder_layers": d} ) except AttributeError: # T5 if hasattr(teacher.config , "num_encoder_layers" ): a , a = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: a , a = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: a = teacher_e if d is None: a = teacher_d if hasattr(teacher.config , "num_encoder_layers" ): init_kwargs.update({"num_encoder_layers": e, "num_decoder_layers": d} ) else: init_kwargs.update({"num_layers": e, "num_decoder_layers": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(UpperCAmelCase__ ) # Copy weights a = teacher.config_class(**UpperCAmelCase__ ) a = AutoModelForSeqaSeqLM.from_config(UpperCAmelCase__ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. a = student.load_state_dict(teacher.state_dict() , strict=UpperCAmelCase__ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save a , a = list(range(UpperCAmelCase__ ) ), list(range(UpperCAmelCase__ ) ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to""" F""" {save_path}""" ) student.save_pretrained(UpperCAmelCase__ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: a = pick_layers_to_copy(UpperCAmelCase__ , UpperCAmelCase__ ) if d_layers_to_copy is None: a = pick_layers_to_copy(UpperCAmelCase__ , UpperCAmelCase__ ) try: if hasattr( UpperCAmelCase__ , "prophetnet" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , UpperCAmelCase__ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , UpperCAmelCase__ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , UpperCAmelCase__ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , UpperCAmelCase__ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , UpperCAmelCase__ ) copy_layers(teacher.decoder.block , student.decoder.block , UpperCAmelCase__ ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}""" ) a = { "teacher_type": teacher.config.model_type, "copied_encoder_layers": e_layers_to_copy, "copied_decoder_layers": d_layers_to_copy, } student.save_pretrained(UpperCAmelCase__ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
32
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process A_ : int = logging.getLogger(__name__) @dataclass class _lowercase : _UpperCAmelCase = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _UpperCAmelCase = field( default=UpperCAmelCase__, metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _UpperCAmelCase = field( default='''NER''', metadata={'''help''': '''Task type to fine tune in training (e.g. NER, POS, etc)'''} ) _UpperCAmelCase = field( default=UpperCAmelCase__, metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _UpperCAmelCase = field(default=UpperCAmelCase__, metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _UpperCAmelCase = field( default=UpperCAmelCase__, metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''}, ) @dataclass class _lowercase : _UpperCAmelCase = field( metadata={'''help''': '''The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'''} ) _UpperCAmelCase = field( default=UpperCAmelCase__, metadata={'''help''': '''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'''}, ) _UpperCAmelCase = field( default=128, metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) }, ) _UpperCAmelCase = field( default=UpperCAmelCase__, metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def UpperCAmelCase__ ( ): '''simple docstring''' a = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a , a , a = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a , a , a = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) a = import_module("tasks" ) try: a = getattr(UpperCAmelCase__ , model_args.task_type ) a = token_classification_task_clazz() except AttributeError: raise ValueError( F"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ F"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , UpperCAmelCase__ ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task a = token_classification_task.get_labels(data_args.labels ) a = dict(enumerate(UpperCAmelCase__ ) ) a = len(UpperCAmelCase__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCAmelCase__ , idalabel=UpperCAmelCase__ , labelaid={label: i for i, label in enumerate(UpperCAmelCase__ )} , cache_dir=model_args.cache_dir , ) a = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) a = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , ) # Get datasets a = ( TokenClassificationDataset( token_classification_task=UpperCAmelCase__ , data_dir=data_args.data_dir , tokenizer=UpperCAmelCase__ , labels=UpperCAmelCase__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) a = ( TokenClassificationDataset( token_classification_task=UpperCAmelCase__ , data_dir=data_args.data_dir , tokenizer=UpperCAmelCase__ , labels=UpperCAmelCase__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(UpperCAmelCase__ :np.ndarray , UpperCAmelCase__ :np.ndarray ) -> Tuple[List[int], List[int]]: a = np.argmax(UpperCAmelCase__ , axis=2 ) a , a = preds.shape a = [[] for _ in range(UpperCAmelCase__ )] a = [[] for _ in range(UpperCAmelCase__ )] for i in range(UpperCAmelCase__ ): for j in range(UpperCAmelCase__ ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(UpperCAmelCase__ :EvalPrediction ) -> Dict: a , a = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(UpperCAmelCase__ , UpperCAmelCase__ ), "precision": precision_score(UpperCAmelCase__ , UpperCAmelCase__ ), "recall": recall_score(UpperCAmelCase__ , UpperCAmelCase__ ), "f1": fa_score(UpperCAmelCase__ , UpperCAmelCase__ ), } # Data collator a = DataCollatorWithPadding(UpperCAmelCase__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer a = Trainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=UpperCAmelCase__ , eval_dataset=UpperCAmelCase__ , compute_metrics=UpperCAmelCase__ , data_collator=UpperCAmelCase__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation a = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) a = trainer.evaluate() a = os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_process_zero(): with open(UpperCAmelCase__ , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , UpperCAmelCase__ , UpperCAmelCase__ ) writer.write("%s = %s\n" % (key, value) ) results.update(UpperCAmelCase__ ) # Predict if training_args.do_predict: a = TokenClassificationDataset( token_classification_task=UpperCAmelCase__ , data_dir=data_args.data_dir , tokenizer=UpperCAmelCase__ , labels=UpperCAmelCase__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) a , a , a = trainer.predict(UpperCAmelCase__ ) a , a = align_predictions(UpperCAmelCase__ , UpperCAmelCase__ ) a = os.path.join(training_args.output_dir , "test_results.txt" ) if trainer.is_world_process_zero(): with open(UpperCAmelCase__ , "w" ) as writer: for key, value in metrics.items(): logger.info(" %s = %s" , UpperCAmelCase__ , UpperCAmelCase__ ) writer.write("%s = %s\n" % (key, value) ) # Save predictions a = os.path.join(training_args.output_dir , "test_predictions.txt" ) if trainer.is_world_process_zero(): with open(UpperCAmelCase__ , "w" ) as writer: with open(os.path.join(data_args.data_dir , "test.txt" ) , "r" ) as f: token_classification_task.write_predictions_to_file(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return results def UpperCAmelCase__ ( UpperCAmelCase__ :Tuple ): '''simple docstring''' main() if __name__ == "__main__": main()
32
1
from __future__ import annotations def lowercase__ ( A_: list[list[int]] ) -> int: """simple docstring""" for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(A_ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(A_ ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
68
'''simple docstring''' def _UpperCAmelCase ( __A : int ): a_ : Optional[Any] = [] a_ : Optional[Any] = [] a_ : List[str] = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator a_ : int = len(__A ) if (len(__A ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ) , '''Stack'''.center(__A ) , '''Postfix'''.center(__A ) , sep=''' | ''' , ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__A ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__A ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__A ) == 0: stack.append(__A ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__A ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__A ) # push x to stack print( x.center(8 ) , (''''''.join(__A )).ljust(__A ) , (''''''.join(__A )).ljust(__A ) , sep=''' | ''' , ) # Output in tabular format while len(__A ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ) , (''''''.join(__A )).ljust(__A ) , (''''''.join(__A )).ljust(__A ) , sep=''' | ''' , ) # Output in tabular format return "".join(__A ) # return Postfix as str def _UpperCAmelCase ( __A : Tuple ): a_ : Union[str, Any] = list(infix[::-1] ) # reverse the infix equation for i in range(len(__A ) ): if infix[i] == "(": a_ : List[str] = ''')''' # change "(" to ")" elif infix[i] == ")": a_ : str = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(__A ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __lowerCAmelCase = input('\nEnter an Infix Equation = ') # Input an Infix equation __lowerCAmelCase = ''.join(Infix.split()) # Remove spaces from the input print('\n\t', Infix, '(Infix) -> ', infix_2_prefix(Infix), '(Prefix)')
466
0
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process lowerCamelCase__ = logging.getLogger(__name__) lowerCamelCase__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) lowerCamelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class snake_case__ : '''simple docstring''' lowerCamelCase : Optional[str] = field( default=lowercase_ , metadata={ "help": ( "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." ) } , ) lowerCamelCase : Optional[str] = field( default=lowercase_ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowercase_)} , ) lowerCamelCase : Optional[str] = field( default=lowercase_ , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) lowerCamelCase : Optional[str] = field( default=lowercase_ , metadata={"help": "Pretrained config name or path if not the same as model_name"}) lowerCamelCase : Optional[str] = field( default=lowercase_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) lowerCamelCase : Optional[str] = field( default=lowercase_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCamelCase : bool = field( default=lowercase_ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) lowerCamelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCamelCase : bool = field( default=lowercase_ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def __lowercase ( self ) -> List[Any]: '''simple docstring''' if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( """--config_overrides can't be used in combination with --config_name or --model_name_or_path""" ) @dataclass class snake_case__ : '''simple docstring''' lowerCamelCase : Optional[str] = field( default=lowercase_ , metadata={"help": "The name of the dataset to use (via the datasets library)."}) lowerCamelCase : Optional[str] = field( default=lowercase_ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}) lowerCamelCase : Optional[str] = field(default=lowercase_ , metadata={"help": "The input training data file (a text file)."}) lowerCamelCase : Optional[str] = field( default=lowercase_ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) lowerCamelCase : Optional[str] = field( default=lowercase_ , metadata={"help": "An optional input train ref data file for whole word masking in Chinese."} , ) lowerCamelCase : Optional[str] = field( default=lowercase_ , metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."} , ) lowerCamelCase : bool = field( default=lowercase_ , metadata={"help": "Overwrite the cached training and evaluation sets"}) lowerCamelCase : Optional[int] = field( default=5 , metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" } , ) lowerCamelCase : Optional[int] = field( default=lowercase_ , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated. Default to the max input length of the model." ) } , ) lowerCamelCase : Optional[int] = field( default=lowercase_ , metadata={"help": "The number of processes to use for the preprocessing."} , ) lowerCamelCase : float = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}) lowerCamelCase : bool = field( default=lowercase_ , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) def __lowercase ( self ) -> Optional[int]: '''simple docstring''' if self.train_file is not None: __snake_case :List[str] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __snake_case :Tuple = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def UpperCamelCase ( snake_case__ : Optional[Any] ,snake_case__ : Any ): '''simple docstring''' with open(snake_case__ ,"""r""" ,encoding="""utf-8""" ) as f: __snake_case :Optional[Any] = [json.loads(snake_case__ ) for line in f.read().splitlines() if (len(snake_case__ ) > 0 and not line.isspace())] assert len(snake_case__ ) == len(snake_case__ ) __snake_case :Optional[int] = {c: dataset[c] for c in dataset.column_names} __snake_case :Tuple = refs return Dataset.from_dict(snake_case__ ) def UpperCamelCase ( ): '''simple docstring''' __snake_case :Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case :List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case :Union[str, Any] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __snake_case :List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __snake_case :Tuple = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,handlers=[logging.StreamHandler(sys.stdout )] ,) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" ,snake_case__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __snake_case :List[Any] = load_dataset(data_args.dataset_name ,data_args.dataset_config_name ) if "validation" not in datasets.keys(): __snake_case :str = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=f'''train[:{data_args.validation_split_percentage}%]''' ,) __snake_case :Any = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=f'''train[{data_args.validation_split_percentage}%:]''' ,) else: __snake_case :Union[str, Any] = {} if data_args.train_file is not None: __snake_case :Tuple = data_args.train_file if data_args.validation_file is not None: __snake_case :Dict = data_args.validation_file __snake_case :int = data_args.train_file.split(""".""" )[-1] if extension == "txt": __snake_case :str = """text""" __snake_case :List[Any] = load_dataset(snake_case__ ,data_files=snake_case__ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case :Union[str, Any] = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: __snake_case :Tuple = AutoConfig.from_pretrained(model_args.config_name ,**snake_case__ ) elif model_args.model_name_or_path: __snake_case :Union[str, Any] = AutoConfig.from_pretrained(model_args.model_name_or_path ,**snake_case__ ) else: __snake_case :Any = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(f'''New config: {config}''' ) __snake_case :Dict = { """cache_dir""": model_args.cache_dir, """use_fast""": model_args.use_fast_tokenizer, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __snake_case :Dict = AutoTokenizer.from_pretrained(model_args.tokenizer_name ,**snake_case__ ) elif model_args.model_name_or_path: __snake_case :str = AutoTokenizer.from_pretrained(model_args.model_name_or_path ,**snake_case__ ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) if model_args.model_name_or_path: __snake_case :List[Any] = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path ,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) ,config=snake_case__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) else: logger.info("""Training new model from scratch""" ) __snake_case :str = AutoModelForMaskedLM.from_config(snake_case__ ) model.resize_token_embeddings(len(snake_case__ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __snake_case :str = datasets["""train"""].column_names else: __snake_case :Dict = datasets["""validation"""].column_names __snake_case :Union[str, Any] = """text""" if """text""" in column_names else column_names[0] __snake_case :Tuple = """max_length""" if data_args.pad_to_max_length else False def tokenize_function(snake_case__ : int ): # Remove empty lines __snake_case :Dict = [line for line in examples["""text"""] if len(snake_case__ ) > 0 and not line.isspace()] return tokenizer(examples["""text"""] ,padding=snake_case__ ,truncation=snake_case__ ,max_length=data_args.max_seq_length ) __snake_case :List[Any] = datasets.map( snake_case__ ,batched=snake_case__ ,num_proc=data_args.preprocessing_num_workers ,remove_columns=[text_column_name] ,load_from_cache_file=not data_args.overwrite_cache ,) # Add the chinese references if provided if data_args.train_ref_file is not None: __snake_case :List[Any] = add_chinese_references(tokenized_datasets["""train"""] ,data_args.train_ref_file ) if data_args.validation_ref_file is not None: __snake_case :Optional[int] = add_chinese_references( tokenized_datasets["""validation"""] ,data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __snake_case :Tuple = data_args.train_ref_file or data_args.validation_ref_file if has_ref: __snake_case :Dict = False # Data collator # This one will take care of randomly masking the tokens. __snake_case :Union[str, Any] = DataCollatorForWholeWordMask(tokenizer=snake_case__ ,mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __snake_case :Optional[Any] = Trainer( model=snake_case__ ,args=snake_case__ ,train_dataset=tokenized_datasets["""train"""] if training_args.do_train else None ,eval_dataset=tokenized_datasets["""validation"""] if training_args.do_eval else None ,tokenizer=snake_case__ ,data_collator=snake_case__ ,) # Training if training_args.do_train: if last_checkpoint is not None: __snake_case :Dict = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __snake_case :Optional[int] = model_args.model_name_or_path else: __snake_case :Tuple = None __snake_case :List[str] = trainer.train(resume_from_checkpoint=snake_case__ ) trainer.save_model() # Saves the tokenizer too for easy upload __snake_case :Optional[Any] = os.path.join(training_args.output_dir ,"""train_results.txt""" ) if trainer.is_world_process_zero(): with open(snake_case__ ,"""w""" ) as writer: logger.info("""***** Train results *****""" ) for key, value in sorted(train_result.metrics.items() ): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir ,"""trainer_state.json""" ) ) # Evaluation __snake_case :Any = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __snake_case :Optional[Any] = trainer.evaluate() __snake_case :List[Any] = math.exp(eval_output["""eval_loss"""] ) __snake_case :List[Any] = perplexity __snake_case :List[str] = os.path.join(training_args.output_dir ,"""eval_results_mlm_wwm.txt""" ) if trainer.is_world_process_zero(): with open(snake_case__ ,"""w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in sorted(results.items() ): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) return results def UpperCamelCase ( snake_case__ : Dict ): '''simple docstring''' main() if __name__ == "__main__": main()
291
def UpperCamelCase ( snake_case__ : str ,snake_case__ : int ): '''simple docstring''' __snake_case :list[list[str]] = [[] for _ in range(snake_case__ )] __snake_case :Union[str, Any] = key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1 or len(snake_case__ ) <= key: return input_string for position, character in enumerate(snake_case__ ): __snake_case :Any = position % (lowest * 2) # puts it in bounds __snake_case :Optional[int] = min(snake_case__ ,lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(snake_case__ ) __snake_case :List[Any] = ["""""".join(snake_case__ ) for row in temp_grid] __snake_case :Any = """""".join(snake_case__ ) return output_string def UpperCamelCase ( snake_case__ : str ,snake_case__ : int ): '''simple docstring''' __snake_case :Union[str, Any] = [] __snake_case :Optional[int] = key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1: return input_string __snake_case :list[list[str]] = [[] for _ in range(snake_case__ )] # generates template for position in range(len(snake_case__ ) ): __snake_case :List[str] = position % (lowest * 2) # puts it in bounds __snake_case :int = min(snake_case__ ,lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("""*""" ) __snake_case :str = 0 for row in temp_grid: # fills in the characters __snake_case :str = input_string[counter : counter + len(snake_case__ )] grid.append(list(snake_case__ ) ) counter += len(snake_case__ ) __snake_case :Any = """""" # reads as zigzag for position in range(len(snake_case__ ) ): __snake_case :Optional[int] = position % (lowest * 2) # puts it in bounds __snake_case :int = min(snake_case__ ,lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def UpperCamelCase ( snake_case__ : str ): '''simple docstring''' __snake_case :Optional[Any] = {} for key_guess in range(1 ,len(snake_case__ ) ): # tries every key __snake_case :Dict = decrypt(snake_case__ ,snake_case__ ) return results if __name__ == "__main__": import doctest doctest.testmod()
291
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ =logging.get_logger(__name__) UpperCAmelCase__ ={ "google/mobilenet_v2_1.4_224": "https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json", "google/mobilenet_v2_1.0_224": "https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json", "google/mobilenet_v2_0.75_160": "https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json", "google/mobilenet_v2_0.35_96": "https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class lowerCamelCase__ ( _a ): a : Dict = """mobilenet_v2""" def __init__( self : Dict , A_ : Any=3 , A_ : Tuple=2_2_4 , A_ : int=1.0 , A_ : List[Any]=8 , A_ : Tuple=8 , A_ : Dict=6 , A_ : Dict=3_2 , A_ : Union[str, Any]=True , A_ : Union[str, Any]=True , A_ : Union[str, Any]="relu6" , A_ : List[str]=True , A_ : int=0.8 , A_ : Tuple=0.02 , A_ : List[Any]=0.0_01 , A_ : Any=2_5_5 , **A_ : int , ): '''simple docstring''' super().__init__(**A_ ) if depth_multiplier <= 0: raise ValueError("""depth_multiplier must be greater than zero.""" ) __lowercase = num_channels __lowercase = image_size __lowercase = depth_multiplier __lowercase = depth_divisible_by __lowercase = min_depth __lowercase = expand_ratio __lowercase = output_stride __lowercase = first_layer_is_expansion __lowercase = finegrained_output __lowercase = hidden_act __lowercase = tf_padding __lowercase = classifier_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = semantic_loss_ignore_index class lowerCamelCase__ ( _a ): a : int = version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' return OrderedDict([("""pixel_values""", {0: """batch"""})] ) @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([("""logits""", {0: """batch"""})] ) else: return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] ) @property def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' return 1e-4
616
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black UpperCAmelCase__ =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. UpperCAmelCase__ =" \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class lowerCamelCase__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' __lowercase = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , """schedulers/""" ) ) __lowercase = self.diffusers_dir shutil.copy( os.path.join(A_ , """src/diffusers/schedulers/scheduling_ddpm.py""" ) , os.path.join(self.diffusers_dir , """schedulers/scheduling_ddpm.py""" ) , ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' __lowercase = """src/diffusers""" shutil.rmtree(self.diffusers_dir ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , A_ : List[str] , A_ : int , A_ : Optional[Any] , A_ : str=None ): '''simple docstring''' __lowercase = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: __lowercase = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result __lowercase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 ) __lowercase = black.format_str(A_ , mode=A_ ) __lowercase = os.path.join(self.diffusers_dir , """new_code.py""" ) with open(A_ , """w""" , newline="""\n""" ) as f: f.write(A_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(A_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=A_ ) with open(A_ , """r""" ) as f: self.assertTrue(f.read() , A_ ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' __lowercase = check_copies.find_code_in_diffusers("""schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ) self.assertEqual(A_ , A_ ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , A_ , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , re.sub("""DDPM""" , """Test""" , A_ ) , ) # Copy consistency with a really long name __lowercase = """TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub("""Bert""" , A_ , A_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , A_ , overwrite_result=re.sub("""DDPM""" , """Test""" , A_ ) , )
616
1
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask snake_case = logging.getLogger(__name__) class __A ( snake_case__ ): '''simple docstring''' def __init__( self , _snake_case=-1 ): # in NER datasets, the last column is usually reserved for NER label _lowerCAmelCase : List[str] = label_idx def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case ): if isinstance(_snake_case , _snake_case ): _lowerCAmelCase : List[str] = mode.value _lowerCAmelCase : Optional[Any] = os.path.join(_snake_case , F"""{mode}.txt""" ) _lowerCAmelCase : Optional[int] = 1 _lowerCAmelCase : Any = [] with open(_snake_case , encoding="utf-8" ) as f: _lowerCAmelCase : int = [] _lowerCAmelCase : Union[str, Any] = [] for line in f: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=_snake_case , labels=_snake_case ) ) guid_index += 1 _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : str = [] else: _lowerCAmelCase : int = line.split(" " ) words.append(splits[0] ) if len(_snake_case ) > 1: labels.append(splits[self.label_idx].replace("\n" , "" ) ) else: # Examples could have no label for mode = "test" labels.append("O" ) if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=_snake_case , labels=_snake_case ) ) return examples def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case ): _lowerCAmelCase : Tuple = 0 for line in test_input_reader: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": writer.write(_snake_case ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _lowerCAmelCase : Optional[Any] = line.split()[0] + " " + preds_list[example_id].pop(0 ) + "\n" writer.write(_snake_case ) else: logger.warning("Maximum sequence length exceeded: No prediction for '%s'." , line.split()[0] ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case ): if path: with open(_snake_case , "r" ) as f: _lowerCAmelCase : Union[str, Any] = f.read().splitlines() if "O" not in labels: _lowerCAmelCase : List[str] = ["O"] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __A ( snake_case__ ): '''simple docstring''' def __init__( self ): # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case ): if path: with open(_snake_case , "r" ) as f: _lowerCAmelCase : List[str] = f.read().splitlines() if "O" not in labels: _lowerCAmelCase : str = ["O"] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __A ( snake_case__ ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case ): if isinstance(_snake_case , _snake_case ): _lowerCAmelCase : Optional[int] = mode.value _lowerCAmelCase : Dict = os.path.join(_snake_case , F"""{mode}.txt""" ) _lowerCAmelCase : int = 1 _lowerCAmelCase : Any = [] with open(_snake_case , encoding="utf-8" ) as f: for sentence in parse_incr(_snake_case ): _lowerCAmelCase : str = [] _lowerCAmelCase : str = [] for token in sentence: words.append(token["form"] ) labels.append(token["upos"] ) assert len(_snake_case ) == len(_snake_case ) if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=_snake_case , labels=_snake_case ) ) guid_index += 1 return examples def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case ): _lowerCAmelCase : Tuple = 0 for sentence in parse_incr(_snake_case ): _lowerCAmelCase : str = preds_list[example_id] _lowerCAmelCase : Optional[int] = "" for token in sentence: out += F"""{token['form']} ({token['upos']}|{s_p.pop(0 )}) """ out += "\n" writer.write(_snake_case ) example_id += 1 def SCREAMING_SNAKE_CASE__ ( self , _snake_case ): if path: with open(_snake_case , "r" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
587
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller snake_case = 3 def UpperCamelCase_ ( lowerCAmelCase__ ): """simple docstring""" print("Generating primitive root of p" ) while True: _lowerCAmelCase : Optional[int] = random.randrange(3 , lowerCAmelCase__ ) if pow(lowerCAmelCase__ , 2 , lowerCAmelCase__ ) == 1: continue if pow(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) == 1: continue return g def UpperCamelCase_ ( lowerCAmelCase__ ): """simple docstring""" print("Generating prime p..." ) _lowerCAmelCase : Union[str, Any] = rabin_miller.generate_large_prime(lowerCAmelCase__ ) # select large prime number. _lowerCAmelCase : int = primitive_root(lowerCAmelCase__ ) # one primitive root on modulo p. _lowerCAmelCase : str = random.randrange(3 , lowerCAmelCase__ ) # private_key -> have to be greater than 2 for safety. _lowerCAmelCase : str = cryptomath.find_mod_inverse(pow(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) _lowerCAmelCase : int = (key_size, e_a, e_a, p) _lowerCAmelCase : List[str] = (key_size, d) return public_key, private_key def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print("\nWARNING:" ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" "Use a different name or delete these files and re-run this program." ) sys.exit() _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = generate_key(lowerCAmelCase__ ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" , "w" ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" , "w" ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def UpperCamelCase_ ( ): """simple docstring""" print("Making key files..." ) make_key_files("elgamal" , 20_48 ) print("Key files generation successful" ) if __name__ == "__main__": main()
587
1
"""simple docstring""" def SCREAMING_SNAKE_CASE ( snake_case): __snake_case = set() # edges = list of graph's edges __snake_case = get_edges(snake_case) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: __snake_case , __snake_case = edges.pop() chosen_vertices.add(snake_case) chosen_vertices.add(snake_case) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(snake_case) return chosen_vertices def SCREAMING_SNAKE_CASE ( snake_case): __snake_case = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node)) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
564
"""simple docstring""" import os import numpy import onnx def SCREAMING_SNAKE_CASE ( snake_case, snake_case): __snake_case = a.name __snake_case = b.name __snake_case = '''''' __snake_case = '''''' __snake_case = a == b __snake_case = name_a __snake_case = name_b return res def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case): for i, input_name in enumerate(node_proto.input): if input_name == name: node_proto.input.insert(snake_case, snake_case) node_proto.input.pop(i + 1) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g, snake_case, snake_case) _graph_replace_input_with(node_proto.attribute[1].g, snake_case, snake_case) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g, snake_case, snake_case) def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case): for n in graph_proto.node: _node_replace_input_with(snake_case, snake_case, snake_case) def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case): __snake_case = list(model.graph.initializer) __snake_case = list(model_without_ext.graph.initializer) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __snake_case = inits[i].name __snake_case = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i]) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph, snake_case, snake_case) def SCREAMING_SNAKE_CASE ( snake_case): __snake_case = os.path.dirname(snake_case) __snake_case = os.path.basename(snake_case) __snake_case = onnx.load(os.path.join(snake_case, snake_case)) __snake_case = list(model.graph.initializer) __snake_case = set() __snake_case = {} __snake_case = [] __snake_case = 0 for i in range(len(snake_case)): if i in dup_set: continue for j in range(i + 1, len(snake_case)): if j in dup_set: continue if _is_equal_tensor_proto(inits[i], inits[j]): dup_set.add(snake_case) dup_set.add(snake_case) __snake_case = inits[j].data_type __snake_case = numpy.prod(inits[j].dims) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''', snake_case) total_reduced_size += mem_size __snake_case = inits[i].name __snake_case = inits[j].name if name_i in dup_map: dup_map[name_i].append(snake_case) else: __snake_case = [name_j] ind_to_replace.append((j, i)) print('''total reduced size: ''', total_reduced_size / 10_24 / 10_24 / 10_24, '''GB''') __snake_case = sorted(snake_case) _remove_dup_initializers_from_model(snake_case, snake_case, snake_case) __snake_case = '''optimized_''' + model_file_name __snake_case = os.path.join(snake_case, snake_case) onnx.save(snake_case, snake_case) return new_model
564
1
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig _UpperCAmelCase = logging.get_logger(__name__) # General docstring _UpperCAmelCase = """RegNetConfig""" # Base docstring _UpperCAmelCase = """facebook/regnet-y-040""" _UpperCAmelCase = [1, 1088, 7, 7] # Image classification docstring _UpperCAmelCase = """facebook/regnet-y-040""" _UpperCAmelCase = """tabby, tabby cat""" _UpperCAmelCase = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase = 3 , lowercase = 1 , lowercase = 1 , lowercase = "relu" , **lowercase , ): """simple docstring""" super().__init__(**lowercase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb A_ : int = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) A_ : int = tf.keras.layers.ConvaD( filters=lowercase , kernel_size=lowercase , strides=lowercase , padding='VALID' , groups=lowercase , use_bias=lowercase , name='convolution' , ) A_ : Any = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) A_ : Union[str, Any] = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : List[str] = self.convolution(self.padding(lowercase ) ) A_ : List[str] = self.normalization(lowercase ) A_ : List[Any] = self.activation(lowercase ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : Optional[int] = config.num_channels A_ : str = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Dict = shape_list(lowercase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) A_ : Optional[int] = tf.transpose(lowercase , perm=(0, 2, 3, 1) ) A_ : Optional[int] = self.embedder(lowercase ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase = 2 , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : int = tf.keras.layers.ConvaD( filters=lowercase , kernel_size=1 , strides=lowercase , use_bias=lowercase , name='convolution' ) A_ : str = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) def lowerCAmelCase_ ( self , lowercase , lowercase = False ): """simple docstring""" return self.normalization(self.convolution(lowercase ) , training=lowercase ) class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : int = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowercase , name='pooler' ) A_ : Optional[Any] = [ tf.keras.layers.ConvaD(filters=lowercase , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=lowercase , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : int = self.pooler(lowercase ) for layer_module in self.attention: A_ : Optional[Any] = layer_module(lowercase ) A_ : Optional[int] = hidden_state * pooled return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase = 1 , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : str = in_channels != out_channels or stride != 1 A_ : Optional[int] = max(1 , out_channels // config.groups_width ) A_ : List[Any] = ( TFRegNetShortCut(lowercase , stride=lowercase , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. A_ : Optional[int] = [ TFRegNetConvLayer(lowercase , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( lowercase , stride=lowercase , groups=lowercase , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(lowercase , kernel_size=1 , activation=lowercase , name='layer.2' ), ] A_ : List[str] = ACTaFN[config.hidden_act] def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Union[str, Any] = hidden_state for layer_module in self.layers: A_ : int = layer_module(lowercase ) A_ : Union[str, Any] = self.shortcut(lowercase ) hidden_state += residual A_ : Dict = self.activation(lowercase ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase = 1 , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : str = in_channels != out_channels or stride != 1 A_ : int = max(1 , out_channels // config.groups_width ) A_ : Optional[int] = ( TFRegNetShortCut(lowercase , stride=lowercase , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) A_ : List[str] = [ TFRegNetConvLayer(lowercase , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( lowercase , stride=lowercase , groups=lowercase , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(lowercase , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(lowercase , kernel_size=1 , activation=lowercase , name='layer.3' ), ] A_ : Union[str, Any] = ACTaFN[config.hidden_act] def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Dict = hidden_state for layer_module in self.layers: A_ : Tuple = layer_module(lowercase ) A_ : int = self.shortcut(lowercase ) hidden_state += residual A_ : str = self.activation(lowercase ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase = 2 , lowercase = 2 , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : Tuple = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer A_ : Tuple = [ # downsampling is done in the first layer with stride of 2 layer(lowercase , lowercase , lowercase , stride=lowercase , name='layers.0' ), *[layer(lowercase , lowercase , lowercase , name=F'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" for layer_module in self.layers: A_ : Tuple = layer_module(lowercase ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : List[str] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) A_ : Tuple = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowercase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowercase , lowercase , lowercase , depth=lowercase , name=F'''stages.{i+1}''' ) ) def lowerCAmelCase_ ( self , lowercase , lowercase = False , lowercase = True ): """simple docstring""" A_ : Tuple = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: A_ : Dict = hidden_states + (hidden_state,) A_ : List[Any] = stage_module(lowercase ) if output_hidden_states: A_ : Union[str, Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowercase , hidden_states=lowercase ) @keras_serializable class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' lowerCamelCase_ = RegNetConfig def __init__( self , lowercase , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : Optional[Any] = config A_ : int = TFRegNetEmbeddings(lowercase , name='embedder' ) A_ : str = TFRegNetEncoder(lowercase , name='encoder' ) A_ : Optional[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowercase , name='pooler' ) @unpack_inputs def lowerCAmelCase_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = False , ): """simple docstring""" A_ : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A_ : Dict = return_dict if return_dict is not None else self.config.use_return_dict A_ : Union[str, Any] = self.embedder(lowercase , training=lowercase ) A_ : Optional[int] = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase , training=lowercase ) A_ : Dict = encoder_outputs[0] A_ : List[Any] = self.pooler(lowercase ) # Change to NCHW output format have uniformity in the modules A_ : Union[str, Any] = tf.transpose(lowercase , perm=(0, 3, 1, 2) ) A_ : Optional[int] = tf.transpose(lowercase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: A_ : int = tuple([tf.transpose(lowercase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = RegNetConfig lowerCamelCase_ = '''regnet''' lowerCamelCase_ = '''pixel_values''' @property def lowerCAmelCase_ ( self ): """simple docstring""" return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) , dtype=tf.floataa )} _UpperCAmelCase = r""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ _UpperCAmelCase = r""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , __A , ) class UpperCAmelCase ( __A ): '''simple docstring''' def __init__( self , lowercase , *lowercase , **lowercase ): """simple docstring""" super().__init__(lowercase , *lowercase , **lowercase ) A_ : int = TFRegNetMainLayer(lowercase , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase_ ( self , lowercase , lowercase = None , lowercase = None , lowercase=False , ): """simple docstring""" A_ : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A_ : int = return_dict if return_dict is not None else self.config.use_return_dict A_ : Tuple = self.regnet( pixel_values=lowercase , output_hidden_states=lowercase , return_dict=lowercase , training=lowercase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , __A , ) class UpperCAmelCase ( __A , __A ): '''simple docstring''' def __init__( self , lowercase , *lowercase , **lowercase ): """simple docstring""" super().__init__(lowercase , *lowercase , **lowercase ) A_ : List[Any] = config.num_labels A_ : Optional[Any] = TFRegNetMainLayer(lowercase , name='regnet' ) # classification head A_ : Union[str, Any] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase_ ( self , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase=False , ): """simple docstring""" A_ : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A_ : int = return_dict if return_dict is not None else self.config.use_return_dict A_ : List[Any] = self.regnet( lowercase , output_hidden_states=lowercase , return_dict=lowercase , training=lowercase ) A_ : Optional[Any] = outputs.pooler_output if return_dict else outputs[1] A_ : List[Any] = self.classifier[0](lowercase ) A_ : Union[str, Any] = self.classifier[1](lowercase ) A_ : List[str] = None if labels is None else self.hf_compute_loss(labels=lowercase , logits=lowercase ) if not return_dict: A_ : str = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states )
718
import random def UpperCamelCase ( __lowercase : int ): '''simple docstring''' A_ : Tuple = num - 1 A_ : Optional[Any] = 0 while s % 2 == 0: A_ : Optional[int] = s // 2 t += 1 for _ in range(5 ): A_ : Optional[int] = random.randrange(2 ,num - 1 ) A_ : Any = pow(__lowercase ,__lowercase ,__lowercase ) if v != 1: A_ : List[str] = 0 while v != (num - 1): if i == t - 1: return False else: A_ : Union[str, Any] = i + 1 A_ : Tuple = (v**2) % num return True def UpperCamelCase ( __lowercase : int ): '''simple docstring''' if num < 2: return False A_ : Optional[Any] = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(__lowercase ) def UpperCamelCase ( __lowercase : int = 10_24 ): '''simple docstring''' while True: A_ : Union[str, Any] = random.randrange(2 ** (keysize - 1) ,2 ** (keysize) ) if is_prime_low_num(__lowercase ): return num if __name__ == "__main__": _UpperCAmelCase = generate_large_prime() print(("""Prime number:""", num)) print(("""is_prime_low_num:""", is_prime_low_num(num)))
70
0
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class __magic_name__ (snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : List[str] = BertJapaneseTokenizer __lowercase : Optional[Any] = False __lowercase : List[Any] = True def SCREAMING_SNAKE_CASE__ ( self:List[str] ): super().setUp() snake_case__ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] snake_case__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE__ ( self:int , _a:Dict ): snake_case__ = '''こんにちは、世界。 \nこんばんは、世界。''' snake_case__ = '''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:Optional[int] ): snake_case__ , snake_case__ = self.get_input_output_texts(_a ) snake_case__ = tokenizer.encode(_a , add_special_tokens=_a ) snake_case__ = tokenizer.decode(_a , clean_up_tokenization_spaces=_a ) return text, ids def SCREAMING_SNAKE_CASE__ ( self:Dict ): pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self:int ): pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = self.tokenizer_class(self.vocab_file ) snake_case__ = tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''' ) self.assertListEqual(_a , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''mecab''' ) self.assertIsNotNone(_a ) snake_case__ = '''こんにちは、世界。\nこんばんは、世界。''' snake_case__ = tokenizer.tokenize(_a ) self.assertListEqual(_a , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) snake_case__ = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(_a , '''wb''' ) as handle: pickle.dump(_a , _a ) with open(_a , '''rb''' ) as handle: snake_case__ = pickle.load(_a ) snake_case__ = tokenizer_new.tokenize(_a ) self.assertListEqual(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = MecabTokenizer(mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): try: snake_case__ = MecabTokenizer(mecab_dic='''unidic_lite''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): try: snake_case__ = MecabTokenizer(mecab_dic='''unidic''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = MecabTokenizer(do_lower_case=_a , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): try: snake_case__ = MecabTokenizer( do_lower_case=_a , normalize_text=_a , mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = MecabTokenizer(normalize_text=_a , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''] , ) @require_sudachi def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''sudachi''' ) self.assertIsNotNone(_a ) snake_case__ = '''こんにちは、世界。\nこんばんは、世界。''' snake_case__ = tokenizer.tokenize(_a ) self.assertListEqual(_a , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) snake_case__ = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(_a , '''wb''' ) as handle: pickle.dump(_a , _a ) with open(_a , '''rb''' ) as handle: snake_case__ = pickle.load(_a ) snake_case__ = tokenizer_new.tokenize(_a ) self.assertListEqual(_a , _a ) @require_sudachi def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = SudachiTokenizer(sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''A''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国''', '''人''', '''参政''', '''権'''] ) @require_sudachi def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''B''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人''', '''参政権'''] ) @require_sudachi def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''C''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人参政権'''] ) @require_sudachi def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = SudachiTokenizer(do_lower_case=_a , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = SudachiTokenizer(normalize_text=_a , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = SudachiTokenizer(trim_whitespace=_a , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) @require_jumanpp def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''jumanpp''' ) self.assertIsNotNone(_a ) snake_case__ = '''こんにちは、世界。\nこんばんは、世界。''' snake_case__ = tokenizer.tokenize(_a ) self.assertListEqual(_a , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) snake_case__ = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(_a , '''wb''' ) as handle: pickle.dump(_a , _a ) with open(_a , '''rb''' ) as handle: snake_case__ = pickle.load(_a ) snake_case__ = tokenizer_new.tokenize(_a ) self.assertListEqual(_a , _a ) @require_jumanpp def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = JumanppTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = JumanppTokenizer(normalize_text=_a ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = JumanppTokenizer(trim_whitespace=_a ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''] , ) @require_jumanpp def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''' ) , ['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''] , ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] snake_case__ = {} for i, token in enumerate(_a ): snake_case__ = i snake_case__ = WordpieceTokenizer(vocab=_a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こんにちは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは''' ) , ['''こん''', '''##ばんは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''' ) , ['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは'''] ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''' ) snake_case__ = tokenizer.subword_tokenizer snake_case__ = subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''' ) self.assertListEqual(_a , ['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。'''] ) snake_case__ = subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''' ) self.assertListEqual(_a , ['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは'''] ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''' ) snake_case__ = tokenizer.encode('''ありがとう。''' , add_special_tokens=_a ) snake_case__ = tokenizer.encode('''どういたしまして。''' , add_special_tokens=_a ) snake_case__ = tokenizer.build_inputs_with_special_tokens(_a ) snake_case__ = tokenizer.build_inputs_with_special_tokens(_a , _a ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __magic_name__ (snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Dict = BertJapaneseTokenizer __lowercase : List[str] = False def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): super().setUp() snake_case__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] snake_case__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE__ ( self:List[str] , **_a:Tuple ): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='''character''' , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:Optional[Any] ): snake_case__ = '''こんにちは、世界。 \nこんばんは、世界。''' snake_case__ = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self:Any ): pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self:List[str] ): pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self:str ): pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='''character''' ) snake_case__ = tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''' ) self.assertListEqual( _a , ['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] snake_case__ = {} for i, token in enumerate(_a ): snake_case__ = i snake_case__ = CharacterTokenizer(vocab=_a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''は'''] ) self.assertListEqual(tokenizer.tokenize('''こんにちほ''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]'''] ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''' ) snake_case__ = tokenizer.encode('''ありがとう。''' , add_special_tokens=_a ) snake_case__ = tokenizer.encode('''どういたしまして。''' , add_special_tokens=_a ) snake_case__ = tokenizer.build_inputs_with_special_tokens(_a ) snake_case__ = tokenizer.build_inputs_with_special_tokens(_a , _a ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = '''cl-tohoku/bert-base-japanese''' snake_case__ = AutoTokenizer.from_pretrained(_a ) self.assertIsInstance(_a , _a ) class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = '''cl-tohoku/bert-base-japanese''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertTokenizer.from_pretrained(_a ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) ) snake_case__ = '''bert-base-cased''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertJapaneseTokenizer.from_pretrained(_a ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) )
33
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a : Optional[Any] = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = ['''OwlViTFeatureExtractor'''] a : List[Any] = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys a : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
633
0
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
703
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "geglu" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = "layer_norm" , SCREAMING_SNAKE_CASE__ = False , ): '''simple docstring''' super().__init__() snake_case: List[str] = only_cross_attention snake_case: Optional[Any] = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' snake_case: Tuple = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" F""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: snake_case: List[str] = AdaLayerNorm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.use_ada_layer_norm_zero: snake_case: str = AdaLayerNormZero(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case: int = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = Attention( query_dim=SCREAMING_SNAKE_CASE__ , heads=SCREAMING_SNAKE_CASE__ , dim_head=SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=SCREAMING_SNAKE_CASE__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. snake_case: Tuple = ( AdaLayerNorm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm else nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) ) snake_case: Any = Attention( query_dim=SCREAMING_SNAKE_CASE__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=SCREAMING_SNAKE_CASE__ , dim_head=SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ , upcast_attention=SCREAMING_SNAKE_CASE__ , ) # is self-attn if encoder_hidden_states is none else: snake_case: int = None snake_case: Tuple = None # 3. Feed-forward snake_case: Union[str, Any] = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = FeedForward(SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , activation_fn=SCREAMING_SNAKE_CASE__ , final_dropout=SCREAMING_SNAKE_CASE__ ) # let chunk size default to None snake_case: Any = None snake_case: Any = 0 def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = chunk_size snake_case: str = dim def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' if self.use_ada_layer_norm: snake_case: Optional[int] = self.norma(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.use_ada_layer_norm_zero: snake_case , snake_case , snake_case , snake_case , snake_case: int = self.norma( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hidden_dtype=hidden_states.dtype ) else: snake_case: List[str] = self.norma(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = cross_attention_kwargs if cross_attention_kwargs is not None else {} snake_case: List[str] = self.attna( SCREAMING_SNAKE_CASE__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if self.use_ada_layer_norm_zero: snake_case: Tuple = gate_msa.unsqueeze(1 ) * attn_output snake_case: List[str] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: snake_case: Dict = ( self.norma(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm else self.norma(SCREAMING_SNAKE_CASE__ ) ) snake_case: Any = self.attna( SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) snake_case: List[str] = attn_output + hidden_states # 3. Feed-forward snake_case: str = self.norma(SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm_zero: snake_case: str = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) snake_case: List[str] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size snake_case: Optional[Any] = torch.cat( [self.ff(SCREAMING_SNAKE_CASE__ ) for hid_slice in norm_hidden_states.chunk(SCREAMING_SNAKE_CASE__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: snake_case: int = self.ff(SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm_zero: snake_case: Union[str, Any] = gate_mlp.unsqueeze(1 ) * ff_output snake_case: Tuple = ff_output + hidden_states return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 4 , SCREAMING_SNAKE_CASE__ = 0.0 , SCREAMING_SNAKE_CASE__ = "geglu" , SCREAMING_SNAKE_CASE__ = False , ): '''simple docstring''' super().__init__() snake_case: int = int(dim * mult ) snake_case: Optional[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": snake_case: int = GELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if activation_fn == "gelu-approximate": snake_case: Optional[Any] = GELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , approximate='tanh' ) elif activation_fn == "geglu": snake_case: List[Any] = GEGLU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif activation_fn == "geglu-approximate": snake_case: Optional[int] = ApproximateGELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Any = nn.ModuleList([] ) # project in self.net.append(SCREAMING_SNAKE_CASE__ ) # project dropout self.net.append(nn.Dropout(SCREAMING_SNAKE_CASE__ ) ) # project out self.net.append(nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for module in self.net: snake_case: Optional[int] = module(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = "none" ): '''simple docstring''' super().__init__() snake_case: Optional[int] = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = approximate def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(SCREAMING_SNAKE_CASE__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.proj(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = self.gelu(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Tuple = nn.Linear(SCREAMING_SNAKE_CASE__ , dim_out * 2 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(SCREAMING_SNAKE_CASE__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case , snake_case: int = self.proj(SCREAMING_SNAKE_CASE__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = self.proj(SCREAMING_SNAKE_CASE__ ) return x * torch.sigmoid(1.7_02 * x ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Optional[Any] = nn.Embedding(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = nn.SiLU() snake_case: Union[str, Any] = nn.Linear(SCREAMING_SNAKE_CASE__ , embedding_dim * 2 ) snake_case: int = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.linear(self.silu(self.emb(SCREAMING_SNAKE_CASE__ ) ) ) snake_case , snake_case: Dict = torch.chunk(SCREAMING_SNAKE_CASE__ , 2 ) snake_case: str = self.norm(SCREAMING_SNAKE_CASE__ ) * (1 + scale) + shift return x class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = CombinedTimestepLabelEmbeddings(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: int = nn.SiLU() snake_case: Any = nn.Linear(SCREAMING_SNAKE_CASE__ , 6 * embedding_dim , bias=SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ , eps=1E-6 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' snake_case: int = self.linear(self.silu(self.emb(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hidden_dtype=SCREAMING_SNAKE_CASE__ ) ) ) snake_case , snake_case , snake_case , snake_case , snake_case , snake_case: str = emb.chunk(6 , dim=1 ) snake_case: Dict = self.norm(SCREAMING_SNAKE_CASE__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 1E-5 ): '''simple docstring''' super().__init__() snake_case: str = num_groups snake_case: str = eps if act_fn is None: snake_case: Dict = None else: snake_case: List[str] = get_activation(SCREAMING_SNAKE_CASE__ ) snake_case: Any = nn.Linear(SCREAMING_SNAKE_CASE__ , out_dim * 2 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if self.act: snake_case: Optional[Any] = self.act(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.linear(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = emb[:, :, None, None] snake_case , snake_case: List[Any] = emb.chunk(2 , dim=1 ) snake_case: Any = F.group_norm(SCREAMING_SNAKE_CASE__ , self.num_groups , eps=self.eps ) snake_case: Optional[int] = x * (1 + scale) + shift return x
692
0
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class _lowerCamelCase ( a_ ): def __init__( self : Union[str, Any] , UpperCamelCase : Optional[Any]=0.01 , UpperCamelCase : List[Any]=10_00 ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : List[str] = p_stop lowerCAmelCase__ : List[Any] = max_length def __iter__( self : Dict ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : List[str] = False while not stop and count < self.max_length: yield count count += 1 lowerCAmelCase__ : Any = random.random() < self.p_stop class _lowerCamelCase ( unittest.TestCase ): def _lowerCAmelCase ( self : Tuple , UpperCamelCase : int , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[int]=False , UpperCamelCase : Dict=True ) -> Any: """simple docstring""" lowerCAmelCase__ : List[Any] = [ BatchSamplerShard(UpperCamelCase , 2 , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase ) for i in range(2 ) ] lowerCAmelCase__ : str = [list(UpperCamelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(UpperCamelCase ) for shard in batch_sampler_shards] , [len(UpperCamelCase ) for e in expected] ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def _lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" # Check the shards when the dataset is a round multiple of total batch size. lowerCAmelCase__ : List[str] = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase ) lowerCAmelCase__ : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : List[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. lowerCAmelCase__ : Any = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase ) lowerCAmelCase__ : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. lowerCAmelCase__ : Optional[int] = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase ) lowerCAmelCase__ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : str = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase ) lowerCAmelCase__ : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. lowerCAmelCase__ : Dict = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase ) lowerCAmelCase__ : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase ) # Check the shards when the dataset is very small. lowerCAmelCase__ : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase ) lowerCAmelCase__ : List[str] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase ) lowerCAmelCase__ : Any = [[], []] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase ) def _lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" # Check the shards when the dataset is a round multiple of batch size. lowerCAmelCase__ : Optional[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase ) lowerCAmelCase__ : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase ) lowerCAmelCase__ : Optional[int] = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase ) # Check the shards when the dataset is not a round multiple of batch size. lowerCAmelCase__ : int = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase ) lowerCAmelCase__ : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase ) lowerCAmelCase__ : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase ) lowerCAmelCase__ : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. lowerCAmelCase__ : Optional[int] = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase ) lowerCAmelCase__ : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase ) lowerCAmelCase__ : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase ) lowerCAmelCase__ : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase ) # Check the shards when the dataset is very small. lowerCAmelCase__ : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = [[], []] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase ) def _lowerCAmelCase ( self : str ) -> str: """simple docstring""" # Check the shards when the dataset is a round multiple of total batch size. lowerCAmelCase__ : List[str] = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. lowerCAmelCase__ : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase ) lowerCAmelCase__ : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase ) lowerCAmelCase__ : Dict = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase ) lowerCAmelCase__ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. lowerCAmelCase__ : Union[str, Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase ) lowerCAmelCase__ : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase ) lowerCAmelCase__ : Optional[int] = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase ) lowerCAmelCase__ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. lowerCAmelCase__ : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase ) lowerCAmelCase__ : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase ) lowerCAmelCase__ : str = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase ) lowerCAmelCase__ : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase ) # Check the shards when the dataset is very small. lowerCAmelCase__ : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase ) lowerCAmelCase__ : List[str] = [[[0, 1]], []] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase ) lowerCAmelCase__ : int = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase ) lowerCAmelCase__ : str = [[], []] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase ) def _lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" # Check the shards when the dataset is a round multiple of batch size. lowerCAmelCase__ : Optional[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase ) lowerCAmelCase__ : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase ) lowerCAmelCase__ : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase ) # Check the shards when the dataset is not a round multiple of batch size. lowerCAmelCase__ : Any = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase ) lowerCAmelCase__ : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase ) lowerCAmelCase__ : Tuple = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase ) lowerCAmelCase__ : Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. lowerCAmelCase__ : Optional[Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase ) lowerCAmelCase__ : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase ) lowerCAmelCase__ : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase ) # Check the shards when the dataset is very small. lowerCAmelCase__ : Tuple = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase ) lowerCAmelCase__ : Tuple = [[[0, 1]], []] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase ) lowerCAmelCase__ : List[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase ) lowerCAmelCase__ : Any = [[], []] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase ) def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" lowerCAmelCase__ : Dict = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] lowerCAmelCase__ : str = [BatchSamplerShard(UpperCamelCase , 2 , UpperCamelCase , even_batches=UpperCamelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _lowerCAmelCase ( self : Dict , UpperCamelCase : Tuple , UpperCamelCase : Any , UpperCamelCase : Dict , UpperCamelCase : List[Any]=False , UpperCamelCase : Optional[int]=2 , UpperCamelCase : Dict=False ) -> List[str]: """simple docstring""" random.seed(UpperCamelCase ) lowerCAmelCase__ : str = list(UpperCamelCase ) lowerCAmelCase__ : List[str] = [ IterableDatasetShard( UpperCamelCase , batch_size=UpperCamelCase , drop_last=UpperCamelCase , num_processes=UpperCamelCase , process_index=UpperCamelCase , split_batches=UpperCamelCase , ) for i in range(UpperCamelCase ) ] lowerCAmelCase__ : Optional[int] = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(UpperCamelCase ) iterable_dataset_lists.append(list(UpperCamelCase ) ) lowerCAmelCase__ : Optional[int] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size lowerCAmelCase__ : str = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) ) self.assertTrue(len(UpperCamelCase ) % shard_batch_size == 0 ) lowerCAmelCase__ : Union[str, Any] = [] for idx in range(0 , len(UpperCamelCase ) , UpperCamelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(UpperCamelCase ) < len(UpperCamelCase ): reference += reference self.assertListEqual(UpperCamelCase , reference[: len(UpperCamelCase )] ) def _lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" lowerCAmelCase__ : List[str] = 42 lowerCAmelCase__ : Optional[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(UpperCamelCase , UpperCamelCase , batch_size=4 , drop_last=UpperCamelCase , split_batches=UpperCamelCase ) self.check_iterable_dataset_shards(UpperCamelCase , UpperCamelCase , batch_size=4 , drop_last=UpperCamelCase , split_batches=UpperCamelCase ) self.check_iterable_dataset_shards(UpperCamelCase , UpperCamelCase , batch_size=4 , drop_last=UpperCamelCase , split_batches=UpperCamelCase ) self.check_iterable_dataset_shards(UpperCamelCase , UpperCamelCase , batch_size=4 , drop_last=UpperCamelCase , split_batches=UpperCamelCase ) # Edge case with a very small dataset lowerCAmelCase__ : Optional[Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(UpperCamelCase , UpperCamelCase , batch_size=4 , drop_last=UpperCamelCase , split_batches=UpperCamelCase ) self.check_iterable_dataset_shards(UpperCamelCase , UpperCamelCase , batch_size=4 , drop_last=UpperCamelCase , split_batches=UpperCamelCase ) self.check_iterable_dataset_shards(UpperCamelCase , UpperCamelCase , batch_size=4 , drop_last=UpperCamelCase , split_batches=UpperCamelCase ) self.check_iterable_dataset_shards(UpperCamelCase , UpperCamelCase , batch_size=4 , drop_last=UpperCamelCase , split_batches=UpperCamelCase ) def _lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = BatchSampler(range(16 ) , batch_size=4 , drop_last=UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = SkipBatchSampler(UpperCamelCase , 2 ) self.assertListEqual(list(UpperCamelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" lowerCAmelCase__ : Dict = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = DataLoader(list(range(16 ) ) , batch_size=4 ) lowerCAmelCase__ : Tuple = skip_first_batches(UpperCamelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" lowerCAmelCase__ : List[str] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(UpperCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(UpperCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" Accelerator() lowerCAmelCase__ : Optional[int] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(UpperCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(UpperCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
299
"""simple docstring""" def lowercase_ ( __UpperCAmelCase ) -> list: lowerCAmelCase__ : List[Any] = len(__UpperCAmelCase ) for i in range(1 , __UpperCAmelCase ): lowerCAmelCase__ : List[Any] = collection[i] lowerCAmelCase__ : str = 0 lowerCAmelCase__ : List[str] = i - 1 while low <= high: lowerCAmelCase__ : str = (low + high) // 2 if val < collection[mid]: lowerCAmelCase__ : List[Any] = mid - 1 else: lowerCAmelCase__ : Optional[int] = mid + 1 for j in range(__UpperCAmelCase , __UpperCAmelCase , -1 ): lowerCAmelCase__ : Dict = collection[j - 1] lowerCAmelCase__ : Union[str, Any] = val return collection if __name__ == "__main__": _A = input("""Enter numbers separated by a comma:\n""").strip() _A = [int(item) for item in user_input.split(""",""")] print(binary_insertion_sort(unsorted))
299
1
from dataclasses import dataclass, field from typing import Optional @dataclass class a : __lowerCAmelCase : Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""} ) __lowerCAmelCase : Optional[str] = field( default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} ) __lowerCAmelCase : Optional[str] = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""} ) __lowerCAmelCase : Optional[str] = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __lowerCAmelCase : Optional[int] = field(default=2 , metadata={"""help""": """Batch size for training."""} ) __lowerCAmelCase : Optional[int] = field(default=2 , metadata={"""help""": """Batch size for evaluation."""} ) __lowerCAmelCase : Optional[float] = field(default=0.1 , metadata={"""help""": """Value of weight decay."""} ) __lowerCAmelCase : Optional[int] = field( default=1_00_00 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} ) __lowerCAmelCase : Optional[float] = field(default=2e-4 , metadata={"""help""": """Learning rate fo training."""} ) __lowerCAmelCase : Optional[str] = field(default="""cosine""" , metadata={"""help""": """Learning rate."""} ) __lowerCAmelCase : Optional[int] = field( default=7_50 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} ) __lowerCAmelCase : Optional[int] = field( default=16 , metadata={"""help""": """Number of gradient accumulation steps."""} ) __lowerCAmelCase : Optional[bool] = field( default=__lowerCamelCase , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} ) __lowerCAmelCase : Optional[int] = field(default=5_00_00 , metadata={"""help""": """Maximum number of training steps."""} ) __lowerCAmelCase : Optional[int] = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __lowerCAmelCase : Optional[int] = field(default=10_24 , metadata={"""help""": """Sequence lengths used for training."""} ) __lowerCAmelCase : Optional[int] = field(default=1 , metadata={"""help""": """Training seed."""} ) __lowerCAmelCase : Optional[int] = field( default=10_24 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , ) __lowerCAmelCase : Optional[str] = field( default=__lowerCamelCase , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} ) __lowerCAmelCase : Optional[bool] = field(default=__lowerCamelCase , metadata={"""help""": """If True the data is pretokenized."""} ) @dataclass class a : __lowerCAmelCase : Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __lowerCAmelCase : Optional[str] = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __lowerCAmelCase : Optional[int] = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""} ) __lowerCAmelCase : Optional[int] = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __lowerCAmelCase : Optional[int] = field(default=10_24 , metadata={"""help""": """Length of sequences to be evaluated."""} ) __lowerCAmelCase : Optional[int] = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) @dataclass class a : __lowerCAmelCase : Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __lowerCAmelCase : Optional[int] = field(default=__lowerCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) __lowerCAmelCase : Optional[int] = field( default=__lowerCamelCase , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , ) __lowerCAmelCase : Optional[bool] = field( default=__lowerCamelCase , metadata={"""help""": """Sample from the language model's output distribution."""} ) __lowerCAmelCase : Optional[float] = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""} ) __lowerCAmelCase : Optional[int] = field(default=2_56 , metadata={"""help""": """Maximum number of newly generated tokens."""} ) __lowerCAmelCase : Optional[int] = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""} ) __lowerCAmelCase : Optional[float] = field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""} ) __lowerCAmelCase : Optional[int] = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""} ) __lowerCAmelCase : Optional[int] = field( default=2_00 , metadata={"""help""": """Number of completions to generate for each sample."""} ) __lowerCAmelCase : Optional[int] = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) __lowerCAmelCase : Optional[str] = field( default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""} ) __lowerCAmelCase : Optional[str] = field( default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} ) __lowerCAmelCase : Optional[int] = field( default=-1 , metadata={ """help""": ( """Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive""" """ number corresponds to which GPU device id to run on.""" ) } , ) @dataclass class a : __lowerCAmelCase : Optional[int] = field( default=__lowerCamelCase , metadata={ """help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.""" } , ) __lowerCAmelCase : Optional[str] = field( default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""} ) __lowerCAmelCase : Optional[str] = field( default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""} ) __lowerCAmelCase : Optional[int] = field( default=10_00_00 , metadata={"""help""": """Number of files to save per JSON output file."""} ) __lowerCAmelCase : Optional[str] = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __lowerCAmelCase : Optional[float] = field( default=10_00 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} ) __lowerCAmelCase : Optional[float] = field( default=1_00 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} ) __lowerCAmelCase : Optional[float] = field( default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} ) __lowerCAmelCase : Optional[float] = field( default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} ) __lowerCAmelCase : Optional[float] = field( default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""} ) __lowerCAmelCase : Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , ) __lowerCAmelCase : Optional[bool] = field( default=__lowerCamelCase , metadata={"""help""": """If True, near-duplicate samples are removed."""} ) __lowerCAmelCase : Optional[float] = field( default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} ) @dataclass class a : __lowerCAmelCase : Optional[str] = field( default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""} ) __lowerCAmelCase : Optional[str] = field( default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""} ) __lowerCAmelCase : Optional[str] = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __lowerCAmelCase : Optional[int] = field(default=20_00_00 , metadata={"""help""": """Number of examples to train tokenizer on."""} ) __lowerCAmelCase : Optional[int] = field( default=3_27_68 , metadata={"""help""": """Number of examples to train the tokenizer on."""} ) __lowerCAmelCase : Optional[str] = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""} ) __lowerCAmelCase : Optional[bool] = field(default=__lowerCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} ) @dataclass class a : __lowerCAmelCase : Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} ) __lowerCAmelCase : Optional[str] = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""} ) __lowerCAmelCase : Optional[str] = field( default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""} ) __lowerCAmelCase : Optional[int] = field(default=__lowerCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) @dataclass class a : __lowerCAmelCase : Optional[str] = field( default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""} ) __lowerCAmelCase : Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""} ) __lowerCAmelCase : Optional[str] = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""} ) __lowerCAmelCase : Optional[bool] = field(default=__lowerCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
219
import unittest from transformers import DonutProcessor A__ = '''naver-clova-ix/donut-base''' class a ( unittest.TestCase ): def __lowerCamelCase ( self :Optional[int] ): snake_case__ : str = DonutProcessor.from_pretrained(__lowercase ) def __lowerCamelCase ( self :int ): snake_case__ : List[Any] = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } snake_case__ : List[Any] = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) snake_case__ : Any = self.processor.tokenajson(__lowercase ) self.assertDictEqual(__lowercase ,__lowercase )
219
1
from typing import Any def A__ ( lowerCamelCase ) -> list[Any]: if not input_list: return [] UpperCamelCase_: Optional[Any] = [input_list.count(lowerCamelCase ) for value in input_list] UpperCamelCase_: Tuple = max(lowerCamelCase ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowerCamelCase ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
548
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _UpperCamelCase ( _A , _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : str = IFInpaintingSuperResolutionPipeline __UpperCamelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} __UpperCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""} ) __UpperCamelCase : Dict = PipelineTesterMixin.required_optional_params - {"""latents"""} def lowerCAmelCase__ ( self : Union[str, Any] ): return self._get_superresolution_dummy_components() def lowerCAmelCase__ ( self : Dict , snake_case_ : Optional[int] , snake_case_ : str=0 ): if str(snake_case_ ).startswith("""mps""" ): UpperCamelCase_: Union[str, Any] = torch.manual_seed(snake_case_ ) else: UpperCamelCase_: Tuple = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) UpperCamelCase_: Dict = floats_tensor((1, 3, 16, 16) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) UpperCamelCase_: int = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) UpperCamelCase_: str = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) UpperCamelCase_: Dict = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase__ ( self : Tuple ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowerCAmelCase__ ( self : Union[str, Any] ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase__ ( self : List[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCAmelCase__ ( self : str ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCAmelCase__ ( self : str ): self._test_save_load_local() def lowerCAmelCase__ ( self : Union[str, Any] ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
548
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' if self.framework == "pytorch": subprocess.run( F'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='''utf-8''' , check=lowercase_ , ) assert hasattr(self , '''env''') def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = { '''enabled''': True, '''processes_per_host''': 8, } SCREAMING_SNAKE_CASE_ : Any = { '''enabled''': True, '''parameters''': { '''microbatches''': 4, '''placement_strategy''': '''spread''', '''pipeline''': '''interleaved''', '''optimize''': '''speed''', '''partitions''': 4, '''ddp''': True, }, } SCREAMING_SNAKE_CASE_ : Dict = {'''smdistributed''': {'''modelparallel''': smp_options}, '''mpi''': mpi_options} SCREAMING_SNAKE_CASE_ : List[Any] = '''trainer''' if self.script == '''run_glue.py''' else '''smtrainer''' # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'{self.env.base_job_name}-{instance_count}-smp-{name_extension}' , instance_count=lowercase_ , instance_type=self.instance_type , debugger_hook_config=lowercase_ , hyperparameters={ **self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path, '''max_steps''': 500, } , metric_definitions=self.env.metric_definitions , distribution=lowercase_ , py_version='''py36''' , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : int): '''simple docstring''' TrainingJobAnalytics(lowercase_).export_csv(F'{self.env.test_path}/{job_name}_metrics.csv') @parameterized.expand([(1,)]) def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = self.create_estimator(lowercase_) # run training estimator.fit() # result dataframe SCREAMING_SNAKE_CASE_ : List[str] = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis SCREAMING_SNAKE_CASE_ : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value''']) SCREAMING_SNAKE_CASE_ : int = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value''']) # get train time from SageMaker job, this includes starting, preprocessing, stopping SCREAMING_SNAKE_CASE_ : int = ( Session().describe_training_job(estimator.latest_training_job.name).get('''TrainingTimeInSeconds''' , 999999) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy) assert all(t <= self.results['''eval_loss'''] for t in eval_loss) # dump tests result into json file to share in PR with open(F'{estimator.latest_training_job.name}.json' , '''w''') as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , lowercase_)
714
"""simple docstring""" # Algorithm for the pigeonhole sorting def _A (__a ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = min(__a ) # min() finds the minimum value SCREAMING_SNAKE_CASE_ : int = max(__a ) # max() finds the maximum value SCREAMING_SNAKE_CASE_ : Dict = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size SCREAMING_SNAKE_CASE_ : Any = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(__a , __a ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. SCREAMING_SNAKE_CASE_ : Any = 0 for count in range(__a ): while holes[count] > 0: holes[count] -= 1 SCREAMING_SNAKE_CASE_ : Dict = count + min_val i += 1 def _A () -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(__a ) print('''Sorted order is:''' , ''' '''.join(__a ) ) if __name__ == "__main__": main()
176
0
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class _lowerCAmelCase : """simple docstring""" def __init__( self : str): '''simple docstring''' snake_case__ = """""" snake_case__ = """""" snake_case__ = [] snake_case__ = 0 snake_case__ = 2_5_6 snake_case__ = 0 snake_case__ = 0 snake_case__ = 0 snake_case__ = 0 def __magic_name__ ( self : List[str] , UpperCamelCase__ : str): '''simple docstring''' snake_case__ = cva.imread(UpperCamelCase__ , 0) snake_case__ = copy.deepcopy(self.img) snake_case__ , snake_case__ , snake_case__ = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="""x""") snake_case__ = np.sum(UpperCamelCase__) for i in range(len(UpperCamelCase__)): snake_case__ = x[i] / self.k self.sk += prk snake_case__ = (self.L - 1) * self.sk if self.rem != 0: snake_case__ = int(last % last) snake_case__ = int(last + 1 if self.rem >= 0.5 else last) self.last_list.append(UpperCamelCase__) snake_case__ = int(np.ma.count(self.img) / self.img[1].size) snake_case__ = self.img[1].size for i in range(self.number_of_cols): for j in range(self.number_of_rows): snake_case__ = self.img[j][i] if num != self.last_list[num]: snake_case__ = self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img) def __magic_name__ ( self : Union[str, Any]): '''simple docstring''' plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6]) def __magic_name__ ( self : List[Any]): '''simple docstring''' cva.imshow("""Output-Image""" , self.img) cva.imshow("""Input-Image""" , self.original_image) cva.waitKey(5_0_0_0) cva.destroyAllWindows() if __name__ == "__main__": a__ = os.path.join(os.path.basename(__file__), """image_data/input.jpg""") a__ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
654
import glob import os import random from string import ascii_lowercase, digits import cva a__ = """""" a__ = """""" a__ = """""" a__ = 1 # (0 is vertical, 1 is horizontal) def _UpperCAmelCase ( ): snake_case__ , snake_case__ = get_dataset(a , a ) print("""Processing...""" ) snake_case__ , snake_case__ , snake_case__ = update_image_and_anno(a , a , a ) for index, image in enumerate(a ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' snake_case__ = random_chars(32 ) snake_case__ = paths[index].split(os.sep )[-1].rsplit(""".""" , 1 )[0] snake_case__ = F'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(F'''/{file_root}.jpg''' , a , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Success {index+1}/{len(a )} with {file_name}''' ) snake_case__ = [] for anno in new_annos[index]: snake_case__ = F'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(a ) with open(F'''/{file_root}.txt''' , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def _UpperCAmelCase ( a : str , a : str ): snake_case__ = [] snake_case__ = [] for label_file in glob.glob(os.path.join(a , """*.txt""" ) ): snake_case__ = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(a ) as in_file: snake_case__ = in_file.readlines() snake_case__ = os.path.join(a , F'''{label_name}.jpg''' ) snake_case__ = [] for obj_list in obj_lists: snake_case__ = obj_list.rstrip("""\n""" ).split(""" """ ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(a ) labels.append(a ) return img_paths, labels def _UpperCAmelCase ( a : list , a : list , a : int = 1 ): snake_case__ = [] snake_case__ = [] snake_case__ = [] for idx in range(len(a ) ): snake_case__ = [] snake_case__ = img_list[idx] path_list.append(a ) snake_case__ = anno_list[idx] snake_case__ = cva.imread(a ) if flip_type == 1: snake_case__ = cva.flip(a , a ) for bbox in img_annos: snake_case__ = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: snake_case__ = cva.flip(a , a ) for bbox in img_annos: snake_case__ = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(a ) new_imgs_list.append(a ) return new_imgs_list, new_annos_lists, path_list def _UpperCAmelCase ( a : int = 32 ): assert number_char > 1, "The number of character should greater than 1" snake_case__ = ascii_lowercase + digits return "".join(random.choice(a ) for _ in range(a ) ) if __name__ == "__main__": main() print("""DONE ✅""")
654
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def _lowerCamelCase ( A_ : List[Any] , A_ : int=False ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Any =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCamelCase__ : Optional[int] =[(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def _lowerCamelCase ( A_ : Tuple , A_ : Tuple , A_ : List[Any]=False ) -> int: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: UpperCamelCase__ : Any ="" else: UpperCamelCase__ : Optional[Any] ="vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ : int =state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) UpperCamelCase__ : List[Any] =state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : int =in_proj_weight[ : config.hidden_size, : ] UpperCamelCase__ : Union[str, Any] =in_proj_bias[: config.hidden_size] UpperCamelCase__ : Union[str, Any] =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ : Dict =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ : Union[str, Any] =in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ : Any =in_proj_bias[-config.hidden_size :] def _lowerCamelCase ( A_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : Union[str, Any] =["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(A_ , A_ ) def _lowerCamelCase ( A_ : Union[str, Any] , A_ : Dict , A_ : List[Any] ) -> int: '''simple docstring''' UpperCamelCase__ : int =dct.pop(A_ ) UpperCamelCase__ : Dict =val def _lowerCamelCase ( ) -> int: '''simple docstring''' UpperCamelCase__ : Optional[Any] ="http://images.cocodataset.org/val2017/000000039769.jpg" UpperCamelCase__ : Tuple =Image.open(requests.get(A_ , stream=A_ ).raw ) return im @torch.no_grad() def _lowerCamelCase ( A_ : int , A_ : Any , A_ : int=True ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Optional[int] =ViTConfig() # patch_size if model_name[-1] == "8": UpperCamelCase__ : Optional[int] =8 # set labels if required if not base_model: UpperCamelCase__ : int =1_0_0_0 UpperCamelCase__ : Dict ="huggingface/label-files" UpperCamelCase__ : int ="imagenet-1k-id2label.json" UpperCamelCase__ : List[str] =json.load(open(hf_hub_download(A_ , A_ , repo_type="dataset" ) , "r" ) ) UpperCamelCase__ : int ={int(A_ ): v for k, v in idalabel.items()} UpperCamelCase__ : List[str] =idalabel UpperCamelCase__ : Dict ={v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: UpperCamelCase__ : Optional[Any] =3_8_4 UpperCamelCase__ : Optional[Any] =1_5_3_6 UpperCamelCase__ : Dict =1_2 UpperCamelCase__ : int =6 # load original model from torch hub UpperCamelCase__ : Tuple =torch.hub.load("facebookresearch/dino:main" , A_ ) original_model.eval() # load state_dict of original model, remove and rename some keys UpperCamelCase__ : Dict =original_model.state_dict() if base_model: remove_classification_head_(A_ ) UpperCamelCase__ : List[str] =create_rename_keys(A_ , base_model=A_ ) for src, dest in rename_keys: rename_key(A_ , A_ , A_ ) read_in_q_k_v(A_ , A_ , A_ ) # load HuggingFace model if base_model: UpperCamelCase__ : Tuple =ViTModel(A_ , add_pooling_layer=A_ ).eval() else: UpperCamelCase__ : Optional[int] =ViTForImageClassification(A_ ).eval() model.load_state_dict(A_ ) # Check outputs on an image, prepared by ViTImageProcessor UpperCamelCase__ : List[Any] =ViTImageProcessor() UpperCamelCase__ : Any =image_processor(images=prepare_img() , return_tensors="pt" ) UpperCamelCase__ : List[str] =encoding["pixel_values"] UpperCamelCase__ : Optional[int] =model(A_ ) if base_model: UpperCamelCase__ : Any =original_model(A_ ) assert torch.allclose(A_ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: UpperCamelCase__ : Tuple =original_model(A_ ) assert logits.shape == outputs.logits.shape assert torch.allclose(A_ , outputs.logits , atol=1E-3 ) Path(A_ ).mkdir(exist_ok=A_ ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A_ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(A_ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""dino_vitb16""", type=str, help="""Name of the model trained with DINO you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether to only convert the base model (no projection head weights).""", ) parser.set_defaults(base_model=True) __UpperCAmelCase = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
721
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def _lowerCamelCase ( A_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return {key.lstrip("-" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def _lowerCamelCase ( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : Tuple =ArgumentParser( "HuggingFace Datasets CLI tool" , usage="datasets-cli <command> [<args>]" , allow_abbrev=A_ ) UpperCamelCase__ : Tuple =parser.add_subparsers(help="datasets-cli command helpers" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(A_ ) EnvironmentCommand.register_subcommand(A_ ) TestCommand.register_subcommand(A_ ) RunBeamCommand.register_subcommand(A_ ) DummyDataCommand.register_subcommand(A_ ) # Parse args UpperCamelCase__ , UpperCamelCase__ : List[Any] =parser.parse_known_args() if not hasattr(A_ , "func" ): parser.print_help() exit(1 ) UpperCamelCase__ : Union[str, Any] =parse_unknown_args(A_ ) # Run UpperCamelCase__ : Tuple =args.func(A_ , **A_ ) service.run() if __name__ == "__main__": main()
582
0
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : List[str] = """umt5""" lowerCAmelCase__ : List[str] = ["""past_key_values"""] def __init__(self : Optional[Any] , UpperCamelCase : List[Any]=250112 , UpperCamelCase : List[str]=512 , UpperCamelCase : Union[str, Any]=64 , UpperCamelCase : Tuple=1024 , UpperCamelCase : Optional[Any]=8 , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : List[Any]=6 , UpperCamelCase : str=32 , UpperCamelCase : Optional[Any]=128 , UpperCamelCase : str=0.1 , UpperCamelCase : Optional[int]=1E-6 , UpperCamelCase : List[Any]=1.0 , UpperCamelCase : List[str]="gated-gelu" , UpperCamelCase : Dict=True , UpperCamelCase : List[str]=True , UpperCamelCase : List[Any]="T5Tokenizer" , UpperCamelCase : int=True , UpperCamelCase : List[Any]=0 , UpperCamelCase : Optional[Any]=1 , UpperCamelCase : Dict=0 , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__( is_encoder_decoder=UpperCamelCase , tokenizer_class=UpperCamelCase , tie_word_embeddings=UpperCamelCase , pad_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , decoder_start_token_id=UpperCamelCase , **UpperCamelCase , ) lowercase__ = vocab_size lowercase__ = d_model lowercase__ = d_kv lowercase__ = d_ff lowercase__ = num_layers lowercase__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase__ = num_heads lowercase__ = relative_attention_num_buckets lowercase__ = relative_attention_max_distance lowercase__ = dropout_rate lowercase__ = layer_norm_epsilon lowercase__ = initializer_factor lowercase__ = feed_forward_proj lowercase__ = use_cache lowercase__ = self.feed_forward_proj.split('''-''' ) lowercase__ = act_info[-1] lowercase__ = act_info[0] == '''gated''' if len(UpperCamelCase ) > 1 and act_info[0] != "gated" or len(UpperCamelCase ) > 2: raise ValueError( f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) if feed_forward_proj == "gated-gelu": lowercase__ = '''gelu_new''' @property def UpperCamelCase__ (self : List[str] ): '''simple docstring''' return self.d_model @property def UpperCamelCase__ (self : Any ): '''simple docstring''' return self.num_heads @property def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' return self.num_layers class __lowerCAmelCase (lowercase_ ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: lowercase__ = '''past_encoder_sequence + sequence''' lowercase__ = {0: '''batch'''} lowercase__ = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: lowercase__ = {0: '''batch''', 1: '''decoder_sequence'''} lowercase__ = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase , direction='''inputs''' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' return 13 @property def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' return 5E-4
460
'''simple docstring''' def _SCREAMING_SNAKE_CASE (A ) -> bool: """simple docstring""" if not isinstance(A , A ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(A ) == 0: raise ValueError('''Input list must be a non empty list''' ) if len(A ) == 1: return True lowercase__ = series[1] - series[0] for index in range(len(A ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def _SCREAMING_SNAKE_CASE (A ) -> float: """simple docstring""" if not isinstance(A , A ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(A ) == 0: raise ValueError('''Input list must be a non empty list''' ) lowercase__ = 0 for val in series: answer += val return answer / len(A ) if __name__ == "__main__": import doctest doctest.testmod()
460
1
"""simple docstring""" from datetime import datetime as dt import os from github import Github _a : List[Any] = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def a__ ( ): """simple docstring""" _snake_case : Union[str, Any] = Github(os.environ["GITHUB_TOKEN"] ) _snake_case : Any = g.get_repo("huggingface/transformers" ) _snake_case : Dict = repo.get_issues(state="open" ) for issue in open_issues: _snake_case : List[str] = sorted([comment for comment in issue.get_comments()] , key=lambda a : i.created_at , reverse=a ) _snake_case : Tuple = comments[0] if len(a ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="closed" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
87
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class _UpperCAmelCase ( _snake_case): def __init__( self , snake_case_ , snake_case_ , snake_case_ ): _snake_case : Optional[int] = dataset _snake_case : str = process _snake_case : int = params def __len__( self ): return len(self.dataset ) def __getitem__( self , snake_case_ ): _snake_case : Union[str, Any] = self.dataset[i] _snake_case : Optional[Any] = self.process(snake_case_ , **self.params ) return processed class _UpperCAmelCase ( _snake_case): def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=None ): _snake_case : Union[str, Any] = loader _snake_case : Tuple = infer _snake_case : List[Any] = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _snake_case : int = None _snake_case : int = loader_batch_size # Internal bookkeeping _snake_case : Any = None _snake_case : Dict = None def __len__( self ): return len(self.loader ) def __iter__( self ): _snake_case : int = iter(self.loader ) return self def lowerCamelCase__ ( self ): if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice _snake_case : List[Any] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _snake_case : int = {} for k, element in self._loader_batch_data.items(): if isinstance(snake_case_ , snake_case_ ): # Convert ModelOutput to tuple first _snake_case : Tuple = element.to_tuple() if isinstance(element[0] , torch.Tensor ): _snake_case : Union[str, Any] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _snake_case : int = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(snake_case_ , snake_case_ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): _snake_case : Tuple = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _snake_case : Tuple = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _snake_case : Tuple = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _snake_case : List[Any] = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _snake_case : Union[str, Any] = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. _snake_case : List[Any] = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _snake_case : int = self._loader_batch_data.__class__(snake_case_ ) self._loader_batch_index += 1 return result def lowerCamelCase__ ( self ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _snake_case : Tuple = next(self.iterator ) _snake_case : Any = self.infer(snake_case_ , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(snake_case_ , torch.Tensor ): _snake_case : Union[str, Any] = processed else: _snake_case : Optional[int] = list(processed.keys() )[0] _snake_case : List[str] = processed[key] if isinstance(snake_case_ , snake_case_ ): _snake_case : Dict = len(snake_case_ ) else: _snake_case : Optional[int] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _snake_case : Union[str, Any] = observed_batch_size # Setting internal index to unwrap the batch _snake_case : str = processed _snake_case : List[Any] = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class _UpperCAmelCase ( _snake_case): def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=None ): super().__init__(snake_case_ , snake_case_ , snake_case_ ) def __iter__( self ): _snake_case : Tuple = iter(self.loader ) _snake_case : List[Any] = None return self def lowerCamelCase__ ( self ): if self.subiterator is None: _snake_case : Optional[Any] = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item _snake_case : Union[str, Any] = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _snake_case : str = self.infer(next(self.iterator ) , **self.params ) _snake_case : Tuple = next(self.subiterator ) return processed class _UpperCAmelCase ( _snake_case): def __iter__( self ): _snake_case : Optional[Any] = iter(self.loader ) return self def lowerCamelCase__ ( self ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. _snake_case : Optional[Any] = False _snake_case : Tuple = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _snake_case : Union[str, Any] = self.loader_batch_item() _snake_case : str = item.pop("is_last" ) accumulator.append(snake_case_ ) if is_last: return accumulator while not is_last: _snake_case : List[str] = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(snake_case_ , torch.Tensor ): _snake_case : Union[str, Any] = processed else: _snake_case : Tuple = list(processed.keys() )[0] _snake_case : Tuple = processed[key] if isinstance(snake_case_ , snake_case_ ): _snake_case : Any = len(snake_case_ ) else: _snake_case : List[Any] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _snake_case : Dict = observed_batch_size _snake_case : List[Any] = processed _snake_case : List[str] = 0 while self._loader_batch_index < self.loader_batch_size: _snake_case : Union[str, Any] = self.loader_batch_item() _snake_case : int = item.pop("is_last" ) accumulator.append(snake_case_ ) if is_last: return accumulator else: _snake_case : Dict = processed _snake_case : Dict = item.pop("is_last" ) accumulator.append(snake_case_ ) return accumulator class _UpperCAmelCase ( _snake_case): def __init__( self , snake_case_ , snake_case_ ): _snake_case : str = dataset _snake_case : Any = key def __len__( self ): return len(self.dataset ) def __getitem__( self , snake_case_ ): return self.dataset[i][self.key] class _UpperCAmelCase ( _snake_case): def __init__( self , snake_case_ , snake_case_ , snake_case_ ): _snake_case : int = dataset _snake_case : Any = keya _snake_case : int = keya def __len__( self ): return len(self.dataset ) def __getitem__( self , snake_case_ ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
87
1
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black lowerCamelCase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCamelCase_ = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n' class lowercase_ ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase_ ( self : Any ): """simple docstring""" _SCREAMING_SNAKE_CASE = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) _SCREAMING_SNAKE_CASE = self.diffusers_dir shutil.copy( os.path.join(__lowerCamelCase , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" _SCREAMING_SNAKE_CASE = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def lowerCAmelCase_ ( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int=None ): """simple docstring""" _SCREAMING_SNAKE_CASE = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _SCREAMING_SNAKE_CASE = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _SCREAMING_SNAKE_CASE = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 ) _SCREAMING_SNAKE_CASE = black.format_str(__lowerCamelCase , mode=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = os.path.join(self.diffusers_dir , "new_code.py" ) with open(__lowerCamelCase , "w" , newline="\n" ) as f: f.write(__lowerCamelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__lowerCamelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=__lowerCamelCase ) with open(__lowerCamelCase , "r" ) as f: self.assertTrue(f.read() , __lowerCamelCase ) def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" _SCREAMING_SNAKE_CASE = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" # Base copy consistency self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , __lowerCamelCase , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , __lowerCamelCase ) , ) # Copy consistency with a really long name _SCREAMING_SNAKE_CASE = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub("Bert" , __lowerCamelCase , __lowerCamelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , __lowerCamelCase , overwrite_result=re.sub("DDPM" , "Test" , __lowerCamelCase ) , )
418
'''simple docstring''' from heapq import heappop, heappush import numpy as np def SCREAMING_SNAKE_CASE_ ( __A : np.ndarray , __A : tuple[int, int] , __A : tuple[int, int] , __A : bool , ) -> tuple[float | int, list[tuple[int, int]]]: _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = grid.shape _SCREAMING_SNAKE_CASE = [-1, 1, 0, 0] _SCREAMING_SNAKE_CASE = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = [(0, source)], set() _SCREAMING_SNAKE_CASE = np.full((rows, cols) , np.inf ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = np.empty((rows, cols) , dtype=__A ) _SCREAMING_SNAKE_CASE = None while queue: ((_SCREAMING_SNAKE_CASE), (_SCREAMING_SNAKE_CASE)) = heappop(__A ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: _SCREAMING_SNAKE_CASE = [] while (x, y) != source: path.append((x, y) ) _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = predecessors[x, y] path.append(__A ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__A ) ): _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: _SCREAMING_SNAKE_CASE = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__A , (dist + 1, (nx, ny)) ) _SCREAMING_SNAKE_CASE = dist + 1 _SCREAMING_SNAKE_CASE = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
418
1
import heapq as hq import math from collections.abc import Iterator class _a : def __init__( self: Optional[Any] , UpperCamelCase_: int ) -> Tuple: """simple docstring""" lowercase__ = str(id_ ) lowercase__ = None lowercase__ = None lowercase__ = [] lowercase__ = {} # {vertex:distance} def __lt__( self: Tuple , UpperCamelCase_: Dict ) -> List[Any]: """simple docstring""" return self.key < other.key def __repr__( self: Optional[int] ) -> int: """simple docstring""" return self.id def lowerCamelCase_ ( self: str , UpperCamelCase_: Dict ) -> List[str]: """simple docstring""" self.neighbors.append(UpperCamelCase_ ) def lowerCamelCase_ ( self: Any , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Union[str, Any] ) -> Tuple: """simple docstring""" lowercase__ = weight def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , SCREAMING_SNAKE_CASE ) graph[b - 1].add_edge(graph[a - 1] , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [] for u in graph: lowercase__ = math.inf lowercase__ = None lowercase__ = 0 lowercase__ = graph[:] while q: lowercase__ = min(SCREAMING_SNAKE_CASE ) q.remove(SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): lowercase__ = u lowercase__ = u.edges[v.id] for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" for u in graph: lowercase__ = math.inf lowercase__ = None lowercase__ = 0 lowercase__ = list(SCREAMING_SNAKE_CASE ) hq.heapify(SCREAMING_SNAKE_CASE ) while h: lowercase__ = hq.heappop(SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): lowercase__ = u lowercase__ = u.edges[v.id] hq.heapify(SCREAMING_SNAKE_CASE ) for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def _a ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
710
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _a : def __init__( self: str , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[Any]=3 , UpperCamelCase_: int=32 , UpperCamelCase_: Union[str, Any]=3 , UpperCamelCase_: str=10 , UpperCamelCase_: Tuple=[10, 20, 30, 40] , UpperCamelCase_: str=[1, 1, 2, 1] , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Optional[int]=True , UpperCamelCase_: str="relu" , UpperCamelCase_: Optional[Any]=3 , UpperCamelCase_: Union[str, Any]=None , ) -> Dict: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = num_channels lowercase__ = embeddings_size lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_act lowercase__ = num_labels lowercase__ = scope lowercase__ = len(UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self: int ) -> Dict: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Dict , UpperCamelCase_: List[str] , UpperCamelCase_: Any ) -> Optional[Any]: """simple docstring""" lowercase__ = TFRegNetModel(config=UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase_ ( self: str , UpperCamelCase_: Dict , UpperCamelCase_: Any , UpperCamelCase_: Any ) -> Tuple: """simple docstring""" lowercase__ = self.num_labels lowercase__ = TFRegNetForImageClassification(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , labels=UpperCamelCase_ , training=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self: Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _a ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () _lowercase : str = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) _lowercase : Union[str, Any] = False _lowercase : Optional[int] = False _lowercase : List[Any] = False _lowercase : Dict = False _lowercase : List[str] = False def lowerCamelCase_ ( self: Dict ) -> Dict: """simple docstring""" lowercase__ = TFRegNetModelTester(self ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> Optional[int]: """simple docstring""" return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def lowerCamelCase_ ( self: Optional[int] ) -> Any: """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def lowerCamelCase_ ( self: Tuple ) -> Dict: """simple docstring""" super().test_keras_fit() @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def lowerCamelCase_ ( self: Dict ) -> Optional[Any]: """simple docstring""" pass def lowerCamelCase_ ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" def check_hidden_states_output(UpperCamelCase_: List[str] , UpperCamelCase_: Any , UpperCamelCase_: Dict ): lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) , training=UpperCamelCase_ ) lowercase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase_ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__ = layer_type lowercase__ = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Dict: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(UpperCamelCase_: int , UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[Any]={} ): lowercase__ = model(UpperCamelCase_ , return_dict=UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , return_dict=UpperCamelCase_ , **UpperCamelCase_ ).to_tuple() def recursive_check(UpperCamelCase_: Optional[int] , UpperCamelCase_: Any ): if isinstance(UpperCamelCase_ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(UpperCamelCase_ , UpperCamelCase_ ): recursive_check(UpperCamelCase_ , UpperCamelCase_ ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(UpperCamelCase_ , UpperCamelCase_ ) ) , msg=( '''Tuple and dict output are not equal. Difference:''' f' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}' ) , ) recursive_check(UpperCamelCase_ , UpperCamelCase_ ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) check_equivalence(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) check_equivalence(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) check_equivalence(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , {'''output_hidden_states''': True} ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) check_equivalence(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , {'''output_hidden_states''': True} ) def lowerCamelCase_ ( self: List[Any] ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: List[str] ) -> Dict: """simple docstring""" for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = TFRegNetModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def _a ( ): """simple docstring""" lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _a ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self: Any ) -> Optional[int]: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self: Dict ) -> Dict: """simple docstring""" lowercase__ = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=UpperCamelCase_ , return_tensors='''tf''' ) # forward pass lowercase__ = model(**UpperCamelCase_ , training=UpperCamelCase_ ) # verify the logits lowercase__ = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) lowercase__ = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , UpperCamelCase_ , atol=1E-4 )
429
0
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowerCAmelCase ( nn.Module): def __init__( self , __SCREAMING_SNAKE_CASE = 16 , __SCREAMING_SNAKE_CASE = 88 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = 0.0 , __SCREAMING_SNAKE_CASE = 32 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "geglu" , __SCREAMING_SNAKE_CASE = None , ) -> Optional[int]: '''simple docstring''' super().__init__() __snake_case = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__SCREAMING_SNAKE_CASE , attention_head_dim=__SCREAMING_SNAKE_CASE , in_channels=__SCREAMING_SNAKE_CASE , num_layers=__SCREAMING_SNAKE_CASE , dropout=__SCREAMING_SNAKE_CASE , norm_num_groups=__SCREAMING_SNAKE_CASE , cross_attention_dim=__SCREAMING_SNAKE_CASE , attention_bias=__SCREAMING_SNAKE_CASE , sample_size=__SCREAMING_SNAKE_CASE , num_vector_embeds=__SCREAMING_SNAKE_CASE , activation_fn=__SCREAMING_SNAKE_CASE , num_embeds_ada_norm=__SCREAMING_SNAKE_CASE , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference __snake_case = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` __snake_case = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` __snake_case = [1, 0] def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE = True , ) -> List[str]: '''simple docstring''' __snake_case = hidden_states __snake_case = [] __snake_case = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens __snake_case = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] __snake_case = self.transformer_index_for_condition[i] __snake_case = self.transformers[transformer_index]( __SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , timestep=__SCREAMING_SNAKE_CASE , cross_attention_kwargs=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] __snake_case = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) __snake_case = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__SCREAMING_SNAKE_CASE )
24
import argparse import logging import pickle from collections import Counter logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) _lowerCamelCase = logging.getLogger(__name__) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser( description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)' ) parser.add_argument( '--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.' ) parser.add_argument( '--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.' ) parser.add_argument('--vocab_size', default=30522, type=int) _lowerCamelCase = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, 'rb') as fp: _lowerCamelCase = pickle.load(fp) logger.info('Counting occurrences for MLM.') _lowerCamelCase = Counter() for tk_ids in data: counter.update(tk_ids) _lowerCamelCase = [0] * args.vocab_size for k, v in counter.items(): _lowerCamelCase = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, 'wb') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
6
0
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) lowercase = logging.getLogger(__name__) lowercase = '''Hello world! cécé herlolip''' lowercase = namedtuple( '''BertAbsConfig''', [ '''temp_dir''', '''large''', '''use_bert_emb''', '''finetune_bert''', '''encoder''', '''share_emb''', '''max_pos''', '''enc_layers''', '''enc_hidden_size''', '''enc_heads''', '''enc_ff_size''', '''enc_dropout''', '''dec_layers''', '''dec_hidden_size''', '''dec_heads''', '''dec_ff_size''', '''dec_dropout''', ], ) def UpperCAmelCase_ ( lowercase__ , lowercase__ ): '''simple docstring''' a_ =BertAbsConfig( temp_dir="." , finetune_bert=lowercase__ , large=lowercase__ , share_emb=lowercase__ , use_bert_emb=lowercase__ , encoder="bert" , max_pos=5_1_2 , enc_layers=6 , enc_hidden_size=5_1_2 , enc_heads=8 , enc_ff_size=5_1_2 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_6_8 , dec_heads=8 , dec_ff_size=2_0_4_8 , dec_dropout=0.2 , ) a_ =torch.load(lowercase__ , lambda lowercase__ , lowercase__ : storage ) a_ =AbsSummarizer(lowercase__ , torch.device("cpu" ) , lowercase__ ) original.eval() a_ =BertAbsSummarizer(lowercase__ , torch.device("cpu" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical" ) a_ =BertTokenizer.from_pretrained("bert-base-uncased" ) # prepare the model inputs a_ =tokenizer.encode("This is sample éàalj'-." ) encoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(lowercase__ )) ) a_ =torch.tensor(lowercase__ ).unsqueeze(0 ) a_ =tokenizer.encode("This is sample 3 éàalj'-." ) decoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(lowercase__ )) ) a_ =torch.tensor(lowercase__ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass a_ =encoder_input_ids a_ =decoder_input_ids a_ =a_ =None a_ =None a_ =a_ =None a_ =a_ =None a_ =None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical a_ =original(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ )[0] a_ =original.generator(lowercase__ ) a_ =new_model( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ )[0] a_ =new_model.generator(lowercase__ ) a_ =torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(lowercase__ ) ) a_ =torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(lowercase__ ) ) a_ =torch.allclose(lowercase__ , lowercase__ , atol=1E-3 ) if are_identical: logging.info("all weights are equal up to 1e-3" ) else: raise ValueError("the weights are different. The new model is likely different from the original one." ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary" ) torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin" ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument( '''--bertabs_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''', ) lowercase = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
711
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowercase = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class UpperCAmelCase ( __a): '''simple docstring''' __magic_name__ : int = "albert" def __init__( self , lowerCAmelCase_=3_0_0_0_0 , lowerCAmelCase_=1_2_8 , lowerCAmelCase_=4_0_9_6 , lowerCAmelCase_=1_2 , lowerCAmelCase_=1 , lowerCAmelCase_=6_4 , lowerCAmelCase_=1_6_3_8_4 , lowerCAmelCase_=1 , lowerCAmelCase_="gelu_new" , lowerCAmelCase_=0 , lowerCAmelCase_=0 , lowerCAmelCase_=5_1_2 , lowerCAmelCase_=2 , lowerCAmelCase_=0.0_2 , lowerCAmelCase_=1e-12 , lowerCAmelCase_=0.1 , lowerCAmelCase_="absolute" , lowerCAmelCase_=0 , lowerCAmelCase_=2 , lowerCAmelCase_=3 , **lowerCAmelCase_ , ) -> Any: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_) a_ =vocab_size a_ =embedding_size a_ =hidden_size a_ =num_hidden_layers a_ =num_hidden_groups a_ =num_attention_heads a_ =inner_group_num a_ =hidden_act a_ =intermediate_size a_ =hidden_dropout_prob a_ =attention_probs_dropout_prob a_ =max_position_embeddings a_ =type_vocab_size a_ =initializer_range a_ =layer_norm_eps a_ =classifier_dropout_prob a_ =position_embedding_type class UpperCAmelCase ( __a): '''simple docstring''' @property def lowercase_ ( self) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": a_ ={0: "batch", 1: "choice", 2: "sequence"} else: a_ ={0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ])
41
0
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __a = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __a = 2_5_6_0_4_7 __a = 2_5_6_1_4_5 @require_sentencepiece @require_tokenizers class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :str = NllbTokenizer a :Optional[int] = NllbTokenizerFast a :Tuple = True a :Optional[int] = True a :List[Any] = {} def _lowercase ( self : List[Any] ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing lowercase_ = NllbTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self : str ) -> List[Any]: lowercase_ = NllbTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) lowercase_ = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowercase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowercase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) lowercase_ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def _lowercase ( self : Optional[int] ) -> Any: lowercase_ = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-nllb''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase_ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowercase_ = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowercase_ = tempfile.mkdtemp() lowercase_ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowercase_ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) lowercase_ = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way lowercase_ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowercase_ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=True lowercase_ = tempfile.mkdtemp() lowercase_ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) lowercase_ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way lowercase_ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowercase_ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=False lowercase_ = tempfile.mkdtemp() lowercase_ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) lowercase_ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowercase_ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowercase_ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) @require_torch def _lowercase ( self : Optional[int] ) -> Optional[int]: if not self.test_seqaseq: return lowercase_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Longer text that will definitely require truncation. lowercase_ = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for''' ''' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons''' ''' will only worsen the violence and misery for millions of people.''', ] lowercase_ = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al''' ''' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi''' ''' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] try: lowercase_ = tokenizer.prepare_seqaseq_batch( src_texts=SCREAMING_SNAKE_CASE_ , tgt_texts=SCREAMING_SNAKE_CASE_ , max_length=3 , max_target_length=1_0 , return_tensors='''pt''' , src_lang='''eng_Latn''' , tgt_lang='''ron_Latn''' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 1_0 ) # max_target_length will default to max_length if not specified lowercase_ = tokenizer.prepare_seqaseq_batch( SCREAMING_SNAKE_CASE_ , tgt_texts=SCREAMING_SNAKE_CASE_ , max_length=3 , return_tensors='''pt''' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) lowercase_ = tokenizer.prepare_seqaseq_batch( src_texts=SCREAMING_SNAKE_CASE_ , max_length=3 , max_target_length=1_0 , return_tensors='''pt''' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('''decoder_input_ids''' , SCREAMING_SNAKE_CASE_ ) @unittest.skip('''Unfortunately way too slow to build a BPE with SentencePiece.''' ) def _lowercase ( self : List[Any] ) -> Dict: pass def _lowercase ( self : Optional[int] ) -> Optional[int]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase_ = [AddedToken('''<special>''' , lstrip=SCREAMING_SNAKE_CASE_ )] lowercase_ = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowercase_ = tokenizer_r.encode('''Hey this is a <special> token''' ) lowercase_ = tokenizer_r.encode('''<special>''' , add_special_tokens=SCREAMING_SNAKE_CASE_ )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: lowercase_ = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowercase_ = self.tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowercase_ = tokenizer_p.encode('''Hey this is a <special> token''' ) lowercase_ = tokenizer_cr.encode('''Hey this is a <special> token''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__( unittest.TestCase ): """simple docstring""" a :int = 'facebook/nllb-200-distilled-600M' a :List[Any] = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] a :Dict = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] a :Tuple = [ 256_047, 16_297, 134_408, 8_165, 248_066, 14_734, 950, 1_135, 105_721, 3_573, 83, 27_352, 108, 49_486, 2, ] @classmethod def _lowercase ( cls : int ) -> Any: lowercase_ = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''eng_Latn''' , tgt_lang='''ron_Latn''' ) lowercase_ = 1 return cls def _lowercase ( self : Optional[Any] ) -> Any: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Arab'''] , 2_5_6_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Latn'''] , 2_5_6_0_0_2 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''fra_Latn'''] , 2_5_6_0_5_7 ) def _lowercase ( self : Dict ) -> str: lowercase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Dict ) -> List[str]: self.assertIn(SCREAMING_SNAKE_CASE_ , self.tokenizer.all_special_ids ) # fmt: off lowercase_ = [RO_CODE, 4_2_5_4, 9_8_0_6_8, 1_1_2_9_2_3, 3_9_0_7_2, 3_9_0_9, 7_1_3, 1_0_2_7_6_7, 2_6, 1_7_3_1_4, 3_5_6_4_2, 1_4_6_8_3, 3_3_1_1_8, 2_0_2_2, 6_6_9_8_7, 2, 2_5_6_0_4_7] # fmt: on lowercase_ = self.tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) lowercase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotIn(self.tokenizer.eos_token , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Tuple ) -> Tuple: lowercase_ = ['''this is gunna be a long sentence ''' * 2_0] assert isinstance(src_text[0] , SCREAMING_SNAKE_CASE_ ) lowercase_ = 1_0 lowercase_ = self.tokenizer(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : List[Any] ) -> List[str]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [2_5_6_2_0_3, 3] ) def _lowercase ( self : Optional[Any] ) -> Tuple: lowercase_ = tempfile.mkdtemp() lowercase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowercase_ = NllbTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , SCREAMING_SNAKE_CASE_ ) @require_torch def _lowercase ( self : Dict ) -> Optional[int]: lowercase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) lowercase_ = shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['''ron_Latn'''] ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual((2, 1_5) , batch.input_ids.shape ) self.assertEqual((2, 1_5) , batch.attention_mask.shape ) lowercase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def _lowercase ( self : int ) -> Optional[int]: lowercase_ = self.tokenizer(self.src_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=3 , return_tensors='''pt''' ) lowercase_ = self.tokenizer( text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=1_0 , return_tensors='''pt''' ) lowercase_ = targets['''input_ids'''] lowercase_ = shift_tokens_right( SCREAMING_SNAKE_CASE_ , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def _lowercase ( self : Tuple ) -> Optional[int]: lowercase_ = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { # A, test, EOS, en_XX '''input_ids''': [[2_5_6_0_4_7, 7_0, 7_3_5_6, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 2_5_6_0_5_7, } , ) @require_torch def _lowercase ( self : Optional[int] ) -> Dict: lowercase_ = True lowercase_ = self.tokenizer( '''UN Chief says there is no military solution in Syria''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids , [1_6_2_9_7, 1_3_4_4_0_8, 2_5_6_5_3, 6_3_7_0, 2_4_8, 2_5_4, 1_0_3_9_2_9, 9_4_9_9_5, 1_0_8, 4_9_4_8_6, 2, 2_5_6_0_4_7] ) lowercase_ = False lowercase_ = self.tokenizer( '''UN Chief says there is no military solution in Syria''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids , [2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 2_5_6_5_3, 6_3_7_0, 2_4_8, 2_5_4, 1_0_3_9_2_9, 9_4_9_9_5, 1_0_8, 4_9_4_8_6, 2] )
97
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin snake_case : List[str] = get_tests_dir('fixtures/test_sentencepiece_bpe_char.model') @require_sentencepiece @require_tokenizers class __lowercase ( UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = SpeechTaTokenizer SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Union[str, Any] = True def __magic_name__ ( self )-> List[str]: super().setUp() # We have a SentencePiece fixture for testing _SCREAMING_SNAKE_CASE = SpeechTaTokenizer(A_ ) _SCREAMING_SNAKE_CASE = AddedToken('<mask>' , lstrip=A_ , rstrip=A_ ) _SCREAMING_SNAKE_CASE = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self , A_ )-> List[str]: _SCREAMING_SNAKE_CASE = 'this is a test' _SCREAMING_SNAKE_CASE = 'this is a test' return input_text, output_text def __magic_name__ ( self , A_ , A_=False , A_=20 , A_=5 )-> Optional[int]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.get_input_output_texts(A_ ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A_ , add_special_tokens=A_ ) _SCREAMING_SNAKE_CASE = tokenizer.decode(A_ , clean_up_tokenization_spaces=A_ ) return text, ids def __magic_name__ ( self )-> Dict: _SCREAMING_SNAKE_CASE = '<pad>' _SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def __magic_name__ ( self )-> Dict: _SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-4] , 'œ' ) self.assertEqual(vocab_keys[-2] , '<mask>' ) self.assertEqual(vocab_keys[-1] , '<ctc_blank>' ) self.assertEqual(len(A_ ) , 81 ) def __magic_name__ ( self )-> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def __magic_name__ ( self )-> Dict: _SCREAMING_SNAKE_CASE = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _SCREAMING_SNAKE_CASE = tokenizer.vocab_size _SCREAMING_SNAKE_CASE = len(A_ ) self.assertNotEqual(A_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _SCREAMING_SNAKE_CASE = ['aaaaa bbbbbb', 'cccccccccdddddddd'] _SCREAMING_SNAKE_CASE = tokenizer.add_tokens(A_ ) _SCREAMING_SNAKE_CASE = tokenizer.vocab_size _SCREAMING_SNAKE_CASE = len(A_ ) self.assertNotEqual(A_ , 0 ) self.assertEqual(A_ , A_ ) self.assertEqual(A_ , len(A_ ) ) self.assertEqual(A_ , all_size + len(A_ ) ) _SCREAMING_SNAKE_CASE = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=A_ ) self.assertGreaterEqual(len(A_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) _SCREAMING_SNAKE_CASE = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} _SCREAMING_SNAKE_CASE = tokenizer.add_special_tokens(A_ ) _SCREAMING_SNAKE_CASE = tokenizer.vocab_size _SCREAMING_SNAKE_CASE = len(A_ ) self.assertNotEqual(A_ , 0 ) self.assertEqual(A_ , A_ ) self.assertEqual(A_ , len(A_ ) ) self.assertEqual(A_ , all_size_a + len(A_ ) ) _SCREAMING_SNAKE_CASE = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=A_ ) self.assertGreaterEqual(len(A_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def __magic_name__ ( self )-> List[str]: pass def __magic_name__ ( self )-> Dict: pass def __magic_name__ ( self )-> str: _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = tokenizer.tokenize('This is a test' ) # fmt: off self.assertListEqual(A_ , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(A_ ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( A_ , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) _SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(A_ ) # fmt: off self.assertListEqual(A_ , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on _SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual( A_ , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) @slow def __magic_name__ ( self )-> Tuple: # Use custom sequence because this tokenizer does not handle numbers. _SCREAMING_SNAKE_CASE = [ 'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ' 'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ' 'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ' 'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.', 'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ' 'conditioning on both left and right context in all layers.', 'The quick brown fox jumps over the lazy dog.', ] # fmt: off _SCREAMING_SNAKE_CASE = { 'input_ids': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=A_ , )
605
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE__ = { 'vocab_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-german-cased': ( 'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json' ), 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json' ), }, } SCREAMING_SNAKE_CASE__ = { 'distilbert-base-uncased': 5_1_2, 'distilbert-base-uncased-distilled-squad': 5_1_2, 'distilbert-base-cased': 5_1_2, 'distilbert-base-cased-distilled-squad': 5_1_2, 'distilbert-base-german-cased': 5_1_2, 'distilbert-base-multilingual-cased': 5_1_2, } SCREAMING_SNAKE_CASE__ = { 'distilbert-base-uncased': {'do_lower_case': True}, 'distilbert-base-uncased-distilled-squad': {'do_lower_case': True}, 'distilbert-base-cased': {'do_lower_case': False}, 'distilbert-base-cased-distilled-squad': {'do_lower_case': False}, 'distilbert-base-german-cased': {'do_lower_case': False}, 'distilbert-base-multilingual-cased': {'do_lower_case': False}, } class a_ ( lowerCamelCase ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = ["""input_ids""", """attention_mask"""] lowercase = DistilBertTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="[UNK]" , _SCREAMING_SNAKE_CASE="[SEP]" , _SCREAMING_SNAKE_CASE="[PAD]" , _SCREAMING_SNAKE_CASE="[CLS]" , _SCREAMING_SNAKE_CASE="[MASK]" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> int: """simple docstring""" super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , tokenize_chinese_chars=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , _SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get("""strip_accents""" , _SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): UpperCamelCase = getattr(_SCREAMING_SNAKE_CASE , normalizer_state.pop("""type""" ) ) UpperCamelCase = do_lower_case UpperCamelCase = strip_accents UpperCamelCase = tokenize_chinese_chars UpperCamelCase = normalizer_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = do_lower_case def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Optional[int]: """simple docstring""" UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" UpperCamelCase = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
714
'''simple docstring''' from math import sqrt def lowercase__ ( __UpperCamelCase )-> int: UpperCamelCase = 0 for i in range(1 , int(sqrt(__UpperCamelCase ) + 1 ) ): if n % i == 0 and i != sqrt(__UpperCamelCase ): total += i + n // i elif i == sqrt(__UpperCamelCase ): total += i return total - n def lowercase__ ( __UpperCamelCase = 10000 )-> int: UpperCamelCase = sum( i for i in range(1 , __UpperCamelCase ) if sum_of_divisors(sum_of_divisors(__UpperCamelCase ) ) == i and sum_of_divisors(__UpperCamelCase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
35
0
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType __A : Optional[Any] = get_logger(__name__) def __a ( A__ : Union[str, Any] , A__ : str , A__ : Union[str, Any] , A__ : Optional[Any] , A__ : Optional[int]=0 ): os.makedirs(A__ , exist_ok=A__ ) with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): SCREAMING_SNAKE_CASE = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: SCREAMING_SNAKE_CASE = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin" SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ ) if accelerator.process_index == 0: logger.info(F"Saving model to {output_model_file}" ) torch.save(A__ , A__ ) logger.info(F"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: SCREAMING_SNAKE_CASE = ( F"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ ) logger.info(F"Saving model to {output_model_file}" ) torch.save(A__ , A__ ) logger.info(F"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: SCREAMING_SNAKE_CASE = os.path.join(A__ , F"{MODEL_NAME}_{model_index}" ) os.makedirs(A__ , exist_ok=A__ ) logger.info(F"Saving model to {ckpt_dir}" ) SCREAMING_SNAKE_CASE = {"model": state_dict} dist_cp.save_state_dict( state_dict=A__ , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , ) logger.info(F"Model saved to {ckpt_dir}" ) def __a ( A__ : Any , A__ : Tuple , A__ : Union[str, Any] , A__ : Any , A__ : List[Any]=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(A__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return SCREAMING_SNAKE_CASE = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin" SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ ) logger.info(F"Loading model from {input_model_file}" ) SCREAMING_SNAKE_CASE = torch.load(A__ ) logger.info(F"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: SCREAMING_SNAKE_CASE = ( F"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ ) logger.info(F"Loading model from {input_model_file}" ) SCREAMING_SNAKE_CASE = torch.load(A__ ) logger.info(F"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: SCREAMING_SNAKE_CASE = ( os.path.join(A__ , F"{MODEL_NAME}_{model_index}" ) if F"{MODEL_NAME}" not in input_dir else input_dir ) logger.info(F"Loading model from {ckpt_dir}" ) SCREAMING_SNAKE_CASE = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=A__ , storage_reader=dist_cp.FileSystemReader(A__ ) , planner=DefaultLoadPlanner() , ) SCREAMING_SNAKE_CASE = state_dict["model"] logger.info(F"Model loaded from {ckpt_dir}" ) model.load_state_dict(A__ ) def __a ( A__ : List[Any] , A__ : List[str] , A__ : Tuple , A__ : List[str] , A__ : List[Any] , A__ : int=0 ): os.makedirs(A__ , exist_ok=A__ ) with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): SCREAMING_SNAKE_CASE = FSDP.optim_state_dict(A__ , A__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: SCREAMING_SNAKE_CASE = ( F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ ) logger.info(F"Saving Optimizer state to {output_optimizer_file}" ) torch.save(A__ , A__ ) logger.info(F"Optimizer state saved in {output_optimizer_file}" ) else: SCREAMING_SNAKE_CASE = os.path.join(A__ , F"{OPTIMIZER_NAME}_{optimizer_index}" ) os.makedirs(A__ , exist_ok=A__ ) logger.info(F"Saving Optimizer state to {ckpt_dir}" ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , ) logger.info(F"Optimizer state saved in {ckpt_dir}" ) def __a ( A__ : str , A__ : List[str] , A__ : List[Any] , A__ : List[str] , A__ : str , A__ : Dict=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: SCREAMING_SNAKE_CASE = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: SCREAMING_SNAKE_CASE = ( F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ ) logger.info(F"Loading Optimizer state from {input_optimizer_file}" ) SCREAMING_SNAKE_CASE = torch.load(A__ ) logger.info(F"Optimizer state loaded from {input_optimizer_file}" ) else: SCREAMING_SNAKE_CASE = ( os.path.join(A__ , F"{OPTIMIZER_NAME}_{optimizer_index}" ) if F"{OPTIMIZER_NAME}" not in input_dir else input_dir ) logger.info(F"Loading Optimizer from {ckpt_dir}" ) SCREAMING_SNAKE_CASE = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(A__ ) , ) SCREAMING_SNAKE_CASE = optim_state["optimizer"] logger.info(F"Optimizer loaded from {ckpt_dir}" ) SCREAMING_SNAKE_CASE = FSDP.optim_state_dict_to_load(A__ , A__ , A__ ) optimizer.load_state_dict(A__ )
16
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowercase : def __init__( self : Any , _lowercase : List[Any] , _lowercase : Optional[Any]=99 , _lowercase : Optional[int]=13 , _lowercase : Tuple=16 , _lowercase : Union[str, Any]=7 , _lowercase : Optional[Any]=True , _lowercase : int=True , _lowercase : Optional[Any]=True , _lowercase : str=False , _lowercase : Union[str, Any]=True , _lowercase : Tuple=2 , _lowercase : Any=32 , _lowercase : int=4 , _lowercase : Dict=4 , _lowercase : Dict=30 , _lowercase : Union[str, Any]=0 , _lowercase : List[str]=1 , _lowercase : Optional[Any]=2 , _lowercase : Tuple=None , ): SCREAMING_SNAKE_CASE__ : Any = parent SCREAMING_SNAKE_CASE__ : List[Any] = batch_size SCREAMING_SNAKE_CASE__ : List[str] = decoder_seq_length # For common tests SCREAMING_SNAKE_CASE__ : Optional[Any] = self.decoder_seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = is_training SCREAMING_SNAKE_CASE__ : Tuple = use_attention_mask SCREAMING_SNAKE_CASE__ : Any = use_labels SCREAMING_SNAKE_CASE__ : Any = vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = d_model SCREAMING_SNAKE_CASE__ : Tuple = d_model SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_layers SCREAMING_SNAKE_CASE__ : List[str] = decoder_layers SCREAMING_SNAKE_CASE__ : Optional[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE__ : List[Any] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : str = eos_token_id SCREAMING_SNAKE_CASE__ : List[Any] = bos_token_id SCREAMING_SNAKE_CASE__ : str = pad_token_id SCREAMING_SNAKE_CASE__ : str = decoder_start_token_id SCREAMING_SNAKE_CASE__ : Optional[Any] = use_cache SCREAMING_SNAKE_CASE__ : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Tuple = None SCREAMING_SNAKE_CASE__ : int = decoder_seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = 2 SCREAMING_SNAKE_CASE__ : Tuple = 1 def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = None if self.use_attention_mask: SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[int] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def lowercase__ ( self : Dict , _lowercase : Any , _lowercase : Dict , _lowercase : Optional[Any] , _lowercase : Optional[Any] , ): SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : Optional[int] = TrOCRDecoder(config=_lowercase ).to(_lowercase ).eval() SCREAMING_SNAKE_CASE__ : Optional[int] = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_lowercase , use_cache=_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = model(_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = model(_lowercase , use_cache=_lowercase ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) + 1 ) SCREAMING_SNAKE_CASE__ : int = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and SCREAMING_SNAKE_CASE__ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ : int = model(_lowercase )['''last_hidden_state'''] SCREAMING_SNAKE_CASE__ : List[Any] = model(_lowercase , past_key_values=_lowercase )['''last_hidden_state'''] # select random slice SCREAMING_SNAKE_CASE__ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ : Dict = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ : str = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_lowercase , _lowercase , atol=1E-3 ) def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE__ : int = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCamelCase : Dict = (TrOCRForCausalLM,) if is_torch_available() else () lowerCamelCase : Tuple = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} lowerCamelCase : Any = True lowerCamelCase : int = False def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = TrOCRStandaloneDecoderModelTester(self , is_training=_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ConfigTester(self , config_class=_lowercase ) def lowercase__ ( self : Optional[Any] ): pass def lowercase__ ( self : List[Any] ): pass def lowercase__ ( self : str ): pass def lowercase__ ( self : Dict ): self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_lowercase ) def lowercase__ ( self : Optional[Any] ): return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def lowercase__ ( self : Tuple ): pass
35
0
'''simple docstring''' def _A ( A ,A ,A ,A ,A ,A ) -> Any: if index == r: for j in range(lowercase_ ): print(data[j] ,end=" " ) print(" " ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location lowercase : Optional[Any] = arr[i] combination_util(lowercase_ ,lowercase_ ,lowercase_ ,index + 1 ,lowercase_ ,i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def _A ( A ,A ,A ) -> str: # A temporary array to store all combination one by one lowercase : Optional[int] = [0] * r # Print all combination using temporary array 'data[]' combination_util(lowercase_ ,lowercase_ ,lowercase_ ,0 ,lowercase_ ,0 ) if __name__ == "__main__": # Driver code to check the function above lowerCAmelCase : Optional[Any] = [1_0, 2_0, 3_0, 4_0, 5_0] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
720
'''simple docstring''' import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCamelCase ( SCREAMING_SNAKE_CASE): '''simple docstring''' def __init__( self , a_ , a_=1_3 , a_=7 , a_=True , a_=True , a_=False , a_=True , a_=9_9 , a_=3_2 , a_=5 , a_=4 , a_=3_7 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_1_2 , a_=1_6 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ) -> Any: lowercase : List[str] = parent lowercase : str = batch_size lowercase : int = seq_length lowercase : Any = is_training lowercase : List[Any] = use_input_mask lowercase : str = use_token_type_ids lowercase : List[str] = use_labels lowercase : Optional[Any] = vocab_size lowercase : List[Any] = hidden_size lowercase : List[Any] = num_hidden_layers lowercase : str = num_attention_heads lowercase : Union[str, Any] = intermediate_size lowercase : Union[str, Any] = hidden_act lowercase : Optional[Any] = hidden_dropout_prob lowercase : Union[str, Any] = attention_probs_dropout_prob lowercase : List[str] = max_position_embeddings lowercase : Tuple = type_vocab_size lowercase : Dict = type_sequence_label_size lowercase : Optional[Any] = initializer_range lowercase : int = num_labels lowercase : int = num_choices lowercase : Tuple = scope def a__ ( self ) -> Dict: lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Union[str, Any] = None if self.use_input_mask: lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : str = None lowercase : str = None lowercase : Optional[int] = None if self.use_labels: lowercase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowercase : Dict = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self ) -> Any: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ ) -> List[Any]: lowercase : Tuple = DistilBertModel(config=a_ ) model.to(a_ ) model.eval() lowercase : Optional[Any] = model(a_ , a_ ) lowercase : List[Any] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ ) -> str: lowercase : List[Any] = DistilBertForMaskedLM(config=a_ ) model.to(a_ ) model.eval() lowercase : Dict = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ ) -> int: lowercase : Optional[Any] = DistilBertForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() lowercase : List[Any] = model( a_ , attention_mask=a_ , start_positions=a_ , end_positions=a_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ ) -> List[str]: lowercase : Union[str, Any] = self.num_labels lowercase : Optional[int] = DistilBertForSequenceClassification(a_ ) model.to(a_ ) model.eval() lowercase : Dict = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ ) -> List[str]: lowercase : List[Any] = self.num_labels lowercase : Optional[Any] = DistilBertForTokenClassification(config=a_ ) model.to(a_ ) model.eval() lowercase : Optional[Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ ) -> Optional[int]: lowercase : Optional[int] = self.num_choices lowercase : Tuple = DistilBertForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() lowercase : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Tuple = model( a_ , attention_mask=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self ) -> Tuple: lowercase : Any = self.prepare_config_and_inputs() ((lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase)) : int = config_and_inputs lowercase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase): '''simple docstring''' _snake_case = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _snake_case = ( { '''feature-extraction''': DistilBertModel, '''fill-mask''': DistilBertForMaskedLM, '''question-answering''': DistilBertForQuestionAnswering, '''text-classification''': DistilBertForSequenceClassification, '''token-classification''': DistilBertForTokenClassification, '''zero-shot''': DistilBertForSequenceClassification, } if is_torch_available() else {} ) _snake_case = True _snake_case = True _snake_case = True _snake_case = True def a__ ( self ) -> int: lowercase : str = DistilBertModelTester(self ) lowercase : Optional[Any] = ConfigTester(self , config_class=a_ , dim=3_7 ) def a__ ( self ) -> List[Any]: self.config_tester.run_common_tests() def a__ ( self ) -> List[Any]: lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a_ ) def a__ ( self ) -> Tuple: lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a_ ) def a__ ( self ) -> Union[str, Any]: lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a_ ) def a__ ( self ) -> Optional[Any]: lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a_ ) def a__ ( self ) -> Optional[Any]: lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a_ ) def a__ ( self ) -> List[str]: lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a_ ) @slow def a__ ( self ) -> List[Any]: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Union[str, Any] = DistilBertModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @slow @require_torch_gpu def a__ ( self ) -> Tuple: lowercase , lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return lowercase : Any = True lowercase : List[str] = model_class(config=a_ ) lowercase : Optional[int] = self._prepare_for_class(a_ , a_ ) lowercase : Union[str, Any] = torch.jit.trace( a_ , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a_ , os.path.join(a_ , "traced_model.pt" ) ) lowercase : str = torch.jit.load(os.path.join(a_ , "traced_model.pt" ) , map_location=a_ ) loaded(inputs_dict["input_ids"].to(a_ ) , inputs_dict["attention_mask"].to(a_ ) ) @require_torch class _UpperCamelCase ( unittest.TestCase): '''simple docstring''' @slow def a__ ( self ) -> List[str]: lowercase : Dict = DistilBertModel.from_pretrained("distilbert-base-uncased" ) lowercase : Union[str, Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowercase : str = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase : Union[str, Any] = model(a_ , attention_mask=a_ )[0] lowercase : List[str] = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , a_ ) lowercase : Optional[int] = torch.tensor( [[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a_ , atol=1e-4 ) )
425
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _UpperCamelCase = logging.get_logger(__name__) def _A( lowerCAmelCase ): if isinstance(lowerCAmelCase , np.ndarray ): return list(tensor.shape ) A__ : Dict = tf.shape(lowerCAmelCase ) if tensor.shape == tf.TensorShape(lowerCAmelCase ): return dynamic A__ : int = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(lowerCAmelCase )] def _A( lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None ): return tf.nn.softmax(logits=logits + 1E-9 , axis=lowerCAmelCase , name=lowerCAmelCase ) def _A( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=1E-5 , lowerCAmelCase=-1 ): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(lowerCAmelCase , lowerCAmelCase ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized A__ , A__ : Optional[int] = tf.nn.moments(lowerCAmelCase , axes=[axis] , keepdims=lowerCAmelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis A__ : Union[str, Any] = [1] * inputs.shape.rank A__ : Any = shape_list(lowerCAmelCase )[axis] A__ : Any = tf.reshape(lowerCAmelCase , lowerCAmelCase ) A__ : Tuple = tf.reshape(lowerCAmelCase , lowerCAmelCase ) # Compute layer normalization using the batch_normalization # function. A__ : Any = tf.nn.batch_normalization( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , offset=lowerCAmelCase , scale=lowerCAmelCase , variance_epsilon=lowerCAmelCase , ) return outputs def _A( lowerCAmelCase , lowerCAmelCase=0 , lowerCAmelCase=-1 ): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input A__ : int = tf.shape(lowerCAmelCase ) A__ : str = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) A__ : Any = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(lowerCAmelCase , lowerCAmelCase ) def _A( lowerCAmelCase ): if not isinstance(lowerCAmelCase , tf.Tensor ): A__ : Dict = tf.convert_to_tensor(lowerCAmelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: A__ : Optional[Any] = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: A__ : List[Any] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) A__ : Dict = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def _A( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = "input_ids" ): tf.debugging.assert_less( lowerCAmelCase , tf.cast(lowerCAmelCase , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(lowerCAmelCase )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def _A( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): A__ : List[str] = 6_4512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. A__ : Optional[Any] = [x for x in data if len(lowerCAmelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) A__ : int = np.asarray(lowerCAmelCase ) A__ : int = 1 A__ : List[Any] = np.array_split(lowerCAmelCase , lowerCAmelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 A__ : Dict = np.array_split(lowerCAmelCase , lowerCAmelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(lowerCAmelCase ): A__ : Optional[Any] = chunk_data else: A__ : Dict = data def _A( lowerCAmelCase , lowerCAmelCase ): if name in group.attrs: A__ : Any = [n.decode("""utf8""" ) if hasattr(lowerCAmelCase , """decode""" ) else n for n in group.attrs[name]] else: A__ : Union[str, Any] = [] A__ : Dict = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(lowerCAmelCase , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def _A( lowerCAmelCase ): def _expand_single_ad_tensor(lowerCAmelCase ): if isinstance(lowerCAmelCase , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(lowerCAmelCase , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , lowerCAmelCase )
363
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {"vocab_file": "sentencepiece.model"} _UpperCamelCase = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } _UpperCamelCase = { "google/rembert": 2_56, } class __UpperCAmelCase (__A ): '''simple docstring''' _UpperCamelCase : Dict = VOCAB_FILES_NAMES _UpperCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , snake_case_ , snake_case_=False , snake_case_=True , snake_case_=True , snake_case_="[CLS]" , snake_case_="[SEP]" , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , **snake_case_ , ): '''simple docstring''' super().__init__( do_lower_case=snake_case_ , remove_space=snake_case_ , keep_accents=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , **snake_case_ , ) A__ : List[Any] = do_lower_case A__ : Dict = remove_space A__ : Optional[int] = keep_accents A__ : Tuple = vocab_file A__ : List[str] = spm.SentencePieceProcessor() self.sp_model.Load(snake_case_ ) @property def lowerCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) def lowerCamelCase ( self ): '''simple docstring''' A__ : Optional[Any] = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' A__ : str = self.__dict__.copy() A__ : Tuple = None return state def __setstate__( self , snake_case_ ): '''simple docstring''' A__ : Dict = d A__ : int = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def lowerCamelCase ( self , snake_case_ , snake_case_=False ): '''simple docstring''' A__ : Tuple = self.sp_model.EncodeAsPieces(snake_case_ ) return pieces def lowerCamelCase ( self , snake_case_ ): '''simple docstring''' return self.sp_model.PieceToId(snake_case_ ) def lowerCamelCase ( self , snake_case_ ): '''simple docstring''' return self.sp_model.IdToPiece(snake_case_ ) def lowerCamelCase ( self , snake_case_ ): '''simple docstring''' A__ : str = self.sp_model.decode_pieces(snake_case_ ) return out_string def lowerCamelCase ( self , snake_case_ , snake_case_ = None ): '''simple docstring''' A__ : List[Any] = [self.sep_token_id] A__ : str = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1] return [1] + ([0] * len(snake_case_ )) + [1] def lowerCamelCase ( self , snake_case_ , snake_case_ = None ): '''simple docstring''' A__ : int = [self.sep_token_id] A__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase ( self , snake_case_ , snake_case_ = None ): '''simple docstring''' if not os.path.isdir(snake_case_ ): logger.error("""Vocabulary path ({}) should be a directory""".format(snake_case_ ) ) return A__ : Any = os.path.join( snake_case_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ): copyfile(self.vocab_file , snake_case_ ) return (out_vocab_file,)
363
1
from collections.abc import Iterable from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar("_T") class _a ( Generic[_T] ): """simple docstring""" def __init__( self , lowerCAmelCase_ = None ): _lowercase =list(iterable or [] ) _lowercase =[] def __len__( self ): return len(self._stacka ) + len(self._stacka ) def __repr__( self ): return F'''Queue({tuple(self._stacka[::-1] + self._stacka )})''' def __lowerCAmelCase ( self , lowerCAmelCase_ ): self._stacka.append(lowerCAmelCase_ ) def __lowerCAmelCase ( self ): _lowercase =self._stacka.pop _lowercase =self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("Queue is empty" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
594
import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) class _a ( lowerCamelCase_ ): """simple docstring""" __SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] def __init__( self , lowerCAmelCase_="</s>" , lowerCAmelCase_="<unk>" , lowerCAmelCase_="<pad>" , lowerCAmelCase_=125 , lowerCAmelCase_=None , **lowerCAmelCase_ , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _lowercase =[F'''<extra_id_{i}>''' for i in range(lowerCAmelCase_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _lowercase =len(set(filter(lambda lowerCAmelCase_ : bool("extra_id" in str(lowerCAmelCase_ ) ) , lowerCAmelCase_ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' " provided to ByT5Tokenizer. In this case the additional_special_tokens must include the" " extra_ids tokens" ) _lowercase =AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else pad_token _lowercase =AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else eos_token _lowercase =AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else unk_token super().__init__( eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , extra_ids=lowerCAmelCase_ , additional_special_tokens=lowerCAmelCase_ , **lowerCAmelCase_ , ) _lowercase =extra_ids _lowercase =2**8 # utf is 8 bits # define special tokens dict _lowercase ={ self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } _lowercase =len(self.special_tokens_encoder ) _lowercase =len(lowerCAmelCase_ ) for i, token in enumerate(lowerCAmelCase_ ): _lowercase =self.vocab_size + i - n _lowercase ={v: k for k, v in self.special_tokens_encoder.items()} @property def __lowerCAmelCase ( self ): return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowerCAmelCase_ )) + [1] return ([0] * len(lowerCAmelCase_ )) + [1] + ([0] * len(lowerCAmelCase_ )) + [1] def __lowerCAmelCase ( self , lowerCAmelCase_ ): if len(lowerCAmelCase_ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): _lowercase =[self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): _lowercase =self._add_eos_if_not_present(lowerCAmelCase_ ) if token_ids_a is None: return token_ids_a else: _lowercase =self._add_eos_if_not_present(lowerCAmelCase_ ) return token_ids_a + token_ids_a def __lowerCAmelCase ( self , lowerCAmelCase_ ): _lowercase =[chr(lowerCAmelCase_ ) for i in text.encode("utf-8" )] return tokens def __lowerCAmelCase ( self , lowerCAmelCase_ ): if token in self.special_tokens_encoder: _lowercase =self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: _lowercase =self.added_tokens_encoder[token] elif len(lowerCAmelCase_ ) != 1: _lowercase =self.unk_token_id else: _lowercase =ord(lowerCAmelCase_ ) + self._num_special_tokens return token_id def __lowerCAmelCase ( self , lowerCAmelCase_ ): if index in self.special_tokens_decoder: _lowercase =self.special_tokens_decoder[index] else: _lowercase =chr(index - self._num_special_tokens ) return token def __lowerCAmelCase ( self , lowerCAmelCase_ ): _lowercase =b"" for token in tokens: if token in self.special_tokens_decoder: _lowercase =self.special_tokens_decoder[token].encode("utf-8" ) elif token in self.added_tokens_decoder: _lowercase =self.special_tokens_decoder[token].encode("utf-8" ) elif token in self.special_tokens_encoder: _lowercase =token.encode("utf-8" ) elif token in self.added_tokens_encoder: _lowercase =token.encode("utf-8" ) else: _lowercase =bytes([ord(lowerCAmelCase_ )] ) bstring += tok_string _lowercase =bstring.decode("utf-8" , errors="ignore" ) return string def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): return ()
594
1
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> Any: UpperCAmelCase_ = len(__UpperCamelCase ) for i in range(length - 1 ): UpperCAmelCase_ = i for k in range(i + 1 , __UpperCamelCase ): if collection[k] < collection[least]: UpperCAmelCase_ = k if least != i: UpperCAmelCase_ , UpperCAmelCase_ = (collection[i], collection[least]) return collection if __name__ == "__main__": _lowerCamelCase = input('Enter numbers separated by a comma:\n').strip() _lowerCamelCase = [int(item) for item in user_input.split(',')] print(selection_sort(unsorted))
144
def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase) -> float: if density <= 0: raise ValueError("Impossible fluid density") if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus") return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
515
0
"""simple docstring""" from __future__ import annotations import math import random from typing import Any class lowerCamelCase__ : """simple docstring""" def __init__( self : Dict ): '''simple docstring''' __UpperCAmelCase : list[Any] = [] __UpperCAmelCase : int = 0 __UpperCAmelCase : int = 0 def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' return self.head == self.tail def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : Any ): '''simple docstring''' self.data.append(UpperCamelCase ) __UpperCAmelCase : int = self.tail + 1 def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Dict = self.data[self.head] __UpperCAmelCase : Dict = self.head + 1 return ret def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' return self.tail - self.head def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' print(self.data ) print("""**************""" ) print(self.data[self.head : self.tail] ) class lowerCamelCase__ : """simple docstring""" def __init__( self : Optional[Any] , UpperCamelCase : Any ): '''simple docstring''' __UpperCAmelCase : int = data __UpperCAmelCase : MyNode | None = None __UpperCAmelCase : MyNode | None = None __UpperCAmelCase : int = 1 def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' return self.data def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' return self.left def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' return self.right def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' return self.height def lowerCamelCase__ ( self : Dict , UpperCamelCase : Any ): '''simple docstring''' __UpperCAmelCase : List[str] = data def lowerCamelCase__ ( self : Tuple , UpperCamelCase : MyNode | None ): '''simple docstring''' __UpperCAmelCase : List[Any] = node def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : MyNode | None ): '''simple docstring''' __UpperCAmelCase : int = node def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : Optional[int] = height def lowerCamelCase ( _UpperCamelCase : MyNode | None ) -> int: '''simple docstring''' if node is None: return 0 return node.get_height() def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : int ) -> int: '''simple docstring''' if a > b: return a return b def lowerCamelCase ( _UpperCamelCase : MyNode ) -> MyNode: '''simple docstring''' print("""left rotation node:""" , node.get_data() ) __UpperCAmelCase : List[Any] = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(_UpperCamelCase ) __UpperCAmelCase : Any = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_UpperCamelCase ) __UpperCAmelCase : Tuple = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_UpperCamelCase ) return ret def lowerCamelCase ( _UpperCamelCase : MyNode ) -> MyNode: '''simple docstring''' print("""right rotation node:""" , node.get_data() ) __UpperCAmelCase : int = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(_UpperCamelCase ) __UpperCAmelCase : int = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_UpperCamelCase ) __UpperCAmelCase : List[Any] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_UpperCamelCase ) return ret def lowerCamelCase ( _UpperCamelCase : MyNode ) -> MyNode: '''simple docstring''' __UpperCAmelCase : Any = node.get_left() assert left_child is not None node.set_left(left_rotation(_UpperCamelCase ) ) return right_rotation(_UpperCamelCase ) def lowerCamelCase ( _UpperCamelCase : MyNode ) -> MyNode: '''simple docstring''' __UpperCAmelCase : Dict = node.get_right() assert right_child is not None node.set_right(right_rotation(_UpperCamelCase ) ) return left_rotation(_UpperCamelCase ) def lowerCamelCase ( _UpperCamelCase : MyNode | None , _UpperCamelCase : Any ) -> MyNode | None: '''simple docstring''' if node is None: return MyNode(_UpperCamelCase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , _UpperCamelCase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected __UpperCAmelCase : str = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child __UpperCAmelCase : Dict = right_rotation(_UpperCamelCase ) else: __UpperCAmelCase : Dict = lr_rotation(_UpperCamelCase ) else: node.set_right(insert_node(node.get_right() , _UpperCamelCase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: __UpperCAmelCase : List[Any] = node.get_right() assert right_child is not None if data < right_child.get_data(): __UpperCAmelCase : Dict = rl_rotation(_UpperCamelCase ) else: __UpperCAmelCase : Any = left_rotation(_UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_UpperCamelCase ) return node def lowerCamelCase ( _UpperCamelCase : MyNode ) -> Any: '''simple docstring''' while True: __UpperCAmelCase : Optional[Any] = root.get_right() if right_child is None: break __UpperCAmelCase : Union[str, Any] = right_child return root.get_data() def lowerCamelCase ( _UpperCamelCase : MyNode ) -> Any: '''simple docstring''' while True: __UpperCAmelCase : int = root.get_left() if left_child is None: break __UpperCAmelCase : Union[str, Any] = left_child return root.get_data() def lowerCamelCase ( _UpperCamelCase : MyNode , _UpperCamelCase : Any ) -> MyNode | None: '''simple docstring''' __UpperCAmelCase : Dict = root.get_left() __UpperCAmelCase : Tuple = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: __UpperCAmelCase : Union[str, Any] = get_left_most(_UpperCamelCase ) root.set_data(_UpperCamelCase ) root.set_right(del_node(_UpperCamelCase , _UpperCamelCase ) ) elif left_child is not None: __UpperCAmelCase : Dict = left_child elif right_child is not None: __UpperCAmelCase : Tuple = right_child else: return None elif root.get_data() > data: if left_child is None: print("""No such data""" ) return root else: root.set_left(del_node(_UpperCamelCase , _UpperCamelCase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(_UpperCamelCase , _UpperCamelCase ) ) if get_height(_UpperCamelCase ) - get_height(_UpperCamelCase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): __UpperCAmelCase : Any = left_rotation(_UpperCamelCase ) else: __UpperCAmelCase : Tuple = rl_rotation(_UpperCamelCase ) elif get_height(_UpperCamelCase ) - get_height(_UpperCamelCase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): __UpperCAmelCase : List[str] = right_rotation(_UpperCamelCase ) else: __UpperCAmelCase : Union[str, Any] = lr_rotation(_UpperCamelCase ) __UpperCAmelCase : Dict = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(_UpperCamelCase ) return root class lowerCamelCase__ : """simple docstring""" def __init__( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : MyNode | None = None def lowerCamelCase__ ( self : Dict ): '''simple docstring''' return get_height(self.root ) def lowerCamelCase__ ( self : Dict , UpperCamelCase : Any ): '''simple docstring''' print("""insert:""" + str(UpperCamelCase ) ) __UpperCAmelCase : Dict = insert_node(self.root , UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : Any ): '''simple docstring''' print("""delete:""" + str(UpperCamelCase ) ) if self.root is None: print("""Tree is empty!""" ) return __UpperCAmelCase : Tuple = del_node(self.root , UpperCamelCase ) def __str__( self : Tuple , ): # a level traversale, gives a more intuitive look on the tree '''simple docstring''' __UpperCAmelCase : Tuple = """""" __UpperCAmelCase : str = MyQueue() q.push(self.root ) __UpperCAmelCase : Union[str, Any] = self.get_height() if layer == 0: return output __UpperCAmelCase : List[Any] = 0 while not q.is_empty(): __UpperCAmelCase : str = q.pop() __UpperCAmelCase : Optional[Any] = """ """ * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(UpperCamelCase ) q.push(UpperCamelCase ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space __UpperCAmelCase : Union[str, Any] = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , UpperCamelCase ) - 1: __UpperCAmelCase : Any = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def lowerCamelCase ( ) -> None: '''simple docstring''' import doctest doctest.testmod() if __name__ == "__main__": _test() UpperCAmelCase : Optional[Any] = AVLtree() UpperCAmelCase : str = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
299
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : int = 3 , _UpperCamelCase : int = 7 , _UpperCamelCase : int = 1_0_0_0_0_0_0 ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Optional[int] = 1 for current_denominator in range(1 , limit + 1 ): __UpperCAmelCase : List[str] = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: __UpperCAmelCase : Union[str, Any] = current_numerator __UpperCAmelCase : List[Any] = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=100_0000))
299
1
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__(UpperCamelCase_ , unittest.TestCase ): """simple docstring""" lowercase_ = LongformerTokenizer lowercase_ = True lowercase_ = LongformerTokenizerFast lowercase_ = True def snake_case ( self : str ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowercase__ : Tuple = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) lowercase__ : Tuple = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowercase__ : Optional[int] = {"unk_token": "<unk>"} lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(SCREAMING_SNAKE_CASE ) ) def snake_case ( self : Optional[Any] , **SCREAMING_SNAKE_CASE : List[str] ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ) def snake_case ( self : Any , **SCREAMING_SNAKE_CASE : List[str] ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ) def snake_case ( self : Any , SCREAMING_SNAKE_CASE : str ): lowercase__ : Optional[int] = "lower newer" lowercase__ : Optional[Any] = "lower newer" return input_text, output_text def snake_case ( self : Any ): lowercase__ : List[str] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__ : List[Any] = "lower newer" lowercase__ : Tuple = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] lowercase__ : int = tokenizer.tokenize(SCREAMING_SNAKE_CASE ) # , add_prefix_space=True) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : str = tokens + [tokenizer.unk_token] lowercase__ : Dict = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[int] ): lowercase__ : Optional[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=SCREAMING_SNAKE_CASE ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=SCREAMING_SNAKE_CASE ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def snake_case ( self : str ): lowercase__ : List[str] = self.tokenizer_class.from_pretrained("allenai/longformer-base-4096" ) lowercase__ : Optional[int] = tokenizer.encode("sequence builders" , add_special_tokens=SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = tokenizer.encode("multi-sequence build" , add_special_tokens=SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = tokenizer.encode( "sequence builders" , add_special_tokens=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE ) lowercase__ : str = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE ) lowercase__ : Dict = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE ) lowercase__ : Dict = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def snake_case ( self : List[str] ): lowercase__ : Union[str, Any] = self.get_tokenizer() lowercase__ : Any = "Encode this sequence." lowercase__ : Tuple = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments lowercase__ : Optional[int] = tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Any = tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) lowercase__ : Optional[Any] = tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Testing spaces after special tokens lowercase__ : Tuple = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE )} ) # mask token has a left space lowercase__ : List[str] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = "Encode <mask> sequence" lowercase__ : Dict = "Encode <mask>sequence" lowercase__ : int = tokenizer.encode(SCREAMING_SNAKE_CASE ) lowercase__ : str = encoded.index(SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = tokenizer.encode(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = encoded.index(SCREAMING_SNAKE_CASE ) lowercase__ : int = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def snake_case ( self : Tuple ): pass def snake_case ( self : Optional[int] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase__ : List[str] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) lowercase__ : int = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) lowercase__ : Dict = "A, <mask> AllenNLP sentence." lowercase__ : List[Any] = tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , return_token_type_ids=SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = tokenizer_p.encode_plus(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , return_token_type_ids=SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) lowercase__ : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) lowercase__ : Optional[int] = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def snake_case ( self : Tuple ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): lowercase__ : List[str] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , trim_offsets=SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowercase__ : List[str] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state["add_prefix_space"] , SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state["trim_offsets"] , SCREAMING_SNAKE_CASE ) def snake_case ( self : int ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase__ : Any = "hello" # `hello` is a token in the vocabulary of `pretrained_name` lowercase__ : Dict = f"""{text_of_1_token} {text_of_1_token}""" lowercase__ : Tuple = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , trim_offsets=SCREAMING_SNAKE_CASE ) lowercase__ : str = tokenizer_r(SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE ) + 1, len(SCREAMING_SNAKE_CASE ) + 1 + len(SCREAMING_SNAKE_CASE )) , ) lowercase__ : Any = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , trim_offsets=SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = tokenizer_r(SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE ) + 1, len(SCREAMING_SNAKE_CASE ) + 1 + len(SCREAMING_SNAKE_CASE )) , ) lowercase__ : List[str] = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , trim_offsets=SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = tokenizer_r(SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE ), len(SCREAMING_SNAKE_CASE ) + 1 + len(SCREAMING_SNAKE_CASE )) , ) lowercase__ : str = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , trim_offsets=SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = tokenizer_r(SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE ), len(SCREAMING_SNAKE_CASE ) + 1 + len(SCREAMING_SNAKE_CASE )) , ) lowercase__ : Any = f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowercase__ : str = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , trim_offsets=SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = tokenizer_r(SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE ) + 1, 1 + len(SCREAMING_SNAKE_CASE ) + 1 + len(SCREAMING_SNAKE_CASE )) , ) lowercase__ : str = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , trim_offsets=SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = tokenizer_r(SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE ), 1 + len(SCREAMING_SNAKE_CASE ) + 1 + len(SCREAMING_SNAKE_CASE )) , ) lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , trim_offsets=SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = tokenizer_r(SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE ), 1 + len(SCREAMING_SNAKE_CASE ) + 1 + len(SCREAMING_SNAKE_CASE )) , )
496
'''simple docstring''' from __future__ import annotations def __a ( A__ , A__ = None , A__ = None , A__ = False , ) -> tuple[int, float, str]: lowerCAmelCase = cipher_alphabet or [chr(A__ ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) lowerCAmelCase = { "a": 0.08_497, "b": 0.01_492, "c": 0.02_202, "d": 0.04_253, "e": 0.11_162, "f": 0.02_228, "g": 0.02_015, "h": 0.06_094, "i": 0.07_546, "j": 0.00_153, "k": 0.01_292, "l": 0.04_025, "m": 0.02_406, "n": 0.06_749, "o": 0.07_507, "p": 0.01_929, "q": 0.00_095, "r": 0.07_587, "s": 0.06_327, "t": 0.09_356, "u": 0.02_758, "v": 0.00_978, "w": 0.02_560, "x": 0.00_150, "y": 0.01_994, "z": 0.00_077, } else: # Custom frequencies dictionary lowerCAmelCase = frequencies_dict if not case_sensitive: lowerCAmelCase = ciphertext.lower() # Chi squared statistic values lowerCAmelCase = {} # cycle through all of the shifts for shift in range(len(A__ ) ): lowerCAmelCase = "" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet lowerCAmelCase = (alphabet_letters.index(letter.lower() ) - shift) % len( A__ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter lowerCAmelCase = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: lowerCAmelCase = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message lowerCAmelCase = decrypted_with_shift.lower().count(A__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCAmelCase = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCAmelCase = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message lowerCAmelCase = decrypted_with_shift.count(A__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCAmelCase = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCAmelCase = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary lowerCAmelCase = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(A__ ) -> tuple[float, str]: return chi_squared_statistic_values[key] lowerCAmelCase = min( A__ , key=A__ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
649
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase : Union[str, Any] = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Any = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys _UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
514
'''simple docstring''' from ..utils import DummyObject, requires_backends class _snake_case ( metaclass=a_ ): SCREAMING_SNAKE_CASE : List[str] = ['''torch''', '''torchsde'''] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self , ['torch', 'torchsde'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls , ['torch', 'torchsde'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls , ['torch', 'torchsde'] )
514
1
'''simple docstring''' from __future__ import annotations def UpperCamelCase_ ( A__ ): # This function is recursive a_ = len(A__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else a_ = array[0] a_ = False a_ = 1 a_ = [] while not is_found and i < array_length: if array[i] < pivot: a_ = True a_ = [element for element in array[i:] if element >= array[i]] a_ = longest_subsequence(A__ ) if len(A__ ) > len(A__ ): a_ = temp_array else: i += 1 a_ = [element for element in array[1:] if element >= pivot] a_ = [pivot, *longest_subsequence(A__ )] if len(A__ ) > len(A__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
263
'''simple docstring''' def UpperCamelCase_ ( A__ , A__ , A__ ): if len(A__ ) != len(A__ ): raise ValueError("""The length of profit and weight must be same.""" ) if max_weight <= 0: raise ValueError("""max_weight must greater than zero.""" ) if any(p < 0 for p in profit ): raise ValueError("""Profit can not be negative.""" ) if any(w < 0 for w in weight ): raise ValueError("""Weight can not be negative.""" ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. a_ = [p / w for p, w in zip(A__ , A__ )] # Creating a copy of the list and sorting profit/weight in ascending order a_ = sorted(A__ ) # declaring useful variables a_ = len(A__ ) a_ = 0 a_ = 0 a_ = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight a_ = sorted_profit_by_weight[length - i - 1] a_ = profit_by_weight.index(A__ ) a_ = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( 'Input profits, weights, and then max_weight (all positive ints) separated by ' 'spaces.' ) lowercase__ =[int(x) for x in input('Input profits separated by spaces: ').split()] lowercase__ =[int(x) for x in input('Input weights separated by spaces: ').split()] lowercase__ =int(input('Max weight allowed: ')) # Function Call calc_profit(profit, weight, max_weight)
263
1
'''simple docstring''' __snake_case = range(2, 20 + 1) __snake_case = [10**k for k in range(ks[-1] + 1)] __snake_case = {} def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->List[str]: lowercase_ = sum(a_i[j] for j in range(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) ) lowercase_ = sum(a_i[j] * base[j] for j in range(min(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) ) lowercase_ , lowercase_ = 0, 0 lowercase_ = n - i lowercase_ = memo.get(SCREAMING_SNAKE_CASE_ ) if sub_memo is not None: lowercase_ = sub_memo.get(SCREAMING_SNAKE_CASE_ ) if jumps is not None and len(SCREAMING_SNAKE_CASE_ ) > 0: # find and make the largest jump without going over lowercase_ = -1 for _k in range(len(SCREAMING_SNAKE_CASE_ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: lowercase_ = _k break if max_jump >= 0: lowercase_ , lowercase_ , lowercase_ = jumps[max_jump] # since the difference between jumps is cached, add c lowercase_ = diff + c for j in range(min(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) ): lowercase_ , lowercase_ = divmod(SCREAMING_SNAKE_CASE_ , 10 ) if new_c > 0: add(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: lowercase_ = [] else: lowercase_ = {c: []} lowercase_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps lowercase_ , lowercase_ = next_term(SCREAMING_SNAKE_CASE_ , k - 1 , i + dn , SCREAMING_SNAKE_CASE_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead lowercase_ , lowercase_ = compute(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , i + dn , SCREAMING_SNAKE_CASE_ ) diff += _diff dn += terms_jumped lowercase_ = sub_memo[c] # keep jumps sorted by # of terms skipped lowercase_ = 0 while j < len(SCREAMING_SNAKE_CASE_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(SCREAMING_SNAKE_CASE_ , (diff, dn, k) ) return (diff, dn) def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->int: if i >= n: return 0, i if k > len(SCREAMING_SNAKE_CASE_ ): a_i.extend([0 for _ in range(k - len(SCREAMING_SNAKE_CASE_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) lowercase_ = i lowercase_ , lowercase_ , lowercase_ = 0, 0, 0 for j in range(len(SCREAMING_SNAKE_CASE_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 lowercase_ = ds_c + ds_b diff += addend lowercase_ = 0 for j in range(SCREAMING_SNAKE_CASE_ ): lowercase_ = a_i[j] + addend lowercase_ , lowercase_ = divmod(SCREAMING_SNAKE_CASE_ , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return diff, i - start_i def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->Any: for j in range(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ): lowercase_ = digits[j] + addend if s >= 10: lowercase_ , lowercase_ = divmod(SCREAMING_SNAKE_CASE_ , 10 ) lowercase_ = addend // 10 + quotient else: lowercase_ = s lowercase_ = addend // 10 if addend == 0: break while addend > 0: lowercase_ , lowercase_ = divmod(SCREAMING_SNAKE_CASE_ , 10 ) digits.append(SCREAMING_SNAKE_CASE_ ) def A_ ( SCREAMING_SNAKE_CASE_ = 10**15 ) ->int: lowercase_ = [1] lowercase_ = 1 lowercase_ = 0 while True: lowercase_ , lowercase_ = next_term(SCREAMING_SNAKE_CASE_ , 20 , i + dn , SCREAMING_SNAKE_CASE_ ) dn += terms_jumped if dn == n - i: break lowercase_ = 0 for j in range(len(SCREAMING_SNAKE_CASE_ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
603
'''simple docstring''' # Lint as: python3 import itertools import os import re __snake_case = re.compile(r"""([A-Z]+)([A-Z][a-z])""") __snake_case = re.compile(r"""([a-z\d])([A-Z])""") __snake_case = re.compile(r"""(?<!_)_(?!_)""") __snake_case = re.compile(r"""(_{2,})""") __snake_case = r"""^\w+(\.\w+)*$""" __snake_case = r"""<>:/\|?*""" def A_ ( SCREAMING_SNAKE_CASE_ ) ->Union[str, Any]: lowercase_ = _uppercase_uppercase_re.sub(r"""\1_\2""" , SCREAMING_SNAKE_CASE_ ) lowercase_ = _lowercase_uppercase_re.sub(r"""\1_\2""" , SCREAMING_SNAKE_CASE_ ) return name.lower() def A_ ( SCREAMING_SNAKE_CASE_ ) ->List[Any]: lowercase_ = _single_underscore_re.split(SCREAMING_SNAKE_CASE_ ) lowercase_ = [_multiple_underscores_re.split(SCREAMING_SNAKE_CASE_ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_ ) if n != """""" ) def A_ ( SCREAMING_SNAKE_CASE_ ) ->Any: if os.path.basename(SCREAMING_SNAKE_CASE_ ) != name: raise ValueError(f"""Should be a dataset name, not a path: {name}""" ) return camelcase_to_snakecase(SCREAMING_SNAKE_CASE_ ) def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->Any: if os.path.basename(SCREAMING_SNAKE_CASE_ ) != name: raise ValueError(f"""Should be a dataset name, not a path: {name}""" ) if not re.match(_split_re , SCREAMING_SNAKE_CASE_ ): raise ValueError(f"""Split name should match '{_split_re}'' but got '{split}'.""" ) return f"""{filename_prefix_for_name(SCREAMING_SNAKE_CASE_ )}-{split}""" def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) ->Tuple: lowercase_ = filename_prefix_for_split(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if filetype_suffix: prefix += f""".{filetype_suffix}""" lowercase_ = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return f"""{filepath}*""" def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) ->Optional[Any]: lowercase_ = filename_prefix_for_split(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if shard_lengths: lowercase_ = len(SCREAMING_SNAKE_CASE_ ) lowercase_ = [f"""{prefix}-{shard_id:05d}-of-{num_shards:05d}""" for shard_id in range(SCREAMING_SNAKE_CASE_ )] if filetype_suffix: lowercase_ = [filename + f""".{filetype_suffix}""" for filename in filenames] return filenames else: lowercase_ = prefix if filetype_suffix: filename += f""".{filetype_suffix}""" return [filename]
603
1
'''simple docstring''' def lowerCAmelCase__ ( ): for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ ): __a : List[Any] = 1 __a : Tuple = 2 while i * i <= n: __a : int = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def lowerCAmelCase__ ( ): return next(i for i in triangle_number_generator() if count_divisors(_lowerCamelCase ) > 500 ) if __name__ == "__main__": print(solution())
597
'''simple docstring''' from __future__ import annotations import numpy as np def A_ ( _lowerCamelCase : list[float] ): return np.maximum(0 , _lowerCamelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
309
0
'''simple docstring''' def __UpperCamelCase ( _UpperCAmelCase ): __UpperCAmelCase : str = min(_UpperCAmelCase ) # min() finds the minimum value __UpperCAmelCase : Any = max(_UpperCAmelCase ) # max() finds the maximum value __UpperCAmelCase : Optional[int] = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size __UpperCAmelCase : List[str] = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(_UpperCAmelCase, _UpperCAmelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. __UpperCAmelCase : Dict = 0 for count in range(_UpperCAmelCase ): while holes[count] > 0: holes[count] -= 1 __UpperCAmelCase : str = count + min_val i += 1 def __UpperCamelCase ( ): __UpperCAmelCase : Dict = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(_UpperCAmelCase ) print("Sorted order is:", " ".join(_UpperCAmelCase ) ) if __name__ == "__main__": main()
716
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase__ : str = { "shi-labs/dinat-mini-in1k-224": "https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json", # See all Dinat models at https://huggingface.co/models?filter=dinat } class SCREAMING_SNAKE_CASE__ ( snake_case__ ,snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE = '''dinat''' SCREAMING_SNAKE_CASE = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : List[Any] , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : List[Any]=64 , UpperCAmelCase_ : List[Any]=[3, 4, 6, 5] , UpperCAmelCase_ : Tuple=[2, 4, 8, 16] , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Optional[Any]=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , UpperCAmelCase_ : Tuple=3.0 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : List[Any]=1e-5 , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : Union[str, Any] , ): """simple docstring""" super().__init__(**UpperCAmelCase_ ) __UpperCAmelCase : Optional[int] = patch_size __UpperCAmelCase : List[Any] = num_channels __UpperCAmelCase : str = embed_dim __UpperCAmelCase : List[str] = depths __UpperCAmelCase : Tuple = len(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = num_heads __UpperCAmelCase : Optional[int] = kernel_size __UpperCAmelCase : Any = dilations __UpperCAmelCase : List[Any] = mlp_ratio __UpperCAmelCase : List[str] = qkv_bias __UpperCAmelCase : Any = hidden_dropout_prob __UpperCAmelCase : Tuple = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = drop_path_rate __UpperCAmelCase : str = hidden_act __UpperCAmelCase : Dict = layer_norm_eps __UpperCAmelCase : Union[str, Any] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __UpperCAmelCase : Optional[Any] = int(embed_dim * 2 ** (len(UpperCAmelCase_ ) - 1) ) __UpperCAmelCase : Dict = layer_scale_init_value __UpperCAmelCase : str = ["stem"] + [f"stage{idx}" for idx in range(1 , len(UpperCAmelCase_ ) + 1 )] __UpperCAmelCase , __UpperCAmelCase : str = get_aligned_output_features_output_indices( out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names )
329
0