code
stringlengths 82
53.2k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
|---|---|---|---|---|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import _LazyModule
lowerCAmelCase = {"""processing_wav2vec2_with_lm""": ["""Wav2Vec2ProcessorWithLM"""]}
if TYPE_CHECKING:
from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM
else:
import sys
lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 174
|
"""simple docstring"""
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import sys
import transformers
lowerCAmelCase = """3"""
print("""Python version:""", sys.version)
print("""transformers version:""", transformers.__version__)
try:
import torch
print("""Torch version:""", torch.__version__)
print("""Cuda available:""", torch.cuda.is_available())
print("""Cuda version:""", torch.version.cuda)
print("""CuDNN version:""", torch.backends.cudnn.version())
print("""Number of GPUs available:""", torch.cuda.device_count())
print("""NCCL version:""", torch.cuda.nccl.version())
except ImportError:
print("""Torch version:""", None)
try:
import deepspeed
print("""DeepSpeed version:""", deepspeed.__version__)
except ImportError:
print("""DeepSpeed version:""", None)
try:
import tensorflow as tf
print("""TensorFlow version:""", tf.__version__)
print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU""")))
print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU""")))
except ImportError:
print("""TensorFlow version:""", None)
| 174
| 1
|
from typing import Callable, Dict, Optional, Tuple
import torch
from torch import nn
from torch.distributions import (
AffineTransform,
Distribution,
Independent,
NegativeBinomial,
Normal,
StudentT,
TransformedDistribution,
)
class __A( __lowerCamelCase ):
"""simple docstring"""
def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=0 ):
UpperCamelCase__ = 1.0 if scale is None else scale
UpperCamelCase__ = 0.0 if loc is None else loc
super().__init__(SCREAMING_SNAKE_CASE_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=SCREAMING_SNAKE_CASE_ )] )
@property
def UpperCAmelCase_ (self ):
return self.base_dist.mean * self.scale + self.loc
@property
def UpperCAmelCase_ (self ):
return self.base_dist.variance * self.scale**2
@property
def UpperCAmelCase_ (self ):
return self.variance.sqrt()
class __A( nn.Module ):
"""simple docstring"""
def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
super().__init__(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = args_dim
UpperCamelCase__ = nn.ModuleList([nn.Linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for dim in args_dim.values()] )
UpperCamelCase__ = domain_map
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase__ = [proj(SCREAMING_SNAKE_CASE_ ) for proj in self.proj]
return self.domain_map(*SCREAMING_SNAKE_CASE_ )
class __A( nn.Module ):
"""simple docstring"""
def __init__(self , SCREAMING_SNAKE_CASE_ ):
super().__init__()
UpperCamelCase__ = function
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ):
return self.function(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ )
class __A:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = 42
SCREAMING_SNAKE_CASE__ = 42
SCREAMING_SNAKE_CASE__ = 42
def __init__(self , SCREAMING_SNAKE_CASE_ = 1 ):
UpperCamelCase__ = dim
UpperCamelCase__ = {k: dim * self.args_dim[k] for k in self.args_dim}
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ):
if self.dim == 1:
return self.distribution_class(*SCREAMING_SNAKE_CASE_ )
else:
return Independent(self.distribution_class(*SCREAMING_SNAKE_CASE_ ) , 1 )
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , ):
UpperCamelCase__ = self._base_distribution(SCREAMING_SNAKE_CASE_ )
if loc is None and scale is None:
return distr
else:
return AffineTransformed(SCREAMING_SNAKE_CASE_ , loc=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , event_dim=self.event_dim )
@property
def UpperCAmelCase_ (self ):
return () if self.dim == 1 else (self.dim,)
@property
def UpperCAmelCase_ (self ):
return len(self.event_shape )
@property
def UpperCAmelCase_ (self ):
return 0.0
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ):
return ParameterProjection(
in_features=SCREAMING_SNAKE_CASE_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , )
def UpperCAmelCase_ (self , *SCREAMING_SNAKE_CASE_ ):
raise NotImplementedError()
@staticmethod
def UpperCAmelCase_ (SCREAMING_SNAKE_CASE_ ):
return (x + torch.sqrt(torch.square(SCREAMING_SNAKE_CASE_ ) + 4.0 )) / 2.0
class __A( __lowerCamelCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = {"""df""": 1, """loc""": 1, """scale""": 1}
SCREAMING_SNAKE_CASE__ = StudentT
@classmethod
def UpperCAmelCase_ (cls , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase__ = cls.squareplus(SCREAMING_SNAKE_CASE_ ).clamp_min(torch.finfo(scale.dtype ).eps )
UpperCamelCase__ = 2.0 + cls.squareplus(SCREAMING_SNAKE_CASE_ )
return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 )
class __A( __lowerCamelCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = {"""loc""": 1, """scale""": 1}
SCREAMING_SNAKE_CASE__ = Normal
@classmethod
def UpperCAmelCase_ (cls , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase__ = cls.squareplus(SCREAMING_SNAKE_CASE_ ).clamp_min(torch.finfo(scale.dtype ).eps )
return loc.squeeze(-1 ), scale.squeeze(-1 )
class __A( __lowerCamelCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = {"""total_count""": 1, """logits""": 1}
SCREAMING_SNAKE_CASE__ = NegativeBinomial
@classmethod
def UpperCAmelCase_ (cls , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase__ = cls.squareplus(SCREAMING_SNAKE_CASE_ )
return total_count.squeeze(-1 ), logits.squeeze(-1 )
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase__ , UpperCamelCase__ = distr_args
if self.dim == 1:
return self.distribution_class(total_count=SCREAMING_SNAKE_CASE_ , logits=SCREAMING_SNAKE_CASE_ )
else:
return Independent(self.distribution_class(total_count=SCREAMING_SNAKE_CASE_ , logits=SCREAMING_SNAKE_CASE_ ) , 1 )
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None ):
UpperCamelCase__ , UpperCamelCase__ = distr_args
if scale is not None:
# See scaling property of Gamma.
logits += scale.log()
return self._base_distribution((total_count, logits) )
| 714
|
import argparse
import json
import os
import pickle
import shutil
import numpy as np
import torch
from distiller import Distiller
from lm_seqs_dataset import LmSeqsDataset
from transformers import (
BertConfig,
BertForMaskedLM,
BertTokenizer,
DistilBertConfig,
DistilBertForMaskedLM,
DistilBertTokenizer,
GPTaConfig,
GPTaLMHeadModel,
GPTaTokenizer,
RobertaConfig,
RobertaForMaskedLM,
RobertaTokenizer,
)
from utils import git_log, init_gpu_params, logger, set_seed
lowerCamelCase_ = {
'''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
'''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
'''bert''': (BertConfig, BertForMaskedLM, BertTokenizer),
'''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer),
}
def __magic_name__ ( __a : Any ):
'''simple docstring'''
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
if args.mlm:
assert os.path.isfile(args.token_counts )
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
else:
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
assert args.teacher_type == args.student_type or (
args.student_type == "distilbert" and args.teacher_type == "bert"
)
assert os.path.isfile(args.student_config )
if args.student_pretrained_weights is not None:
assert os.path.isfile(args.student_pretrained_weights )
if args.freeze_token_type_embds:
assert args.student_type in ["roberta"]
assert args.alpha_ce >= 0.0
assert args.alpha_mlm >= 0.0
assert args.alpha_clm >= 0.0
assert args.alpha_mse >= 0.0
assert args.alpha_cos >= 0.0
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
def __magic_name__ ( __a : List[Any] , __a : Any ):
'''simple docstring'''
if args.student_type == "roberta":
UpperCamelCase__ = False
elif args.student_type == "gpt2":
UpperCamelCase__ = False
def __magic_name__ ( __a : int , __a : Dict ):
'''simple docstring'''
if args.student_type == "roberta":
UpperCamelCase__ = False
def __magic_name__ ( ):
'''simple docstring'''
UpperCamelCase__ = argparse.ArgumentParser(description="""Training""" )
parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""" )
parser.add_argument(
"""--dump_path""" , type=__a , required=__a , help="""The output directory (log, checkpoints, parameters, etc.)""" )
parser.add_argument(
"""--data_file""" , type=__a , required=__a , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , )
parser.add_argument(
"""--student_type""" , type=__a , choices=["""distilbert""", """roberta""", """gpt2"""] , required=__a , help="""The student type (DistilBERT, RoBERTa).""" , )
parser.add_argument("""--student_config""" , type=__a , required=__a , help="""Path to the student configuration.""" )
parser.add_argument(
"""--student_pretrained_weights""" , default=__a , type=__a , help="""Load student initialization checkpoint.""" )
parser.add_argument(
"""--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=__a , help="""Teacher type (BERT, RoBERTa).""" )
parser.add_argument("""--teacher_name""" , type=__a , required=__a , help="""The teacher model.""" )
parser.add_argument("""--temperature""" , default=2.0 , type=__a , help="""Temperature for the softmax temperature.""" )
parser.add_argument(
"""--alpha_ce""" , default=0.5 , type=__a , help="""Linear weight for the distillation loss. Must be >=0.""" )
parser.add_argument(
"""--alpha_mlm""" , default=0.0 , type=__a , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , )
parser.add_argument("""--alpha_clm""" , default=0.5 , type=__a , help="""Linear weight for the CLM loss. Must be >=0.""" )
parser.add_argument("""--alpha_mse""" , default=0.0 , type=__a , help="""Linear weight of the MSE loss. Must be >=0.""" )
parser.add_argument(
"""--alpha_cos""" , default=0.0 , type=__a , help="""Linear weight of the cosine embedding loss. Must be >=0.""" )
parser.add_argument(
"""--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" )
parser.add_argument(
"""--mlm_mask_prop""" , default=0.15 , type=__a , help="""Proportion of tokens for which we need to make a prediction.""" , )
parser.add_argument("""--word_mask""" , default=0.8 , type=__a , help="""Proportion of tokens to mask out.""" )
parser.add_argument("""--word_keep""" , default=0.1 , type=__a , help="""Proportion of tokens to keep.""" )
parser.add_argument("""--word_rand""" , default=0.1 , type=__a , help="""Proportion of tokens to randomly replace.""" )
parser.add_argument(
"""--mlm_smoothing""" , default=0.7 , type=__a , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , )
parser.add_argument("""--token_counts""" , type=__a , help="""The token counts in the data_file for MLM.""" )
parser.add_argument(
"""--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , )
parser.add_argument(
"""--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , )
parser.add_argument(
"""--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , )
parser.add_argument("""--n_epoch""" , type=__a , default=3 , help="""Number of pass on the whole dataset.""" )
parser.add_argument("""--batch_size""" , type=__a , default=5 , help="""Batch size (for each process).""" )
parser.add_argument(
"""--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , )
parser.add_argument(
"""--gradient_accumulation_steps""" , type=__a , default=50 , help="""Gradient accumulation for larger training batches.""" , )
parser.add_argument("""--warmup_prop""" , default=0.05 , type=__a , help="""Linear warmup proportion.""" )
parser.add_argument("""--weight_decay""" , default=0.0 , type=__a , help="""Weight decay if we apply some.""" )
parser.add_argument("""--learning_rate""" , default=5E-4 , type=__a , help="""The initial learning rate for Adam.""" )
parser.add_argument("""--adam_epsilon""" , default=1E-6 , type=__a , help="""Epsilon for Adam optimizer.""" )
parser.add_argument("""--max_grad_norm""" , default=5.0 , type=__a , help="""Max gradient norm.""" )
parser.add_argument("""--initializer_range""" , default=0.02 , type=__a , help="""Random initialization range.""" )
parser.add_argument(
"""--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , )
parser.add_argument(
"""--fp16_opt_level""" , type=__a , default="""O1""" , help=(
"""For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."""
"""See details at https://nvidia.github.io/apex/amp.html"""
) , )
parser.add_argument("""--n_gpu""" , type=__a , default=1 , help="""Number of GPUs in the node.""" )
parser.add_argument("""--local_rank""" , type=__a , default=-1 , help="""Distributed training - Local rank""" )
parser.add_argument("""--seed""" , type=__a , default=56 , help="""Random seed""" )
parser.add_argument("""--log_interval""" , type=__a , default=500 , help="""Tensorboard logging interval.""" )
parser.add_argument("""--checkpoint_interval""" , type=__a , default=4_000 , help="""Checkpoint interval.""" )
UpperCamelCase__ = parser.parse_args()
sanity_checks(__a )
# ARGS #
init_gpu_params(__a )
set_seed(__a )
if args.is_master:
if os.path.exists(args.dump_path ):
if not args.force:
raise ValueError(
f"Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite"
""" itUse `--force` if you want to overwrite it""" )
else:
shutil.rmtree(args.dump_path )
if not os.path.exists(args.dump_path ):
os.makedirs(args.dump_path )
logger.info(f"Experiment will be dumped and logged in {args.dump_path}" )
# SAVE PARAMS #
logger.info(f"Param: {args}" )
with open(os.path.join(args.dump_path , """parameters.json""" ) , """w""" ) as f:
json.dump(vars(__a ) , __a , indent=4 )
git_log(args.dump_path )
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = MODEL_CLASSES[args.student_type]
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = MODEL_CLASSES[args.teacher_type]
# TOKENIZER #
UpperCamelCase__ = teacher_tokenizer_class.from_pretrained(args.teacher_name )
UpperCamelCase__ = {}
for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
UpperCamelCase__ = tokenizer.all_special_tokens.index(__a )
UpperCamelCase__ = tokenizer.all_special_ids[idx]
logger.info(f"Special tokens {special_tok_ids}" )
UpperCamelCase__ = special_tok_ids
UpperCamelCase__ = tokenizer.max_model_input_sizes[args.teacher_name]
# DATA LOADER #
logger.info(f"Loading data from {args.data_file}" )
with open(args.data_file , """rb""" ) as fp:
UpperCamelCase__ = pickle.load(__a )
if args.mlm:
logger.info(f"Loading token counts from {args.token_counts} (already pre-computed)" )
with open(args.token_counts , """rb""" ) as fp:
UpperCamelCase__ = pickle.load(__a )
UpperCamelCase__ = np.maximum(__a , 1 ) ** -args.mlm_smoothing
for idx in special_tok_ids.values():
UpperCamelCase__ = 0.0 # do not predict special tokens
UpperCamelCase__ = torch.from_numpy(__a )
else:
UpperCamelCase__ = None
UpperCamelCase__ = LmSeqsDataset(params=__a , data=__a )
logger.info("""Data loader created.""" )
# STUDENT #
logger.info(f"Loading student config from {args.student_config}" )
UpperCamelCase__ = student_config_class.from_pretrained(args.student_config )
UpperCamelCase__ = True
if args.student_pretrained_weights is not None:
logger.info(f"Loading pretrained weights from {args.student_pretrained_weights}" )
UpperCamelCase__ = student_model_class.from_pretrained(args.student_pretrained_weights , config=__a )
else:
UpperCamelCase__ = student_model_class(__a )
if args.n_gpu > 0:
student.to(f"cuda:{args.local_rank}" )
logger.info("""Student loaded.""" )
# TEACHER #
UpperCamelCase__ = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__a )
if args.n_gpu > 0:
teacher.to(f"cuda:{args.local_rank}" )
logger.info(f"Teacher loaded from {args.teacher_name}." )
# FREEZING #
if args.freeze_pos_embs:
freeze_pos_embeddings(__a , __a )
if args.freeze_token_type_embds:
freeze_token_type_embeddings(__a , __a )
# SANITY CHECKS #
assert student.config.vocab_size == teacher.config.vocab_size
assert student.config.hidden_size == teacher.config.hidden_size
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
if args.mlm:
assert token_probs.size(0 ) == stu_architecture_config.vocab_size
# DISTILLER #
torch.cuda.empty_cache()
UpperCamelCase__ = Distiller(
params=__a , dataset=__a , token_probs=__a , student=__a , teacher=__a )
distiller.train()
logger.info("""Let's go get some drinks.""" )
if __name__ == "__main__":
main()
| 86
| 0
|
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
__UpperCamelCase : Dict = logging.get_logger(__name__)
__UpperCamelCase : Tuple = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""adapter_layer""": """encoder.layers.*.adapter_layer""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
"""pooling_layer.linear""": """projector""",
"""pooling_layer.projection""": """classifier""",
}
__UpperCamelCase : Optional[Any] = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
"""projector""",
"""classifier""",
]
def snake_case ( lowerCamelCase ):
'''simple docstring'''
__lowercase = {}
with open(lowerCamelCase , """r""" ) as file:
for line_number, line in enumerate(lowerCamelCase ):
__lowercase = line.strip()
if line:
__lowercase = line.split()
__lowercase = line_number
__lowercase = words[0]
__lowercase = value
return result
def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ):
'''simple docstring'''
for attribute in key.split(""".""" ):
__lowercase = getattr(lowerCamelCase , lowerCamelCase )
__lowercase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(lowerCamelCase ):
__lowercase = PARAM_MAPPING[full_name.split(""".""" )[-1]]
__lowercase = """param"""
if weight_type is not None and weight_type != "param":
__lowercase = getattr(lowerCamelCase , lowerCamelCase ).shape
elif weight_type is not None and weight_type == "param":
__lowercase = hf_pointer
for attribute in hf_param_name.split(""".""" ):
__lowercase = getattr(lowerCamelCase , lowerCamelCase )
__lowercase = shape_pointer.shape
# let's reduce dimension
__lowercase = value[0]
else:
__lowercase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
F' {value.shape} for {full_name}' )
if weight_type == "weight":
__lowercase = value
elif weight_type == "weight_g":
__lowercase = value
elif weight_type == "weight_v":
__lowercase = value
elif weight_type == "bias":
__lowercase = value
elif weight_type == "param":
for attribute in hf_param_name.split(""".""" ):
__lowercase = getattr(lowerCamelCase , lowerCamelCase )
__lowercase = value
else:
__lowercase = value
logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ):
'''simple docstring'''
__lowercase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(lowerCamelCase ):
__lowercase = PARAM_MAPPING[full_name.split(""".""" )[-1]]
__lowercase = """param"""
if weight_type is not None and weight_type != "param":
__lowercase = """.""".join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
__lowercase = """.""".join([key, hf_param_name] )
else:
__lowercase = key
__lowercase = value if """lm_head""" in full_key else value[0]
__UpperCamelCase : Tuple = {
"""W_a""": """linear_1.weight""",
"""W_b""": """linear_2.weight""",
"""b_a""": """linear_1.bias""",
"""b_b""": """linear_2.bias""",
"""ln_W""": """norm.weight""",
"""ln_b""": """norm.bias""",
}
def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ):
'''simple docstring'''
__lowercase = False
for key, mapped_key in MAPPING.items():
__lowercase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
__lowercase = True
if "*" in mapped_key:
__lowercase = name.split(lowerCamelCase )[0].split(""".""" )[-2]
__lowercase = mapped_key.replace("""*""" , lowerCamelCase )
if "weight_g" in name:
__lowercase = """weight_g"""
elif "weight_v" in name:
__lowercase = """weight_v"""
elif "bias" in name:
__lowercase = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__lowercase = """weight"""
else:
__lowercase = None
if hf_dict is not None:
rename_dict(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )
else:
set_recursively(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )
return is_used
return is_used
def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ):
'''simple docstring'''
__lowercase = []
__lowercase = fairseq_model.state_dict()
__lowercase = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
__lowercase = False
if "conv_layers" in name:
load_conv_layer(
lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , )
__lowercase = True
else:
__lowercase = load_wavaveca_layer(lowerCamelCase , lowerCamelCase , lowerCamelCase )
if not is_used:
unused_weights.append(lowerCamelCase )
logger.warning(F'Unused weights: {unused_weights}' )
def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ):
'''simple docstring'''
__lowercase = full_name.split("""conv_layers.""" )[-1]
__lowercase = name.split(""".""" )
__lowercase = int(items[0] )
__lowercase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F'{full_name} has size {value.shape}, but'
F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
__lowercase = value
logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F'{full_name} has size {value.shape}, but'
F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
__lowercase = value
logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F'{full_name} has size {value.shape}, but'
F' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' )
__lowercase = value
logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F'{full_name} has size {value.shape}, but'
F' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' )
__lowercase = value
logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(lowerCamelCase )
@torch.no_grad()
def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=False ):
'''simple docstring'''
if config_path is not None:
__lowercase = WavaVecaConfig.from_pretrained(lowerCamelCase )
else:
__lowercase = WavaVecaConfig()
if is_seq_class:
__lowercase = read_txt_into_dict(lowerCamelCase )
__lowercase = idalabel
__lowercase = WavaVecaForSequenceClassification(lowerCamelCase )
__lowercase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCamelCase , return_attention_mask=lowerCamelCase , )
feature_extractor.save_pretrained(lowerCamelCase )
elif is_finetuned:
if dict_path:
__lowercase = Dictionary.load(lowerCamelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__lowercase = target_dict.pad_index
__lowercase = target_dict.bos_index
__lowercase = target_dict.eos_index
__lowercase = len(target_dict.symbols )
__lowercase = os.path.join(lowerCamelCase , """vocab.json""" )
if not os.path.isdir(lowerCamelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCamelCase ) )
return
os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase )
__lowercase = target_dict.indices
# fairseq has the <pad> and <s> switched
__lowercase = 0
__lowercase = 1
with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(lowerCamelCase , lowerCamelCase )
__lowercase = WavaVecaCTCTokenizer(
lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCamelCase , )
__lowercase = True if config.feat_extract_norm == """layer""" else False
__lowercase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCamelCase , return_attention_mask=lowerCamelCase , )
__lowercase = WavaVecaProcessor(feature_extractor=lowerCamelCase , tokenizer=lowerCamelCase )
processor.save_pretrained(lowerCamelCase )
__lowercase = WavaVecaForCTC(lowerCamelCase )
else:
__lowercase = WavaVecaForPreTraining(lowerCamelCase )
if is_finetuned or is_seq_class:
__lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
__lowercase = argparse.Namespace(task="""audio_pretraining""" )
__lowercase = fairseq.tasks.setup_task(lowerCamelCase )
__lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCamelCase )
__lowercase = model[0].eval()
recursively_load_weights(lowerCamelCase , lowerCamelCase , not is_finetuned )
hf_wavavec.save_pretrained(lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase : Dict = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
parser.add_argument(
"""--is_seq_class""",
action="""store_true""",
help="""Whether the model to convert is a fine-tuned sequence classification model or not""",
)
__UpperCamelCase : Optional[Any] = parser.parse_args()
__UpperCamelCase : List[Any] = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 80
|
'''simple docstring'''
from __future__ import annotations
import random
import unittest
from transformers import TransfoXLConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFTransfoXLForSequenceClassification,
TFTransfoXLLMHeadModel,
TFTransfoXLModel,
)
class a :
"""simple docstring"""
def __init__( self , snake_case_ , ):
'''simple docstring'''
__UpperCAmelCase: List[Any] = parent
__UpperCAmelCase: Dict = 13
__UpperCAmelCase: Optional[int] = 7
__UpperCAmelCase: List[str] = 30
__UpperCAmelCase: List[Any] = self.seq_length + self.mem_len
__UpperCAmelCase: int = 15
__UpperCAmelCase: Optional[int] = True
__UpperCAmelCase: List[str] = True
__UpperCAmelCase: Union[str, Any] = 99
__UpperCAmelCase: Optional[int] = [10, 50, 80]
__UpperCAmelCase: str = 32
__UpperCAmelCase: Optional[Any] = 32
__UpperCAmelCase: Union[str, Any] = 4
__UpperCAmelCase: int = 8
__UpperCAmelCase: str = 128
__UpperCAmelCase: str = 2
__UpperCAmelCase: Tuple = 2
__UpperCAmelCase: Union[str, Any] = None
__UpperCAmelCase: str = 1
__UpperCAmelCase: Optional[Any] = 0
__UpperCAmelCase: int = 3
__UpperCAmelCase: Dict = self.vocab_size - 1
__UpperCAmelCase: int = 0.0_1
def lowercase_ ( self ):
'''simple docstring'''
__UpperCAmelCase: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase: Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase: List[str] = None
if self.use_labels:
__UpperCAmelCase: int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase: Optional[int] = TransfoXLConfig(
vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , )
return (config, input_ids_a, input_ids_a, lm_labels)
def lowercase_ ( self ):
'''simple docstring'''
random.seed(self.seed )
tf.random.set_seed(self.seed )
def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
'''simple docstring'''
__UpperCAmelCase: Dict = TFTransfoXLModel(snake_case_ )
__UpperCAmelCase, __UpperCAmelCase: List[str] = model(snake_case_ ).to_tuple()
__UpperCAmelCase: Tuple = {"""input_ids""": input_ids_a, """mems""": mems_a}
__UpperCAmelCase, __UpperCAmelCase: Optional[Any] = model(snake_case_ ).to_tuple()
self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
'''simple docstring'''
__UpperCAmelCase: str = TFTransfoXLLMHeadModel(snake_case_ )
__UpperCAmelCase, __UpperCAmelCase: Optional[int] = model(snake_case_ ).to_tuple()
__UpperCAmelCase: Optional[Any] = {"""input_ids""": input_ids_a, """labels""": lm_labels}
__UpperCAmelCase, __UpperCAmelCase: Tuple = model(snake_case_ ).to_tuple()
__UpperCAmelCase, __UpperCAmelCase: Dict = model([input_ids_a, mems_a] ).to_tuple()
__UpperCAmelCase: Union[str, Any] = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels}
__UpperCAmelCase, __UpperCAmelCase: List[str] = model(snake_case_ ).to_tuple()
self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
'''simple docstring'''
__UpperCAmelCase: Optional[int] = TFTransfoXLForSequenceClassification(snake_case_ )
__UpperCAmelCase: List[Any] = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase_ ( self ):
'''simple docstring'''
__UpperCAmelCase: Optional[int] = self.prepare_config_and_inputs()
((__UpperCAmelCase), (__UpperCAmelCase), (__UpperCAmelCase), (__UpperCAmelCase)): Dict = config_and_inputs
__UpperCAmelCase: List[str] = {"""input_ids""": input_ids_a}
return config, inputs_dict
@require_tf
class a ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
"""simple docstring"""
__lowerCAmelCase = (
(TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else ()
)
__lowerCAmelCase = () if is_tf_available() else ()
__lowerCAmelCase = (
{
"""feature-extraction""": TFTransfoXLModel,
"""text-classification""": TFTransfoXLForSequenceClassification,
"""text-generation""": TFTransfoXLLMHeadModel,
"""zero-shot""": TFTransfoXLForSequenceClassification,
}
if is_tf_available()
else {}
)
# TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented
__lowerCAmelCase = False
__lowerCAmelCase = False
__lowerCAmelCase = False
__lowerCAmelCase = False
def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
'''simple docstring'''
if pipeline_test_casse_name == "TextGenerationPipelineTests":
# Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`.
# `TransfoXLConfig` was never used in pipeline tests: cannot create a simple
# tokenizer.
return True
return False
def lowercase_ ( self ):
'''simple docstring'''
__UpperCAmelCase: Dict = TFTransfoXLModelTester(self )
__UpperCAmelCase: Any = ConfigTester(self , config_class=snake_case_ , d_embed=37 )
def lowercase_ ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase_ ( self ):
'''simple docstring'''
self.model_tester.set_seed()
__UpperCAmelCase: Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_model(*snake_case_ )
def lowercase_ ( self ):
'''simple docstring'''
self.model_tester.set_seed()
__UpperCAmelCase: List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_lm_head(*snake_case_ )
def lowercase_ ( self ):
'''simple docstring'''
__UpperCAmelCase: Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*snake_case_ )
def lowercase_ ( self ):
'''simple docstring'''
__UpperCAmelCase, __UpperCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase: str = [TFTransfoXLForSequenceClassification]
for model_class in self.all_model_classes:
__UpperCAmelCase: int = model_class(snake_case_ )
assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer )
if model_class in list_other_models_with_output_ebd:
__UpperCAmelCase: Any = model.get_output_embeddings()
assert isinstance(snake_case_ , tf.keras.layers.Layer )
__UpperCAmelCase: int = model.get_bias()
assert name is None
else:
__UpperCAmelCase: Optional[int] = model.get_output_embeddings()
assert x is None
__UpperCAmelCase: str = model.get_bias()
assert name is None
def lowercase_ ( self ):
'''simple docstring'''
pass
@slow
def lowercase_ ( self ):
'''simple docstring'''
for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase: str = TFTransfoXLModel.from_pretrained(snake_case_ )
self.assertIsNotNone(snake_case_ )
@unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" )
def lowercase_ ( self ):
'''simple docstring'''
pass
@require_tf
class a ( unittest.TestCase ):
"""simple docstring"""
@unittest.skip("""Skip test until #12651 is resolved.""" )
@slow
def lowercase_ ( self ):
'''simple docstring'''
__UpperCAmelCase: Optional[Any] = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" )
# fmt: off
__UpperCAmelCase: str = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231
# fmt: on
# In 1991 , the remains of Russian Tsar Nicholas II and his family
# ( except for Alexei and Maria ) are discovered .
# The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the
# remainder of the story . 1883 Western Siberia ,
# a young Grigori Rasputin is asked by his father and a group of men to perform magic .
# Rasputin has a vision and denounces one of the men as a horse thief . Although his
# father initially slaps him for making such an accusation , Rasputin watches as the
# man is chased outside and beaten . Twenty years later , Rasputin sees a vision of
# the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous ,
# with people , even a bishop , begging for his blessing . <eod> </s> <eos>
# fmt: off
__UpperCAmelCase: Dict = [33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0,33,1,1857,2,1,1009,4,1109,1_1739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,0] # noqa: E231
# fmt: on
# In 1991, the remains of Russian Tsar Nicholas II and his family (
# except for Alexei and Maria ) are discovered. The voice of young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.
# 1883 Western Siberia, a young Grigori Rasputin is asked by his father
# and a group of men to perform magic. Rasputin has a vision and
# denounces one of the men as a horse thief. Although his father initially
# slaps him for making such an accusation, Rasputin watches as the man
# is chased outside and beaten. Twenty years later, Rasputin sees a vision
# of the Virgin Mary, prompting him to become a priest.
# Rasputin quickly becomes famous, with people, even a bishop, begging for
# his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar
# Nicholas II and his family were discovered. The voice of <unk> young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos>
__UpperCAmelCase: Dict = model.generate(snake_case_ , max_length=200 , do_sample=snake_case_ )
self.assertListEqual(output_ids[0].numpy().tolist() , snake_case_ )
| 523
| 0
|
'''simple docstring'''
import torch
from torch import nn
class UpperCAmelCase_ ( nn.Module ):
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=1 , lowercase_=False):
super().__init__()
snake_case_ : Any = n_token
snake_case_ : str = d_embed
snake_case_ : Optional[int] = d_proj
snake_case_ : Tuple = cutoffs + [n_token]
snake_case_ : int = [0] + self.cutoffs
snake_case_ : Optional[int] = div_val
snake_case_ : str = self.cutoffs[0]
snake_case_ : Optional[Any] = len(self.cutoffs) - 1
snake_case_ : Union[str, Any] = self.shortlist_size + self.n_clusters
if self.n_clusters > 0:
snake_case_ : Union[str, Any] = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed))
snake_case_ : Union[str, Any] = nn.Parameter(torch.zeros(self.n_clusters))
snake_case_ : Tuple = nn.ModuleList()
snake_case_ : List[Any] = nn.ParameterList()
if div_val == 1:
for i in range(len(self.cutoffs)):
if d_proj != d_embed:
self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCAmelCase__ , UpperCAmelCase__)))
else:
self.out_projs.append(UpperCAmelCase__)
self.out_layers.append(nn.Linear(UpperCAmelCase__ , UpperCAmelCase__))
else:
for i in range(len(self.cutoffs)):
snake_case_ : str = self.cutoff_ends[i], self.cutoff_ends[i + 1]
snake_case_ : Optional[Any] = d_embed // (div_val**i)
self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCAmelCase__ , UpperCAmelCase__)))
self.out_layers.append(nn.Linear(UpperCAmelCase__ , r_idx - l_idx))
snake_case_ : Optional[int] = keep_order
def snake_case__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_):
if proj is None:
snake_case_ : Dict = nn.functional.linear(UpperCAmelCase__ , UpperCAmelCase__ , bias=UpperCAmelCase__)
else:
# if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1:
snake_case_ : Optional[Any] = nn.functional.linear(UpperCAmelCase__ , proj.t().contiguous())
snake_case_ : Any = nn.functional.linear(UpperCAmelCase__ , UpperCAmelCase__ , bias=UpperCAmelCase__)
# else:
# logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t()))
# if bias is not None:
# logit = logit + bias
return logit
def snake_case__ ( self , lowercase_ , lowercase_=None , lowercase_=False):
if labels is not None:
# Shift so that tokens < n predict n
snake_case_ : Tuple = hidden[..., :-1, :].contiguous()
snake_case_ : Union[str, Any] = labels[..., 1:].contiguous()
snake_case_ : Any = hidden.view(-1 , hidden.size(-1))
snake_case_ : Any = labels.view(-1)
if hidden.size(0) != labels.size(0):
raise RuntimeError("Input and labels should have the same size in the batch dimension.")
else:
snake_case_ : int = hidden.view(-1 , hidden.size(-1))
if self.n_clusters == 0:
snake_case_ : str = self._compute_logit(UpperCAmelCase__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0])
if labels is not None:
snake_case_ : Tuple = labels != -1_00
snake_case_ : Optional[Any] = torch.zeros_like(UpperCAmelCase__ , dtype=hidden.dtype , device=hidden.device)
snake_case_ : Any = (
-nn.functional.log_softmax(UpperCAmelCase__ , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1)
)
else:
snake_case_ : Any = nn.functional.log_softmax(UpperCAmelCase__ , dim=-1)
else:
# construct weights and biases
snake_case_ : Any = [], []
for i in range(len(self.cutoffs)):
if self.div_val == 1:
snake_case_ : Optional[int] = self.cutoff_ends[i], self.cutoff_ends[i + 1]
snake_case_ : List[Any] = self.out_layers[0].weight[l_idx:r_idx]
snake_case_ : str = self.out_layers[0].bias[l_idx:r_idx]
else:
snake_case_ : Union[str, Any] = self.out_layers[i].weight
snake_case_ : List[str] = self.out_layers[i].bias
if i == 0:
snake_case_ : List[str] = torch.cat([weight_i, self.cluster_weight] , dim=0)
snake_case_ : int = torch.cat([bias_i, self.cluster_bias] , dim=0)
weights.append(UpperCAmelCase__)
biases.append(UpperCAmelCase__)
snake_case_ : Dict = weights[0], biases[0], self.out_projs[0]
snake_case_ : Dict = self._compute_logit(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
snake_case_ : Optional[int] = nn.functional.log_softmax(UpperCAmelCase__ , dim=1)
if labels is None:
snake_case_ : List[str] = hidden.new_empty((head_logit.size(0), self.n_token))
else:
snake_case_ : Optional[Any] = torch.zeros_like(UpperCAmelCase__ , dtype=hidden.dtype , device=hidden.device)
snake_case_ : Optional[int] = 0
snake_case_ : Dict = [0] + self.cutoffs
for i in range(len(UpperCAmelCase__) - 1):
snake_case_ : Optional[int] = cutoff_values[i], cutoff_values[i + 1]
if labels is not None:
snake_case_ : Optional[int] = (labels >= l_idx) & (labels < r_idx)
snake_case_ : Optional[Any] = mask_i.nonzero().squeeze()
if indices_i.numel() == 0:
continue
snake_case_ : Any = labels.index_select(0 , UpperCAmelCase__) - l_idx
snake_case_ : str = head_logprob.index_select(0 , UpperCAmelCase__)
snake_case_ : Dict = hidden.index_select(0 , UpperCAmelCase__)
else:
snake_case_ : Dict = hidden
if i == 0:
if labels is not None:
snake_case_ : int = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1)
else:
snake_case_ : str = head_logprob[:, : self.cutoffs[0]]
else:
snake_case_ : Tuple = weights[i], biases[i], self.out_projs[i]
snake_case_ : Dict = self._compute_logit(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
snake_case_ : Dict = nn.functional.log_softmax(UpperCAmelCase__ , dim=1)
snake_case_ : Any = self.cutoffs[0] + i - 1 # No probability for the head cluster
if labels is not None:
snake_case_ : Any = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather(
1 , target_i[:, None]).squeeze(1)
else:
snake_case_ : Dict = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i
snake_case_ : List[Any] = logprob_i
if labels is not None:
if (hasattr(self , "keep_order") and self.keep_order) or keep_order:
out.index_copy_(0 , UpperCAmelCase__ , -logprob_i)
else:
out[offset : offset + logprob_i.size(0)].copy_(-logprob_i)
offset += logprob_i.size(0)
return out
def snake_case__ ( self , lowercase_):
if self.n_clusters == 0:
snake_case_ : Optional[Any] = self._compute_logit(UpperCAmelCase__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0])
return nn.functional.log_softmax(UpperCAmelCase__ , dim=-1)
else:
# construct weights and biases
snake_case_ : Optional[Any] = [], []
for i in range(len(self.cutoffs)):
if self.div_val == 1:
snake_case_ : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1]
snake_case_ : List[str] = self.out_layers[0].weight[l_idx:r_idx]
snake_case_ : Optional[Any] = self.out_layers[0].bias[l_idx:r_idx]
else:
snake_case_ : Any = self.out_layers[i].weight
snake_case_ : Optional[Any] = self.out_layers[i].bias
if i == 0:
snake_case_ : Optional[int] = torch.cat([weight_i, self.cluster_weight] , dim=0)
snake_case_ : Any = torch.cat([bias_i, self.cluster_bias] , dim=0)
weights.append(UpperCAmelCase__)
biases.append(UpperCAmelCase__)
snake_case_ : Optional[Any] = weights[0], biases[0], self.out_projs[0]
snake_case_ : int = self._compute_logit(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
snake_case_ : Optional[int] = hidden.new_empty((head_logit.size(0), self.n_token))
snake_case_ : List[Any] = nn.functional.log_softmax(UpperCAmelCase__ , dim=1)
snake_case_ : int = [0] + self.cutoffs
for i in range(len(UpperCAmelCase__) - 1):
snake_case_ : Union[str, Any] = cutoff_values[i], cutoff_values[i + 1]
if i == 0:
snake_case_ : int = head_logprob[:, : self.cutoffs[0]]
else:
snake_case_ : Dict = weights[i], biases[i], self.out_projs[i]
snake_case_ : Tuple = self._compute_logit(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
snake_case_ : List[Any] = nn.functional.log_softmax(UpperCAmelCase__ , dim=1)
snake_case_ : Tuple = head_logprob[:, -i] + tail_logprob_i
snake_case_ : Any = logprob_i
return out
| 718
|
'''simple docstring'''
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class UpperCAmelCase_ ( snake_case__ ):
UpperCAmelCase_ = """ClapFeatureExtractor"""
UpperCAmelCase_ = ("""RobertaTokenizer""", """RobertaTokenizerFast""")
def __init__( self , lowercase_ , lowercase_):
super().__init__(lowercase_ , lowercase_)
def __call__( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_):
snake_case_ : Any = kwargs.pop("sampling_rate" , lowercase_)
if text is None and audios is None:
raise ValueError("You have to specify either text or audios. Both cannot be none.")
if text is not None:
snake_case_ : Optional[int] = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_)
if audios is not None:
snake_case_ : Any = self.feature_extractor(
lowercase_ , sampling_rate=lowercase_ , return_tensors=lowercase_ , **lowercase_)
if text is not None and audios is not None:
snake_case_ : Dict = audio_features.input_features
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**lowercase_) , tensor_type=lowercase_)
def snake_case__ ( self , *lowercase_ , **lowercase_):
return self.tokenizer.batch_decode(*lowercase_ , **lowercase_)
def snake_case__ ( self , *lowercase_ , **lowercase_):
return self.tokenizer.decode(*lowercase_ , **lowercase_)
@property
def snake_case__ ( self):
snake_case_ : Union[str, Any] = self.tokenizer.model_input_names
snake_case_ : int = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names))
| 92
| 0
|
"""simple docstring"""
import unittest
import numpy as np
from transformers import is_flax_available
from transformers.testing_utils import require_flax
from ..test_modeling_flax_common import ids_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.generation import (
FlaxForcedBOSTokenLogitsProcessor,
FlaxForcedEOSTokenLogitsProcessor,
FlaxLogitsProcessorList,
FlaxMinLengthLogitsProcessor,
FlaxTemperatureLogitsWarper,
FlaxTopKLogitsWarper,
FlaxTopPLogitsWarper,
)
@require_flax
class snake_case__ ( unittest.TestCase ):
def a__ ( self , lowerCamelCase , lowerCamelCase ):
__a = jnp.ones((batch_size, length) ) / length
return scores
def a__ ( self ):
__a = None
__a = 20
__a = self._get_uniform_logits(batch_size=2 , length=lowerCamelCase )
# tweak scores to not be uniform anymore
__a = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch
__a = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch
# compute softmax
__a = jax.nn.softmax(lowerCamelCase , axis=-1 )
__a = FlaxTemperatureLogitsWarper(temperature=0.5 )
__a = FlaxTemperatureLogitsWarper(temperature=1.3 )
__a = jax.nn.softmax(temp_dist_warper_sharper(lowerCamelCase , scores.copy() , cur_len=lowerCamelCase ) , axis=-1 )
__a = jax.nn.softmax(temp_dist_warper_smoother(lowerCamelCase , scores.copy() , cur_len=lowerCamelCase ) , axis=-1 )
# uniform distribution stays uniform
self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) )
self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) )
# sharp peaks get higher, valleys get lower
self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() )
self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() )
# smooth peaks get lower, valleys get higher
self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() )
self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() )
def a__ ( self ):
__a = None
__a = 10
__a = 2
# create ramp distribution
__a = np.broadcast_to(np.arange(lowerCamelCase )[None, :] , (batch_size, vocab_size) ).copy()
__a = ramp_logits[1:, : vocab_size // 2] + vocab_size
__a = FlaxTopKLogitsWarper(3 )
__a = top_k_warp(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase )
# check that correct tokens are filtered
self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] )
self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] )
# check special case
__a = 5
__a = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 )
__a = np.broadcast_to(np.arange(lowerCamelCase )[None, :] , (batch_size, length) ).copy()
__a = top_k_warp_safety_check(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase )
# min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified
self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] )
def a__ ( self ):
__a = None
__a = 10
__a = 2
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
__a = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) )
__a = FlaxTopPLogitsWarper(0.8 )
__a = np.exp(top_p_warp(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase ) )
# dist should be filtered to keep min num values so that sum is >= top_p
# exp (-inf) => 0
__a = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] )
self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) )
# check edge cases with negative and extreme logits
__a = np.broadcast_to(np.arange(lowerCamelCase )[None, :] , (batch_size, vocab_size) ).copy() - (
vocab_size // 2
)
# make ramp_logits more extreme
__a = ramp_logits[1] * 100.0
# make sure at least 2 tokens are kept
__a = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 )
__a = top_p_warp(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase )
# first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] )
def a__ ( self ):
__a = 20
__a = 4
__a = 0
__a = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCamelCase )
# check that min length is applied at length 5
__a = ids_tensor((batch_size, 20) , vocab_size=20 )
__a = 5
__a = self._get_uniform_logits(lowerCamelCase , lowerCamelCase )
__a = min_dist_processor(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase )
self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf" )] )
# check that min length is not applied anymore at length 15
__a = self._get_uniform_logits(lowerCamelCase , lowerCamelCase )
__a = 15
__a = min_dist_processor(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase )
self.assertFalse(jnp.isinf(lowerCamelCase ).any() )
def a__ ( self ):
__a = 20
__a = 4
__a = 0
__a = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCamelCase )
# check that all scores are -inf except the bos_token_id score
__a = ids_tensor((batch_size, 1) , vocab_size=20 )
__a = 1
__a = self._get_uniform_logits(lowerCamelCase , lowerCamelCase )
__a = logits_processor(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase )
self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero
# check that bos_token_id is not forced if current length is greater than 1
__a = 3
__a = self._get_uniform_logits(lowerCamelCase , lowerCamelCase )
__a = logits_processor(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase )
self.assertFalse(jnp.isinf(lowerCamelCase ).any() )
def a__ ( self ):
__a = 20
__a = 4
__a = 0
__a = 5
__a = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCamelCase , eos_token_id=lowerCamelCase )
# check that all scores are -inf except the eos_token_id when max_length is reached
__a = ids_tensor((batch_size, 4) , vocab_size=20 )
__a = 4
__a = self._get_uniform_logits(lowerCamelCase , lowerCamelCase )
__a = logits_processor(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase )
self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero
# check that eos_token_id is not forced if max_length is not reached
__a = 3
__a = self._get_uniform_logits(lowerCamelCase , lowerCamelCase )
__a = logits_processor(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase )
self.assertFalse(jnp.isinf(lowerCamelCase ).any() )
def a__ ( self ):
__a = 4
__a = 10
__a = 15
__a = 2
__a = 1
__a = 15
# dummy input_ids and scores
__a = ids_tensor((batch_size, sequence_length) , lowerCamelCase )
__a = input_ids.copy()
__a = self._get_uniform_logits(lowerCamelCase , lowerCamelCase )
__a = scores.copy()
# instantiate all dist processors
__a = FlaxTemperatureLogitsWarper(temperature=0.5 )
__a = FlaxTopKLogitsWarper(3 )
__a = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
__a = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCamelCase )
__a = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCamelCase )
__a = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCamelCase , eos_token_id=lowerCamelCase )
__a = 10
# no processor list
__a = temp_dist_warp(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase )
__a = top_k_warp(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase )
__a = top_p_warp(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase )
__a = min_dist_proc(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase )
__a = bos_dist_proc(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase )
__a = eos_dist_proc(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase )
# with processor list
__a = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
__a = processor(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase )
# scores should be equal
self.assertTrue(jnp.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
def a__ ( self ):
__a = 4
__a = 10
__a = 15
__a = 2
__a = 1
__a = 15
# dummy input_ids and scores
__a = ids_tensor((batch_size, sequence_length) , lowerCamelCase )
__a = input_ids.copy()
__a = self._get_uniform_logits(lowerCamelCase , lowerCamelCase )
__a = scores.copy()
# instantiate all dist processors
__a = FlaxTemperatureLogitsWarper(temperature=0.5 )
__a = FlaxTopKLogitsWarper(3 )
__a = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
__a = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCamelCase )
__a = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCamelCase )
__a = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCamelCase , eos_token_id=lowerCamelCase )
__a = 10
# no processor list
def run_no_processor_list(lowerCamelCase , lowerCamelCase , lowerCamelCase ):
__a = temp_dist_warp(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase )
__a = top_k_warp(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase )
__a = top_p_warp(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase )
__a = min_dist_proc(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase )
__a = bos_dist_proc(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase )
__a = eos_dist_proc(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase )
return scores
# with processor list
def run_processor_list(lowerCamelCase , lowerCamelCase , lowerCamelCase ):
__a = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
__a = processor(lowerCamelCase , lowerCamelCase , cur_len=lowerCamelCase )
return scores
__a = jax.jit(lowerCamelCase )
__a = jax.jit(lowerCamelCase )
__a = jitted_run_no_processor_list(lowerCamelCase , lowerCamelCase , lowerCamelCase )
__a = jitted_run_processor_list(lowerCamelCase , lowerCamelCase , lowerCamelCase )
# scores should be equal
self.assertTrue(jnp.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
| 528
|
"""simple docstring"""
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def _lowerCamelCase( ):
raise RuntimeError("CUDA out of memory." )
class snake_case__ ( nn.Module ):
def __init__( self ):
super().__init__()
__a = nn.Linear(3 , 4 )
__a = nn.BatchNormad(4 )
__a = nn.Linear(4 , 5 )
def a__ ( self , lowerCamelCase ):
return self.lineara(self.batchnorm(self.lineara(lowerCamelCase ) ) )
class snake_case__ ( unittest.TestCase ):
def a__ ( self ):
__a = []
@find_executable_batch_size(starting_batch_size=128 )
def mock_training_loop_function(lowerCamelCase ):
nonlocal batch_sizes
batch_sizes.append(lowerCamelCase )
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(lowerCamelCase , [128, 64, 32, 16, 8] )
def a__ ( self ):
__a = []
@find_executable_batch_size(starting_batch_size=128 )
def mock_training_loop_function(lowerCamelCase , lowerCamelCase ):
nonlocal batch_sizes
batch_sizes.append(lowerCamelCase )
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
__a , __a = mock_training_loop_function("hello" )
self.assertListEqual(lowerCamelCase , [128, 64, 32, 16, 8] )
self.assertListEqual([bs, arga] , [8, "hello"] )
def a__ ( self ):
@find_executable_batch_size(starting_batch_size=0 )
def mock_training_loop_function(lowerCamelCase ):
pass
with self.assertRaises(lowerCamelCase ) as cm:
mock_training_loop_function()
self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] )
def a__ ( self ):
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(lowerCamelCase ):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(lowerCamelCase ) as cm:
mock_training_loop_function()
self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] )
def a__ ( self ):
@find_executable_batch_size(starting_batch_size=128 )
def mock_training_loop_function(lowerCamelCase , lowerCamelCase , lowerCamelCase ):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(lowerCamelCase ) as cm:
mock_training_loop_function(128 , "hello" , "world" )
self.assertIn("Batch size was passed into `f`" , cm.exception.args[0] )
self.assertIn("`f(arg1='hello', arg2='world')" , cm.exception.args[0] )
def a__ ( self ):
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(lowerCamelCase ):
raise ValueError("Oops, we had an error!" )
with self.assertRaises(lowerCamelCase ) as cm:
mock_training_loop_function()
self.assertIn("Oops, we had an error!" , cm.exception.args[0] )
@require_cuda
def a__ ( self ):
__a = torch.cuda.memory_allocated()
__a = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , lowerCamelCase )
__a = release_memory(lowerCamelCase )
self.assertEqual(torch.cuda.memory_allocated() , lowerCamelCase )
| 528
| 1
|
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
'''Salesforce/blip-vqa-base''': '''https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json''',
'''Salesforce/blip-vqa-capfit-large''': (
'''https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json'''
),
'''Salesforce/blip-image-captioning-base''': (
'''https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json'''
),
'''Salesforce/blip-image-captioning-large''': (
'''https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json'''
),
'''Salesforce/blip-itm-base-coco''': '''https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json''',
'''Salesforce/blip-itm-large-coco''': '''https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json''',
'''Salesforce/blip-itm-base-flikr''': '''https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json''',
'''Salesforce/blip-itm-large-flikr''': (
'''https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json'''
),
}
class a_ ( UpperCamelCase_ ):
_snake_case = """blip_text_model"""
def __init__(self , __a=3_0_5_2_4 , __a=7_6_8 , __a=7_6_8 , __a=3_0_7_2 , __a=7_6_8 , __a=1_2 , __a=8 , __a=5_1_2 , __a="gelu" , __a=1E-12 , __a=0.0 , __a=0.0 , __a=0.02 , __a=3_0_5_2_2 , __a=2 , __a=0 , __a=1_0_2 , __a=True , __a=True , **__a , ) -> Tuple:
"""simple docstring"""
super().__init__(
pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , sep_token_id=__a , **__a , )
__snake_case : int = vocab_size
__snake_case : Tuple = hidden_size
__snake_case : Optional[Any] = encoder_hidden_size
__snake_case : Tuple = intermediate_size
__snake_case : Any = projection_dim
__snake_case : Any = hidden_dropout_prob
__snake_case : List[str] = num_hidden_layers
__snake_case : Dict = num_attention_heads
__snake_case : Any = max_position_embeddings
__snake_case : Any = layer_norm_eps
__snake_case : str = hidden_act
__snake_case : str = initializer_range
__snake_case : int = attention_probs_dropout_prob
__snake_case : Any = is_decoder
__snake_case : str = use_cache
@classmethod
def SCREAMING_SNAKE_CASE__ (cls , __a , **__a) -> "PretrainedConfig":
"""simple docstring"""
cls._set_token_in_kwargs(__a)
__snake_case : List[str] = cls.get_config_dict(__a , **__a)
# get the text config dict if we are loading from BlipConfig
if config_dict.get('model_type') == "blip":
__snake_case : str = config_dict['text_config']
if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""")
return cls.from_dict(__a , **__a)
class a_ ( UpperCamelCase_ ):
_snake_case = """blip_vision_model"""
def __init__(self , __a=7_6_8 , __a=3_0_7_2 , __a=5_1_2 , __a=1_2 , __a=1_2 , __a=3_8_4 , __a=1_6 , __a="gelu" , __a=1E-5 , __a=0.0 , __a=1E-10 , **__a , ) -> int:
"""simple docstring"""
super().__init__(**__a)
__snake_case : Tuple = hidden_size
__snake_case : Any = intermediate_size
__snake_case : int = projection_dim
__snake_case : List[Any] = num_hidden_layers
__snake_case : List[Any] = num_attention_heads
__snake_case : List[str] = patch_size
__snake_case : Any = image_size
__snake_case : Optional[Any] = initializer_range
__snake_case : List[str] = attention_dropout
__snake_case : List[Any] = layer_norm_eps
__snake_case : Optional[int] = hidden_act
@classmethod
def SCREAMING_SNAKE_CASE__ (cls , __a , **__a) -> "PretrainedConfig":
"""simple docstring"""
cls._set_token_in_kwargs(__a)
__snake_case : Dict = cls.get_config_dict(__a , **__a)
# get the vision config dict if we are loading from BlipConfig
if config_dict.get('model_type') == "blip":
__snake_case : Any = config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""")
return cls.from_dict(__a , **__a)
class a_ ( UpperCamelCase_ ):
_snake_case = """blip"""
_snake_case = True
def __init__(self , __a=None , __a=None , __a=5_1_2 , __a=2.6_592 , __a=2_5_6 , **__a , ) -> List[str]:
"""simple docstring"""
super().__init__(**__a)
if text_config is None:
__snake_case : str = {}
logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.')
if vision_config is None:
__snake_case : Dict = {}
logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.')
__snake_case : Union[str, Any] = BlipTextConfig(**__a)
__snake_case : List[str] = BlipVisionConfig(**__a)
__snake_case : List[Any] = self.vision_config.hidden_size
__snake_case : Union[str, Any] = projection_dim
__snake_case : Any = logit_scale_init_value
__snake_case : Tuple = 1.0
__snake_case : Optional[int] = 0.02
__snake_case : Union[str, Any] = image_text_hidden_size
@classmethod
def SCREAMING_SNAKE_CASE__ (cls , __a , __a , **__a) -> Any:
"""simple docstring"""
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__a)
def SCREAMING_SNAKE_CASE__ (self) -> Any:
"""simple docstring"""
__snake_case : Union[str, Any] = copy.deepcopy(self.__dict__)
__snake_case : Tuple = self.text_config.to_dict()
__snake_case : List[str] = self.vision_config.to_dict()
__snake_case : str = self.__class__.model_type
return output
| 702
|
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( A : float , A : list[float] ) -> float:
"""simple docstring"""
if discount_rate < 0:
raise ValueError('Discount rate cannot be negative' )
if not cash_flows:
raise ValueError('Cash flows list cannot be empty' )
__snake_case : List[str] = sum(
cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(A ) )
return round(A , ndigits=2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 61
| 0
|
"""simple docstring"""
from __future__ import annotations
import collections
import pprint
from pathlib import Path
def lowercase (SCREAMING_SNAKE_CASE_ : str ) -> str:
return "".join(sorted(SCREAMING_SNAKE_CASE_ ) )
def lowercase (SCREAMING_SNAKE_CASE_ : str ) -> list[str]:
return word_by_signature[signature(SCREAMING_SNAKE_CASE_ )]
__UpperCamelCase = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''')
__UpperCamelCase = sorted({word.strip().lower() for word in data.splitlines()})
__UpperCamelCase = collections.defaultdict(list)
for word in word_list:
word_by_signature[signature(word)].append(word)
if __name__ == "__main__":
__UpperCamelCase = {word: anagram(word) for word in word_list if len(anagram(word)) > 1}
with open('''anagrams.txt''', '''w''') as file:
file.write('''all_anagrams = \n ''')
file.write(pprint.pformat(all_anagrams))
| 247
|
"""simple docstring"""
import sacrebleu as scb
from packaging import version
from sacrebleu import CHRF
import datasets
__UpperCamelCase = '''\
@inproceedings{popovic-2015-chrf,
title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",
author = "Popovi{\'c}, Maja",
booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",
month = sep,
year = "2015",
address = "Lisbon, Portugal",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W15-3049",
doi = "10.18653/v1/W15-3049",
pages = "392--395",
}
@inproceedings{popovic-2017-chrf,
title = "chr{F}++: words helping character n-grams",
author = "Popovi{\'c}, Maja",
booktitle = "Proceedings of the Second Conference on Machine Translation",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-4770",
doi = "10.18653/v1/W17-4770",
pages = "612--618",
}
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
'''
__UpperCamelCase = '''\
ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,
and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation
that is already present in sacrebleu.
The implementation here is slightly different from sacrebleu in terms of the required input format. The length of
the references and hypotheses lists need to be the same, so you may need to transpose your references compared to
sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534
See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.
'''
__UpperCamelCase = '''
Produces ChrF(++) scores for hypotheses given reference translations.
Args:
predictions (list of str): The predicted sentences.
references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.
char_order (int): Character n-gram order. Defaults to `6`.
word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.
beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.
lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.
whitespace (bool): If `True`, include whitespaces when extracting character n-grams.
eps_smoothing (bool): If `True`, applies epsilon smoothing similar
to reference chrF++.py, NLTK and Moses implementations. If `False`,
it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.
Returns:
\'score\' (float): The chrF (chrF++) score,
\'char_order\' (int): The character n-gram order,
\'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,
\'beta\' (int): Determine the importance of recall w.r.t precision
Examples:
Example 1--a simple example of calculating chrF:
>>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]
>>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]
>>> chrf = datasets.load_metric("chrf")
>>> results = chrf.compute(predictions=prediction, references=reference)
>>> print(results)
{\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}
Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:
>>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]
>>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]
>>> chrf = datasets.load_metric("chrf")
>>> results = chrf.compute(predictions=prediction,
... references=reference,
... word_order=2)
>>> print(results)
{\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}
Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:
>>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]
>>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]
>>> chrf = datasets.load_metric("chrf")
>>> results = chrf.compute(predictions=prediction,
... references=reference,
... word_order=2,
... lowercase=True)
>>> print(results)
{\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase ( datasets.Metric ):
'''simple docstring'''
def __A ( self ) -> List[str]:
if version.parse(scb.__version__ ) < version.parse('1.4.12' ):
raise ImportWarning(
'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n'
'You can install it with `pip install "sacrebleu>=1.4.12"`.' )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence' ),
'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ),
} ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[
'https://github.com/m-popovic/chrF',
] , )
def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = CHRF.CHAR_ORDER , lowerCAmelCase__ = CHRF.WORD_ORDER , lowerCAmelCase__ = CHRF.BETA , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , ) -> Optional[Any]:
SCREAMING_SNAKE_CASE = len(references[0] )
if any(len(lowerCAmelCase__ ) != references_per_prediction for refs in references ):
raise ValueError('Sacrebleu requires the same number of references for each prediction' )
SCREAMING_SNAKE_CASE = [[refs[i] for refs in references] for i in range(lowerCAmelCase__ )]
SCREAMING_SNAKE_CASE = CHRF(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
SCREAMING_SNAKE_CASE = sb_chrf.corpus_score(lowerCAmelCase__ , lowerCAmelCase__ )
return {
"score": output.score,
"char_order": output.char_order,
"word_order": output.word_order,
"beta": output.beta,
}
| 247
| 1
|
"""simple docstring"""
def lowerCAmelCase_ ( ):
'''simple docstring'''
__lowerCamelCase : List[str] =[31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
__lowerCamelCase : List[Any] =6
__lowerCamelCase : Any =1
__lowerCamelCase : int =1901
__lowerCamelCase : Optional[int] =0
while year < 2001:
day += 7
if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0):
if day > days_per_month[month - 1] and month != 2:
month += 1
__lowerCamelCase : int =day - days_per_month[month - 2]
elif day > 29 and month == 2:
month += 1
__lowerCamelCase : Dict =day - 29
else:
if day > days_per_month[month - 1]:
month += 1
__lowerCamelCase : List[str] =day - days_per_month[month - 2]
if month > 12:
year += 1
__lowerCamelCase : Any =1
if year < 2001 and day == 1:
sundays += 1
return sundays
if __name__ == "__main__":
print(solution())
| 718
|
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_flava import FlavaImageProcessor
_UpperCamelCase = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE_ ( snake_case__ ):
"""simple docstring"""
def __init__( self :List[str] , *__lowercase :int , **__lowercase :Any ):
warnings.warn(
'''The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use FlavaImageProcessor instead.''' , __lowercase , )
super().__init__(*__lowercase , **__lowercase )
| 363
| 0
|
"""simple docstring"""
import unittest
from transformers import MobileBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
MobileBertForMaskedLM,
MobileBertForMultipleChoice,
MobileBertForNextSentencePrediction,
MobileBertForPreTraining,
MobileBertForQuestionAnswering,
MobileBertForSequenceClassification,
MobileBertForTokenClassification,
MobileBertModel,
)
class lowercase__ :
'''simple docstring'''
def __init__( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=13 , _UpperCAmelCase : List[Any]=7 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : List[Any]=99 , _UpperCAmelCase : int=64 , _UpperCAmelCase : int=32 , _UpperCAmelCase : int=5 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : Tuple=37 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : str=None , ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ = parent
UpperCAmelCase_ = batch_size
UpperCAmelCase_ = seq_length
UpperCAmelCase_ = is_training
UpperCAmelCase_ = use_input_mask
UpperCAmelCase_ = use_token_type_ids
UpperCAmelCase_ = use_labels
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = embedding_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = type_vocab_size
UpperCAmelCase_ = type_sequence_label_size
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = num_labels
UpperCAmelCase_ = num_choices
UpperCAmelCase_ = scope
def lowercase__ ( self : Dict ) -> str:
'''simple docstring'''
UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ = None
if self.use_input_mask:
UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase_ = None
if self.use_token_type_ids:
UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ = None
UpperCAmelCase_ = None
UpperCAmelCase_ = None
if self.use_labels:
UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase_ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowercase__ ( self : List[Any] ) -> Any:
'''simple docstring'''
return MobileBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , )
def lowercase__ ( self : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = MobileBertModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
UpperCAmelCase_ = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
UpperCAmelCase_ = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowercase__ ( self : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any ) -> str:
'''simple docstring'''
UpperCAmelCase_ = MobileBertForMaskedLM(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowercase__ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = MobileBertForNextSentencePrediction(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def lowercase__ ( self : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = MobileBertForPreTraining(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , next_sentence_label=_UpperCAmelCase , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def lowercase__ ( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = MobileBertForQuestionAnswering(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = self.num_labels
UpperCAmelCase_ = MobileBertForSequenceClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.num_labels
UpperCAmelCase_ = MobileBertForTokenClassification(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowercase__ ( self : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = self.num_choices
UpperCAmelCase_ = MobileBertForMultipleChoice(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase_ = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowercase__ ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) = config_and_inputs
UpperCAmelCase_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = (
(
MobileBertModel,
MobileBertForMaskedLM,
MobileBertForMultipleChoice,
MobileBertForNextSentencePrediction,
MobileBertForPreTraining,
MobileBertForQuestionAnswering,
MobileBertForSequenceClassification,
MobileBertForTokenClassification,
)
if is_torch_available()
else ()
)
UpperCamelCase = (
{
'''feature-extraction''': MobileBertModel,
'''fill-mask''': MobileBertForMaskedLM,
'''question-answering''': MobileBertForQuestionAnswering,
'''text-classification''': MobileBertForSequenceClassification,
'''token-classification''': MobileBertForTokenClassification,
'''zero-shot''': MobileBertForSequenceClassification,
}
if is_torch_available()
else {}
)
UpperCamelCase = True
def lowercase__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int]=False ) -> Any:
'''simple docstring'''
UpperCAmelCase_ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase )
if return_labels:
if model_class in get_values(_UpperCAmelCase ):
UpperCAmelCase_ = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase )
UpperCAmelCase_ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase )
return inputs_dict
def lowercase__ ( self : List[str] ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = MobileBertModelTester(self )
UpperCAmelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def lowercase__ ( self : List[Any] ) -> Dict:
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase__ ( self : str ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_model(*_UpperCAmelCase )
def lowercase__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_masked_lm(*_UpperCAmelCase )
def lowercase__ ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_UpperCAmelCase )
def lowercase__ ( self : List[Any] ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_UpperCAmelCase )
def lowercase__ ( self : Tuple ) -> Any:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_pretraining(*_UpperCAmelCase )
def lowercase__ ( self : Dict ) -> str:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_question_answering(*_UpperCAmelCase )
def lowercase__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_UpperCAmelCase )
def lowercase__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_token_classification(*_UpperCAmelCase )
def a__ ( lowerCAmelCase__ ):
return torch.tensor(
lowerCAmelCase__ , dtype=torch.long , device=lowerCAmelCase__ , )
lowerCamelCase = 1e-3
@require_torch
@require_sentencepiece
@require_tokenizers
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def lowercase__ ( self : Dict ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = MobileBertModel.from_pretrained("google/mobilebert-uncased" ).to(_UpperCAmelCase )
UpperCAmelCase_ = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] )
with torch.no_grad():
UpperCAmelCase_ = model(_UpperCAmelCase )[0]
UpperCAmelCase_ = torch.Size((1, 9, 512) )
self.assertEqual(output.shape , _UpperCAmelCase )
UpperCAmelCase_ = torch.tensor(
[
[
[-2.4736526e07, 8.2691656e04, 1.6521838e05],
[-5.7541704e-01, 3.9056022e00, 4.4011507e00],
[2.6047359e00, 1.5677652e00, -1.7324188e-01],
]
] , device=_UpperCAmelCase , )
# MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a
# ~1 difference, it's therefore not a good idea to measure using addition.
# Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the
# result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE
UpperCAmelCase_ = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE )
UpperCAmelCase_ = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE )
self.assertTrue(lower_bound and upper_bound )
| 82
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ : List[str] = {
"configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"],
"processing_trocr": ["TrOCRProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : Optional[int] = [
"TROCR_PRETRAINED_MODEL_ARCHIVE_LIST",
"TrOCRForCausalLM",
"TrOCRPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig
from .processing_trocr import TrOCRProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel
else:
import sys
SCREAMING_SNAKE_CASE__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 85
| 0
|
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .attention_processor import AttentionProcessor, AttnProcessor
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder
@dataclass
class lowercase__( snake_case__ ):
'''simple docstring'''
snake_case__ = 42
class lowercase__( snake_case__ , snake_case__ ):
'''simple docstring'''
snake_case__ = True
@register_to_config
def __init__( self , __SCREAMING_SNAKE_CASE = 3 , __SCREAMING_SNAKE_CASE = 3 , __SCREAMING_SNAKE_CASE = ("DownEncoderBlock2D",) , __SCREAMING_SNAKE_CASE = ("UpDecoderBlock2D",) , __SCREAMING_SNAKE_CASE = (64,) , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = "silu" , __SCREAMING_SNAKE_CASE = 4 , __SCREAMING_SNAKE_CASE = 32 , __SCREAMING_SNAKE_CASE = 32 , __SCREAMING_SNAKE_CASE = 0.1_82_15 , ) -> List[str]:
"""simple docstring"""
super().__init__()
# pass init params to Encoder
UpperCamelCase__ : Any =Encoder(
in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , down_block_types=__SCREAMING_SNAKE_CASE , block_out_channels=__SCREAMING_SNAKE_CASE , layers_per_block=__SCREAMING_SNAKE_CASE , act_fn=__SCREAMING_SNAKE_CASE , norm_num_groups=__SCREAMING_SNAKE_CASE , double_z=__SCREAMING_SNAKE_CASE , )
# pass init params to Decoder
UpperCamelCase__ : List[Any] =Decoder(
in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , up_block_types=__SCREAMING_SNAKE_CASE , block_out_channels=__SCREAMING_SNAKE_CASE , layers_per_block=__SCREAMING_SNAKE_CASE , norm_num_groups=__SCREAMING_SNAKE_CASE , act_fn=__SCREAMING_SNAKE_CASE , )
UpperCamelCase__ : Dict =nn.Convad(2 * latent_channels , 2 * latent_channels , 1)
UpperCamelCase__ : Dict =nn.Convad(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1)
UpperCamelCase__ : str =False
UpperCamelCase__ : str =False
# only relevant if vae tiling is enabled
UpperCamelCase__ : Optional[Any] =self.config.sample_size
UpperCamelCase__ : Union[str, Any] =(
self.config.sample_size[0]
if isinstance(self.config.sample_size , (list, tuple))
else self.config.sample_size
)
UpperCamelCase__ : Optional[Any] =int(sample_size / (2 ** (len(self.config.block_out_channels) - 1)))
UpperCamelCase__ : Any =0.25
def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False) -> Optional[int]:
"""simple docstring"""
if isinstance(__SCREAMING_SNAKE_CASE , (Encoder, Decoder)):
UpperCamelCase__ : int =value
def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE = True) -> Dict:
"""simple docstring"""
UpperCamelCase__ : int =use_tiling
def UpperCAmelCase ( self) -> Optional[int]:
"""simple docstring"""
self.enable_tiling(__SCREAMING_SNAKE_CASE)
def UpperCAmelCase ( self) -> int:
"""simple docstring"""
UpperCamelCase__ : Tuple =True
def UpperCAmelCase ( self) -> str:
"""simple docstring"""
UpperCamelCase__ : str =False
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def UpperCAmelCase ( self) -> Dict[str, AttentionProcessor]:
"""simple docstring"""
UpperCamelCase__ : Optional[Any] ={}
def fn_recursive_add_processors(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE):
if hasattr(__SCREAMING_SNAKE_CASE , "set_processor"):
UpperCamelCase__ : Any =module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F'''{name}.{sub_name}''' , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
return processors
def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE) -> Dict:
"""simple docstring"""
UpperCamelCase__ : List[str] =len(self.attn_processors.keys())
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) and len(__SCREAMING_SNAKE_CASE) != count:
raise ValueError(
F'''A dict of processors was passed, but the number of processors {len(__SCREAMING_SNAKE_CASE)} does not match the'''
F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''')
def fn_recursive_attn_processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE):
if hasattr(__SCREAMING_SNAKE_CASE , "set_processor"):
if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE):
module.set_processor(__SCREAMING_SNAKE_CASE)
else:
module.set_processor(processor.pop(F'''{name}.processor'''))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F'''{name}.{sub_name}''' , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
for name, module in self.named_children():
fn_recursive_attn_processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
def UpperCAmelCase ( self) -> Optional[int]:
"""simple docstring"""
self.set_attn_processor(AttnProcessor())
@apply_forward_hook
def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True) -> AutoencoderKLOutput:
"""simple docstring"""
if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
return self.tiled_encode(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE)
if self.use_slicing and x.shape[0] > 1:
UpperCamelCase__ : List[str] =[self.encoder(__SCREAMING_SNAKE_CASE) for x_slice in x.split(1)]
UpperCamelCase__ : Optional[int] =torch.cat(__SCREAMING_SNAKE_CASE)
else:
UpperCamelCase__ : List[Any] =self.encoder(__SCREAMING_SNAKE_CASE)
UpperCamelCase__ : Any =self.quant_conv(__SCREAMING_SNAKE_CASE)
UpperCamelCase__ : Union[str, Any] =DiagonalGaussianDistribution(__SCREAMING_SNAKE_CASE)
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=__SCREAMING_SNAKE_CASE)
def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True) -> Union[DecoderOutput, torch.FloatTensor]:
"""simple docstring"""
if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
return self.tiled_decode(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE)
UpperCamelCase__ : str =self.post_quant_conv(__SCREAMING_SNAKE_CASE)
UpperCamelCase__ : Optional[int] =self.decoder(__SCREAMING_SNAKE_CASE)
if not return_dict:
return (dec,)
return DecoderOutput(sample=__SCREAMING_SNAKE_CASE)
@apply_forward_hook
def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True) -> Union[DecoderOutput, torch.FloatTensor]:
"""simple docstring"""
if self.use_slicing and z.shape[0] > 1:
UpperCamelCase__ : List[Any] =[self._decode(__SCREAMING_SNAKE_CASE).sample for z_slice in z.split(1)]
UpperCamelCase__ : Any =torch.cat(__SCREAMING_SNAKE_CASE)
else:
UpperCamelCase__ : Any =self._decode(__SCREAMING_SNAKE_CASE).sample
if not return_dict:
return (decoded,)
return DecoderOutput(sample=__SCREAMING_SNAKE_CASE)
def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> List[Any]:
"""simple docstring"""
UpperCamelCase__ : List[str] =min(a.shape[2] , b.shape[2] , __SCREAMING_SNAKE_CASE)
for y in range(__SCREAMING_SNAKE_CASE):
UpperCamelCase__ : Optional[int] =a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent)
return b
def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> Dict:
"""simple docstring"""
UpperCamelCase__ : Dict =min(a.shape[3] , b.shape[3] , __SCREAMING_SNAKE_CASE)
for x in range(__SCREAMING_SNAKE_CASE):
UpperCamelCase__ : Optional[int] =a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent)
return b
def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True) -> AutoencoderKLOutput:
"""simple docstring"""
UpperCamelCase__ : List[str] =int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
UpperCamelCase__ : Optional[int] =int(self.tile_latent_min_size * self.tile_overlap_factor)
UpperCamelCase__ : Optional[int] =self.tile_latent_min_size - blend_extent
# Split the image into 512x512 tiles and encode them separately.
UpperCamelCase__ : int =[]
for i in range(0 , x.shape[2] , __SCREAMING_SNAKE_CASE):
UpperCamelCase__ : List[Any] =[]
for j in range(0 , x.shape[3] , __SCREAMING_SNAKE_CASE):
UpperCamelCase__ : Dict =x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
UpperCamelCase__ : Optional[int] =self.encoder(__SCREAMING_SNAKE_CASE)
UpperCamelCase__ : str =self.quant_conv(__SCREAMING_SNAKE_CASE)
row.append(__SCREAMING_SNAKE_CASE)
rows.append(__SCREAMING_SNAKE_CASE)
UpperCamelCase__ : Optional[Any] =[]
for i, row in enumerate(__SCREAMING_SNAKE_CASE):
UpperCamelCase__ : Union[str, Any] =[]
for j, tile in enumerate(__SCREAMING_SNAKE_CASE):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
UpperCamelCase__ : Tuple =self.blend_v(rows[i - 1][j] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
if j > 0:
UpperCamelCase__ : List[Any] =self.blend_h(row[j - 1] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
result_row.append(tile[:, :, :row_limit, :row_limit])
result_rows.append(torch.cat(__SCREAMING_SNAKE_CASE , dim=3))
UpperCamelCase__ : Optional[Any] =torch.cat(__SCREAMING_SNAKE_CASE , dim=2)
UpperCamelCase__ : Optional[Any] =DiagonalGaussianDistribution(__SCREAMING_SNAKE_CASE)
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=__SCREAMING_SNAKE_CASE)
def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True) -> Union[DecoderOutput, torch.FloatTensor]:
"""simple docstring"""
UpperCamelCase__ : Optional[int] =int(self.tile_latent_min_size * (1 - self.tile_overlap_factor))
UpperCamelCase__ : Dict =int(self.tile_sample_min_size * self.tile_overlap_factor)
UpperCamelCase__ : Any =self.tile_sample_min_size - blend_extent
# Split z into overlapping 64x64 tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
UpperCamelCase__ : Union[str, Any] =[]
for i in range(0 , z.shape[2] , __SCREAMING_SNAKE_CASE):
UpperCamelCase__ : Tuple =[]
for j in range(0 , z.shape[3] , __SCREAMING_SNAKE_CASE):
UpperCamelCase__ : Optional[Any] =z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
UpperCamelCase__ : Optional[int] =self.post_quant_conv(__SCREAMING_SNAKE_CASE)
UpperCamelCase__ : int =self.decoder(__SCREAMING_SNAKE_CASE)
row.append(__SCREAMING_SNAKE_CASE)
rows.append(__SCREAMING_SNAKE_CASE)
UpperCamelCase__ : Any =[]
for i, row in enumerate(__SCREAMING_SNAKE_CASE):
UpperCamelCase__ : int =[]
for j, tile in enumerate(__SCREAMING_SNAKE_CASE):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
UpperCamelCase__ : Tuple =self.blend_v(rows[i - 1][j] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
if j > 0:
UpperCamelCase__ : List[Any] =self.blend_h(row[j - 1] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
result_row.append(tile[:, :, :row_limit, :row_limit])
result_rows.append(torch.cat(__SCREAMING_SNAKE_CASE , dim=3))
UpperCamelCase__ : Any =torch.cat(__SCREAMING_SNAKE_CASE , dim=2)
if not return_dict:
return (dec,)
return DecoderOutput(sample=__SCREAMING_SNAKE_CASE)
def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , ) -> Union[DecoderOutput, torch.FloatTensor]:
"""simple docstring"""
UpperCamelCase__ : int =sample
UpperCamelCase__ : Dict =self.encode(__SCREAMING_SNAKE_CASE).latent_dist
if sample_posterior:
UpperCamelCase__ : Dict =posterior.sample(generator=__SCREAMING_SNAKE_CASE)
else:
UpperCamelCase__ : Tuple =posterior.mode()
UpperCamelCase__ : str =self.decode(__SCREAMING_SNAKE_CASE).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=__SCREAMING_SNAKE_CASE)
| 582
|
from math import factorial
__UpperCAmelCase = {str(digit): factorial(digit) for digit in range(10)}
def _lowerCamelCase ( A_ : int ) -> int:
'''simple docstring'''
if not isinstance(A_ , A_ ):
raise TypeError("Parameter number must be int" )
if number < 0:
raise ValueError("Parameter number must be greater than or equal to 0" )
# Converts number in string to iterate on its digits and adds its factorial.
return sum(DIGIT_FACTORIAL[digit] for digit in str(A_ ) )
def _lowerCamelCase ( A_ : int = 6_0 , A_ : int = 1_0_0_0_0_0_0 ) -> int:
'''simple docstring'''
if not isinstance(A_ , A_ ) or not isinstance(A_ , A_ ):
raise TypeError("Parameters chain_length and number_limit must be int" )
if chain_length <= 0 or number_limit <= 0:
raise ValueError(
"Parameters chain_length and number_limit must be greater than 0" )
# the counter for the chains with the exact desired length
UpperCamelCase__ : str =0
# the cached sizes of the previous chains
UpperCamelCase__ : dict[int, int] ={}
for start_chain_element in range(1 , A_ ):
# The temporary set will contain the elements of the chain
UpperCamelCase__ : Any =set()
UpperCamelCase__ : Optional[Any] =0
# Stop computing the chain when you find a cached size, a repeating item or the
# length is greater then the desired one.
UpperCamelCase__ : str =start_chain_element
while (
chain_element not in chain_sets_lengths
and chain_element not in chain_set
and chain_set_length <= chain_length
):
chain_set.add(A_ )
chain_set_length += 1
UpperCamelCase__ : Tuple =digit_factorial_sum(A_ )
if chain_element in chain_sets_lengths:
chain_set_length += chain_sets_lengths[chain_element]
UpperCamelCase__ : List[str] =chain_set_length
# If chain contains the exact amount of elements increase the counter
if chain_set_length == chain_length:
chains_counter += 1
return chains_counter
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F"""{solution()}""")
| 582
| 1
|
def UpperCamelCase_ ( __a ) -> list:
a__ : Union[str, Any] = [0] * len(__a )
for i in range(1 , len(__a ) ):
# use last results for better performance - dynamic programming
a__ : Dict = prefix_result[i - 1]
while j > 0 and input_string[i] != input_string[j]:
a__ : List[Any] = prefix_result[j - 1]
if input_string[i] == input_string[j]:
j += 1
a__ : Any = j
return prefix_result
def UpperCamelCase_ ( __a ) -> int:
return max(prefix_function(__a ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 37
|
from __future__ import annotations
from math import pi
def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_):
"""simple docstring"""
if (inductance, frequency, reactance).count(0) != 1:
raise ValueError("""One and only one argument must be 0""")
if inductance < 0:
raise ValueError("""Inductance cannot be negative""")
if frequency < 0:
raise ValueError("""Frequency cannot be negative""")
if reactance < 0:
raise ValueError("""Inductive reactance cannot be negative""")
if inductance == 0:
return {"inductance": reactance / (2 * pi * frequency)}
elif frequency == 0:
return {"frequency": reactance / (2 * pi * inductance)}
elif reactance == 0:
return {"reactance": 2 * pi * frequency * inductance}
else:
raise ValueError("""Exactly one argument must be 0""")
if __name__ == "__main__":
import doctest
doctest.testmod()
| 648
| 0
|
import requests
from bsa import BeautifulSoup
def lowerCAmelCase_ ( lowercase: str , lowercase: dict ) -> str:
'''simple docstring'''
_UpperCamelCase: Union[str, Any] = BeautifulSoup(requests.get(lowercase , params=lowercase ).content , '''html.parser''' )
_UpperCamelCase: Dict = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} )
_UpperCamelCase: Optional[int] = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' )
return anchors[2].get_text()
if __name__ == "__main__":
UpperCAmelCase_ = {
'''title''': (
'''Precisely geometry controlled microsupercapacitors for ultrahigh areal '''
'''capacitance, volumetric capacitance, and energy density'''
),
'''journal''': '''Chem. Mater.''',
'''volume''': 3_0,
'''pages''': '''3979-3990''',
'''year''': 2_0_1_8,
'''hl''': '''en''',
}
print(get_citation('''https://scholar.google.com/scholar_lookup''', params=params))
| 264
|
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class __magic_name__ ( __a , __a , __a , unittest.TestCase ):
"""simple docstring"""
lowerCAmelCase : Optional[int] = StableDiffusionInpaintPipeline
lowerCAmelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
lowerCAmelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
lowerCAmelCase : str = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
lowerCAmelCase : Tuple = frozenset([] )
def lowerCAmelCase ( self : Dict ):
"""simple docstring"""
torch.manual_seed(0 )
_UpperCamelCase: List[str] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_lowercase , )
_UpperCamelCase: List[str] = PNDMScheduler(skip_prk_steps=_lowercase )
torch.manual_seed(0 )
_UpperCamelCase: List[str] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
_UpperCamelCase: Optional[int] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , )
_UpperCamelCase: Optional[int] = CLIPTextModel(_lowercase )
_UpperCamelCase: Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
_UpperCamelCase: Optional[Any] = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def lowerCAmelCase ( self : Optional[int] , _lowercase : Any , _lowercase : int=0 ):
"""simple docstring"""
_UpperCamelCase: Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase )
_UpperCamelCase: Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
_UpperCamelCase: Optional[int] = Image.fromarray(np.uinta(_lowercase ) ).convert('''RGB''' ).resize((64, 64) )
_UpperCamelCase: Optional[Any] = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) )
if str(_lowercase ).startswith('''mps''' ):
_UpperCamelCase: Dict = torch.manual_seed(_lowercase )
else:
_UpperCamelCase: Union[str, Any] = torch.Generator(device=_lowercase ).manual_seed(_lowercase )
_UpperCamelCase: List[str] = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': init_image,
'''mask_image''': mask_image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def lowerCAmelCase ( self : List[str] ):
"""simple docstring"""
_UpperCamelCase: Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator
_UpperCamelCase: str = self.get_dummy_components()
_UpperCamelCase: Any = StableDiffusionInpaintPipeline(**_lowercase )
_UpperCamelCase: Any = sd_pipe.to(_lowercase )
sd_pipe.set_progress_bar_config(disable=_lowercase )
_UpperCamelCase: Tuple = self.get_dummy_inputs(_lowercase )
_UpperCamelCase: List[Any] = sd_pipe(**_lowercase ).images
_UpperCamelCase: Optional[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_UpperCamelCase: List[str] = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowerCAmelCase ( self : Union[str, Any] ):
"""simple docstring"""
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __magic_name__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCAmelCase ( self : Dict ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : Dict ):
"""simple docstring"""
_UpperCamelCase: Optional[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''' )
_UpperCamelCase: Tuple = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' )
_UpperCamelCase: Dict = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'''
'''/yellow_cat_sitting_on_a_park_bench.npy''' )
_UpperCamelCase: Optional[Any] = '''stabilityai/stable-diffusion-2-inpainting'''
_UpperCamelCase: Optional[Any] = StableDiffusionInpaintPipeline.from_pretrained(_lowercase , safety_checker=_lowercase )
pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
pipe.enable_attention_slicing()
_UpperCamelCase: List[str] = '''Face of a yellow cat, high resolution, sitting on a park bench'''
_UpperCamelCase: List[Any] = torch.manual_seed(0 )
_UpperCamelCase: str = pipe(
prompt=_lowercase , image=_lowercase , mask_image=_lowercase , generator=_lowercase , output_type='''np''' , )
_UpperCamelCase: Optional[Any] = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 9E-3
def lowerCAmelCase ( self : List[Any] ):
"""simple docstring"""
_UpperCamelCase: Optional[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''' )
_UpperCamelCase: Union[str, Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' )
_UpperCamelCase: str = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'''
'''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' )
_UpperCamelCase: Optional[Any] = '''stabilityai/stable-diffusion-2-inpainting'''
_UpperCamelCase: int = StableDiffusionInpaintPipeline.from_pretrained(
_lowercase , torch_dtype=torch.floataa , safety_checker=_lowercase , )
pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
pipe.enable_attention_slicing()
_UpperCamelCase: Optional[Any] = '''Face of a yellow cat, high resolution, sitting on a park bench'''
_UpperCamelCase: Dict = torch.manual_seed(0 )
_UpperCamelCase: int = pipe(
prompt=_lowercase , image=_lowercase , mask_image=_lowercase , generator=_lowercase , output_type='''np''' , )
_UpperCamelCase: Optional[Any] = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 5E-1
def lowerCAmelCase ( self : Any ):
"""simple docstring"""
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_UpperCamelCase: Union[str, Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''' )
_UpperCamelCase: Optional[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' )
_UpperCamelCase: Optional[int] = '''stabilityai/stable-diffusion-2-inpainting'''
_UpperCamelCase: Union[str, Any] = PNDMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' )
_UpperCamelCase: Optional[int] = StableDiffusionInpaintPipeline.from_pretrained(
_lowercase , safety_checker=_lowercase , scheduler=_lowercase , torch_dtype=torch.floataa , )
pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
_UpperCamelCase: Optional[int] = '''Face of a yellow cat, high resolution, sitting on a park bench'''
_UpperCamelCase: Union[str, Any] = torch.manual_seed(0 )
_UpperCamelCase: Union[str, Any] = pipe(
prompt=_lowercase , image=_lowercase , mask_image=_lowercase , generator=_lowercase , num_inference_steps=2 , output_type='''np''' , )
_UpperCamelCase: Dict = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 10**9
| 264
| 1
|
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase : Tuple = logging.get_logger(__name__)
lowerCamelCase : Dict = {
"facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json",
# See all LeViT models at https://huggingface.co/models?filter=levit
}
class A__ ( A__ ):
A__ = '''levit'''
def __init__( self : Optional[Any] , _a : Optional[int]=224 , _a : List[Any]=3 , _a : Union[str, Any]=3 , _a : str=2 , _a : Tuple=1 , _a : List[Any]=16 , _a : int=[128, 256, 384] , _a : Any=[4, 8, 12] , _a : Union[str, Any]=[4, 4, 4] , _a : Optional[int]=[16, 16, 16] , _a : Dict=0 , _a : Tuple=[2, 2, 2] , _a : int=[2, 2, 2] , _a : List[Any]=0.02 , **_a : str , ) -> str:
'''simple docstring'''
super().__init__(**_a )
_SCREAMING_SNAKE_CASE =image_size
_SCREAMING_SNAKE_CASE =num_channels
_SCREAMING_SNAKE_CASE =kernel_size
_SCREAMING_SNAKE_CASE =stride
_SCREAMING_SNAKE_CASE =padding
_SCREAMING_SNAKE_CASE =hidden_sizes
_SCREAMING_SNAKE_CASE =num_attention_heads
_SCREAMING_SNAKE_CASE =depths
_SCREAMING_SNAKE_CASE =key_dim
_SCREAMING_SNAKE_CASE =drop_path_rate
_SCREAMING_SNAKE_CASE =patch_size
_SCREAMING_SNAKE_CASE =attention_ratio
_SCREAMING_SNAKE_CASE =mlp_ratio
_SCREAMING_SNAKE_CASE =initializer_range
_SCREAMING_SNAKE_CASE =[
['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
class A__ ( A__ ):
A__ = version.parse('1.11' )
@property
def A ( self : Any ) -> List[Any]:
'''simple docstring'''
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def A ( self : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
return 1e-4
| 405
|
def lowerCamelCase_ ( UpperCamelCase__ : int, UpperCamelCase__ : int ):
'''simple docstring'''
if b == 0:
return 1
if (b % 2) == 0:
return actual_power(UpperCamelCase__, int(b / 2 ) ) * actual_power(UpperCamelCase__, int(b / 2 ) )
else:
return a * actual_power(UpperCamelCase__, int(b / 2 ) ) * actual_power(UpperCamelCase__, int(b / 2 ) )
def lowerCamelCase_ ( UpperCamelCase__ : int, UpperCamelCase__ : int ):
'''simple docstring'''
if b < 0:
return 1 / actual_power(UpperCamelCase__, UpperCamelCase__ )
return actual_power(UpperCamelCase__, UpperCamelCase__ )
if __name__ == "__main__":
print(power(-2, -3))
| 240
| 0
|
def _a ( __lowercase , __lowercase ) -> str:
"""simple docstring"""
return "\n".join(
F"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) )
if __name__ == "__main__":
print(multiplication_table(number=5, number_of_terms=10))
| 567
|
def _a ( __lowercase ) -> int:
"""simple docstring"""
if not isinstance(__lowercase , __lowercase ):
raise ValueError('Input must be an integer' )
if input_num <= 0:
raise ValueError('Input must be positive' )
return sum(
divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 567
| 1
|
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
A_ = logging.get_logger(__name__)
A_ = '''▁'''
A_ = {'''vocab_file''': '''sentencepiece.bpe.model'''}
A_ = {
'''vocab_file''': {
'''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model''',
'''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model''',
'''xlm-roberta-large-finetuned-conll02-dutch''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model'''
),
'''xlm-roberta-large-finetuned-conll02-spanish''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model'''
),
'''xlm-roberta-large-finetuned-conll03-english''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model'''
),
'''xlm-roberta-large-finetuned-conll03-german''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model'''
),
}
}
A_ = {
'''xlm-roberta-base''': 5_1_2,
'''xlm-roberta-large''': 5_1_2,
'''xlm-roberta-large-finetuned-conll02-dutch''': 5_1_2,
'''xlm-roberta-large-finetuned-conll02-spanish''': 5_1_2,
'''xlm-roberta-large-finetuned-conll03-english''': 5_1_2,
'''xlm-roberta-large-finetuned-conll03-german''': 5_1_2,
}
class snake_case ( lowerCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase : Any = VOCAB_FILES_NAMES
UpperCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase : str = ["""input_ids""", """attention_mask"""]
def __init__( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str]="<s>" , lowerCAmelCase_ : str="</s>" , lowerCAmelCase_ : str="</s>" , lowerCAmelCase_ : List[str]="<s>" , lowerCAmelCase_ : str="<unk>" , lowerCAmelCase_ : Union[str, Any]="<pad>" , lowerCAmelCase_ : List[str]="<mask>" , lowerCAmelCase_ : Optional[Dict[str, Any]] = None , **lowerCAmelCase_ : int , ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token
SCREAMING_SNAKE_CASE_ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , )
SCREAMING_SNAKE_CASE_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(_UpperCamelCase ) )
SCREAMING_SNAKE_CASE_ = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
SCREAMING_SNAKE_CASE_ = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
SCREAMING_SNAKE_CASE_ = 1
SCREAMING_SNAKE_CASE_ = len(self.sp_model ) + self.fairseq_offset
SCREAMING_SNAKE_CASE_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self : Any ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = self.__dict__.copy()
SCREAMING_SNAKE_CASE_ = None
SCREAMING_SNAKE_CASE_ = self.sp_model.serialized_model_proto()
return state
def __setstate__( self : List[Any] , lowerCAmelCase_ : Any ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
SCREAMING_SNAKE_CASE_ = {}
SCREAMING_SNAKE_CASE_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def _lowercase ( self : List[Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
SCREAMING_SNAKE_CASE_ = [self.cls_token_id]
SCREAMING_SNAKE_CASE_ = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowercase ( self : int , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(_UpperCamelCase )) + [1]
return [1] + ([0] * len(_UpperCamelCase )) + [1, 1] + ([0] * len(_UpperCamelCase )) + [1]
def _lowercase ( self : List[str] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = [self.sep_token_id]
SCREAMING_SNAKE_CASE_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def _lowercase ( self : List[str] ) -> Tuple:
"""simple docstring"""
return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token
def _lowercase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _lowercase ( self : Dict , lowerCAmelCase_ : str ) -> List[str]:
"""simple docstring"""
return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase )
def _lowercase ( self : List[str] , lowerCAmelCase_ : Tuple ) -> Optional[Any]:
"""simple docstring"""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
SCREAMING_SNAKE_CASE_ = self.sp_model.PieceToId(_UpperCamelCase )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def _lowercase ( self : Optional[int] , lowerCAmelCase_ : Any ) -> int:
"""simple docstring"""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def _lowercase ( self : Any , lowerCAmelCase_ : List[Any] ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = ''''''.join(_UpperCamelCase ).replace(_UpperCamelCase , ''' ''' ).strip()
return out_string
def _lowercase ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(_UpperCamelCase ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
SCREAMING_SNAKE_CASE_ = os.path.join(
_UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _UpperCamelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_UpperCamelCase , '''wb''' ) as fi:
SCREAMING_SNAKE_CASE_ = self.sp_model.serialized_model_proto()
fi.write(_UpperCamelCase )
return (out_vocab_file,)
| 393
|
import os
import tempfile
import unittest
from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter
from transformers.testing_utils import slow
from transformers.utils import cached_property
@unittest.skipUnless(os.path.exists(a ) , """Tatoeba directory does not exist.""" )
class lowercase ( unittest.TestCase ):
@cached_property
def __snake_case( self : Tuple ) -> int:
'''simple docstring'''
SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
return TatoebaConverter(save_dir=_UpperCamelCase )
@slow
def __snake_case( self : Tuple ) -> Tuple:
'''simple docstring'''
self.resolver.convert_models(["heb-eng"] )
@slow
def __snake_case( self : List[Any] ) -> List[str]:
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.resolver.write_model_card("opus-mt-he-en" , dry_run=_UpperCamelCase )
assert mmeta["long_pair"] == "heb-eng"
| 403
| 0
|
import json
import os
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from requests.exceptions import HTTPError
from transformers.utils import (
CONFIG_NAME,
FLAX_WEIGHTS_NAME,
TF2_WEIGHTS_NAME,
TRANSFORMERS_CACHE,
WEIGHTS_NAME,
cached_file,
get_file_from_repo,
has_file,
)
snake_case_ : Union[str, Any] = "hf-internal-testing/tiny-random-bert"
snake_case_ : Dict = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert")
snake_case_ : Dict = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6"
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict:
lowerCamelCase_ : Optional[Any] = cached_file(__magic_name__ , __magic_name__ )
# Should have downloaded the file in here
self.assertTrue(os.path.isdir(__magic_name__ ) )
# Cache should contain at least those three subfolders:
for subfolder in ["blobs", "refs", "snapshots"]:
self.assertTrue(os.path.isdir(os.path.join(__magic_name__ , __magic_name__ ) ) )
with open(os.path.join(__magic_name__ , "refs" , "main" ) ) as f:
lowerCamelCase_ : List[Any] = f.read()
self.assertEqual(__magic_name__ , os.path.join(__magic_name__ , "snapshots" , __magic_name__ , __magic_name__ ) )
self.assertTrue(os.path.isfile(__magic_name__ ) )
# File is cached at the same place the second time.
lowerCamelCase_ : str = cached_file(__magic_name__ , __magic_name__ )
self.assertEqual(__magic_name__ , __magic_name__ )
# Using a specific revision to test the full commit hash.
lowerCamelCase_ : List[Any] = cached_file(__magic_name__ , __magic_name__ , revision="9b8c223" )
self.assertEqual(__magic_name__ , os.path.join(__magic_name__ , "snapshots" , __magic_name__ , __magic_name__ ) )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple:
with self.assertRaisesRegex(__magic_name__ , "is not a valid model identifier" ):
lowerCamelCase_ : Any = cached_file("tiny-random-bert" , __magic_name__ )
with self.assertRaisesRegex(__magic_name__ , "is not a valid git identifier" ):
lowerCamelCase_ : List[str] = cached_file(__magic_name__ , __magic_name__ , revision="aaaa" )
with self.assertRaisesRegex(__magic_name__ , "does not appear to have a file named" ):
lowerCamelCase_ : Union[str, Any] = cached_file(__magic_name__ , "conf" )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict:
with self.assertRaisesRegex(__magic_name__ , "does not appear to have a file named" ):
lowerCamelCase_ : Tuple = cached_file(__magic_name__ , "conf" )
with open(os.path.join(__magic_name__ , "refs" , "main" ) ) as f:
lowerCamelCase_ : Union[str, Any] = f.read()
self.assertTrue(os.path.isfile(os.path.join(__magic_name__ , ".no_exist" , __magic_name__ , "conf" ) ) )
lowerCamelCase_ : Any = cached_file(__magic_name__ , "conf" , _raise_exceptions_for_missing_entries=__magic_name__ )
self.assertIsNone(__magic_name__ )
lowerCamelCase_ : Tuple = cached_file(__magic_name__ , "conf" , local_files_only=__magic_name__ , _raise_exceptions_for_missing_entries=__magic_name__ )
self.assertIsNone(__magic_name__ )
lowerCamelCase_ : Union[str, Any] = mock.Mock()
lowerCamelCase_ : List[str] = 500
lowerCamelCase_ : Any = {}
lowerCamelCase_ : str = HTTPError
lowerCamelCase_ : int = {}
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch("requests.Session.request" , return_value=__magic_name__ ) as mock_head:
lowerCamelCase_ : Any = cached_file(__magic_name__ , "conf" , _raise_exceptions_for_connection_errors=__magic_name__ )
self.assertIsNone(__magic_name__ )
# This check we did call the fake head request
mock_head.assert_called()
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]:
self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , __magic_name__ ) )
self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , __magic_name__ ) )
self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , __magic_name__ ) )
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]:
# `get_file_from_repo` returns None if the file does not exist
self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt" ) )
# The function raises if the repository does not exist.
with self.assertRaisesRegex(__magic_name__ , "is not a valid model identifier" ):
get_file_from_repo("bert-base-case" , __magic_name__ )
# The function raises if the revision does not exist.
with self.assertRaisesRegex(__magic_name__ , "is not a valid git identifier" ):
get_file_from_repo("bert-base-cased" , __magic_name__ , revision="ahaha" )
lowerCamelCase_ : Union[str, Any] = get_file_from_repo("bert-base-cased" , __magic_name__ )
# The name is the cached name which is not very easy to test, so instead we load the content.
lowerCamelCase_ : int = json.loads(open(__magic_name__ , "r" ).read() )
self.assertEqual(config["hidden_size"] , 768 )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]:
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCamelCase_ : Dict = Path(__magic_name__ ) / "a.txt"
filename.touch()
self.assertEqual(get_file_from_repo(__magic_name__ , "a.txt" ) , str(__magic_name__ ) )
self.assertIsNone(get_file_from_repo(__magic_name__ , "b.txt" ) )
| 253
|
from collections.abc import Generator
from math import sin
def __a ( __UpperCAmelCase : bytes ) -> bytes:
"""simple docstring"""
if len(__UpperCAmelCase ) != 32:
raise ValueError("Input must be of length 32" )
lowerCamelCase_ : Optional[Any] = b""
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def __a ( __UpperCAmelCase : int ) -> bytes:
"""simple docstring"""
if i < 0:
raise ValueError("Input must be non-negative" )
lowerCamelCase_ : Tuple = format(__UpperCAmelCase , "08x" )[-8:]
lowerCamelCase_ : int = b""
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" )
return little_endian_hex
def __a ( __UpperCAmelCase : bytes ) -> bytes:
"""simple docstring"""
lowerCamelCase_ : int = b""
for char in message:
bit_string += format(__UpperCAmelCase , "08b" ).encode("utf-8" )
lowerCamelCase_ : Optional[int] = format(len(__UpperCAmelCase ) , "064b" ).encode("utf-8" )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(__UpperCAmelCase ) % 512 != 448:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def __a ( __UpperCAmelCase : bytes ) -> Generator[list[int], None, None]:
"""simple docstring"""
if len(__UpperCAmelCase ) % 512 != 0:
raise ValueError("Input must have length that's a multiple of 512" )
for pos in range(0 , len(__UpperCAmelCase ) , 512 ):
lowerCamelCase_ : Union[str, Any] = bit_string[pos : pos + 512]
lowerCamelCase_ : Any = []
for i in range(0 , 512 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def __a ( __UpperCAmelCase : int ) -> int:
"""simple docstring"""
if i < 0:
raise ValueError("Input must be non-negative" )
lowerCamelCase_ : Dict = format(__UpperCAmelCase , "032b" )
lowerCamelCase_ : Dict = ""
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(__UpperCAmelCase , 2 )
def __a ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> int:
"""simple docstring"""
return (a + b) % 2**32
def __a ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> int:
"""simple docstring"""
if i < 0:
raise ValueError("Input must be non-negative" )
if shift < 0:
raise ValueError("Shift must be non-negative" )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def __a ( __UpperCAmelCase : bytes ) -> bytes:
"""simple docstring"""
lowerCamelCase_ : int = preprocess(__UpperCAmelCase )
lowerCamelCase_ : Union[str, Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
lowerCamelCase_ : List[str] = 0X67_452_301
lowerCamelCase_ : Optional[int] = 0XEF_CDA_B89
lowerCamelCase_ : str = 0X98_BAD_CFE
lowerCamelCase_ : Optional[int] = 0X10_325_476
lowerCamelCase_ : Union[str, Any] = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(__UpperCAmelCase ):
lowerCamelCase_ : Optional[int] = aa
lowerCamelCase_ : List[str] = ba
lowerCamelCase_ : Optional[int] = ca
lowerCamelCase_ : List[Any] = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
lowerCamelCase_ : Dict = d ^ (b & (c ^ d))
lowerCamelCase_ : Any = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
lowerCamelCase_ : Any = c ^ (d & (b ^ c))
lowerCamelCase_ : List[Any] = (5 * i + 1) % 16
elif i <= 47:
lowerCamelCase_ : List[Any] = b ^ c ^ d
lowerCamelCase_ : int = (3 * i + 5) % 16
else:
lowerCamelCase_ : str = c ^ (b | not_aa(__UpperCAmelCase ))
lowerCamelCase_ : int = (7 * i) % 16
lowerCamelCase_ : List[str] = (f + a + added_consts[i] + block_words[g]) % 2**32
lowerCamelCase_ : Union[str, Any] = d
lowerCamelCase_ : Optional[int] = c
lowerCamelCase_ : Union[str, Any] = b
lowerCamelCase_ : List[str] = sum_aa(__UpperCAmelCase , left_rotate_aa(__UpperCAmelCase , shift_amounts[i] ) )
# Add hashed chunk to running total
lowerCamelCase_ : Tuple = sum_aa(__UpperCAmelCase , __UpperCAmelCase )
lowerCamelCase_ : List[str] = sum_aa(__UpperCAmelCase , __UpperCAmelCase )
lowerCamelCase_ : Dict = sum_aa(__UpperCAmelCase , __UpperCAmelCase )
lowerCamelCase_ : Optional[int] = sum_aa(__UpperCAmelCase , __UpperCAmelCase )
lowerCamelCase_ : Optional[int] = reformat_hex(__UpperCAmelCase ) + reformat_hex(__UpperCAmelCase ) + reformat_hex(__UpperCAmelCase ) + reformat_hex(__UpperCAmelCase )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 253
| 1
|
import io
import json
import unittest
from parameterized import parameterized
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device
from utils import calculate_bleu
__lowerCAmelCase : Any = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json"
with io.open(filename, "r", encoding="utf-8") as f:
__lowerCAmelCase : List[Any] = json.load(f)
@require_torch
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def snake_case_ ( self : List[str] , _snake_case : List[Any] ):
return FSMTTokenizer.from_pretrained(_snake_case )
def snake_case_ ( self : Any , _snake_case : List[str] ):
__lowercase : str = FSMTForConditionalGeneration.from_pretrained(_snake_case ).to(_snake_case )
if torch_device == "cuda":
model.half()
return model
@parameterized.expand(
[
['''en-ru''', 26.0],
['''ru-en''', 22.0],
['''en-de''', 22.0],
['''de-en''', 29.0],
] )
@slow
def snake_case_ ( self : Tuple , _snake_case : int , _snake_case : Union[str, Any] ):
# note: this test is not testing the best performance since it only evals a small batch
# but it should be enough to detect a regression in the output quality
__lowercase : Tuple = F'facebook/wmt19-{pair}'
__lowercase : Tuple = self.get_tokenizer(_snake_case )
__lowercase : Dict = self.get_model(_snake_case )
__lowercase : Dict = bleu_data[pair]['''src''']
__lowercase : Any = bleu_data[pair]['''tgt''']
__lowercase : Any = tokenizer(_snake_case , return_tensors='''pt''' , truncation=_snake_case , padding='''longest''' ).to(_snake_case )
__lowercase : Optional[int] = model.generate(
input_ids=batch.input_ids , num_beams=8 , )
__lowercase : Any = tokenizer.batch_decode(
_snake_case , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case )
__lowercase : Tuple = calculate_bleu(_snake_case , _snake_case )
print(_snake_case )
self.assertGreaterEqual(scores['''bleu'''] , _snake_case )
| 509
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowerCAmelCase : List[Any] = logging.get_logger(__name__)
__lowerCAmelCase : Union[str, Any] = {
"RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json",
"RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json",
"RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json",
"RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json",
"RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json",
"RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json",
"RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json",
"RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json",
"RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json",
"RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json",
}
class __lowerCAmelCase ( lowerCAmelCase_ ):
"""simple docstring"""
A__ : Optional[int] = '''rwkv'''
A__ : int = {'''max_position_embeddings''': '''context_length'''}
def __init__( self : List[str] , _snake_case : List[Any]=5_0277 , _snake_case : List[Any]=1024 , _snake_case : Optional[int]=4096 , _snake_case : str=32 , _snake_case : Dict=None , _snake_case : Any=None , _snake_case : str=1E-5 , _snake_case : str=0 , _snake_case : Union[str, Any]=0 , _snake_case : List[Any]=6 , _snake_case : Any=False , _snake_case : int=True , **_snake_case : Optional[Any] , ):
__lowercase : Dict = vocab_size
__lowercase : Tuple = context_length
__lowercase : str = hidden_size
__lowercase : Tuple = num_hidden_layers
__lowercase : Dict = attention_hidden_size if attention_hidden_size is not None else hidden_size
__lowercase : Dict = intermediate_size if intermediate_size is not None else 4 * hidden_size
__lowercase : Optional[Any] = layer_norm_epsilon
__lowercase : List[str] = rescale_every
__lowercase : Union[str, Any] = use_cache
__lowercase : Dict = bos_token_id
__lowercase : Optional[int] = eos_token_id
super().__init__(
tie_word_embeddings=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case )
| 509
| 1
|
import random
import unittest
import numpy as np
import transformers
from transformers import is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax
if is_flax_available():
import os
import jax.numpy as jnp
from jax import jit
from transformers import AutoTokenizer, FlaxAutoModelForCausalLM
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
SCREAMING_SNAKE_CASE__ : Optional[Any] = "0.12" # assumed parallelism: 8
if is_torch_available():
import torch
def _a ( lowercase__ : Optional[Any] , lowercase__ : Tuple , lowercase__ : List[str]=None ):
'''simple docstring'''
if rng is None:
SCREAMING_SNAKE_CASE__ : Optional[int] = random.Random()
SCREAMING_SNAKE_CASE__ : Optional[Any] = 1
for dim in shape:
total_dims *= dim
SCREAMING_SNAKE_CASE__ : Tuple = []
for _ in range(lowercase__ ):
values.append(rng.randint(0 , vocab_size - 1 ) )
SCREAMING_SNAKE_CASE__ : Optional[int] = np.array(lowercase__ , dtype=jnp.intaa ).reshape(lowercase__ )
return output
def _a ( lowercase__ : Optional[Any] , lowercase__ : int=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : str = ids_tensor(lowercase__ , vocab_size=2 , rng=lowercase__ )
# make sure that at least one token is attended to for each batch
SCREAMING_SNAKE_CASE__ : List[Any] = 1
return attn_mask
@require_flax
class snake_case :
lowercase_ = None
lowercase_ = ()
def __lowercase( self : str )-> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs_for_common()
# cut to half length & take max batch_size 3
SCREAMING_SNAKE_CASE__ : str = 2
SCREAMING_SNAKE_CASE__ : int = inputs['input_ids'].shape[-1] // 2
SCREAMING_SNAKE_CASE__ : Any = inputs['input_ids'][:max_batch_size, :sequence_length]
SCREAMING_SNAKE_CASE__ : Optional[Any] = jnp.ones_like(a_ )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = attention_mask[:max_batch_size, :sequence_length]
# generate max 5 tokens
SCREAMING_SNAKE_CASE__ : Union[str, Any] = input_ids.shape[-1] + 5
if config.eos_token_id is not None and config.pad_token_id is None:
# hack to allow generate for models such as GPT2 as is done in `generate()`
SCREAMING_SNAKE_CASE__ : Tuple = config.eos_token_id
return config, input_ids, attention_mask, max_length
@is_pt_flax_cross_test
def __lowercase( self : List[str] )-> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._get_input_ids_and_config()
SCREAMING_SNAKE_CASE__ : int = False
SCREAMING_SNAKE_CASE__ : str = max_length
SCREAMING_SNAKE_CASE__ : Dict = 0
for model_class in self.all_generative_model_classes:
SCREAMING_SNAKE_CASE__ : Any = model_class(a_ )
SCREAMING_SNAKE_CASE__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning
SCREAMING_SNAKE_CASE__ : Optional[Any] = getattr(a_ , a_ )
SCREAMING_SNAKE_CASE__ : List[str] = pt_model_class(a_ ).eval()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = load_flax_weights_in_pytorch_model(a_ , flax_model.params )
SCREAMING_SNAKE_CASE__ : Dict = flax_model.generate(a_ ).sequences
SCREAMING_SNAKE_CASE__ : str = pt_model.generate(torch.tensor(a_ , dtype=torch.long ) )
if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]:
SCREAMING_SNAKE_CASE__ : List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]]
self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() )
def __lowercase( self : Optional[Any] )-> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = self._get_input_ids_and_config()
SCREAMING_SNAKE_CASE__ : List[str] = False
SCREAMING_SNAKE_CASE__ : str = max_length
for model_class in self.all_generative_model_classes:
SCREAMING_SNAKE_CASE__ : Optional[Any] = model_class(a_ )
SCREAMING_SNAKE_CASE__ : str = model.generate(a_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , a_ )
SCREAMING_SNAKE_CASE__ : List[str] = jit(model.generate )
SCREAMING_SNAKE_CASE__ : Dict = jit_generate(a_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def __lowercase( self : Tuple )-> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = self._get_input_ids_and_config()
SCREAMING_SNAKE_CASE__ : List[str] = True
SCREAMING_SNAKE_CASE__ : str = max_length
for model_class in self.all_generative_model_classes:
SCREAMING_SNAKE_CASE__ : List[str] = model_class(a_ )
SCREAMING_SNAKE_CASE__ : Optional[int] = model.generate(a_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , a_ )
SCREAMING_SNAKE_CASE__ : Any = jit(model.generate )
SCREAMING_SNAKE_CASE__ : str = jit_generate(a_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def __lowercase( self : int )-> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = self._get_input_ids_and_config()
SCREAMING_SNAKE_CASE__ : int = False
SCREAMING_SNAKE_CASE__ : str = max_length
SCREAMING_SNAKE_CASE__ : Any = 2
for model_class in self.all_generative_model_classes:
SCREAMING_SNAKE_CASE__ : Dict = model_class(a_ )
SCREAMING_SNAKE_CASE__ : str = model.generate(a_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , a_ )
SCREAMING_SNAKE_CASE__ : Optional[int] = jit(model.generate )
SCREAMING_SNAKE_CASE__ : Tuple = jit_generate(a_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def __lowercase( self : Union[str, Any] )-> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = self._get_input_ids_and_config()
SCREAMING_SNAKE_CASE__ : Any = False
SCREAMING_SNAKE_CASE__ : Union[str, Any] = max_length
SCREAMING_SNAKE_CASE__ : Tuple = 2
SCREAMING_SNAKE_CASE__ : Tuple = 2
for model_class in self.all_generative_model_classes:
SCREAMING_SNAKE_CASE__ : List[Any] = model_class(a_ )
SCREAMING_SNAKE_CASE__ : Dict = model.generate(a_ ).sequences
self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences )
def __lowercase( self : Any )-> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = self._get_input_ids_and_config()
SCREAMING_SNAKE_CASE__ : str = True
SCREAMING_SNAKE_CASE__ : int = max_length
SCREAMING_SNAKE_CASE__ : List[str] = 0.8
SCREAMING_SNAKE_CASE__ : Tuple = 10
SCREAMING_SNAKE_CASE__ : str = 0.3
SCREAMING_SNAKE_CASE__ : Optional[Any] = 1
SCREAMING_SNAKE_CASE__ : Any = 8
SCREAMING_SNAKE_CASE__ : Dict = 9
for model_class in self.all_generative_model_classes:
SCREAMING_SNAKE_CASE__ : Optional[Any] = model_class(a_ )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = model.generate(a_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , a_ )
SCREAMING_SNAKE_CASE__ : Any = jit(model.generate )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = jit_generate(a_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def __lowercase( self : Dict )-> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = self._get_input_ids_and_config()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = max_length
SCREAMING_SNAKE_CASE__ : Tuple = 1
SCREAMING_SNAKE_CASE__ : Optional[Any] = 8
SCREAMING_SNAKE_CASE__ : str = 9
for model_class in self.all_generative_model_classes:
SCREAMING_SNAKE_CASE__ : Dict = model_class(a_ )
SCREAMING_SNAKE_CASE__ : Dict = model.generate(a_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , a_ )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = jit(model.generate )
SCREAMING_SNAKE_CASE__ : Optional[Any] = jit_generate(a_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def __lowercase( self : Optional[Any] )-> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = self._get_input_ids_and_config()
SCREAMING_SNAKE_CASE__ : List[Any] = max_length
SCREAMING_SNAKE_CASE__ : Tuple = 2
SCREAMING_SNAKE_CASE__ : List[Any] = 1
SCREAMING_SNAKE_CASE__ : Any = 8
SCREAMING_SNAKE_CASE__ : Optional[int] = 9
for model_class in self.all_generative_model_classes:
SCREAMING_SNAKE_CASE__ : List[Any] = model_class(a_ )
SCREAMING_SNAKE_CASE__ : int = model.generate(a_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , a_ )
SCREAMING_SNAKE_CASE__ : Optional[Any] = jit(model.generate )
SCREAMING_SNAKE_CASE__ : int = jit_generate(a_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def __lowercase( self : str )-> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = self._get_input_ids_and_config()
# pad attention mask on the left
SCREAMING_SNAKE_CASE__ : List[str] = attention_mask.at[(0, 0)].set(0 )
SCREAMING_SNAKE_CASE__ : Any = False
SCREAMING_SNAKE_CASE__ : Optional[int] = max_length
for model_class in self.all_generative_model_classes:
SCREAMING_SNAKE_CASE__ : str = model_class(a_ )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = model.generate(a_ , attention_mask=a_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , a_ )
SCREAMING_SNAKE_CASE__ : Optional[int] = jit(model.generate )
SCREAMING_SNAKE_CASE__ : Tuple = jit_generate(a_ , attention_mask=a_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def __lowercase( self : List[str] )-> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = self._get_input_ids_and_config()
# pad attention mask on the left
SCREAMING_SNAKE_CASE__ : List[Any] = attention_mask.at[(0, 0)].set(0 )
SCREAMING_SNAKE_CASE__ : List[str] = True
SCREAMING_SNAKE_CASE__ : Dict = max_length
for model_class in self.all_generative_model_classes:
SCREAMING_SNAKE_CASE__ : Dict = model_class(a_ )
SCREAMING_SNAKE_CASE__ : int = model.generate(a_ , attention_mask=a_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , a_ )
SCREAMING_SNAKE_CASE__ : Optional[Any] = jit(model.generate )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = jit_generate(a_ , attention_mask=a_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def __lowercase( self : Any )-> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = self._get_input_ids_and_config()
# pad attention mask on the left
SCREAMING_SNAKE_CASE__ : List[str] = attention_mask.at[(0, 0)].set(0 )
SCREAMING_SNAKE_CASE__ : Any = 2
SCREAMING_SNAKE_CASE__ : List[Any] = max_length
for model_class in self.all_generative_model_classes:
SCREAMING_SNAKE_CASE__ : Tuple = model_class(a_ )
SCREAMING_SNAKE_CASE__ : Any = model.generate(a_ , attention_mask=a_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , a_ )
SCREAMING_SNAKE_CASE__ : List[Any] = jit(model.generate )
SCREAMING_SNAKE_CASE__ : Dict = jit_generate(a_ , attention_mask=a_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
@require_flax
class snake_case ( unittest.TestCase ):
def __lowercase( self : Optional[Any] )-> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-bert' )
SCREAMING_SNAKE_CASE__ : Optional[Any] = FlaxAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-bert-flax-only' )
SCREAMING_SNAKE_CASE__ : Optional[Any] = 'Hello world'
SCREAMING_SNAKE_CASE__ : List[str] = tokenizer(a_ , return_tensors='np' ).input_ids
# typos are quickly detected (the correct argument is `do_sample`)
with self.assertRaisesRegex(a_ , 'do_samples' ):
model.generate(a_ , do_samples=a_ )
# arbitrary arguments that will not be used anywhere are also not accepted
with self.assertRaisesRegex(a_ , 'foo' ):
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {'foo': 'bar'}
model.generate(a_ , **a_ )
| 713
|
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
BertTokenizer,
ViltConfig,
ViltForImageAndTextRetrieval,
ViltForImagesAndTextClassification,
ViltForMaskedLM,
ViltForQuestionAnswering,
ViltImageProcessor,
ViltProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ : int = logging.get_logger(__name__)
def _a ( lowercase__ : Union[str, Any] , lowercase__ : Union[str, Any]=False , lowercase__ : str=False , lowercase__ : Dict=False ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[Any] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'''transformer.blocks.{i}.norm1.weight''', f'''vilt.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((f'''transformer.blocks.{i}.norm1.bias''', f'''vilt.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(f'''transformer.blocks.{i}.attn.proj.weight''', f'''vilt.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append(
(f'''transformer.blocks.{i}.attn.proj.bias''', f'''vilt.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((f'''transformer.blocks.{i}.norm2.weight''', f'''vilt.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((f'''transformer.blocks.{i}.norm2.bias''', f'''vilt.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append(
(f'''transformer.blocks.{i}.mlp.fc1.weight''', f'''vilt.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((f'''transformer.blocks.{i}.mlp.fc1.bias''', f'''vilt.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.weight''', f'''vilt.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.bias''', f'''vilt.encoder.layer.{i}.output.dense.bias''') )
# embeddings
rename_keys.extend(
[
# text embeddings
('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'),
(
'text_embeddings.position_embeddings.weight',
'vilt.embeddings.text_embeddings.position_embeddings.weight',
),
('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'),
(
'text_embeddings.token_type_embeddings.weight',
'vilt.embeddings.text_embeddings.token_type_embeddings.weight',
),
('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'),
('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'),
# patch embeddings
('transformer.cls_token', 'vilt.embeddings.cls_token'),
('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'),
('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'),
('transformer.pos_embed', 'vilt.embeddings.position_embeddings'),
# token type embeddings
('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'),
] )
# final layernorm + pooler
rename_keys.extend(
[
('transformer.norm.weight', 'vilt.layernorm.weight'),
('transformer.norm.bias', 'vilt.layernorm.bias'),
('pooler.dense.weight', 'vilt.pooler.dense.weight'),
('pooler.dense.bias', 'vilt.pooler.dense.bias'),
] )
# classifier head(s)
if vqa_model:
# classification head
rename_keys.extend(
[
('vqa_classifier.0.weight', 'classifier.0.weight'),
('vqa_classifier.0.bias', 'classifier.0.bias'),
('vqa_classifier.1.weight', 'classifier.1.weight'),
('vqa_classifier.1.bias', 'classifier.1.bias'),
('vqa_classifier.3.weight', 'classifier.3.weight'),
('vqa_classifier.3.bias', 'classifier.3.bias'),
] )
elif nlvr_model:
# classification head
rename_keys.extend(
[
('nlvr2_classifier.0.weight', 'classifier.0.weight'),
('nlvr2_classifier.0.bias', 'classifier.0.bias'),
('nlvr2_classifier.1.weight', 'classifier.1.weight'),
('nlvr2_classifier.1.bias', 'classifier.1.bias'),
('nlvr2_classifier.3.weight', 'classifier.3.weight'),
('nlvr2_classifier.3.bias', 'classifier.3.bias'),
] )
else:
pass
return rename_keys
def _a ( lowercase__ : List[str] , lowercase__ : Dict ):
'''simple docstring'''
for i in range(config.num_hidden_layers ):
SCREAMING_SNAKE_CASE__ : Dict = 'vilt.'
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
SCREAMING_SNAKE_CASE__ : Optional[Any] = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.weight''' )
SCREAMING_SNAKE_CASE__ : Any = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
SCREAMING_SNAKE_CASE__ : Union[str, Any] = in_proj_weight[
: config.hidden_size, :
]
SCREAMING_SNAKE_CASE__ : List[str] = in_proj_bias[: config.hidden_size]
SCREAMING_SNAKE_CASE__ : int = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
SCREAMING_SNAKE_CASE__ : List[Any] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
SCREAMING_SNAKE_CASE__ : List[str] = in_proj_weight[
-config.hidden_size :, :
]
SCREAMING_SNAKE_CASE__ : Tuple = in_proj_bias[-config.hidden_size :]
def _a ( lowercase__ : Optional[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : int = ['head.weight', 'head.bias']
for k in ignore_keys:
state_dict.pop(lowercase__ , lowercase__ )
def _a ( lowercase__ : int , lowercase__ : int , lowercase__ : Dict ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Tuple = dct.pop(lowercase__ )
SCREAMING_SNAKE_CASE__ : Any = val
@torch.no_grad()
def _a ( lowercase__ : Dict , lowercase__ : Optional[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : List[Any] = ViltConfig(image_size=3_84 , patch_size=32 , tie_word_embeddings=lowercase__ )
SCREAMING_SNAKE_CASE__ : List[str] = False
SCREAMING_SNAKE_CASE__ : Tuple = False
SCREAMING_SNAKE_CASE__ : List[str] = False
SCREAMING_SNAKE_CASE__ : str = False
if "vqa" in checkpoint_url:
SCREAMING_SNAKE_CASE__ : Any = True
SCREAMING_SNAKE_CASE__ : str = 31_29
SCREAMING_SNAKE_CASE__ : Optional[Any] = 'huggingface/label-files'
SCREAMING_SNAKE_CASE__ : int = 'vqa2-id2label.json'
SCREAMING_SNAKE_CASE__ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='dataset' ) , 'r' ) )
SCREAMING_SNAKE_CASE__ : Optional[Any] = {int(lowercase__ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE__ : Dict = idalabel
SCREAMING_SNAKE_CASE__ : str = {v: k for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE__ : List[str] = ViltForQuestionAnswering(lowercase__ )
elif "nlvr" in checkpoint_url:
SCREAMING_SNAKE_CASE__ : Optional[int] = True
SCREAMING_SNAKE_CASE__ : List[str] = 2
SCREAMING_SNAKE_CASE__ : Dict = {0: 'False', 1: 'True'}
SCREAMING_SNAKE_CASE__ : Dict = {v: k for k, v in config.idalabel.items()}
SCREAMING_SNAKE_CASE__ : Tuple = 3
SCREAMING_SNAKE_CASE__ : int = ViltForImagesAndTextClassification(lowercase__ )
elif "irtr" in checkpoint_url:
SCREAMING_SNAKE_CASE__ : Dict = True
SCREAMING_SNAKE_CASE__ : str = ViltForImageAndTextRetrieval(lowercase__ )
elif "mlm_itm" in checkpoint_url:
SCREAMING_SNAKE_CASE__ : int = True
SCREAMING_SNAKE_CASE__ : Optional[int] = ViltForMaskedLM(lowercase__ )
else:
raise ValueError('Unknown model type' )
# load state_dict of original model, remove and rename some keys
SCREAMING_SNAKE_CASE__ : Any = torch.hub.load_state_dict_from_url(lowercase__ , map_location='cpu' )['state_dict']
SCREAMING_SNAKE_CASE__ : Any = create_rename_keys(lowercase__ , lowercase__ , lowercase__ , lowercase__ )
for src, dest in rename_keys:
rename_key(lowercase__ , lowercase__ , lowercase__ )
read_in_q_k_v(lowercase__ , lowercase__ )
if mlm_model or irtr_model:
SCREAMING_SNAKE_CASE__ : Any = ['itm_score.fc.weight', 'itm_score.fc.bias']
for k in ignore_keys:
state_dict.pop(lowercase__ , lowercase__ )
# load state dict into HuggingFace model
model.eval()
if mlm_model:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = model.load_state_dict(lowercase__ , strict=lowercase__ )
assert missing_keys == ["mlm_score.decoder.bias"]
else:
model.load_state_dict(lowercase__ )
# Define processor
SCREAMING_SNAKE_CASE__ : str = ViltImageProcessor(size=3_84 )
SCREAMING_SNAKE_CASE__ : List[Any] = BertTokenizer.from_pretrained('bert-base-uncased' )
SCREAMING_SNAKE_CASE__ : List[Any] = ViltProcessor(lowercase__ , lowercase__ )
# Forward pass on example inputs (image + text)
if nlvr_model:
SCREAMING_SNAKE_CASE__ : List[str] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=lowercase__ ).raw )
SCREAMING_SNAKE_CASE__ : Any = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=lowercase__ ).raw )
SCREAMING_SNAKE_CASE__ : Tuple = (
'The left image contains twice the number of dogs as the right image, and at least two dogs in total are'
' standing.'
)
SCREAMING_SNAKE_CASE__ : List[Any] = processor(lowercase__ , lowercase__ , return_tensors='pt' )
SCREAMING_SNAKE_CASE__ : List[str] = processor(lowercase__ , lowercase__ , return_tensors='pt' )
SCREAMING_SNAKE_CASE__ : List[Any] = model(
input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , )
else:
SCREAMING_SNAKE_CASE__ : Tuple = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=lowercase__ ).raw )
if mlm_model:
SCREAMING_SNAKE_CASE__ : Optional[Any] = 'a bunch of [MASK] laying on a [MASK].'
else:
SCREAMING_SNAKE_CASE__ : Optional[Any] = 'How many cats are there?'
SCREAMING_SNAKE_CASE__ : Optional[Any] = processor(lowercase__ , lowercase__ , return_tensors='pt' )
SCREAMING_SNAKE_CASE__ : str = model(**lowercase__ )
# Verify outputs
if mlm_model:
SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.Size([1, 11, 3_05_22] )
SCREAMING_SNAKE_CASE__ : List[str] = torch.tensor([-12.5061, -12.5123, -12.5174] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , lowercase__ , atol=1E-4 )
# verify masked token prediction equals "cats"
SCREAMING_SNAKE_CASE__ : Union[str, Any] = outputs.logits[0, 4, :].argmax(-1 ).item()
assert tokenizer.decode([predicted_id] ) == "cats"
elif vqa_model:
SCREAMING_SNAKE_CASE__ : str = torch.Size([1, 31_29] )
SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor([-15.9495, -18.1472, -10.3041] )
assert torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , lowercase__ , atol=1E-4 )
# verify vqa prediction equals "2"
SCREAMING_SNAKE_CASE__ : List[Any] = outputs.logits.argmax(-1 ).item()
assert model.config.idalabel[predicted_idx] == "2"
elif nlvr_model:
SCREAMING_SNAKE_CASE__ : Optional[int] = torch.Size([1, 2] )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor([-2.8721, 2.1291] )
assert torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 )
assert outputs.logits.shape == expected_shape
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
print(f'''Saving model and processor to {pytorch_dump_folder_path}''' )
model.save_pretrained(lowercase__ )
processor.save_pretrained(lowercase__ )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt",
type=str,
help="URL of the checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
SCREAMING_SNAKE_CASE__ : List[Any] = parser.parse_args()
convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 636
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__snake_case = {
"""configuration_altclip""": [
"""ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""AltCLIPConfig""",
"""AltCLIPTextConfig""",
"""AltCLIPVisionConfig""",
],
"""processing_altclip""": ["""AltCLIPProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
"""ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""AltCLIPPreTrainedModel""",
"""AltCLIPModel""",
"""AltCLIPTextModel""",
"""AltCLIPVisionModel""",
]
if TYPE_CHECKING:
from .configuration_altclip import (
ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
AltCLIPConfig,
AltCLIPTextConfig,
AltCLIPVisionConfig,
)
from .processing_altclip import AltCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_altclip import (
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
AltCLIPModel,
AltCLIPPreTrainedModel,
AltCLIPTextModel,
AltCLIPVisionModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 178
|
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
lowercase__ : Optional[Any] = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowercase__ : List[str] = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
lowercase__ : Optional[int] = 4
lowercase__ : Optional[Any] = 48
lowercase__ : int = """pixelshuffle_aux"""
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowercase__ : List[str] = [6, 6, 6, 6]
lowercase__ : Any = 60
lowercase__ : Tuple = [6, 6, 6, 6]
lowercase__ : Dict = """pixelshuffledirect"""
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowercase__ : Tuple = 4
lowercase__ : Any = """nearest+conv"""
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
lowercase__ : str = 1
lowercase__ : Optional[int] = 1
lowercase__ : Optional[int] = 1_26
lowercase__ : Any = 7
lowercase__ : int = 255.0
lowercase__ : List[Any] = """"""
return config
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
if "patch_embed.proj" in name and "layers" not in name:
lowercase__ : Dict = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
lowercase__ : Dict = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" )
if "layers" in name:
lowercase__ : List[str] = name.replace("""layers""" , """encoder.stages""" )
if "residual_group.blocks" in name:
lowercase__ : Optional[int] = name.replace("""residual_group.blocks""" , """layers""" )
if "attn.proj" in name:
lowercase__ : int = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
lowercase__ : Tuple = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
lowercase__ : int = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
lowercase__ : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
lowercase__ : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
lowercase__ : Dict = name.replace("""mlp.fc2""" , """output.dense""" )
if "q_bias" in name:
lowercase__ : Any = name.replace("""q_bias""" , """query.bias""" )
if "k_bias" in name:
lowercase__ : Optional[Any] = name.replace("""k_bias""" , """key.bias""" )
if "v_bias" in name:
lowercase__ : Dict = name.replace("""v_bias""" , """value.bias""" )
if "cpb_mlp" in name:
lowercase__ : Union[str, Any] = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" )
if "patch_embed.proj" in name:
lowercase__ : List[Any] = name.replace("""patch_embed.proj""" , """patch_embed.projection""" )
if name == "norm.weight":
lowercase__ : Union[str, Any] = """layernorm.weight"""
if name == "norm.bias":
lowercase__ : List[str] = """layernorm.bias"""
if "conv_first" in name:
lowercase__ : Union[str, Any] = name.replace("""conv_first""" , """first_convolution""" )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
lowercase__ : List[Any] = name.replace("""conv_last""" , """final_convolution""" )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
lowercase__ : Optional[int] = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" )
if "upsample.0" in name:
lowercase__ : Dict = name.replace("""upsample.0""" , """upsample.convolution_0""" )
if "upsample.2" in name:
lowercase__ : Optional[Any] = name.replace("""upsample.2""" , """upsample.convolution_1""" )
lowercase__ : List[str] = """upsample.""" + name
elif config.upsampler == "pixelshuffledirect":
lowercase__ : Optional[Any] = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" )
lowercase__ : int = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" )
else:
pass
else:
lowercase__ : str = """swin2sr.""" + name
return name
def UpperCamelCase ( lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
lowercase__ : str = orig_state_dict.pop(lowercase_ )
if "qkv" in key:
lowercase__ : Any = key.split(""".""" )
lowercase__ : List[Any] = int(key_split[1] )
lowercase__ : Dict = int(key_split[4] )
lowercase__ : Optional[Any] = config.embed_dim
if "weight" in key:
lowercase__ : List[str] = val[:dim, :]
lowercase__ : List[str] = val[dim : dim * 2, :]
lowercase__ : Optional[Any] = val[-dim:, :]
else:
lowercase__ : Optional[Any] = val[:dim]
lowercase__ : List[Any] = val[dim : dim * 2]
lowercase__ : Optional[int] = val[-dim:]
pass
else:
lowercase__ : Optional[Any] = val
return orig_state_dict
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
lowercase__ : Dict = get_config(lowercase_ )
lowercase__ : Any = SwinaSRForImageSuperResolution(lowercase_ )
model.eval()
lowercase__ : List[str] = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" )
lowercase__ : Union[str, Any] = convert_state_dict(lowercase_ , lowercase_ )
lowercase__ , lowercase__ : Dict = model.load_state_dict(lowercase_ , strict=lowercase_ )
if len(lowercase_ ) > 0:
raise ValueError("""Missing keys when converting: {}""".format(lowercase_ ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(F'Unexpected key {key} in state_dict' )
# verify values
lowercase__ : Any = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true"""
lowercase__ : Any = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert("""RGB""" )
lowercase__ : Any = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
lowercase__ : Optional[int] = 1_26 if """Jpeg""" in checkpoint_url else 2_56
lowercase__ : Union[str, Any] = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
lowercase__ : Dict = transforms(lowercase_ ).unsqueeze(0 )
if config.num_channels == 1:
lowercase__ : Any = pixel_values[:, 0, :, :].unsqueeze(1 )
lowercase__ : Union[str, Any] = model(lowercase_ )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
lowercase__ : Optional[Any] = torch.Size([1, 3, 5_12, 5_12] )
lowercase__ : Optional[Any] = torch.tensor(
[[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowercase__ : List[str] = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
lowercase__ : Optional[Any] = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowercase__ : Tuple = torch.Size([1, 3, 5_12, 5_12] )
lowercase__ : int = torch.tensor(
[[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowercase__ : Tuple = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] )
assert (
outputs.reconstruction.shape == expected_shape
), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}'
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowercase_ , atol=1E-3 )
print("""Looks ok!""" )
lowercase__ : str = {
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": (
"""swin2SR-classical-sr-x2-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": (
"""swin2SR-classical-sr-x4-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": (
"""swin2SR-compressed-sr-x4-48"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": (
"""swin2SR-lightweight-x2-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": (
"""swin2SR-realworld-sr-x4-64-bsrgan-psnr"""
),
}
lowercase__ : str = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(F'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase_ )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(lowercase_ )
if push_to_hub:
model.push_to_hub(F'caidas/{model_name}' )
processor.push_to_hub(F'caidas/{model_name}' )
if __name__ == "__main__":
lowerCamelCase__ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""",
type=str,
help="""URL of the original Swin2SR checkpoint you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""")
lowerCamelCase__ : Any = parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 12
| 0
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
lowerCAmelCase_ : int = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ : Union[str, Any] = ["""GPTSw3Tokenizer"""]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_gpt_swa import GPTSwaTokenizer
else:
import sys
lowerCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 718
|
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__)
lowerCAmelCase_ : List[str] = {
"""hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""",
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCAmelCase__ = '''yolos'''
def __init__( self : int , lowercase__ : List[str]=768 , lowercase__ : Optional[Any]=12 , lowercase__ : Union[str, Any]=12 , lowercase__ : Any=3_072 , lowercase__ : List[Any]="gelu" , lowercase__ : Dict=0.0 , lowercase__ : Any=0.0 , lowercase__ : Dict=0.0_2 , lowercase__ : Tuple=1e-12 , lowercase__ : str=[512, 864] , lowercase__ : Dict=16 , lowercase__ : int=3 , lowercase__ : Optional[Any]=True , lowercase__ : List[Any]=100 , lowercase__ : str=True , lowercase__ : str=False , lowercase__ : List[str]=1 , lowercase__ : Dict=5 , lowercase__ : str=2 , lowercase__ : Optional[int]=5 , lowercase__ : Optional[int]=2 , lowercase__ : Optional[Any]=0.1 , **lowercase__ : Union[str, Any] , ) ->Tuple:
'''simple docstring'''
super().__init__(**lowercase__ )
_UpperCamelCase : Optional[int] = hidden_size
_UpperCamelCase : str = num_hidden_layers
_UpperCamelCase : Optional[Any] = num_attention_heads
_UpperCamelCase : Optional[int] = intermediate_size
_UpperCamelCase : Union[str, Any] = hidden_act
_UpperCamelCase : Tuple = hidden_dropout_prob
_UpperCamelCase : Any = attention_probs_dropout_prob
_UpperCamelCase : Optional[int] = initializer_range
_UpperCamelCase : str = layer_norm_eps
_UpperCamelCase : Optional[int] = image_size
_UpperCamelCase : int = patch_size
_UpperCamelCase : Dict = num_channels
_UpperCamelCase : List[str] = qkv_bias
_UpperCamelCase : Dict = num_detection_tokens
_UpperCamelCase : int = use_mid_position_embeddings
_UpperCamelCase : int = auxiliary_loss
# Hungarian matcher
_UpperCamelCase : Tuple = class_cost
_UpperCamelCase : str = bbox_cost
_UpperCamelCase : str = giou_cost
# Loss coefficients
_UpperCamelCase : List[str] = bbox_loss_coefficient
_UpperCamelCase : str = giou_loss_coefficient
_UpperCamelCase : str = eos_coefficient
class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCAmelCase__ = version.parse('''1.11''' )
@property
def snake_case__ ( self : Union[str, Any] ) ->Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def snake_case__ ( self : Any ) ->float:
'''simple docstring'''
return 1e-4
@property
def snake_case__ ( self : List[str] ) ->int:
'''simple docstring'''
return 12
| 204
| 0
|
"""simple docstring"""
import functools
def _snake_case ( __snake_case : str , __snake_case : str ):
"""simple docstring"""
_lowerCamelCase : int = len(__snake_case )
_lowerCamelCase : List[Any] = len(__snake_case )
@functools.cache
def min_distance(__snake_case : int , __snake_case : int ) -> int:
# if first word index is overflow - delete all from the second word
if indexa >= len_worda:
return len_worda - indexa
# if second word index is overflow - delete all from the first word
if indexa >= len_worda:
return len_worda - indexa
_lowerCamelCase : Optional[int] = int(worda[indexa] != worda[indexa] ) # current letters not identical
return min(
1 + min_distance(indexa + 1 , __snake_case ) , 1 + min_distance(__snake_case , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , )
return min_distance(0 , 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 88
|
"""simple docstring"""
from __future__ import annotations
from numpy import array, cos, cross, floataa, radians, sin
from numpy.typing import NDArray
def _snake_case ( __snake_case : float , __snake_case : float , __snake_case : bool = False ):
"""simple docstring"""
if radian_mode:
return [magnitude * cos(__snake_case ), magnitude * sin(__snake_case )]
return [magnitude * cos(radians(__snake_case ) ), magnitude * sin(radians(__snake_case ) )]
def _snake_case ( __snake_case : NDArray[floataa] , __snake_case : NDArray[floataa] , __snake_case : float = 10**-1 ):
"""simple docstring"""
_lowerCamelCase : NDArray[floataa] = cross(__snake_case , __snake_case )
_lowerCamelCase : float = sum(__snake_case )
return abs(__snake_case ) < eps
if __name__ == "__main__":
# Test to check if it works
UpperCAmelCase = array(
[
polar_force(718.4, 180 - 30),
polar_force(879.54, 45),
polar_force(100, -90),
]
)
UpperCAmelCase = array([[0, 0], [0, 0], [0, 0]])
assert in_static_equilibrium(forces, location)
# Problem 1 in image_data/2D_problems.jpg
UpperCAmelCase = array(
[
polar_force(30 * 9.81, 15),
polar_force(215, 180 - 45),
polar_force(264, 90 - 30),
]
)
UpperCAmelCase = array([[0, 0], [0, 0], [0, 0]])
assert in_static_equilibrium(forces, location)
# Problem in image_data/2D_problems_1.jpg
UpperCAmelCase = array([[0, -2000], [0, -1200], [0, 1_5600], [0, -1_2400]])
UpperCAmelCase = array([[0, 0], [6, 0], [10, 0], [12, 0]])
assert in_static_equilibrium(forces, location)
import doctest
doctest.testmod()
| 88
| 1
|
import math
lowerCAmelCase__ = 1_0
lowerCAmelCase__ = 7
lowerCAmelCase__ = BALLS_PER_COLOUR * NUM_COLOURS
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int = 2_0 ) -> str:
'''simple docstring'''
A__ = math.comb(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A__ = math.comb(NUM_BALLS - BALLS_PER_COLOUR , SCREAMING_SNAKE_CASE_ )
A__ = NUM_COLOURS * (1 - missing_colour / total)
return F'{result:.9f}'
if __name__ == "__main__":
print(solution(2_0))
| 626
|
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class a__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def UpperCamelCase ( self ) -> int:
'''simple docstring'''
A__ = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" )
A__ = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
A__ = model(lowercase )["last_hidden_state"]
A__ = tf.TensorShape((1, 10, 768) )
self.assertEqual(output.shape , lowercase )
# compare the actual values for a slice.
A__ = tf.convert_to_tensor(
[[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
| 626
| 1
|
import json
import sys
def __lowerCAmelCase ( _A ,_A ):
"""simple docstring"""
with open(_A ,encoding="""utf-8""" ) as f:
_lowercase = json.load(_A )
_lowercase = ["""<details>""", """<summary>Show updated benchmarks!</summary>""", """ """]
for benchmark_name in sorted(_A ):
_lowercase = results[benchmark_name]
_lowercase = benchmark_name.split("""/""" )[-1]
output_md.append(f'''### Benchmark: {benchmark_file_name}''' )
_lowercase = """| metric |"""
_lowercase = """|--------|"""
_lowercase = """| new / old (diff) |"""
for metric_name in sorted(_A ):
_lowercase = benchmark_res[metric_name]
_lowercase = metric_vals["""new"""]
_lowercase = metric_vals.get("""old""" ,_A )
_lowercase = metric_vals.get("""diff""" ,_A )
_lowercase = f''' {new_val:f}''' if isinstance(_A ,(int, float) ) else """None"""
if old_val is not None:
val_str += f''' / {old_val:f}''' if isinstance(_A ,(int, float) ) else "None"
if dif_val is not None:
val_str += f''' ({dif_val:f})''' if isinstance(_A ,(int, float) ) else "None"
title += " " + metric_name + " |"
lines += "---|"
value += val_str + " |"
output_md += [title, lines, value, " "]
output_md.append("""</details>""" )
with open(_A ,"""w""" ,encoding="""utf-8""" ) as f:
f.writelines("""\n""".join(_A ) )
if __name__ == "__main__":
A_: Optional[Any] = sys.argv[1]
A_: List[str] = sys.argv[2]
format_json_to_md(input_json_file, output_md_file)
| 398
|
from __future__ import annotations
import os
import tempfile
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import is_tensorflow_text_available, is_tf_available
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
from ..test_modeling_tf_common import floats_tensor
from .test_framework_agnostic import GenerationIntegrationTestsMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoTokenizer,
TFAutoModelForCausalLM,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSpeechSeqaSeq,
TFAutoModelForVisionaSeq,
TFBartForConditionalGeneration,
TFLogitsProcessorList,
TFMinLengthLogitsProcessor,
tf_top_k_top_p_filtering,
)
if is_tensorflow_text_available():
import tensorflow_text as text
@require_tf
class _lowercase ( unittest.TestCase ):
"""simple docstring"""
def _UpperCAmelCase ( self ):
'''simple docstring'''
_lowercase = tf.convert_to_tensor(
[
[
8.2_220_991, # 3rd highest value; idx. 0
-0.5_620_044,
5.23_229_752,
4.0_386_393,
-6.8_798_378,
-0.54_785_802,
-3.2_012_153,
2.92_777_176,
1.88_171_953,
7.35_341_276, # 5th highest value; idx. 9
8.43_207_833, # 2nd highest value; idx. 10
-9.85_711_836,
-5.96_209_236,
-1.13_039_161,
-7.1_115_294,
-0.8_369_633,
-5.3_186_408,
7.06_427_407,
0.81_369_344,
-0.82_023_817,
-5.9_179_796,
0.58_813_443,
-6.99_778_438,
4.71_551_189,
-0.18_771_637,
7.44_020_759, # 4th highest value; idx. 25
9.38_450_987, # 1st highest value; idx. 26
2.12_662_941,
-9.32_562_038,
2.35_652_522,
], # cummulative prob of 5 highest values <= 0.6
[
0.58_425_518,
4.53_139_238,
-5.57_510_464,
-6.28_030_699,
-7.19_529_503,
-4.02_122_551,
1.39_337_037,
-6.06_707_057,
1.59_480_517,
-9.643_119,
0.03_907_799,
0.67_231_762,
-8.88_206_726,
6.27_115_922, # 4th highest value; idx. 13
2.28_520_723,
4.82_767_506,
4.30_421_368,
8.8_275_313, # 2nd highest value; idx. 17
5.44_029_958, # 5th highest value; idx. 18
-4.4_735_794,
7.38_579_536, # 3rd highest value; idx. 20
-2.91_051_663,
2.61_946_077,
-2.5_674_762,
-9.48_959_302,
-4.02_922_645,
-1.35_416_918,
9.67_702_323, # 1st highest value; idx. 27
-5.89_478_553,
1.85_370_467,
], # cummulative prob of 5 highest values <= 0.6
] , dtype=tf.floataa , )
_lowercase = tf.convert_to_tensor(
[[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above
_lowercase = tf.convert_to_tensor(
[8.222_099, 7.3_534_126, 8.432_078, 7.4_402_075, 9.38_451, 6.271_159, 8.827_531, 5.4_402_995, 7.3_857_956, 9.677_023] , dtype=tf.floataa , ) # expected non filtered values as noted above
_lowercase = tf_top_k_top_p_filtering(UpperCAmelCase , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 )
_lowercase = output[output != -float("""inf""" )]
_lowercase = tf.cast(
tf.where(tf.not_equal(UpperCAmelCase , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , )
tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , rtol=1e-12 )
tf.debugging.assert_equal(UpperCAmelCase , UpperCAmelCase )
@require_tf
class _lowercase ( unittest.TestCase , _UpperCAmelCase ):
"""simple docstring"""
if is_tf_available():
lowerCAmelCase__ = {
'AutoModelForCausalLM': TFAutoModelForCausalLM,
'AutoModelForSpeechSeq2Seq': TFAutoModelForSpeechSeqaSeq,
'AutoModelForSeq2SeqLM': TFAutoModelForSeqaSeqLM,
'AutoModelForVision2Seq': TFAutoModelForVisionaSeq,
'LogitsProcessorList': TFLogitsProcessorList,
'MinLengthLogitsProcessor': TFMinLengthLogitsProcessor,
'create_tensor_fn': tf.convert_to_tensor,
'floats_tensor': floats_tensor,
'return_tensors': 'tf',
}
@slow
def _UpperCAmelCase ( self ):
'''simple docstring'''
_lowercase = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
_lowercase = 2
_lowercase = 2
class _lowercase ( tf.Module ):
"""simple docstring"""
def __init__( self , UpperCAmelCase ):
'''simple docstring'''
super(UpperCAmelCase , self ).__init__()
_lowercase = model
@tf.function(
input_signature=(
tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ),
tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ),
) , jit_compile=UpperCAmelCase , )
def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ):
'''simple docstring'''
_lowercase = self.model.generate(
input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , max_new_tokens=UpperCAmelCase , return_dict_in_generate=UpperCAmelCase , )
return {"sequences": outputs["sequences"]}
_lowercase = [[2, 0], [102, 103]]
_lowercase = [[1, 0], [1, 1]]
_lowercase = DummyModel(model=UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(UpperCAmelCase , UpperCAmelCase , signatures={"""serving_default""": dummy_model.serving} )
_lowercase = tf.saved_model.load(UpperCAmelCase ).signatures["""serving_default"""]
for batch_size in range(1 , len(UpperCAmelCase ) + 1 ):
_lowercase = {
"""input_ids""": tf.constant(dummy_input_ids[:batch_size] ),
"""attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ),
}
_lowercase = serving_func(**UpperCAmelCase )["""sequences"""]
_lowercase = test_model.generate(**UpperCAmelCase , max_new_tokens=UpperCAmelCase )
tf.debugging.assert_equal(UpperCAmelCase , UpperCAmelCase )
@slow
def _UpperCAmelCase ( self ):
'''simple docstring'''
_lowercase = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
_lowercase = 1
_lowercase = 2
class _lowercase ( tf.Module ):
"""simple docstring"""
def __init__( self , UpperCAmelCase ):
'''simple docstring'''
super(UpperCAmelCase , self ).__init__()
_lowercase = model
@tf.function(
input_signature=(
tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ),
tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ),
) , jit_compile=UpperCAmelCase , )
def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ):
'''simple docstring'''
_lowercase = self.model.generate(
input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , max_new_tokens=UpperCAmelCase , return_dict_in_generate=UpperCAmelCase , )
return {"sequences": outputs["sequences"]}
_lowercase = [[2], [102, 103]]
_lowercase = [[1], [1, 1]]
_lowercase = DummyModel(model=UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(UpperCAmelCase , UpperCAmelCase , signatures={"""serving_default""": dummy_model.serving} )
_lowercase = tf.saved_model.load(UpperCAmelCase ).signatures["""serving_default"""]
for input_row in range(len(UpperCAmelCase ) ):
_lowercase = {
"""input_ids""": tf.constant([dummy_input_ids[input_row]] ),
"""attention_mask""": tf.constant([dummy_attention_masks[input_row]] ),
}
_lowercase = serving_func(**UpperCAmelCase )["""sequences"""]
_lowercase = test_model.generate(**UpperCAmelCase , max_new_tokens=UpperCAmelCase )
tf.debugging.assert_equal(UpperCAmelCase , UpperCAmelCase )
@slow
@require_tensorflow_text
def _UpperCAmelCase ( self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
# file needed to load the TF tokenizer
hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=UpperCAmelCase )
class _lowercase ( tf.keras.layers.Layer ):
"""simple docstring"""
def __init__( self ):
'''simple docstring'''
super().__init__()
_lowercase = text.SentencepieceTokenizer(
model=tf.io.gfile.GFile(os.path.join(UpperCAmelCase , """spiece.model""" ) , """rb""" ).read() )
_lowercase = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" )
def _UpperCAmelCase ( self , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ):
'''simple docstring'''
_lowercase = self.tokenizer.tokenize(UpperCAmelCase )
_lowercase , _lowercase = text.pad_model_inputs(
UpperCAmelCase , max_seq_length=64 , pad_value=self.model.config.pad_token_id )
_lowercase = self.model.generate(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase )
return self.tokenizer.detokenize(UpperCAmelCase )
_lowercase = CompleteSentenceTransformer()
_lowercase = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" )
_lowercase = complete_model(UpperCAmelCase )
_lowercase = tf.keras.Model(UpperCAmelCase , UpperCAmelCase )
keras_model.save(UpperCAmelCase )
def _UpperCAmelCase ( self ):
'''simple docstring'''
_lowercase = {
"""do_sample""": True,
"""num_beams""": 1,
"""top_p""": 0.7,
"""top_k""": 10,
"""temperature""": 0.7,
}
_lowercase = 14
_lowercase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
_lowercase = """Hello, my dog is cute and"""
_lowercase = tokenizer(UpperCAmelCase , return_tensors="""tf""" )
_lowercase = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
_lowercase = 638
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(""":/CPU:0""" ):
tf.random.set_seed(0 )
_lowercase = model.generate(**UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
self.assertTrue(expectation == len(generated_tokens[0] ) )
_lowercase = [638, 198]
with tf.device(""":/CPU:0""" ):
tf.random.set_seed(0 )
_lowercase = model.generate(**UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
self.assertTrue(expectation == len(generated_tokens[0] ) )
def _UpperCAmelCase ( self ):
'''simple docstring'''
_lowercase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
_lowercase = """Hugging Face is a technology company based in New York and Paris."""
_lowercase = bart_tokenizer(UpperCAmelCase , return_tensors="""tf""" ).input_ids
_lowercase = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
_lowercase = bart_model.generate(UpperCAmelCase ).numpy()
class _lowercase ( _UpperCAmelCase ):
"""simple docstring"""
def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ):
'''simple docstring'''
return super().call(UpperCAmelCase , **UpperCAmelCase )
_lowercase = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
_lowercase = bart_model.generate(UpperCAmelCase , foo="""bar""" ).numpy()
self.assertTrue(np.array_equal(UpperCAmelCase , UpperCAmelCase ) )
class _lowercase ( bart_model.model.encoder.__class__ ):
"""simple docstring"""
def _UpperCAmelCase ( self , UpperCAmelCase , **UpperCAmelCase ):
'''simple docstring'''
return super().call(UpperCAmelCase , **UpperCAmelCase )
_lowercase = FakeEncoder(bart_model.config , bart_model.model.shared )
_lowercase = fake_encoder
# Normal generation still works (the output will be different because the encoder weights are different)
_lowercase = bart_model.generate(UpperCAmelCase ).numpy()
with self.assertRaises(UpperCAmelCase ):
# FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo"
bart_model.generate(UpperCAmelCase , foo="""bar""" )
| 398
| 1
|
"""simple docstring"""
import unittest
from transformers import DebertaVaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DebertaVaForMaskedLM,
DebertaVaForMultipleChoice,
DebertaVaForQuestionAnswering,
DebertaVaForSequenceClassification,
DebertaVaForTokenClassification,
DebertaVaModel,
)
from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCamelCase__ ( _a ):
def __init__( self : str , A_ : Any , A_ : Union[str, Any]=1_3 , A_ : str=7 , A_ : Tuple=True , A_ : Any=True , A_ : Dict=True , A_ : str=True , A_ : Optional[Any]=9_9 , A_ : int=3_2 , A_ : Dict=5 , A_ : Union[str, Any]=4 , A_ : Tuple=3_7 , A_ : Any="gelu" , A_ : List[str]=0.1 , A_ : int=0.1 , A_ : List[Any]=5_1_2 , A_ : Optional[Any]=1_6 , A_ : Optional[int]=2 , A_ : Any=0.02 , A_ : int=False , A_ : Any=True , A_ : Optional[Any]="None" , A_ : int=3 , A_ : Any=4 , A_ : Union[str, Any]=None , ):
'''simple docstring'''
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_input_mask
__lowercase = use_token_type_ids
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = type_sequence_label_size
__lowercase = initializer_range
__lowercase = num_labels
__lowercase = num_choices
__lowercase = relative_attention
__lowercase = position_biased_input
__lowercase = pos_att_type
__lowercase = scope
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
'''simple docstring'''
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowercase = None
if self.use_input_mask:
__lowercase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
__lowercase = None
if self.use_token_type_ids:
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowercase = None
__lowercase = None
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__lowercase = ids_tensor([self.batch_size] , self.num_choices )
__lowercase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
return DebertaVaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , A_ : int ):
'''simple docstring'''
self.parent.assertListEqual(list(result.loss.size() ) , [] )
def SCREAMING_SNAKE_CASE_ ( self : int , A_ : List[str] , A_ : List[Any] , A_ : str , A_ : str , A_ : Tuple , A_ : Tuple , A_ : Dict ):
'''simple docstring'''
__lowercase = DebertaVaModel(config=A_ )
model.to(A_ )
model.eval()
__lowercase = model(A_ , attention_mask=A_ , token_type_ids=A_ )[0]
__lowercase = model(A_ , token_type_ids=A_ )[0]
__lowercase = model(A_ )[0]
self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , A_ : List[str] , A_ : Any , A_ : str , A_ : Dict , A_ : Tuple , A_ : List[Any] , A_ : Optional[int] ):
'''simple docstring'''
__lowercase = DebertaVaForMaskedLM(config=A_ )
model.to(A_ )
model.eval()
__lowercase = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE_ ( self : str , A_ : int , A_ : List[Any] , A_ : str , A_ : Any , A_ : Any , A_ : Dict , A_ : int ):
'''simple docstring'''
__lowercase = self.num_labels
__lowercase = DebertaVaForSequenceClassification(A_ )
model.to(A_ )
model.eval()
__lowercase = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ )
self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] )
self.check_loss_output(A_ )
def SCREAMING_SNAKE_CASE_ ( self : Dict , A_ : str , A_ : str , A_ : Dict , A_ : Tuple , A_ : List[Any] , A_ : Union[str, Any] , A_ : int ):
'''simple docstring'''
__lowercase = self.num_labels
__lowercase = DebertaVaForTokenClassification(config=A_ )
model.to(A_ )
model.eval()
__lowercase = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , A_ : Union[str, Any] , A_ : Dict , A_ : Optional[Any] , A_ : Tuple , A_ : int , A_ : Union[str, Any] , A_ : Union[str, Any] ):
'''simple docstring'''
__lowercase = DebertaVaForQuestionAnswering(config=A_ )
model.to(A_ )
model.eval()
__lowercase = model(
A_ , attention_mask=A_ , token_type_ids=A_ , start_positions=A_ , end_positions=A_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , A_ : Tuple , A_ : Any , A_ : Optional[Any] , A_ : Tuple , A_ : Any , A_ : str , A_ : List[str] ):
'''simple docstring'''
__lowercase = DebertaVaForMultipleChoice(config=A_ )
model.to(A_ )
model.eval()
__lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowercase = model(
A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = config_and_inputs
__lowercase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase__ ( _a , _a , unittest.TestCase ):
a : Optional[int] = (
(
DebertaVaModel,
DebertaVaForMaskedLM,
DebertaVaForSequenceClassification,
DebertaVaForTokenClassification,
DebertaVaForQuestionAnswering,
DebertaVaForMultipleChoice,
)
if is_torch_available()
else ()
)
a : int = (
{
"""feature-extraction""": DebertaVaModel,
"""fill-mask""": DebertaVaForMaskedLM,
"""question-answering""": DebertaVaForQuestionAnswering,
"""text-classification""": DebertaVaForSequenceClassification,
"""token-classification""": DebertaVaForTokenClassification,
"""zero-shot""": DebertaVaForSequenceClassification,
}
if is_torch_available()
else {}
)
a : Tuple = True
a : List[Any] = False
a : Dict = False
a : Any = False
a : Union[str, Any] = False
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
'''simple docstring'''
__lowercase = DebertaVaModelTester(self )
__lowercase = ConfigTester(self , config_class=A_ , hidden_size=3_7 )
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
'''simple docstring'''
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_model(*A_ )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
'''simple docstring'''
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_sequence_classification(*A_ )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
'''simple docstring'''
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_masked_lm(*A_ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
'''simple docstring'''
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_question_answering(*A_ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
'''simple docstring'''
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_token_classification(*A_ )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_multiple_choice(*A_ )
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
'''simple docstring'''
for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = DebertaVaModel.from_pretrained(A_ )
self.assertIsNotNone(A_ )
@require_torch
@require_sentencepiece
@require_tokenizers
class lowerCamelCase__ ( unittest.TestCase ):
@unittest.skip(reason="""Model not available yet""" )
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
pass
@slow
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
'''simple docstring'''
__lowercase = DebertaVaModel.from_pretrained("""microsoft/deberta-v2-xlarge""" )
__lowercase = torch.tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] )
__lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__lowercase = model(A_ , attention_mask=A_ )[0]
# compare the actual values for a slice.
__lowercase = torch.tensor(
[[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , A_ , atol=1e-4 ) , F'''{output[:, 1:4, 1:4]}''' )
| 702
|
"""simple docstring"""
import os
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers.models.realm.configuration_realm import RealmConfig
from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever
from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer
class lowerCamelCase__ ( _a ):
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
__lowercase = tempfile.mkdtemp()
__lowercase = 5
# Realm tok
__lowercase = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""[PAD]""",
"""[MASK]""",
"""test""",
"""question""",
"""this""",
"""is""",
"""the""",
"""first""",
"""second""",
"""third""",
"""fourth""",
"""fifth""",
"""record""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
__lowercase = os.path.join(self.tmpdirname , """realm_tokenizer""" )
os.makedirs(A_ , exist_ok=A_ )
__lowercase = os.path.join(A_ , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
__lowercase = os.path.join(self.tmpdirname , """realm_block_records""" )
os.makedirs(A_ , exist_ok=A_ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
'''simple docstring'''
return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , """realm_tokenizer""" ) )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
__lowercase = RealmConfig(num_block_records=self.num_block_records )
return config
def SCREAMING_SNAKE_CASE_ ( self : Any ):
'''simple docstring'''
__lowercase = Dataset.from_dict(
{
"""id""": ["""0""", """1"""],
"""question""": ["""foo""", """bar"""],
"""answers""": [["""Foo""", """Bar"""], ["""Bar"""]],
} )
return dataset
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
__lowercase = np.array(
[
B"""This is the first record""",
B"""This is the second record""",
B"""This is the third record""",
B"""This is the fourth record""",
B"""This is the fifth record""",
B"""This is a longer longer longer record""",
] , dtype=A_ , )
return block_records
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
'''simple docstring'''
__lowercase = RealmRetriever(
block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , )
return retriever
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
'''simple docstring'''
__lowercase = self.get_config()
__lowercase = self.get_dummy_retriever()
__lowercase = retriever.tokenizer
__lowercase = np.array([0, 3] , dtype="""long""" )
__lowercase = tokenizer(["""Test question"""] ).input_ids
__lowercase = tokenizer(
["""the fourth"""] , add_special_tokens=A_ , return_token_type_ids=A_ , return_attention_mask=A_ , ).input_ids
__lowercase = config.reader_seq_len
__lowercase , __lowercase , __lowercase , __lowercase = retriever(
A_ , A_ , answer_ids=A_ , max_length=A_ , return_tensors="""np""" )
self.assertEqual(len(A_ ) , 2 )
self.assertEqual(len(A_ ) , 2 )
self.assertEqual(len(A_ ) , 2 )
self.assertEqual(concat_inputs.input_ids.shape , (2, 1_0) )
self.assertEqual(concat_inputs.attention_mask.shape , (2, 1_0) )
self.assertEqual(concat_inputs.token_type_ids.shape , (2, 1_0) )
self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 1_0) )
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """first""", """record""", """[SEP]"""] , )
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """fourth""", """record""", """[SEP]"""] , )
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
__lowercase = self.get_config()
__lowercase = self.get_dummy_retriever()
__lowercase = retriever.tokenizer
__lowercase = np.array([0, 3, 5] , dtype="""long""" )
__lowercase = tokenizer(["""Test question"""] ).input_ids
__lowercase = tokenizer(
["""the fourth""", """longer longer"""] , add_special_tokens=A_ , return_token_type_ids=A_ , return_attention_mask=A_ , ).input_ids
__lowercase = config.reader_seq_len
__lowercase , __lowercase , __lowercase , __lowercase = retriever(
A_ , A_ , answer_ids=A_ , max_length=A_ , return_tensors="""np""" )
self.assertEqual([False, True, True] , A_ )
self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , A_ )
self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , A_ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
__lowercase = self.get_dummy_retriever()
retriever.save_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) )
# Test local path
__lowercase = retriever.from_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) )
self.assertEqual(retriever.block_records[0] , B"""This is the first record""" )
# Test mocked remote path
with patch("""transformers.models.realm.retrieval_realm.hf_hub_download""" ) as mock_hf_hub_download:
__lowercase = os.path.join(
os.path.join(self.tmpdirname , """realm_block_records""" ) , _REALM_BLOCK_RECORDS_FILENAME )
__lowercase = RealmRetriever.from_pretrained("""google/realm-cc-news-pretrained-openqa""" )
self.assertEqual(retriever.block_records[0] , B"""This is the first record""" )
| 442
| 0
|
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import (
DiffusionPipeline,
UnCLIPImageVariationPipeline,
UnCLIPScheduler,
UNetaDConditionModel,
UNetaDModel,
)
from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel
from diffusers.utils import floats_tensor, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps
from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class lowerCamelCase__( snake_case_ , unittest.TestCase ):
UpperCamelCase : int = UnCLIPImageVariationPipeline
UpperCamelCase : List[str] = IMAGE_VARIATION_PARAMS - {"height", "width", "guidance_scale"}
UpperCamelCase : List[Any] = IMAGE_VARIATION_BATCH_PARAMS
UpperCamelCase : Optional[int] = [
"generator",
"return_dict",
"decoder_num_inference_steps",
"super_res_num_inference_steps",
]
UpperCamelCase : int = False
@property
def __magic_name__ ( self ):
"""simple docstring"""
return 3_2
@property
def __magic_name__ ( self ):
"""simple docstring"""
return 3_2
@property
def __magic_name__ ( self ):
"""simple docstring"""
return self.time_input_dim
@property
def __magic_name__ ( self ):
"""simple docstring"""
return self.time_input_dim * 4
@property
def __magic_name__ ( self ):
"""simple docstring"""
return 1_0_0
@property
def __magic_name__ ( self ):
"""simple docstring"""
__lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
return tokenizer
@property
def __magic_name__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
__lowercase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )
return CLIPTextModelWithProjection(__UpperCAmelCase )
@property
def __magic_name__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
__lowercase = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=3_2 , intermediate_size=3_7 , patch_size=1 , )
return CLIPVisionModelWithProjection(__UpperCAmelCase )
@property
def __magic_name__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
__lowercase = {
"""clip_embeddings_dim""": self.text_embedder_hidden_size,
"""time_embed_dim""": self.time_embed_dim,
"""cross_attention_dim""": self.cross_attention_dim,
}
__lowercase = UnCLIPTextProjModel(**__UpperCAmelCase )
return model
@property
def __magic_name__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
__lowercase = {
"""sample_size""": 3_2,
# RGB in channels
"""in_channels""": 3,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 6,
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": """identity""",
}
__lowercase = UNetaDConditionModel(**__UpperCAmelCase )
return model
@property
def __magic_name__ ( self ):
"""simple docstring"""
return {
"sample_size": 6_4,
"layers_per_block": 1,
"down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"),
"up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"),
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"in_channels": 6,
"out_channels": 3,
}
@property
def __magic_name__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
__lowercase = UNetaDModel(**self.dummy_super_res_kwargs )
return model
@property
def __magic_name__ ( self ):
"""simple docstring"""
torch.manual_seed(1 )
__lowercase = UNetaDModel(**self.dummy_super_res_kwargs )
return model
def __magic_name__ ( self ):
"""simple docstring"""
__lowercase = self.dummy_decoder
__lowercase = self.dummy_text_proj
__lowercase = self.dummy_text_encoder
__lowercase = self.dummy_tokenizer
__lowercase = self.dummy_super_res_first
__lowercase = self.dummy_super_res_last
__lowercase = UnCLIPScheduler(
variance_type="""learned_range""" , prediction_type="""epsilon""" , num_train_timesteps=1_0_0_0 , )
__lowercase = UnCLIPScheduler(
variance_type="""fixed_small_log""" , prediction_type="""epsilon""" , num_train_timesteps=1_0_0_0 , )
__lowercase = CLIPImageProcessor(crop_size=3_2 , size=3_2 )
__lowercase = self.dummy_image_encoder
return {
"decoder": decoder,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"text_proj": text_proj,
"feature_extractor": feature_extractor,
"image_encoder": image_encoder,
"super_res_first": super_res_first,
"super_res_last": super_res_last,
"decoder_scheduler": decoder_scheduler,
"super_res_scheduler": super_res_scheduler,
}
def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase=0 , __UpperCAmelCase=True ):
"""simple docstring"""
__lowercase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
if str(__UpperCAmelCase ).startswith("""mps""" ):
__lowercase = torch.manual_seed(__UpperCAmelCase )
else:
__lowercase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
if pil_image:
__lowercase = input_image * 0.5 + 0.5
__lowercase = input_image.clamp(0 , 1 )
__lowercase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
__lowercase = DiffusionPipeline.numpy_to_pil(__UpperCAmelCase )[0]
return {
"image": input_image,
"generator": generator,
"decoder_num_inference_steps": 2,
"super_res_num_inference_steps": 2,
"output_type": "np",
}
def __magic_name__ ( self ):
"""simple docstring"""
__lowercase = """cpu"""
__lowercase = self.get_dummy_components()
__lowercase = self.pipeline_class(**__UpperCAmelCase )
__lowercase = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__lowercase = self.get_dummy_inputs(__UpperCAmelCase , pil_image=__UpperCAmelCase )
__lowercase = pipe(**__UpperCAmelCase )
__lowercase = output.images
__lowercase = self.get_dummy_inputs(__UpperCAmelCase , pil_image=__UpperCAmelCase )
__lowercase = pipe(
**__UpperCAmelCase , return_dict=__UpperCAmelCase , )[0]
__lowercase = image[0, -3:, -3:, -1]
__lowercase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
__lowercase = np.array(
[
0.99_97,
0.00_02,
0.99_97,
0.99_97,
0.99_69,
0.00_23,
0.99_97,
0.99_69,
0.99_70,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def __magic_name__ ( self ):
"""simple docstring"""
__lowercase = """cpu"""
__lowercase = self.get_dummy_components()
__lowercase = self.pipeline_class(**__UpperCAmelCase )
__lowercase = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__lowercase = self.get_dummy_inputs(__UpperCAmelCase , pil_image=__UpperCAmelCase )
__lowercase = pipe(**__UpperCAmelCase )
__lowercase = output.images
__lowercase = self.get_dummy_inputs(__UpperCAmelCase , pil_image=__UpperCAmelCase )
__lowercase = pipe(
**__UpperCAmelCase , return_dict=__UpperCAmelCase , )[0]
__lowercase = image[0, -3:, -3:, -1]
__lowercase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
__lowercase = np.array([0.99_97, 0.00_03, 0.99_97, 0.99_97, 0.99_70, 0.00_24, 0.99_97, 0.99_71, 0.99_71] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def __magic_name__ ( self ):
"""simple docstring"""
__lowercase = """cpu"""
__lowercase = self.get_dummy_components()
__lowercase = self.pipeline_class(**__UpperCAmelCase )
__lowercase = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__lowercase = self.get_dummy_inputs(__UpperCAmelCase , pil_image=__UpperCAmelCase )
__lowercase = [
pipeline_inputs["""image"""],
pipeline_inputs["""image"""],
]
__lowercase = pipe(**__UpperCAmelCase )
__lowercase = output.images
__lowercase = self.get_dummy_inputs(__UpperCAmelCase , pil_image=__UpperCAmelCase )
__lowercase = [
tuple_pipeline_inputs["""image"""],
tuple_pipeline_inputs["""image"""],
]
__lowercase = pipe(
**__UpperCAmelCase , return_dict=__UpperCAmelCase , )[0]
__lowercase = image[0, -3:, -3:, -1]
__lowercase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (2, 6_4, 6_4, 3)
__lowercase = np.array(
[
0.99_97,
0.99_89,
0.00_08,
0.00_21,
0.99_60,
0.00_18,
0.00_14,
0.00_02,
0.99_33,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def __magic_name__ ( self ):
"""simple docstring"""
__lowercase = torch.device("""cpu""" )
class lowerCamelCase__:
UpperCamelCase : Any = 1
__lowercase = self.get_dummy_components()
__lowercase = self.pipeline_class(**__UpperCAmelCase )
__lowercase = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__lowercase = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
__lowercase = pipe.decoder.dtype
__lowercase = 1
__lowercase = (
batch_size,
pipe.decoder.config.in_channels,
pipe.decoder.config.sample_size,
pipe.decoder.config.sample_size,
)
__lowercase = pipe.prepare_latents(
__UpperCAmelCase , dtype=__UpperCAmelCase , device=__UpperCAmelCase , generator=__UpperCAmelCase , latents=__UpperCAmelCase , scheduler=DummyScheduler() )
__lowercase = (
batch_size,
pipe.super_res_first.config.in_channels // 2,
pipe.super_res_first.config.sample_size,
pipe.super_res_first.config.sample_size,
)
__lowercase = pipe.prepare_latents(
__UpperCAmelCase , dtype=__UpperCAmelCase , device=__UpperCAmelCase , generator=__UpperCAmelCase , latents=__UpperCAmelCase , scheduler=DummyScheduler() )
__lowercase = self.get_dummy_inputs(__UpperCAmelCase , pil_image=__UpperCAmelCase )
__lowercase = pipe(
**__UpperCAmelCase , decoder_latents=__UpperCAmelCase , super_res_latents=__UpperCAmelCase ).images
__lowercase = self.get_dummy_inputs(__UpperCAmelCase , pil_image=__UpperCAmelCase )
# Don't pass image, instead pass embedding
__lowercase = pipeline_inputs.pop("""image""" )
__lowercase = pipe.image_encoder(__UpperCAmelCase ).image_embeds
__lowercase = pipe(
**__UpperCAmelCase , decoder_latents=__UpperCAmelCase , super_res_latents=__UpperCAmelCase , image_embeddings=__UpperCAmelCase , ).images
# make sure passing text embeddings manually is identical
assert np.abs(img_out_a - img_out_a ).max() < 1E-4
@skip_mps
def __magic_name__ ( self ):
"""simple docstring"""
__lowercase = torch_device == """cpu"""
# Check is relaxed because there is not a torch 2.0 sliced attention added kv processor
__lowercase = 1E-2
self._test_attention_slicing_forward_pass(
test_max_difference=__UpperCAmelCase , expected_max_diff=__UpperCAmelCase )
@skip_mps
def __magic_name__ ( self ):
"""simple docstring"""
__lowercase = torch_device == """cpu"""
__lowercase = True
__lowercase = [
"""decoder_num_inference_steps""",
"""super_res_num_inference_steps""",
]
self._test_inference_batch_single_identical(
test_max_difference=__UpperCAmelCase , relax_max_difference=__UpperCAmelCase , additional_params_copy_to_batched_inputs=__UpperCAmelCase , )
def __magic_name__ ( self ):
"""simple docstring"""
__lowercase = [
"""decoder_num_inference_steps""",
"""super_res_num_inference_steps""",
]
if torch_device == "mps":
# TODO: MPS errors with larger batch sizes
__lowercase = [2, 3]
self._test_inference_batch_consistent(
batch_sizes=__UpperCAmelCase , additional_params_copy_to_batched_inputs=__UpperCAmelCase , )
else:
self._test_inference_batch_consistent(
additional_params_copy_to_batched_inputs=__UpperCAmelCase )
@skip_mps
def __magic_name__ ( self ):
"""simple docstring"""
return super().test_dict_tuple_outputs_equivalent()
@skip_mps
def __magic_name__ ( self ):
"""simple docstring"""
return super().test_save_load_local()
@skip_mps
def __magic_name__ ( self ):
"""simple docstring"""
return super().test_save_load_optional_components()
@slow
@require_torch_gpu
class lowerCamelCase__( unittest.TestCase ):
def __magic_name__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __magic_name__ ( self ):
"""simple docstring"""
__lowercase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png""" )
__lowercase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/unclip/karlo_v1_alpha_cat_variation_fp16.npy""" )
__lowercase = UnCLIPImageVariationPipeline.from_pretrained(
"""kakaobrain/karlo-v1-alpha-image-variations""" , torch_dtype=torch.floataa )
__lowercase = pipeline.to(__UpperCAmelCase )
pipeline.set_progress_bar_config(disable=__UpperCAmelCase )
__lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 )
__lowercase = pipeline(
__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , )
__lowercase = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase , 1_5 )
| 566
|
'''simple docstring'''
from __future__ import annotations
def lowercase__ ( __UpperCamelCase : list[int] ):
'''simple docstring'''
if len(__UpperCamelCase ) == 0:
return array
__lowercase , __lowercase = min(__UpperCamelCase ), max(__UpperCamelCase )
# Compute the variables
__lowercase = _max - _min + 1
__lowercase , __lowercase = [0] * holes_range, [0] * holes_range
# Make the sorting.
for i in array:
__lowercase = i - _min
__lowercase = i
holes_repeat[index] += 1
# Makes the array back by replacing the numbers.
__lowercase = 0
for i in range(__UpperCamelCase ):
while holes_repeat[i] > 0:
__lowercase = holes[i]
index += 1
holes_repeat[i] -= 1
# Returns the sorted array.
return array
if __name__ == "__main__":
import doctest
doctest.testmod()
snake_case : Dict = input('Enter numbers separated by comma:\n')
snake_case : List[str] = [int(x) for x in user_input.split(',')]
print(pigeon_sort(unsorted))
| 566
| 1
|
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Optional[Any] ) -> Any:
_lowerCamelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
_lowerCamelCase = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(lowerCamelCase_ )
_lowerCamelCase = -1
_lowerCamelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase_ )
_lowerCamelCase = model.generate(lowerCamelCase_ , max_new_tokens=1_0 , do_sample=lowerCamelCase_ )
_lowerCamelCase = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
_lowerCamelCase = TextStreamer(lowerCamelCase_ )
model.generate(lowerCamelCase_ , max_new_tokens=1_0 , do_sample=lowerCamelCase_ , streamer=lowerCamelCase_ )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
_lowerCamelCase = cs.out[:-1]
self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
def _snake_case ( self : Dict ) -> Tuple:
_lowerCamelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
_lowerCamelCase = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(lowerCamelCase_ )
_lowerCamelCase = -1
_lowerCamelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase_ )
_lowerCamelCase = model.generate(lowerCamelCase_ , max_new_tokens=1_0 , do_sample=lowerCamelCase_ )
_lowerCamelCase = tokenizer.decode(greedy_ids[0] )
_lowerCamelCase = TextIteratorStreamer(lowerCamelCase_ )
_lowerCamelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer}
_lowerCamelCase = Thread(target=model.generate , kwargs=lowerCamelCase_ )
thread.start()
_lowerCamelCase = ''''''
for new_text in streamer:
streamer_text += new_text
self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
def _snake_case ( self : List[str] ) -> str:
_lowerCamelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
_lowerCamelCase = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(lowerCamelCase_ )
_lowerCamelCase = -1
_lowerCamelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase_ )
_lowerCamelCase = model.generate(lowerCamelCase_ , max_new_tokens=1_0 , do_sample=lowerCamelCase_ )
_lowerCamelCase = greedy_ids[:, input_ids.shape[1] :]
_lowerCamelCase = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
_lowerCamelCase = TextStreamer(lowerCamelCase_ , skip_prompt=lowerCamelCase_ )
model.generate(lowerCamelCase_ , max_new_tokens=1_0 , do_sample=lowerCamelCase_ , streamer=lowerCamelCase_ )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
_lowerCamelCase = cs.out[:-1]
self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
def _snake_case ( self : Union[str, Any] ) -> Union[str, Any]:
_lowerCamelCase = AutoTokenizer.from_pretrained('distilgpt2' )
_lowerCamelCase = AutoModelForCausalLM.from_pretrained('distilgpt2' ).to(lowerCamelCase_ )
_lowerCamelCase = -1
_lowerCamelCase = torch.ones((1, 5) , device=lowerCamelCase_ ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
_lowerCamelCase = TextStreamer(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ )
model.generate(lowerCamelCase_ , max_new_tokens=1 , do_sample=lowerCamelCase_ , streamer=lowerCamelCase_ )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
_lowerCamelCase = cs.out[:-1] # Remove the final "\n"
_lowerCamelCase = tokenizer(lowerCamelCase_ , return_tensors='pt' )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def _snake_case ( self : Any ) -> List[Any]:
_lowerCamelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
_lowerCamelCase = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(lowerCamelCase_ )
_lowerCamelCase = -1
_lowerCamelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase_ )
_lowerCamelCase = TextIteratorStreamer(lowerCamelCase_ , timeout=0.001 )
_lowerCamelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer}
_lowerCamelCase = Thread(target=model.generate , kwargs=lowerCamelCase_ )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(lowerCamelCase_ ):
_lowerCamelCase = ''''''
for new_text in streamer:
streamer_text += new_text
| 718
|
import argparse
import json
import pickle
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
A = logging.get_logger(__name__)
def lowerCamelCase ( UpperCamelCase : str ) -> List[str]:
_lowerCamelCase = SwinConfig.from_pretrained(
'microsoft/swin-tiny-patch4-window7-224' , out_features=['stage1', 'stage2', 'stage3', 'stage4'] )
_lowerCamelCase = MaskFormerConfig(backbone_config=UpperCamelCase )
_lowerCamelCase = 'huggingface/label-files'
if "ade20k-full" in model_name:
# this should be ok
_lowerCamelCase = 8_47
_lowerCamelCase = 'maskformer-ade20k-full-id2label.json'
elif "ade" in model_name:
# this should be ok
_lowerCamelCase = 1_50
_lowerCamelCase = 'ade20k-id2label.json'
elif "coco-stuff" in model_name:
# this should be ok
_lowerCamelCase = 1_71
_lowerCamelCase = 'maskformer-coco-stuff-id2label.json'
elif "coco" in model_name:
# TODO
_lowerCamelCase = 1_33
_lowerCamelCase = 'coco-panoptic-id2label.json'
elif "cityscapes" in model_name:
# this should be ok
_lowerCamelCase = 19
_lowerCamelCase = 'cityscapes-id2label.json'
elif "vistas" in model_name:
# this should be ok
_lowerCamelCase = 65
_lowerCamelCase = 'mapillary-vistas-id2label.json'
_lowerCamelCase = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type='dataset' ) , 'r' ) )
_lowerCamelCase = {int(UpperCamelCase ): v for k, v in idalabel.items()}
return config
def lowerCamelCase ( UpperCamelCase : Any ) -> Any:
_lowerCamelCase = []
# stem
# fmt: off
rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') )
rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') )
rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') )
rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") )
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") )
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") )
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") )
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") )
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") )
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") )
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") )
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") )
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") )
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") )
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") )
if i < 3:
rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") )
rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") )
rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") )
rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") )
rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") )
# FPN
rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') )
rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') )
rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') )
for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ):
rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") )
rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") )
rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") )
rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") )
rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") )
rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") )
rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') )
rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') )
# Transformer decoder
for idx in range(config.decoder_config.decoder_layers ):
# self-attention out projection
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") )
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") )
# cross-attention out projection
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") )
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") )
# MLP 1
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") )
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") )
# MLP 2
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") )
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") )
# layernorm 1 (self-attention layernorm)
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") )
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") )
# layernorm 2 (cross-attention layernorm)
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") )
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") )
# layernorm 3 (final layernorm)
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") )
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") )
rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') )
rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') )
# heads on top
rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') )
rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') )
rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') )
rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') )
rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') )
for i in range(3 ):
rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") )
rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") )
# fmt: on
return rename_keys
def lowerCamelCase ( UpperCamelCase : str , UpperCamelCase : Tuple , UpperCamelCase : Union[str, Any] ) -> Optional[Any]:
_lowerCamelCase = dct.pop(UpperCamelCase )
_lowerCamelCase = val
def lowerCamelCase ( UpperCamelCase : Dict , UpperCamelCase : List[Any] ) -> Union[str, Any]:
_lowerCamelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
_lowerCamelCase = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
_lowerCamelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" )
_lowerCamelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
_lowerCamelCase = in_proj_weight[:dim, :]
_lowerCamelCase = in_proj_bias[: dim]
_lowerCamelCase = in_proj_weight[
dim : dim * 2, :
]
_lowerCamelCase = in_proj_bias[
dim : dim * 2
]
_lowerCamelCase = in_proj_weight[
-dim :, :
]
_lowerCamelCase = in_proj_bias[-dim :]
# fmt: on
def lowerCamelCase ( UpperCamelCase : int , UpperCamelCase : Union[str, Any] ) -> str:
# fmt: off
_lowerCamelCase = config.decoder_config.hidden_size
for idx in range(config.decoder_config.decoder_layers ):
# read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias)
_lowerCamelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" )
_lowerCamelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
_lowerCamelCase = in_proj_weight[: hidden_size, :]
_lowerCamelCase = in_proj_bias[:config.hidden_size]
_lowerCamelCase = in_proj_weight[hidden_size : hidden_size * 2, :]
_lowerCamelCase = in_proj_bias[hidden_size : hidden_size * 2]
_lowerCamelCase = in_proj_weight[-hidden_size :, :]
_lowerCamelCase = in_proj_bias[-hidden_size :]
# read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias)
_lowerCamelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" )
_lowerCamelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
_lowerCamelCase = in_proj_weight[: hidden_size, :]
_lowerCamelCase = in_proj_bias[:config.hidden_size]
_lowerCamelCase = in_proj_weight[hidden_size : hidden_size * 2, :]
_lowerCamelCase = in_proj_bias[hidden_size : hidden_size * 2]
_lowerCamelCase = in_proj_weight[-hidden_size :, :]
_lowerCamelCase = in_proj_bias[-hidden_size :]
# fmt: on
def lowerCamelCase ( ) -> torch.Tensor:
_lowerCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
_lowerCamelCase = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw )
return im
@torch.no_grad()
def lowerCamelCase ( UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : bool = False ) -> Dict:
_lowerCamelCase = get_maskformer_config(UpperCamelCase )
# load original state_dict
with open(UpperCamelCase , 'rb' ) as f:
_lowerCamelCase = pickle.load(UpperCamelCase )
_lowerCamelCase = data['model']
# for name, param in state_dict.items():
# print(name, param.shape)
# rename keys
_lowerCamelCase = create_rename_keys(UpperCamelCase )
for src, dest in rename_keys:
rename_key(UpperCamelCase , UpperCamelCase , UpperCamelCase )
read_in_swin_q_k_v(UpperCamelCase , config.backbone_config )
read_in_decoder_q_k_v(UpperCamelCase , UpperCamelCase )
# update to torch tensors
for key, value in state_dict.items():
_lowerCamelCase = torch.from_numpy(UpperCamelCase )
# load 🤗 model
_lowerCamelCase = MaskFormerForInstanceSegmentation(UpperCamelCase )
model.eval()
for name, param in model.named_parameters():
print(UpperCamelCase , param.shape )
_lowerCamelCase , _lowerCamelCase = model.load_state_dict(UpperCamelCase , strict=UpperCamelCase )
assert missing_keys == [
"model.pixel_level_module.encoder.model.layernorm.weight",
"model.pixel_level_module.encoder.model.layernorm.bias",
]
assert len(UpperCamelCase ) == 0, F"""Unexpected keys: {unexpected_keys}"""
# verify results
_lowerCamelCase = prepare_img()
if "vistas" in model_name:
_lowerCamelCase = 65
elif "cityscapes" in model_name:
_lowerCamelCase = 6_55_35
else:
_lowerCamelCase = 2_55
_lowerCamelCase = True if 'ade' in model_name else False
_lowerCamelCase = MaskFormerImageProcessor(ignore_index=UpperCamelCase , reduce_labels=UpperCamelCase )
_lowerCamelCase = image_processor(UpperCamelCase , return_tensors='pt' )
_lowerCamelCase = model(**UpperCamelCase )
print('Logits:' , outputs.class_queries_logits[0, :3, :3] )
if model_name == "maskformer-swin-tiny-ade":
_lowerCamelCase = torch.tensor(
[[3.6_353, -4.4_770, -2.6_065], [0.5_081, -4.2_394, -3.5_343], [2.1_909, -5.0_353, -1.9_323]] )
assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase , atol=1e-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" )
Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase )
model.save_pretrained(UpperCamelCase )
image_processor.save_pretrained(UpperCamelCase )
if push_to_hub:
print('Pushing model and image processor to the hub...' )
model.push_to_hub(F"""nielsr/{model_name}""" )
image_processor.push_to_hub(F"""nielsr/{model_name}""" )
if __name__ == "__main__":
A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='maskformer-swin-tiny-ade',
type=str,
help=('Name of the MaskFormer model you\'d like to convert',),
)
parser.add_argument(
'--checkpoint_path',
default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl',
type=str,
help='Path to the original state dict (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
A = parser.parse_args()
convert_maskformer_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 234
| 0
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
UpperCAmelCase_ : Dict = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : Optional[Any] = ["FNetTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : Tuple = ["FNetTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : Union[str, Any] = [
"FNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"FNetForMaskedLM",
"FNetForMultipleChoice",
"FNetForNextSentencePrediction",
"FNetForPreTraining",
"FNetForQuestionAnswering",
"FNetForSequenceClassification",
"FNetForTokenClassification",
"FNetLayer",
"FNetModel",
"FNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet import FNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet_fast import FNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetLayer,
FNetModel,
FNetPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 21
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {
"microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json",
"microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json",
}
class _SCREAMING_SNAKE_CASE ( snake_case ):
lowerCamelCase_ = 'markuplm'
def __init__( self : List[Any] , snake_case_ : List[str]=3_0522 , snake_case_ : str=768 , snake_case_ : str=12 , snake_case_ : Optional[Any]=12 , snake_case_ : Any=3072 , snake_case_ : Dict="gelu" , snake_case_ : Dict=0.1 , snake_case_ : Optional[int]=0.1 , snake_case_ : int=512 , snake_case_ : Optional[Any]=2 , snake_case_ : int=0.02 , snake_case_ : Optional[Any]=1E-12 , snake_case_ : Dict=0 , snake_case_ : Optional[int]=0 , snake_case_ : Union[str, Any]=2 , snake_case_ : List[Any]=256 , snake_case_ : Union[str, Any]=1024 , snake_case_ : Optional[Any]=216 , snake_case_ : Optional[Any]=1001 , snake_case_ : Tuple=32 , snake_case_ : str=50 , snake_case_ : int="absolute" , snake_case_ : List[Any]=True , snake_case_ : List[Any]=None , **snake_case_ : Optional[Any] , ):
"""simple docstring"""
super().__init__(
pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ , )
A : int = vocab_size
A : Dict = hidden_size
A : str = num_hidden_layers
A : List[Any] = num_attention_heads
A : int = hidden_act
A : List[Any] = intermediate_size
A : Optional[Any] = hidden_dropout_prob
A : Tuple = attention_probs_dropout_prob
A : str = max_position_embeddings
A : Dict = type_vocab_size
A : Optional[int] = initializer_range
A : Optional[Any] = layer_norm_eps
A : Any = position_embedding_type
A : List[Any] = use_cache
A : List[str] = classifier_dropout
# additional properties
A : Optional[Any] = max_depth
A : Tuple = max_xpath_tag_unit_embeddings
A : str = max_xpath_subs_unit_embeddings
A : Dict = tag_pad_id
A : Dict = subs_pad_id
A : List[str] = xpath_unit_hidden_size
| 256
| 0
|
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class __lowercase ( unittest.TestCase ):
def _lowercase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _lowercase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase = 1
UpperCAmelCase = 3
UpperCAmelCase = (3_2, 3_2)
UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCamelCase )
return image
@property
def _lowercase ( self : Dict ) -> Tuple:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , )
return model
@property
def _lowercase ( self : int ) -> Union[str, Any]:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def _lowercase ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase = RobertaSeriesConfig(
hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , )
return RobertaSeriesModelWithTransformation(__lowerCamelCase )
@property
def _lowercase ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
def extract(*__lowerCamelCase : Dict , **__lowerCamelCase : Dict ):
class __lowercase :
def __init__( self : Optional[Any] ) -> str:
"""simple docstring"""
UpperCAmelCase = torch.ones([0] )
def _lowercase ( self : str , __lowerCamelCase : List[Any] ) -> Tuple:
"""simple docstring"""
self.pixel_values.to(__lowerCamelCase )
return self
return Out()
return extract
def _lowercase ( self : Tuple ) -> Dict:
"""simple docstring"""
UpperCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase = self.dummy_cond_unet
UpperCAmelCase = PNDMScheduler(skip_prk_steps=__lowerCamelCase )
UpperCAmelCase = self.dummy_vae
UpperCAmelCase = self.dummy_text_encoder
UpperCAmelCase = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" )
UpperCAmelCase = 7_7
UpperCAmelCase = self.dummy_image.to(__lowerCamelCase )
UpperCAmelCase = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
UpperCAmelCase = AltDiffusionImgaImgPipeline(
unet=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=self.dummy_extractor , )
UpperCAmelCase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__lowerCamelCase )
UpperCAmelCase = alt_pipe.to(__lowerCamelCase )
alt_pipe.set_progress_bar_config(disable=__lowerCamelCase )
UpperCAmelCase = """A painting of a squirrel eating a burger"""
UpperCAmelCase = torch.Generator(device=__lowerCamelCase ).manual_seed(0 )
UpperCAmelCase = alt_pipe(
[prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=__lowerCamelCase , )
UpperCAmelCase = output.images
UpperCAmelCase = torch.Generator(device=__lowerCamelCase ).manual_seed(0 )
UpperCAmelCase = alt_pipe(
[prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=__lowerCamelCase , return_dict=__lowerCamelCase , )[0]
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
UpperCAmelCase = np.array([0.4_427, 0.3_731, 0.4_249, 0.4_941, 0.4_546, 0.4_148, 0.4_193, 0.4_666, 0.4_499] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def _lowercase ( self : Dict ) -> Tuple:
"""simple docstring"""
UpperCAmelCase = self.dummy_cond_unet
UpperCAmelCase = PNDMScheduler(skip_prk_steps=__lowerCamelCase )
UpperCAmelCase = self.dummy_vae
UpperCAmelCase = self.dummy_text_encoder
UpperCAmelCase = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" )
UpperCAmelCase = 7_7
UpperCAmelCase = self.dummy_image.to(__lowerCamelCase )
# put models in fp16
UpperCAmelCase = unet.half()
UpperCAmelCase = vae.half()
UpperCAmelCase = bert.half()
# make sure here that pndm scheduler skips prk
UpperCAmelCase = AltDiffusionImgaImgPipeline(
unet=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=self.dummy_extractor , )
UpperCAmelCase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__lowerCamelCase )
UpperCAmelCase = alt_pipe.to(__lowerCamelCase )
alt_pipe.set_progress_bar_config(disable=__lowerCamelCase )
UpperCAmelCase = """A painting of a squirrel eating a burger"""
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = alt_pipe(
[prompt] , generator=__lowerCamelCase , num_inference_steps=2 , output_type="""np""" , image=__lowerCamelCase , ).images
assert image.shape == (1, 3_2, 3_2, 3)
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def _lowercase ( self : Dict ) -> Dict:
"""simple docstring"""
UpperCAmelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/img2img/sketch-mountains-input.jpg""" )
# resize to resolution that is divisible by 8 but not 16 or 32
UpperCAmelCase = init_image.resize((7_6_0, 5_0_4) )
UpperCAmelCase = """BAAI/AltDiffusion"""
UpperCAmelCase = AltDiffusionImgaImgPipeline.from_pretrained(
__lowerCamelCase , safety_checker=__lowerCamelCase , )
pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
pipe.enable_attention_slicing()
UpperCAmelCase = """A fantasy landscape, trending on artstation"""
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = pipe(
prompt=__lowerCamelCase , image=__lowerCamelCase , strength=0.75 , guidance_scale=7.5 , generator=__lowerCamelCase , output_type="""np""" , )
UpperCAmelCase = output.images[0]
UpperCAmelCase = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert image.shape == (5_0_4, 7_6_0, 3)
UpperCAmelCase = np.array([0.9_358, 0.9_397, 0.9_599, 0.9_901, 1.0_000, 1.0_000, 0.9_882, 1.0_000, 1.0_000] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class __lowercase ( unittest.TestCase ):
def _lowercase ( self : str ) -> Tuple:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/img2img/sketch-mountains-input.jpg""" )
UpperCAmelCase = init_image.resize((7_6_8, 5_1_2) )
UpperCAmelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" )
UpperCAmelCase = """BAAI/AltDiffusion"""
UpperCAmelCase = AltDiffusionImgaImgPipeline.from_pretrained(
__lowerCamelCase , safety_checker=__lowerCamelCase , )
pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
pipe.enable_attention_slicing()
UpperCAmelCase = """A fantasy landscape, trending on artstation"""
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = pipe(
prompt=__lowerCamelCase , image=__lowerCamelCase , strength=0.75 , guidance_scale=7.5 , generator=__lowerCamelCase , output_type="""np""" , )
UpperCAmelCase = output.images[0]
assert image.shape == (5_1_2, 7_6_8, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1e-2
| 627
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available
__a = {"""tokenization_herbert""": ["""HerbertTokenizer"""]}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = ["""HerbertTokenizerFast"""]
if TYPE_CHECKING:
from .tokenization_herbert import HerbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_herbert_fast import HerbertTokenizerFast
else:
import sys
__a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 627
| 1
|
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roformer import RoFormerTokenizer
from .tokenization_utils import JiebaPreTokenizer
_UpperCamelCase : List[str] = logging.get_logger(__name__)
_UpperCamelCase : List[str] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
_UpperCamelCase : Union[str, Any] = {
'vocab_file': {
'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt',
'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt',
'junnyu/roformer_chinese_char_small': (
'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt'
),
'junnyu/roformer_chinese_char_base': (
'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt'
),
'junnyu/roformer_small_discriminator': (
'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt'
),
'junnyu/roformer_small_generator': (
'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt'
),
}
}
_UpperCamelCase : Optional[int] = {
'junnyu/roformer_chinese_small': 1_536,
'junnyu/roformer_chinese_base': 1_536,
'junnyu/roformer_chinese_char_small': 512,
'junnyu/roformer_chinese_char_base': 512,
'junnyu/roformer_small_discriminator': 128,
'junnyu/roformer_small_generator': 128,
}
_UpperCamelCase : str = {
'junnyu/roformer_chinese_small': {'do_lower_case': True},
'junnyu/roformer_chinese_base': {'do_lower_case': True},
'junnyu/roformer_chinese_char_small': {'do_lower_case': True},
'junnyu/roformer_chinese_char_base': {'do_lower_case': True},
'junnyu/roformer_small_discriminator': {'do_lower_case': True},
'junnyu/roformer_small_generator': {'do_lower_case': True},
}
class snake_case__ ( UpperCamelCase):
a_ = VOCAB_FILES_NAMES
a_ = PRETRAINED_VOCAB_FILES_MAP
a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a_ = PRETRAINED_INIT_CONFIGURATION
a_ = RoFormerTokenizer
def __init__( self : Optional[Any] , _A : List[str]=None , _A : Union[str, Any]=None , _A : Tuple=True , _A : List[Any]="[UNK]" , _A : str="[SEP]" , _A : int="[PAD]" , _A : Optional[int]="[CLS]" , _A : Union[str, Any]="[MASK]" , _A : str=True , _A : Any=None , **_A : Dict , ) -> List[str]:
super().__init__(
_A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , )
UpperCAmelCase_ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
pre_tok_state.get('''lowercase''' , _A ) != do_lower_case
or pre_tok_state.get('''strip_accents''' , _A ) != strip_accents
):
UpperCAmelCase_ : Dict = getattr(_A , pre_tok_state.pop('''type''' ) )
UpperCAmelCase_ : Union[str, Any] = do_lower_case
UpperCAmelCase_ : Optional[Any] = strip_accents
UpperCAmelCase_ : int = pre_tok_class(**_A )
UpperCAmelCase_ : List[str] = do_lower_case
def __getstate__( self : Dict ) -> Dict:
UpperCAmelCase_ : List[str] = self.__dict__.copy()
UpperCAmelCase_ : List[str] = BertPreTokenizer()
return state
def __setstate__( self : List[Any] , _A : Tuple ) -> List[str]:
UpperCAmelCase_ : Any = d
UpperCAmelCase_ : List[str] = self.__dict__['''_tokenizer'''].get_vocab()
UpperCAmelCase_ : Dict = PreTokenizer.custom(JiebaPreTokenizer(_A ) )
def A ( self : Optional[int] , _A : List[Any] , _A : int=None ) -> List[str]:
UpperCAmelCase_ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def A ( self : Dict , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]:
UpperCAmelCase_ : Any = [self.sep_token_id]
UpperCAmelCase_ : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def A ( self : int , _A : str , _A : Optional[str] = None ) -> Tuple[str]:
UpperCAmelCase_ : Optional[int] = self._tokenizer.model.save(_A , name=_A )
return tuple(_A )
def A ( self : Union[str, Any] , _A : List[str] , _A : Any=None , _A : List[Any]=None , _A : List[str]=False , **_A : List[Any] , ) -> str:
UpperCAmelCase_ : Optional[Any] = BertPreTokenizer()
return super().save_pretrained(_A , _A , _A , _A , **_A )
| 541
|
'''simple docstring'''
def __UpperCAmelCase ( A : list ) -> list:
if len(A ) <= 1:
return lst
UpperCAmelCase_ : List[str] = 1
while i < len(A ):
if lst[i - 1] <= lst[i]:
i += 1
else:
UpperCAmelCase_ , UpperCAmelCase_ : Dict = lst[i], lst[i - 1]
i -= 1
if i == 0:
UpperCAmelCase_ : Dict = 1
return lst
if __name__ == "__main__":
_UpperCamelCase : int = input('Enter numbers separated by a comma:\n').strip()
_UpperCamelCase : Union[str, Any] = [int(item) for item in user_input.split(',')]
print(gnome_sort(unsorted))
| 541
| 1
|
import os
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_doctest_list.py
lowerCamelCase__ = """."""
if __name__ == "__main__":
lowerCamelCase__ = os.path.join(REPO_PATH, """utils/documentation_tests.txt""")
lowerCamelCase__ = []
lowerCamelCase__ = []
with open(doctest_file_path) as fp:
for line in fp:
lowerCamelCase__ = line.strip()
lowerCamelCase__ = os.path.join(REPO_PATH, line)
if not (os.path.isfile(path) or os.path.isdir(path)):
non_existent_paths.append(line)
all_paths.append(path)
if len(non_existent_paths) > 0:
lowerCamelCase__ = """\n""".join(non_existent_paths)
raise ValueError(f'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''')
if all_paths != sorted(all_paths):
raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
| 291
|
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available
from ...utils import OptionalDependencyNotAvailable
lowerCamelCase__ = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ["""DPTFeatureExtractor"""]
lowerCamelCase__ = ["""DPTImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""DPT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""DPTForDepthEstimation""",
"""DPTForSemanticSegmentation""",
"""DPTModel""",
"""DPTPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_dpt import DPTFeatureExtractor
from .image_processing_dpt import DPTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_dpt import (
DPT_PRETRAINED_MODEL_ARCHIVE_LIST,
DPTForDepthEstimation,
DPTForSemanticSegmentation,
DPTModel,
DPTPreTrainedModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 291
| 1
|
import argparse
import os
import re
SCREAMING_SNAKE_CASE = 'src/transformers'
# Pattern that looks at the indentation in a line.
SCREAMING_SNAKE_CASE = re.compile(r'^(\s*)\S')
# Pattern that matches `"key":" and puts `key` in group 0.
SCREAMING_SNAKE_CASE = re.compile(r'^\s*"([^"]+)":')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
SCREAMING_SNAKE_CASE = re.compile(r'^\s*_import_structure\["([^"]+)"\]')
# Pattern that matches `"key",` and puts `key` in group 0.
SCREAMING_SNAKE_CASE = re.compile(r'^\s*"([^"]+)",\s*$')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
SCREAMING_SNAKE_CASE = re.compile(r'\[([^\]]+)\]')
def a (lowerCAmelCase__ ):
__a = _re_indent.search(lowerCAmelCase__ )
return "" if search is None else search.groups()[0]
def a (lowerCAmelCase__ , lowerCAmelCase__="" , lowerCAmelCase__=None , lowerCAmelCase__=None ):
__a = 0
__a = code.split("""\n""" )
if start_prompt is not None:
while not lines[index].startswith(lowerCAmelCase__ ):
index += 1
__a = ["""\n""".join(lines[:index] )]
else:
__a = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
__a = [lines[index]]
index += 1
while index < len(lowerCAmelCase__ ) and (end_prompt is None or not lines[index].startswith(lowerCAmelCase__ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(lowerCAmelCase__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ):
current_block.append(lines[index] )
blocks.append("""\n""".join(lowerCAmelCase__ ) )
if index < len(lowerCAmelCase__ ) - 1:
__a = [lines[index + 1]]
index += 1
else:
__a = []
else:
blocks.append("""\n""".join(lowerCAmelCase__ ) )
__a = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(lowerCAmelCase__ ) > 0:
blocks.append("""\n""".join(lowerCAmelCase__ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(lowerCAmelCase__ ):
blocks.append("""\n""".join(lines[index:] ) )
return blocks
def a (lowerCAmelCase__ ):
def _inner(lowerCAmelCase__ ):
return key(lowerCAmelCase__ ).lower().replace("""_""" , """""" )
return _inner
def a (lowerCAmelCase__ , lowerCAmelCase__=None ):
# If no key is provided, we use a noop.
def noop(lowerCAmelCase__ ):
return x
if key is None:
__a = noop
# Constants are all uppercase, they go first.
__a = [obj for obj in objects if key(lowerCAmelCase__ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
__a = [obj for obj in objects if key(lowerCAmelCase__ )[0].isupper() and not key(lowerCAmelCase__ ).isupper()]
# Functions begin with a lowercase, they go last.
__a = [obj for obj in objects if not key(lowerCAmelCase__ )[0].isupper()]
__a = ignore_underscore(lowerCAmelCase__ )
return sorted(lowerCAmelCase__ , key=lowerCAmelCase__ ) + sorted(lowerCAmelCase__ , key=lowerCAmelCase__ ) + sorted(lowerCAmelCase__ , key=lowerCAmelCase__ )
def a (lowerCAmelCase__ ):
# This inner function sort imports between [ ].
def _replace(lowerCAmelCase__ ):
__a = match.groups()[0]
if "," not in imports:
return f'''[{imports}]'''
__a = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
__a = keys[:-1]
return "[" + ", ".join([f'''"{k}"''' for k in sort_objects(lowerCAmelCase__ )] ) + "]"
__a = import_statement.split("""\n""" )
if len(lowerCAmelCase__ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
__a = 2 if lines[1].strip() == """[""" else 1
__a = [(i, _re_strip_line.search(lowerCAmelCase__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
__a = sort_objects(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x[1] )
__a = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(lowerCAmelCase__ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
__a = _re_bracket_content.sub(_replace , lines[1] )
else:
__a = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
__a = keys[:-1]
__a = get_indent(lines[1] ) + """, """.join([f'''"{k}"''' for k in sort_objects(lowerCAmelCase__ )] )
return "\n".join(lowerCAmelCase__ )
else:
# Finally we have to deal with imports fitting on one line
__a = _re_bracket_content.sub(_replace , lowerCAmelCase__ )
return import_statement
def a (lowerCAmelCase__ , lowerCAmelCase__=True ):
with open(lowerCAmelCase__ , encoding="""utf-8""" ) as f:
__a = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
__a = split_code_in_indented_blocks(
lowerCAmelCase__ , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" )
# We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(lowerCAmelCase__ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
__a = main_blocks[block_idx]
__a = block.split("""\n""" )
# Get to the start of the imports.
__a = 0
while line_idx < len(lowerCAmelCase__ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
__a = len(lowerCAmelCase__ )
else:
line_idx += 1
if line_idx >= len(lowerCAmelCase__ ):
continue
# Ignore beginning and last line: they don't contain anything.
__a = """\n""".join(block_lines[line_idx:-1] )
__a = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
__a = split_code_in_indented_blocks(lowerCAmelCase__ , indent_level=lowerCAmelCase__ )
# We have two categories of import key: list or _import_structure[key].append/extend
__a = _re_direct_key if """_import_structure = {""" in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
__a = [(pattern.search(lowerCAmelCase__ ).groups()[0] if pattern.search(lowerCAmelCase__ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
__a = [(i, key) for i, key in enumerate(lowerCAmelCase__ ) if key is not None]
__a = [x[0] for x in sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
__a = 0
__a = []
for i in range(len(lowerCAmelCase__ ) ):
if keys[i] is None:
reorderded_blocks.append(internal_blocks[i] )
else:
__a = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reorderded_blocks.append(lowerCAmelCase__ )
count += 1
# And we put our main block back together with its first and last line.
__a = """\n""".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] )
if code != "\n".join(lowerCAmelCase__ ):
if check_only:
return True
else:
print(f'''Overwriting {file}.''' )
with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f:
f.write("""\n""".join(lowerCAmelCase__ ) )
def a (lowerCAmelCase__=True ):
__a = []
for root, _, files in os.walk(lowerCAmelCase__ ):
if "__init__.py" in files:
__a = sort_imports(os.path.join(lowerCAmelCase__ , """__init__.py""" ) , check_only=lowerCAmelCase__ )
if result:
__a = [os.path.join(lowerCAmelCase__ , """__init__.py""" )]
if len(lowerCAmelCase__ ) > 0:
raise ValueError(f'''Would overwrite {len(lowerCAmelCase__ )} files, run `make style`.''' )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.')
SCREAMING_SNAKE_CASE = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 99
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = [
'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST',
'WavLMForAudioFrameClassification',
'WavLMForCTC',
'WavLMForSequenceClassification',
'WavLMForXVector',
'WavLMModel',
'WavLMPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavlm import (
WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST,
WavLMForAudioFrameClassification,
WavLMForCTC,
WavLMForSequenceClassification,
WavLMForXVector,
WavLMModel,
WavLMPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 99
| 1
|
import itertools
import random
import unittest
import numpy as np
from transformers import BatchFeature, SpeechTaFeatureExtractor
from transformers.testing_utils import require_torch
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_torch_available():
import torch
a__ : Dict = random.Random()
def snake_case (UpperCamelCase : str , UpperCamelCase : Optional[int]=1.0 , UpperCamelCase : Any=None , UpperCamelCase : Optional[int]=None ):
'''simple docstring'''
if rng is None:
lowerCamelCase__ = global_rng
lowerCamelCase__ = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
class lowercase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Dict , a_ : str , a_ : List[str]=7 , a_ : str=4_00 , a_ : int=20_00 , a_ : Any=1 , a_ : Tuple=0.0 , a_ : Dict=1_60_00 , a_ : List[Any]=True , a_ : Optional[Any]=80 , a_ : int=16 , a_ : Any=64 , a_ : int="hann_window" , a_ : int=80 , a_ : List[Any]=76_00 , a_ : Optional[Any]=1e-10 , a_ : Dict=True , ):
"""simple docstring"""
lowerCamelCase__ = parent
lowerCamelCase__ = batch_size
lowerCamelCase__ = min_seq_length
lowerCamelCase__ = max_seq_length
lowerCamelCase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
lowerCamelCase__ = feature_size
lowerCamelCase__ = padding_value
lowerCamelCase__ = sampling_rate
lowerCamelCase__ = do_normalize
lowerCamelCase__ = num_mel_bins
lowerCamelCase__ = hop_length
lowerCamelCase__ = win_length
lowerCamelCase__ = win_function
lowerCamelCase__ = fmin
lowerCamelCase__ = fmax
lowerCamelCase__ = mel_floor
lowerCamelCase__ = return_attention_mask
def _UpperCamelCase ( self : Dict ):
"""simple docstring"""
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"do_normalize": self.do_normalize,
"num_mel_bins": self.num_mel_bins,
"hop_length": self.hop_length,
"win_length": self.win_length,
"win_function": self.win_function,
"fmin": self.fmin,
"fmax": self.fmax,
"mel_floor": self.mel_floor,
"return_attention_mask": self.return_attention_mask,
}
def _UpperCamelCase ( self : List[str] , a_ : int=False , a_ : Any=False ):
"""simple docstring"""
def _flatten(a_ : int ):
return list(itertools.chain(*a_ ) )
if equal_length:
lowerCamelCase__ = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
lowerCamelCase__ = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
lowerCamelCase__ = [np.asarray(a_ ) for x in speech_inputs]
return speech_inputs
def _UpperCamelCase ( self : Optional[Any] , a_ : Optional[Any]=False , a_ : List[str]=False ):
"""simple docstring"""
if equal_length:
lowerCamelCase__ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
lowerCamelCase__ = [
floats_list((x, self.num_mel_bins) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
lowerCamelCase__ = [np.asarray(a_ ) for x in speech_inputs]
return speech_inputs
@require_torch
class lowercase ( __a , unittest.TestCase ):
"""simple docstring"""
snake_case_ = SpeechTaFeatureExtractor
def _UpperCamelCase ( self : Tuple ):
"""simple docstring"""
lowerCamelCase__ = SpeechTaFeatureExtractionTester(self )
def _UpperCamelCase ( self : List[str] , a_ : List[str] ):
"""simple docstring"""
self.assertTrue(np.all(np.mean(a_ , axis=0 ) < 1e-3 ) )
self.assertTrue(np.all(np.abs(np.var(a_ , axis=0 ) - 1 ) < 1e-3 ) )
def _UpperCamelCase ( self : Dict ):
"""simple docstring"""
lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
lowerCamelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
lowerCamelCase__ = [np.asarray(a_ ) for speech_input in speech_inputs]
# Test not batched input
lowerCamelCase__ = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values
lowerCamelCase__ = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values
self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) )
# Test batched
lowerCamelCase__ = feat_extract(a_ , return_tensors="""np""" ).input_values
lowerCamelCase__ = feat_extract(a_ , return_tensors="""np""" ).input_values
for enc_seq_a, enc_seq_a in zip(a_ , a_ ):
self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) )
def _UpperCamelCase ( self : Tuple ):
"""simple docstring"""
lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
lowerCamelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
lowerCamelCase__ = ["""longest""", """max_length""", """do_not_pad"""]
lowerCamelCase__ = [None, 16_00, None]
for max_length, padding in zip(a_ , a_ ):
lowerCamelCase__ = feat_extract(a_ , padding=a_ , max_length=a_ , return_tensors="""np""" )
lowerCamelCase__ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:8_00] )
self.assertTrue(input_values[0][8_00:].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_values[1][:10_00] )
self.assertTrue(input_values[0][10_00:].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_values[2][:12_00] )
def _UpperCamelCase ( self : int ):
"""simple docstring"""
lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
lowerCamelCase__ = range(8_00 , 14_00 , 2_00 )
lowerCamelCase__ = [floats_list((1, x) )[0] for x in lengths]
lowerCamelCase__ = ["""longest""", """max_length""", """do_not_pad"""]
lowerCamelCase__ = [None, 16_00, None]
for max_length, padding in zip(a_ , a_ ):
lowerCamelCase__ = feat_extract(a_ , max_length=a_ , padding=a_ )
lowerCamelCase__ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:8_00] )
self._check_zero_mean_unit_variance(input_values[1][:10_00] )
self._check_zero_mean_unit_variance(input_values[2][:12_00] )
def _UpperCamelCase ( self : Dict ):
"""simple docstring"""
lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
lowerCamelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
lowerCamelCase__ = feat_extract(
a_ , truncation=a_ , max_length=10_00 , padding="""max_length""" , return_tensors="""np""" )
lowerCamelCase__ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :8_00] )
self._check_zero_mean_unit_variance(input_values[1] )
self._check_zero_mean_unit_variance(input_values[2] )
def _UpperCamelCase ( self : Tuple ):
"""simple docstring"""
lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
lowerCamelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
lowerCamelCase__ = feat_extract(
a_ , truncation=a_ , max_length=10_00 , padding="""longest""" , return_tensors="""np""" )
lowerCamelCase__ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :8_00] )
self._check_zero_mean_unit_variance(input_values[1, :10_00] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertTrue(input_values.shape == (3, 10_00) )
lowerCamelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
lowerCamelCase__ = feat_extract(
a_ , truncation=a_ , max_length=20_00 , padding="""longest""" , return_tensors="""np""" )
lowerCamelCase__ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :8_00] )
self._check_zero_mean_unit_variance(input_values[1, :10_00] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length > longest -> then pad to longest
self.assertTrue(input_values.shape == (3, 12_00) )
def _UpperCamelCase ( self : int ):
"""simple docstring"""
lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
lowerCamelCase__ = np.random.rand(1_00 ).astype(np.floataa )
lowerCamelCase__ = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
lowerCamelCase__ = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
lowerCamelCase__ = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
def _UpperCamelCase ( self : List[str] ):
"""simple docstring"""
lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
lowerCamelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
lowerCamelCase__ = [np.asarray(a_ ) for speech_input in speech_inputs]
# Test feature size
lowerCamelCase__ = feature_extractor(audio_target=a_ , padding=a_ , return_tensors="""np""" ).input_values
self.assertTrue(input_values.ndim == 3 )
self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins )
# Test not batched input
lowerCamelCase__ = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_values
lowerCamelCase__ = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_values
self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) )
# Test batched
lowerCamelCase__ = feature_extractor(a_ , return_tensors="""np""" ).input_values
lowerCamelCase__ = feature_extractor(a_ , return_tensors="""np""" ).input_values
for enc_seq_a, enc_seq_a in zip(a_ , a_ ):
self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) )
# Test 2-D numpy arrays are batched.
lowerCamelCase__ = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)]
lowerCamelCase__ = np.asarray(a_ )
lowerCamelCase__ = feature_extractor(a_ , return_tensors="""np""" ).input_values
lowerCamelCase__ = feature_extractor(a_ , return_tensors="""np""" ).input_values
for enc_seq_a, enc_seq_a in zip(a_ , a_ ):
self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) )
def _UpperCamelCase ( self : Tuple ):
"""simple docstring"""
lowerCamelCase__ = self.feat_extract_tester.prepare_inputs_for_target()
lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_dict )
lowerCamelCase__ = feat_extract.model_input_names[0]
lowerCamelCase__ = BatchFeature({input_name: speech_inputs} )
self.assertTrue(all(len(a_ ) == len(a_ ) for x, y in zip(a_ , processed_features[input_name] ) ) )
lowerCamelCase__ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=a_ )
lowerCamelCase__ = BatchFeature({input_name: speech_inputs} , tensor_type="""np""" )
lowerCamelCase__ = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
lowerCamelCase__ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) )
@require_torch
def _UpperCamelCase ( self : List[str] ):
"""simple docstring"""
lowerCamelCase__ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=a_ )
lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_dict )
lowerCamelCase__ = feat_extract.model_input_names[0]
lowerCamelCase__ = BatchFeature({input_name: speech_inputs} , tensor_type="""pt""" )
lowerCamelCase__ = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
lowerCamelCase__ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) )
@require_torch
def _UpperCamelCase ( self : List[Any] ):
"""simple docstring"""
lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_dict )
lowerCamelCase__ = self.feat_extract_tester.prepare_inputs_for_target()
lowerCamelCase__ = feat_extract.model_input_names[0]
lowerCamelCase__ = BatchFeature({input_name: speech_inputs} )
lowerCamelCase__ = feat_extract.num_mel_bins # hack!
lowerCamelCase__ = feat_extract.pad(a_ , padding="""longest""" , return_tensors="""np""" )[input_name]
lowerCamelCase__ = feat_extract.pad(a_ , padding="""longest""" , return_tensors="""pt""" )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 )
def _UpperCamelCase ( self : int ):
"""simple docstring"""
lowerCamelCase__ = self.feat_extract_dict
lowerCamelCase__ = True
lowerCamelCase__ = self.feature_extraction_class(**a_ )
lowerCamelCase__ = self.feat_extract_tester.prepare_inputs_for_target()
lowerCamelCase__ = [len(a_ ) for x in speech_inputs]
lowerCamelCase__ = feat_extract.model_input_names[0]
lowerCamelCase__ = BatchFeature({input_name: speech_inputs} )
lowerCamelCase__ = feat_extract.num_mel_bins # hack!
lowerCamelCase__ = feat_extract.pad(a_ , padding="""longest""" , return_tensors="""np""" )
self.assertIn("""attention_mask""" , a_ )
self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) )
self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , a_ )
def _UpperCamelCase ( self : Dict ):
"""simple docstring"""
lowerCamelCase__ = self.feat_extract_dict
lowerCamelCase__ = True
lowerCamelCase__ = self.feature_extraction_class(**a_ )
lowerCamelCase__ = self.feat_extract_tester.prepare_inputs_for_target()
lowerCamelCase__ = [len(a_ ) for x in speech_inputs]
lowerCamelCase__ = feat_extract.model_input_names[0]
lowerCamelCase__ = BatchFeature({input_name: speech_inputs} )
lowerCamelCase__ = min(a_ )
lowerCamelCase__ = feat_extract.num_mel_bins # hack!
lowerCamelCase__ = feat_extract.pad(
a_ , padding="""max_length""" , max_length=a_ , truncation=a_ , return_tensors="""np""" )
self.assertIn("""attention_mask""" , a_ )
self.assertListEqual(
list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] )
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
def _UpperCamelCase ( self : Dict , a_ : Any ):
"""simple docstring"""
from datasets import load_dataset
lowerCamelCase__ = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" )
# automatic decoding with librispeech
lowerCamelCase__ = ds.sort("""id""" ).select(range(a_ ) )[:num_samples]["""audio"""]
return [x["array"] for x in speech_samples]
def _UpperCamelCase ( self : Dict ):
"""simple docstring"""
lowerCamelCase__ = torch.tensor(
[2.3_804e-03, 2.0_752e-03, 1.9_836e-03, 2.1_057e-03, 1.6_174e-03,
3.0_518e-04, 9.1_553e-05, 3.3_569e-04, 9.7_656e-04, 1.8_311e-03,
2.0_142e-03, 2.1_057e-03, 1.7_395e-03, 4.5_776e-04, -3.9_673e-04,
4.5_776e-04, 1.0_071e-03, 9.1_553e-05, 4.8_828e-04, 1.1_597e-03,
7.3_242e-04, 9.4_604e-04, 1.8_005e-03, 1.8_311e-03, 8.8_501e-04,
4.2_725e-04, 4.8_828e-04, 7.3_242e-04, 1.0_986e-03, 2.1_057e-03] )
# fmt: on
lowerCamelCase__ = self._load_datasamples(1 )
lowerCamelCase__ = SpeechTaFeatureExtractor()
lowerCamelCase__ = feature_extractor(a_ , return_tensors="""pt""" ).input_values
self.assertEquals(input_values.shape , (1, 9_36_80) )
self.assertTrue(torch.allclose(input_values[0, :30] , a_ , atol=1e-6 ) )
def _UpperCamelCase ( self : Union[str, Any] ):
"""simple docstring"""
lowerCamelCase__ = torch.tensor(
[-2.6_8_7_0, -3.0_1_0_4, -3.1_3_5_6, -3.5_3_5_2, -3.0_0_4_4, -3.0_3_5_3, -3.4_7_1_9, -3.6_7_7_7,
-3.1_5_2_0, -2.9_4_3_5, -2.6_5_5_3, -2.8_7_9_5, -2.9_9_4_4, -2.5_9_2_1, -3.0_2_7_9, -3.0_3_8_6,
-3.0_8_6_4, -3.1_2_9_1, -3.2_3_5_3, -2.7_4_4_4, -2.6_8_3_1, -2.7_2_8_7, -3.1_7_6_1, -3.1_5_7_1,
-3.2_7_2_6, -3.0_5_8_2, -3.1_0_0_7, -3.4_5_3_3, -3.4_6_9_5, -3.0_9_9_8] )
# fmt: on
lowerCamelCase__ = self._load_datasamples(1 )
lowerCamelCase__ = SpeechTaFeatureExtractor()
lowerCamelCase__ = feature_extractor(audio_target=a_ , return_tensors="""pt""" ).input_values
self.assertEquals(input_values.shape , (1, 3_66, 80) )
self.assertTrue(torch.allclose(input_values[0, 0, :30] , a_ , atol=1e-4 ) )
| 706
|
from __future__ import annotations
from scipy.special import comb # type: ignore
class lowercase :
"""simple docstring"""
def __init__( self : Optional[int] , a_ : list[tuple[float, float]] ):
"""simple docstring"""
lowerCamelCase__ = list_of_points
# Degree determines the flexibility of the curve.
# Degree = 1 will produce a straight line.
lowerCamelCase__ = len(a_ ) - 1
def _UpperCamelCase ( self : Union[str, Any] , a_ : float ):
"""simple docstring"""
assert 0 <= t <= 1, "Time t must be between 0 and 1."
lowerCamelCase__ = []
for i in range(len(self.list_of_points ) ):
# basis function for each i
output_values.append(
comb(self.degree , a_ ) * ((1 - t) ** (self.degree - i)) * (t**i) )
# the basis must sum up to 1 for it to produce a valid Bezier curve.
assert round(sum(a_ ) , 5 ) == 1
return output_values
def _UpperCamelCase ( self : int , a_ : float ):
"""simple docstring"""
assert 0 <= t <= 1, "Time t must be between 0 and 1."
lowerCamelCase__ = self.basis_function(a_ )
lowerCamelCase__ = 0.0
lowerCamelCase__ = 0.0
for i in range(len(self.list_of_points ) ):
# For all points, sum up the product of i-th basis function and i-th point.
x += basis_function[i] * self.list_of_points[i][0]
y += basis_function[i] * self.list_of_points[i][1]
return (x, y)
def _UpperCamelCase ( self : str , a_ : float = 0.0_1 ):
"""simple docstring"""
from matplotlib import pyplot as plt # type: ignore
lowerCamelCase__ = [] # x coordinates of points to plot
lowerCamelCase__ = [] # y coordinates of points to plot
lowerCamelCase__ = 0.0
while t <= 1:
lowerCamelCase__ = self.bezier_curve_function(a_ )
to_plot_x.append(value[0] )
to_plot_y.append(value[1] )
t += step_size
lowerCamelCase__ = [i[0] for i in self.list_of_points]
lowerCamelCase__ = [i[1] for i in self.list_of_points]
plt.plot(
a_ , a_ , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , )
plt.scatter(a_ , a_ , color="""red""" , label="""Control Points""" )
plt.legend()
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1
BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2
BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
| 235
| 0
|
import unittest
from transformers import BigBirdTokenizer, BigBirdTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
UpperCAmelCase__ = "▁"
UpperCAmelCase__ = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
@require_tokenizers
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = BigBirdTokenizer
__snake_case = BigBirdTokenizerFast
__snake_case = True
__snake_case = True
def __lowerCAmelCase ( self : int ) ->Optional[Any]:
"""simple docstring"""
super().setUp()
a = self.tokenizer_class(__UpperCAmelCase , keep_accents=__UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def __lowerCAmelCase ( self : List[str] ) ->Optional[Any]:
"""simple docstring"""
a = '''<s>'''
a = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase )
def __lowerCAmelCase ( self : List[str] ) ->List[Any]:
"""simple docstring"""
a = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<unk>''' )
self.assertEqual(vocab_keys[1] , '''<s>''' )
self.assertEqual(vocab_keys[-1] , '''[MASK]''' )
self.assertEqual(len(__UpperCAmelCase ) , 1_004 )
def __lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1_000 )
def __lowerCAmelCase ( self : str ) ->Any:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
a = self.get_tokenizer()
a = self.get_rust_tokenizer()
a = '''I was born in 92000, and this is falsé.'''
a = tokenizer.tokenize(__UpperCAmelCase )
a = rust_tokenizer.tokenize(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase )
a = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
a = self.get_rust_tokenizer()
a = tokenizer.encode(__UpperCAmelCase )
a = rust_tokenizer.encode(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[Any] ) ->Optional[Any]:
"""simple docstring"""
a = BigBirdTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase )
a = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(__UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [285, 46, 10, 170, 382] , )
a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
__UpperCAmelCase , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
a = tokenizer.convert_tokens_to_ids(__UpperCAmelCase )
self.assertListEqual(
__UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , )
a = tokenizer.convert_ids_to_tokens(__UpperCAmelCase )
self.assertListEqual(
__UpperCAmelCase , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
@cached_property
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' )
@slow
def __lowerCAmelCase ( self : str ) ->Union[str, Any]:
"""simple docstring"""
a = '''Hello World!'''
a = [65, 18_536, 2_260, 101, 66]
self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) )
@slow
def __lowerCAmelCase ( self : Any ) ->Dict:
"""simple docstring"""
a = (
'''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'''
''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'''
)
# fmt: off
a = [65, 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, 66] # noqa: E231
# fmt: on
self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) )
@require_torch
@slow
def __lowerCAmelCase ( self : Dict ) ->Dict:
"""simple docstring"""
import torch
from transformers import BigBirdConfig, BigBirdModel
# Build sequence
a = list(self.big_tokenizer.get_vocab().keys() )[:10]
a = ''' '''.join(__UpperCAmelCase )
a = self.big_tokenizer.encode_plus(__UpperCAmelCase , return_tensors='''pt''' , return_token_type_ids=__UpperCAmelCase )
a = self.big_tokenizer.batch_encode_plus(
[sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=__UpperCAmelCase )
a = BigBirdConfig(attention_type='''original_full''' )
a = BigBirdModel(__UpperCAmelCase )
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**__UpperCAmelCase )
model(**__UpperCAmelCase )
@slow
def __lowerCAmelCase ( self : Optional[Any] ) ->Optional[int]:
"""simple docstring"""
a = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' )
a = tokenizer.decode(tokenizer('''Paris is the [MASK].''' ).input_ids )
self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''' )
@slow
def __lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
a = {'''input_ids''': [[65, 39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114, 66], [65, 448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__UpperCAmelCase , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
| 117
|
from __future__ import annotations
UpperCAmelCase__ = list[tuple[int, int]]
UpperCAmelCase__ = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
UpperCAmelCase__ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right
class lowercase_ :
'''simple docstring'''
def __init__( self : Dict , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : float , __UpperCAmelCase : Node | None , ) ->int:
"""simple docstring"""
a = pos_x
a = pos_y
a = (pos_y, pos_x)
a = goal_x
a = goal_y
a = g_cost
a = parent
a = self.calculate_heuristic()
def __lowerCAmelCase ( self : Any ) ->float:
"""simple docstring"""
a = abs(self.pos_x - self.goal_x )
a = abs(self.pos_y - self.goal_y )
return dx + dy
def __lt__( self : Any , __UpperCAmelCase : Tuple ) ->bool:
"""simple docstring"""
return self.f_cost < other.f_cost
class lowercase_ :
'''simple docstring'''
def __init__( self : Optional[Any] , __UpperCAmelCase : tuple[int, int] , __UpperCAmelCase : tuple[int, int] ) ->Dict:
"""simple docstring"""
a = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __UpperCAmelCase )
a = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , __UpperCAmelCase )
a = [self.start]
a = []
a = False
def __lowerCAmelCase ( self : str ) ->Path | None:
"""simple docstring"""
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
a = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
a = True
return self.retrace_path(__UpperCAmelCase )
self.closed_nodes.append(__UpperCAmelCase )
a = self.get_successors(__UpperCAmelCase )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(__UpperCAmelCase )
else:
# retrieve the best current path
a = self.open_nodes.pop(self.open_nodes.index(__UpperCAmelCase ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(__UpperCAmelCase )
else:
self.open_nodes.append(__UpperCAmelCase )
if not self.reached:
return [self.start.pos]
return None
def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : Node ) ->list[Node]:
"""simple docstring"""
a = []
for action in delta:
a = parent.pos_x + action[1]
a = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__UpperCAmelCase ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
__UpperCAmelCase , __UpperCAmelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __UpperCAmelCase , ) )
return successors
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Node | None ) ->Path:
"""simple docstring"""
a = node
a = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
a = current_node.parent
path.reverse()
return path
if __name__ == "__main__":
UpperCAmelCase__ = (0, 0)
UpperCAmelCase__ = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
print("------")
UpperCAmelCase__ = GreedyBestFirst(init, goal)
UpperCAmelCase__ = greedy_bf.search()
if path:
for pos_x, pos_y in path:
UpperCAmelCase__ = 2
for elem in grid:
print(elem)
| 117
| 1
|
"""simple docstring"""
import bza
import gzip
import lzma
import os
import shutil
import struct
import tarfile
import warnings
import zipfile
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Dict, List, Optional, Type, Union
from .. import config
from .filelock import FileLock
from .logging import get_logger
lowercase__ = get_logger(__name__)
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self , lowercase = None ):
_lowerCamelCase : Optional[Any] = (
os.path.join(lowercase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH
)
_lowerCamelCase : str = Extractor
def A_ ( self , lowercase ):
from .file_utils import hash_url_to_filename
# Path where we extract compressed archives
# We extract in the cache dir, and get the extracted path name by hashing the original path"
_lowerCamelCase : Any = os.path.abspath(lowercase )
return os.path.join(self.extract_dir , hash_url_to_filename(lowercase ) )
def A_ ( self , lowercase , lowercase ):
return force_extract or (
not os.path.isfile(lowercase ) and not (os.path.isdir(lowercase ) and os.listdir(lowercase ))
)
def A_ ( self , lowercase , lowercase = False ):
_lowerCamelCase : Optional[Any] = self.extractor.infer_extractor_format(lowercase )
if not extractor_format:
return input_path
_lowerCamelCase : List[str] = self._get_output_path(lowercase )
if self._do_extract(lowercase , lowercase ):
self.extractor.extract(lowercase , lowercase , lowercase )
return output_path
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
@classmethod
@abstractmethod
def A_ ( cls , lowercase , **lowercase ):
...
@staticmethod
@abstractmethod
def A_ ( lowercase , lowercase ):
...
class lowerCAmelCase__ ( lowercase, lowercase ):
'''simple docstring'''
lowerCamelCase__ = []
@staticmethod
def A_ ( lowercase , lowercase ):
with open(lowercase , 'rb' ) as f:
return f.read(lowercase )
@classmethod
def A_ ( cls , lowercase , lowercase = b"" ):
if not magic_number:
_lowerCamelCase : List[str] = max(len(lowercase ) for cls_magic_number in cls.magic_numbers )
try:
_lowerCamelCase : List[Any] = cls.read_magic_number(lowercase , lowercase )
except OSError:
return False
return any(magic_number.startswith(lowercase ) for cls_magic_number in cls.magic_numbers )
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
@classmethod
def A_ ( cls , lowercase , **lowercase ):
return tarfile.is_tarfile(lowercase )
@staticmethod
def A_ ( lowercase , lowercase ):
def resolved(lowercase ) -> str:
return os.path.realpath(os.path.abspath(lowercase ) )
def badpath(lowercase , lowercase ) -> bool:
# joinpath will ignore base if path is absolute
return not resolved(os.path.join(lowercase , lowercase ) ).startswith(lowercase )
def badlink(lowercase , lowercase ) -> bool:
# Links are interpreted relative to the directory containing the link
_lowerCamelCase : Tuple = resolved(os.path.join(lowercase , os.path.dirname(info.name ) ) )
return badpath(info.linkname , base=lowercase )
_lowerCamelCase : str = resolved(lowercase )
for finfo in members:
if badpath(finfo.name , lowercase ):
logger.error(F'''Extraction of {finfo.name} is blocked (illegal path)''' )
elif finfo.issym() and badlink(lowercase , lowercase ):
logger.error(F'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' )
elif finfo.islnk() and badlink(lowercase , lowercase ):
logger.error(F'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' )
else:
yield finfo
@staticmethod
def A_ ( lowercase , lowercase ):
os.makedirs(lowercase , exist_ok=lowercase )
_lowerCamelCase : str = tarfile.open(lowercase )
tar_file.extractall(lowercase , members=TarExtractor.safemembers(lowercase , lowercase ) )
tar_file.close()
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = [B"""\x1F\x8B"""]
@staticmethod
def A_ ( lowercase , lowercase ):
with gzip.open(lowercase , 'rb' ) as gzip_file:
with open(lowercase , 'wb' ) as extracted_file:
shutil.copyfileobj(lowercase , lowercase )
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = [
B"""PK\x03\x04""",
B"""PK\x05\x06""", # empty archive
B"""PK\x07\x08""", # spanned archive
]
@classmethod
def A_ ( cls , lowercase , lowercase = b"" ):
if super().is_extractable(lowercase , magic_number=lowercase ):
return True
try:
# Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives.
# From: https://github.com/python/cpython/pull/5053
from zipfile import (
_CD_SIGNATURE,
_ECD_DISK_NUMBER,
_ECD_DISK_START,
_ECD_ENTRIES_TOTAL,
_ECD_OFFSET,
_ECD_SIZE,
_EndRecData,
sizeCentralDir,
stringCentralDir,
structCentralDir,
)
with open(lowercase , 'rb' ) as fp:
_lowerCamelCase : List[Any] = _EndRecData(lowercase )
if endrec:
if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0:
return True # Empty zipfiles are still zipfiles
elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]:
fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk
if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir:
_lowerCamelCase : Union[str, Any] = fp.read(lowercase ) # CD is where we expect it to be
if len(lowercase ) == sizeCentralDir:
_lowerCamelCase : Dict = struct.unpack(lowercase , lowercase ) # CD is the right size
if centdir[_CD_SIGNATURE] == stringCentralDir:
return True # First central directory entry has correct magic number
return False
except Exception: # catch all errors in case future python versions change the zipfile internals
return False
@staticmethod
def A_ ( lowercase , lowercase ):
os.makedirs(lowercase , exist_ok=lowercase )
with zipfile.ZipFile(lowercase , 'r' ) as zip_file:
zip_file.extractall(lowercase )
zip_file.close()
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = [B"""\xFD\x37\x7A\x58\x5A\x00"""]
@staticmethod
def A_ ( lowercase , lowercase ):
with lzma.open(lowercase ) as compressed_file:
with open(lowercase , 'wb' ) as extracted_file:
shutil.copyfileobj(lowercase , lowercase )
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = [B"""Rar!\x1a\x07\x00""", B"""Rar!\x1a\x07\x01\x00"""] # RAR_ID # RAR5_ID
@staticmethod
def A_ ( lowercase , lowercase ):
if not config.RARFILE_AVAILABLE:
raise ImportError('Please pip install rarfile' )
import rarfile
os.makedirs(lowercase , exist_ok=lowercase )
_lowerCamelCase : int = rarfile.RarFile(lowercase )
rf.extractall(lowercase )
rf.close()
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = [B"""\x28\xb5\x2F\xFD"""]
@staticmethod
def A_ ( lowercase , lowercase ):
if not config.ZSTANDARD_AVAILABLE:
raise ImportError('Please pip install zstandard' )
import zstandard as zstd
_lowerCamelCase : List[Any] = zstd.ZstdDecompressor()
with open(lowercase , 'rb' ) as ifh, open(lowercase , 'wb' ) as ofh:
dctx.copy_stream(lowercase , lowercase )
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = [B"""\x42\x5A\x68"""]
@staticmethod
def A_ ( lowercase , lowercase ):
with bza.open(lowercase , 'rb' ) as compressed_file:
with open(lowercase , 'wb' ) as extracted_file:
shutil.copyfileobj(lowercase , lowercase )
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = [B"""\x37\x7A\xBC\xAF\x27\x1C"""]
@staticmethod
def A_ ( lowercase , lowercase ):
if not config.PY7ZR_AVAILABLE:
raise ImportError('Please pip install py7zr' )
import pyazr
os.makedirs(lowercase , exist_ok=lowercase )
with pyazr.SevenZipFile(lowercase , 'r' ) as archive:
archive.extractall(lowercase )
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = [B"""\x04\x22\x4D\x18"""]
@staticmethod
def A_ ( lowercase , lowercase ):
if not config.LZ4_AVAILABLE:
raise ImportError('Please pip install lz4' )
import lza.frame
with lza.frame.open(lowercase , 'rb' ) as compressed_file:
with open(lowercase , 'wb' ) as extracted_file:
shutil.copyfileobj(lowercase , lowercase )
class lowerCAmelCase__ :
'''simple docstring'''
lowerCamelCase__ = {
"tar": TarExtractor,
"gzip": GzipExtractor,
"zip": ZipExtractor,
"xz": XzExtractor,
"rar": RarExtractor,
"zstd": ZstdExtractor,
"bz2": BzipaExtractor,
"7z": SevenZipExtractor, # <Added version="2.4.0"/>
"lz4": LzaExtractor, # <Added version="2.4.0"/>
}
@classmethod
def A_ ( cls ):
return max(
len(lowercase )
for extractor in cls.extractors.values()
if issubclass(lowercase , lowercase )
for extractor_magic_number in extractor.magic_numbers )
@staticmethod
def A_ ( lowercase , lowercase ):
try:
return MagicNumberBaseExtractor.read_magic_number(lowercase , magic_number_length=lowercase )
except OSError:
return b""
@classmethod
def A_ ( cls , lowercase , lowercase = False ):
warnings.warn(
'Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. '
'Use \'infer_extractor_format\' instead.' , category=lowercase , )
_lowerCamelCase : List[str] = cls.infer_extractor_format(lowercase )
if extractor_format:
return True if not return_extractor else (True, cls.extractors[extractor_format])
return False if not return_extractor else (False, None)
@classmethod
def A_ ( cls , lowercase ): # <Added version="2.4.0"/>
_lowerCamelCase : Tuple = cls._get_magic_number_max_length()
_lowerCamelCase : List[str] = cls._read_magic_number(lowercase , lowercase )
for extractor_format, extractor in cls.extractors.items():
if extractor.is_extractable(lowercase , magic_number=lowercase ):
return extractor_format
@classmethod
def A_ ( cls , lowercase , lowercase , lowercase = None , lowercase = "deprecated" , ):
os.makedirs(os.path.dirname(lowercase ) , exist_ok=lowercase )
# Prevent parallel extractions
_lowerCamelCase : str = str(Path(lowercase ).with_suffix('.lock' ) )
with FileLock(lowercase ):
shutil.rmtree(lowercase , ignore_errors=lowercase )
if extractor_format or extractor != "deprecated":
if extractor != "deprecated" or not isinstance(lowercase , lowercase ): # passed as positional arg
warnings.warn(
'Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. '
'Use \'extractor_format\' instead.' , category=lowercase , )
_lowerCamelCase : Tuple = extractor if extractor != 'deprecated' else extractor_format
else:
_lowerCamelCase : Optional[Any] = cls.extractors[extractor_format]
return extractor.extract(lowercase , lowercase )
else:
warnings.warn(
'Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an '
'exception in 3.0.0.' , category=lowercase , )
for extractor in cls.extractors.values():
if extractor.is_extractable(lowercase ):
return extractor.extract(lowercase , lowercase )
| 492
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ = logging.get_logger(__name__)
lowercase__ = {
"""google/realm-cc-news-pretrained-embedder""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json"""
),
"""google/realm-cc-news-pretrained-encoder""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json"""
),
"""google/realm-cc-news-pretrained-scorer""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json"""
),
"""google/realm-cc-news-pretrained-openqa""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json"""
),
"""google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""",
"""google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""",
"""google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""",
"""google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""",
# See all REALM models at https://huggingface.co/models?filter=realm
}
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """realm"""
def __init__( self , lowercase=30522 , lowercase=768 , lowercase=128 , lowercase=12 , lowercase=12 , lowercase=8 , lowercase=3072 , lowercase="gelu_new" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=256 , lowercase=10 , lowercase=1E-3 , lowercase=5 , lowercase=320 , lowercase=13353718 , lowercase=5000 , lowercase=1 , lowercase=0 , lowercase=2 , **lowercase , ):
super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase )
# Common config
_lowerCamelCase : str = vocab_size
_lowerCamelCase : Dict = max_position_embeddings
_lowerCamelCase : int = hidden_size
_lowerCamelCase : Optional[Any] = retriever_proj_size
_lowerCamelCase : Dict = num_hidden_layers
_lowerCamelCase : Any = num_attention_heads
_lowerCamelCase : int = num_candidates
_lowerCamelCase : List[Any] = intermediate_size
_lowerCamelCase : int = hidden_act
_lowerCamelCase : Union[str, Any] = hidden_dropout_prob
_lowerCamelCase : Dict = attention_probs_dropout_prob
_lowerCamelCase : Union[str, Any] = initializer_range
_lowerCamelCase : List[Any] = type_vocab_size
_lowerCamelCase : int = layer_norm_eps
# Reader config
_lowerCamelCase : Tuple = span_hidden_size
_lowerCamelCase : int = max_span_width
_lowerCamelCase : Tuple = reader_layer_norm_eps
_lowerCamelCase : Union[str, Any] = reader_beam_size
_lowerCamelCase : Union[str, Any] = reader_seq_len
# Retrieval config
_lowerCamelCase : Optional[Any] = num_block_records
_lowerCamelCase : str = searcher_beam_size
| 492
| 1
|
import inspect
import unittest
from transformers import ConvNextConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel
from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowerCAmelCase_ :
def __init__( self : int , _A : int , _A : Dict=13 , _A : Optional[Any]=32 , _A : List[str]=3 , _A : Tuple=4 , _A : Union[str, Any]=[10, 20, 30, 40] , _A : Optional[int]=[2, 2, 3, 2] , _A : Union[str, Any]=True , _A : str=True , _A : List[Any]=37 , _A : List[str]="gelu" , _A : str=10 , _A : Optional[Any]=0.02 , _A : Optional[Any]=["stage2", "stage3", "stage4"] , _A : Any=[2, 3, 4] , _A : Union[str, Any]=None , ):
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = image_size
_UpperCamelCase = num_channels
_UpperCamelCase = num_stages
_UpperCamelCase = hidden_sizes
_UpperCamelCase = depths
_UpperCamelCase = is_training
_UpperCamelCase = use_labels
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_act
_UpperCamelCase = num_labels
_UpperCamelCase = initializer_range
_UpperCamelCase = out_features
_UpperCamelCase = out_indices
_UpperCamelCase = scope
def UpperCamelCase_ ( self : Union[str, Any] ):
_UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_UpperCamelCase = None
if self.use_labels:
_UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels )
_UpperCamelCase = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self : int ):
return ConvNextConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def UpperCamelCase_ ( self : Optional[Any] , _A : Optional[int] , _A : Union[str, Any] , _A : Dict ):
_UpperCamelCase = ConvNextModel(config=_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def UpperCamelCase_ ( self : Optional[int] , _A : Optional[Any] , _A : Tuple , _A : int ):
_UpperCamelCase = ConvNextForImageClassification(_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A , labels=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : List[str] , _A : Union[str, Any] , _A : Dict , _A : Any ):
_UpperCamelCase = ConvNextBackbone(config=_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
_UpperCamelCase = None
_UpperCamelCase = ConvNextBackbone(config=_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def UpperCamelCase_ ( self : Tuple ):
_UpperCamelCase = self.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs
_UpperCamelCase = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ):
UpperCAmelCase = (
(
ConvNextModel,
ConvNextForImageClassification,
ConvNextBackbone,
)
if is_torch_available()
else ()
)
UpperCAmelCase = (
{"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification}
if is_torch_available()
else {}
)
UpperCAmelCase = True
UpperCAmelCase = False
UpperCAmelCase = False
UpperCAmelCase = False
UpperCAmelCase = False
def UpperCamelCase_ ( self : Union[str, Any] ):
_UpperCamelCase = ConvNextModelTester(self )
_UpperCamelCase = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 )
def UpperCamelCase_ ( self : str ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase_ ( self : str ):
return
@unittest.skip(reason='''ConvNext does not use inputs_embeds''' )
def UpperCamelCase_ ( self : Union[str, Any] ):
pass
@unittest.skip(reason='''ConvNext does not support input and output embeddings''' )
def UpperCamelCase_ ( self : Optional[Any] ):
pass
@unittest.skip(reason='''ConvNext does not use feedforward chunking''' )
def UpperCamelCase_ ( self : Optional[int] ):
pass
def UpperCamelCase_ ( self : List[str] ):
_UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCamelCase = model_class(_A )
_UpperCamelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCamelCase = [*signature.parameters.keys()]
_UpperCamelCase = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _A )
def UpperCamelCase_ ( self : Optional[Any] ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def UpperCamelCase_ ( self : int ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_A )
def UpperCamelCase_ ( self : List[str] ):
def check_hidden_states_output(_A : int , _A : Optional[int] , _A : Dict ):
_UpperCamelCase = model_class(_A )
model.to(_A )
model.eval()
with torch.no_grad():
_UpperCamelCase = model(**self._prepare_for_class(_A , _A ) )
_UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_UpperCamelCase = self.model_tester.num_stages
self.assertEqual(len(_A ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCamelCase = True
check_hidden_states_output(_A , _A , _A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_UpperCamelCase = True
check_hidden_states_output(_A , _A , _A )
def UpperCamelCase_ ( self : Dict ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_A )
@slow
def UpperCamelCase_ ( self : List[str] ):
for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCamelCase = ConvNextModel.from_pretrained(_A )
self.assertIsNotNone(_A )
def _snake_case ( ):
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class lowerCAmelCase_ ( unittest.TestCase ):
@cached_property
def UpperCamelCase_ ( self : int ):
return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self : List[str] ):
_UpperCamelCase = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(_A )
_UpperCamelCase = self.default_image_processor
_UpperCamelCase = prepare_img()
_UpperCamelCase = image_processor(images=_A , return_tensors='''pt''' ).to(_A )
# forward pass
with torch.no_grad():
_UpperCamelCase = model(**_A )
# verify the logits
_UpperCamelCase = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _A )
_UpperCamelCase = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(_A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) )
@require_torch
class lowerCAmelCase_ ( unittest.TestCase, __lowercase ):
UpperCAmelCase = (ConvNextBackbone,) if is_torch_available() else ()
UpperCAmelCase = ConvNextConfig
UpperCAmelCase = False
def UpperCamelCase_ ( self : Dict ):
_UpperCamelCase = ConvNextModelTester(self )
| 10
|
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ConditionalDetrImageProcessor
class snake_case__ ( unittest.TestCase ):
def __init__( self : List[str] , A__ : List[Any] , A__ : int=7 , A__ : Union[str, Any]=3 , A__ : List[str]=30 , A__ : Optional[int]=4_00 , A__ : Optional[Any]=True , A__ : Optional[int]=None , A__ : Optional[Any]=True , A__ : Any=[0.5, 0.5, 0.5] , A__ : int=[0.5, 0.5, 0.5] , A__ : Any=True , A__ : int=1 / 2_55 , A__ : List[str]=True , ) -> Dict:
'''simple docstring'''
snake_case_ : int = size if size is not None else {"shortest_edge": 18, "longest_edge": 13_33}
snake_case_ : Any = parent
snake_case_ : Optional[int] = batch_size
snake_case_ : List[Any] = num_channels
snake_case_ : Union[str, Any] = min_resolution
snake_case_ : List[Any] = max_resolution
snake_case_ : Tuple = do_resize
snake_case_ : Dict = size
snake_case_ : Optional[Any] = do_normalize
snake_case_ : int = image_mean
snake_case_ : List[Any] = image_std
snake_case_ : Tuple = do_rescale
snake_case_ : Any = rescale_factor
snake_case_ : Optional[int] = do_pad
def UpperCAmelCase__ ( self : int ) -> List[str]:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def UpperCAmelCase__ ( self : Optional[int] , A__ : Optional[int] , A__ : Any=False ) -> Optional[Any]:
'''simple docstring'''
if not batched:
snake_case_ : Any = image_inputs[0]
if isinstance(A__ , Image.Image ):
snake_case_ ,snake_case_ : Dict = image.size
else:
snake_case_ ,snake_case_ : int = image.shape[1], image.shape[2]
if w < h:
snake_case_ : Dict = int(self.size["shortest_edge"] * h / w )
snake_case_ : Optional[int] = self.size["shortest_edge"]
elif w > h:
snake_case_ : Optional[int] = self.size["shortest_edge"]
snake_case_ : str = int(self.size["shortest_edge"] * w / h )
else:
snake_case_ : Optional[int] = self.size["shortest_edge"]
snake_case_ : List[Any] = self.size["shortest_edge"]
else:
snake_case_ : str = []
for image in image_inputs:
snake_case_ ,snake_case_ : Tuple = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
snake_case_ : List[Any] = max(A__ , key=lambda A__ : item[0] )[0]
snake_case_ : int = max(A__ , key=lambda A__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class snake_case__ ( _UpperCamelCase , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[int] = ConditionalDetrImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self : Tuple ) -> Dict:
'''simple docstring'''
snake_case_ : List[str] = ConditionalDetrImageProcessingTester(self )
@property
def UpperCAmelCase__ ( self : Dict ) -> Tuple:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self : Any ) -> Tuple:
'''simple docstring'''
snake_case_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A__ , "image_mean" ) )
self.assertTrue(hasattr(A__ , "image_std" ) )
self.assertTrue(hasattr(A__ , "do_normalize" ) )
self.assertTrue(hasattr(A__ , "do_resize" ) )
self.assertTrue(hasattr(A__ , "size" ) )
def UpperCAmelCase__ ( self : List[str] ) -> Tuple:
'''simple docstring'''
snake_case_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 13_33} )
self.assertEqual(image_processor.do_pad , A__ )
snake_case_ : Optional[int] = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A__ )
self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} )
self.assertEqual(image_processor.do_pad , A__ )
def UpperCAmelCase__ ( self : str ) -> Optional[int]:
'''simple docstring'''
pass
def UpperCAmelCase__ ( self : Dict ) -> Tuple:
'''simple docstring'''
snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ )
for image in image_inputs:
self.assertIsInstance(A__ , Image.Image )
# Test not batched input
snake_case_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(A__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case_ ,snake_case_ : List[Any] = self.image_processor_tester.get_expected_values(A__ , batched=A__ )
snake_case_ : int = image_processing(A__ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase__ ( self : int ) -> Any:
'''simple docstring'''
snake_case_ : Dict = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ , numpify=A__ )
for image in image_inputs:
self.assertIsInstance(A__ , np.ndarray )
# Test not batched input
snake_case_ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case_ ,snake_case_ : List[str] = self.image_processor_tester.get_expected_values(A__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case_ : Optional[int] = image_processing(A__ , return_tensors="pt" ).pixel_values
snake_case_ ,snake_case_ : Dict = self.image_processor_tester.get_expected_values(A__ , batched=A__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase__ ( self : Tuple ) -> str:
'''simple docstring'''
snake_case_ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ , torchify=A__ )
for image in image_inputs:
self.assertIsInstance(A__ , torch.Tensor )
# Test not batched input
snake_case_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case_ ,snake_case_ : List[Any] = self.image_processor_tester.get_expected_values(A__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case_ : Any = image_processing(A__ , return_tensors="pt" ).pixel_values
snake_case_ ,snake_case_ : int = self.image_processor_tester.get_expected_values(A__ , batched=A__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def UpperCAmelCase__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f:
snake_case_ : Optional[Any] = json.loads(f.read() )
snake_case_ : int = {"image_id": 3_97_69, "annotations": target}
# encode them
snake_case_ : Optional[int] = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" )
snake_case_ : Any = image_processing(images=A__ , annotations=A__ , return_tensors="pt" )
# verify pixel values
snake_case_ : List[Any] = torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding["pixel_values"].shape , A__ )
snake_case_ : List[str] = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , A__ , atol=1E-4 ) )
# verify area
snake_case_ : Tuple = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , A__ ) )
# verify boxes
snake_case_ : Any = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , A__ )
snake_case_ : str = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , A__ , atol=1E-3 ) )
# verify image_id
snake_case_ : List[Any] = torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , A__ ) )
# verify is_crowd
snake_case_ : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , A__ ) )
# verify class_labels
snake_case_ : Any = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , A__ ) )
# verify orig_size
snake_case_ : Any = torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , A__ ) )
# verify size
snake_case_ : List[str] = torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , A__ ) )
@slow
def UpperCAmelCase__ ( self : int ) -> str:
'''simple docstring'''
snake_case_ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f:
snake_case_ : Any = json.loads(f.read() )
snake_case_ : Optional[Any] = {"file_name": "000000039769.png", "image_id": 3_97_69, "segments_info": target}
snake_case_ : int = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" )
# encode them
snake_case_ : Union[str, Any] = ConditionalDetrImageProcessor(format="coco_panoptic" )
snake_case_ : str = image_processing(images=A__ , annotations=A__ , masks_path=A__ , return_tensors="pt" )
# verify pixel values
snake_case_ : int = torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding["pixel_values"].shape , A__ )
snake_case_ : str = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , A__ , atol=1E-4 ) )
# verify area
snake_case_ : Optional[int] = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , A__ ) )
# verify boxes
snake_case_ : str = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , A__ )
snake_case_ : str = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , A__ , atol=1E-3 ) )
# verify image_id
snake_case_ : List[str] = torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , A__ ) )
# verify is_crowd
snake_case_ : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , A__ ) )
# verify class_labels
snake_case_ : Optional[int] = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , A__ ) )
# verify masks
snake_case_ : Union[str, Any] = 82_28_73
self.assertEqual(encoding["labels"][0]["masks"].sum().item() , A__ )
# verify orig_size
snake_case_ : Dict = torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , A__ ) )
# verify size
snake_case_ : str = torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , A__ ) )
| 666
| 0
|
_snake_case = [
'''DownloadConfig''',
'''DownloadManager''',
'''DownloadMode''',
'''StreamingDownloadManager''',
]
from .download_config import DownloadConfig
from .download_manager import DownloadManager, DownloadMode
from .streaming_download_manager import StreamingDownloadManager
| 170
|
from maths.prime_factors import prime_factors
def __lowerCamelCase ( _lowercase ) -> int:
if not isinstance(_lowercase , _lowercase ):
UpperCamelCase = F'Input value of [number={number}] must be an integer'
raise TypeError(_lowercase )
if number < 1:
raise ValueError('Input must be a positive integer' )
return -1 if len(prime_factors(_lowercase ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 170
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase : Union[str, Any] = {
"configuration_upernet": ["UperNetConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Optional[Any] = [
"UperNetForSemanticSegmentation",
"UperNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_upernet import UperNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel
else:
import sys
UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 567
|
"""simple docstring"""
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
# Register SEW's fairseq modules
from sew_asapp import tasks # noqa: F401
from transformers import (
SEWConfig,
SEWForCTC,
SEWModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
UpperCAmelCase : int = logging.get_logger(__name__)
UpperCAmelCase : Tuple = {
"post_extract_proj": "feature_projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.upsample.0": "encoder.upsample.projection",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any:
'''simple docstring'''
for attribute in key.split(""".""" ):
lowercase_ = getattr(__lowerCAmelCase , __lowerCAmelCase )
if weight_type is not None:
lowercase_ = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape
else:
lowercase_ = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
lowercase_ = value
elif weight_type == "weight_g":
lowercase_ = value
elif weight_type == "weight_v":
lowercase_ = value
elif weight_type == "bias":
lowercase_ = value
else:
lowercase_ = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]:
'''simple docstring'''
lowercase_ = []
lowercase_ = fairseq_model.state_dict()
lowercase_ = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
lowercase_ = False
if "conv_layers" in name:
load_conv_layer(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , )
lowercase_ = True
else:
for key, mapped_key in MAPPING.items():
lowercase_ = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
lowercase_ = True
if "*" in mapped_key:
lowercase_ = name.split(__lowerCAmelCase )[0].split(""".""" )[-2]
lowercase_ = mapped_key.replace("""*""" , __lowerCAmelCase )
if "weight_g" in name:
lowercase_ = """weight_g"""
elif "weight_v" in name:
lowercase_ = """weight_v"""
elif "weight" in name:
lowercase_ = """weight"""
elif "bias" in name:
lowercase_ = """bias"""
else:
lowercase_ = None
set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
continue
if not is_used:
unused_weights.append(__lowerCAmelCase )
logger.warning(F'''Unused weights: {unused_weights}''' )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str:
'''simple docstring'''
lowercase_ = full_name.split("""conv_layers.""" )[-1]
lowercase_ = name.split(""".""" )
lowercase_ = int(items[0] )
lowercase_ = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
lowercase_ = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
lowercase_ = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
lowercase_ = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
lowercase_ = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(__lowerCAmelCase )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ = SEWConfig()
if is_finetuned:
lowercase_ = model.wav_encoder.wav_model.cfg
else:
lowercase_ = model.cfg
lowercase_ = fs_config.conv_bias
lowercase_ = eval(fs_config.conv_feature_layers )
lowercase_ = [x[0] for x in conv_layers]
lowercase_ = [x[1] for x in conv_layers]
lowercase_ = [x[2] for x in conv_layers]
lowercase_ = """gelu"""
lowercase_ = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group"""
lowercase_ = 0.0
lowercase_ = fs_config.activation_fn.name
lowercase_ = fs_config.encoder_embed_dim
lowercase_ = 0.02
lowercase_ = fs_config.encoder_ffn_embed_dim
lowercase_ = 1E-5
lowercase_ = fs_config.encoder_layerdrop
lowercase_ = fs_config.encoder_attention_heads
lowercase_ = fs_config.conv_pos_groups
lowercase_ = fs_config.conv_pos
lowercase_ = len(__lowerCAmelCase )
lowercase_ = fs_config.encoder_layers
lowercase_ = fs_config.squeeze_factor
# take care of any params that are overridden by the Wav2VecCtc model
if is_finetuned:
lowercase_ = model.cfg
lowercase_ = fs_config.final_dropout
lowercase_ = fs_config.layerdrop
lowercase_ = fs_config.activation_dropout
lowercase_ = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0
lowercase_ = fs_config.attention_dropout
lowercase_ = fs_config.dropout_input
lowercase_ = fs_config.dropout
lowercase_ = fs_config.mask_channel_length
lowercase_ = fs_config.mask_channel_prob
lowercase_ = fs_config.mask_length
lowercase_ = fs_config.mask_prob
lowercase_ = """Wav2Vec2FeatureExtractor"""
lowercase_ = """Wav2Vec2CTCTokenizer"""
return config
@torch.no_grad()
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=True ) -> Union[str, Any]:
'''simple docstring'''
if is_finetuned:
lowercase_ , lowercase_ , lowercase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
lowercase_ , lowercase_ , lowercase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
if config_path is not None:
lowercase_ = SEWConfig.from_pretrained(__lowerCAmelCase )
else:
lowercase_ = convert_config(model[0] , __lowerCAmelCase )
lowercase_ = model[0].eval()
lowercase_ = True if config.feat_extract_norm == """layer""" else False
lowercase_ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , )
if is_finetuned:
if dict_path:
lowercase_ = Dictionary.load(__lowerCAmelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
lowercase_ = target_dict.pad_index
lowercase_ = target_dict.bos_index
lowercase_ = target_dict.pad_index
lowercase_ = target_dict.bos_index
lowercase_ = target_dict.eos_index
lowercase_ = len(target_dict.symbols )
lowercase_ = os.path.join(__lowerCAmelCase , """vocab.json""" )
if not os.path.isdir(__lowerCAmelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) )
return
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(target_dict.indices , __lowerCAmelCase )
lowercase_ = WavaVecaCTCTokenizer(
__lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , )
lowercase_ = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase )
processor.save_pretrained(__lowerCAmelCase )
lowercase_ = SEWForCTC(__lowerCAmelCase )
else:
lowercase_ = SEWModel(__lowerCAmelCase )
feature_extractor.save_pretrained(__lowerCAmelCase )
recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
hf_model.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
UpperCAmelCase : int = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
UpperCAmelCase : str = parser.parse_args()
convert_sew_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned
)
| 567
| 1
|
'''simple docstring'''
import math
import os
import sys
def a ( lowerCamelCase__ ):
'''simple docstring'''
A_ : List[Any] = """"""
try:
with open(lowerCamelCase__ , """rb""" ) as binary_file:
A_ : Dict = binary_file.read()
for dat in data:
A_ : int = f'{dat:08b}'
result += curr_byte
return result
except OSError:
print("""File not accessible""" )
sys.exit()
def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
'''simple docstring'''
lexicon.pop(lowerCamelCase__ )
A_ : Dict = last_match_id
if math.loga(lowerCamelCase__ ).is_integer():
for curr_key in lexicon:
A_ : int = """0""" + lexicon[curr_key]
A_ : Union[str, Any] = bin(lowerCamelCase__ )[2:]
def a ( lowerCamelCase__ ):
'''simple docstring'''
A_ : Union[str, Any] = {"""0""": """0""", """1""": """1"""}
A_ : Any = """""", """"""
A_ : Optional[int] = len(lowerCamelCase__ )
for i in range(len(lowerCamelCase__ ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
A_ : Optional[int] = lexicon[curr_string]
result += last_match_id
add_key_to_lexicon(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
index += 1
A_ : List[str] = """"""
while curr_string != "" and curr_string not in lexicon:
curr_string += "0"
if curr_string != "":
A_ : int = lexicon[curr_string]
result += last_match_id
return result
def a ( lowerCamelCase__ , lowerCamelCase__ ):
'''simple docstring'''
A_ : Any = os.path.getsize(lowerCamelCase__ )
A_ : Dict = bin(lowerCamelCase__ )[2:]
A_ : Dict = len(lowerCamelCase__ )
return "0" * (length_length - 1) + file_length_binary + compressed
def a ( lowerCamelCase__ , lowerCamelCase__ ):
'''simple docstring'''
A_ : List[str] = 8
try:
with open(lowerCamelCase__ , """wb""" ) as opened_file:
A_ : str = [
to_write[i : i + byte_length]
for i in range(0 , len(lowerCamelCase__ ) , lowerCamelCase__ )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append("""10000000""" )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array:
opened_file.write(int(lowerCamelCase__ , 2 ).to_bytes(1 , byteorder="""big""" ) )
except OSError:
print("""File not accessible""" )
sys.exit()
def a ( lowerCamelCase__ , lowerCamelCase__ ):
'''simple docstring'''
A_ : Union[str, Any] = read_file_binary(lowerCamelCase__ )
A_ : Union[str, Any] = compress_data(lowerCamelCase__ )
A_ : int = add_file_length(lowerCamelCase__ , lowerCamelCase__ )
write_file_binary(lowerCamelCase__ , lowerCamelCase__ )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 708
|
'''simple docstring'''
import argparse
import importlib
from pathlib import Path
# Test all the extensions added in the setup
lowerCamelCase :Any = [
'''kernels/rwkv/wkv_cuda.cu''',
'''kernels/rwkv/wkv_op.cpp''',
'''kernels/deformable_detr/ms_deform_attn.h''',
'''kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh''',
'''models/graphormer/algos_graphormer.pyx''',
]
def a ( lowerCamelCase__ ):
'''simple docstring'''
for file in FILES_TO_FIND:
if not (transformers_path / file).exists():
return False
return True
if __name__ == "__main__":
lowerCamelCase :Tuple = argparse.ArgumentParser()
parser.add_argument('''--check_lib''', action='''store_true''', help='''Whether to check the build or the actual package.''')
lowerCamelCase :List[Any] = parser.parse_args()
if args.check_lib:
lowerCamelCase :Union[str, Any] = importlib.import_module('''transformers''')
lowerCamelCase :Union[str, Any] = Path(transformers_module.__file__).parent
else:
lowerCamelCase :List[str] = Path.cwd() / '''build/lib/transformers'''
if not test_custom_files_are_present(transformers_path):
raise ValueError('''The built release does not contain the custom files. Fix this before going further!''')
| 686
| 0
|
'''simple docstring'''
from abc import ABC, abstractmethod
from typing import Optional, Union
from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit
from ..utils.typing import NestedDataStructureLike, PathLike
class SCREAMING_SNAKE_CASE (a__ ):
def __init__( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = None , **_UpperCAmelCase , ):
'''simple docstring'''
__A : int = path_or_paths
__A : List[str] = split if split or isinstance(_UpperCAmelCase , _UpperCAmelCase) else 'train'
__A : Any = features
__A : Dict = cache_dir
__A : List[str] = keep_in_memory
__A : Union[str, Any] = streaming
__A : Tuple = num_proc
__A : Union[str, Any] = kwargs
@abstractmethod
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
pass
class SCREAMING_SNAKE_CASE (a__ ):
def __init__( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = None , **_UpperCAmelCase , ):
'''simple docstring'''
__A : Dict = features
__A : Any = cache_dir
__A : str = keep_in_memory
__A : Optional[Any] = streaming
__A : List[str] = num_proc
__A : List[Any] = kwargs
@abstractmethod
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
pass
| 8
|
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_camembert import CamembertTokenizer
else:
SCREAMING_SNAKE_CASE__ : Optional[Any] = None
SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : List[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''}
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {
'''vocab_file''': {
'''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''',
},
'''tokenizer_file''': {
'''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''',
},
}
SCREAMING_SNAKE_CASE__ : List[Any] = {
'''camembert-base''': 5_1_2,
}
SCREAMING_SNAKE_CASE__ : Any = '''▁'''
class a__( snake_case__ ):
a_ : Tuple = VOCAB_FILES_NAMES
a_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
a_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a_ : str = ['''input_ids''', '''attention_mask''']
a_ : Union[str, Any] = CamembertTokenizer
def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **_UpperCAmelCase , ) -> str:
# Mask token behave like a normal word, i.e. include the space before it
snake_case__ =AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token
super().__init__(
_UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , )
snake_case__ =vocab_file
snake_case__ =False if not self.vocab_file else True
def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
snake_case__ =[self.cls_token_id]
snake_case__ =[self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> List[int]:
snake_case__ =[self.sep_token_id]
snake_case__ =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.' )
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
snake_case__ =os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ):
copyfile(self.vocab_file , _UpperCAmelCase )
return (out_vocab_file,)
| 538
| 0
|
def lowercase_( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
if not head:
return True
# split the list to two parts
lowerCamelCase : int = head.next, head
while fast and fast.next:
lowerCamelCase : List[str] = fast.next.next
lowerCamelCase : Tuple = slow.next
lowerCamelCase : Any = slow.next
lowerCamelCase : List[str] = None # Don't forget here! But forget still works!
# reverse the second part
lowerCamelCase : Optional[Any] = None
while second:
lowerCamelCase : List[Any] = second.next
lowerCamelCase : Optional[Any] = node
lowerCamelCase : Optional[Any] = second
lowerCamelCase : Union[str, Any] = nxt
# compare two parts
# second part has the same or one less node
while node:
if node.val != head.val:
return False
lowerCamelCase : List[str] = node.next
lowerCamelCase : Tuple = head.next
return True
def lowercase_( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
if not head or not head.next:
return True
# 1. Get the midpoint (slow)
lowerCamelCase : Optional[Any] = head
while fast and fast.next:
lowerCamelCase : str = fast.next.next, slow.next
# 2. Push the second half into the stack
lowerCamelCase : Any = [slow.val]
while slow.next:
lowerCamelCase : int = slow.next
stack.append(slow.val )
# 3. Comparison
while stack:
if stack.pop() != cur.val:
return False
lowerCamelCase : Union[str, Any] = cur.next
return True
def lowercase_( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
if not head or not head.next:
return True
lowerCamelCase : List[Any] = {}
lowerCamelCase : str = 0
while head:
if head.val in d:
d[head.val].append(SCREAMING_SNAKE_CASE_ )
else:
lowerCamelCase : int = [pos]
lowerCamelCase : Union[str, Any] = head.next
pos += 1
lowerCamelCase : Optional[int] = pos - 1
lowerCamelCase : List[str] = 0
for v in d.values():
if len(SCREAMING_SNAKE_CASE_ ) % 2 != 0:
middle += 1
else:
lowerCamelCase : List[str] = 0
for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ):
if v[i] + v[len(SCREAMING_SNAKE_CASE_ ) - 1 - step] != checksum:
return False
step += 1
if middle > 1:
return False
return True
| 714
|
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import importlib.metadata
import json
import os
from dataclasses import dataclass
from typing import Any, Dict, Union
from packaging import version
from ..utils import is_torch_available, logging
if is_torch_available():
import torch
_snake_case = logging.get_logger(__name__)
@dataclass
class UpperCAmelCase_ :
'''simple docstring'''
def __init__( self , __A=False , __A=False , __A=6.0 , __A=None , __A=False , __A=False , __A=None , __A="fp4" , __A=False , **__A , ):
"""simple docstring"""
lowerCamelCase : Optional[Any] = load_in_abit
lowerCamelCase : List[Any] = load_in_abit
lowerCamelCase : List[str] = llm_inta_threshold
lowerCamelCase : Dict = llm_inta_skip_modules
lowerCamelCase : Optional[int] = llm_inta_enable_fpaa_cpu_offload
lowerCamelCase : int = llm_inta_has_fpaa_weight
lowerCamelCase : Tuple = bnb_abit_quant_type
lowerCamelCase : str = bnb_abit_use_double_quant
if bnb_abit_compute_dtype is None:
lowerCamelCase : Dict = torch.floataa
elif isinstance(__A , __A ):
lowerCamelCase : Optional[int] = getattr(__A , __A )
elif isinstance(__A , torch.dtype ):
lowerCamelCase : str = bnb_abit_compute_dtype
else:
raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype" )
self.post_init()
def _snake_case ( self ):
"""simple docstring"""
if not isinstance(self.llm_inta_threshold , __A ):
raise ValueError("llm_int8_threshold must be a float" )
if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , __A ):
raise ValueError("llm_int8_skip_modules must be a list of strings" )
if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , __A ):
raise ValueError("llm_int8_enable_fp32_cpu_offload must be a boolean" )
if not isinstance(self.llm_inta_has_fpaa_weight , __A ):
raise ValueError("llm_int8_has_fp16_weight must be a boolean" )
if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ):
raise ValueError("bnb_4bit_compute_dtype must be torch.dtype" )
if not isinstance(self.bnb_abit_quant_type , __A ):
raise ValueError("bnb_4bit_quant_type must be a string" )
if not isinstance(self.bnb_abit_use_double_quant , __A ):
raise ValueError("bnb_4bit_use_double_quant must be a boolean" )
if self.load_in_abit and not version.parse(importlib.metadata.version("bitsandbytes" ) ) >= version.parse(
"0.39.0" ):
raise ValueError(
"4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version" )
def _snake_case ( self ):
"""simple docstring"""
return self.load_in_abit or self.load_in_abit
def _snake_case ( self ):
"""simple docstring"""
if self.load_in_abit:
return "llm_int8"
elif self.load_in_abit and self.bnb_abit_quant_type == "fp4":
return "fp4"
elif self.load_in_abit and self.bnb_abit_quant_type == "nf4":
return "nf4"
else:
return None
@classmethod
def _snake_case ( cls , __A , __A , **__A ):
"""simple docstring"""
lowerCamelCase : Tuple = cls(**__A )
lowerCamelCase : Union[str, Any] = []
for key, value in kwargs.items():
if hasattr(__A , __A ):
setattr(__A , __A , __A )
to_remove.append(__A )
for key in to_remove:
kwargs.pop(__A , __A )
if return_unused_kwargs:
return config, kwargs
else:
return config
def _snake_case ( self , __A ):
"""simple docstring"""
with open(__A , "w" , encoding="utf-8" ) as writer:
lowerCamelCase : str = self.to_dict()
lowerCamelCase : Any = json.dumps(__A , indent=2 , sort_keys=__A ) + "\n"
writer.write(__A )
def _snake_case ( self ):
"""simple docstring"""
lowerCamelCase : Tuple = copy.deepcopy(self.__dict__ )
lowerCamelCase : Optional[Any] = str(output["bnb_4bit_compute_dtype"] ).split("." )[1]
return output
def __repr__( self ):
"""simple docstring"""
return F"""{self.__class__.__name__} {self.to_json_string()}"""
def _snake_case ( self , __A = True ):
"""simple docstring"""
if use_diff is True:
lowerCamelCase : Optional[int] = self.to_diff_dict()
else:
lowerCamelCase : List[str] = self.to_dict()
return json.dumps(__A , indent=2 , sort_keys=__A ) + "\n"
def _snake_case ( self ):
"""simple docstring"""
lowerCamelCase : int = self.to_dict()
# get the default config dict
lowerCamelCase : Union[str, Any] = BitsAndBytesConfig().to_dict()
lowerCamelCase : Union[str, Any] = {}
# only serialize values that differ from the default config
for key, value in config_dict.items():
if value != default_config_dict[key]:
lowerCamelCase : List[str] = value
return serializable_config_dict
| 231
| 0
|
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
_SCREAMING_SNAKE_CASE : Optional[Any] = {
"""albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""",
"""albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""",
"""albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""",
"""albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""",
"""albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""",
"""albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""",
"""albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""",
"""albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""",
}
class UpperCamelCase__ ( __lowerCamelCase ):
a__ : Union[str, Any] = 'albert'
def __init__( self : Tuple, __lowerCamelCase : Any=3_00_00, __lowerCamelCase : int=1_28, __lowerCamelCase : int=40_96, __lowerCamelCase : List[str]=12, __lowerCamelCase : List[str]=1, __lowerCamelCase : str=64, __lowerCamelCase : Any=1_63_84, __lowerCamelCase : str=1, __lowerCamelCase : Tuple="gelu_new", __lowerCamelCase : Optional[int]=0, __lowerCamelCase : Optional[int]=0, __lowerCamelCase : Optional[int]=5_12, __lowerCamelCase : List[str]=2, __lowerCamelCase : Dict=0.02, __lowerCamelCase : Optional[Any]=1e-12, __lowerCamelCase : Dict=0.1, __lowerCamelCase : Tuple="absolute", __lowerCamelCase : Tuple=0, __lowerCamelCase : Optional[Any]=2, __lowerCamelCase : int=3, **__lowerCamelCase : str, ) -> str:
super().__init__(pad_token_id=__lowerCamelCase, bos_token_id=__lowerCamelCase, eos_token_id=__lowerCamelCase, **__lowerCamelCase )
UpperCamelCase__ : Any = vocab_size
UpperCamelCase__ : str = embedding_size
UpperCamelCase__ : Union[str, Any] = hidden_size
UpperCamelCase__ : str = num_hidden_layers
UpperCamelCase__ : Dict = num_hidden_groups
UpperCamelCase__ : str = num_attention_heads
UpperCamelCase__ : List[Any] = inner_group_num
UpperCamelCase__ : Optional[int] = hidden_act
UpperCamelCase__ : Tuple = intermediate_size
UpperCamelCase__ : str = hidden_dropout_prob
UpperCamelCase__ : List[Any] = attention_probs_dropout_prob
UpperCamelCase__ : int = max_position_embeddings
UpperCamelCase__ : List[Any] = type_vocab_size
UpperCamelCase__ : Dict = initializer_range
UpperCamelCase__ : Tuple = layer_norm_eps
UpperCamelCase__ : Optional[Any] = classifier_dropout_prob
UpperCamelCase__ : List[Any] = position_embedding_type
class UpperCamelCase__ ( __lowerCamelCase ):
@property
def __lowercase( self : List[str] ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
UpperCamelCase__ : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
UpperCamelCase__ : Dict = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 344
|
import tempfile
import unittest
from make_student import create_student_by_copying_alternating_layers
from transformers import AutoConfig
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch
_SCREAMING_SNAKE_CASE : Any = """sshleifer/bart-tiny-random"""
_SCREAMING_SNAKE_CASE : List[str] = """patrickvonplaten/t5-tiny-random"""
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
@cached_property
def __lowercase( self : str ) -> Dict:
return AutoConfig.from_pretrained(__lowerCamelCase )
def __lowercase( self : Optional[int] ) -> int:
UpperCamelCase__ ,*UpperCamelCase__ : Dict = create_student_by_copying_alternating_layers(__lowerCamelCase, tempfile.mkdtemp(), e=1, d=1 )
self.assertEqual(student.config.num_hidden_layers, 1 )
def __lowercase( self : List[Any] ) -> Optional[Any]:
UpperCamelCase__ ,*UpperCamelCase__ : Optional[Any] = create_student_by_copying_alternating_layers(__lowerCamelCase, tempfile.mkdtemp(), e=1, d=__lowerCamelCase )
def __lowercase( self : str ) -> List[Any]:
UpperCamelCase__ ,*UpperCamelCase__ : str = create_student_by_copying_alternating_layers(__lowerCamelCase, tempfile.mkdtemp(), e=1, d=__lowerCamelCase )
self.assertEqual(student.config.encoder_layers, 1 )
self.assertEqual(student.config.decoder_layers, self.teacher_config.encoder_layers )
def __lowercase( self : Union[str, Any] ) -> int:
UpperCamelCase__ ,*UpperCamelCase__ : int = create_student_by_copying_alternating_layers(__lowerCamelCase, tempfile.mkdtemp(), e=1, d=1 )
self.assertEqual(student.config.encoder_layers, 1 )
self.assertEqual(student.config.decoder_layers, 1 )
def __lowercase( self : Union[str, Any] ) -> Tuple:
with self.assertRaises(__lowerCamelCase ):
create_student_by_copying_alternating_layers(__lowerCamelCase, tempfile.mkdtemp(), e=__lowerCamelCase, d=__lowerCamelCase )
| 344
| 1
|
from math import ceil
def __lowercase ( __lowerCAmelCase : int = 1_0_0_1 ):
a__ = 1
for i in range(1 , int(ceil(n / 2.0 ) ) ):
a__ = 2 * i + 1
a__ = 2 * i
a__ = total + 4 * odd**2 - 6 * even
return total
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution())
else:
try:
snake_case : Tuple = int(sys.argv[1])
print(solution(n))
except ValueError:
print('''Invalid entry - please enter a number''')
| 720
|
def __lowercase ( __lowerCAmelCase : int ):
a__ = generate_pascal_triangle(__lowerCAmelCase )
for row_idx in range(__lowerCAmelCase ):
# Print left spaces
for _ in range(num_rows - row_idx - 1 ):
print(end=' ' )
# Print row values
for col_idx in range(row_idx + 1 ):
if col_idx != row_idx:
print(triangle[row_idx][col_idx] , end=' ' )
else:
print(triangle[row_idx][col_idx] , end='' )
print()
def __lowercase ( __lowerCAmelCase : int ):
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise TypeError('The input value of \'num_rows\' should be \'int\'' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'The input value of \'num_rows\' should be greater than or equal to 0' )
a__ = []
for current_row_idx in range(__lowerCAmelCase ):
a__ = populate_current_row(__lowerCAmelCase , __lowerCAmelCase )
triangle.append(__lowerCAmelCase )
return triangle
def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : int ):
a__ = [-1] * (current_row_idx + 1)
# first and last elements of current row are equal to 1
a__ , a__ = 1, 1
for current_col_idx in range(1 , __lowerCAmelCase ):
calculate_current_element(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
return current_row
def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : list[int] , __lowerCAmelCase : int , __lowerCAmelCase : int , ):
a__ = triangle[current_row_idx - 1][current_col_idx - 1]
a__ = triangle[current_row_idx - 1][current_col_idx]
a__ = above_to_left_elt + above_to_right_elt
def __lowercase ( __lowerCAmelCase : int ):
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise TypeError('The input value of \'num_rows\' should be \'int\'' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'The input value of \'num_rows\' should be greater than or equal to 0' )
a__ = [[1]]
for row_index in range(1 , __lowerCAmelCase ):
a__ = [0] + result[-1] + [0]
a__ = row_index + 1
# Calculate the number of distinct elements in a row
a__ = sum(divmod(__lowerCAmelCase , 2 ) )
a__ = [
temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 )
]
a__ = row_first_half[: (row_index + 1) // 2]
row_second_half.reverse()
a__ = row_first_half + row_second_half
result.append(__lowerCAmelCase )
return result
def __lowercase ( ):
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(__lowerCAmelCase : Callable , __lowerCAmelCase : int ) -> None:
a__ = F'{func.__name__}({value})'
a__ = timeit(F'__main__.{call}' , setup='import __main__' )
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
print(F'{call:38} -- {timing:.4f} seconds' )
for value in range(1_5 ): # (1, 7, 14):
for func in (generate_pascal_triangle, generate_pascal_triangle_optimized):
benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 657
| 0
|
'''simple docstring'''
def _lowercase ( __A ,__A ):
'''simple docstring'''
__UpperCamelCase = 0
while b > 0:
if b & 1:
res += a
a += a
b >>= 1
return res
def _lowercase ( __A ,__A ,__A ):
'''simple docstring'''
__UpperCamelCase = 0
while b > 0:
if b & 1:
__UpperCamelCase = ((res % c) + (a % c)) % c
a += a
b >>= 1
return res
| 601
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor
from ..utils import is_datasets_available
from .base import PipelineTool
if is_datasets_available():
from datasets import load_dataset
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = '''microsoft/speecht5_tts'''
__SCREAMING_SNAKE_CASE = (
'''This is a tool that reads an English text out loud. It takes an input named `text` which should contain the '''
'''text to read (in English) and returns a waveform object containing the sound.'''
)
__SCREAMING_SNAKE_CASE = '''text_reader'''
__SCREAMING_SNAKE_CASE = SpeechTaProcessor
__SCREAMING_SNAKE_CASE = SpeechTaForTextToSpeech
__SCREAMING_SNAKE_CASE = SpeechTaHifiGan
__SCREAMING_SNAKE_CASE = ['''text''']
__SCREAMING_SNAKE_CASE = ['''audio''']
def __lowerCamelCase ( self ) -> Optional[int]:
if self.post_processor is None:
__UpperCamelCase = """microsoft/speecht5_hifigan"""
super().setup()
def __lowerCamelCase ( self , lowercase , lowercase=None ) -> List[str]:
__UpperCamelCase = self.pre_processor(text=lowercase , return_tensors="""pt""" , truncation=lowercase )
if speaker_embeddings is None:
if not is_datasets_available():
raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" )
__UpperCamelCase = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" )
__UpperCamelCase = torch.tensor(embeddings_dataset[7_3_0_5]["""xvector"""] ).unsqueeze(0 )
return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings}
def __lowerCamelCase ( self , lowercase ) -> Optional[Any]:
with torch.no_grad():
return self.model.generate_speech(**lowercase )
def __lowerCamelCase ( self , lowercase ) -> int:
with torch.no_grad():
return self.post_processor(lowercase ).cpu().detach()
| 601
| 1
|
"""simple docstring"""
from PIL import Image
def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ):
__lowercase : Tuple = (2_59 * (level + 2_55)) / (2_55 * (2_59 - level))
def contrast(__UpperCamelCase ) -> int:
return int(1_28 + factor * (c - 1_28) )
return img.point(__UpperCamelCase )
if __name__ == "__main__":
# Load image
with Image.open('image_data/lena.jpg') as img:
# Change contrast to 170
a_ = change_contrast(img, 1_7_0)
cont_img.save('image_data/lena_high_contrast.png', format='png')
| 710
|
"""simple docstring"""
def __UpperCAmelCase ( __UpperCamelCase ):
__lowercase : Tuple = len(__UpperCamelCase )
for _ in range(__UpperCamelCase ):
for i in range(_ % 2 , arr_size - 1 , 2 ):
if arr[i + 1] < arr[i]:
__lowercase ,__lowercase : str = arr[i + 1], arr[i]
return arr
if __name__ == "__main__":
a_ = list(range(1_0, 0, -1))
print(F"Original: {arr}. Sorted: {odd_even_transposition(arr)}")
| 523
| 0
|
'''simple docstring'''
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
SCREAMING_SNAKE_CASE = 'CompVis/stable-diffusion-v1-1'
SCREAMING_SNAKE_CASE = 'CompVis/stable-diffusion-v1-2'
SCREAMING_SNAKE_CASE = 'CompVis/stable-diffusion-v1-3'
SCREAMING_SNAKE_CASE = 'CompVis/stable-diffusion-v1-4'
class UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
def __init__( self : Tuple , UpperCAmelCase : AutoencoderKL , UpperCAmelCase : CLIPTextModel , UpperCAmelCase : CLIPTokenizer , UpperCAmelCase : UNetaDConditionModel , UpperCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase : StableDiffusionSafetyChecker , UpperCAmelCase : CLIPImageProcessor , UpperCAmelCase : bool = True , ) -> Union[str, Any]:
'''simple docstring'''
super()._init_()
lowercase : Tuple =StableDiffusionPipeline.from_pretrained(UpperCAmelCase_ )
lowercase : List[str] =StableDiffusionPipeline.from_pretrained(UpperCAmelCase_ )
lowercase : Optional[Any] =StableDiffusionPipeline.from_pretrained(UpperCAmelCase_ )
lowercase : str =StableDiffusionPipeline(
vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , requires_safety_checker=UpperCAmelCase_ , )
self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea )
@property
def A__ ( self : Optional[Any] ) -> Dict[str, Any]:
'''simple docstring'''
return {k: getattr(self , UpperCAmelCase_ ) for k in self.config.keys() if not k.startswith('''_''' )}
def A__ ( self : Any , UpperCAmelCase : Optional[Union[str, int]] = "auto" ) -> Tuple:
'''simple docstring'''
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
lowercase : Tuple =self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(UpperCAmelCase_ )
def A__ ( self : List[str] ) -> Optional[Any]:
'''simple docstring'''
self.enable_attention_slicing(UpperCAmelCase_ )
@torch.no_grad()
def A__ ( self : Dict , UpperCAmelCase : Union[str, List[str]] , UpperCAmelCase : int = 512 , UpperCAmelCase : int = 512 , UpperCAmelCase : int = 50 , UpperCAmelCase : float = 7.5 , UpperCAmelCase : Optional[Union[str, List[str]]] = None , UpperCAmelCase : Optional[int] = 1 , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[torch.Generator] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[str] = "pil" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase : int = 1 , **UpperCAmelCase : Optional[int] , ) -> Dict:
'''simple docstring'''
return self.pipea(
prompt=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , **UpperCAmelCase_ , )
@torch.no_grad()
def A__ ( self : int , UpperCAmelCase : Union[str, List[str]] , UpperCAmelCase : int = 512 , UpperCAmelCase : int = 512 , UpperCAmelCase : int = 50 , UpperCAmelCase : float = 7.5 , UpperCAmelCase : Optional[Union[str, List[str]]] = None , UpperCAmelCase : Optional[int] = 1 , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[torch.Generator] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[str] = "pil" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase : int = 1 , **UpperCAmelCase : int , ) -> int:
'''simple docstring'''
return self.pipea(
prompt=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , **UpperCAmelCase_ , )
@torch.no_grad()
def A__ ( self : Optional[Any] , UpperCAmelCase : Union[str, List[str]] , UpperCAmelCase : int = 512 , UpperCAmelCase : int = 512 , UpperCAmelCase : int = 50 , UpperCAmelCase : float = 7.5 , UpperCAmelCase : Optional[Union[str, List[str]]] = None , UpperCAmelCase : Optional[int] = 1 , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[torch.Generator] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[str] = "pil" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase : int = 1 , **UpperCAmelCase : Dict , ) -> List[str]:
'''simple docstring'''
return self.pipea(
prompt=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , **UpperCAmelCase_ , )
@torch.no_grad()
def A__ ( self : Any , UpperCAmelCase : Union[str, List[str]] , UpperCAmelCase : int = 512 , UpperCAmelCase : int = 512 , UpperCAmelCase : int = 50 , UpperCAmelCase : float = 7.5 , UpperCAmelCase : Optional[Union[str, List[str]]] = None , UpperCAmelCase : Optional[int] = 1 , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[torch.Generator] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[str] = "pil" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase : int = 1 , **UpperCAmelCase : List[str] , ) -> List[str]:
'''simple docstring'''
return self.pipea(
prompt=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , **UpperCAmelCase_ , )
@torch.no_grad()
def A__ ( self : str , UpperCAmelCase : Union[str, List[str]] , UpperCAmelCase : int = 512 , UpperCAmelCase : int = 512 , UpperCAmelCase : int = 50 , UpperCAmelCase : float = 7.5 , UpperCAmelCase : Optional[Union[str, List[str]]] = None , UpperCAmelCase : Optional[int] = 1 , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[torch.Generator] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[str] = "pil" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase : int = 1 , **UpperCAmelCase : List[Any] , ) -> List[str]:
'''simple docstring'''
lowercase : Dict ="cuda" if torch.cuda.is_available() else "cpu"
self.to(UpperCAmelCase_ )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f'`height` and `width` must be divisible by 8 but are {height} and {width}.' )
# Get first result from Stable Diffusion Checkpoint v1.1
lowercase : int =self.textaimg_sda_a(
prompt=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , **UpperCAmelCase_ , )
# Get first result from Stable Diffusion Checkpoint v1.2
lowercase : Any =self.textaimg_sda_a(
prompt=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , **UpperCAmelCase_ , )
# Get first result from Stable Diffusion Checkpoint v1.3
lowercase : Dict =self.textaimg_sda_a(
prompt=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , **UpperCAmelCase_ , )
# Get first result from Stable Diffusion Checkpoint v1.4
lowercase : Tuple =self.textaimg_sda_a(
prompt=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , **UpperCAmelCase_ , )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
| 94
|
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["image_processor", "tokenizer"]
lowercase_ = "CLIPImageProcessor"
lowercase_ = ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast")
def __init__(self : List[Any] , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[Any]=None , **UpperCAmelCase_ : List[str]) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , UpperCAmelCase_ , )
lowerCamelCase__: int =kwargs.pop("feature_extractor")
lowerCamelCase__: int =image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
super().__init__(UpperCAmelCase_ , UpperCAmelCase_)
def __call__(self : List[Any] , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : int=None , **UpperCAmelCase_ : Any) ->Union[str, Any]:
'''simple docstring'''
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none.")
if text is not None:
lowerCamelCase__: List[Any] =self.tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_)
if images is not None:
lowerCamelCase__: int =self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_)
if text is not None and images is not None:
lowerCamelCase__: str =image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**UpperCAmelCase_) , tensor_type=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[str] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Optional[Any]) ->Dict:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Any) ->Optional[Any]:
'''simple docstring'''
return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_)
@property
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =self.tokenizer.model_input_names
lowerCamelCase__: str =self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
| 59
| 0
|
"""simple docstring"""
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , )
@pytest.mark.usefixtures("sm_env" )
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue_model_parallelism.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1_600, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1_600, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
] )
class __lowerCAmelCase ( unittest.TestCase ):
def UpperCAmelCase ( self ):
'''simple docstring'''
if self.framework == "pytorch":
subprocess.run(
F'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='utf-8' , check=_lowerCAmelCase , )
assert hasattr(self , 'env' )
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = {
'enabled': True,
'processes_per_host': 8,
}
__UpperCamelCase = {
'enabled': True,
'parameters': {
'microbatches': 4,
'placement_strategy': 'spread',
'pipeline': 'interleaved',
'optimize': 'speed',
'partitions': 4,
'ddp': True,
},
}
__UpperCamelCase = {'smdistributed': {'modelparallel': smp_options}, 'mpi': mpi_options}
__UpperCamelCase = 'trainer' if self.script == 'run_glue.py' else 'smtrainer'
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'{self.env.base_job_name}-{instance_count}-smp-{name_extension}' , instance_count=_lowerCAmelCase , instance_type=self.instance_type , debugger_hook_config=_lowerCAmelCase , hyperparameters={
**self.env.hyperparameters,
'model_name_or_path': self.model_name_or_path,
'max_steps': 500,
} , metric_definitions=self.env.metric_definitions , distribution=_lowerCAmelCase , py_version='py36' , )
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
TrainingJobAnalytics(_lowerCAmelCase ).export_csv(F'{self.env.test_path}/{job_name}_metrics.csv' )
@parameterized.expand([(1,)] )
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = self.create_estimator(_lowerCAmelCase )
# run training
estimator.fit()
# result dataframe
__UpperCamelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
__UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] )
__UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
__UpperCamelCase = (
Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_9999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy )
assert all(t <= self.results['eval_loss'] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F'{estimator.latest_training_job.name}.json' , 'w' ) as outfile:
json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , _lowerCAmelCase )
| 709
|
"""simple docstring"""
from typing import List
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase : Tuple = logging.get_logger(__name__)
UpperCamelCase : List[str] = {
"snap-research/efficientformer-l1-300": (
"https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json"
),
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = "efficientformer"
def __init__( self , __UpperCAmelCase = [3, 2, 6, 4] , __UpperCAmelCase = [48, 96, 224, 448] , __UpperCAmelCase = [True, True, True, True] , __UpperCAmelCase = 448 , __UpperCAmelCase = 32 , __UpperCAmelCase = 4 , __UpperCAmelCase = 7 , __UpperCAmelCase = 5 , __UpperCAmelCase = 8 , __UpperCAmelCase = 4 , __UpperCAmelCase = 0.0 , __UpperCAmelCase = 16 , __UpperCAmelCase = 3 , __UpperCAmelCase = 3 , __UpperCAmelCase = 3 , __UpperCAmelCase = 2 , __UpperCAmelCase = 1 , __UpperCAmelCase = 0.0 , __UpperCAmelCase = 1 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = 1E-5 , __UpperCAmelCase = "gelu" , __UpperCAmelCase = 0.0_2 , __UpperCAmelCase = 1E-12 , __UpperCAmelCase = 224 , __UpperCAmelCase = 1E-05 , **__UpperCAmelCase , ):
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
__UpperCamelCase = hidden_act
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = hidden_sizes
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = patch_size
__UpperCamelCase = num_channels
__UpperCamelCase = depths
__UpperCamelCase = mlp_expansion_ratio
__UpperCamelCase = downsamples
__UpperCamelCase = dim
__UpperCamelCase = key_dim
__UpperCamelCase = attention_ratio
__UpperCamelCase = resolution
__UpperCamelCase = pool_size
__UpperCamelCase = downsample_patch_size
__UpperCamelCase = downsample_stride
__UpperCamelCase = downsample_pad
__UpperCamelCase = drop_path_rate
__UpperCamelCase = num_metaad_blocks
__UpperCamelCase = distillation
__UpperCamelCase = use_layer_scale
__UpperCamelCase = layer_scale_init_value
__UpperCamelCase = image_size
__UpperCamelCase = batch_norm_eps
| 293
| 0
|
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
EulerAncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionInstructPixaPixPipeline,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.utils import floats_tensor, load_image, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _UpperCAmelCase ( __lowercase , __lowercase , __lowercase , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline
SCREAMING_SNAKE_CASE : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''}
SCREAMING_SNAKE_CASE : Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
SCREAMING_SNAKE_CASE : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS
SCREAMING_SNAKE_CASE : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS
def UpperCamelCase ( self : Dict ):
torch.manual_seed(0 )
A = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , )
A = PNDMScheduler(skip_prk_steps=UpperCamelCase__ )
torch.manual_seed(0 )
A = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
torch.manual_seed(0 )
A = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
A = CLIPTextModel(UpperCamelCase__ )
A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
A = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any]=0 ):
A = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ )
A = image.cpu().permute(0 , 2 , 3 , 1 )[0]
A = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert('RGB' )
if str(UpperCamelCase__ ).startswith('mps' ):
A = torch.manual_seed(UpperCamelCase__ )
else:
A = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ )
A = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'image_guidance_scale': 1,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase ( self : List[Any] ):
A = 'cpu' # ensure determinism for the device-dependent torch.Generator
A = self.get_dummy_components()
A = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ )
A = sd_pipe.to(UpperCamelCase__ )
sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A = self.get_dummy_inputs(UpperCamelCase__ )
A = sd_pipe(**UpperCamelCase__ ).images
A = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
A = np.array([0.7_526, 0.3_750, 0.4_547, 0.6_117, 0.5_866, 0.5_016, 0.4_327, 0.5_642, 0.4_815] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def UpperCamelCase ( self : List[str] ):
A = 'cpu' # ensure determinism for the device-dependent torch.Generator
A = self.get_dummy_components()
A = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ )
A = sd_pipe.to(UpperCamelCase__ )
sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A = self.get_dummy_inputs(UpperCamelCase__ )
A = 'french fries'
A = sd_pipe(**UpperCamelCase__ , negative_prompt=UpperCamelCase__ )
A = output.images
A = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
A = np.array([0.7_511, 0.3_642, 0.4_553, 0.6_236, 0.5_797, 0.5_013, 0.4_343, 0.5_611, 0.4_831] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def UpperCamelCase ( self : Any ):
A = 'cpu' # ensure determinism for the device-dependent torch.Generator
A = self.get_dummy_components()
A = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ )
A = sd_pipe.to(UpperCamelCase__ )
sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A = self.get_dummy_inputs(UpperCamelCase__ )
A = [inputs['prompt']] * 2
A = np.array(inputs['image'] ).astype(np.floataa ) / 255.0
A = torch.from_numpy(UpperCamelCase__ ).unsqueeze(0 ).to(UpperCamelCase__ )
A = image / 2 + 0.5
A = image.permute(0 , 3 , 1 , 2 )
A = image.repeat(2 , 1 , 1 , 1 )
A = sd_pipe(**UpperCamelCase__ ).images
A = image[-1, -3:, -3:, -1]
assert image.shape == (2, 32, 32, 3)
A = np.array([0.5_812, 0.5_748, 0.5_222, 0.5_908, 0.5_695, 0.7_174, 0.6_804, 0.5_523, 0.5_579] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def UpperCamelCase ( self : Any ):
A = 'cpu' # ensure determinism for the device-dependent torch.Generator
A = self.get_dummy_components()
A = EulerAncestralDiscreteScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' )
A = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ )
A = sd_pipe.to(UpperCamelCase__ )
sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A = self.get_dummy_inputs(UpperCamelCase__ )
A = sd_pipe(**UpperCamelCase__ ).images
A = image[0, -3:, -3:, -1]
A = [round(UpperCamelCase__ , 4 ) for x in image_slice.flatten().tolist()]
print(','.join([str(UpperCamelCase__ ) for x in slice] ) )
assert image.shape == (1, 32, 32, 3)
A = np.array([0.7_417, 0.3_842, 0.4_732, 0.5_776, 0.5_891, 0.5_139, 0.4_052, 0.5_673, 0.4_986] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def UpperCamelCase ( self : Any ):
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
def UpperCamelCase ( self : List[Any] ):
A = self.get_dummy_components()
A = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ )
A = VaeImageProcessor(do_resize=UpperCamelCase__ , do_normalize=UpperCamelCase__ )
A = pipe.to(UpperCamelCase__ )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A = pipe(**self.get_dummy_inputs_by_type(UpperCamelCase__ , input_image_type='pt' ) )[0]
A = components['vae']
A = self.get_dummy_inputs_by_type(UpperCamelCase__ , input_image_type='pt' )
for image_param in self.image_latents_params:
if image_param in inputs.keys():
A = vae.encode(inputs[image_param] ).latent_dist.mode()
A = pipe(**UpperCamelCase__ )[0]
A = np.abs(out - out_latents_inputs ).max()
self.assertLess(UpperCamelCase__ , 1e-4 , 'passing latents as image input generate different result from passing image' )
@slow
@require_torch_gpu
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase ( self : List[Any] ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase ( self : List[Any] , UpperCamelCase__ : Optional[int]=0 ):
A = torch.manual_seed(UpperCamelCase__ )
A = load_image(
'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' )
A = {
'prompt': 'turn him into a cyborg',
'image': image,
'generator': generator,
'num_inference_steps': 3,
'guidance_scale': 7.5,
'image_guidance_scale': 1.0,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase ( self : Optional[int] ):
A = StableDiffusionInstructPixaPixPipeline.from_pretrained(
'timbrooks/instruct-pix2pix' , safety_checker=UpperCamelCase__ )
pipe.to(UpperCamelCase__ )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
pipe.enable_attention_slicing()
A = self.get_inputs()
A = pipe(**UpperCamelCase__ ).images
A = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
A = np.array([0.5_902, 0.6_015, 0.6_027, 0.5_983, 0.6_092, 0.6_061, 0.5_765, 0.5_785, 0.5_555] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def UpperCamelCase ( self : Tuple ):
A = StableDiffusionInstructPixaPixPipeline.from_pretrained(
'timbrooks/instruct-pix2pix' , safety_checker=UpperCamelCase__ )
A = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.to(UpperCamelCase__ )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
pipe.enable_attention_slicing()
A = self.get_inputs()
A = pipe(**UpperCamelCase__ ).images
A = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
A = np.array([0.6_578, 0.6_817, 0.6_972, 0.6_761, 0.6_856, 0.6_916, 0.6_428, 0.6_516, 0.6_301] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def UpperCamelCase ( self : Dict ):
A = StableDiffusionInstructPixaPixPipeline.from_pretrained(
'timbrooks/instruct-pix2pix' , safety_checker=UpperCamelCase__ )
A = DDIMScheduler.from_config(pipe.scheduler.config )
pipe.to(UpperCamelCase__ )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
pipe.enable_attention_slicing()
A = self.get_inputs()
A = pipe(**UpperCamelCase__ ).images
A = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
A = np.array([0.3_828, 0.3_834, 0.3_818, 0.3_792, 0.3_865, 0.3_752, 0.3_792, 0.3_847, 0.3_753] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def UpperCamelCase ( self : Tuple ):
A = 0
def callback_fn(UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : torch.FloatTensor ) -> None:
A = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
A = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
A = latents[0, -3:, -3:, -1]
A = np.array([-0.2_463, -0.4_644, -0.9_756, 1.5_176, 1.4_414, 0.7_866, 0.9_897, 0.8_521, 0.7_983] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
elif step == 2:
A = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
A = latents[0, -3:, -3:, -1]
A = np.array([-0.2_644, -0.4_626, -0.9_653, 1.5_176, 1.4_551, 0.7_686, 0.9_805, 0.8_452, 0.8_115] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
A = False
A = StableDiffusionInstructPixaPixPipeline.from_pretrained(
'timbrooks/instruct-pix2pix' , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa )
A = pipe.to(UpperCamelCase__ )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
pipe.enable_attention_slicing()
A = self.get_inputs()
pipe(**UpperCamelCase__ , callback=UpperCamelCase__ , callback_steps=1 )
assert callback_fn.has_been_called
assert number_of_steps == 3
def UpperCamelCase ( self : List[Any] ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
A = StableDiffusionInstructPixaPixPipeline.from_pretrained(
'timbrooks/instruct-pix2pix' , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa )
A = pipe.to(UpperCamelCase__ )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
A = self.get_inputs()
A = pipe(**UpperCamelCase__ )
A = torch.cuda.max_memory_allocated()
# make sure that less than 2.2 GB is allocated
assert mem_bytes < 2.2 * 10**9
def UpperCamelCase ( self : Any ):
A = self.get_inputs()
# resize to resolution that is divisible by 8 but not 16 or 32
A = inputs['image'].resize((504, 504) )
A = 'timbrooks/instruct-pix2pix'
A = StableDiffusionInstructPixaPixPipeline.from_pretrained(
UpperCamelCase__ , safety_checker=UpperCamelCase__ , )
pipe.to(UpperCamelCase__ )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
pipe.enable_attention_slicing()
A = pipe(**UpperCamelCase__ )
A = output.images[0]
A = image[255:258, 383:386, -1]
assert image.shape == (504, 504, 3)
A = np.array([0.2_726, 0.2_529, 0.2_664, 0.2_655, 0.2_641, 0.2_642, 0.2_591, 0.2_649, 0.2_590] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
| 699
|
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
_UpperCAmelCase = logging.get_logger(__name__)
_UpperCAmelCase = {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json",
# See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
}
class _UpperCAmelCase ( __lowercase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = '''blenderbot-small'''
SCREAMING_SNAKE_CASE : Any = ['''past_key_values''']
SCREAMING_SNAKE_CASE : List[str] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self : List[str] , UpperCamelCase__ : Optional[Any]=50265 , UpperCamelCase__ : Optional[int]=512 , UpperCamelCase__ : int=8 , UpperCamelCase__ : Optional[int]=2048 , UpperCamelCase__ : Optional[Any]=16 , UpperCamelCase__ : Optional[Any]=8 , UpperCamelCase__ : List[Any]=2048 , UpperCamelCase__ : int=16 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : int=True , UpperCamelCase__ : Optional[Any]="gelu" , UpperCamelCase__ : Any=512 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Union[str, Any]=0.0 , UpperCamelCase__ : Dict=0.02 , UpperCamelCase__ : Optional[Any]=1 , UpperCamelCase__ : Any=False , UpperCamelCase__ : Dict=0 , UpperCamelCase__ : Optional[int]=1 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : Dict=2 , **UpperCamelCase__ : List[str] , ):
A = vocab_size
A = max_position_embeddings
A = d_model
A = encoder_ffn_dim
A = encoder_layers
A = encoder_attention_heads
A = decoder_ffn_dim
A = decoder_layers
A = decoder_attention_heads
A = dropout
A = attention_dropout
A = activation_dropout
A = activation_function
A = init_std
A = encoder_layerdrop
A = decoder_layerdrop
A = use_cache
A = encoder_layers
A = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , forced_eos_token_id=UpperCamelCase__ , **UpperCamelCase__ , )
class _UpperCAmelCase ( __lowercase ):
'''simple docstring'''
@property
def UpperCamelCase ( self : List[Any] ):
if self.task in ["default", "seq2seq-lm"]:
A = OrderedDict(
[
('input_ids', {0: 'batch', 1: 'encoder_sequence'}),
('attention_mask', {0: 'batch', 1: 'encoder_sequence'}),
] )
if self.use_past:
A = {0: 'batch'}
A = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
else:
A = {0: 'batch', 1: 'decoder_sequence'}
A = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(UpperCamelCase__ , direction='inputs' )
elif self.task == "causal-lm":
# TODO: figure this case out.
A = OrderedDict(
[
('input_ids', {0: 'batch', 1: 'encoder_sequence'}),
('attention_mask', {0: 'batch', 1: 'encoder_sequence'}),
] )
if self.use_past:
A , A = self.num_layers
for i in range(UpperCamelCase__ ):
A = {0: 'batch', 2: 'past_sequence + sequence'}
A = {0: 'batch', 2: 'past_sequence + sequence'}
else:
A = OrderedDict(
[
('input_ids', {0: 'batch', 1: 'encoder_sequence'}),
('attention_mask', {0: 'batch', 1: 'encoder_sequence'}),
('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}),
('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}),
] )
return common_inputs
@property
def UpperCamelCase ( self : int ):
if self.task in ["default", "seq2seq-lm"]:
A = super().outputs
else:
A = super(UpperCamelCase__ , self ).outputs
if self.use_past:
A , A = self.num_layers
for i in range(UpperCamelCase__ ):
A = {0: 'batch', 2: 'past_sequence + sequence'}
A = {0: 'batch', 2: 'past_sequence + sequence'}
return common_outputs
def UpperCamelCase ( self : int , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ):
A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Generate decoder inputs
A = seq_length if not self.use_past else 1
A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
A = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()}
A = dict(**UpperCamelCase__ , **UpperCamelCase__ )
if self.use_past:
if not is_torch_available():
raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' )
else:
import torch
A , A = common_inputs['input_ids'].shape
A = common_inputs['decoder_input_ids'].shape[1]
A , A = self.num_attention_heads
A = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
A = decoder_seq_length + 3
A = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
A = torch.cat(
[common_inputs['decoder_attention_mask'], torch.ones(UpperCamelCase__ , UpperCamelCase__ )] , dim=1 )
A = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
A , A = self.num_layers
A = min(UpperCamelCase__ , UpperCamelCase__ )
A = max(UpperCamelCase__ , UpperCamelCase__ ) - min_num_layers
A = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder'
for _ in range(UpperCamelCase__ ):
common_inputs["past_key_values"].append(
(
torch.zeros(UpperCamelCase__ ),
torch.zeros(UpperCamelCase__ ),
torch.zeros(UpperCamelCase__ ),
torch.zeros(UpperCamelCase__ ),
) )
# TODO: test this.
A = encoder_shape if remaining_side_name == 'encoder' else decoder_shape
for _ in range(UpperCamelCase__ , UpperCamelCase__ ):
common_inputs["past_key_values"].append((torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) )
return common_inputs
def UpperCamelCase ( self : Tuple , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ):
A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
if self.use_past:
if not is_torch_available():
raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' )
else:
import torch
A , A = common_inputs['input_ids'].shape
# Not using the same length for past_key_values
A = seqlen + 2
A , A = self.num_layers
A , A = self.num_attention_heads
A = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
A = common_inputs['attention_mask'].dtype
A = torch.cat(
[common_inputs['attention_mask'], torch.ones(UpperCamelCase__ , UpperCamelCase__ , dtype=UpperCamelCase__ )] , dim=1 )
A = [
(torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) for _ in range(UpperCamelCase__ )
]
return common_inputs
def UpperCamelCase ( self : List[str] , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ):
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
A = compute_effective_axis_dimension(
UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
A = tokenizer.num_special_tokens_to_add(UpperCamelCase__ )
A = compute_effective_axis_dimension(
UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase__ )
# Generate dummy inputs according to compute batch and sequence
A = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size
A = dict(tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ ) )
return common_inputs
def UpperCamelCase ( self : Any , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ):
if self.task in ["default", "seq2seq-lm"]:
A = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ )
elif self.task == "causal-lm":
A = self._generate_dummy_inputs_for_causal_lm(
UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ )
else:
A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ )
return common_inputs
def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Tuple ):
if self.task in ["default", "seq2seq-lm"]:
A = super()._flatten_past_key_values_(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else:
A = super(UpperCamelCase__ , self )._flatten_past_key_values_(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
| 699
| 1
|
"""simple docstring"""
import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class __SCREAMING_SNAKE_CASE :
def __init__( self :Tuple ,__UpperCAmelCase :str ,__UpperCAmelCase :Tuple=3 ,__UpperCAmelCase :Optional[int]=32 ,__UpperCAmelCase :Optional[int]=3 ,__UpperCAmelCase :Any=10 ,__UpperCAmelCase :str=[8, 16, 32, 64] ,__UpperCAmelCase :str=[1, 1, 2, 1] ,__UpperCAmelCase :List[Any]=True ,__UpperCAmelCase :List[Any]=True ,__UpperCAmelCase :Optional[Any]="relu" ,__UpperCAmelCase :Any=3 ,__UpperCAmelCase :str=None ,__UpperCAmelCase :Union[str, Any]=["stage2", "stage3", "stage4"] ,__UpperCAmelCase :Union[str, Any]=[2, 3, 4] ,__UpperCAmelCase :Union[str, Any]=1 ,) -> List[str]:
"""simple docstring"""
lowerCamelCase__ : List[str] = parent
lowerCamelCase__ : List[Any] = batch_size
lowerCamelCase__ : Optional[int] = image_size
lowerCamelCase__ : Any = num_channels
lowerCamelCase__ : Any = embeddings_size
lowerCamelCase__ : Tuple = hidden_sizes
lowerCamelCase__ : Optional[int] = depths
lowerCamelCase__ : List[str] = is_training
lowerCamelCase__ : Tuple = use_labels
lowerCamelCase__ : Dict = hidden_act
lowerCamelCase__ : List[str] = num_labels
lowerCamelCase__ : Tuple = scope
lowerCamelCase__ : List[Any] = len(__UpperCAmelCase )
lowerCamelCase__ : Optional[Any] = out_features
lowerCamelCase__ : List[str] = out_indices
lowerCamelCase__ : List[Any] = num_groups
def lowercase_ ( self :Optional[Any] ) -> Tuple:
"""simple docstring"""
lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase__ : Optional[Any] = None
if self.use_labels:
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] ,self.num_labels )
lowerCamelCase__ : List[str] = self.get_config()
return config, pixel_values, labels
def lowercase_ ( self :str ) -> Any:
"""simple docstring"""
return BitConfig(
num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,out_features=self.out_features ,out_indices=self.out_indices ,num_groups=self.num_groups ,)
def lowercase_ ( self :List[Any] ,__UpperCAmelCase :Optional[int] ,__UpperCAmelCase :Tuple ,__UpperCAmelCase :Tuple ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__ : str = BitModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
lowerCamelCase__ : Optional[Any] = model(__UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,)
def lowercase_ ( self :int ,__UpperCAmelCase :int ,__UpperCAmelCase :int ,__UpperCAmelCase :Optional[int] ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase__ : List[Any] = self.num_labels
lowerCamelCase__ : Union[str, Any] = BitForImageClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
lowerCamelCase__ : str = model(__UpperCAmelCase ,labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def lowercase_ ( self :Any ,__UpperCAmelCase :Dict ,__UpperCAmelCase :Optional[int] ,__UpperCAmelCase :str ) -> str:
"""simple docstring"""
lowerCamelCase__ : int = BitBackbone(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
lowerCamelCase__ : List[str] = model(__UpperCAmelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) )
self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] )
# verify backbone works with out_features=None
lowerCamelCase__ : str = None
lowerCamelCase__ : Optional[int] = BitBackbone(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
lowerCamelCase__ : List[Any] = model(__UpperCAmelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) ,1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) ,1 )
self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] )
def lowercase_ ( self :int ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase__ : Optional[int] = self.prepare_config_and_inputs()
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = config_and_inputs
lowerCamelCase__ : Union[str, Any] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
UpperCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
UpperCAmelCase = (
{'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification}
if is_torch_available()
else {}
)
UpperCAmelCase = False
UpperCAmelCase = False
UpperCAmelCase = False
UpperCAmelCase = False
UpperCAmelCase = False
def lowercase_ ( self :List[str] ) -> Any:
"""simple docstring"""
lowerCamelCase__ : Any = BitModelTester(self )
lowerCamelCase__ : Any = ConfigTester(self ,config_class=__UpperCAmelCase ,has_text_modality=__UpperCAmelCase )
def lowercase_ ( self :Optional[Any] ) -> Dict:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowercase_ ( self :List[Any] ) -> Dict:
"""simple docstring"""
return
@unittest.skip(reason='''Bit does not output attentions''' )
def lowercase_ ( self :List[Any] ) -> str:
"""simple docstring"""
pass
@unittest.skip(reason='''Bit does not use inputs_embeds''' )
def lowercase_ ( self :List[Any] ) -> Optional[int]:
"""simple docstring"""
pass
@unittest.skip(reason='''Bit does not support input and output embeddings''' )
def lowercase_ ( self :Tuple ) -> List[Any]:
"""simple docstring"""
pass
def lowercase_ ( self :Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
lowerCamelCase__ , lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ : Optional[int] = model_class(__UpperCAmelCase )
lowerCamelCase__ : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase__ : int = [*signature.parameters.keys()]
lowerCamelCase__ : Tuple = ['''pixel_values''']
self.assertListEqual(arg_names[:1] ,__UpperCAmelCase )
def lowercase_ ( self :str ) -> List[str]:
"""simple docstring"""
lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def lowercase_ ( self :Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*__UpperCAmelCase )
def lowercase_ ( self :List[str] ) -> List[str]:
"""simple docstring"""
lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ : Any = model_class(config=__UpperCAmelCase )
for name, module in model.named_modules():
if isinstance(__UpperCAmelCase ,(nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) ,msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" ,)
self.assertTrue(
torch.all(module.bias == 0 ) ,msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" ,)
def lowercase_ ( self :List[str] ) -> Dict:
"""simple docstring"""
def check_hidden_states_output(__UpperCAmelCase :Tuple ,__UpperCAmelCase :str ,__UpperCAmelCase :Tuple ):
lowerCamelCase__ : List[str] = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
lowerCamelCase__ : Optional[Any] = model(**self._prepare_for_class(__UpperCAmelCase ,__UpperCAmelCase ) )
lowerCamelCase__ : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowerCamelCase__ : Union[str, Any] = self.model_tester.num_stages
self.assertEqual(len(__UpperCAmelCase ) ,expected_num_stages + 1 )
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,)
lowerCamelCase__ , lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ : Any = ['''preactivation''', '''bottleneck''']
for model_class in self.all_model_classes:
for layer_type in layers_type:
lowerCamelCase__ : List[Any] = layer_type
lowerCamelCase__ : Tuple = True
check_hidden_states_output(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCamelCase__ : Optional[Any] = True
check_hidden_states_output(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase )
@unittest.skip(reason='''Bit does not use feedforward chunking''' )
def lowercase_ ( self :Optional[int] ) -> Optional[int]:
"""simple docstring"""
pass
def lowercase_ ( self :Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase )
@slow
def lowercase_ ( self :Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ : Optional[int] = BitModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def __a ( ):
"""simple docstring"""
lowerCamelCase__ : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@cached_property
def lowercase_ ( self :Tuple ) -> Dict:
"""simple docstring"""
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None
)
@slow
def lowercase_ ( self :List[Any] ) -> int:
"""simple docstring"""
lowerCamelCase__ : Optional[int] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__UpperCAmelCase )
lowerCamelCase__ : Any = self.default_image_processor
lowerCamelCase__ : Optional[int] = prepare_img()
lowerCamelCase__ : List[Any] = image_processor(images=__UpperCAmelCase ,return_tensors='''pt''' ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
lowerCamelCase__ : Union[str, Any] = model(**__UpperCAmelCase )
# verify the logits
lowerCamelCase__ : int = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape ,__UpperCAmelCase )
lowerCamelCase__ : int = torch.tensor([[-0.6_526, -0.5_263, -1.4_398]] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__UpperCAmelCase ,atol=1E-4 ) )
@require_torch
class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase , unittest.TestCase ):
UpperCAmelCase = (BitBackbone,) if is_torch_available() else ()
UpperCAmelCase = BitConfig
UpperCAmelCase = False
def lowercase_ ( self :List[str] ) -> int:
"""simple docstring"""
lowerCamelCase__ : Any = BitModelTester(self )
| 121
|
"""simple docstring"""
import argparse
import json
import os
from collections import OrderedDict
import numpy as np
import tensorflow as tf
import torch
def __a ( _lowercase ):
"""simple docstring"""
lowerCamelCase__ : Any = os.path.join(args.tf_model_dir , '''parameters.json''' )
lowerCamelCase__ : Optional[Any] = json.loads(open(_lowercase ).read() )
if not params:
raise ValueError(
f"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" )
if not args.output.endswith('''.pt''' ):
lowerCamelCase__ : Any = args.output + '''.pt'''
lowerCamelCase__ : List[str] = OrderedDict()
with tf.device('''/CPU:0''' ):
lowerCamelCase__ : List[str] = tf.train.load_checkpoint(args.tf_model_dir )
lowerCamelCase__ : Tuple = reader.get_variable_to_shape_map()
for key_name in shapes.keys():
lowerCamelCase__ : Any = reader.get_tensor(_lowercase ).astype(np.floataa )
if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ):
continue
if key_name.startswith('''pasts/''' ):
if key_name.startswith('''pasts/mlp''' ):
lowerCamelCase__ : Tuple = int(key_name[9] )
elif key_name.startswith('''pasts/out''' ):
lowerCamelCase__ : Union[str, Any] = 8
lowerCamelCase__ : Optional[Any] = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time
lowerCamelCase__ : List[str] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowerCamelCase__ : List[str] = torch.tensor(_lowercase )
elif key_name.startswith('''model/moe''' ):
lowerCamelCase__ : Dict = int(key_name[9:].split('''/''' )[0] )
if key_name.endswith('''/switch_gating/kernel''' ):
lowerCamelCase__ : Any = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player
lowerCamelCase__ : int = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowerCamelCase__ : List[Any] = torch.tensor(_lowercase )
elif key_name.endswith('''/softmlp/kernel''' ):
lowerCamelCase__ : Optional[Any] = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player
lowerCamelCase__ : List[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowerCamelCase__ : Dict = torch.tensor(_lowercase )
elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ):
lowerCamelCase__ : Optional[int] = key_name[-9:-7]
for i in range(16 ):
lowerCamelCase__ : str = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer)
lowerCamelCase__ : Union[str, Any] = (
vnp[i].transpose([1, 0] ).copy()
) # In Mesh-Tensorflow, it is one array, so it is divided
lowerCamelCase__ : Optional[int] = torch.tensor(_lowercase )
elif key_name.startswith('''model/mlp''' ):
lowerCamelCase__ : Dict = int(key_name[9:].split('''/''' )[0] )
if key_name.endswith('''/p1/kernel''' ):
lowerCamelCase__ : Dict = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player
lowerCamelCase__ : Any = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowerCamelCase__ : Tuple = torch.tensor(_lowercase )
elif key_name.endswith('''/p1/bias''' ):
lowerCamelCase__ : Union[str, Any] = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player
lowerCamelCase__ : Dict = vnp.copy() # same because it is one dimensional
lowerCamelCase__ : Union[str, Any] = torch.tensor(_lowercase )
elif key_name.endswith('''/p2/kernel''' ):
lowerCamelCase__ : Tuple = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player
lowerCamelCase__ : Union[str, Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowerCamelCase__ : Any = torch.tensor(_lowercase )
elif key_name.endswith('''/p2/bias''' ):
lowerCamelCase__ : int = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player
lowerCamelCase__ : Dict = vnp.copy() # same because it is one dimensional
lowerCamelCase__ : List[Any] = torch.tensor(_lowercase )
elif key_name.startswith('''model/ln''' ):
lowerCamelCase__ : Tuple = int(key_name[8:].split('''/''' )[0] )
if key_name.endswith('''/b''' ):
lowerCamelCase__ : Union[str, Any] = '''model.blocks.%d.feed_forward.norm.bias''' % player
lowerCamelCase__ : Tuple = vnp.copy() # same because it is one dimensional
lowerCamelCase__ : int = torch.tensor(_lowercase )
elif key_name.endswith('''/g''' ):
lowerCamelCase__ : Tuple = '''model.blocks.%d.feed_forward.norm.weight''' % player
lowerCamelCase__ : Union[str, Any] = vnp.copy() # same because it is one dimensional
lowerCamelCase__ : List[str] = torch.tensor(_lowercase )
elif key_name.startswith('''model/att''' ):
lowerCamelCase__ : str = int(key_name[9:].split('''/''' )[0] )
if key_name.endswith('''/qkv/kernel''' ):
lowerCamelCase__ : List[Any] = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum
lowerCamelCase__ : Optional[Any] = state[:, 0, :, :]
lowerCamelCase__ : int = state[:, 1, :, :]
lowerCamelCase__ : Optional[int] = state[:, 2, :, :]
lowerCamelCase__ : str = (
state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
lowerCamelCase__ : str = (
state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
lowerCamelCase__ : Tuple = (
state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
lowerCamelCase__ : Optional[Any] = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player
lowerCamelCase__ : Dict = torch.tensor(_lowercase )
lowerCamelCase__ : str = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player
lowerCamelCase__ : Optional[int] = torch.tensor(_lowercase )
lowerCamelCase__ : Union[str, Any] = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player
lowerCamelCase__ : int = torch.tensor(_lowercase )
elif key_name.endswith('''/o/kernel''' ):
lowerCamelCase__ : List[str] = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player
lowerCamelCase__ : Any = (
vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy()
) # Mesh-Tensorflow is a diagonal matrix
lowerCamelCase__ : Any = torch.tensor(_lowercase )
elif key_name.startswith('''model/an''' ):
lowerCamelCase__ : str = int(key_name[8:].split('''/''' )[0] )
if key_name.endswith('''/b''' ):
lowerCamelCase__ : int = '''model.blocks.%d.self_attn.norm.bias''' % player
lowerCamelCase__ : Tuple = vnp.copy() # same because it is one dimensional
lowerCamelCase__ : Optional[Any] = torch.tensor(_lowercase )
elif key_name.endswith('''/g''' ):
lowerCamelCase__ : int = '''model.blocks.%d.self_attn.norm.weight''' % player
lowerCamelCase__ : Union[str, Any] = vnp.copy() # same because it is one dimensional
lowerCamelCase__ : Any = torch.tensor(_lowercase )
elif (
key_name.startswith('''model/wte''' )
or key_name.startswith('''model/wpe''' )
or key_name.startswith('''model/ete''' )
):
lowerCamelCase__ : Optional[int] = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[
key_name[-3:]
]
lowerCamelCase__ : List[Any] = '''model.%s.weight''' % nlayer
lowerCamelCase__ : List[Any] = vnp.copy() # same in embedded
lowerCamelCase__ : Optional[int] = torch.tensor(_lowercase )
if key_name.startswith('''model/wte''' ):
lowerCamelCase__ : str = '''lm_head.weight'''
lowerCamelCase__ : Dict = vnp.copy() # same in embedded
lowerCamelCase__ : List[str] = torch.tensor(_lowercase )
elif key_name.startswith('''model/wob''' ):
lowerCamelCase__ : List[Any] = '''final_logits_bias'''
lowerCamelCase__ : List[str] = vnp.copy() # same in embedded
lowerCamelCase__ : int = state.reshape((1, -1) )
lowerCamelCase__ : Optional[int] = torch.tensor(_lowercase )
elif key_name == "model/dense/kernel":
lowerCamelCase__ : List[Any] = '''model.last_project.weight'''
lowerCamelCase__ : List[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowerCamelCase__ : Dict = torch.tensor(_lowercase )
elif key_name == "model/dense_1/bias":
lowerCamelCase__ : Dict = '''model.last_project.bias'''
lowerCamelCase__ : Tuple = vnp.copy() # same because it is one dimensional
lowerCamelCase__ : Dict = torch.tensor(_lowercase )
torch.save(_lowercase , args.output )
if __name__ == "__main__":
UpperCAmelCase : Tuple = argparse.ArgumentParser(
description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model")
parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model")
UpperCAmelCase : Any = parser.parse_args()
convert_tf_gptsan_to_pt(args)
| 121
| 1
|
'''simple docstring'''
from math import sqrt
def _lowerCAmelCase ( lowercase : int = 1_0_0_0_0_0_0 ) ->int:
"""simple docstring"""
lowercase__ = 0
lowercase__ = 0
lowercase__ = 42
while num_cuboids <= limit:
max_cuboid_size += 1
for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ):
if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer():
num_cuboids += (
min(lowercase , sum_shortest_sides // 2 )
- max(1 , sum_shortest_sides - max_cuboid_size )
+ 1
)
return max_cuboid_size
if __name__ == "__main__":
print(f'''{solution() = }''')
| 161
|
'''simple docstring'''
import fire
from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer
def _lowerCAmelCase ( lowercase : str , lowercase : str , **lowercase : Tuple ) ->Tuple:
"""simple docstring"""
lowercase__ = AutoConfig.from_pretrained(lowercase , **lowercase )
lowercase__ = AutoModelForSeqaSeqLM.from_config(lowercase )
model.save_pretrained(lowercase )
AutoTokenizer.from_pretrained(lowercase ).save_pretrained(lowercase )
return model
if __name__ == "__main__":
fire.Fire(save_randomly_initialized_version)
| 161
| 1
|
"""simple docstring"""
def snake_case__ ( _SCREAMING_SNAKE_CASE ) ->bool:
if p < 2:
raise ValueError("""p should not be less than 2!""" )
elif p == 2:
return True
UpperCAmelCase__ = 4
UpperCAmelCase__ = (1 << p) - 1
for _ in range(p - 2 ):
UpperCAmelCase__ = ((s * s) - 2) % m
return s == 0
if __name__ == "__main__":
print(lucas_lehmer_test(7))
print(lucas_lehmer_test(11))
| 422
|
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class _UpperCamelCase ( unittest.TestCase ):
'''simple docstring'''
def A__ ( self ):
UpperCAmelCase__ = tempfile.mkdtemp()
# fmt: off
UpperCAmelCase__ = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest"""]
# fmt: on
UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
UpperCAmelCase__ = {
"""do_resize""": True,
"""size""": {"""height""": 18, """width""": 18},
"""do_normalize""": True,
"""image_mean""": [0.5, 0.5, 0.5],
"""image_std""": [0.5, 0.5, 0.5],
}
UpperCAmelCase__ = os.path.join(self.tmpdirname , __lowercase )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(__lowercase , __lowercase )
def A__ ( self , **__lowercase ):
return BertTokenizer.from_pretrained(self.tmpdirname , **__lowercase )
def A__ ( self , **__lowercase ):
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase )
def A__ ( self ):
shutil.rmtree(self.tmpdirname )
def A__ ( self ):
UpperCAmelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
UpperCAmelCase__ = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def A__ ( self ):
UpperCAmelCase__ = self.get_tokenizer()
UpperCAmelCase__ = self.get_image_processor()
UpperCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase )
processor.save_pretrained(self.tmpdirname )
UpperCAmelCase__ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowercase )
def A__ ( self ):
UpperCAmelCase__ = VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
UpperCAmelCase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
UpperCAmelCase__ = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 )
UpperCAmelCase__ = VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__lowercase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowercase )
def A__ ( self ):
UpperCAmelCase__ = self.get_image_processor()
UpperCAmelCase__ = self.get_tokenizer()
UpperCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase )
UpperCAmelCase__ = self.prepare_image_inputs()
UpperCAmelCase__ = image_processor(__lowercase , return_tensors="""np""" )
UpperCAmelCase__ = processor(images=__lowercase , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def A__ ( self ):
UpperCAmelCase__ = self.get_image_processor()
UpperCAmelCase__ = self.get_tokenizer()
UpperCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase )
UpperCAmelCase__ = """lower newer"""
UpperCAmelCase__ = processor(text=__lowercase )
UpperCAmelCase__ = tokenizer(__lowercase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def A__ ( self ):
UpperCAmelCase__ = self.get_image_processor()
UpperCAmelCase__ = self.get_tokenizer()
UpperCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase )
UpperCAmelCase__ = """lower newer"""
UpperCAmelCase__ = self.prepare_image_inputs()
UpperCAmelCase__ = processor(text=__lowercase , images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] )
# test if it raises when no input is passed
with self.assertRaises(__lowercase ):
processor()
def A__ ( self ):
UpperCAmelCase__ = self.get_image_processor()
UpperCAmelCase__ = self.get_tokenizer()
UpperCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase )
UpperCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
UpperCAmelCase__ = processor.batch_decode(__lowercase )
UpperCAmelCase__ = tokenizer.batch_decode(__lowercase )
self.assertListEqual(__lowercase , __lowercase )
def A__ ( self ):
UpperCAmelCase__ = self.get_image_processor()
UpperCAmelCase__ = self.get_tokenizer()
UpperCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase )
UpperCAmelCase__ = """lower newer"""
UpperCAmelCase__ = self.prepare_image_inputs()
UpperCAmelCase__ = processor(text=__lowercase , images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 422
| 1
|
import itertools
import random
import unittest
import numpy as np
from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor
from transformers.testing_utils import require_torch, slow
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
__UpperCAmelCase = random.Random()
def UpperCamelCase ( snake_case__ : List[Any] , snake_case__ : str=1.0 , snake_case__ : int=None , snake_case__ : Union[str, Any]=None ) -> Any:
if rng is None:
UpperCamelCase : int = global_rng
UpperCamelCase : Union[str, Any] = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class lowerCAmelCase_ ( unittest.TestCase ):
def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=400, SCREAMING_SNAKE_CASE_=2000, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=1_6000, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, ) -> List[str]:
UpperCamelCase : Dict = parent
UpperCamelCase : Dict = batch_size
UpperCamelCase : Any = min_seq_length
UpperCamelCase : Optional[int] = max_seq_length
UpperCamelCase : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
UpperCamelCase : Tuple = feature_size
UpperCamelCase : Any = padding_value
UpperCamelCase : Tuple = sampling_rate
UpperCamelCase : Optional[Any] = return_attention_mask
UpperCamelCase : Optional[Any] = do_normalize
def snake_case_ ( self ) -> Union[str, Any]:
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def snake_case_ ( self, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False ) -> Union[str, Any]:
def _flatten(SCREAMING_SNAKE_CASE_ ):
return list(itertools.chain(*SCREAMING_SNAKE_CASE_ ) )
if equal_length:
UpperCamelCase : List[str] = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
UpperCamelCase : Union[str, Any] = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff )
]
if numpify:
UpperCamelCase : str = [np.asarray(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs]
return speech_inputs
class lowerCAmelCase_ ( a__ , unittest.TestCase ):
UpperCAmelCase__ : Any = WavaVecaFeatureExtractor
def snake_case_ ( self ) -> Union[str, Any]:
UpperCamelCase : Tuple = WavaVecaFeatureExtractionTester(self )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
self.assertTrue(np.all(np.mean(SCREAMING_SNAKE_CASE_, axis=0 ) < 1e-3 ) )
self.assertTrue(np.all(np.abs(np.var(SCREAMING_SNAKE_CASE_, axis=0 ) - 1 ) < 1e-3 ) )
def snake_case_ ( self ) -> Optional[int]:
# Tests that all call wrap to encode_plus and batch_encode_plus
UpperCamelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
UpperCamelCase : Any = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase : Dict = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs]
# Test not batched input
UpperCamelCase : List[Any] = feat_extract(speech_inputs[0], return_tensors='np' ).input_values
UpperCamelCase : Union[str, Any] = feat_extract(np_speech_inputs[0], return_tensors='np' ).input_values
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) )
# Test batched
UpperCamelCase : List[Any] = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values
UpperCamelCase : int = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) )
# Test 2-D numpy arrays are batched.
UpperCamelCase : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)]
UpperCamelCase : Optional[int] = np.asarray(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values
UpperCamelCase : Dict = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) )
def snake_case_ ( self ) -> int:
UpperCamelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase : Dict = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase : str = ['longest', 'max_length', 'do_not_pad']
UpperCamelCase : Any = [None, 1600, None]
for max_length, padding in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[Any] = feat_extract(SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, return_tensors='np' )
UpperCamelCase : Tuple = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self.assertTrue(input_values[0][800:].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_values[1][:1000] )
self.assertTrue(input_values[0][1000:].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_values[2][:1200] )
def snake_case_ ( self ) -> Tuple:
UpperCamelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase : Tuple = range(800, 1400, 200 )
UpperCamelCase : str = [floats_list((1, x) )[0] for x in lengths]
UpperCamelCase : int = ['longest', 'max_length', 'do_not_pad']
UpperCamelCase : List[str] = [None, 1600, None]
for max_length, padding in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Tuple = feat_extract(SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self._check_zero_mean_unit_variance(input_values[1][:1000] )
self._check_zero_mean_unit_variance(input_values[2][:1200] )
def snake_case_ ( self ) -> Optional[Any]:
UpperCamelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase : int = feat_extract(
SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=1000, padding='max_length', return_tensors='np' )
UpperCamelCase : Tuple = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1] )
self._check_zero_mean_unit_variance(input_values[2] )
def snake_case_ ( self ) -> List[Any]:
UpperCamelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase : Any = feat_extract(
SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=1000, padding='longest', return_tensors='np' )
UpperCamelCase : Dict = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertTrue(input_values.shape == (3, 1000) )
UpperCamelCase : str = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase : Any = feat_extract(
SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=2000, padding='longest', return_tensors='np' )
UpperCamelCase : int = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length > longest -> then pad to longest
self.assertTrue(input_values.shape == (3, 1200) )
@require_torch
def snake_case_ ( self ) -> str:
import torch
UpperCamelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase : Dict = np.random.rand(100 ).astype(np.floataa )
UpperCamelCase : Dict = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
UpperCamelCase : Union[str, Any] = feature_extractor.pad([{'input_values': inputs}], return_tensors='np' )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
UpperCamelCase : Any = feature_extractor.pad([{'input_values': inputs}], return_tensors='pt' )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
@slow
@require_torch
def snake_case_ ( self ) -> Tuple:
# this test makes sure that models that are using
# group norm don't have their feature extractor return the
# attention_mask
for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST:
UpperCamelCase : int = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ )
# only "layer" feature extraction norm should make use of
# attention_mask
self.assertEqual(feat_extract.return_attention_mask, config.feat_extract_norm == 'layer' )
| 40
|
"""simple docstring"""
from __future__ import annotations
from collections.abc import Callable
SCREAMING_SNAKE_CASE_ = list[list[float | int]]
def lowercase__ ( lowerCAmelCase : Matrix , lowerCAmelCase : Matrix ) -> Matrix:
"""simple docstring"""
UpperCAmelCase = len(lowerCAmelCase )
UpperCAmelCase = [[0 for _ in range(size + 1 )] for _ in range(lowerCAmelCase )]
UpperCAmelCase = 42
UpperCAmelCase = 42
UpperCAmelCase = 42
UpperCAmelCase = 42
UpperCAmelCase = 42
UpperCAmelCase = 42
for row in range(lowerCAmelCase ):
for col in range(lowerCAmelCase ):
UpperCAmelCase = matrix[row][col]
UpperCAmelCase = vector[row][0]
UpperCAmelCase = 0
UpperCAmelCase = 0
while row < size and col < size:
# pivoting
UpperCAmelCase = max((abs(augmented[rowa][col] ), rowa) for rowa in range(lowerCAmelCase , lowerCAmelCase ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
UpperCAmelCase , UpperCAmelCase = augmented[pivot_row], augmented[row]
for rowa in range(row + 1 , lowerCAmelCase ):
UpperCAmelCase = augmented[rowa][col] / augmented[row][col]
UpperCAmelCase = 0
for cola in range(col + 1 , size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1 , lowerCAmelCase ):
for row in range(lowerCAmelCase ):
UpperCAmelCase = augmented[row][col] / augmented[col][col]
for cola in range(lowerCAmelCase , size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(lowerCAmelCase )
]
def lowercase__ ( lowerCAmelCase : list[int] ) -> Callable[[int], int]:
"""simple docstring"""
UpperCAmelCase = len(lowerCAmelCase )
UpperCAmelCase = [[0 for _ in range(lowerCAmelCase )] for _ in range(lowerCAmelCase )]
UpperCAmelCase = [[0] for _ in range(lowerCAmelCase )]
UpperCAmelCase = 42
UpperCAmelCase = 42
UpperCAmelCase = 42
UpperCAmelCase = 42
for x_val, y_val in enumerate(lowerCAmelCase ):
for col in range(lowerCAmelCase ):
UpperCAmelCase = (x_val + 1) ** (size - col - 1)
UpperCAmelCase = y_val
UpperCAmelCase = solve(lowerCAmelCase , lowerCAmelCase )
def interpolated_func(lowerCAmelCase : int ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(lowerCAmelCase ) )
return interpolated_func
def lowercase__ ( lowerCAmelCase : int ) -> int:
"""simple docstring"""
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def lowercase__ ( lowerCAmelCase : Callable[[int], int] = question_function , lowerCAmelCase : int = 10 ) -> int:
"""simple docstring"""
UpperCAmelCase = [func(lowerCAmelCase ) for x_val in range(1 , order + 1 )]
UpperCAmelCase = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 )
]
UpperCAmelCase = 0
UpperCAmelCase = 42
UpperCAmelCase = 42
for poly in polynomials:
UpperCAmelCase = 1
while func(lowerCAmelCase ) == poly(lowerCAmelCase ):
x_val += 1
ret += poly(lowerCAmelCase )
return ret
if __name__ == "__main__":
print(F'{solution() = }')
| 373
| 0
|
"""simple docstring"""
import argparse
import gc
import json
import os
import shutil
import warnings
import torch
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
try:
from transformers import LlamaTokenizerFast
except ImportError as e:
warnings.warn(e)
warnings.warn(
'''The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion'''
)
A = None
A = {
'''7B''': 11_008,
'''13B''': 13_824,
'''30B''': 17_920,
'''65B''': 22_016,
'''70B''': 28_672,
}
A = {
'''7B''': 1,
'''7Bf''': 1,
'''13B''': 2,
'''13Bf''': 2,
'''30B''': 4,
'''65B''': 8,
'''70B''': 8,
'''70Bf''': 8,
}
def __A ( a_ :Dict , a_ :str=1 , a_ :List[str]=2_56) -> Optional[int]:
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of)
def __A ( a_ :List[str]) -> Optional[int]:
with open(a_ , '''r''') as f:
return json.load(a_)
def __A ( a_ :List[Any] , a_ :List[Any]) -> str:
with open(a_ , '''w''') as f:
json.dump(a_ , a_)
def __A ( a_ :int , a_ :Dict , a_ :List[Any] , a_ :Any=True) -> Tuple:
os.makedirs(a_ , exist_ok=a_)
__a : Any = os.path.join(a_ , '''tmp''')
os.makedirs(a_ , exist_ok=a_)
__a : Union[str, Any] = read_json(os.path.join(a_ , '''params.json'''))
__a : List[str] = NUM_SHARDS[model_size]
__a : Union[str, Any] = params['''n_layers''']
__a : List[Any] = params['''n_heads''']
__a : Any = n_heads // num_shards
__a : Tuple = params['''dim''']
__a : List[Any] = dim // n_heads
__a : List[Any] = 1_00_00.0
__a : List[Any] = 1.0 / (base ** (torch.arange(0 , a_ , 2).float() / dims_per_head))
if "n_kv_heads" in params:
__a : int = params['''n_kv_heads'''] # for GQA / MQA
__a : Optional[Any] = n_heads_per_shard // num_key_value_heads
__a : Any = dim // num_key_value_heads
else: # compatibility with other checkpoints
__a : List[Any] = n_heads
__a : int = n_heads_per_shard
__a : Union[str, Any] = dim
# permute for sliced rotary
def permute(a_ :Any , a_ :Optional[int]=n_heads , a_ :Any=dim , a_ :int=dim):
return w.view(a_ , dima // n_heads // 2 , 2 , a_).transpose(1 , 2).reshape(a_ , a_)
print(F"""Fetching all parameters from the checkpoint at {input_base_path}.""")
# Load weights
if model_size == "7B":
# Not sharded
# (The sharded implementation would also work, but this is simpler.)
__a : Any = torch.load(os.path.join(a_ , '''consolidated.00.pth''') , map_location='''cpu''')
else:
# Sharded
__a : Dict = [
torch.load(os.path.join(a_ , F"""consolidated.{i:02d}.pth""") , map_location='''cpu''')
for i in range(a_)
]
__a : Tuple = 0
__a : Any = {'''weight_map''': {}}
for layer_i in range(a_):
__a : Optional[int] = F"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"""
if model_size == "7B":
# Unsharded
__a : Tuple = {
F"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute(
loaded[F"""layers.{layer_i}.attention.wq.weight"""]),
F"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute(
loaded[F"""layers.{layer_i}.attention.wk.weight"""]),
F"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[F"""layers.{layer_i}.attention.wv.weight"""],
F"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[F"""layers.{layer_i}.attention.wo.weight"""],
F"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w1.weight"""],
F"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w2.weight"""],
F"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w3.weight"""],
F"""model.layers.{layer_i}.input_layernorm.weight""": loaded[F"""layers.{layer_i}.attention_norm.weight"""],
F"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[F"""layers.{layer_i}.ffn_norm.weight"""],
}
else:
# Sharded
# Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
# the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
# redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
__a : int = {
F"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][
F"""layers.{layer_i}.attention_norm.weight"""
].clone(),
F"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][
F"""layers.{layer_i}.ffn_norm.weight"""
].clone(),
}
__a : Union[str, Any] = permute(
torch.cat(
[
loaded[i][F"""layers.{layer_i}.attention.wq.weight"""].view(a_ , a_ , a_)
for i in range(a_)
] , dim=0 , ).reshape(a_ , a_))
__a : Optional[Any] = permute(
torch.cat(
[
loaded[i][F"""layers.{layer_i}.attention.wk.weight"""].view(
a_ , a_ , a_)
for i in range(a_)
] , dim=0 , ).reshape(a_ , a_) , a_ , a_ , a_ , )
__a : Dict = torch.cat(
[
loaded[i][F"""layers.{layer_i}.attention.wv.weight"""].view(
a_ , a_ , a_)
for i in range(a_)
] , dim=0 , ).reshape(a_ , a_)
__a : Dict = torch.cat(
[loaded[i][F"""layers.{layer_i}.attention.wo.weight"""] for i in range(a_)] , dim=1)
__a : List[Any] = torch.cat(
[loaded[i][F"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(a_)] , dim=0)
__a : List[Any] = torch.cat(
[loaded[i][F"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(a_)] , dim=1)
__a : List[str] = torch.cat(
[loaded[i][F"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(a_)] , dim=0)
__a : Union[str, Any] = inv_freq
for k, v in state_dict.items():
__a : List[Any] = filename
param_count += v.numel()
torch.save(a_ , os.path.join(a_ , a_))
__a : List[Any] = F"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"""
if model_size == "7B":
# Unsharded
__a : Optional[int] = {
'''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''],
'''model.norm.weight''': loaded['''norm.weight'''],
'''lm_head.weight''': loaded['''output.weight'''],
}
else:
__a : List[Any] = {
'''model.norm.weight''': loaded[0]['''norm.weight'''],
'''model.embed_tokens.weight''': torch.cat(
[loaded[i]['''tok_embeddings.weight'''] for i in range(a_)] , dim=1),
'''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(a_)] , dim=0),
}
for k, v in state_dict.items():
__a : Any = filename
param_count += v.numel()
torch.save(a_ , os.path.join(a_ , a_))
# Write configs
__a : Optional[int] = {'''total_size''': param_count * 2}
write_json(a_ , os.path.join(a_ , '''pytorch_model.bin.index.json'''))
__a : Union[str, Any] = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1
__a : Any = params['''multiple_of'''] if '''multiple_of''' in params else 2_56
__a : Optional[int] = LlamaConfig(
hidden_size=a_ , intermediate_size=compute_intermediate_size(a_ , a_ , a_) , num_attention_heads=params['''n_heads'''] , num_hidden_layers=params['''n_layers'''] , rms_norm_eps=params['''norm_eps'''] , num_key_value_heads=a_ , )
config.save_pretrained(a_)
# Make space so we can load the model properly now.
del state_dict
del loaded
gc.collect()
print('''Loading the checkpoint in a Llama model.''')
__a : str = LlamaForCausalLM.from_pretrained(a_ , torch_dtype=torch.floataa , low_cpu_mem_usage=a_)
# Avoid saving this as part of the config.
del model.config._name_or_path
print('''Saving in the Transformers format.''')
model.save_pretrained(a_ , safe_serialization=a_)
shutil.rmtree(a_)
def __A ( a_ :Any , a_ :str) -> int:
# Initialize the tokenizer based on the `spm` model
__a : Optional[int] = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
print(F"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""")
__a : str = tokenizer_class(a_)
tokenizer.save_pretrained(a_)
def __A ( ) -> Tuple:
__a : Optional[int] = argparse.ArgumentParser()
parser.add_argument(
'''--input_dir''' , help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' , )
parser.add_argument(
'''--model_size''' , choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] , )
parser.add_argument(
'''--output_dir''' , help='''Location to write HF model and tokenizer''' , )
parser.add_argument('''--safe_serialization''' , type=a_ , help='''Whether or not to save using `safetensors`.''')
__a : Optional[Any] = parser.parse_args()
if args.model_size != "tokenizer_only":
write_model(
model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size) , model_size=args.model_size , safe_serialization=args.safe_serialization , )
__a : Optional[Any] = os.path.join(args.input_dir , '''tokenizer.model''')
write_tokenizer(args.output_dir , a_)
if __name__ == "__main__":
main()
| 705
|
"""simple docstring"""
import copy
import unittest
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
)
from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class __lowercase :
'''simple docstring'''
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=2 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=36 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=6 , _UpperCAmelCase=6 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , _UpperCAmelCase=1000 , ):
__a : Dict = parent
__a : Optional[int] = batch_size
__a : Optional[int] = num_channels
__a : List[Any] = image_size
__a : int = patch_size
__a : Tuple = text_seq_length
__a : Dict = is_training
__a : str = use_input_mask
__a : Optional[int] = use_token_type_ids
__a : List[Any] = use_labels
__a : Tuple = vocab_size
__a : str = hidden_size
__a : Any = num_hidden_layers
__a : List[str] = num_attention_heads
__a : str = intermediate_size
__a : int = hidden_act
__a : List[Any] = hidden_dropout_prob
__a : Tuple = attention_probs_dropout_prob
__a : Tuple = max_position_embeddings
__a : List[Any] = type_vocab_size
__a : int = type_sequence_label_size
__a : str = initializer_range
__a : Dict = coordinate_size
__a : int = shape_size
__a : int = num_labels
__a : Optional[int] = num_choices
__a : Any = scope
__a : Any = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
__a : Optional[int] = text_seq_length
__a : str = (image_size // patch_size) ** 2 + 1
__a : Tuple = self.text_seq_length + self.image_seq_length
def _lowerCamelCase ( self ):
__a : List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
__a : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__a : Optional[Any] = bbox[i, j, 3]
__a : Union[str, Any] = bbox[i, j, 1]
__a : Tuple = t
if bbox[i, j, 2] < bbox[i, j, 0]:
__a : Optional[int] = bbox[i, j, 2]
__a : Optional[int] = bbox[i, j, 0]
__a : str = t
__a : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__a : Union[str, Any] = None
if self.use_input_mask:
__a : int = random_attention_mask([self.batch_size, self.text_seq_length] )
__a : int = None
if self.use_token_type_ids:
__a : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
__a : Optional[int] = None
__a : Dict = None
if self.use_labels:
__a : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__a : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
__a : int = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__a : Union[str, Any] = LayoutLMvaModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
# text + image
__a : Union[str, Any] = model(_UpperCAmelCase , pixel_values=_UpperCAmelCase )
__a : List[Any] = model(
_UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
__a : Optional[int] = model(_UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
__a : List[str] = model(_UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
__a : int = model(_UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
__a : Tuple = model(pixel_values=_UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__a : Optional[Any] = self.num_labels
__a : Optional[Any] = LayoutLMvaForSequenceClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__a : Union[str, Any] = model(
_UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__a : List[str] = self.num_labels
__a : int = LayoutLMvaForTokenClassification(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__a : List[str] = model(
_UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__a : List[Any] = LayoutLMvaForQuestionAnswering(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__a : List[str] = model(
_UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _lowerCamelCase ( self ):
__a : Optional[int] = self.prepare_config_and_inputs()
(
(
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) ,
) : List[Any] = config_and_inputs
__a : Optional[int] = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''pixel_values''': pixel_values,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class __lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__lowerCAmelCase = False
__lowerCAmelCase = False
__lowerCAmelCase = False
__lowerCAmelCase = (
(
LayoutLMvaModel,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaForQuestionAnswering,
)
if is_torch_available()
else ()
)
__lowerCAmelCase = (
{'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel}
if is_torch_available()
else {}
)
def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
# `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual
# embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has
# the sequence dimension of the text embedding only.
# (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`)
return True
def _lowerCamelCase ( self ):
__a : str = LayoutLMvaModelTester(self )
__a : int = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ):
__a : int = copy.deepcopy(_UpperCAmelCase )
if model_class in get_values(_UpperCAmelCase ):
__a : List[str] = {
k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous()
if isinstance(_UpperCAmelCase , torch.Tensor ) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(_UpperCAmelCase ):
__a : Dict = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase )
elif model_class in get_values(_UpperCAmelCase ):
__a : int = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase )
__a : Any = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase )
elif model_class in [
*get_values(_UpperCAmelCase ),
]:
__a : Any = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase )
elif model_class in [
*get_values(_UpperCAmelCase ),
]:
__a : int = torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=_UpperCAmelCase , )
return inputs_dict
def _lowerCamelCase ( self ):
self.config_tester.run_common_tests()
def _lowerCamelCase ( self ):
__a : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def _lowerCamelCase ( self ):
__a : Optional[int] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__a : Optional[Any] = type
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def _lowerCamelCase ( self ):
__a : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase )
def _lowerCamelCase ( self ):
__a : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase )
def _lowerCamelCase ( self ):
__a : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase )
@slow
def _lowerCamelCase ( self ):
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__a : Tuple = LayoutLMvaModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def __A ( ) -> Dict:
__a : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''')
return image
@require_torch
class __lowercase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _lowerCamelCase ( self ):
return LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase ) if is_vision_available() else None
@slow
def _lowerCamelCase ( self ):
__a : List[Any] = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(_UpperCAmelCase )
__a : Dict = self.default_image_processor
__a : Tuple = prepare_img()
__a : Optional[Any] = image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ).pixel_values.to(_UpperCAmelCase )
__a : Tuple = torch.tensor([[1, 2]] )
__a : Dict = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 )
# forward pass
__a : Tuple = model(
input_ids=input_ids.to(_UpperCAmelCase ) , bbox=bbox.to(_UpperCAmelCase ) , pixel_values=pixel_values.to(_UpperCAmelCase ) , )
# verify the logits
__a : Any = torch.Size((1, 199, 768) )
self.assertEqual(outputs.last_hidden_state.shape , _UpperCAmelCase )
__a : Union[str, Any] = torch.tensor(
[[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
| 101
| 0
|
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : Optional[int] = {
"""Salesforce/blip-vqa-base""": """https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json""",
"""Salesforce/blip-vqa-capfit-large""": (
"""https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json"""
),
"""Salesforce/blip-image-captioning-base""": (
"""https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json"""
),
"""Salesforce/blip-image-captioning-large""": (
"""https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json"""
),
"""Salesforce/blip-itm-base-coco""": """https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json""",
"""Salesforce/blip-itm-large-coco""": """https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json""",
"""Salesforce/blip-itm-base-flikr""": """https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json""",
"""Salesforce/blip-itm-large-flikr""": (
"""https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json"""
),
}
class A_ ( a_ ):
_SCREAMING_SNAKE_CASE = """blip_text_model"""
def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str=3_05_24 , __SCREAMING_SNAKE_CASE : Any=7_68 , __SCREAMING_SNAKE_CASE : List[Any]=7_68 , __SCREAMING_SNAKE_CASE : Tuple=30_72 , __SCREAMING_SNAKE_CASE : Any=7_68 , __SCREAMING_SNAKE_CASE : Tuple=12 , __SCREAMING_SNAKE_CASE : Dict=8 , __SCREAMING_SNAKE_CASE : int=5_12 , __SCREAMING_SNAKE_CASE : List[Any]="gelu" , __SCREAMING_SNAKE_CASE : int=1E-12 , __SCREAMING_SNAKE_CASE : Tuple=0.0 , __SCREAMING_SNAKE_CASE : Tuple=0.0 , __SCREAMING_SNAKE_CASE : Dict=0.02 , __SCREAMING_SNAKE_CASE : Optional[int]=3_05_22 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : List[str]=0 , __SCREAMING_SNAKE_CASE : Optional[int]=1_02 , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Dict=True , **__SCREAMING_SNAKE_CASE : str , ):
super().__init__(
pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , sep_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
__a = vocab_size
__a = hidden_size
__a = encoder_hidden_size
__a = intermediate_size
__a = projection_dim
__a = hidden_dropout_prob
__a = num_hidden_layers
__a = num_attention_heads
__a = max_position_embeddings
__a = layer_norm_eps
__a = hidden_act
__a = initializer_range
__a = attention_probs_dropout_prob
__a = is_decoder
__a = use_cache
@classmethod
def _UpperCAmelCase ( cls : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , **__SCREAMING_SNAKE_CASE : int ):
cls._set_token_in_kwargs(__SCREAMING_SNAKE_CASE )
__a , __a = cls.get_config_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
# get the text config dict if we are loading from BlipConfig
if config_dict.get("model_type" ) == "blip":
__a = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
class A_ ( a_ ):
_SCREAMING_SNAKE_CASE = """blip_vision_model"""
def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : str=7_68 , __SCREAMING_SNAKE_CASE : Optional[Any]=30_72 , __SCREAMING_SNAKE_CASE : List[Any]=5_12 , __SCREAMING_SNAKE_CASE : int=12 , __SCREAMING_SNAKE_CASE : Optional[Any]=12 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3_84 , __SCREAMING_SNAKE_CASE : str=16 , __SCREAMING_SNAKE_CASE : Optional[Any]="gelu" , __SCREAMING_SNAKE_CASE : Union[str, Any]=1E-5 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , __SCREAMING_SNAKE_CASE : List[Any]=1E-10 , **__SCREAMING_SNAKE_CASE : List[str] , ):
super().__init__(**__SCREAMING_SNAKE_CASE )
__a = hidden_size
__a = intermediate_size
__a = projection_dim
__a = num_hidden_layers
__a = num_attention_heads
__a = patch_size
__a = image_size
__a = initializer_range
__a = attention_dropout
__a = layer_norm_eps
__a = hidden_act
@classmethod
def _UpperCAmelCase ( cls : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , **__SCREAMING_SNAKE_CASE : str ):
cls._set_token_in_kwargs(__SCREAMING_SNAKE_CASE )
__a , __a = cls.get_config_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
# get the vision config dict if we are loading from BlipConfig
if config_dict.get("model_type" ) == "blip":
__a = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
class A_ ( a_ ):
_SCREAMING_SNAKE_CASE = """blip"""
_SCREAMING_SNAKE_CASE = True
def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : int=5_12 , __SCREAMING_SNAKE_CASE : List[Any]=2.65_92 , __SCREAMING_SNAKE_CASE : Any=2_56 , **__SCREAMING_SNAKE_CASE : Any , ):
super().__init__(**__SCREAMING_SNAKE_CASE )
if text_config is None:
__a = {}
logger.info("`text_config` is `None`. Initializing the `BlipTextConfig` with default values." )
if vision_config is None:
__a = {}
logger.info("`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values." )
__a = BlipTextConfig(**__SCREAMING_SNAKE_CASE )
__a = BlipVisionConfig(**__SCREAMING_SNAKE_CASE )
__a = self.vision_config.hidden_size
__a = projection_dim
__a = logit_scale_init_value
__a = 1.0
__a = 0.02
__a = image_text_hidden_size
@classmethod
def _UpperCAmelCase ( cls : Any , __SCREAMING_SNAKE_CASE : BlipTextConfig , __SCREAMING_SNAKE_CASE : BlipVisionConfig , **__SCREAMING_SNAKE_CASE : List[Any] ):
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__SCREAMING_SNAKE_CASE )
def _UpperCAmelCase ( self : Union[str, Any] ):
__a = copy.deepcopy(self.__dict__ )
__a = self.text_config.to_dict()
__a = self.vision_config.to_dict()
__a = self.__class__.model_type
return output
| 197
|
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__)
def __A ( _A , _A , _A , _A ):
"""simple docstring"""
__a = original_name.split("." )[0]
__a = key.split("." )
__a = int(key_list[key_list.index(_A ) - 2] )
__a = int(key_list[key_list.index(_A ) - 1] )
__a = orig_block_num - offset
__a = key.replace(f"""{orig_block_num}.{layer_num}.{original_name}""" , f"""block.{new_block_num}.{layer_num}.{new_name}""" )
return key
def __A ( _A ):
"""simple docstring"""
__a = OrderedDict()
__a , __a = 0, 0
for key, value in state_dict.items():
if key.startswith("network" ):
__a = key.replace("network" , "poolformer.encoder" )
if "proj" in key:
# Works for the first embedding as well as the internal embedding layers
if key.endswith("bias" ) and "patch_embed" not in key:
patch_emb_offset += 1
__a = key[: key.find("proj" )]
__a = key.replace(_A , f"""patch_embeddings.{total_embed_found}.""" )
__a = key.replace("proj" , "projection" )
if key.endswith("bias" ):
total_embed_found += 1
if "patch_embeddings" in key:
__a = "poolformer.encoder." + key
if "mlp.fc1" in key:
__a = replace_key_with_offset(_A , _A , "mlp.fc1" , "output.conv1" )
if "mlp.fc2" in key:
__a = replace_key_with_offset(_A , _A , "mlp.fc2" , "output.conv2" )
if "norm1" in key:
__a = replace_key_with_offset(_A , _A , "norm1" , "before_norm" )
if "norm2" in key:
__a = replace_key_with_offset(_A , _A , "norm2" , "after_norm" )
if "layer_scale_1" in key:
__a = replace_key_with_offset(_A , _A , "layer_scale_1" , "layer_scale_1" )
if "layer_scale_2" in key:
__a = replace_key_with_offset(_A , _A , "layer_scale_2" , "layer_scale_2" )
if "head" in key:
__a = key.replace("head" , "classifier" )
__a = value
return new_state_dict
def __A ( ):
"""simple docstring"""
__a = "http://images.cocodataset.org/val2017/000000039769.jpg"
__a = Image.open(requests.get(_A , stream=_A ).raw )
return image
@torch.no_grad()
def __A ( _A , _A , _A ):
"""simple docstring"""
__a = PoolFormerConfig()
# set attributes based on model_name
__a = "huggingface/label-files"
__a = model_name[-3:]
__a = 1000
__a = "imagenet-1k-id2label.json"
__a = (1, 1000)
# set config attributes
__a = json.load(open(hf_hub_download(_A , _A , repo_type="dataset" ) , "r" ) )
__a = {int(_A ): v for k, v in idalabel.items()}
__a = idalabel
__a = {v: k for k, v in idalabel.items()}
if size == "s12":
__a = [2, 2, 6, 2]
__a = [64, 128, 320, 512]
__a = 4.0
__a = 0.9
elif size == "s24":
__a = [4, 4, 12, 4]
__a = [64, 128, 320, 512]
__a = 4.0
__a = 0.9
elif size == "s36":
__a = [6, 6, 18, 6]
__a = [64, 128, 320, 512]
__a = 4.0
__a = 1E-6
__a = 0.9
elif size == "m36":
__a = [6, 6, 18, 6]
__a = [96, 192, 384, 768]
__a = 4.0
__a = 1E-6
__a = 0.95
elif size == "m48":
__a = [8, 8, 24, 8]
__a = [96, 192, 384, 768]
__a = 4.0
__a = 1E-6
__a = 0.95
else:
raise ValueError(f"""Size {size} not supported""" )
# load image processor
__a = PoolFormerImageProcessor(crop_pct=_A )
# Prepare image
__a = prepare_img()
__a = image_processor(images=_A , return_tensors="pt" ).pixel_values
logger.info(f"""Converting model {model_name}...""" )
# load original state dict
__a = torch.load(_A , map_location=torch.device("cpu" ) )
# rename keys
__a = rename_keys(_A )
# create HuggingFace model and load state dict
__a = PoolFormerForImageClassification(_A )
model.load_state_dict(_A )
model.eval()
# Define image processor
__a = PoolFormerImageProcessor(crop_pct=_A )
__a = image_processor(images=prepare_img() , return_tensors="pt" ).pixel_values
# forward pass
__a = model(_A )
__a = outputs.logits
# define expected logit slices for different models
if size == "s12":
__a = torch.tensor([-0.3045, -0.6758, -0.4869] )
elif size == "s24":
__a = torch.tensor([0.4402, -0.1374, -0.8045] )
elif size == "s36":
__a = torch.tensor([-0.6080, -0.5133, -0.5898] )
elif size == "m36":
__a = torch.tensor([0.3952, 0.2263, -1.2668] )
elif size == "m48":
__a = torch.tensor([0.1167, -0.0656, -0.3423] )
else:
raise ValueError(f"""Size {size} not supported""" )
# verify logits
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3] , _A , atol=1E-2 )
# finally, save model and image processor
logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" )
Path(_A ).mkdir(exist_ok=_A )
model.save_pretrained(_A )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_A )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
"""--model_name""",
default="""poolformer_s12""",
type=str,
help="""Name of the model you'd like to convert.""",
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file)."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
SCREAMING_SNAKE_CASE : Any = parser.parse_args()
convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 197
| 1
|
"""simple docstring"""
from __future__ import annotations
_SCREAMING_SNAKE_CASE = """Muhammad Umer Farooq"""
_SCREAMING_SNAKE_CASE = """MIT"""
_SCREAMING_SNAKE_CASE = """1.0.0"""
_SCREAMING_SNAKE_CASE = """Muhammad Umer Farooq"""
_SCREAMING_SNAKE_CASE = """contact@muhammadumerfarooq.me"""
_SCREAMING_SNAKE_CASE = """Alpha"""
import re
from html.parser import HTMLParser
from urllib import parse
import requests
class __magic_name__ ( lowercase__ ):
def __init__( self : int , snake_case_ : str ):
super().__init__()
__snake_case = []
__snake_case = domain
def lowerCAmelCase ( self : List[str] , snake_case_ : str , snake_case_ : list[tuple[str, str | None]] ):
# Only parse the 'anchor' tag.
if tag == "a":
# Check the list of defined attributes.
for name, value in attrs:
# If href is defined, and not empty nor # print it.
if name == "href" and value != "#" and value != "":
# If not already in urls.
if value not in self.urls:
__snake_case = parse.urljoin(self.domain , snake_case_ )
self.urls.append(snake_case_ )
def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
return ".".join(get_sub_domain_name(SCREAMING_SNAKE_CASE ).split("." )[-2:] )
def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
return parse.urlparse(SCREAMING_SNAKE_CASE ).netloc
def __UpperCamelCase ( SCREAMING_SNAKE_CASE = "https://github.com" ) -> list[str]:
"""simple docstring"""
__snake_case = get_domain_name(SCREAMING_SNAKE_CASE )
# Initialize the parser
__snake_case = Parser(SCREAMING_SNAKE_CASE )
try:
# Open URL
__snake_case = requests.get(SCREAMING_SNAKE_CASE )
# pass the raw HTML to the parser to get links
parser.feed(r.text )
# Get links and loop through
__snake_case = set()
for link in parser.urls:
# open URL.
# read = requests.get(link)
try:
__snake_case = requests.get(SCREAMING_SNAKE_CASE )
# Get the valid email.
__snake_case = re.findall("[a-zA-Z0-9]+@" + domain , read.text )
# If not in list then append it.
for email in emails:
valid_emails.add(SCREAMING_SNAKE_CASE )
except ValueError:
pass
except ValueError:
raise SystemExit(1 )
# Finally return a sorted list of email addresses with no duplicates.
return sorted(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = emails_from_url("""https://github.com""")
print(F"""{len(emails)} emails found:""")
print("""\n""".join(sorted(emails)))
| 705
|
"""simple docstring"""
from __future__ import annotations
from itertools import permutations
from random import randint
from timeit import repeat
def __UpperCamelCase ( ) -> tuple[list[int], int]:
"""simple docstring"""
__snake_case = [randint(-10_00 , 10_00 ) for i in range(10 )]
__snake_case = randint(-50_00 , 50_00 )
return (arr, r)
_SCREAMING_SNAKE_CASE = make_dataset()
def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> tuple[int, ...]:
"""simple docstring"""
for triplet in permutations(SCREAMING_SNAKE_CASE , 3 ):
if sum(SCREAMING_SNAKE_CASE ) == target:
return tuple(sorted(SCREAMING_SNAKE_CASE ) )
return (0, 0, 0)
def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> tuple[int, int, int]:
"""simple docstring"""
arr.sort()
__snake_case = len(SCREAMING_SNAKE_CASE )
for i in range(n - 1 ):
__snake_case , __snake_case = i + 1, n - 1
while left < right:
if arr[i] + arr[left] + arr[right] == target:
return (arr[i], arr[left], arr[right])
elif arr[i] + arr[left] + arr[right] < target:
left += 1
elif arr[i] + arr[left] + arr[right] > target:
right -= 1
return (0, 0, 0)
def __UpperCamelCase ( ) -> tuple[float, float]:
"""simple docstring"""
__snake_case = "\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n"
__snake_case = "\ntriplet_sum1(*dataset)\n"
__snake_case = "\ntriplet_sum2(*dataset)\n"
__snake_case = repeat(setup=SCREAMING_SNAKE_CASE , stmt=SCREAMING_SNAKE_CASE , repeat=5 , number=1_00_00 )
__snake_case = repeat(setup=SCREAMING_SNAKE_CASE , stmt=SCREAMING_SNAKE_CASE , repeat=5 , number=1_00_00 )
return (min(SCREAMING_SNAKE_CASE ), min(SCREAMING_SNAKE_CASE ))
if __name__ == "__main__":
from doctest import testmod
testmod()
_SCREAMING_SNAKE_CASE = solution_times()
print(F"""The time for naive implementation is {times[0]}.""")
print(F"""The time for optimized implementation is {times[1]}.""")
| 614
| 0
|
"""simple docstring"""
import dataclasses
import re
import string
from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple
import numpy as np
from . import residue_constants
__magic_name__ : Optional[int] = Mapping[str, np.ndarray]
__magic_name__ : Any = Mapping[str, Any] # Is a nested dict.
__magic_name__ : List[Any] = 0.0_1
@dataclasses.dataclass(frozen=lowerCamelCase )
class __snake_case :
__a = 42 # [num_res, num_atom_type, 3]
# Amino-acid type for each residue represented as an integer between 0 and
# 20, where 20 is 'X'.
__a = 42 # [num_res]
# Binary float mask to indicate presence of a particular atom. 1.0 if an atom
# is present and 0.0 if not. This should be used for loss masking.
__a = 42 # [num_res, num_atom_type]
# Residue index as used in PDB. It is not necessarily continuous or 0-indexed.
__a = 42 # [num_res]
# B-factors, or temperature factors, of each residue (in sq. angstroms units),
# representing the displacement of the residue from its ground truth mean
# value.
__a = 42 # [num_res, num_atom_type]
# Chain indices for multi-chain predictions
__a = None
# Optional remark about the protein. Included as a comment in output PDB
# files
__a = None
# Templates used to generate this protein (prediction-only)
__a = None
# Chain corresponding to each parent
__a = None
def a_ ( lowercase__ :str ):
__lowerCamelCase = r"""(\[[A-Z]+\]\n)"""
__lowerCamelCase = [tag.strip() for tag in re.split(lowercase__, lowercase__ ) if len(lowercase__ ) > 0]
__lowerCamelCase = zip(tags[0::2], [l.split("""\n""" ) for l in tags[1::2]] )
__lowerCamelCase = ["N", "CA", "C"]
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
for g in groups:
if "[PRIMARY]" == g[0]:
__lowerCamelCase = g[1][0].strip()
for i in range(len(lowercase__ ) ):
if seq[i] not in residue_constants.restypes:
__lowerCamelCase = """X""" # FIXME: strings are immutable
__lowerCamelCase = np.array(
[residue_constants.restype_order.get(lowercase__, residue_constants.restype_num ) for res_symbol in seq] )
elif "[TERTIARY]" == g[0]:
__lowerCamelCase = []
for axis in range(3 ):
tertiary.append(list(map(lowercase__, g[1][axis].split() ) ) )
__lowerCamelCase = np.array(lowercase__ )
__lowerCamelCase = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa )
for i, atom in enumerate(lowercase__ ):
__lowerCamelCase = np.transpose(tertiary_np[:, i::3] )
atom_positions *= PICO_TO_ANGSTROM
elif "[MASK]" == g[0]:
__lowerCamelCase = np.array(list(map({"""-""": 0, """+""": 1}.get, g[1][0].strip() ) ) )
__lowerCamelCase = np.zeros(
(
len(lowercase__ ),
residue_constants.atom_type_num,
) ).astype(np.floataa )
for i, atom in enumerate(lowercase__ ):
__lowerCamelCase = 1
atom_mask *= mask[..., None]
assert aatype is not None
return Protein(
atom_positions=lowercase__, atom_mask=lowercase__, aatype=lowercase__, residue_index=np.arange(len(lowercase__ ) ), b_factors=lowercase__, )
def a_ ( lowercase__ :Protein, lowercase__ :int = 0 ):
__lowerCamelCase = []
__lowerCamelCase = prot.remark
if remark is not None:
pdb_headers.append(f'REMARK {remark}' )
__lowerCamelCase = prot.parents
__lowerCamelCase = prot.parents_chain_index
if parents is not None and parents_chain_index is not None:
__lowerCamelCase = [p for i, p in zip(lowercase__, lowercase__ ) if i == chain_id]
if parents is None or len(lowercase__ ) == 0:
__lowerCamelCase = ["""N/A"""]
pdb_headers.append(f'PARENT {" ".join(lowercase__ )}' )
return pdb_headers
def a_ ( lowercase__ :Protein, lowercase__ :str ):
__lowerCamelCase = []
__lowerCamelCase = pdb_str.split("""\n""" )
__lowerCamelCase = prot.remark
if remark is not None:
out_pdb_lines.append(f'REMARK {remark}' )
__lowerCamelCase = 42
if prot.parents is not None and len(prot.parents ) > 0:
__lowerCamelCase = []
if prot.parents_chain_index is not None:
__lowerCamelCase = {}
for p, i in zip(prot.parents, prot.parents_chain_index ):
parent_dict.setdefault(str(lowercase__ ), [] )
parent_dict[str(lowercase__ )].append(lowercase__ )
__lowerCamelCase = max([int(lowercase__ ) for chain_idx in parent_dict] )
for i in range(max_idx + 1 ):
__lowerCamelCase = parent_dict.get(str(lowercase__ ), ["""N/A"""] )
parents_per_chain.append(lowercase__ )
else:
parents_per_chain.append(list(prot.parents ) )
else:
__lowerCamelCase = [["""N/A"""]]
def make_parent_line(lowercase__ :Sequence[str] ) -> str:
return f'PARENT {" ".join(lowercase__ )}'
out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) )
__lowerCamelCase = 0
for i, l in enumerate(lowercase__ ):
if "PARENT" not in l and "REMARK" not in l:
out_pdb_lines.append(lowercase__ )
if "TER" in l and "END" not in lines[i + 1]:
chain_counter += 1
if not chain_counter >= len(lowercase__ ):
__lowerCamelCase = parents_per_chain[chain_counter]
else:
__lowerCamelCase = ["""N/A"""]
out_pdb_lines.append(make_parent_line(lowercase__ ) )
return "\n".join(lowercase__ )
def a_ ( lowercase__ :Protein ):
__lowerCamelCase = residue_constants.restypes + ["""X"""]
def res_atoa(lowercase__ :int ) -> str:
return residue_constants.restype_atoa.get(restypes[r], """UNK""" )
__lowerCamelCase = residue_constants.atom_types
__lowerCamelCase = []
__lowerCamelCase = prot.atom_mask
__lowerCamelCase = prot.aatype
__lowerCamelCase = prot.atom_positions
__lowerCamelCase = prot.residue_index.astype(np.intaa )
__lowerCamelCase = prot.b_factors
__lowerCamelCase = prot.chain_index
if np.any(aatype > residue_constants.restype_num ):
raise ValueError("""Invalid aatypes.""" )
__lowerCamelCase = get_pdb_headers(lowercase__ )
if len(lowercase__ ) > 0:
pdb_lines.extend(lowercase__ )
__lowerCamelCase = aatype.shape[0]
__lowerCamelCase = 1
__lowerCamelCase = 0
__lowerCamelCase = string.ascii_uppercase
__lowerCamelCase = None
# Add all atom sites.
for i in range(lowercase__ ):
__lowerCamelCase = res_atoa(aatype[i] )
for atom_name, pos, mask, b_factor in zip(lowercase__, atom_positions[i], atom_mask[i], b_factors[i] ):
if mask < 0.5:
continue
__lowerCamelCase = """ATOM"""
__lowerCamelCase = atom_name if len(lowercase__ ) == 4 else f' {atom_name}'
__lowerCamelCase = """"""
__lowerCamelCase = """"""
__lowerCamelCase = 1.00
__lowerCamelCase = atom_name[0] # Protein supports only C, N, O, S, this works.
__lowerCamelCase = """"""
__lowerCamelCase = """A"""
if chain_index is not None:
__lowerCamelCase = chain_tags[chain_index[i]]
# PDB is a columnar format, every space matters here!
__lowerCamelCase = (
f'{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}'
f'{res_name_a:>3} {chain_tag:>1}'
f'{residue_index[i]:>4}{insertion_code:>1} '
f'{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}'
f'{occupancy:>6.2f}{b_factor:>6.2f} '
f'{element:>2}{charge:>2}'
)
pdb_lines.append(lowercase__ )
atom_index += 1
__lowerCamelCase = i == n - 1
if chain_index is not None:
if i != n - 1 and chain_index[i + 1] != prev_chain_index:
__lowerCamelCase = True
__lowerCamelCase = chain_index[i + 1]
if should_terminate:
# Close the chain.
__lowerCamelCase = """TER"""
__lowerCamelCase = (
f'{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}'
)
pdb_lines.append(lowercase__ )
atom_index += 1
if i != n - 1:
# "prev" is a misnomer here. This happens at the beginning of
# each new chain.
pdb_lines.extend(get_pdb_headers(lowercase__, lowercase__ ) )
pdb_lines.append("""END""" )
pdb_lines.append("""""" )
return "\n".join(lowercase__ )
def a_ ( lowercase__ :Protein ):
return residue_constants.STANDARD_ATOM_MASK[prot.aatype]
def a_ ( lowercase__ :FeatureDict, lowercase__ :ModelOutput, lowercase__ :Optional[np.ndarray] = None, lowercase__ :Optional[np.ndarray] = None, lowercase__ :Optional[str] = None, lowercase__ :Optional[Sequence[str]] = None, lowercase__ :Optional[Sequence[int]] = None, ):
return Protein(
aatype=features["""aatype"""], atom_positions=result["""final_atom_positions"""], atom_mask=result["""final_atom_mask"""], residue_index=features["""residue_index"""] + 1, b_factors=b_factors if b_factors is not None else np.zeros_like(result["""final_atom_mask"""] ), chain_index=lowercase__, remark=lowercase__, parents=lowercase__, parents_chain_index=lowercase__, )
| 281
|
"""simple docstring"""
__magic_name__ : Optional[Any] = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'
def a_ ( lowercase__ :bytes ):
# Make sure the supplied data is a bytes-like object
if not isinstance(lowercase__, lowercase__ ):
__lowerCamelCase = f'a bytes-like object is required, not \'{data.__class__.__name__}\''
raise TypeError(lowercase__ )
__lowerCamelCase = """""".join(bin(lowercase__ )[2:].zfill(8 ) for byte in data )
__lowerCamelCase = len(lowercase__ ) % 6 != 0
if padding_needed:
# The padding that will be added later
__lowerCamelCase = B"""=""" * ((6 - len(lowercase__ ) % 6) // 2)
# Append binary_stream with arbitrary binary digits (0's by default) to make its
# length a multiple of 6.
binary_stream += "0" * (6 - len(lowercase__ ) % 6)
else:
__lowerCamelCase = B""""""
# Encode every 6 binary digits to their corresponding Base64 character
return (
"".join(
B64_CHARSET[int(binary_stream[index : index + 6], 2 )]
for index in range(0, len(lowercase__ ), 6 ) ).encode()
+ padding
)
def a_ ( lowercase__ :str ):
# Make sure encoded_data is either a string or a bytes-like object
if not isinstance(lowercase__, lowercase__ ) and not isinstance(lowercase__, lowercase__ ):
__lowerCamelCase = (
"""argument should be a bytes-like object or ASCII string, """
f'not \'{encoded_data.__class__.__name__}\''
)
raise TypeError(lowercase__ )
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object
if isinstance(lowercase__, lowercase__ ):
try:
__lowerCamelCase = encoded_data.decode("""utf-8""" )
except UnicodeDecodeError:
raise ValueError("""base64 encoded data should only contain ASCII characters""" )
__lowerCamelCase = encoded_data.count("""=""" )
# Check if the encoded string contains non base64 characters
if padding:
assert all(
char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found."
else:
assert all(
char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found."
# Check the padding
assert len(lowercase__ ) % 4 == 0 and padding < 3, "Incorrect padding"
if padding:
# Remove padding if there is one
__lowerCamelCase = encoded_data[:-padding]
__lowerCamelCase = """""".join(
bin(B64_CHARSET.index(lowercase__ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2]
else:
__lowerCamelCase = """""".join(
bin(B64_CHARSET.index(lowercase__ ) )[2:].zfill(6 ) for char in encoded_data )
__lowerCamelCase = [
int(binary_stream[index : index + 8], 2 )
for index in range(0, len(lowercase__ ), 8 )
]
return bytes(lowercase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 281
| 1
|
from manim import *
class _lowerCamelCase( _a ):
def UpperCamelCase ( self) -> Union[str, Any]:
"""simple docstring"""
_lowercase : str = Rectangle(height=0.5, width=0.5)
_lowercase : List[Any] = Rectangle(height=0.4_6, width=0.4_6).set_stroke(width=0)
_lowercase : Optional[Any] = [mem.copy() for i in range(6)]
_lowercase : Optional[Any] = [mem.copy() for i in range(6)]
_lowercase : Optional[Any] = VGroup(*lowerCamelCase).arrange(lowerCamelCase, buff=0)
_lowercase : Dict = VGroup(*lowerCamelCase).arrange(lowerCamelCase, buff=0)
_lowercase : Tuple = VGroup(lowerCamelCase, lowerCamelCase).arrange(lowerCamelCase, buff=0)
_lowercase : List[str] = Text('CPU', font_size=24)
_lowercase : Optional[Any] = Group(lowerCamelCase, lowerCamelCase).arrange(lowerCamelCase, buff=0.5, aligned_edge=lowerCamelCase)
cpu.move_to([-2.5, -0.5, 0])
self.add(lowerCamelCase)
_lowercase : List[Any] = [mem.copy() for i in range(1)]
_lowercase : List[Any] = VGroup(*lowerCamelCase).arrange(lowerCamelCase, buff=0)
_lowercase : List[Any] = Text('GPU', font_size=24)
_lowercase : Optional[Any] = Group(lowerCamelCase, lowerCamelCase).arrange(lowerCamelCase, buff=0.5, aligned_edge=lowerCamelCase)
gpu.align_to(lowerCamelCase, lowerCamelCase)
gpu.set_x(gpu.get_x() - 1)
self.add(lowerCamelCase)
_lowercase : Tuple = [mem.copy() for i in range(6)]
_lowercase : str = VGroup(*lowerCamelCase).arrange(lowerCamelCase, buff=0)
_lowercase : List[str] = Text('Model', font_size=24)
_lowercase : Optional[Any] = Group(lowerCamelCase, lowerCamelCase).arrange(lowerCamelCase, buff=0.5, aligned_edge=lowerCamelCase)
model.move_to([3, -1.0, 0])
self.play(
Create(lowerCamelCase, run_time=1), Create(lowerCamelCase, run_time=1), Create(lowerCamelCase, run_time=1), )
_lowercase : int = MarkupText(
F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''', font_size=24, )
_lowercase : Tuple = Square(side_length=2.2)
key.move_to([-5, 2, 0])
_lowercase : Any = MarkupText(
F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''', font_size=18, )
key_text.move_to([-5, 2.4, 0])
step_a.move_to([2, 2, 0])
self.play(Write(lowerCamelCase, run_time=2.5), Write(lowerCamelCase), Write(lowerCamelCase))
self.add(lowerCamelCase)
_lowercase : str = []
_lowercase : Tuple = []
_lowercase : Optional[Any] = []
for i, rect in enumerate(lowerCamelCase):
_lowercase : Tuple = Rectangle(height=0.4_6, width=0.4_6).set_stroke(width=0.0).set_fill(lowerCamelCase, opacity=0.7)
cpu_target.move_to(lowerCamelCase)
cpu_target.generate_target()
_lowercase : int = 0.4_6 / 4
_lowercase : str = 0.4_6 / 3
if i == 0:
cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT), buff=0.0_2, direction=lowerCamelCase)
cpu_target.target.set_x(cpu_target.target.get_x() + 0.1)
elif i == 3:
cpu_target.target.next_to(cpu_targs[0].target, direction=lowerCamelCase, buff=0.0)
else:
cpu_target.target.next_to(cpu_targs[i - 1].target, direction=lowerCamelCase, buff=0.0)
cpu_targs.append(lowerCamelCase)
first_animations.append(rect.animate(run_time=0.5).set_stroke(lowerCamelCase))
second_animations.append(MoveToTarget(lowerCamelCase, run_time=1.5))
self.play(*lowerCamelCase)
self.play(*lowerCamelCase)
self.wait()
| 354
|
import unittest
from transformers import DebertaVaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DebertaVaForMaskedLM,
DebertaVaForMultipleChoice,
DebertaVaForQuestionAnswering,
DebertaVaForSequenceClassification,
DebertaVaForTokenClassification,
DebertaVaModel,
)
from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST
class _lowerCamelCase( _a ):
def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=7, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=99, lowerCamelCase=32, lowerCamelCase=5, lowerCamelCase=4, lowerCamelCase=37, lowerCamelCase="gelu", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=5_12, lowerCamelCase=16, lowerCamelCase=2, lowerCamelCase=0.0_2, lowerCamelCase=False, lowerCamelCase=True, lowerCamelCase="None", lowerCamelCase=3, lowerCamelCase=4, lowerCamelCase=None, ) -> Optional[Any]:
"""simple docstring"""
_lowercase : Union[str, Any] = parent
_lowercase : Optional[Any] = batch_size
_lowercase : Optional[Any] = seq_length
_lowercase : Dict = is_training
_lowercase : Optional[Any] = use_input_mask
_lowercase : Optional[int] = use_token_type_ids
_lowercase : str = use_labels
_lowercase : List[Any] = vocab_size
_lowercase : Dict = hidden_size
_lowercase : Any = num_hidden_layers
_lowercase : Union[str, Any] = num_attention_heads
_lowercase : int = intermediate_size
_lowercase : List[str] = hidden_act
_lowercase : Tuple = hidden_dropout_prob
_lowercase : Optional[Any] = attention_probs_dropout_prob
_lowercase : int = max_position_embeddings
_lowercase : Any = type_vocab_size
_lowercase : Tuple = type_sequence_label_size
_lowercase : List[Any] = initializer_range
_lowercase : Optional[Any] = num_labels
_lowercase : Tuple = num_choices
_lowercase : Dict = relative_attention
_lowercase : Optional[int] = position_biased_input
_lowercase : str = pos_att_type
_lowercase : Optional[Any] = scope
def UpperCamelCase ( self) -> Optional[int]:
"""simple docstring"""
_lowercase : int = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
_lowercase : Union[str, Any] = None
if self.use_input_mask:
_lowercase : int = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
_lowercase : Tuple = None
if self.use_token_type_ids:
_lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
_lowercase : Union[str, Any] = None
_lowercase : Tuple = None
_lowercase : str = None
if self.use_labels:
_lowercase : List[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size)
_lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
_lowercase : str = ids_tensor([self.batch_size], self.num_choices)
_lowercase : Union[str, Any] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase ( self) -> Optional[int]:
"""simple docstring"""
return DebertaVaConfig(
vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, relative_attention=self.relative_attention, position_biased_input=self.position_biased_input, pos_att_type=self.pos_att_type, )
def UpperCamelCase ( self, lowerCamelCase) -> int:
"""simple docstring"""
self.parent.assertListEqual(list(result.loss.size()), [])
def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Union[str, Any]:
"""simple docstring"""
_lowercase : List[str] = DebertaVaModel(config=lowerCamelCase)
model.to(lowerCamelCase)
model.eval()
_lowercase : int = model(lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase)[0]
_lowercase : Optional[int] = model(lowerCamelCase, token_type_ids=lowerCamelCase)[0]
_lowercase : Dict = model(lowerCamelCase)[0]
self.parent.assertListEqual(list(sequence_output.size()), [self.batch_size, self.seq_length, self.hidden_size])
def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> List[Any]:
"""simple docstring"""
_lowercase : List[Any] = DebertaVaForMaskedLM(config=lowerCamelCase)
model.to(lowerCamelCase)
model.eval()
_lowercase : str = model(lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> List[str]:
"""simple docstring"""
_lowercase : Optional[int] = self.num_labels
_lowercase : Any = DebertaVaForSequenceClassification(lowerCamelCase)
model.to(lowerCamelCase)
model.eval()
_lowercase : Any = model(lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase)
self.parent.assertListEqual(list(result.logits.size()), [self.batch_size, self.num_labels])
self.check_loss_output(lowerCamelCase)
def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]:
"""simple docstring"""
_lowercase : Union[str, Any] = self.num_labels
_lowercase : Optional[int] = DebertaVaForTokenClassification(config=lowerCamelCase)
model.to(lowerCamelCase)
model.eval()
_lowercase : Optional[Any] = model(lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Union[str, Any]:
"""simple docstring"""
_lowercase : Union[str, Any] = DebertaVaForQuestionAnswering(config=lowerCamelCase)
model.to(lowerCamelCase)
model.eval()
_lowercase : Union[str, Any] = model(
lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, start_positions=lowerCamelCase, end_positions=lowerCamelCase, )
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]:
"""simple docstring"""
_lowercase : Any = DebertaVaForMultipleChoice(config=lowerCamelCase)
model.to(lowerCamelCase)
model.eval()
_lowercase : Optional[int] = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
_lowercase : List[Any] = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
_lowercase : int = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
_lowercase : str = model(
lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase, )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def UpperCamelCase ( self) -> Optional[Any]:
"""simple docstring"""
_lowercase : Any = self.prepare_config_and_inputs()
(
(
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) ,
) : List[str] = config_and_inputs
_lowercase : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class _lowerCamelCase( _a, _a, unittest.TestCase ):
lowercase_ : Any = (
(
DebertaVaModel,
DebertaVaForMaskedLM,
DebertaVaForSequenceClassification,
DebertaVaForTokenClassification,
DebertaVaForQuestionAnswering,
DebertaVaForMultipleChoice,
)
if is_torch_available()
else ()
)
lowercase_ : Any = (
{
"""feature-extraction""": DebertaVaModel,
"""fill-mask""": DebertaVaForMaskedLM,
"""question-answering""": DebertaVaForQuestionAnswering,
"""text-classification""": DebertaVaForSequenceClassification,
"""token-classification""": DebertaVaForTokenClassification,
"""zero-shot""": DebertaVaForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase_ : int = True
lowercase_ : str = False
lowercase_ : str = False
lowercase_ : str = False
lowercase_ : List[Any] = False
def UpperCamelCase ( self) -> str:
"""simple docstring"""
_lowercase : List[Any] = DebertaVaModelTester(self)
_lowercase : List[Any] = ConfigTester(self, config_class=lowerCamelCase, hidden_size=37)
def UpperCamelCase ( self) -> Dict:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase ( self) -> Union[str, Any]:
"""simple docstring"""
_lowercase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_model(*lowerCamelCase)
def UpperCamelCase ( self) -> Optional[Any]:
"""simple docstring"""
_lowercase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_sequence_classification(*lowerCamelCase)
def UpperCamelCase ( self) -> int:
"""simple docstring"""
_lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_masked_lm(*lowerCamelCase)
def UpperCamelCase ( self) -> List[str]:
"""simple docstring"""
_lowercase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_question_answering(*lowerCamelCase)
def UpperCamelCase ( self) -> Tuple:
"""simple docstring"""
_lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_token_classification(*lowerCamelCase)
def UpperCamelCase ( self) -> Optional[Any]:
"""simple docstring"""
_lowercase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_multiple_choice(*lowerCamelCase)
@slow
def UpperCamelCase ( self) -> List[str]:
"""simple docstring"""
for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowercase : Dict = DebertaVaModel.from_pretrained(lowerCamelCase)
self.assertIsNotNone(lowerCamelCase)
@require_torch
@require_sentencepiece
@require_tokenizers
class _lowerCamelCase( unittest.TestCase ):
@unittest.skip(reason='Model not available yet')
def UpperCamelCase ( self) -> Tuple:
"""simple docstring"""
pass
@slow
def UpperCamelCase ( self) -> Optional[int]:
"""simple docstring"""
_lowercase : Dict = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge')
_lowercase : str = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]])
_lowercase : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
with torch.no_grad():
_lowercase : Tuple = model(lowerCamelCase, attention_mask=lowerCamelCase)[0]
# compare the actual values for a slice.
_lowercase : int = torch.tensor(
[[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]])
self.assertTrue(torch.allclose(output[:, 1:4, 1:4], lowerCamelCase, atol=1E-4), F'''{output[:, 1:4, 1:4]}''')
| 354
| 1
|
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
if len(__lowerCamelCase ) != len(__lowerCamelCase ):
raise ValueError("The length of profit and weight must be same." )
if max_weight <= 0:
raise ValueError("max_weight must greater than zero." )
if any(p < 0 for p in profit ):
raise ValueError("Profit can not be negative." )
if any(w < 0 for w in weight ):
raise ValueError("Weight can not be negative." )
# List created to store profit gained for the 1kg in case of each weight
# respectively. Calculate and append profit/weight for each element.
_SCREAMING_SNAKE_CASE : Optional[Any] = [p / w for p, w in zip(__lowerCamelCase, __lowerCamelCase )]
# Creating a copy of the list and sorting profit/weight in ascending order
_SCREAMING_SNAKE_CASE : Dict = sorted(__lowerCamelCase )
# declaring useful variables
_SCREAMING_SNAKE_CASE : List[Any] = len(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Any = 0
_SCREAMING_SNAKE_CASE : Union[str, Any] = 0
_SCREAMING_SNAKE_CASE : List[str] = 0
# loop till the total weight do not reach max limit e.g. 15 kg and till i<length
while limit <= max_weight and i < length:
# flag value for encountered greatest element in sorted_profit_by_weight
_SCREAMING_SNAKE_CASE : Optional[int] = sorted_profit_by_weight[length - i - 1]
_SCREAMING_SNAKE_CASE : Union[str, Any] = profit_by_weight.index(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[int] = -1
# check if the weight encountered is less than the total weight
# encountered before.
if max_weight - limit >= weight[index]:
limit += weight[index]
# Adding profit gained for the given weight 1 ===
# weight[index]/weight[index]
gain += 1 * profit[index]
else:
# Since the weight encountered is greater than limit, therefore take the
# required number of remaining kgs and calculate profit for it.
# weight remaining / weight[index]
gain += (max_weight - limit) / weight[index] * profit[index]
break
i += 1
return gain
if __name__ == "__main__":
print(
'Input profits, weights, and then max_weight (all positive ints) separated by '
'spaces.'
)
UpperCamelCase__ =[int(x) for x in input('Input profits separated by spaces: ').split()]
UpperCamelCase__ =[int(x) for x in input('Input weights separated by spaces: ').split()]
UpperCamelCase__ =int(input('Max weight allowed: '))
# Function Call
calc_profit(profit, weight, max_weight)
| 249
|
from .data_collator import (
DataCollatorForLanguageModeling,
DataCollatorForPermutationLanguageModeling,
DataCollatorForSeqaSeq,
DataCollatorForSOP,
DataCollatorForTokenClassification,
DataCollatorForWholeWordMask,
DataCollatorWithPadding,
DefaultDataCollator,
default_data_collator,
)
from .metrics import glue_compute_metrics, xnli_compute_metrics
from .processors import (
DataProcessor,
InputExample,
InputFeatures,
SingleSentenceClassificationProcessor,
SquadExample,
SquadFeatures,
SquadVaProcessor,
SquadVaProcessor,
glue_convert_examples_to_features,
glue_output_modes,
glue_processors,
glue_tasks_num_labels,
squad_convert_examples_to_features,
xnli_output_modes,
xnli_processors,
xnli_tasks_num_labels,
)
| 249
| 1
|
'''simple docstring'''
import json
import os
import re
import unicodedata
from json.encoder import INFINITY
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import regex
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging
from ...utils.generic import _is_jax, _is_numpy
lowerCAmelCase_ : Tuple = logging.get_logger(__name__)
lowerCAmelCase_ : str = {
'''artists_file''': '''artists.json''',
'''lyrics_file''': '''lyrics.json''',
'''genres_file''': '''genres.json''',
}
lowerCAmelCase_ : Union[str, Any] = {
'''artists_file''': {
'''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json''',
},
'''genres_file''': {
'''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json''',
},
'''lyrics_file''': {
'''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json''',
},
}
lowerCAmelCase_ : Dict = {
'''jukebox''': 512,
}
class __lowerCAmelCase ( __a ):
snake_case : List[str] = VOCAB_FILES_NAMES
snake_case : Tuple = PRETRAINED_VOCAB_FILES_MAP
snake_case : List[Any] = PRETRAINED_LYRIC_TOKENS_SIZES
snake_case : str = ["""input_ids""", """attention_mask"""]
def __init__(self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=["v3", "v2", "v2"] , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=5 , lowerCAmelCase__="<|endoftext|>" , **lowerCAmelCase__ , ):
_UpperCAmelCase : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token
super().__init__(
unk_token=lowerCAmelCase__ , n_genres=lowerCAmelCase__ , version=lowerCAmelCase__ , max_n_lyric_tokens=lowerCAmelCase__ , **lowerCAmelCase__ , )
_UpperCAmelCase : Dict = version
_UpperCAmelCase : Optional[int] = max_n_lyric_tokens
_UpperCAmelCase : Any = n_genres
with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle:
_UpperCAmelCase : str = json.load(lowerCAmelCase__ )
with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle:
_UpperCAmelCase : Optional[int] = json.load(lowerCAmelCase__ )
with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle:
_UpperCAmelCase : Union[str, Any] = json.load(lowerCAmelCase__ )
_UpperCAmelCase : Tuple = r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+"""
# In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters.
if len(self.lyrics_encoder ) == 7_9:
_UpperCAmelCase : int = oov.replace(r"""\-'""" , r"""\-+'""" )
_UpperCAmelCase : Dict = regex.compile(lowerCAmelCase__ )
_UpperCAmelCase : Tuple = {v: k for k, v in self.artists_encoder.items()}
_UpperCAmelCase : Dict = {v: k for k, v in self.genres_encoder.items()}
_UpperCAmelCase : int = {v: k for k, v in self.lyrics_encoder.items()}
@property
def snake_case_ (self ):
return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder )
def snake_case_ (self ):
return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder )
def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCAmelCase : Optional[int] = [self.artists_encoder.get(lowerCAmelCase__ , 0 ) for artist in list_artists]
for genres in range(len(lowerCAmelCase__ ) ):
_UpperCAmelCase : Optional[Any] = [self.genres_encoder.get(lowerCAmelCase__ , 0 ) for genre in list_genres[genres]]
_UpperCAmelCase : Dict = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] ))
_UpperCAmelCase : Optional[Any] = [[self.lyrics_encoder.get(lowerCAmelCase__ , 0 ) for character in list_lyrics[0]], [], []]
return artists_id, list_genres, lyric_ids
def snake_case_ (self , lowerCAmelCase__ ):
return list(lowerCAmelCase__ )
def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ):
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self.prepare_for_tokenization(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : str = self._tokenize(lowerCAmelCase__ )
return artist, genre, lyrics
def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ):
for idx in range(len(self.version ) ):
if self.version[idx] == "v3":
_UpperCAmelCase : int = artists[idx].lower()
_UpperCAmelCase : int = [genres[idx].lower()]
else:
_UpperCAmelCase : List[str] = self._normalize(artists[idx] ) + """.v2"""
_UpperCAmelCase : Tuple = [
self._normalize(lowerCAmelCase__ ) + """.v2""" for genre in genres[idx].split("""_""" )
] # split is for the full dictionary with combined genres
if self.version[0] == "v2":
_UpperCAmelCase : Dict = regex.compile(r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" )
_UpperCAmelCase : Optional[Any] = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n"""
_UpperCAmelCase : Union[str, Any] = {vocab[index]: index + 1 for index in range(len(lowerCAmelCase__ ) )}
_UpperCAmelCase : Union[str, Any] = 0
_UpperCAmelCase : List[str] = len(lowerCAmelCase__ ) + 1
_UpperCAmelCase : List[str] = self.vocab
_UpperCAmelCase : List[Any] = {v: k for k, v in self.vocab.items()}
_UpperCAmelCase : str = """"""
else:
_UpperCAmelCase : List[str] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" )
_UpperCAmelCase : Dict = self._run_strip_accents(lowerCAmelCase__ )
_UpperCAmelCase : str = lyrics.replace("""\\""" , """\n""" )
_UpperCAmelCase : int = self.out_of_vocab.sub("""""" , lowerCAmelCase__ ), [], []
return artists, genres, lyrics
def snake_case_ (self , lowerCAmelCase__ ):
_UpperCAmelCase : Union[str, Any] = unicodedata.normalize("""NFD""" , lowerCAmelCase__ )
_UpperCAmelCase : Any = []
for char in text:
_UpperCAmelCase : Tuple = unicodedata.category(lowerCAmelCase__ )
if cat == "Mn":
continue
output.append(lowerCAmelCase__ )
return "".join(lowerCAmelCase__ )
def snake_case_ (self , lowerCAmelCase__ ):
_UpperCAmelCase : List[str] = (
[chr(lowerCAmelCase__ ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )]
+ [chr(lowerCAmelCase__ ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )]
+ [chr(lowerCAmelCase__ ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )]
+ ["""."""]
)
_UpperCAmelCase : List[Any] = frozenset(lowerCAmelCase__ )
_UpperCAmelCase : List[str] = re.compile(r"""_+""" )
_UpperCAmelCase : str = """""".join([c if c in accepted else """_""" for c in text.lower()] )
_UpperCAmelCase : int = pattern.sub("""_""" , lowerCAmelCase__ ).strip("""_""" )
return text
def snake_case_ (self , lowerCAmelCase__ ):
return " ".join(lowerCAmelCase__ )
def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ):
# Convert to TensorType
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCAmelCase : Optional[int] = TensorType(lowerCAmelCase__ )
# Get a function reference for the correct framework
if tensor_type == TensorType.TENSORFLOW:
if not is_tf_available():
raise ImportError(
"""Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" )
import tensorflow as tf
_UpperCAmelCase : List[Any] = tf.constant
_UpperCAmelCase : Tuple = tf.is_tensor
elif tensor_type == TensorType.PYTORCH:
if not is_torch_available():
raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" )
import torch
_UpperCAmelCase : Tuple = torch.tensor
_UpperCAmelCase : List[str] = torch.is_tensor
elif tensor_type == TensorType.JAX:
if not is_flax_available():
raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" )
import jax.numpy as jnp # noqa: F811
_UpperCAmelCase : str = jnp.array
_UpperCAmelCase : Any = _is_jax
else:
_UpperCAmelCase : List[str] = np.asarray
_UpperCAmelCase : List[str] = _is_numpy
# Do the tensor conversion in batch
try:
if prepend_batch_axis:
_UpperCAmelCase : Optional[int] = [inputs]
if not is_tensor(lowerCAmelCase__ ):
_UpperCAmelCase : Optional[Any] = as_tensor(lowerCAmelCase__ )
except: # noqa E722
raise ValueError(
"""Unable to create tensor, you should probably activate truncation and/or padding """
"""with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" )
return inputs
def __call__(self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="" , lowerCAmelCase__="pt" ):
_UpperCAmelCase : Dict = [0, 0, 0]
_UpperCAmelCase : int = [artist] * len(self.version )
_UpperCAmelCase : Any = [genres] * len(self.version )
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.tokenize(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : int = self._convert_token_to_id(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Dict = [-INFINITY] * len(full_tokens[-1] )
_UpperCAmelCase : Optional[int] = [
self.convert_to_tensors(
[input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=lowerCAmelCase__ )
for i in range(len(self.version ) )
]
return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} )
def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ = None ):
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(F"Vocabulary path ({save_directory}) should be a directory" )
return
_UpperCAmelCase : Optional[Any] = os.path.join(
lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] )
with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.artists_encoder , ensure_ascii=lowerCAmelCase__ ) )
_UpperCAmelCase : Optional[int] = os.path.join(
lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] )
with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.genres_encoder , ensure_ascii=lowerCAmelCase__ ) )
_UpperCAmelCase : Dict = os.path.join(
lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] )
with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.lyrics_encoder , ensure_ascii=lowerCAmelCase__ ) )
return (artists_file, genres_file, lyrics_file)
def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCAmelCase : List[str] = self.artists_decoder.get(lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = [self.genres_decoder.get(lowerCAmelCase__ ) for genre in genres_index]
_UpperCAmelCase : Dict = [self.lyrics_decoder.get(lowerCAmelCase__ ) for character in lyric_index]
return artist, genres, lyrics
| 156
|
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
lowerCAmelCase_ : Dict = logging.getLogger(__name__)
def __A ( lowerCAmelCase_ , lowerCAmelCase_ ):
return (preds == labels).mean()
@dataclass
class __lowerCAmelCase :
snake_case : str = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
snake_case : Optional[str] = field(
default=__a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
snake_case : Optional[str] = field(
default=__a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
snake_case : Optional[str] = field(
default=__a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
@dataclass
class __lowerCAmelCase :
snake_case : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} )
snake_case : str = field(metadata={"""help""": """Should contain the data files for the task."""} )
snake_case : int = field(
default=1_2_8 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
snake_case : bool = field(
default=__a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
def __A ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_UpperCAmelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
""" --overwrite_output_dir to overcome.""" )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
"""Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("""Training/evaluation parameters %s""" , lowerCAmelCase_ )
# Set seed
set_seed(training_args.seed )
try:
_UpperCAmelCase : Union[str, Any] = processors[data_args.task_name]()
_UpperCAmelCase : int = processor.get_labels()
_UpperCAmelCase : Optional[int] = len(lowerCAmelCase_ )
except KeyError:
raise ValueError("""Task not found: %s""" % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_UpperCAmelCase : List[str] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase_ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
_UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
_UpperCAmelCase : Optional[int] = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , )
# Get datasets
_UpperCAmelCase : int = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=lowerCAmelCase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
_UpperCAmelCase : Tuple = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=lowerCAmelCase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(lowerCAmelCase_ ) -> Dict:
_UpperCAmelCase : Optional[Any] = np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(lowerCAmelCase_ , p.label_ids )}
# Data collator
_UpperCAmelCase : List[str] = DataCollatorWithPadding(lowerCAmelCase_ , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
_UpperCAmelCase : List[Any] = Trainer(
model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=lowerCAmelCase_ , eval_dataset=lowerCAmelCase_ , compute_metrics=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
_UpperCAmelCase : Any = {}
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
_UpperCAmelCase : int = trainer.evaluate()
_UpperCAmelCase : List[str] = os.path.join(training_args.output_dir , """eval_results.txt""" )
if trainer.is_world_master():
with open(lowerCAmelCase_ , """w""" ) as writer:
logger.info("""***** Eval results *****""" )
for key, value in result.items():
logger.info(""" %s = %s""" , lowerCAmelCase_ , lowerCAmelCase_ )
writer.write("""%s = %s\n""" % (key, value) )
results.update(lowerCAmelCase_ )
return results
def __A ( lowerCAmelCase_ ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 156
| 1
|
'''simple docstring'''
import copy
import os
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCamelCase =logging.get_logger(__name__)
UpperCamelCase ={
"google/owlvit-base-patch32": "https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json",
"google/owlvit-base-patch16": "https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json",
"google/owlvit-large-patch14": "https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json",
}
class A ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
__a : List[str] = '''owlvit_text_model'''
def __init__( self , __lowerCAmelCase=4_94_08 , __lowerCAmelCase=5_12 , __lowerCAmelCase=20_48 , __lowerCAmelCase=12 , __lowerCAmelCase=8 , __lowerCAmelCase=16 , __lowerCAmelCase="quick_gelu" , __lowerCAmelCase=1E-5 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1.0 , __lowerCAmelCase=0 , __lowerCAmelCase=4_94_06 , __lowerCAmelCase=4_94_07 , **__lowerCAmelCase , ):
super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase )
UpperCamelCase_ : int = vocab_size
UpperCamelCase_ : List[str] = hidden_size
UpperCamelCase_ : Tuple = intermediate_size
UpperCamelCase_ : Optional[int] = num_hidden_layers
UpperCamelCase_ : List[Any] = num_attention_heads
UpperCamelCase_ : int = max_position_embeddings
UpperCamelCase_ : List[str] = hidden_act
UpperCamelCase_ : Dict = layer_norm_eps
UpperCamelCase_ : Optional[Any] = attention_dropout
UpperCamelCase_ : str = initializer_range
UpperCamelCase_ : Optional[Any] = initializer_factor
@classmethod
def _UpperCAmelCase ( cls , __lowerCAmelCase , **__lowerCAmelCase ):
cls._set_token_in_kwargs(__lowerCAmelCase )
UpperCamelCase_ , UpperCamelCase_ : Any = cls.get_config_dict(__lowerCAmelCase , **__lowerCAmelCase )
# get the text config dict if we are loading from OwlViTConfig
if config_dict.get("""model_type""" ) == "owlvit":
UpperCamelCase_ : Optional[Any] = config_dict["""text_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(__lowerCAmelCase , **__lowerCAmelCase )
class A ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
__a : Dict = '''owlvit_vision_model'''
def __init__( self , __lowerCAmelCase=7_68 , __lowerCAmelCase=30_72 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3 , __lowerCAmelCase=7_68 , __lowerCAmelCase=32 , __lowerCAmelCase="quick_gelu" , __lowerCAmelCase=1E-5 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1.0 , **__lowerCAmelCase , ):
super().__init__(**__lowerCAmelCase )
UpperCamelCase_ : List[Any] = hidden_size
UpperCamelCase_ : Tuple = intermediate_size
UpperCamelCase_ : Optional[int] = num_hidden_layers
UpperCamelCase_ : Any = num_attention_heads
UpperCamelCase_ : Tuple = num_channels
UpperCamelCase_ : Optional[Any] = image_size
UpperCamelCase_ : Tuple = patch_size
UpperCamelCase_ : List[Any] = hidden_act
UpperCamelCase_ : List[str] = layer_norm_eps
UpperCamelCase_ : List[Any] = attention_dropout
UpperCamelCase_ : Union[str, Any] = initializer_range
UpperCamelCase_ : Dict = initializer_factor
@classmethod
def _UpperCAmelCase ( cls , __lowerCAmelCase , **__lowerCAmelCase ):
cls._set_token_in_kwargs(__lowerCAmelCase )
UpperCamelCase_ , UpperCamelCase_ : List[Any] = cls.get_config_dict(__lowerCAmelCase , **__lowerCAmelCase )
# get the vision config dict if we are loading from OwlViTConfig
if config_dict.get("""model_type""" ) == "owlvit":
UpperCamelCase_ : List[str] = config_dict["""vision_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(__lowerCAmelCase , **__lowerCAmelCase )
class A ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
__a : List[Any] = '''owlvit'''
__a : Union[str, Any] = True
def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=5_12 , __lowerCAmelCase=2.65_92 , __lowerCAmelCase=True , **__lowerCAmelCase , ):
super().__init__(**__lowerCAmelCase )
if text_config is None:
UpperCamelCase_ : Optional[int] = {}
logger.info("""text_config is None. Initializing the OwlViTTextConfig with default values.""" )
if vision_config is None:
UpperCamelCase_ : Optional[int] = {}
logger.info("""vision_config is None. initializing the OwlViTVisionConfig with default values.""" )
UpperCamelCase_ : List[Any] = OwlViTTextConfig(**__lowerCAmelCase )
UpperCamelCase_ : Tuple = OwlViTVisionConfig(**__lowerCAmelCase )
UpperCamelCase_ : Optional[int] = projection_dim
UpperCamelCase_ : int = logit_scale_init_value
UpperCamelCase_ : Optional[int] = return_dict
UpperCamelCase_ : List[str] = 1.0
@classmethod
def _UpperCAmelCase ( cls , __lowerCAmelCase , **__lowerCAmelCase ):
cls._set_token_in_kwargs(__lowerCAmelCase )
UpperCamelCase_ , UpperCamelCase_ : Any = cls.get_config_dict(__lowerCAmelCase , **__lowerCAmelCase )
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(__lowerCAmelCase , **__lowerCAmelCase )
@classmethod
def _UpperCAmelCase ( cls , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ):
UpperCamelCase_ : int = {}
UpperCamelCase_ : Dict = text_config
UpperCamelCase_ : Union[str, Any] = vision_config
return cls.from_dict(__lowerCAmelCase , **__lowerCAmelCase )
def _UpperCAmelCase ( self ):
UpperCamelCase_ : Optional[int] = copy.deepcopy(self.__dict__ )
UpperCamelCase_ : List[str] = self.text_config.to_dict()
UpperCamelCase_ : str = self.vision_config.to_dict()
UpperCamelCase_ : Any = self.__class__.model_type
return output
class A ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
@property
def _UpperCAmelCase ( self ):
return OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """sequence"""}),
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""attention_mask""", {0: """batch""", 1: """sequence"""}),
] )
@property
def _UpperCAmelCase ( self ):
return OrderedDict(
[
("""logits_per_image""", {0: """batch"""}),
("""logits_per_text""", {0: """batch"""}),
("""text_embeds""", {0: """batch"""}),
("""image_embeds""", {0: """batch"""}),
] )
@property
def _UpperCAmelCase ( self ):
return 1E-4
def _UpperCAmelCase ( self , __lowerCAmelCase , __lowerCAmelCase = -1 , __lowerCAmelCase = -1 , __lowerCAmelCase = None , ):
UpperCamelCase_ : Tuple = super().generate_dummy_inputs(
processor.tokenizer , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , framework=__lowerCAmelCase )
UpperCamelCase_ : int = super().generate_dummy_inputs(
processor.image_processor , batch_size=__lowerCAmelCase , framework=__lowerCAmelCase )
return {**text_input_dict, **image_input_dict}
@property
def _UpperCAmelCase ( self ):
return 14
| 208
|
'''simple docstring'''
UpperCamelCase ="Input must be a string of 8 numbers plus letter"
UpperCamelCase ="TRWAGMYFPDXBNJZSQVHLCKE"
def snake_case ( a_ : str ) -> bool:
"""simple docstring"""
if not isinstance(a_ , a_ ):
UpperCamelCase_ : List[str] = f"Expected string as input, found {type(a_ ).__name__}"
raise TypeError(a_ )
UpperCamelCase_ : int = spanish_id.replace("""-""" , """""" ).upper()
if len(a_ ) != 9:
raise ValueError(a_ )
try:
UpperCamelCase_ : List[str] = int(spanish_id_clean[0:8] )
UpperCamelCase_ : Any = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(a_ ) from ex
if letter.isdigit():
raise ValueError(a_ )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 208
| 1
|
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class lowercase ( __SCREAMING_SNAKE_CASE ):
lowercase_ : Optional[int] =(UnCLIPScheduler,)
def A__ ( self ,**A__):
lowercase = {
'''num_train_timesteps''': 1_0_0_0,
'''variance_type''': '''fixed_small_log''',
'''clip_sample''': True,
'''clip_sample_range''': 1.0,
'''prediction_type''': '''epsilon''',
}
config.update(**_a)
return config
def A__ ( self):
for timesteps in [1, 5, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=_a)
def A__ ( self):
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=_a)
def A__ ( self):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_a)
def A__ ( self):
for clip_sample_range in [1, 5, 1_0, 2_0]:
self.check_over_configs(clip_sample_range=_a)
def A__ ( self):
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=_a)
def A__ ( self):
for time_step in [0, 5_0_0, 9_9_9]:
for prev_timestep in [None, 5, 1_0_0, 2_5_0, 5_0_0, 7_5_0]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=_a ,prev_timestep=_a)
def A__ ( self):
lowercase = self.scheduler_classes[0]
lowercase = self.get_scheduler_config(variance_type='''fixed_small_log''')
lowercase = scheduler_class(**_a)
assert torch.sum(torch.abs(scheduler._get_variance(0) - 1.0_000E-10)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_8_7) - 0.0549625)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_9_9) - 0.9994987)) < 1E-5
def A__ ( self):
lowercase = self.scheduler_classes[0]
lowercase = self.get_scheduler_config(variance_type='''learned_range''')
lowercase = scheduler_class(**_a)
lowercase = 0.5
assert scheduler._get_variance(1 ,predicted_variance=_a) - -10.1712790 < 1E-5
assert scheduler._get_variance(4_8_7 ,predicted_variance=_a) - -5.7998052 < 1E-5
assert scheduler._get_variance(9_9_9 ,predicted_variance=_a) - -0.0010011 < 1E-5
def A__ ( self):
lowercase = self.scheduler_classes[0]
lowercase = self.get_scheduler_config()
lowercase = scheduler_class(**_a)
lowercase = scheduler.timesteps
lowercase = self.dummy_model()
lowercase = self.dummy_sample_deter
lowercase = torch.manual_seed(0)
for i, t in enumerate(_a):
# 1. predict noise residual
lowercase = model(_a ,_a)
# 2. predict previous mean of sample x_t-1
lowercase = scheduler.step(_a ,_a ,_a ,generator=_a).prev_sample
lowercase = pred_prev_sample
lowercase = torch.sum(torch.abs(_a))
lowercase = torch.mean(torch.abs(_a))
assert abs(result_sum.item() - 252.2682495) < 1E-2
assert abs(result_mean.item() - 0.3284743) < 1E-3
def A__ ( self):
lowercase = self.scheduler_classes[0]
lowercase = self.get_scheduler_config()
lowercase = scheduler_class(**_a)
scheduler.set_timesteps(2_5)
lowercase = scheduler.timesteps
lowercase = self.dummy_model()
lowercase = self.dummy_sample_deter
lowercase = torch.manual_seed(0)
for i, t in enumerate(_a):
# 1. predict noise residual
lowercase = model(_a ,_a)
if i + 1 == timesteps.shape[0]:
lowercase = None
else:
lowercase = timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
lowercase = scheduler.step(
_a ,_a ,_a ,prev_timestep=_a ,generator=_a).prev_sample
lowercase = pred_prev_sample
lowercase = torch.sum(torch.abs(_a))
lowercase = torch.mean(torch.abs(_a))
assert abs(result_sum.item() - 258.2044983) < 1E-2
assert abs(result_mean.item() - 0.3362038) < 1E-3
def A__ ( self):
pass
def A__ ( self):
pass
| 721
|
from __future__ import annotations
def UpperCamelCase ( lowerCAmelCase__ ):
'''simple docstring'''
if len(lowerCAmelCase__ ) < 2:
raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' )
if any(i <= 0 for i in nums ):
raise ValueError('''All values must be greater than 0''' )
lowercase = nums.copy()
copy_nums.sort()
return copy_nums[-1] < sum(copy_nums[:-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 633
| 0
|
_a : Tuple = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []}
_a : List[Any] = ["a", "b", "c", "d", "e"]
def UpperCamelCase__ ( _A: Dict , _A: Any , _A: List[Any] ):
'''simple docstring'''
__lowerCamelCase = start
# add current to visited
visited.append(a_ )
__lowerCamelCase = edges[current]
for neighbor in neighbors:
# if neighbor not in visited, visit
if neighbor not in visited:
__lowerCamelCase = topological_sort(a_ , a_ , a_ )
# if all neighbors visited add current to sort
sort.append(a_ )
# if all vertices haven't been visited select a new one to visit
if len(a_ ) != len(a_ ):
for vertice in vertices:
if vertice not in visited:
__lowerCamelCase = topological_sort(a_ , a_ , a_ )
# return sort
return sort
if __name__ == "__main__":
_a : Any = topological_sort('a', [], [])
print(sort)
| 479
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCamelCase__ : Union[str, Any] = {
"configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"],
"tokenization_m2m_100": ["M2M100Tokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : str = [
"M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST",
"M2M100ForConditionalGeneration",
"M2M100Model",
"M2M100PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
lowerCamelCase__ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 698
| 0
|
'''simple docstring'''
import colorsys
from PIL import Image # type: ignore
def __UpperCAmelCase ( a_: float, a_: float, a_: int ):
_UpperCAmelCase : List[Any] = x
_UpperCAmelCase : Optional[Any] = y
for step in range(a_ ): # noqa: B007
_UpperCAmelCase : Dict = a * a - b * b + x
_UpperCAmelCase : List[str] = 2 * a * b + y
_UpperCAmelCase : str = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def __UpperCAmelCase ( a_: float ):
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def __UpperCAmelCase ( a_: float ):
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(a_, 1, 1 ) )
def __UpperCAmelCase ( a_: int = 800, a_: int = 600, a_: float = -0.6, a_: float = 0, a_: float = 3.2, a_: int = 50, a_: bool = True, ):
_UpperCAmelCase : Any = Image.new("RGB", (image_width, image_height) )
_UpperCAmelCase : int = img.load()
# loop through the image-coordinates
for image_x in range(a_ ):
for image_y in range(a_ ):
# determine the figure-coordinates based on the image-coordinates
_UpperCAmelCase : str = figure_width / image_width * image_height
_UpperCAmelCase : List[Any] = figure_center_x + (image_x / image_width - 0.5) * figure_width
_UpperCAmelCase : Optional[Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height
_UpperCAmelCase : Optional[int] = get_distance(a_, a_, a_ )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
_UpperCAmelCase : List[str] = get_color_coded_rgb(a_ )
else:
_UpperCAmelCase : str = get_black_and_white_rgb(a_ )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
__a = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 257
|
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__a = logging.get_logger(__name__)
__a = {
'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json',
'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json',
'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json',
# See all BigBird models at https://huggingface.co/models?filter=big_bird
}
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : List[str] = '''big_bird'''
def __init__( self : Union[str, Any] , lowerCAmelCase__ : List[Any]=5_0_3_5_8 , lowerCAmelCase__ : Dict=7_6_8 , lowerCAmelCase__ : List[str]=1_2 , lowerCAmelCase__ : List[Any]=1_2 , lowerCAmelCase__ : str=3_0_7_2 , lowerCAmelCase__ : Any="gelu_new" , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : Optional[int]=4_0_9_6 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : str=0.02 , lowerCAmelCase__ : List[str]=1e-12 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : List[Any]=0 , lowerCAmelCase__ : str=1 , lowerCAmelCase__ : Tuple=2 , lowerCAmelCase__ : Dict=6_6 , lowerCAmelCase__ : Optional[int]="block_sparse" , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : Tuple=6_4 , lowerCAmelCase__ : Optional[int]=3 , lowerCAmelCase__ : Dict=None , **lowerCAmelCase__ : str , ) -> Tuple:
"""simple docstring"""
super().__init__(
pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , sep_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , )
_UpperCAmelCase : int = vocab_size
_UpperCAmelCase : str = max_position_embeddings
_UpperCAmelCase : Optional[Any] = hidden_size
_UpperCAmelCase : int = num_hidden_layers
_UpperCAmelCase : Any = num_attention_heads
_UpperCAmelCase : List[str] = intermediate_size
_UpperCAmelCase : Optional[int] = hidden_act
_UpperCAmelCase : int = hidden_dropout_prob
_UpperCAmelCase : List[Any] = attention_probs_dropout_prob
_UpperCAmelCase : Optional[int] = initializer_range
_UpperCAmelCase : Any = type_vocab_size
_UpperCAmelCase : Optional[Any] = layer_norm_eps
_UpperCAmelCase : Union[str, Any] = use_cache
_UpperCAmelCase : Dict = rescale_embeddings
_UpperCAmelCase : List[Any] = attention_type
_UpperCAmelCase : str = use_bias
_UpperCAmelCase : Optional[Any] = block_size
_UpperCAmelCase : Optional[Any] = num_random_blocks
_UpperCAmelCase : Optional[Any] = classifier_dropout
class A__ ( UpperCamelCase ):
"""simple docstring"""
@property
def _lowerCAmelCase ( self : int ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
_UpperCAmelCase : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"}
else:
_UpperCAmelCase : Optional[int] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 257
| 1
|
"""simple docstring"""
import argparse
import torch
from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert
from transformers.utils import logging
logging.set_verbosity_info()
def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ):
'''simple docstring'''
UpperCAmelCase__ : Any = MobileBertConfig.from_json_file(__UpperCamelCase )
print(F"Building PyTorch model from configuration: {config}" )
UpperCAmelCase__ : Union[str, Any] = MobileBertForPreTraining(__UpperCamelCase )
# Load weights from tf checkpoint
UpperCAmelCase__ : Union[str, Any] = load_tf_weights_in_mobilebert(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
# Save pytorch-model
print(F"Save PyTorch model to {pytorch_dump_path}" )
torch.save(model.state_dict() , __UpperCamelCase )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--mobilebert_config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained MobileBERT model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__UpperCAmelCase = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
| 65
|
from functools import reduce
__a = (
'73167176531330624919225119674426574742355349194934'
'96983520312774506326239578318016984801869478851843'
'85861560789112949495459501737958331952853208805511'
'12540698747158523863050715693290963295227443043557'
'66896648950445244523161731856403098711121722383113'
'62229893423380308135336276614282806444486645238749'
'30358907296290491560440772390713810515859307960866'
'70172427121883998797908792274921901699720888093776'
'65727333001053367881220235421809751254540594752243'
'52584907711670556013604839586446706324415722155397'
'53697817977846174064955149290862569321978468622482'
'83972241375657056057490261407972968652414535100474'
'82166370484403199890008895243450658541227588666881'
'16427171479924442928230863465674813919123162824586'
'17866458359124566529476545682848912883142607690042'
'24219022671055626321111109370544217506941658960408'
'07198403850962455444362981230987879927244284909188'
'84580156166097919133875499200524063689912560717606'
'05886116467109405077541002256983155200055935729725'
'71636269561882670428252483600823257530420752963450'
)
def lowerCamelCase__ ( _lowercase = N ):
'''simple docstring'''
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda _lowercase , _lowercase : str(int(_lowercase ) * int(_lowercase ) ) , n[i : i + 13] ) )
for i in range(len(_lowercase ) - 12 ) )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 30
| 0
|
"""simple docstring"""
import itertools
from dataclasses import dataclass
from typing import List, Optional
import pyarrow as pa
import pyarrow.parquet as pq
import datasets
from datasets.table import table_cast
a : Union[str, Any] = datasets.utils.logging.get_logger(__name__)
@dataclass
class _UpperCamelCase ( datasets.BuilderConfig ):
'''simple docstring'''
__lowercase : Tuple = 1_0000
__lowercase : Dict = None
__lowercase : List[Any] = None
class _UpperCamelCase ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
__lowercase : str = ParquetConfig
def A__ ( self ):
return datasets.DatasetInfo(features=self.config.features )
def A__ ( self , __lowercase ):
if not self.config.data_files:
raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' )
UpperCAmelCase__ = dl_manager.download_and_extract(self.config.data_files )
if isinstance(lowercase_ , (str, list, tuple) ):
UpperCAmelCase__ = data_files
if isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase__ = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
UpperCAmelCase__ = [dl_manager.iter_files(lowercase_ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )]
UpperCAmelCase__ = []
for split_name, files in data_files.items():
if isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase__ = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
UpperCAmelCase__ = [dl_manager.iter_files(lowercase_ ) for file in files]
# Infer features is they are stoed in the arrow schema
if self.info.features is None:
for file in itertools.chain.from_iterable(lowercase_ ):
with open(lowercase_ , """rb""" ) as f:
UpperCAmelCase__ = datasets.Features.from_arrow_schema(pq.read_schema(lowercase_ ) )
break
splits.append(datasets.SplitGenerator(name=lowercase_ , gen_kwargs={"""files""": files} ) )
return splits
def A__ ( self , __lowercase ):
if self.info.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
UpperCAmelCase__ = table_cast(lowercase_ , self.info.features.arrow_schema )
return pa_table
def A__ ( self , __lowercase ):
UpperCAmelCase__ = self.info.features.arrow_schema if self.info.features is not None else None
if self.info.features is not None and self.config.columns is not None:
if sorted(field.name for field in schema ) != sorted(self.config.columns ):
raise ValueError(
F'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' )
for file_idx, file in enumerate(itertools.chain.from_iterable(lowercase_ ) ):
with open(lowercase_ , """rb""" ) as f:
UpperCAmelCase__ = pq.ParquetFile(lowercase_ )
try:
for batch_idx, record_batch in enumerate(
parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ):
UpperCAmelCase__ = pa.Table.from_batches([record_batch] )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield F'''{file_idx}_{batch_idx}''', self._cast_table(lowercase_ )
except ValueError as e:
logger.error(F'''Failed to read file \'{file}\' with error {type(lowercase_ )}: {e}''' )
raise
| 704
|
"""simple docstring"""
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class _UpperCamelCase ( __UpperCamelCase ):
'''simple docstring'''
def A__ ( self , __lowercase ):
with open(__lowercase , encoding="""utf-8""" ) as input_file:
UpperCAmelCase__ = re.compile(r"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" )
UpperCAmelCase__ = input_file.read()
UpperCAmelCase__ = regexp.search(__lowercase )
return match
def A__ ( self , __lowercase ):
with open(__lowercase , encoding="""utf-8""" ) as input_file:
UpperCAmelCase__ = re.compile(r"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL )
UpperCAmelCase__ = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
UpperCAmelCase__ = regexp.finditer(__lowercase )
UpperCAmelCase__ = [match for match in matches if match is not None and match.group(1 ) is not None]
return matches[0] if matches else None
def A__ ( self ):
UpperCAmelCase__ = Path("""./datasets""" )
UpperCAmelCase__ = list(dataset_paths.absolute().glob("""**/*.py""" ) )
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(__lowercase ) ):
raise AssertionError(F'''open(...) must use utf-8 encoding in {dataset}''' )
def A__ ( self ):
UpperCAmelCase__ = Path("""./datasets""" )
UpperCAmelCase__ = list(dataset_paths.absolute().glob("""**/*.py""" ) )
for dataset in dataset_files:
if self._no_print_statements(str(__lowercase ) ):
raise AssertionError(F'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
| 422
| 0
|
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConformerConfig,
WavaVecaConformerForCTC,
WavaVecaConformerForPreTraining,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE_ = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.linear_k': 'encoder.layers.*.self_attn.linear_k',
'self_attn.linear_v': 'encoder.layers.*.self_attn.linear_v',
'self_attn.linear_q': 'encoder.layers.*.self_attn.linear_q',
'self_attn.pos_bias_u': 'encoder.layers.*.self_attn.pos_bias_u',
'self_attn.pos_bias_v': 'encoder.layers.*.self_attn.pos_bias_v',
'self_attn.linear_out': 'encoder.layers.*.self_attn.linear_out',
'self_attn.linear_pos': 'encoder.layers.*.self_attn.linear_pos',
'self_attn.rotary_emb': 'encoder.embed_positions',
'self_attn_layer_norm': 'encoder.layers.*.self_attn_layer_norm',
'conv_module.pointwise_conv1': 'encoder.layers.*.conv_module.pointwise_conv1',
'conv_module.pointwise_conv2': 'encoder.layers.*.conv_module.pointwise_conv2',
'conv_module.depthwise_conv': 'encoder.layers.*.conv_module.depthwise_conv',
'conv_module.batch_norm': 'encoder.layers.*.conv_module.batch_norm',
'conv_module.layer_norm': 'encoder.layers.*.conv_module.layer_norm',
'ffn1.w_1': 'encoder.layers.*.ffn1.intermediate_dense',
'ffn1.w_2': 'encoder.layers.*.ffn1.output_dense',
'ffn1.layer_norm': 'encoder.layers.*.ffn1_layer_norm',
'ffn2.w_1': 'encoder.layers.*.ffn2.intermediate_dense',
'ffn2.w_2': 'encoder.layers.*.ffn2.output_dense',
'ffn2.layer_norm': 'encoder.layers.*.ffn2_layer_norm',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
}
SCREAMING_SNAKE_CASE_ = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
]
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Tuple , lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[str] ) -> Dict:
for attribute in key.split("." ):
_UpperCAmelCase : Optional[int] = getattr(lowerCAmelCase , lowerCAmelCase )
if weight_type is not None:
_UpperCAmelCase : Dict = getattr(lowerCAmelCase , lowerCAmelCase ).shape
else:
_UpperCAmelCase : Optional[Any] = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
F' {value.shape} for {full_name}' )
if weight_type == "weight":
_UpperCAmelCase : Dict = value
elif weight_type == "weight_g":
_UpperCAmelCase : Any = value
elif weight_type == "weight_v":
_UpperCAmelCase : int = value
elif weight_type == "bias":
_UpperCAmelCase : str = value
elif weight_type == "running_mean":
_UpperCAmelCase : str = value
elif weight_type == "running_var":
_UpperCAmelCase : Any = value
elif weight_type == "num_batches_tracked":
_UpperCAmelCase : List[str] = value
elif weight_type == "inv_freq":
_UpperCAmelCase : List[Any] = value
else:
_UpperCAmelCase : Tuple = value
logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: str , lowerCAmelCase: Union[str, Any] ) -> str:
_UpperCAmelCase : Any = []
_UpperCAmelCase : Dict = fairseq_model.state_dict()
_UpperCAmelCase : Optional[Any] = hf_model.wavaveca_conformer.feature_extractor
for name, value in fairseq_dict.items():
_UpperCAmelCase : Optional[int] = False
if "conv_layers" in name:
load_conv_layer(
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , hf_model.config.feat_extract_norm == "group" , )
_UpperCAmelCase : Any = True
else:
for key, mapped_key in MAPPING.items():
_UpperCAmelCase : Dict = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
_UpperCAmelCase : str = True
if "*" in mapped_key:
_UpperCAmelCase : Optional[int] = name.split(lowerCAmelCase )[0].split("." )[-2]
_UpperCAmelCase : Tuple = mapped_key.replace("*" , lowerCAmelCase )
if "pos_bias_u" in name:
_UpperCAmelCase : Optional[Any] = None
elif "pos_bias_v" in name:
_UpperCAmelCase : Tuple = None
elif "weight_g" in name:
_UpperCAmelCase : List[Any] = "weight_g"
elif "weight_v" in name:
_UpperCAmelCase : List[Any] = "weight_v"
elif "bias" in name:
_UpperCAmelCase : Any = "bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
_UpperCAmelCase : Tuple = "weight"
elif "running_mean" in name:
_UpperCAmelCase : Dict = "running_mean"
elif "inv_freq" in name:
_UpperCAmelCase : str = "inv_freq"
elif "running_var" in name:
_UpperCAmelCase : Any = "running_var"
elif "num_batches_tracked" in name:
_UpperCAmelCase : Any = "num_batches_tracked"
else:
_UpperCAmelCase : List[Any] = None
set_recursively(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
continue
if not is_used:
unused_weights.append(lowerCAmelCase )
logger.warning(F'Unused weights: {unused_weights}' )
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: Optional[int] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[str] , lowerCAmelCase: Optional[int] ) -> Union[str, Any]:
_UpperCAmelCase : Optional[Any] = full_name.split("conv_layers." )[-1]
_UpperCAmelCase : Optional[Any] = name.split("." )
_UpperCAmelCase : str = int(items[0] )
_UpperCAmelCase : Tuple = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F'{full_name} has size {value.shape}, but'
F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
_UpperCAmelCase : Optional[Any] = value
logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F'{full_name} has size {value.shape}, but'
F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
_UpperCAmelCase : Any = value
logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F'{full_name} has size {value.shape}, but'
F' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' )
_UpperCAmelCase : Optional[Any] = value
logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F'{full_name} has size {value.shape}, but'
F' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' )
_UpperCAmelCase : Dict = value
logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(lowerCAmelCase )
@torch.no_grad()
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Tuple , lowerCAmelCase: Optional[int] , lowerCAmelCase: List[Any]=None , lowerCAmelCase: Tuple=None , lowerCAmelCase: str=True ) -> Tuple:
if config_path is not None:
_UpperCAmelCase : Optional[int] = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase , hidden_act="swish" )
else:
_UpperCAmelCase : str = WavaVecaConformerConfig()
if "rope" in checkpoint_path:
_UpperCAmelCase : List[Any] = "rotary"
if is_finetuned:
if dict_path:
_UpperCAmelCase : Any = Dictionary.load(lowerCAmelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
_UpperCAmelCase : str = target_dict.pad_index
_UpperCAmelCase : Dict = target_dict.bos_index
_UpperCAmelCase : Optional[Any] = target_dict.eos_index
_UpperCAmelCase : List[str] = len(target_dict.symbols )
_UpperCAmelCase : Tuple = os.path.join(lowerCAmelCase , "vocab.json" )
if not os.path.isdir(lowerCAmelCase ):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCAmelCase ) )
return
os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase )
_UpperCAmelCase : int = target_dict.indices
# fairseq has the <pad> and <s> switched
_UpperCAmelCase : int = 0
_UpperCAmelCase : Union[str, Any] = 1
with open(lowerCAmelCase , "w" , encoding="utf-8" ) as vocab_handle:
json.dump(lowerCAmelCase , lowerCAmelCase )
_UpperCAmelCase : int = WavaVecaCTCTokenizer(
lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowerCAmelCase , )
_UpperCAmelCase : Dict = True if config.feat_extract_norm == "layer" else False
_UpperCAmelCase : Dict = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=lowerCAmelCase , return_attention_mask=lowerCAmelCase , )
_UpperCAmelCase : str = WavaVecaProcessor(feature_extractor=lowerCAmelCase , tokenizer=lowerCAmelCase )
processor.save_pretrained(lowerCAmelCase )
_UpperCAmelCase : Union[str, Any] = WavaVecaConformerForCTC(lowerCAmelCase )
else:
_UpperCAmelCase : List[Any] = WavaVecaConformerForPreTraining(lowerCAmelCase )
if is_finetuned:
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} )
else:
_UpperCAmelCase : List[Any] = argparse.Namespace(task="audio_pretraining" )
_UpperCAmelCase : List[str] = fairseq.tasks.setup_task(lowerCAmelCase )
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase )
_UpperCAmelCase : int = model[0].eval()
recursively_load_weights(lowerCAmelCase , lowerCAmelCase , not is_finetuned )
hf_wavavec.save_pretrained(lowerCAmelCase )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
SCREAMING_SNAKE_CASE_ = parser.parse_args()
convert_wavaveca_conformer_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 300
|
import argparse
import torch
from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[str] , lowerCAmelCase: str , lowerCAmelCase: str ) -> Union[str, Any]:
# Construct model
if gpta_config_file == "":
_UpperCAmelCase : Optional[int] = GPTaConfig()
else:
_UpperCAmelCase : Optional[Any] = GPTaConfig.from_json_file(lowerCAmelCase )
_UpperCAmelCase : Optional[int] = GPTaModel(lowerCAmelCase )
# Load weights from numpy
load_tf_weights_in_gpta(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
# Save pytorch-model
_UpperCAmelCase : Dict = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
_UpperCAmelCase : Optional[int] = pytorch_dump_folder_path + "/" + CONFIG_NAME
print(F'Save PyTorch model to {pytorch_weights_dump_path}' )
torch.save(model.state_dict() , lowerCAmelCase )
print(F'Save configuration file to {pytorch_config_dump_path}' )
with open(lowerCAmelCase , "w" , encoding="utf-8" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--gpt2_config_file',
default='',
type=str,
help=(
'An optional config json file corresponding to the pre-trained OpenAI model. \n'
'This specifies the model architecture.'
),
)
SCREAMING_SNAKE_CASE_ = parser.parse_args()
convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
| 300
| 1
|
import warnings
from pathlib import Path
from typing import List, Tuple, Union
import fire
from torch import nn
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel
from transformers.utils import logging
A_ : Tuple = logging.get_logger(__name__)
def UpperCAmelCase__ ( UpperCAmelCase__ :nn.ModuleList , UpperCAmelCase__ :nn.ModuleList , UpperCAmelCase__ :List[int] ):
'''simple docstring'''
a = nn.ModuleList([src_layers[i] for i in layers_to_copy] )
assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ), F"""{len(UpperCAmelCase__ )} != {len(UpperCAmelCase__ )}"""
dest_layers.load_state_dict(layers_to_copy.state_dict() )
A_ : int = {
# maps num layers in teacher -> num_layers in student -> which teacher layers to copy.
# 12: bart, 16: pegasus, 6: marian/Helsinki-NLP
12: {
1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher
2: [0, 6],
3: [0, 6, 11],
4: [0, 4, 8, 11],
6: [0, 2, 4, 7, 9, 11],
9: [0, 1, 2, 4, 5, 7, 9, 10, 11],
12: list(range(12)),
},
16: { # maps num layers in student -> which teacher layers to copy
1: [0],
2: [0, 15],
3: [0, 8, 15],
4: [0, 5, 10, 15],
6: [0, 3, 6, 9, 12, 15],
8: [0, 2, 4, 6, 8, 10, 12, 15],
9: [0, 1, 3, 5, 7, 9, 11, 13, 15],
12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15],
16: list(range(16)),
},
6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))},
}
A_ : Tuple = {
# maps num layers in student -> which teacher layers to copy.
6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]},
12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]},
16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]},
}
def UpperCAmelCase__ ( UpperCAmelCase__ :int , UpperCAmelCase__ :str ):
'''simple docstring'''
try:
a = LAYERS_TO_COPY[n_teacher][n_student]
return val
except KeyError:
if n_student != n_teacher:
warnings.warn(
F"""no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first"""
F""" {n_student}""" )
return list(range(UpperCAmelCase__ ) )
def UpperCAmelCase__ ( UpperCAmelCase__ :Union[str, Any] , UpperCAmelCase__ :int ):
'''simple docstring'''
if n_student > n_teacher:
raise ValueError(F"""Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}""" )
elif n_teacher == n_student:
return list(range(UpperCAmelCase__ ) )
elif n_student == 1:
return [n_teacher - 1]
else:
return LAYERS_TO_SUPERVISE[n_teacher][n_student]
def UpperCAmelCase__ ( UpperCAmelCase__ :Union[str, PreTrainedModel] , UpperCAmelCase__ :Union[str, Path] = "student" , UpperCAmelCase__ :Union[int, None] = None , UpperCAmelCase__ :Union[int, None] = None , UpperCAmelCase__ :int=False , UpperCAmelCase__ :Dict=None , UpperCAmelCase__ :Optional[int]=None , **UpperCAmelCase__ :Any , ):
'''simple docstring'''
a = "encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher."
assert (e is not None) or (d is not None), _msg
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
AutoTokenizer.from_pretrained(UpperCAmelCase__ ).save_pretrained(UpperCAmelCase__ ) # purely for convenience
a = AutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase__ ).eval()
else:
assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ), F"""teacher must be a model or string got type {type(UpperCAmelCase__ )}"""
a = teacher.config.to_diff_dict()
try:
a , a = teacher.config.encoder_layers, teacher.config.decoder_layers
if e is None:
a = teacher_e
if d is None:
a = teacher_d
init_kwargs.update({"encoder_layers": e, "decoder_layers": d} )
except AttributeError: # T5
if hasattr(teacher.config , "num_encoder_layers" ):
a , a = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers
else:
a , a = teacher.config.num_layers, teacher.config.num_decoder_layers
if e is None:
a = teacher_e
if d is None:
a = teacher_d
if hasattr(teacher.config , "num_encoder_layers" ):
init_kwargs.update({"num_encoder_layers": e, "num_decoder_layers": d} )
else:
init_kwargs.update({"num_layers": e, "num_decoder_layers": d} )
# Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs
init_kwargs.update(UpperCAmelCase__ )
# Copy weights
a = teacher.config_class(**UpperCAmelCase__ )
a = AutoModelForSeqaSeqLM.from_config(UpperCAmelCase__ )
# Start by copying the full teacher state dict this will copy the first N teacher layers to the student.
a = student.load_state_dict(teacher.state_dict() , strict=UpperCAmelCase__ )
assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys.
if copy_first_teacher_layers: # Our copying is done. We just log and save
a , a = list(range(UpperCAmelCase__ ) ), list(range(UpperCAmelCase__ ) )
logger.info(
F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to"""
F""" {save_path}""" )
student.save_pretrained(UpperCAmelCase__ )
return student, e_layers_to_copy, d_layers_to_copy
# Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer.
if e_layers_to_copy is None:
a = pick_layers_to_copy(UpperCAmelCase__ , UpperCAmelCase__ )
if d_layers_to_copy is None:
a = pick_layers_to_copy(UpperCAmelCase__ , UpperCAmelCase__ )
try:
if hasattr(
UpperCAmelCase__ , "prophetnet" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers
copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , UpperCAmelCase__ )
copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , UpperCAmelCase__ )
else:
copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , UpperCAmelCase__ )
copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , UpperCAmelCase__ )
except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block
copy_layers(teacher.encoder.block , student.encoder.block , UpperCAmelCase__ )
copy_layers(teacher.decoder.block , student.decoder.block , UpperCAmelCase__ )
logger.info(
F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}""" )
a = {
"teacher_type": teacher.config.model_type,
"copied_encoder_layers": e_layers_to_copy,
"copied_decoder_layers": d_layers_to_copy,
}
student.save_pretrained(UpperCAmelCase__ )
# Save information about copying for easier reproducibility
return student, e_layers_to_copy, d_layers_to_copy
if __name__ == "__main__":
fire.Fire(create_student_by_copying_alternating_layers)
| 32
|
import logging
import os
import sys
from dataclasses import dataclass, field
from importlib import import_module
from typing import Dict, List, Optional, Tuple
import numpy as np
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch import nn
from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask
import transformers
from transformers import (
AutoConfig,
AutoModelForTokenClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
A_ : int = logging.getLogger(__name__)
@dataclass
class _lowercase :
_UpperCAmelCase = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
_UpperCAmelCase = field(
default=UpperCAmelCase__, metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
_UpperCAmelCase = field(
default='''NER''', metadata={'''help''': '''Task type to fine tune in training (e.g. NER, POS, etc)'''} )
_UpperCAmelCase = field(
default=UpperCAmelCase__, metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
_UpperCAmelCase = field(default=UpperCAmelCase__, metadata={'''help''': '''Set this flag to use fast tokenization.'''} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
_UpperCAmelCase = field(
default=UpperCAmelCase__, metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''}, )
@dataclass
class _lowercase :
_UpperCAmelCase = field(
metadata={'''help''': '''The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'''} )
_UpperCAmelCase = field(
default=UpperCAmelCase__, metadata={'''help''': '''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'''}, )
_UpperCAmelCase = field(
default=128, metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
}, )
_UpperCAmelCase = field(
default=UpperCAmelCase__, metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
def UpperCAmelCase__ ( ):
'''simple docstring'''
a = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
a , a , a = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
a , a , a = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
" --overwrite_output_dir to overcome." )
a = import_module("tasks" )
try:
a = getattr(UpperCAmelCase__ , model_args.task_type )
a = token_classification_task_clazz()
except AttributeError:
raise ValueError(
F"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """
F"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("Training/evaluation parameters %s" , UpperCAmelCase__ )
# Set seed
set_seed(training_args.seed )
# Prepare CONLL-2003 task
a = token_classification_task.get_labels(data_args.labels )
a = dict(enumerate(UpperCAmelCase__ ) )
a = len(UpperCAmelCase__ )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
a = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCAmelCase__ , idalabel=UpperCAmelCase__ , labelaid={label: i for i, label in enumerate(UpperCAmelCase__ )} , cache_dir=model_args.cache_dir , )
a = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , )
a = AutoModelForTokenClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , )
# Get datasets
a = (
TokenClassificationDataset(
token_classification_task=UpperCAmelCase__ , data_dir=data_args.data_dir , tokenizer=UpperCAmelCase__ , labels=UpperCAmelCase__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
a = (
TokenClassificationDataset(
token_classification_task=UpperCAmelCase__ , data_dir=data_args.data_dir , tokenizer=UpperCAmelCase__ , labels=UpperCAmelCase__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def align_predictions(UpperCAmelCase__ :np.ndarray , UpperCAmelCase__ :np.ndarray ) -> Tuple[List[int], List[int]]:
a = np.argmax(UpperCAmelCase__ , axis=2 )
a , a = preds.shape
a = [[] for _ in range(UpperCAmelCase__ )]
a = [[] for _ in range(UpperCAmelCase__ )]
for i in range(UpperCAmelCase__ ):
for j in range(UpperCAmelCase__ ):
if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index:
out_label_list[i].append(label_map[label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
return preds_list, out_label_list
def compute_metrics(UpperCAmelCase__ :EvalPrediction ) -> Dict:
a , a = align_predictions(p.predictions , p.label_ids )
return {
"accuracy_score": accuracy_score(UpperCAmelCase__ , UpperCAmelCase__ ),
"precision": precision_score(UpperCAmelCase__ , UpperCAmelCase__ ),
"recall": recall_score(UpperCAmelCase__ , UpperCAmelCase__ ),
"f1": fa_score(UpperCAmelCase__ , UpperCAmelCase__ ),
}
# Data collator
a = DataCollatorWithPadding(UpperCAmelCase__ , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
a = Trainer(
model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=UpperCAmelCase__ , eval_dataset=UpperCAmelCase__ , compute_metrics=UpperCAmelCase__ , data_collator=UpperCAmelCase__ , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_process_zero():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
a = {}
if training_args.do_eval:
logger.info("*** Evaluate ***" )
a = trainer.evaluate()
a = os.path.join(training_args.output_dir , "eval_results.txt" )
if trainer.is_world_process_zero():
with open(UpperCAmelCase__ , "w" ) as writer:
logger.info("***** Eval results *****" )
for key, value in result.items():
logger.info(" %s = %s" , UpperCAmelCase__ , UpperCAmelCase__ )
writer.write("%s = %s\n" % (key, value) )
results.update(UpperCAmelCase__ )
# Predict
if training_args.do_predict:
a = TokenClassificationDataset(
token_classification_task=UpperCAmelCase__ , data_dir=data_args.data_dir , tokenizer=UpperCAmelCase__ , labels=UpperCAmelCase__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , )
a , a , a = trainer.predict(UpperCAmelCase__ )
a , a = align_predictions(UpperCAmelCase__ , UpperCAmelCase__ )
a = os.path.join(training_args.output_dir , "test_results.txt" )
if trainer.is_world_process_zero():
with open(UpperCAmelCase__ , "w" ) as writer:
for key, value in metrics.items():
logger.info(" %s = %s" , UpperCAmelCase__ , UpperCAmelCase__ )
writer.write("%s = %s\n" % (key, value) )
# Save predictions
a = os.path.join(training_args.output_dir , "test_predictions.txt" )
if trainer.is_world_process_zero():
with open(UpperCAmelCase__ , "w" ) as writer:
with open(os.path.join(data_args.data_dir , "test.txt" ) , "r" ) as f:
token_classification_task.write_predictions_to_file(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
return results
def UpperCAmelCase__ ( UpperCAmelCase__ :Tuple ):
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 32
| 1
|
from __future__ import annotations
def lowercase__ ( A_: list[list[int]] ) -> int:
"""simple docstring"""
for i in range(1 , len(matrix[0] ) ):
matrix[0][i] += matrix[0][i - 1]
# preprocessing the first column
for i in range(1 , len(A_ ) ):
matrix[i][0] += matrix[i - 1][0]
# updating the path cost for current position
for i in range(1 , len(A_ ) ):
for j in range(1 , len(matrix[0] ) ):
matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] )
return matrix[-1][-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 68
|
'''simple docstring'''
def _UpperCAmelCase ( __A : int ):
a_ : Optional[Any] = []
a_ : Optional[Any] = []
a_ : List[str] = {
'''^''': 3,
'''*''': 2,
'''/''': 2,
'''%''': 2,
'''+''': 1,
'''-''': 1,
} # Priority of each operator
a_ : int = len(__A ) if (len(__A ) > 7) else 7
# Print table header for output
print(
'''Symbol'''.center(8 ) , '''Stack'''.center(__A ) , '''Postfix'''.center(__A ) , sep=''' | ''' , )
print('''-''' * (print_width * 3 + 7) )
for x in infix:
if x.isalpha() or x.isdigit():
post_fix.append(__A ) # if x is Alphabet / Digit, add it to Postfix
elif x == "(":
stack.append(__A ) # if x is "(" push to Stack
elif x == ")": # if x is ")" pop stack until "(" is encountered
while stack[-1] != "(":
post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix
stack.pop()
else:
if len(__A ) == 0:
stack.append(__A ) # If stack is empty, push x to stack
else: # while priority of x is not > priority of element in the stack
while len(__A ) > 0 and priority[x] <= priority[stack[-1]]:
post_fix.append(stack.pop() ) # pop stack & add to Postfix
stack.append(__A ) # push x to stack
print(
x.center(8 ) , (''''''.join(__A )).ljust(__A ) , (''''''.join(__A )).ljust(__A ) , sep=''' | ''' , ) # Output in tabular format
while len(__A ) > 0: # while stack is not empty
post_fix.append(stack.pop() ) # pop stack & add to Postfix
print(
''' '''.center(8 ) , (''''''.join(__A )).ljust(__A ) , (''''''.join(__A )).ljust(__A ) , sep=''' | ''' , ) # Output in tabular format
return "".join(__A ) # return Postfix as str
def _UpperCAmelCase ( __A : Tuple ):
a_ : Union[str, Any] = list(infix[::-1] ) # reverse the infix equation
for i in range(len(__A ) ):
if infix[i] == "(":
a_ : List[str] = ''')''' # change "(" to ")"
elif infix[i] == ")":
a_ : str = '''(''' # change ")" to "("
return (infix_2_postfix(''''''.join(__A ) ))[
::-1
] # call infix_2_postfix on Infix, return reverse of Postfix
if __name__ == "__main__":
__lowerCAmelCase = input('\nEnter an Infix Equation = ') # Input an Infix equation
__lowerCAmelCase = ''.join(Infix.split()) # Remove spaces from the input
print('\n\t', Infix, '(Infix) -> ', infix_2_prefix(Infix), '(Prefix)')
| 466
| 0
|
import json
import logging
import math
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from datasets import Dataset, load_dataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING,
AutoConfig,
AutoModelForMaskedLM,
AutoTokenizer,
DataCollatorForWholeWordMask,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
lowerCamelCase__ = logging.getLogger(__name__)
lowerCamelCase__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
lowerCamelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class snake_case__ :
'''simple docstring'''
lowerCamelCase : Optional[str] = field(
default=lowercase_ , metadata={
"help": (
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
)
} , )
lowerCamelCase : Optional[str] = field(
default=lowercase_ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowercase_)} , )
lowerCamelCase : Optional[str] = field(
default=lowercase_ , metadata={
"help": (
"Override some existing default config settings when a model is trained from scratch. Example: "
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
)
} , )
lowerCamelCase : Optional[str] = field(
default=lowercase_ , metadata={"help": "Pretrained config name or path if not the same as model_name"})
lowerCamelCase : Optional[str] = field(
default=lowercase_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"})
lowerCamelCase : Optional[str] = field(
default=lowercase_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
lowerCamelCase : bool = field(
default=lowercase_ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , )
lowerCamelCase : str = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
lowerCamelCase : bool = field(
default=lowercase_ , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
def __lowercase ( self ) -> List[Any]:
'''simple docstring'''
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
raise ValueError(
"""--config_overrides can't be used in combination with --config_name or --model_name_or_path""" )
@dataclass
class snake_case__ :
'''simple docstring'''
lowerCamelCase : Optional[str] = field(
default=lowercase_ , metadata={"help": "The name of the dataset to use (via the datasets library)."})
lowerCamelCase : Optional[str] = field(
default=lowercase_ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."})
lowerCamelCase : Optional[str] = field(default=lowercase_ , metadata={"help": "The input training data file (a text file)."})
lowerCamelCase : Optional[str] = field(
default=lowercase_ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , )
lowerCamelCase : Optional[str] = field(
default=lowercase_ , metadata={"help": "An optional input train ref data file for whole word masking in Chinese."} , )
lowerCamelCase : Optional[str] = field(
default=lowercase_ , metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."} , )
lowerCamelCase : bool = field(
default=lowercase_ , metadata={"help": "Overwrite the cached training and evaluation sets"})
lowerCamelCase : Optional[int] = field(
default=5 , metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
} , )
lowerCamelCase : Optional[int] = field(
default=lowercase_ , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated. Default to the max input length of the model."
)
} , )
lowerCamelCase : Optional[int] = field(
default=lowercase_ , metadata={"help": "The number of processes to use for the preprocessing."} , )
lowerCamelCase : float = field(
default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"})
lowerCamelCase : bool = field(
default=lowercase_ , metadata={
"help": (
"Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
)
} , )
def __lowercase ( self ) -> Optional[int]:
'''simple docstring'''
if self.train_file is not None:
__snake_case :List[str] = self.train_file.split(""".""" )[-1]
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
if self.validation_file is not None:
__snake_case :Tuple = self.validation_file.split(""".""" )[-1]
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
def UpperCamelCase ( snake_case__ : Optional[Any] ,snake_case__ : Any ):
'''simple docstring'''
with open(snake_case__ ,"""r""" ,encoding="""utf-8""" ) as f:
__snake_case :Optional[Any] = [json.loads(snake_case__ ) for line in f.read().splitlines() if (len(snake_case__ ) > 0 and not line.isspace())]
assert len(snake_case__ ) == len(snake_case__ )
__snake_case :Optional[int] = {c: dataset[c] for c in dataset.column_names}
__snake_case :Tuple = refs
return Dataset.from_dict(snake_case__ )
def UpperCamelCase ( ):
'''simple docstring'''
__snake_case :Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__snake_case , __snake_case , __snake_case :List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__snake_case , __snake_case , __snake_case :Union[str, Any] = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
__snake_case :List[Any] = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
__snake_case :Tuple = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None:
logger.info(
f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,handlers=[logging.StreamHandler(sys.stdout )] ,)
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN )
# Log on each process the small summary:
logger.warning(
f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("""Training/evaluation parameters %s""" ,snake_case__ )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
__snake_case :List[Any] = load_dataset(data_args.dataset_name ,data_args.dataset_config_name )
if "validation" not in datasets.keys():
__snake_case :str = load_dataset(
data_args.dataset_name ,data_args.dataset_config_name ,split=f'''train[:{data_args.validation_split_percentage}%]''' ,)
__snake_case :Any = load_dataset(
data_args.dataset_name ,data_args.dataset_config_name ,split=f'''train[{data_args.validation_split_percentage}%:]''' ,)
else:
__snake_case :Union[str, Any] = {}
if data_args.train_file is not None:
__snake_case :Tuple = data_args.train_file
if data_args.validation_file is not None:
__snake_case :Dict = data_args.validation_file
__snake_case :int = data_args.train_file.split(""".""" )[-1]
if extension == "txt":
__snake_case :str = """text"""
__snake_case :List[Any] = load_dataset(snake_case__ ,data_files=snake_case__ )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__snake_case :Union[str, Any] = {
"""cache_dir""": model_args.cache_dir,
"""revision""": model_args.model_revision,
"""use_auth_token""": True if model_args.use_auth_token else None,
}
if model_args.config_name:
__snake_case :Tuple = AutoConfig.from_pretrained(model_args.config_name ,**snake_case__ )
elif model_args.model_name_or_path:
__snake_case :Union[str, Any] = AutoConfig.from_pretrained(model_args.model_name_or_path ,**snake_case__ )
else:
__snake_case :Any = CONFIG_MAPPING[model_args.model_type]()
logger.warning("""You are instantiating a new config instance from scratch.""" )
if model_args.config_overrides is not None:
logger.info(f'''Overriding config: {model_args.config_overrides}''' )
config.update_from_string(model_args.config_overrides )
logger.info(f'''New config: {config}''' )
__snake_case :Dict = {
"""cache_dir""": model_args.cache_dir,
"""use_fast""": model_args.use_fast_tokenizer,
"""revision""": model_args.model_revision,
"""use_auth_token""": True if model_args.use_auth_token else None,
}
if model_args.tokenizer_name:
__snake_case :Dict = AutoTokenizer.from_pretrained(model_args.tokenizer_name ,**snake_case__ )
elif model_args.model_name_or_path:
__snake_case :str = AutoTokenizer.from_pretrained(model_args.model_name_or_path ,**snake_case__ )
else:
raise ValueError(
"""You are instantiating a new tokenizer from scratch. This is not supported by this script."""
"""You can do it from another script, save it, and load it from here, using --tokenizer_name.""" )
if model_args.model_name_or_path:
__snake_case :List[Any] = AutoModelForMaskedLM.from_pretrained(
model_args.model_name_or_path ,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) ,config=snake_case__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,)
else:
logger.info("""Training new model from scratch""" )
__snake_case :str = AutoModelForMaskedLM.from_config(snake_case__ )
model.resize_token_embeddings(len(snake_case__ ) )
# Preprocessing the datasets.
# First we tokenize all the texts.
if training_args.do_train:
__snake_case :str = datasets["""train"""].column_names
else:
__snake_case :Dict = datasets["""validation"""].column_names
__snake_case :Union[str, Any] = """text""" if """text""" in column_names else column_names[0]
__snake_case :Tuple = """max_length""" if data_args.pad_to_max_length else False
def tokenize_function(snake_case__ : int ):
# Remove empty lines
__snake_case :Dict = [line for line in examples["""text"""] if len(snake_case__ ) > 0 and not line.isspace()]
return tokenizer(examples["""text"""] ,padding=snake_case__ ,truncation=snake_case__ ,max_length=data_args.max_seq_length )
__snake_case :List[Any] = datasets.map(
snake_case__ ,batched=snake_case__ ,num_proc=data_args.preprocessing_num_workers ,remove_columns=[text_column_name] ,load_from_cache_file=not data_args.overwrite_cache ,)
# Add the chinese references if provided
if data_args.train_ref_file is not None:
__snake_case :List[Any] = add_chinese_references(tokenized_datasets["""train"""] ,data_args.train_ref_file )
if data_args.validation_ref_file is not None:
__snake_case :Optional[int] = add_chinese_references(
tokenized_datasets["""validation"""] ,data_args.validation_ref_file )
# If we have ref files, need to avoid it removed by trainer
__snake_case :Tuple = data_args.train_ref_file or data_args.validation_ref_file
if has_ref:
__snake_case :Dict = False
# Data collator
# This one will take care of randomly masking the tokens.
__snake_case :Union[str, Any] = DataCollatorForWholeWordMask(tokenizer=snake_case__ ,mlm_probability=data_args.mlm_probability )
# Initialize our Trainer
__snake_case :Optional[Any] = Trainer(
model=snake_case__ ,args=snake_case__ ,train_dataset=tokenized_datasets["""train"""] if training_args.do_train else None ,eval_dataset=tokenized_datasets["""validation"""] if training_args.do_eval else None ,tokenizer=snake_case__ ,data_collator=snake_case__ ,)
# Training
if training_args.do_train:
if last_checkpoint is not None:
__snake_case :Dict = last_checkpoint
elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ):
__snake_case :Optional[int] = model_args.model_name_or_path
else:
__snake_case :Tuple = None
__snake_case :List[str] = trainer.train(resume_from_checkpoint=snake_case__ )
trainer.save_model() # Saves the tokenizer too for easy upload
__snake_case :Optional[Any] = os.path.join(training_args.output_dir ,"""train_results.txt""" )
if trainer.is_world_process_zero():
with open(snake_case__ ,"""w""" ) as writer:
logger.info("""***** Train results *****""" )
for key, value in sorted(train_result.metrics.items() ):
logger.info(f''' {key} = {value}''' )
writer.write(f'''{key} = {value}\n''' )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir ,"""trainer_state.json""" ) )
# Evaluation
__snake_case :Any = {}
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
__snake_case :Optional[Any] = trainer.evaluate()
__snake_case :List[Any] = math.exp(eval_output["""eval_loss"""] )
__snake_case :List[Any] = perplexity
__snake_case :List[str] = os.path.join(training_args.output_dir ,"""eval_results_mlm_wwm.txt""" )
if trainer.is_world_process_zero():
with open(snake_case__ ,"""w""" ) as writer:
logger.info("""***** Eval results *****""" )
for key, value in sorted(results.items() ):
logger.info(f''' {key} = {value}''' )
writer.write(f'''{key} = {value}\n''' )
return results
def UpperCamelCase ( snake_case__ : Dict ):
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 291
|
def UpperCamelCase ( snake_case__ : str ,snake_case__ : int ):
'''simple docstring'''
__snake_case :list[list[str]] = [[] for _ in range(snake_case__ )]
__snake_case :Union[str, Any] = key - 1
if key <= 0:
raise ValueError("""Height of grid can't be 0 or negative""" )
if key == 1 or len(snake_case__ ) <= key:
return input_string
for position, character in enumerate(snake_case__ ):
__snake_case :Any = position % (lowest * 2) # puts it in bounds
__snake_case :Optional[int] = min(snake_case__ ,lowest * 2 - num ) # creates zigzag pattern
temp_grid[num].append(snake_case__ )
__snake_case :List[Any] = ["""""".join(snake_case__ ) for row in temp_grid]
__snake_case :Any = """""".join(snake_case__ )
return output_string
def UpperCamelCase ( snake_case__ : str ,snake_case__ : int ):
'''simple docstring'''
__snake_case :Union[str, Any] = []
__snake_case :Optional[int] = key - 1
if key <= 0:
raise ValueError("""Height of grid can't be 0 or negative""" )
if key == 1:
return input_string
__snake_case :list[list[str]] = [[] for _ in range(snake_case__ )] # generates template
for position in range(len(snake_case__ ) ):
__snake_case :List[str] = position % (lowest * 2) # puts it in bounds
__snake_case :int = min(snake_case__ ,lowest * 2 - num ) # creates zigzag pattern
temp_grid[num].append("""*""" )
__snake_case :str = 0
for row in temp_grid: # fills in the characters
__snake_case :str = input_string[counter : counter + len(snake_case__ )]
grid.append(list(snake_case__ ) )
counter += len(snake_case__ )
__snake_case :Any = """""" # reads as zigzag
for position in range(len(snake_case__ ) ):
__snake_case :Optional[int] = position % (lowest * 2) # puts it in bounds
__snake_case :int = min(snake_case__ ,lowest * 2 - num ) # creates zigzag pattern
output_string += grid[num][0]
grid[num].pop(0 )
return output_string
def UpperCamelCase ( snake_case__ : str ):
'''simple docstring'''
__snake_case :Optional[Any] = {}
for key_guess in range(1 ,len(snake_case__ ) ): # tries every key
__snake_case :Dict = decrypt(snake_case__ ,snake_case__ )
return results
if __name__ == "__main__":
import doctest
doctest.testmod()
| 291
| 1
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCAmelCase__ =logging.get_logger(__name__)
UpperCAmelCase__ ={
"google/mobilenet_v2_1.4_224": "https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json",
"google/mobilenet_v2_1.0_224": "https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json",
"google/mobilenet_v2_0.75_160": "https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json",
"google/mobilenet_v2_0.35_96": "https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json",
# See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2
}
class lowerCamelCase__ ( _a ):
a : Dict = """mobilenet_v2"""
def __init__( self : Dict , A_ : Any=3 , A_ : Tuple=2_2_4 , A_ : int=1.0 , A_ : List[Any]=8 , A_ : Tuple=8 , A_ : Dict=6 , A_ : Dict=3_2 , A_ : Union[str, Any]=True , A_ : Union[str, Any]=True , A_ : Union[str, Any]="relu6" , A_ : List[str]=True , A_ : int=0.8 , A_ : Tuple=0.02 , A_ : List[Any]=0.0_01 , A_ : Any=2_5_5 , **A_ : int , ):
'''simple docstring'''
super().__init__(**A_ )
if depth_multiplier <= 0:
raise ValueError("""depth_multiplier must be greater than zero.""" )
__lowercase = num_channels
__lowercase = image_size
__lowercase = depth_multiplier
__lowercase = depth_divisible_by
__lowercase = min_depth
__lowercase = expand_ratio
__lowercase = output_stride
__lowercase = first_layer_is_expansion
__lowercase = finegrained_output
__lowercase = hidden_act
__lowercase = tf_padding
__lowercase = classifier_dropout_prob
__lowercase = initializer_range
__lowercase = layer_norm_eps
__lowercase = semantic_loss_ignore_index
class lowerCamelCase__ ( _a ):
a : int = version.parse("""1.11""" )
@property
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
'''simple docstring'''
return OrderedDict([("""pixel_values""", {0: """batch"""})] )
@property
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
if self.task == "image-classification":
return OrderedDict([("""logits""", {0: """batch"""})] )
else:
return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] )
@property
def SCREAMING_SNAKE_CASE_ ( self : Any ):
'''simple docstring'''
return 1e-4
| 616
|
"""simple docstring"""
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
UpperCAmelCase__ =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
UpperCAmelCase__ =" \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n"
class lowerCamelCase__ ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
__lowercase = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , """schedulers/""" ) )
__lowercase = self.diffusers_dir
shutil.copy(
os.path.join(A_ , """src/diffusers/schedulers/scheduling_ddpm.py""" ) , os.path.join(self.diffusers_dir , """schedulers/scheduling_ddpm.py""" ) , )
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
__lowercase = """src/diffusers"""
shutil.rmtree(self.diffusers_dir )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , A_ : List[str] , A_ : int , A_ : Optional[Any] , A_ : str=None ):
'''simple docstring'''
__lowercase = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code
if overwrite_result is not None:
__lowercase = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result
__lowercase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 )
__lowercase = black.format_str(A_ , mode=A_ )
__lowercase = os.path.join(self.diffusers_dir , """new_code.py""" )
with open(A_ , """w""" , newline="""\n""" ) as f:
f.write(A_ )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(A_ ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=A_ )
with open(A_ , """r""" ) as f:
self.assertTrue(f.read() , A_ )
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
__lowercase = check_copies.find_code_in_diffusers("""schedulers.scheduling_ddpm.DDPMSchedulerOutput""" )
self.assertEqual(A_ , A_ )
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
'''simple docstring'''
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , REFERENCE_CODE + """\n""" , )
# With no empty line at the end
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , A_ , )
# Copy consistency with rename
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , re.sub("""DDPM""" , """Test""" , A_ ) , )
# Copy consistency with a really long name
__lowercase = """TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason"""
self.check_copy_consistency(
F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub("""Bert""" , A_ , A_ ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , A_ , overwrite_result=re.sub("""DDPM""" , """Test""" , A_ ) , )
| 616
| 1
|
import logging
import os
from typing import List, TextIO, Union
from conllu import parse_incr
from utils_ner import InputExample, Split, TokenClassificationTask
snake_case = logging.getLogger(__name__)
class __A ( snake_case__ ):
'''simple docstring'''
def __init__( self , _snake_case=-1 ):
# in NER datasets, the last column is usually reserved for NER label
_lowerCAmelCase : List[str] = label_idx
def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case ):
if isinstance(_snake_case , _snake_case ):
_lowerCAmelCase : List[str] = mode.value
_lowerCAmelCase : Optional[Any] = os.path.join(_snake_case , F"""{mode}.txt""" )
_lowerCAmelCase : Optional[int] = 1
_lowerCAmelCase : Any = []
with open(_snake_case , encoding="utf-8" ) as f:
_lowerCAmelCase : int = []
_lowerCAmelCase : Union[str, Any] = []
for line in f:
if line.startswith("-DOCSTART-" ) or line == "" or line == "\n":
if words:
examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=_snake_case , labels=_snake_case ) )
guid_index += 1
_lowerCAmelCase : Optional[Any] = []
_lowerCAmelCase : str = []
else:
_lowerCAmelCase : int = line.split(" " )
words.append(splits[0] )
if len(_snake_case ) > 1:
labels.append(splits[self.label_idx].replace("\n" , "" ) )
else:
# Examples could have no label for mode = "test"
labels.append("O" )
if words:
examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=_snake_case , labels=_snake_case ) )
return examples
def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case ):
_lowerCAmelCase : Tuple = 0
for line in test_input_reader:
if line.startswith("-DOCSTART-" ) or line == "" or line == "\n":
writer.write(_snake_case )
if not preds_list[example_id]:
example_id += 1
elif preds_list[example_id]:
_lowerCAmelCase : Optional[Any] = line.split()[0] + " " + preds_list[example_id].pop(0 ) + "\n"
writer.write(_snake_case )
else:
logger.warning("Maximum sequence length exceeded: No prediction for '%s'." , line.split()[0] )
def SCREAMING_SNAKE_CASE__ ( self , _snake_case ):
if path:
with open(_snake_case , "r" ) as f:
_lowerCAmelCase : Union[str, Any] = f.read().splitlines()
if "O" not in labels:
_lowerCAmelCase : List[str] = ["O"] + labels
return labels
else:
return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]
class __A ( snake_case__ ):
'''simple docstring'''
def __init__( self ):
# in CONLL2003 dataset chunk column is second-to-last
super().__init__(label_idx=-2 )
def SCREAMING_SNAKE_CASE__ ( self , _snake_case ):
if path:
with open(_snake_case , "r" ) as f:
_lowerCAmelCase : List[str] = f.read().splitlines()
if "O" not in labels:
_lowerCAmelCase : str = ["O"] + labels
return labels
else:
return [
"O",
"B-ADVP",
"B-INTJ",
"B-LST",
"B-PRT",
"B-NP",
"B-SBAR",
"B-VP",
"B-ADJP",
"B-CONJP",
"B-PP",
"I-ADVP",
"I-INTJ",
"I-LST",
"I-PRT",
"I-NP",
"I-SBAR",
"I-VP",
"I-ADJP",
"I-CONJP",
"I-PP",
]
class __A ( snake_case__ ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case ):
if isinstance(_snake_case , _snake_case ):
_lowerCAmelCase : Optional[int] = mode.value
_lowerCAmelCase : Dict = os.path.join(_snake_case , F"""{mode}.txt""" )
_lowerCAmelCase : int = 1
_lowerCAmelCase : Any = []
with open(_snake_case , encoding="utf-8" ) as f:
for sentence in parse_incr(_snake_case ):
_lowerCAmelCase : str = []
_lowerCAmelCase : str = []
for token in sentence:
words.append(token["form"] )
labels.append(token["upos"] )
assert len(_snake_case ) == len(_snake_case )
if words:
examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=_snake_case , labels=_snake_case ) )
guid_index += 1
return examples
def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case ):
_lowerCAmelCase : Tuple = 0
for sentence in parse_incr(_snake_case ):
_lowerCAmelCase : str = preds_list[example_id]
_lowerCAmelCase : Optional[int] = ""
for token in sentence:
out += F"""{token['form']} ({token['upos']}|{s_p.pop(0 )}) """
out += "\n"
writer.write(_snake_case )
example_id += 1
def SCREAMING_SNAKE_CASE__ ( self , _snake_case ):
if path:
with open(_snake_case , "r" ) as f:
return f.read().splitlines()
else:
return [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X",
]
| 587
|
import os
import random
import sys
from . import cryptomath_module as cryptomath
from . import rabin_miller
snake_case = 3
def UpperCamelCase_ ( lowerCAmelCase__ ):
"""simple docstring"""
print("Generating primitive root of p" )
while True:
_lowerCAmelCase : Optional[int] = random.randrange(3 , lowerCAmelCase__ )
if pow(lowerCAmelCase__ , 2 , lowerCAmelCase__ ) == 1:
continue
if pow(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) == 1:
continue
return g
def UpperCamelCase_ ( lowerCAmelCase__ ):
"""simple docstring"""
print("Generating prime p..." )
_lowerCAmelCase : Union[str, Any] = rabin_miller.generate_large_prime(lowerCAmelCase__ ) # select large prime number.
_lowerCAmelCase : int = primitive_root(lowerCAmelCase__ ) # one primitive root on modulo p.
_lowerCAmelCase : str = random.randrange(3 , lowerCAmelCase__ ) # private_key -> have to be greater than 2 for safety.
_lowerCAmelCase : str = cryptomath.find_mod_inverse(pow(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ )
_lowerCAmelCase : int = (key_size, e_a, e_a, p)
_lowerCAmelCase : List[str] = (key_size, d)
return public_key, private_key
def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ):
"""simple docstring"""
if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ):
print("\nWARNING:" )
print(
f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n"""
"Use a different name or delete these files and re-run this program." )
sys.exit()
_lowerCAmelCase , _lowerCAmelCase : Optional[Any] = generate_key(lowerCAmelCase__ )
print(f"""\nWriting public key to file {name}_pubkey.txt...""" )
with open(f"""{name}_pubkey.txt""" , "w" ) as fo:
fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" )
print(f"""Writing private key to file {name}_privkey.txt...""" )
with open(f"""{name}_privkey.txt""" , "w" ) as fo:
fo.write(f"""{private_key[0]},{private_key[1]}""" )
def UpperCamelCase_ ( ):
"""simple docstring"""
print("Making key files..." )
make_key_files("elgamal" , 20_48 )
print("Key files generation successful" )
if __name__ == "__main__":
main()
| 587
| 1
|
"""simple docstring"""
def SCREAMING_SNAKE_CASE ( snake_case):
__snake_case = set()
# edges = list of graph's edges
__snake_case = get_edges(snake_case)
# While there are still elements in edges list, take an arbitrary edge
# (from_node, to_node) and add his extremity to chosen_vertices and then
# remove all arcs adjacent to the from_node and to_node
while edges:
__snake_case , __snake_case = edges.pop()
chosen_vertices.add(snake_case)
chosen_vertices.add(snake_case)
for edge in edges.copy():
if from_node in edge or to_node in edge:
edges.discard(snake_case)
return chosen_vertices
def SCREAMING_SNAKE_CASE ( snake_case):
__snake_case = set()
for from_node, to_nodes in graph.items():
for to_node in to_nodes:
edges.add((from_node, to_node))
return edges
if __name__ == "__main__":
import doctest
doctest.testmod()
# graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
# print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
| 564
|
"""simple docstring"""
import os
import numpy
import onnx
def SCREAMING_SNAKE_CASE ( snake_case, snake_case):
__snake_case = a.name
__snake_case = b.name
__snake_case = ''''''
__snake_case = ''''''
__snake_case = a == b
__snake_case = name_a
__snake_case = name_b
return res
def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case):
for i, input_name in enumerate(node_proto.input):
if input_name == name:
node_proto.input.insert(snake_case, snake_case)
node_proto.input.pop(i + 1)
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g, snake_case, snake_case)
_graph_replace_input_with(node_proto.attribute[1].g, snake_case, snake_case)
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g, snake_case, snake_case)
def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case):
for n in graph_proto.node:
_node_replace_input_with(snake_case, snake_case, snake_case)
def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case):
__snake_case = list(model.graph.initializer)
__snake_case = list(model_without_ext.graph.initializer)
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
__snake_case = inits[i].name
__snake_case = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i])
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph, snake_case, snake_case)
def SCREAMING_SNAKE_CASE ( snake_case):
__snake_case = os.path.dirname(snake_case)
__snake_case = os.path.basename(snake_case)
__snake_case = onnx.load(os.path.join(snake_case, snake_case))
__snake_case = list(model.graph.initializer)
__snake_case = set()
__snake_case = {}
__snake_case = []
__snake_case = 0
for i in range(len(snake_case)):
if i in dup_set:
continue
for j in range(i + 1, len(snake_case)):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i], inits[j]):
dup_set.add(snake_case)
dup_set.add(snake_case)
__snake_case = inits[j].data_type
__snake_case = numpy.prod(inits[j].dims)
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print('''unexpected data type: ''', snake_case)
total_reduced_size += mem_size
__snake_case = inits[i].name
__snake_case = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(snake_case)
else:
__snake_case = [name_j]
ind_to_replace.append((j, i))
print('''total reduced size: ''', total_reduced_size / 10_24 / 10_24 / 10_24, '''GB''')
__snake_case = sorted(snake_case)
_remove_dup_initializers_from_model(snake_case, snake_case, snake_case)
__snake_case = '''optimized_''' + model_file_name
__snake_case = os.path.join(snake_case, snake_case)
onnx.save(snake_case, snake_case)
return new_model
| 564
| 1
|
'''simple docstring'''
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
_UpperCAmelCase = logging.get_logger(__name__)
# General docstring
_UpperCAmelCase = """RegNetConfig"""
# Base docstring
_UpperCAmelCase = """facebook/regnet-y-040"""
_UpperCAmelCase = [1, 1088, 7, 7]
# Image classification docstring
_UpperCAmelCase = """facebook/regnet-y-040"""
_UpperCAmelCase = """tabby, tabby cat"""
_UpperCAmelCase = [
"""facebook/regnet-y-040""",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self , lowercase , lowercase = 3 , lowercase = 1 , lowercase = 1 , lowercase = "relu" , **lowercase , ):
"""simple docstring"""
super().__init__(**lowercase )
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
A_ : int = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 )
A_ : int = tf.keras.layers.ConvaD(
filters=lowercase , kernel_size=lowercase , strides=lowercase , padding='VALID' , groups=lowercase , use_bias=lowercase , name='convolution' , )
A_ : Any = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' )
A_ : Union[str, Any] = ACTaFN[activation] if activation is not None else tf.identity
def lowerCAmelCase_ ( self , lowercase ):
"""simple docstring"""
A_ : List[str] = self.convolution(self.padding(lowercase ) )
A_ : List[str] = self.normalization(lowercase )
A_ : List[Any] = self.activation(lowercase )
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self , lowercase , **lowercase ):
"""simple docstring"""
super().__init__(**lowercase )
A_ : Optional[int] = config.num_channels
A_ : str = TFRegNetConvLayer(
out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , )
def lowerCAmelCase_ ( self , lowercase ):
"""simple docstring"""
A_ : Dict = shape_list(lowercase )[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' )
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
A_ : Optional[int] = tf.transpose(lowercase , perm=(0, 2, 3, 1) )
A_ : Optional[int] = self.embedder(lowercase )
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self , lowercase , lowercase = 2 , **lowercase ):
"""simple docstring"""
super().__init__(**lowercase )
A_ : int = tf.keras.layers.ConvaD(
filters=lowercase , kernel_size=1 , strides=lowercase , use_bias=lowercase , name='convolution' )
A_ : str = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' )
def lowerCAmelCase_ ( self , lowercase , lowercase = False ):
"""simple docstring"""
return self.normalization(self.convolution(lowercase ) , training=lowercase )
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self , lowercase , lowercase , **lowercase ):
"""simple docstring"""
super().__init__(**lowercase )
A_ : int = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowercase , name='pooler' )
A_ : Optional[Any] = [
tf.keras.layers.ConvaD(filters=lowercase , kernel_size=1 , activation='relu' , name='attention.0' ),
tf.keras.layers.ConvaD(filters=lowercase , kernel_size=1 , activation='sigmoid' , name='attention.2' ),
]
def lowerCAmelCase_ ( self , lowercase ):
"""simple docstring"""
A_ : int = self.pooler(lowercase )
for layer_module in self.attention:
A_ : Optional[Any] = layer_module(lowercase )
A_ : Optional[int] = hidden_state * pooled
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self , lowercase , lowercase , lowercase , lowercase = 1 , **lowercase ):
"""simple docstring"""
super().__init__(**lowercase )
A_ : str = in_channels != out_channels or stride != 1
A_ : Optional[int] = max(1 , out_channels // config.groups_width )
A_ : List[Any] = (
TFRegNetShortCut(lowercase , stride=lowercase , name='shortcut' )
if should_apply_shortcut
else tf.keras.layers.Activation('linear' , name='shortcut' )
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
A_ : Optional[int] = [
TFRegNetConvLayer(lowercase , kernel_size=1 , activation=config.hidden_act , name='layer.0' ),
TFRegNetConvLayer(
lowercase , stride=lowercase , groups=lowercase , activation=config.hidden_act , name='layer.1' ),
TFRegNetConvLayer(lowercase , kernel_size=1 , activation=lowercase , name='layer.2' ),
]
A_ : List[str] = ACTaFN[config.hidden_act]
def lowerCAmelCase_ ( self , lowercase ):
"""simple docstring"""
A_ : Union[str, Any] = hidden_state
for layer_module in self.layers:
A_ : int = layer_module(lowercase )
A_ : Union[str, Any] = self.shortcut(lowercase )
hidden_state += residual
A_ : Dict = self.activation(lowercase )
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self , lowercase , lowercase , lowercase , lowercase = 1 , **lowercase ):
"""simple docstring"""
super().__init__(**lowercase )
A_ : str = in_channels != out_channels or stride != 1
A_ : int = max(1 , out_channels // config.groups_width )
A_ : Optional[int] = (
TFRegNetShortCut(lowercase , stride=lowercase , name='shortcut' )
if should_apply_shortcut
else tf.keras.layers.Activation('linear' , name='shortcut' )
)
A_ : List[str] = [
TFRegNetConvLayer(lowercase , kernel_size=1 , activation=config.hidden_act , name='layer.0' ),
TFRegNetConvLayer(
lowercase , stride=lowercase , groups=lowercase , activation=config.hidden_act , name='layer.1' ),
TFRegNetSELayer(lowercase , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ),
TFRegNetConvLayer(lowercase , kernel_size=1 , activation=lowercase , name='layer.3' ),
]
A_ : Union[str, Any] = ACTaFN[config.hidden_act]
def lowerCAmelCase_ ( self , lowercase ):
"""simple docstring"""
A_ : Dict = hidden_state
for layer_module in self.layers:
A_ : Tuple = layer_module(lowercase )
A_ : int = self.shortcut(lowercase )
hidden_state += residual
A_ : str = self.activation(lowercase )
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self , lowercase , lowercase , lowercase , lowercase = 2 , lowercase = 2 , **lowercase ):
"""simple docstring"""
super().__init__(**lowercase )
A_ : Tuple = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer
A_ : Tuple = [
# downsampling is done in the first layer with stride of 2
layer(lowercase , lowercase , lowercase , stride=lowercase , name='layers.0' ),
*[layer(lowercase , lowercase , lowercase , name=F'''layers.{i+1}''' ) for i in range(depth - 1 )],
]
def lowerCAmelCase_ ( self , lowercase ):
"""simple docstring"""
for layer_module in self.layers:
A_ : Tuple = layer_module(lowercase )
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self , lowercase , **lowercase ):
"""simple docstring"""
super().__init__(**lowercase )
A_ : List[str] = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) )
A_ : Tuple = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for i, ((in_channels, out_channels), depth) in enumerate(zip(lowercase , config.depths[1:] ) ):
self.stages.append(TFRegNetStage(lowercase , lowercase , lowercase , depth=lowercase , name=F'''stages.{i+1}''' ) )
def lowerCAmelCase_ ( self , lowercase , lowercase = False , lowercase = True ):
"""simple docstring"""
A_ : Tuple = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
A_ : Dict = hidden_states + (hidden_state,)
A_ : List[Any] = stage_module(lowercase )
if output_hidden_states:
A_ : Union[str, Any] = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return TFBaseModelOutputWithNoAttention(last_hidden_state=lowercase , hidden_states=lowercase )
@keras_serializable
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
lowerCamelCase_ = RegNetConfig
def __init__( self , lowercase , **lowercase ):
"""simple docstring"""
super().__init__(**lowercase )
A_ : Optional[Any] = config
A_ : int = TFRegNetEmbeddings(lowercase , name='embedder' )
A_ : str = TFRegNetEncoder(lowercase , name='encoder' )
A_ : Optional[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowercase , name='pooler' )
@unpack_inputs
def lowerCAmelCase_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = False , ):
"""simple docstring"""
A_ : Optional[int] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
A_ : Dict = return_dict if return_dict is not None else self.config.use_return_dict
A_ : Union[str, Any] = self.embedder(lowercase , training=lowercase )
A_ : Optional[int] = self.encoder(
lowercase , output_hidden_states=lowercase , return_dict=lowercase , training=lowercase )
A_ : Dict = encoder_outputs[0]
A_ : List[Any] = self.pooler(lowercase )
# Change to NCHW output format have uniformity in the modules
A_ : Union[str, Any] = tf.transpose(lowercase , perm=(0, 3, 1, 2) )
A_ : Optional[int] = tf.transpose(lowercase , perm=(0, 3, 1, 2) )
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
A_ : int = tuple([tf.transpose(lowercase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , )
class UpperCAmelCase ( __A ):
'''simple docstring'''
lowerCamelCase_ = RegNetConfig
lowerCamelCase_ = '''regnet'''
lowerCamelCase_ = '''pixel_values'''
@property
def lowerCAmelCase_ ( self ):
"""simple docstring"""
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) , dtype=tf.floataa )}
_UpperCAmelCase = r"""
Parameters:
This model is a Tensorflow
[tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a
regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and
behavior.
config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
_UpperCAmelCase = r"""
Args:
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConveNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
'''The bare RegNet model outputting raw features without any specific head on top.''' , __A , )
class UpperCAmelCase ( __A ):
'''simple docstring'''
def __init__( self , lowercase , *lowercase , **lowercase ):
"""simple docstring"""
super().__init__(lowercase , *lowercase , **lowercase )
A_ : int = TFRegNetMainLayer(lowercase , name='regnet' )
@unpack_inputs
@add_start_docstrings_to_model_forward(lowercase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def lowerCAmelCase_ ( self , lowercase , lowercase = None , lowercase = None , lowercase=False , ):
"""simple docstring"""
A_ : Tuple = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
A_ : int = return_dict if return_dict is not None else self.config.use_return_dict
A_ : Tuple = self.regnet(
pixel_values=lowercase , output_hidden_states=lowercase , return_dict=lowercase , training=lowercase , )
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , )
@add_start_docstrings(
'''
RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
''' , __A , )
class UpperCAmelCase ( __A , __A ):
'''simple docstring'''
def __init__( self , lowercase , *lowercase , **lowercase ):
"""simple docstring"""
super().__init__(lowercase , *lowercase , **lowercase )
A_ : List[Any] = config.num_labels
A_ : Optional[Any] = TFRegNetMainLayer(lowercase , name='regnet' )
# classification head
A_ : Union[str, Any] = [
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(lowercase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def lowerCAmelCase_ ( self , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase=False , ):
"""simple docstring"""
A_ : int = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
A_ : int = return_dict if return_dict is not None else self.config.use_return_dict
A_ : List[Any] = self.regnet(
lowercase , output_hidden_states=lowercase , return_dict=lowercase , training=lowercase )
A_ : Optional[Any] = outputs.pooler_output if return_dict else outputs[1]
A_ : List[Any] = self.classifier[0](lowercase )
A_ : Union[str, Any] = self.classifier[1](lowercase )
A_ : List[str] = None if labels is None else self.hf_compute_loss(labels=lowercase , logits=lowercase )
if not return_dict:
A_ : str = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states )
| 718
|
import random
def UpperCamelCase ( __lowercase : int ):
'''simple docstring'''
A_ : Tuple = num - 1
A_ : Optional[Any] = 0
while s % 2 == 0:
A_ : Optional[int] = s // 2
t += 1
for _ in range(5 ):
A_ : Optional[int] = random.randrange(2 ,num - 1 )
A_ : Any = pow(__lowercase ,__lowercase ,__lowercase )
if v != 1:
A_ : List[str] = 0
while v != (num - 1):
if i == t - 1:
return False
else:
A_ : Union[str, Any] = i + 1
A_ : Tuple = (v**2) % num
return True
def UpperCamelCase ( __lowercase : int ):
'''simple docstring'''
if num < 2:
return False
A_ : Optional[Any] = [
2,
3,
5,
7,
11,
13,
17,
19,
23,
29,
31,
37,
41,
43,
47,
53,
59,
61,
67,
71,
73,
79,
83,
89,
97,
1_01,
1_03,
1_07,
1_09,
1_13,
1_27,
1_31,
1_37,
1_39,
1_49,
1_51,
1_57,
1_63,
1_67,
1_73,
1_79,
1_81,
1_91,
1_93,
1_97,
1_99,
2_11,
2_23,
2_27,
2_29,
2_33,
2_39,
2_41,
2_51,
2_57,
2_63,
2_69,
2_71,
2_77,
2_81,
2_83,
2_93,
3_07,
3_11,
3_13,
3_17,
3_31,
3_37,
3_47,
3_49,
3_53,
3_59,
3_67,
3_73,
3_79,
3_83,
3_89,
3_97,
4_01,
4_09,
4_19,
4_21,
4_31,
4_33,
4_39,
4_43,
4_49,
4_57,
4_61,
4_63,
4_67,
4_79,
4_87,
4_91,
4_99,
5_03,
5_09,
5_21,
5_23,
5_41,
5_47,
5_57,
5_63,
5_69,
5_71,
5_77,
5_87,
5_93,
5_99,
6_01,
6_07,
6_13,
6_17,
6_19,
6_31,
6_41,
6_43,
6_47,
6_53,
6_59,
6_61,
6_73,
6_77,
6_83,
6_91,
7_01,
7_09,
7_19,
7_27,
7_33,
7_39,
7_43,
7_51,
7_57,
7_61,
7_69,
7_73,
7_87,
7_97,
8_09,
8_11,
8_21,
8_23,
8_27,
8_29,
8_39,
8_53,
8_57,
8_59,
8_63,
8_77,
8_81,
8_83,
8_87,
9_07,
9_11,
9_19,
9_29,
9_37,
9_41,
9_47,
9_53,
9_67,
9_71,
9_77,
9_83,
9_91,
9_97,
]
if num in low_primes:
return True
for prime in low_primes:
if (num % prime) == 0:
return False
return rabin_miller(__lowercase )
def UpperCamelCase ( __lowercase : int = 10_24 ):
'''simple docstring'''
while True:
A_ : Union[str, Any] = random.randrange(2 ** (keysize - 1) ,2 ** (keysize) )
if is_prime_low_num(__lowercase ):
return num
if __name__ == "__main__":
_UpperCAmelCase = generate_large_prime()
print(("""Prime number:""", num))
print(("""is_prime_low_num:""", is_prime_low_num(num)))
| 70
| 0
|
import os
import pickle
import unittest
from transformers import AutoTokenizer
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.models.bert_japanese.tokenization_bert_japanese import (
VOCAB_FILES_NAMES,
BertJapaneseTokenizer,
CharacterTokenizer,
JumanppTokenizer,
MecabTokenizer,
SudachiTokenizer,
WordpieceTokenizer,
)
from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi
from ...test_tokenization_common import TokenizerTesterMixin
@custom_tokenizers
class __magic_name__ (snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : List[str] = BertJapaneseTokenizer
__lowercase : Optional[Any] = False
__lowercase : List[Any] = True
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
super().setUp()
snake_case__ = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''こんにちは''',
'''こん''',
'''にちは''',
'''ばんは''',
'''##こん''',
'''##にちは''',
'''##ばんは''',
'''世界''',
'''##世界''',
'''、''',
'''##、''',
'''。''',
'''##。''',
]
snake_case__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def SCREAMING_SNAKE_CASE__ ( self:int , _a:Dict ):
snake_case__ = '''こんにちは、世界。 \nこんばんは、世界。'''
snake_case__ = '''こんにちは 、 世界 。 こんばんは 、 世界 。'''
return input_text, output_text
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:Optional[int] ):
snake_case__ , snake_case__ = self.get_input_output_texts(_a )
snake_case__ = tokenizer.encode(_a , add_special_tokens=_a )
snake_case__ = tokenizer.decode(_a , clean_up_tokenization_spaces=_a )
return text, ids
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
pass # TODO add if relevant
def SCREAMING_SNAKE_CASE__ ( self:int ):
pass # TODO add if relevant
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
pass # TODO add if relevant
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = self.tokenizer_class(self.vocab_file )
snake_case__ = tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''' )
self.assertListEqual(_a , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
snake_case__ = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''mecab''' )
self.assertIsNotNone(_a )
snake_case__ = '''こんにちは、世界。\nこんばんは、世界。'''
snake_case__ = tokenizer.tokenize(_a )
self.assertListEqual(_a , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
snake_case__ = os.path.join(self.tmpdirname , '''tokenizer.bin''' )
with open(_a , '''wb''' ) as handle:
pickle.dump(_a , _a )
with open(_a , '''rb''' ) as handle:
snake_case__ = pickle.load(_a )
snake_case__ = tokenizer_new.tokenize(_a )
self.assertListEqual(_a , _a )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
snake_case__ = MecabTokenizer(mecab_dic='''ipadic''' )
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
try:
snake_case__ = MecabTokenizer(mecab_dic='''unidic_lite''' )
except ModuleNotFoundError:
return
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
try:
snake_case__ = MecabTokenizer(mecab_dic='''unidic''' )
except ModuleNotFoundError:
return
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
snake_case__ = MecabTokenizer(do_lower_case=_a , mecab_dic='''ipadic''' )
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
try:
snake_case__ = MecabTokenizer(
do_lower_case=_a , normalize_text=_a , mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''' )
except RuntimeError:
# if dict doesn't exist in the system, previous code raises this error.
return
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , )
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = MecabTokenizer(normalize_text=_a , mecab_dic='''ipadic''' )
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''] , )
@require_sudachi
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
snake_case__ = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''sudachi''' )
self.assertIsNotNone(_a )
snake_case__ = '''こんにちは、世界。\nこんばんは、世界。'''
snake_case__ = tokenizer.tokenize(_a )
self.assertListEqual(_a , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
snake_case__ = os.path.join(self.tmpdirname , '''tokenizer.bin''' )
with open(_a , '''wb''' ) as handle:
pickle.dump(_a , _a )
with open(_a , '''rb''' ) as handle:
snake_case__ = pickle.load(_a )
snake_case__ = tokenizer_new.tokenize(_a )
self.assertListEqual(_a , _a )
@require_sudachi
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
snake_case__ = SudachiTokenizer(sudachi_dict_type='''core''' )
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , )
@require_sudachi
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
snake_case__ = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''A''' )
self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国''', '''人''', '''参政''', '''権'''] )
@require_sudachi
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
snake_case__ = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''B''' )
self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人''', '''参政権'''] )
@require_sudachi
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''C''' )
self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人参政権'''] )
@require_sudachi
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = SudachiTokenizer(do_lower_case=_a , sudachi_dict_type='''core''' )
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , )
@require_sudachi
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = SudachiTokenizer(normalize_text=_a , sudachi_dict_type='''core''' )
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''] , )
@require_sudachi
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
snake_case__ = SudachiTokenizer(trim_whitespace=_a , sudachi_dict_type='''core''' )
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , )
@require_jumanpp
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''jumanpp''' )
self.assertIsNotNone(_a )
snake_case__ = '''こんにちは、世界。\nこんばんは、世界。'''
snake_case__ = tokenizer.tokenize(_a )
self.assertListEqual(_a , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
snake_case__ = os.path.join(self.tmpdirname , '''tokenizer.bin''' )
with open(_a , '''wb''' ) as handle:
pickle.dump(_a , _a )
with open(_a , '''rb''' ) as handle:
snake_case__ = pickle.load(_a )
snake_case__ = tokenizer_new.tokenize(_a )
self.assertListEqual(_a , _a )
@require_jumanpp
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
snake_case__ = JumanppTokenizer()
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , )
@require_jumanpp
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
snake_case__ = JumanppTokenizer(do_lower_case=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , )
@require_jumanpp
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = JumanppTokenizer(normalize_text=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , )
@require_jumanpp
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
snake_case__ = JumanppTokenizer(trim_whitespace=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''] , )
@require_jumanpp
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = JumanppTokenizer()
self.assertListEqual(
tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''' ) , ['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''] , )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
snake_case__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''']
snake_case__ = {}
for i, token in enumerate(_a ):
snake_case__ = i
snake_case__ = WordpieceTokenizer(vocab=_a , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こんにちは'''] )
self.assertListEqual(tokenizer.tokenize('''こんばんは''' ) , ['''こん''', '''##ばんは'''] )
self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''' ) , ['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは'''] )
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''' )
snake_case__ = tokenizer.subword_tokenizer
snake_case__ = subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''' )
self.assertListEqual(_a , ['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。'''] )
snake_case__ = subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''' )
self.assertListEqual(_a , ['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは'''] )
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''' )
snake_case__ = tokenizer.encode('''ありがとう。''' , add_special_tokens=_a )
snake_case__ = tokenizer.encode('''どういたしまして。''' , add_special_tokens=_a )
snake_case__ = tokenizer.build_inputs_with_special_tokens(_a )
snake_case__ = tokenizer.build_inputs_with_special_tokens(_a , _a )
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_a + [3]
@custom_tokenizers
class __magic_name__ (snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : Dict = BertJapaneseTokenizer
__lowercase : List[str] = False
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
super().setUp()
snake_case__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。''']
snake_case__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def SCREAMING_SNAKE_CASE__ ( self:List[str] , **_a:Tuple ):
return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='''character''' , **_a )
def SCREAMING_SNAKE_CASE__ ( self:Any , _a:Optional[Any] ):
snake_case__ = '''こんにちは、世界。 \nこんばんは、世界。'''
snake_case__ = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。'''
return input_text, output_text
def SCREAMING_SNAKE_CASE__ ( self:Any ):
pass # TODO add if relevant
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
pass # TODO add if relevant
def SCREAMING_SNAKE_CASE__ ( self:str ):
pass # TODO add if relevant
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='''character''' )
snake_case__ = tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''' )
self.assertListEqual(
_a , ['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_a ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] )
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。''']
snake_case__ = {}
for i, token in enumerate(_a ):
snake_case__ = i
snake_case__ = CharacterTokenizer(vocab=_a , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''は'''] )
self.assertListEqual(tokenizer.tokenize('''こんにちほ''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]'''] )
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''' )
snake_case__ = tokenizer.encode('''ありがとう。''' , add_special_tokens=_a )
snake_case__ = tokenizer.encode('''どういたしまして。''' , add_special_tokens=_a )
snake_case__ = tokenizer.build_inputs_with_special_tokens(_a )
snake_case__ = tokenizer.build_inputs_with_special_tokens(_a , _a )
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_a + [3]
@custom_tokenizers
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = '''cl-tohoku/bert-base-japanese'''
snake_case__ = AutoTokenizer.from_pretrained(_a )
self.assertIsInstance(_a , _a )
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
snake_case__ = '''cl-tohoku/bert-base-japanese'''
with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm:
BertTokenizer.from_pretrained(_a )
self.assertTrue(
cm.records[0].message.startswith(
'''The tokenizer class you load from this checkpoint is not the same type as the class this function'''
''' is called from.''' ) )
snake_case__ = '''bert-base-cased'''
with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm:
BertJapaneseTokenizer.from_pretrained(_a )
self.assertTrue(
cm.records[0].message.startswith(
'''The tokenizer class you load from this checkpoint is not the same type as the class this function'''
''' is called from.''' ) )
| 33
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
a : Optional[Any] = {
'''configuration_owlvit''': [
'''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''OwlViTConfig''',
'''OwlViTOnnxConfig''',
'''OwlViTTextConfig''',
'''OwlViTVisionConfig''',
],
'''processing_owlvit''': ['''OwlViTProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : str = ['''OwlViTFeatureExtractor''']
a : List[Any] = ['''OwlViTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : List[Any] = [
'''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''OwlViTModel''',
'''OwlViTPreTrainedModel''',
'''OwlViTTextModel''',
'''OwlViTVisionModel''',
'''OwlViTForObjectDetection''',
]
if TYPE_CHECKING:
from .configuration_owlvit import (
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OwlViTConfig,
OwlViTOnnxConfig,
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .processing_owlvit import OwlViTProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_owlvit import OwlViTFeatureExtractor
from .image_processing_owlvit import OwlViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_owlvit import (
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
OwlViTForObjectDetection,
OwlViTModel,
OwlViTPreTrainedModel,
OwlViTTextModel,
OwlViTVisionModel,
)
else:
import sys
a : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 633
| 0
|
'''simple docstring'''
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from ...utils import deprecate
from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401
deprecate(
"stable diffusion controlnet",
"0.22.0",
"Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.",
standard_warn=False,
stacklevel=3,
)
| 703
|
'''simple docstring'''
from typing import Any, Dict, Optional
import torch
import torch.nn.functional as F
from torch import nn
from ..utils import maybe_allow_in_graph
from .activations import get_activation
from .attention_processor import Attention
from .embeddings import CombinedTimestepLabelEmbeddings
@maybe_allow_in_graph
class SCREAMING_SNAKE_CASE ( nn.Module ):
'''simple docstring'''
def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "geglu" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = "layer_norm" , SCREAMING_SNAKE_CASE__ = False , ):
'''simple docstring'''
super().__init__()
snake_case: List[str] = only_cross_attention
snake_case: Optional[Any] = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero'
snake_case: Tuple = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm'
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
raise ValueError(
F"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"""
F""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" )
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
if self.use_ada_layer_norm:
snake_case: List[str] = AdaLayerNorm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
elif self.use_ada_layer_norm_zero:
snake_case: str = AdaLayerNormZero(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
snake_case: int = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ )
snake_case: List[str] = Attention(
query_dim=SCREAMING_SNAKE_CASE__ , heads=SCREAMING_SNAKE_CASE__ , dim_head=SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=SCREAMING_SNAKE_CASE__ , )
# 2. Cross-Attn
if cross_attention_dim is not None or double_self_attention:
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
snake_case: Tuple = (
AdaLayerNorm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if self.use_ada_layer_norm
else nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ )
)
snake_case: Any = Attention(
query_dim=SCREAMING_SNAKE_CASE__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=SCREAMING_SNAKE_CASE__ , dim_head=SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ , upcast_attention=SCREAMING_SNAKE_CASE__ , ) # is self-attn if encoder_hidden_states is none
else:
snake_case: int = None
snake_case: Tuple = None
# 3. Feed-forward
snake_case: Union[str, Any] = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ )
snake_case: List[str] = FeedForward(SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , activation_fn=SCREAMING_SNAKE_CASE__ , final_dropout=SCREAMING_SNAKE_CASE__ )
# let chunk size default to None
snake_case: Any = None
snake_case: Any = 0
def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
snake_case: Dict = chunk_size
snake_case: str = dim
def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ):
'''simple docstring'''
if self.use_ada_layer_norm:
snake_case: Optional[int] = self.norma(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
elif self.use_ada_layer_norm_zero:
snake_case , snake_case , snake_case , snake_case , snake_case: int = self.norma(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hidden_dtype=hidden_states.dtype )
else:
snake_case: List[str] = self.norma(SCREAMING_SNAKE_CASE__ )
snake_case: Optional[Any] = cross_attention_kwargs if cross_attention_kwargs is not None else {}
snake_case: List[str] = self.attna(
SCREAMING_SNAKE_CASE__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
if self.use_ada_layer_norm_zero:
snake_case: Tuple = gate_msa.unsqueeze(1 ) * attn_output
snake_case: List[str] = attn_output + hidden_states
# 2. Cross-Attention
if self.attna is not None:
snake_case: Dict = (
self.norma(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm else self.norma(SCREAMING_SNAKE_CASE__ )
)
snake_case: Any = self.attna(
SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
snake_case: List[str] = attn_output + hidden_states
# 3. Feed-forward
snake_case: str = self.norma(SCREAMING_SNAKE_CASE__ )
if self.use_ada_layer_norm_zero:
snake_case: str = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
raise ValueError(
F"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" )
snake_case: List[str] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
snake_case: Optional[Any] = torch.cat(
[self.ff(SCREAMING_SNAKE_CASE__ ) for hid_slice in norm_hidden_states.chunk(SCREAMING_SNAKE_CASE__ , dim=self._chunk_dim )] , dim=self._chunk_dim , )
else:
snake_case: int = self.ff(SCREAMING_SNAKE_CASE__ )
if self.use_ada_layer_norm_zero:
snake_case: Union[str, Any] = gate_mlp.unsqueeze(1 ) * ff_output
snake_case: Tuple = ff_output + hidden_states
return hidden_states
class SCREAMING_SNAKE_CASE ( nn.Module ):
'''simple docstring'''
def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 4 , SCREAMING_SNAKE_CASE__ = 0.0 , SCREAMING_SNAKE_CASE__ = "geglu" , SCREAMING_SNAKE_CASE__ = False , ):
'''simple docstring'''
super().__init__()
snake_case: int = int(dim * mult )
snake_case: Optional[Any] = dim_out if dim_out is not None else dim
if activation_fn == "gelu":
snake_case: int = GELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if activation_fn == "gelu-approximate":
snake_case: Optional[Any] = GELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , approximate='tanh' )
elif activation_fn == "geglu":
snake_case: List[Any] = GEGLU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
elif activation_fn == "geglu-approximate":
snake_case: Optional[int] = ApproximateGELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
snake_case: Any = nn.ModuleList([] )
# project in
self.net.append(SCREAMING_SNAKE_CASE__ )
# project dropout
self.net.append(nn.Dropout(SCREAMING_SNAKE_CASE__ ) )
# project out
self.net.append(nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(SCREAMING_SNAKE_CASE__ ) )
def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
for module in self.net:
snake_case: Optional[int] = module(SCREAMING_SNAKE_CASE__ )
return hidden_states
class SCREAMING_SNAKE_CASE ( nn.Module ):
'''simple docstring'''
def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = "none" ):
'''simple docstring'''
super().__init__()
snake_case: Optional[int] = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
snake_case: Optional[int] = approximate
def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
if gate.device.type != "mps":
return F.gelu(SCREAMING_SNAKE_CASE__ , approximate=self.approximate )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype )
def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
snake_case: Dict = self.proj(SCREAMING_SNAKE_CASE__ )
snake_case: Dict = self.gelu(SCREAMING_SNAKE_CASE__ )
return hidden_states
class SCREAMING_SNAKE_CASE ( nn.Module ):
'''simple docstring'''
def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
super().__init__()
snake_case: Tuple = nn.Linear(SCREAMING_SNAKE_CASE__ , dim_out * 2 )
def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
if gate.device.type != "mps":
return F.gelu(SCREAMING_SNAKE_CASE__ )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype )
def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
snake_case , snake_case: int = self.proj(SCREAMING_SNAKE_CASE__ ).chunk(2 , dim=-1 )
return hidden_states * self.gelu(SCREAMING_SNAKE_CASE__ )
class SCREAMING_SNAKE_CASE ( nn.Module ):
'''simple docstring'''
def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
super().__init__()
snake_case: str = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
snake_case: Optional[int] = self.proj(SCREAMING_SNAKE_CASE__ )
return x * torch.sigmoid(1.7_02 * x )
class SCREAMING_SNAKE_CASE ( nn.Module ):
'''simple docstring'''
def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
super().__init__()
snake_case: Optional[Any] = nn.Embedding(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
snake_case: Optional[Any] = nn.SiLU()
snake_case: Union[str, Any] = nn.Linear(SCREAMING_SNAKE_CASE__ , embedding_dim * 2 )
snake_case: int = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
snake_case: Dict = self.linear(self.silu(self.emb(SCREAMING_SNAKE_CASE__ ) ) )
snake_case , snake_case: Dict = torch.chunk(SCREAMING_SNAKE_CASE__ , 2 )
snake_case: str = self.norm(SCREAMING_SNAKE_CASE__ ) * (1 + scale) + shift
return x
class SCREAMING_SNAKE_CASE ( nn.Module ):
'''simple docstring'''
def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
super().__init__()
snake_case: str = CombinedTimestepLabelEmbeddings(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
snake_case: int = nn.SiLU()
snake_case: Any = nn.Linear(SCREAMING_SNAKE_CASE__ , 6 * embedding_dim , bias=SCREAMING_SNAKE_CASE__ )
snake_case: List[Any] = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ , eps=1E-6 )
def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
snake_case: int = self.linear(self.silu(self.emb(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hidden_dtype=SCREAMING_SNAKE_CASE__ ) ) )
snake_case , snake_case , snake_case , snake_case , snake_case , snake_case: str = emb.chunk(6 , dim=1 )
snake_case: Dict = self.norm(SCREAMING_SNAKE_CASE__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None]
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
class SCREAMING_SNAKE_CASE ( nn.Module ):
'''simple docstring'''
def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 1E-5 ):
'''simple docstring'''
super().__init__()
snake_case: str = num_groups
snake_case: str = eps
if act_fn is None:
snake_case: Dict = None
else:
snake_case: List[str] = get_activation(SCREAMING_SNAKE_CASE__ )
snake_case: Any = nn.Linear(SCREAMING_SNAKE_CASE__ , out_dim * 2 )
def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
if self.act:
snake_case: Optional[Any] = self.act(SCREAMING_SNAKE_CASE__ )
snake_case: Optional[int] = self.linear(SCREAMING_SNAKE_CASE__ )
snake_case: List[Any] = emb[:, :, None, None]
snake_case , snake_case: List[Any] = emb.chunk(2 , dim=1 )
snake_case: Any = F.group_norm(SCREAMING_SNAKE_CASE__ , self.num_groups , eps=self.eps )
snake_case: Optional[int] = x * (1 + scale) + shift
return x
| 692
| 0
|
"""simple docstring"""
import random
import unittest
from torch.utils.data import BatchSampler, DataLoader, IterableDataset
from accelerate import Accelerator
from accelerate.data_loader import (
BatchSamplerShard,
DataLoaderDispatcher,
DataLoaderShard,
IterableDatasetShard,
SkipBatchSampler,
SkipDataLoader,
skip_first_batches,
)
class _lowerCamelCase ( a_ ):
def __init__( self : Union[str, Any] , UpperCamelCase : Optional[Any]=0.01 , UpperCamelCase : List[Any]=10_00 ) -> List[Any]:
"""simple docstring"""
lowerCAmelCase__ : List[str] = p_stop
lowerCAmelCase__ : List[Any] = max_length
def __iter__( self : Dict ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ : Tuple = 0
lowerCAmelCase__ : List[str] = False
while not stop and count < self.max_length:
yield count
count += 1
lowerCAmelCase__ : Any = random.random() < self.p_stop
class _lowerCamelCase ( unittest.TestCase ):
def _lowerCAmelCase ( self : Tuple , UpperCamelCase : int , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[int]=False , UpperCamelCase : Dict=True ) -> Any:
"""simple docstring"""
lowerCAmelCase__ : List[Any] = [
BatchSamplerShard(UpperCamelCase , 2 , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase )
for i in range(2 )
]
lowerCAmelCase__ : str = [list(UpperCamelCase ) for batch_sampler_shard in batch_sampler_shards]
if not split_batches:
self.assertListEqual([len(UpperCamelCase ) for shard in batch_sampler_shards] , [len(UpperCamelCase ) for e in expected] )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
def _lowerCAmelCase ( self : List[str] ) -> str:
"""simple docstring"""
# Check the shards when the dataset is a round multiple of total batch size.
lowerCAmelCase__ : List[str] = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase )
lowerCAmelCase__ : int = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase )
lowerCAmelCase__ : List[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase )
# Expected shouldn't change
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
lowerCAmelCase__ : Any = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase )
lowerCAmelCase__ : Tuple = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]],
]
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase )
lowerCAmelCase__ : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase )
lowerCAmelCase__ : Union[str, Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
lowerCAmelCase__ : Optional[int] = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase )
lowerCAmelCase__ : Dict = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]],
]
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase )
lowerCAmelCase__ : str = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase )
lowerCAmelCase__ : str = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
lowerCAmelCase__ : Dict = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase )
lowerCAmelCase__ : Union[str, Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]],
]
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase )
lowerCAmelCase__ : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase )
lowerCAmelCase__ : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase )
# Check the shards when the dataset is very small.
lowerCAmelCase__ : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase )
lowerCAmelCase__ : List[str] = [[[0, 1, 0]], [[1, 0, 1]]]
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase )
lowerCAmelCase__ : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase )
lowerCAmelCase__ : Any = [[], []]
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase )
def _lowerCAmelCase ( self : List[str] ) -> Any:
"""simple docstring"""
# Check the shards when the dataset is a round multiple of batch size.
lowerCAmelCase__ : Optional[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase )
lowerCAmelCase__ : Dict = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase )
lowerCAmelCase__ : Optional[int] = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase )
# Expected shouldn't change
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase )
# Check the shards when the dataset is not a round multiple of batch size.
lowerCAmelCase__ : int = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase )
lowerCAmelCase__ : List[Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]],
]
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase )
lowerCAmelCase__ : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase )
lowerCAmelCase__ : Optional[int] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
lowerCAmelCase__ : Optional[int] = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase )
lowerCAmelCase__ : Any = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]],
]
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase )
lowerCAmelCase__ : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase )
lowerCAmelCase__ : str = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase )
# Check the shards when the dataset is very small.
lowerCAmelCase__ : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase )
lowerCAmelCase__ : Optional[Any] = [[[0, 1]], [[0, 1]]]
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase )
lowerCAmelCase__ : Union[str, Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase )
lowerCAmelCase__ : Optional[Any] = [[], []]
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase )
def _lowerCAmelCase ( self : str ) -> str:
"""simple docstring"""
# Check the shards when the dataset is a round multiple of total batch size.
lowerCAmelCase__ : List[str] = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase )
lowerCAmelCase__ : Union[str, Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase )
lowerCAmelCase__ : Optional[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase )
# Expected shouldn't change
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
lowerCAmelCase__ : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase )
lowerCAmelCase__ : str = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase )
lowerCAmelCase__ : Dict = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase )
lowerCAmelCase__ : Dict = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
lowerCAmelCase__ : Union[str, Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase )
lowerCAmelCase__ : List[str] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]],
]
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase )
lowerCAmelCase__ : Optional[int] = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase )
lowerCAmelCase__ : Dict = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
lowerCAmelCase__ : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase )
lowerCAmelCase__ : Tuple = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase )
lowerCAmelCase__ : str = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase )
lowerCAmelCase__ : Any = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase )
# Check the shards when the dataset is very small.
lowerCAmelCase__ : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase )
lowerCAmelCase__ : List[str] = [[[0, 1]], []]
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase )
lowerCAmelCase__ : int = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase )
lowerCAmelCase__ : str = [[], []]
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase )
def _lowerCAmelCase ( self : str ) -> Optional[int]:
"""simple docstring"""
# Check the shards when the dataset is a round multiple of batch size.
lowerCAmelCase__ : Optional[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase )
lowerCAmelCase__ : Dict = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase )
lowerCAmelCase__ : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase )
# Expected shouldn't change
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase )
# Check the shards when the dataset is not a round multiple of batch size.
lowerCAmelCase__ : Any = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase )
lowerCAmelCase__ : int = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase )
lowerCAmelCase__ : Tuple = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase )
lowerCAmelCase__ : Tuple = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
lowerCAmelCase__ : Optional[Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase )
lowerCAmelCase__ : Optional[int] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase )
lowerCAmelCase__ : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase )
lowerCAmelCase__ : Optional[Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase )
# Check the shards when the dataset is very small.
lowerCAmelCase__ : Tuple = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase )
lowerCAmelCase__ : Tuple = [[[0, 1]], []]
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase )
lowerCAmelCase__ : List[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase )
lowerCAmelCase__ : Any = [[], []]
self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase )
def _lowerCAmelCase ( self : int ) -> int:
"""simple docstring"""
lowerCAmelCase__ : Dict = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]]
lowerCAmelCase__ : str = [BatchSamplerShard(UpperCamelCase , 2 , UpperCamelCase , even_batches=UpperCamelCase ) for i in range(2 )]
self.assertEqual(len(batch_sampler_shards[0] ) , 3 )
self.assertEqual(len(batch_sampler_shards[1] ) , 2 )
self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] )
self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] )
def _lowerCAmelCase ( self : Dict , UpperCamelCase : Tuple , UpperCamelCase : Any , UpperCamelCase : Dict , UpperCamelCase : List[Any]=False , UpperCamelCase : Optional[int]=2 , UpperCamelCase : Dict=False ) -> List[str]:
"""simple docstring"""
random.seed(UpperCamelCase )
lowerCAmelCase__ : str = list(UpperCamelCase )
lowerCAmelCase__ : List[str] = [
IterableDatasetShard(
UpperCamelCase , batch_size=UpperCamelCase , drop_last=UpperCamelCase , num_processes=UpperCamelCase , process_index=UpperCamelCase , split_batches=UpperCamelCase , )
for i in range(UpperCamelCase )
]
lowerCAmelCase__ : Optional[int] = []
for iterable_dataset_shard in iterable_dataset_shards:
# Since our random iterable dataset will be... random... we need to use a seed to get reproducible results.
random.seed(UpperCamelCase )
iterable_dataset_lists.append(list(UpperCamelCase ) )
lowerCAmelCase__ : Optional[int] = batch_size // num_processes if split_batches else batch_size
# All iterable dataset shard should have the same length, a round multiple of shard_batch_size
lowerCAmelCase__ : str = iterable_dataset_lists[0]
for l in iterable_dataset_lists[1:]:
self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) )
self.assertTrue(len(UpperCamelCase ) % shard_batch_size == 0 )
lowerCAmelCase__ : Union[str, Any] = []
for idx in range(0 , len(UpperCamelCase ) , UpperCamelCase ):
for l in iterable_dataset_lists:
observed += l[idx : idx + shard_batch_size]
if not drop_last:
while len(UpperCamelCase ) < len(UpperCamelCase ):
reference += reference
self.assertListEqual(UpperCamelCase , reference[: len(UpperCamelCase )] )
def _lowerCAmelCase ( self : Any ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ : List[str] = 42
lowerCAmelCase__ : Optional[Any] = RandomIterableDataset()
self.check_iterable_dataset_shards(UpperCamelCase , UpperCamelCase , batch_size=4 , drop_last=UpperCamelCase , split_batches=UpperCamelCase )
self.check_iterable_dataset_shards(UpperCamelCase , UpperCamelCase , batch_size=4 , drop_last=UpperCamelCase , split_batches=UpperCamelCase )
self.check_iterable_dataset_shards(UpperCamelCase , UpperCamelCase , batch_size=4 , drop_last=UpperCamelCase , split_batches=UpperCamelCase )
self.check_iterable_dataset_shards(UpperCamelCase , UpperCamelCase , batch_size=4 , drop_last=UpperCamelCase , split_batches=UpperCamelCase )
# Edge case with a very small dataset
lowerCAmelCase__ : Optional[Any] = RandomIterableDataset(max_length=2 )
self.check_iterable_dataset_shards(UpperCamelCase , UpperCamelCase , batch_size=4 , drop_last=UpperCamelCase , split_batches=UpperCamelCase )
self.check_iterable_dataset_shards(UpperCamelCase , UpperCamelCase , batch_size=4 , drop_last=UpperCamelCase , split_batches=UpperCamelCase )
self.check_iterable_dataset_shards(UpperCamelCase , UpperCamelCase , batch_size=4 , drop_last=UpperCamelCase , split_batches=UpperCamelCase )
self.check_iterable_dataset_shards(UpperCamelCase , UpperCamelCase , batch_size=4 , drop_last=UpperCamelCase , split_batches=UpperCamelCase )
def _lowerCAmelCase ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ : Optional[int] = BatchSampler(range(16 ) , batch_size=4 , drop_last=UpperCamelCase )
lowerCAmelCase__ : Union[str, Any] = SkipBatchSampler(UpperCamelCase , 2 )
self.assertListEqual(list(UpperCamelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowerCAmelCase ( self : Union[str, Any] ) -> str:
"""simple docstring"""
lowerCAmelCase__ : Dict = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 )
self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ : Optional[int] = DataLoader(list(range(16 ) ) , batch_size=4 )
lowerCAmelCase__ : Tuple = skip_first_batches(UpperCamelCase , num_batches=2 )
self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowerCAmelCase ( self : List[Any] ) -> List[str]:
"""simple docstring"""
lowerCAmelCase__ : List[str] = DataLoaderShard(list(range(16 ) ) , batch_size=4 )
for idx, _ in enumerate(UpperCamelCase ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(UpperCamelCase ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
Accelerator()
lowerCAmelCase__ : Optional[int] = DataLoaderDispatcher(range(16 ) , batch_size=4 )
for idx, _ in enumerate(UpperCamelCase ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(UpperCamelCase ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
| 299
|
"""simple docstring"""
def lowercase_ ( __UpperCAmelCase ) -> list:
lowerCAmelCase__ : List[Any] = len(__UpperCAmelCase )
for i in range(1 , __UpperCAmelCase ):
lowerCAmelCase__ : List[Any] = collection[i]
lowerCAmelCase__ : str = 0
lowerCAmelCase__ : List[str] = i - 1
while low <= high:
lowerCAmelCase__ : str = (low + high) // 2
if val < collection[mid]:
lowerCAmelCase__ : List[Any] = mid - 1
else:
lowerCAmelCase__ : Optional[int] = mid + 1
for j in range(__UpperCAmelCase , __UpperCAmelCase , -1 ):
lowerCAmelCase__ : Dict = collection[j - 1]
lowerCAmelCase__ : Union[str, Any] = val
return collection
if __name__ == "__main__":
_A = input("""Enter numbers separated by a comma:\n""").strip()
_A = [int(item) for item in user_input.split(""",""")]
print(binary_insertion_sort(unsorted))
| 299
| 1
|
from dataclasses import dataclass, field
from typing import Optional
@dataclass
class a :
__lowerCAmelCase : Optional[str] = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""} )
__lowerCAmelCase : Optional[str] = field(
default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} )
__lowerCAmelCase : Optional[str] = field(
default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""} )
__lowerCAmelCase : Optional[str] = field(
default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} )
__lowerCAmelCase : Optional[int] = field(default=2 , metadata={"""help""": """Batch size for training."""} )
__lowerCAmelCase : Optional[int] = field(default=2 , metadata={"""help""": """Batch size for evaluation."""} )
__lowerCAmelCase : Optional[float] = field(default=0.1 , metadata={"""help""": """Value of weight decay."""} )
__lowerCAmelCase : Optional[int] = field(
default=1_00_00 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} )
__lowerCAmelCase : Optional[float] = field(default=2e-4 , metadata={"""help""": """Learning rate fo training."""} )
__lowerCAmelCase : Optional[str] = field(default="""cosine""" , metadata={"""help""": """Learning rate."""} )
__lowerCAmelCase : Optional[int] = field(
default=7_50 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} )
__lowerCAmelCase : Optional[int] = field(
default=16 , metadata={"""help""": """Number of gradient accumulation steps."""} )
__lowerCAmelCase : Optional[bool] = field(
default=__lowerCamelCase , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} )
__lowerCAmelCase : Optional[int] = field(default=5_00_00 , metadata={"""help""": """Maximum number of training steps."""} )
__lowerCAmelCase : Optional[int] = field(
default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} )
__lowerCAmelCase : Optional[int] = field(default=10_24 , metadata={"""help""": """Sequence lengths used for training."""} )
__lowerCAmelCase : Optional[int] = field(default=1 , metadata={"""help""": """Training seed."""} )
__lowerCAmelCase : Optional[int] = field(
default=10_24 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , )
__lowerCAmelCase : Optional[str] = field(
default=__lowerCamelCase , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} )
__lowerCAmelCase : Optional[bool] = field(default=__lowerCamelCase , metadata={"""help""": """If True the data is pretokenized."""} )
@dataclass
class a :
__lowerCAmelCase : Optional[str] = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} )
__lowerCAmelCase : Optional[str] = field(
default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} )
__lowerCAmelCase : Optional[int] = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""} )
__lowerCAmelCase : Optional[int] = field(
default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} )
__lowerCAmelCase : Optional[int] = field(default=10_24 , metadata={"""help""": """Length of sequences to be evaluated."""} )
__lowerCAmelCase : Optional[int] = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} )
@dataclass
class a :
__lowerCAmelCase : Optional[str] = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} )
__lowerCAmelCase : Optional[int] = field(default=__lowerCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} )
__lowerCAmelCase : Optional[int] = field(
default=__lowerCamelCase , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , )
__lowerCAmelCase : Optional[bool] = field(
default=__lowerCamelCase , metadata={"""help""": """Sample from the language model's output distribution."""} )
__lowerCAmelCase : Optional[float] = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""} )
__lowerCAmelCase : Optional[int] = field(default=2_56 , metadata={"""help""": """Maximum number of newly generated tokens."""} )
__lowerCAmelCase : Optional[int] = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""} )
__lowerCAmelCase : Optional[float] = field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""} )
__lowerCAmelCase : Optional[int] = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""} )
__lowerCAmelCase : Optional[int] = field(
default=2_00 , metadata={"""help""": """Number of completions to generate for each sample."""} )
__lowerCAmelCase : Optional[int] = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} )
__lowerCAmelCase : Optional[str] = field(
default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""} )
__lowerCAmelCase : Optional[str] = field(
default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} )
__lowerCAmelCase : Optional[int] = field(
default=-1 , metadata={
"""help""": (
"""Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive"""
""" number corresponds to which GPU device id to run on."""
)
} , )
@dataclass
class a :
__lowerCAmelCase : Optional[int] = field(
default=__lowerCamelCase , metadata={
"""help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available."""
} , )
__lowerCAmelCase : Optional[str] = field(
default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""} )
__lowerCAmelCase : Optional[str] = field(
default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""} )
__lowerCAmelCase : Optional[int] = field(
default=10_00_00 , metadata={"""help""": """Number of files to save per JSON output file."""} )
__lowerCAmelCase : Optional[str] = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} )
__lowerCAmelCase : Optional[float] = field(
default=10_00 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} )
__lowerCAmelCase : Optional[float] = field(
default=1_00 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} )
__lowerCAmelCase : Optional[float] = field(
default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} )
__lowerCAmelCase : Optional[float] = field(
default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} )
__lowerCAmelCase : Optional[float] = field(
default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""} )
__lowerCAmelCase : Optional[str] = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , )
__lowerCAmelCase : Optional[bool] = field(
default=__lowerCamelCase , metadata={"""help""": """If True, near-duplicate samples are removed."""} )
__lowerCAmelCase : Optional[float] = field(
default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} )
@dataclass
class a :
__lowerCAmelCase : Optional[str] = field(
default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""} )
__lowerCAmelCase : Optional[str] = field(
default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""} )
__lowerCAmelCase : Optional[str] = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} )
__lowerCAmelCase : Optional[int] = field(default=20_00_00 , metadata={"""help""": """Number of examples to train tokenizer on."""} )
__lowerCAmelCase : Optional[int] = field(
default=3_27_68 , metadata={"""help""": """Number of examples to train the tokenizer on."""} )
__lowerCAmelCase : Optional[str] = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""} )
__lowerCAmelCase : Optional[bool] = field(default=__lowerCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
@dataclass
class a :
__lowerCAmelCase : Optional[str] = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} )
__lowerCAmelCase : Optional[str] = field(
default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""} )
__lowerCAmelCase : Optional[str] = field(
default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""} )
__lowerCAmelCase : Optional[int] = field(default=__lowerCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} )
@dataclass
class a :
__lowerCAmelCase : Optional[str] = field(
default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""} )
__lowerCAmelCase : Optional[str] = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""} )
__lowerCAmelCase : Optional[str] = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""} )
__lowerCAmelCase : Optional[bool] = field(default=__lowerCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
| 219
|
import unittest
from transformers import DonutProcessor
A__ = '''naver-clova-ix/donut-base'''
class a ( unittest.TestCase ):
def __lowerCamelCase ( self :Optional[int] ):
snake_case__ : str = DonutProcessor.from_pretrained(__lowercase )
def __lowerCamelCase ( self :int ):
snake_case__ : List[Any] = {
'''name''': '''John Doe''',
'''age''': '''99''',
'''city''': '''Atlanta''',
'''state''': '''GA''',
'''zip''': '''30301''',
'''phone''': '''123-4567''',
'''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}],
}
snake_case__ : List[Any] = (
'''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>'''
'''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>'''
'''<s_nicknames><s_nickname>Johnny</s_nickname>'''
'''<sep/><s_nickname>JD</s_nickname></s_nicknames>'''
)
snake_case__ : Any = self.processor.tokenajson(__lowercase )
self.assertDictEqual(__lowercase ,__lowercase )
| 219
| 1
|
from typing import Any
def A__ ( lowerCamelCase ) -> list[Any]:
if not input_list:
return []
UpperCamelCase_: Optional[Any] = [input_list.count(lowerCamelCase ) for value in input_list]
UpperCamelCase_: Tuple = max(lowerCamelCase ) # Gets the maximum count in the input list.
# Gets values of modes
return sorted({input_list[i] for i, value in enumerate(lowerCamelCase ) if value == y} )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 548
|
import random
import unittest
import torch
from diffusers import IFInpaintingSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class _UpperCamelCase ( _A , _A , unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase : str = IFInpaintingSuperResolutionPipeline
__UpperCamelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""}
__UpperCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""} )
__UpperCamelCase : Dict = PipelineTesterMixin.required_optional_params - {"""latents"""}
def lowerCAmelCase__ ( self : Union[str, Any] ):
return self._get_superresolution_dummy_components()
def lowerCAmelCase__ ( self : Dict , snake_case_ : Optional[int] , snake_case_ : str=0 ):
if str(snake_case_ ).startswith("""mps""" ):
UpperCamelCase_: Union[str, Any] = torch.manual_seed(snake_case_ )
else:
UpperCamelCase_: Tuple = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ )
UpperCamelCase_: Dict = floats_tensor((1, 3, 16, 16) , rng=random.Random(snake_case_ ) ).to(snake_case_ )
UpperCamelCase_: int = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ )
UpperCamelCase_: str = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ )
UpperCamelCase_: Dict = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""original_image""": original_image,
"""mask_image""": mask_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def lowerCAmelCase__ ( self : Tuple ):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
def lowerCAmelCase__ ( self : Union[str, Any] ):
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" )
def lowerCAmelCase__ ( self : List[Any] ):
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1 )
def lowerCAmelCase__ ( self : str ):
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def lowerCAmelCase__ ( self : str ):
self._test_save_load_local()
def lowerCAmelCase__ ( self : Union[str, Any] ):
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
| 548
| 1
|
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , )
@pytest.mark.usefixtures("sm_env" )
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue_model_parallelism.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
] )
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
if self.framework == "pytorch":
subprocess.run(
F'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='''utf-8''' , check=lowercase_ , )
assert hasattr(self , '''env''')
def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : Any):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = {
'''enabled''': True,
'''processes_per_host''': 8,
}
SCREAMING_SNAKE_CASE_ : Any = {
'''enabled''': True,
'''parameters''': {
'''microbatches''': 4,
'''placement_strategy''': '''spread''',
'''pipeline''': '''interleaved''',
'''optimize''': '''speed''',
'''partitions''': 4,
'''ddp''': True,
},
}
SCREAMING_SNAKE_CASE_ : Dict = {'''smdistributed''': {'''modelparallel''': smp_options}, '''mpi''': mpi_options}
SCREAMING_SNAKE_CASE_ : List[Any] = '''trainer''' if self.script == '''run_glue.py''' else '''smtrainer'''
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'{self.env.base_job_name}-{instance_count}-smp-{name_extension}' , instance_count=lowercase_ , instance_type=self.instance_type , debugger_hook_config=lowercase_ , hyperparameters={
**self.env.hyperparameters,
'''model_name_or_path''': self.model_name_or_path,
'''max_steps''': 500,
} , metric_definitions=self.env.metric_definitions , distribution=lowercase_ , py_version='''py36''' , )
def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : int):
'''simple docstring'''
TrainingJobAnalytics(lowercase_).export_csv(F'{self.env.test_path}/{job_name}_metrics.csv')
@parameterized.expand([(1,)])
def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Any):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = self.create_estimator(lowercase_)
# run training
estimator.fit()
# result dataframe
SCREAMING_SNAKE_CASE_ : List[str] = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe()
# extract kpis
SCREAMING_SNAKE_CASE_ : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''])
SCREAMING_SNAKE_CASE_ : int = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''])
# get train time from SageMaker job, this includes starting, preprocessing, stopping
SCREAMING_SNAKE_CASE_ : int = (
Session().describe_training_job(estimator.latest_training_job.name).get('''TrainingTimeInSeconds''' , 999999)
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy)
assert all(t <= self.results['''eval_loss'''] for t in eval_loss)
# dump tests result into json file to share in PR
with open(F'{estimator.latest_training_job.name}.json' , '''w''') as outfile:
json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , lowercase_)
| 714
|
"""simple docstring"""
# Algorithm for the pigeonhole sorting
def _A (__a ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = min(__a ) # min() finds the minimum value
SCREAMING_SNAKE_CASE_ : int = max(__a ) # max() finds the maximum value
SCREAMING_SNAKE_CASE_ : Dict = max_val - min_val + 1 # size is difference of max and min values plus one
# list of pigeonholes of size equal to the variable size
SCREAMING_SNAKE_CASE_ : Any = [0] * size
# Populate the pigeonholes.
for x in a:
assert isinstance(__a , __a ), "integers only please"
holes[x - min_val] += 1
# Putting the elements back into the array in an order.
SCREAMING_SNAKE_CASE_ : Any = 0
for count in range(__a ):
while holes[count] > 0:
holes[count] -= 1
SCREAMING_SNAKE_CASE_ : Dict = count + min_val
i += 1
def _A () -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[str] = [8, 3, 2, 7, 4, 6, 8]
pigeonhole_sort(__a )
print('''Sorted order is:''' , ''' '''.join(__a ) )
if __name__ == "__main__":
main()
| 176
| 0
|
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : str):
'''simple docstring'''
snake_case__ = """"""
snake_case__ = """"""
snake_case__ = []
snake_case__ = 0
snake_case__ = 2_5_6
snake_case__ = 0
snake_case__ = 0
snake_case__ = 0
snake_case__ = 0
def __magic_name__ ( self : List[str] , UpperCamelCase__ : str):
'''simple docstring'''
snake_case__ = cva.imread(UpperCamelCase__ , 0)
snake_case__ = copy.deepcopy(self.img)
snake_case__ , snake_case__ , snake_case__ = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="""x""")
snake_case__ = np.sum(UpperCamelCase__)
for i in range(len(UpperCamelCase__)):
snake_case__ = x[i] / self.k
self.sk += prk
snake_case__ = (self.L - 1) * self.sk
if self.rem != 0:
snake_case__ = int(last % last)
snake_case__ = int(last + 1 if self.rem >= 0.5 else last)
self.last_list.append(UpperCamelCase__)
snake_case__ = int(np.ma.count(self.img) / self.img[1].size)
snake_case__ = self.img[1].size
for i in range(self.number_of_cols):
for j in range(self.number_of_rows):
snake_case__ = self.img[j][i]
if num != self.last_list[num]:
snake_case__ = self.last_list[num]
cva.imwrite("""output_data/output.jpg""" , self.img)
def __magic_name__ ( self : Union[str, Any]):
'''simple docstring'''
plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6])
def __magic_name__ ( self : List[Any]):
'''simple docstring'''
cva.imshow("""Output-Image""" , self.img)
cva.imshow("""Input-Image""" , self.original_image)
cva.waitKey(5_0_0_0)
cva.destroyAllWindows()
if __name__ == "__main__":
a__ = os.path.join(os.path.basename(__file__), """image_data/input.jpg""")
a__ = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 654
|
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
a__ = """"""
a__ = """"""
a__ = """"""
a__ = 1 # (0 is vertical, 1 is horizontal)
def _UpperCAmelCase ( ):
snake_case__ , snake_case__ = get_dataset(a , a )
print("""Processing...""" )
snake_case__ , snake_case__ , snake_case__ = update_image_and_anno(a , a , a )
for index, image in enumerate(a ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
snake_case__ = random_chars(32 )
snake_case__ = paths[index].split(os.sep )[-1].rsplit(""".""" , 1 )[0]
snake_case__ = F'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}'''
cva.imwrite(F'''/{file_root}.jpg''' , a , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(F'''Success {index+1}/{len(a )} with {file_name}''' )
snake_case__ = []
for anno in new_annos[index]:
snake_case__ = F'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}'''
annos_list.append(a )
with open(F'''/{file_root}.txt''' , """w""" ) as outfile:
outfile.write("""\n""".join(line for line in annos_list ) )
def _UpperCAmelCase ( a : str , a : str ):
snake_case__ = []
snake_case__ = []
for label_file in glob.glob(os.path.join(a , """*.txt""" ) ):
snake_case__ = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0]
with open(a ) as in_file:
snake_case__ = in_file.readlines()
snake_case__ = os.path.join(a , F'''{label_name}.jpg''' )
snake_case__ = []
for obj_list in obj_lists:
snake_case__ = obj_list.rstrip("""\n""" ).split(""" """ )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(a )
labels.append(a )
return img_paths, labels
def _UpperCAmelCase ( a : list , a : list , a : int = 1 ):
snake_case__ = []
snake_case__ = []
snake_case__ = []
for idx in range(len(a ) ):
snake_case__ = []
snake_case__ = img_list[idx]
path_list.append(a )
snake_case__ = anno_list[idx]
snake_case__ = cva.imread(a )
if flip_type == 1:
snake_case__ = cva.flip(a , a )
for bbox in img_annos:
snake_case__ = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
snake_case__ = cva.flip(a , a )
for bbox in img_annos:
snake_case__ = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(a )
new_imgs_list.append(a )
return new_imgs_list, new_annos_lists, path_list
def _UpperCAmelCase ( a : int = 32 ):
assert number_char > 1, "The number of character should greater than 1"
snake_case__ = ascii_lowercase + digits
return "".join(random.choice(a ) for _ in range(a ) )
if __name__ == "__main__":
main()
print("""DONE ✅""")
| 654
| 1
|
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger(__name__)
def _lowerCamelCase ( A_ : List[Any] , A_ : int=False ) -> Tuple:
'''simple docstring'''
UpperCamelCase__ : Any =[]
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
("cls_token", "vit.embeddings.cls_token"),
("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
("pos_embed", "vit.embeddings.position_embeddings"),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("norm.weight", "layernorm.weight"),
("norm.bias", "layernorm.bias"),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
UpperCamelCase__ : Optional[int] =[(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("norm.weight", "vit.layernorm.weight"),
("norm.bias", "vit.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
] )
return rename_keys
def _lowerCamelCase ( A_ : Tuple , A_ : Tuple , A_ : List[Any]=False ) -> int:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
UpperCamelCase__ : Any =""
else:
UpperCamelCase__ : Optional[Any] ="vit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCamelCase__ : int =state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' )
UpperCamelCase__ : List[Any] =state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
UpperCamelCase__ : int =in_proj_weight[
: config.hidden_size, :
]
UpperCamelCase__ : Union[str, Any] =in_proj_bias[: config.hidden_size]
UpperCamelCase__ : Union[str, Any] =in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCamelCase__ : Dict =in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCamelCase__ : Union[str, Any] =in_proj_weight[
-config.hidden_size :, :
]
UpperCamelCase__ : Any =in_proj_bias[-config.hidden_size :]
def _lowerCamelCase ( A_ : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
UpperCamelCase__ : Union[str, Any] =["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(A_ , A_ )
def _lowerCamelCase ( A_ : Union[str, Any] , A_ : Dict , A_ : List[Any] ) -> int:
'''simple docstring'''
UpperCamelCase__ : int =dct.pop(A_ )
UpperCamelCase__ : Dict =val
def _lowerCamelCase ( ) -> int:
'''simple docstring'''
UpperCamelCase__ : Optional[Any] ="http://images.cocodataset.org/val2017/000000039769.jpg"
UpperCamelCase__ : Tuple =Image.open(requests.get(A_ , stream=A_ ).raw )
return im
@torch.no_grad()
def _lowerCamelCase ( A_ : int , A_ : Any , A_ : int=True ) -> Tuple:
'''simple docstring'''
UpperCamelCase__ : Optional[int] =ViTConfig()
# patch_size
if model_name[-1] == "8":
UpperCamelCase__ : Optional[int] =8
# set labels if required
if not base_model:
UpperCamelCase__ : int =1_0_0_0
UpperCamelCase__ : Dict ="huggingface/label-files"
UpperCamelCase__ : int ="imagenet-1k-id2label.json"
UpperCamelCase__ : List[str] =json.load(open(hf_hub_download(A_ , A_ , repo_type="dataset" ) , "r" ) )
UpperCamelCase__ : int ={int(A_ ): v for k, v in idalabel.items()}
UpperCamelCase__ : List[str] =idalabel
UpperCamelCase__ : Dict ={v: k for k, v in idalabel.items()}
# size of the architecture
if model_name in ["dino_vits8", "dino_vits16"]:
UpperCamelCase__ : Optional[Any] =3_8_4
UpperCamelCase__ : Optional[Any] =1_5_3_6
UpperCamelCase__ : Dict =1_2
UpperCamelCase__ : int =6
# load original model from torch hub
UpperCamelCase__ : Tuple =torch.hub.load("facebookresearch/dino:main" , A_ )
original_model.eval()
# load state_dict of original model, remove and rename some keys
UpperCamelCase__ : Dict =original_model.state_dict()
if base_model:
remove_classification_head_(A_ )
UpperCamelCase__ : List[str] =create_rename_keys(A_ , base_model=A_ )
for src, dest in rename_keys:
rename_key(A_ , A_ , A_ )
read_in_q_k_v(A_ , A_ , A_ )
# load HuggingFace model
if base_model:
UpperCamelCase__ : Tuple =ViTModel(A_ , add_pooling_layer=A_ ).eval()
else:
UpperCamelCase__ : Optional[int] =ViTForImageClassification(A_ ).eval()
model.load_state_dict(A_ )
# Check outputs on an image, prepared by ViTImageProcessor
UpperCamelCase__ : List[Any] =ViTImageProcessor()
UpperCamelCase__ : Any =image_processor(images=prepare_img() , return_tensors="pt" )
UpperCamelCase__ : List[str] =encoding["pixel_values"]
UpperCamelCase__ : Optional[int] =model(A_ )
if base_model:
UpperCamelCase__ : Any =original_model(A_ )
assert torch.allclose(A_ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 )
else:
UpperCamelCase__ : Tuple =original_model(A_ )
assert logits.shape == outputs.logits.shape
assert torch.allclose(A_ , outputs.logits , atol=1E-3 )
Path(A_ ).mkdir(exist_ok=A_ )
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(A_ )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(A_ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""dino_vitb16""",
type=str,
help="""Name of the model trained with DINO you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--base_model""",
action="""store_true""",
help="""Whether to only convert the base model (no projection head weights).""",
)
parser.set_defaults(base_model=True)
__UpperCAmelCase = parser.parse_args()
convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
| 721
|
from argparse import ArgumentParser
from datasets.commands.convert import ConvertCommand
from datasets.commands.dummy_data import DummyDataCommand
from datasets.commands.env import EnvironmentCommand
from datasets.commands.run_beam import RunBeamCommand
from datasets.commands.test import TestCommand
from datasets.utils.logging import set_verbosity_info
def _lowerCamelCase ( A_ : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
return {key.lstrip("-" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )}
def _lowerCamelCase ( ) -> Union[str, Any]:
'''simple docstring'''
UpperCamelCase__ : Tuple =ArgumentParser(
"HuggingFace Datasets CLI tool" , usage="datasets-cli <command> [<args>]" , allow_abbrev=A_ )
UpperCamelCase__ : Tuple =parser.add_subparsers(help="datasets-cli command helpers" )
set_verbosity_info()
# Register commands
ConvertCommand.register_subcommand(A_ )
EnvironmentCommand.register_subcommand(A_ )
TestCommand.register_subcommand(A_ )
RunBeamCommand.register_subcommand(A_ )
DummyDataCommand.register_subcommand(A_ )
# Parse args
UpperCamelCase__ , UpperCamelCase__ : List[Any] =parser.parse_known_args()
if not hasattr(A_ , "func" ):
parser.print_help()
exit(1 )
UpperCamelCase__ : Union[str, Any] =parse_unknown_args(A_ )
# Run
UpperCamelCase__ : Tuple =args.func(A_ , **A_ )
service.run()
if __name__ == "__main__":
main()
| 582
| 0
|
'''simple docstring'''
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
lowerCamelCase : Dict = logging.get_logger(__name__)
lowerCamelCase : Union[str, Any] = {
'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json',
# See all umt5 models at https://huggingface.co/models?filter=umt5
}
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
lowerCAmelCase__ : List[str] = """umt5"""
lowerCAmelCase__ : List[str] = ["""past_key_values"""]
def __init__(self : Optional[Any] , UpperCamelCase : List[Any]=250112 , UpperCamelCase : List[str]=512 , UpperCamelCase : Union[str, Any]=64 , UpperCamelCase : Tuple=1024 , UpperCamelCase : Optional[Any]=8 , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : List[Any]=6 , UpperCamelCase : str=32 , UpperCamelCase : Optional[Any]=128 , UpperCamelCase : str=0.1 , UpperCamelCase : Optional[int]=1E-6 , UpperCamelCase : List[Any]=1.0 , UpperCamelCase : List[str]="gated-gelu" , UpperCamelCase : Dict=True , UpperCamelCase : List[str]=True , UpperCamelCase : List[Any]="T5Tokenizer" , UpperCamelCase : int=True , UpperCamelCase : List[Any]=0 , UpperCamelCase : Optional[Any]=1 , UpperCamelCase : Dict=0 , **UpperCamelCase : List[str] , ):
'''simple docstring'''
super().__init__(
is_encoder_decoder=UpperCamelCase , tokenizer_class=UpperCamelCase , tie_word_embeddings=UpperCamelCase , pad_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , decoder_start_token_id=UpperCamelCase , **UpperCamelCase , )
lowercase__ = vocab_size
lowercase__ = d_model
lowercase__ = d_kv
lowercase__ = d_ff
lowercase__ = num_layers
lowercase__ = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
lowercase__ = num_heads
lowercase__ = relative_attention_num_buckets
lowercase__ = relative_attention_max_distance
lowercase__ = dropout_rate
lowercase__ = layer_norm_epsilon
lowercase__ = initializer_factor
lowercase__ = feed_forward_proj
lowercase__ = use_cache
lowercase__ = self.feed_forward_proj.split('''-''' )
lowercase__ = act_info[-1]
lowercase__ = act_info[0] == '''gated'''
if len(UpperCamelCase ) > 1 and act_info[0] != "gated" or len(UpperCamelCase ) > 2:
raise ValueError(
f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."
'''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '''
'''\'gated-gelu\' or \'relu\'''' )
if feed_forward_proj == "gated-gelu":
lowercase__ = '''gelu_new'''
@property
def UpperCamelCase__ (self : List[str] ):
'''simple docstring'''
return self.d_model
@property
def UpperCamelCase__ (self : Any ):
'''simple docstring'''
return self.num_heads
@property
def UpperCamelCase__ (self : Optional[Any] ):
'''simple docstring'''
return self.num_layers
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = {
'''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''},
'''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''},
}
if self.use_past:
lowercase__ = '''past_encoder_sequence + sequence'''
lowercase__ = {0: '''batch'''}
lowercase__ = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
lowercase__ = {0: '''batch''', 1: '''decoder_sequence'''}
lowercase__ = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(UpperCamelCase , direction='''inputs''' )
return common_inputs
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
return 13
@property
def UpperCamelCase__ (self : Optional[Any] ):
'''simple docstring'''
return 5E-4
| 460
|
'''simple docstring'''
def _SCREAMING_SNAKE_CASE (A ) -> bool:
"""simple docstring"""
if not isinstance(A , A ):
raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' )
if len(A ) == 0:
raise ValueError('''Input list must be a non empty list''' )
if len(A ) == 1:
return True
lowercase__ = series[1] - series[0]
for index in range(len(A ) - 1 ):
if series[index + 1] - series[index] != common_diff:
return False
return True
def _SCREAMING_SNAKE_CASE (A ) -> float:
"""simple docstring"""
if not isinstance(A , A ):
raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' )
if len(A ) == 0:
raise ValueError('''Input list must be a non empty list''' )
lowercase__ = 0
for val in series:
answer += val
return answer / len(A )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 460
| 1
|
"""simple docstring"""
from datetime import datetime as dt
import os
from github import Github
_a : List[Any] = [
"""good first issue""",
"""good second issue""",
"""good difficult issue""",
"""feature request""",
"""new model""",
"""wip""",
]
def a__ ( ):
"""simple docstring"""
_snake_case : Union[str, Any] = Github(os.environ["GITHUB_TOKEN"] )
_snake_case : Any = g.get_repo("huggingface/transformers" )
_snake_case : Dict = repo.get_issues(state="open" )
for issue in open_issues:
_snake_case : List[str] = sorted([comment for comment in issue.get_comments()] , key=lambda a : i.created_at , reverse=a )
_snake_case : Tuple = comments[0] if len(a ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state="closed" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
"This issue has been automatically marked as stale because it has not had "
"recent activity. If you think this still needs to be addressed "
"please comment on this thread.\n\nPlease note that issues that do not follow the "
"[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) "
"are likely to be ignored." )
if __name__ == "__main__":
main()
| 87
|
"""simple docstring"""
import numpy as np
import torch
from torch.utils.data import Dataset, IterableDataset
from ..utils.generic import ModelOutput
class _UpperCAmelCase ( _snake_case):
def __init__( self , snake_case_ , snake_case_ , snake_case_ ):
_snake_case : Optional[int] = dataset
_snake_case : str = process
_snake_case : int = params
def __len__( self ):
return len(self.dataset )
def __getitem__( self , snake_case_ ):
_snake_case : Union[str, Any] = self.dataset[i]
_snake_case : Optional[Any] = self.process(snake_case_ , **self.params )
return processed
class _UpperCAmelCase ( _snake_case):
def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=None ):
_snake_case : Union[str, Any] = loader
_snake_case : Tuple = infer
_snake_case : List[Any] = params
if loader_batch_size == 1:
# Let's spare some time by deactivating altogether
_snake_case : int = None
_snake_case : int = loader_batch_size
# Internal bookkeeping
_snake_case : Any = None
_snake_case : Dict = None
def __len__( self ):
return len(self.loader )
def __iter__( self ):
_snake_case : int = iter(self.loader )
return self
def lowerCamelCase__ ( self ):
if isinstance(self._loader_batch_data , torch.Tensor ):
# Batch data is simple tensor, just fetch the slice
_snake_case : List[Any] = self._loader_batch_data[self._loader_batch_index]
else:
# Batch data is assumed to be BaseModelOutput (or dict)
_snake_case : int = {}
for k, element in self._loader_batch_data.items():
if isinstance(snake_case_ , snake_case_ ):
# Convert ModelOutput to tuple first
_snake_case : Tuple = element.to_tuple()
if isinstance(element[0] , torch.Tensor ):
_snake_case : Union[str, Any] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
_snake_case : int = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(snake_case_ , snake_case_ ):
# Those are stored as lists of tensors so need specific unbatching.
if isinstance(element[0] , torch.Tensor ):
_snake_case : Tuple = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
_snake_case : Tuple = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if element is None:
# This can happen for optional data that get passed around
_snake_case : Tuple = None
elif isinstance(element[self._loader_batch_index] , torch.Tensor ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
_snake_case : List[Any] = element[self._loader_batch_index].unsqueeze(0 )
elif isinstance(element[self._loader_batch_index] , np.ndarray ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
_snake_case : Union[str, Any] = np.expand_dims(element[self._loader_batch_index] , 0 )
else:
# This is typically a list, so no need to `unsqueeze`.
_snake_case : List[Any] = element[self._loader_batch_index]
# Recreate the element by reusing the original class to make it look
# batch_size=1
_snake_case : int = self._loader_batch_data.__class__(snake_case_ )
self._loader_batch_index += 1
return result
def lowerCamelCase__ ( self ):
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
# We are currently unrolling a batch so we just need to return
# the current item within a batch
return self.loader_batch_item()
# We're out of items within a batch
_snake_case : Tuple = next(self.iterator )
_snake_case : Any = self.infer(snake_case_ , **self.params )
# We now have a batch of "inferred things".
if self.loader_batch_size is not None:
# Try to infer the size of the batch
if isinstance(snake_case_ , torch.Tensor ):
_snake_case : Union[str, Any] = processed
else:
_snake_case : Optional[int] = list(processed.keys() )[0]
_snake_case : List[str] = processed[key]
if isinstance(snake_case_ , snake_case_ ):
_snake_case : Dict = len(snake_case_ )
else:
_snake_case : Optional[int] = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
_snake_case : Union[str, Any] = observed_batch_size
# Setting internal index to unwrap the batch
_snake_case : str = processed
_snake_case : List[Any] = 0
return self.loader_batch_item()
else:
# We're not unrolling batches
return processed
class _UpperCAmelCase ( _snake_case):
def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=None ):
super().__init__(snake_case_ , snake_case_ , snake_case_ )
def __iter__( self ):
_snake_case : Tuple = iter(self.loader )
_snake_case : List[Any] = None
return self
def lowerCamelCase__ ( self ):
if self.subiterator is None:
_snake_case : Optional[Any] = self.infer(next(self.iterator ) , **self.params )
try:
# Try to return next item
_snake_case : Union[str, Any] = next(self.subiterator )
except StopIteration:
# When a preprocess iterator ends, we can start lookig at the next item
# ChunkIterator will keep feeding until ALL elements of iterator
# all have created their subiterator and have been iterating against.
#
# Another way to look at it, is we're basically flattening lists of lists
# into a single list, but with generators
_snake_case : str = self.infer(next(self.iterator ) , **self.params )
_snake_case : Tuple = next(self.subiterator )
return processed
class _UpperCAmelCase ( _snake_case):
def __iter__( self ):
_snake_case : Optional[Any] = iter(self.loader )
return self
def lowerCamelCase__ ( self ):
# Extremely similar to PipelineIterator in its unpacking mechanism
# BUT, we have an extra required item which is the presence of `is_last`
# That is because everything is flattened by `PipelineChunkIterator` we
# need to keep track of how to regroup here in the original `process`
# boundaries so that `process` and `postprocess` see the same data.
# This iterator accumulates items (possibly while unbatching) until it
# its a `is_last` and then just passes it on to the caller.
_snake_case : Optional[Any] = False
_snake_case : Tuple = []
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
while self._loader_batch_index < self.loader_batch_size:
_snake_case : Union[str, Any] = self.loader_batch_item()
_snake_case : str = item.pop("is_last" )
accumulator.append(snake_case_ )
if is_last:
return accumulator
while not is_last:
_snake_case : List[str] = self.infer(next(self.iterator ) , **self.params )
if self.loader_batch_size is not None:
if isinstance(snake_case_ , torch.Tensor ):
_snake_case : Union[str, Any] = processed
else:
_snake_case : Tuple = list(processed.keys() )[0]
_snake_case : Tuple = processed[key]
if isinstance(snake_case_ , snake_case_ ):
_snake_case : Any = len(snake_case_ )
else:
_snake_case : List[Any] = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
_snake_case : Dict = observed_batch_size
_snake_case : List[Any] = processed
_snake_case : List[str] = 0
while self._loader_batch_index < self.loader_batch_size:
_snake_case : Union[str, Any] = self.loader_batch_item()
_snake_case : int = item.pop("is_last" )
accumulator.append(snake_case_ )
if is_last:
return accumulator
else:
_snake_case : Dict = processed
_snake_case : Dict = item.pop("is_last" )
accumulator.append(snake_case_ )
return accumulator
class _UpperCAmelCase ( _snake_case):
def __init__( self , snake_case_ , snake_case_ ):
_snake_case : str = dataset
_snake_case : Any = key
def __len__( self ):
return len(self.dataset )
def __getitem__( self , snake_case_ ):
return self.dataset[i][self.key]
class _UpperCAmelCase ( _snake_case):
def __init__( self , snake_case_ , snake_case_ , snake_case_ ):
_snake_case : int = dataset
_snake_case : Any = keya
_snake_case : int = keya
def __len__( self ):
return len(self.dataset )
def __getitem__( self , snake_case_ ):
return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
| 87
| 1
|
'''simple docstring'''
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
lowerCamelCase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, 'utils'))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
lowerCamelCase_ = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n'
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
def lowerCAmelCase_ ( self : Any ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) )
_SCREAMING_SNAKE_CASE = self.diffusers_dir
shutil.copy(
os.path.join(__lowerCamelCase , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , )
def lowerCAmelCase_ ( self : Tuple ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE = "src/diffusers"
shutil.rmtree(self.diffusers_dir )
def lowerCAmelCase_ ( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int=None ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code
if overwrite_result is not None:
_SCREAMING_SNAKE_CASE = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result
_SCREAMING_SNAKE_CASE = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 )
_SCREAMING_SNAKE_CASE = black.format_str(__lowerCamelCase , mode=__lowerCamelCase )
_SCREAMING_SNAKE_CASE = os.path.join(self.diffusers_dir , "new_code.py" )
with open(__lowerCamelCase , "w" , newline="\n" ) as f:
f.write(__lowerCamelCase )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(__lowerCamelCase ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=__lowerCamelCase )
with open(__lowerCamelCase , "r" ) as f:
self.assertTrue(f.read() , __lowerCamelCase )
def lowerCAmelCase_ ( self : List[str] ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" )
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def lowerCAmelCase_ ( self : List[str] ):
"""simple docstring"""
# Base copy consistency
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , )
# With no empty line at the end
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , __lowerCamelCase , )
# Copy consistency with rename
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , __lowerCamelCase ) , )
# Copy consistency with a really long name
_SCREAMING_SNAKE_CASE = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason"
self.check_copy_consistency(
F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub("Bert" , __lowerCamelCase , __lowerCamelCase ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , __lowerCamelCase , overwrite_result=re.sub("DDPM" , "Test" , __lowerCamelCase ) , )
| 418
|
'''simple docstring'''
from heapq import heappop, heappush
import numpy as np
def SCREAMING_SNAKE_CASE_ ( __A : np.ndarray , __A : tuple[int, int] , __A : tuple[int, int] , __A : bool , ) -> tuple[float | int, list[tuple[int, int]]]:
_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = grid.shape
_SCREAMING_SNAKE_CASE = [-1, 1, 0, 0]
_SCREAMING_SNAKE_CASE = [0, 0, -1, 1]
if allow_diagonal:
dx += [-1, -1, 1, 1]
dy += [-1, 1, -1, 1]
_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = [(0, source)], set()
_SCREAMING_SNAKE_CASE = np.full((rows, cols) , np.inf )
_SCREAMING_SNAKE_CASE = 0
_SCREAMING_SNAKE_CASE = np.empty((rows, cols) , dtype=__A )
_SCREAMING_SNAKE_CASE = None
while queue:
((_SCREAMING_SNAKE_CASE), (_SCREAMING_SNAKE_CASE)) = heappop(__A )
if (x, y) in visited:
continue
visited.add((x, y) )
if (x, y) == destination:
_SCREAMING_SNAKE_CASE = []
while (x, y) != source:
path.append((x, y) )
_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = predecessors[x, y]
path.append(__A ) # add the source manually
path.reverse()
return matrix[destination], path
for i in range(len(__A ) ):
_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = x + dx[i], y + dy[i]
if 0 <= nx < rows and 0 <= ny < cols:
_SCREAMING_SNAKE_CASE = grid[nx][ny]
if next_node == 1 and matrix[nx, ny] > dist + 1:
heappush(__A , (dist + 1, (nx, ny)) )
_SCREAMING_SNAKE_CASE = dist + 1
_SCREAMING_SNAKE_CASE = (x, y)
return np.inf, []
if __name__ == "__main__":
import doctest
doctest.testmod()
| 418
| 1
|
import heapq as hq
import math
from collections.abc import Iterator
class _a :
def __init__( self: Optional[Any] , UpperCamelCase_: int ) -> Tuple:
"""simple docstring"""
lowercase__ = str(id_ )
lowercase__ = None
lowercase__ = None
lowercase__ = []
lowercase__ = {} # {vertex:distance}
def __lt__( self: Tuple , UpperCamelCase_: Dict ) -> List[Any]:
"""simple docstring"""
return self.key < other.key
def __repr__( self: Optional[int] ) -> int:
"""simple docstring"""
return self.id
def lowerCamelCase_ ( self: str , UpperCamelCase_: Dict ) -> List[str]:
"""simple docstring"""
self.neighbors.append(UpperCamelCase_ )
def lowerCamelCase_ ( self: Any , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Union[str, Any] ) -> Tuple:
"""simple docstring"""
lowercase__ = weight
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
"""simple docstring"""
graph[a - 1].add_neighbor(graph[b - 1] )
graph[b - 1].add_neighbor(graph[a - 1] )
# add the edges:
graph[a - 1].add_edge(graph[b - 1] , SCREAMING_SNAKE_CASE )
graph[b - 1].add_edge(graph[a - 1] , SCREAMING_SNAKE_CASE )
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase__ = []
for u in graph:
lowercase__ = math.inf
lowercase__ = None
lowercase__ = 0
lowercase__ = graph[:]
while q:
lowercase__ = min(SCREAMING_SNAKE_CASE )
q.remove(SCREAMING_SNAKE_CASE )
for v in u.neighbors:
if (v in q) and (u.edges[v.id] < v.key):
lowercase__ = u
lowercase__ = u.edges[v.id]
for i in range(1 , len(SCREAMING_SNAKE_CASE ) ):
a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) )
return a
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
"""simple docstring"""
for u in graph:
lowercase__ = math.inf
lowercase__ = None
lowercase__ = 0
lowercase__ = list(SCREAMING_SNAKE_CASE )
hq.heapify(SCREAMING_SNAKE_CASE )
while h:
lowercase__ = hq.heappop(SCREAMING_SNAKE_CASE )
for v in u.neighbors:
if (v in h) and (u.edges[v.id] < v.key):
lowercase__ = u
lowercase__ = u.edges[v.id]
hq.heapify(SCREAMING_SNAKE_CASE )
for i in range(1 , len(SCREAMING_SNAKE_CASE ) ):
yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1)
def _a ( ):
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 710
|
from __future__ import annotations
import inspect
import unittest
from typing import List, Tuple
from transformers import RegNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _a :
def __init__( self: str , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[Any]=3 , UpperCamelCase_: int=32 , UpperCamelCase_: Union[str, Any]=3 , UpperCamelCase_: str=10 , UpperCamelCase_: Tuple=[10, 20, 30, 40] , UpperCamelCase_: str=[1, 1, 2, 1] , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Optional[int]=True , UpperCamelCase_: str="relu" , UpperCamelCase_: Optional[Any]=3 , UpperCamelCase_: Union[str, Any]=None , ) -> Dict:
"""simple docstring"""
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = image_size
lowercase__ = num_channels
lowercase__ = embeddings_size
lowercase__ = hidden_sizes
lowercase__ = depths
lowercase__ = is_training
lowercase__ = use_labels
lowercase__ = hidden_act
lowercase__ = num_labels
lowercase__ = scope
lowercase__ = len(UpperCamelCase_ )
def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase__ = None
if self.use_labels:
lowercase__ = ids_tensor([self.batch_size] , self.num_labels )
lowercase__ = self.get_config()
return config, pixel_values, labels
def lowerCamelCase_ ( self: int ) -> Dict:
"""simple docstring"""
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , )
def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Dict , UpperCamelCase_: List[str] , UpperCamelCase_: Any ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = TFRegNetModel(config=UpperCamelCase_ )
lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCamelCase_ ( self: str , UpperCamelCase_: Dict , UpperCamelCase_: Any , UpperCamelCase_: Any ) -> Tuple:
"""simple docstring"""
lowercase__ = self.num_labels
lowercase__ = TFRegNetForImageClassification(UpperCamelCase_ )
lowercase__ = model(UpperCamelCase_ , labels=UpperCamelCase_ , training=UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase_ ( self: Optional[Any] ) -> List[Any]:
"""simple docstring"""
lowercase__ = self.prepare_config_and_inputs()
lowercase__ , lowercase__ , lowercase__ = config_and_inputs
lowercase__ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class _a ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ):
_lowercase : Optional[int] = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else ()
_lowercase : str = (
{'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification}
if is_tf_available()
else {}
)
_lowercase : Union[str, Any] = False
_lowercase : Optional[int] = False
_lowercase : List[Any] = False
_lowercase : Dict = False
_lowercase : List[str] = False
def lowerCamelCase_ ( self: Dict ) -> Dict:
"""simple docstring"""
lowercase__ = TFRegNetModelTester(self )
lowercase__ = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ )
def lowerCamelCase_ ( self: str ) -> Optional[int]:
"""simple docstring"""
return
@unittest.skip(reason='''RegNet does not use inputs_embeds''' )
def lowerCamelCase_ ( self: Optional[int] ) -> Any:
"""simple docstring"""
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , )
@slow
def lowerCamelCase_ ( self: Tuple ) -> Dict:
"""simple docstring"""
super().test_keras_fit()
@unittest.skip(reason='''RegNet does not support input and output embeddings''' )
def lowerCamelCase_ ( self: Dict ) -> Optional[Any]:
"""simple docstring"""
pass
def lowerCamelCase_ ( self: Optional[int] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ = model_class(UpperCamelCase_ )
lowercase__ = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase__ = [*signature.parameters.keys()]
lowercase__ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , UpperCamelCase_ )
def lowerCamelCase_ ( self: int ) -> str:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase_ )
def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]:
"""simple docstring"""
def check_hidden_states_output(UpperCamelCase_: List[str] , UpperCamelCase_: Any , UpperCamelCase_: Dict ):
lowercase__ = model_class(UpperCamelCase_ )
lowercase__ = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) , training=UpperCamelCase_ )
lowercase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowercase__ = self.model_tester.num_stages
self.assertEqual(len(UpperCamelCase_ ) , expected_num_stages + 1 )
# RegNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , )
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowercase__ = ['''basic''', '''bottleneck''']
for model_class in self.all_model_classes:
for layer_type in layers_type:
lowercase__ = layer_type
lowercase__ = True
check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase__ = True
check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase_ ( self: List[str] ) -> Dict:
"""simple docstring"""
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
def check_equivalence(UpperCamelCase_: int , UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[Any]={} ):
lowercase__ = model(UpperCamelCase_ , return_dict=UpperCamelCase_ , **UpperCamelCase_ )
lowercase__ = model(UpperCamelCase_ , return_dict=UpperCamelCase_ , **UpperCamelCase_ ).to_tuple()
def recursive_check(UpperCamelCase_: Optional[int] , UpperCamelCase_: Any ):
if isinstance(UpperCamelCase_ , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(UpperCamelCase_ , UpperCamelCase_ ):
recursive_check(UpperCamelCase_ , UpperCamelCase_ )
elif tuple_object is None:
return
else:
self.assertTrue(
all(tf.equal(UpperCamelCase_ , UpperCamelCase_ ) ) , msg=(
'''Tuple and dict output are not equal. Difference:'''
f' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}'
) , )
recursive_check(UpperCamelCase_ , UpperCamelCase_ )
for model_class in self.all_model_classes:
lowercase__ = model_class(UpperCamelCase_ )
lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ )
lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ )
check_equivalence(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ )
lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ )
check_equivalence(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ )
lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ )
check_equivalence(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , {'''output_hidden_states''': True} )
lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ )
lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ )
check_equivalence(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , {'''output_hidden_states''': True} )
def lowerCamelCase_ ( self: List[Any] ) -> str:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ )
@slow
def lowerCamelCase_ ( self: List[str] ) -> Dict:
"""simple docstring"""
for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ = TFRegNetModel.from_pretrained(UpperCamelCase_ )
self.assertIsNotNone(UpperCamelCase_ )
def _a ( ):
"""simple docstring"""
lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class _a ( unittest.TestCase ):
@cached_property
def lowerCamelCase_ ( self: Any ) -> Optional[int]:
"""simple docstring"""
return (
AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def lowerCamelCase_ ( self: Dict ) -> Dict:
"""simple docstring"""
lowercase__ = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
lowercase__ = self.default_image_processor
lowercase__ = prepare_img()
lowercase__ = image_processor(images=UpperCamelCase_ , return_tensors='''tf''' )
# forward pass
lowercase__ = model(**UpperCamelCase_ , training=UpperCamelCase_ )
# verify the logits
lowercase__ = tf.TensorShape((1, 1_000) )
self.assertEqual(outputs.logits.shape , UpperCamelCase_ )
lowercase__ = tf.constant([-0.4180, -1.5051, -3.4836] )
tf.debugging.assert_near(outputs.logits[0, :3] , UpperCamelCase_ , atol=1E-4 )
| 429
| 0
|
'''simple docstring'''
from typing import Optional
from torch import nn
from .transformer_ad import TransformeraDModel, TransformeraDModelOutput
class lowerCAmelCase ( nn.Module):
def __init__( self , __SCREAMING_SNAKE_CASE = 16 , __SCREAMING_SNAKE_CASE = 88 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = 0.0 , __SCREAMING_SNAKE_CASE = 32 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "geglu" , __SCREAMING_SNAKE_CASE = None , ) -> Optional[int]:
'''simple docstring'''
super().__init__()
__snake_case = nn.ModuleList(
[
TransformeraDModel(
num_attention_heads=__SCREAMING_SNAKE_CASE , attention_head_dim=__SCREAMING_SNAKE_CASE , in_channels=__SCREAMING_SNAKE_CASE , num_layers=__SCREAMING_SNAKE_CASE , dropout=__SCREAMING_SNAKE_CASE , norm_num_groups=__SCREAMING_SNAKE_CASE , cross_attention_dim=__SCREAMING_SNAKE_CASE , attention_bias=__SCREAMING_SNAKE_CASE , sample_size=__SCREAMING_SNAKE_CASE , num_vector_embeds=__SCREAMING_SNAKE_CASE , activation_fn=__SCREAMING_SNAKE_CASE , num_embeds_ada_norm=__SCREAMING_SNAKE_CASE , )
for _ in range(2 )
] )
# Variables that can be set by a pipeline:
# The ratio of transformer1 to transformer2's output states to be combined during inference
__snake_case = 0.5
# The shape of `encoder_hidden_states` is expected to be
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
__snake_case = [77, 257]
# Which transformer to use to encode which condition.
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
__snake_case = [1, 0]
def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE = True , ) -> List[str]:
'''simple docstring'''
__snake_case = hidden_states
__snake_case = []
__snake_case = 0
# attention_mask is not used yet
for i in range(2 ):
# for each of the two transformers, pass the corresponding condition tokens
__snake_case = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
__snake_case = self.transformer_index_for_condition[i]
__snake_case = self.transformers[transformer_index](
__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , timestep=__SCREAMING_SNAKE_CASE , cross_attention_kwargs=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , )[0]
encoded_states.append(encoded_state - input_states )
tokens_start += self.condition_lengths[i]
__snake_case = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
__snake_case = output_states + input_states
if not return_dict:
return (output_states,)
return TransformeraDModelOutput(sample=__SCREAMING_SNAKE_CASE )
| 24
|
import argparse
import logging
import pickle
from collections import Counter
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO
)
_lowerCamelCase = logging.getLogger(__name__)
if __name__ == "__main__":
_lowerCamelCase = argparse.ArgumentParser(
description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)'
)
parser.add_argument(
'--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.'
)
parser.add_argument(
'--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.'
)
parser.add_argument('--vocab_size', default=30522, type=int)
_lowerCamelCase = parser.parse_args()
logger.info(F'''Loading data from {args.data_file}''')
with open(args.data_file, 'rb') as fp:
_lowerCamelCase = pickle.load(fp)
logger.info('Counting occurrences for MLM.')
_lowerCamelCase = Counter()
for tk_ids in data:
counter.update(tk_ids)
_lowerCamelCase = [0] * args.vocab_size
for k, v in counter.items():
_lowerCamelCase = v
logger.info(F'''Dump to {args.token_counts_dump}''')
with open(args.token_counts_dump, 'wb') as handle:
pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
| 6
| 0
|
'''simple docstring'''
import argparse
import logging
from collections import namedtuple
import torch
from model_bertabs import BertAbsSummarizer
from models.model_builder import AbsSummarizer # The authors' implementation
from transformers import BertTokenizer
logging.basicConfig(level=logging.INFO)
lowercase = logging.getLogger(__name__)
lowercase = '''Hello world! cécé herlolip'''
lowercase = namedtuple(
'''BertAbsConfig''',
[
'''temp_dir''',
'''large''',
'''use_bert_emb''',
'''finetune_bert''',
'''encoder''',
'''share_emb''',
'''max_pos''',
'''enc_layers''',
'''enc_hidden_size''',
'''enc_heads''',
'''enc_ff_size''',
'''enc_dropout''',
'''dec_layers''',
'''dec_hidden_size''',
'''dec_heads''',
'''dec_ff_size''',
'''dec_dropout''',
],
)
def UpperCAmelCase_ ( lowercase__ , lowercase__ ):
'''simple docstring'''
a_ =BertAbsConfig(
temp_dir="." , finetune_bert=lowercase__ , large=lowercase__ , share_emb=lowercase__ , use_bert_emb=lowercase__ , encoder="bert" , max_pos=5_1_2 , enc_layers=6 , enc_hidden_size=5_1_2 , enc_heads=8 , enc_ff_size=5_1_2 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_6_8 , dec_heads=8 , dec_ff_size=2_0_4_8 , dec_dropout=0.2 , )
a_ =torch.load(lowercase__ , lambda lowercase__ , lowercase__ : storage )
a_ =AbsSummarizer(lowercase__ , torch.device("cpu" ) , lowercase__ )
original.eval()
a_ =BertAbsSummarizer(lowercase__ , torch.device("cpu" ) )
new_model.eval()
# -------------------
# Convert the weights
# -------------------
logging.info("convert the model" )
new_model.bert.load_state_dict(original.bert.state_dict() )
new_model.decoder.load_state_dict(original.decoder.state_dict() )
new_model.generator.load_state_dict(original.generator.state_dict() )
# ----------------------------------
# Make sure the outpus are identical
# ----------------------------------
logging.info("Make sure that the models' outputs are identical" )
a_ =BertTokenizer.from_pretrained("bert-base-uncased" )
# prepare the model inputs
a_ =tokenizer.encode("This is sample éàalj'-." )
encoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(lowercase__ )) )
a_ =torch.tensor(lowercase__ ).unsqueeze(0 )
a_ =tokenizer.encode("This is sample 3 éàalj'-." )
decoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(lowercase__ )) )
a_ =torch.tensor(lowercase__ ).unsqueeze(0 )
# failsafe to make sure the weights reset does not affect the
# loaded weights.
assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0
# forward pass
a_ =encoder_input_ids
a_ =decoder_input_ids
a_ =a_ =None
a_ =None
a_ =a_ =None
a_ =a_ =None
a_ =None
# The original model does not apply the geneator layer immediatly but rather in
# the beam search (where it combines softmax + linear layer). Since we already
# apply the softmax in our generation process we only apply the linear layer here.
# We make sure that the outputs of the full stack are identical
a_ =original(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ )[0]
a_ =original.generator(lowercase__ )
a_ =new_model(
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ )[0]
a_ =new_model.generator(lowercase__ )
a_ =torch.max(torch.abs(output_converted_model - output_original_model ) ).item()
print("Maximum absolute difference beween weights: {:.2f}".format(lowercase__ ) )
a_ =torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item()
print("Maximum absolute difference beween weights: {:.2f}".format(lowercase__ ) )
a_ =torch.allclose(lowercase__ , lowercase__ , atol=1E-3 )
if are_identical:
logging.info("all weights are equal up to 1e-3" )
else:
raise ValueError("the weights are different. The new model is likely different from the original one." )
# The model has been saved with torch.save(model) and this is bound to the exact
# directory structure. We save the state_dict instead.
logging.info("saving the model's state dictionary" )
torch.save(
new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin" )
if __name__ == "__main__":
lowercase = argparse.ArgumentParser()
parser.add_argument(
'''--bertabs_checkpoint_path''',
default=None,
type=str,
required=True,
help='''Path the official PyTorch dump.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=str,
required=True,
help='''Path to the output PyTorch model.''',
)
lowercase = parser.parse_args()
convert_bertabs_checkpoints(
args.bertabs_checkpoint_path,
args.pytorch_dump_folder_path,
)
| 711
|
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
lowercase = {
'''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''',
'''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''',
'''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''',
'''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''',
'''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''',
'''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''',
'''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''',
'''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''',
}
class UpperCAmelCase ( __a):
'''simple docstring'''
__magic_name__ : int = "albert"
def __init__( self , lowerCAmelCase_=3_0_0_0_0 , lowerCAmelCase_=1_2_8 , lowerCAmelCase_=4_0_9_6 , lowerCAmelCase_=1_2 , lowerCAmelCase_=1 , lowerCAmelCase_=6_4 , lowerCAmelCase_=1_6_3_8_4 , lowerCAmelCase_=1 , lowerCAmelCase_="gelu_new" , lowerCAmelCase_=0 , lowerCAmelCase_=0 , lowerCAmelCase_=5_1_2 , lowerCAmelCase_=2 , lowerCAmelCase_=0.0_2 , lowerCAmelCase_=1e-12 , lowerCAmelCase_=0.1 , lowerCAmelCase_="absolute" , lowerCAmelCase_=0 , lowerCAmelCase_=2 , lowerCAmelCase_=3 , **lowerCAmelCase_ , ) -> Any:
"""simple docstring"""
super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_)
a_ =vocab_size
a_ =embedding_size
a_ =hidden_size
a_ =num_hidden_layers
a_ =num_hidden_groups
a_ =num_attention_heads
a_ =inner_group_num
a_ =hidden_act
a_ =intermediate_size
a_ =hidden_dropout_prob
a_ =attention_probs_dropout_prob
a_ =max_position_embeddings
a_ =type_vocab_size
a_ =initializer_range
a_ =layer_norm_eps
a_ =classifier_dropout_prob
a_ =position_embedding_type
class UpperCAmelCase ( __a):
'''simple docstring'''
@property
def lowercase_ ( self) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
a_ ={0: "batch", 1: "choice", 2: "sequence"}
else:
a_ ={0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
])
| 41
| 0
|
import shutil
import tempfile
import unittest
from transformers import (
SPIECE_UNDERLINE,
AddedToken,
BatchEncoding,
NllbTokenizer,
NllbTokenizerFast,
is_torch_available,
)
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
__a = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right
__a = 2_5_6_0_4_7
__a = 2_5_6_1_4_5
@require_sentencepiece
@require_tokenizers
class lowercase__( UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
a :str = NllbTokenizer
a :Optional[int] = NllbTokenizerFast
a :Tuple = True
a :Optional[int] = True
a :List[Any] = {}
def _lowercase ( self : List[Any] ) -> Tuple:
super().setUp()
# We have a SentencePiece fixture for testing
lowercase_ = NllbTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ )
tokenizer.save_pretrained(self.tmpdirname )
def _lowercase ( self : str ) -> List[Any]:
lowercase_ = NllbTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ )
lowercase_ = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , )
lowercase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
SCREAMING_SNAKE_CASE_ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
lowercase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
SCREAMING_SNAKE_CASE_ , [
value + tokenizer.fairseq_offset
for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4]
] , )
lowercase_ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
SCREAMING_SNAKE_CASE_ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
def _lowercase ( self : Optional[int] ) -> Any:
lowercase_ = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-nllb''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
lowercase_ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
lowercase_ = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
lowercase_ = tempfile.mkdtemp()
lowercase_ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ )
lowercase_ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
lowercase_ = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Checks everything loads correctly in the same way
lowercase_ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ )
lowercase_ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE_ )
# Save tokenizer rust, legacy_format=True
lowercase_ = tempfile.mkdtemp()
lowercase_ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ )
lowercase_ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ )
# Checks it save with the same files
self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Checks everything loads correctly in the same way
lowercase_ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ )
lowercase_ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE_ )
# Save tokenizer rust, legacy_format=False
lowercase_ = tempfile.mkdtemp()
lowercase_ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ )
lowercase_ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
lowercase_ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ )
lowercase_ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE_ )
@require_torch
def _lowercase ( self : Optional[int] ) -> Optional[int]:
if not self.test_seqaseq:
return
lowercase_ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Longer text that will definitely require truncation.
lowercase_ = [
''' UN Chief Says There Is No Military Solution in Syria''',
''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for'''
''' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons'''
''' will only worsen the violence and misery for millions of people.''',
]
lowercase_ = [
'''Şeful ONU declară că nu există o soluţie militară în Siria''',
'''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al'''
''' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi'''
''' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''',
]
try:
lowercase_ = tokenizer.prepare_seqaseq_batch(
src_texts=SCREAMING_SNAKE_CASE_ , tgt_texts=SCREAMING_SNAKE_CASE_ , max_length=3 , max_target_length=1_0 , return_tensors='''pt''' , src_lang='''eng_Latn''' , tgt_lang='''ron_Latn''' , )
except NotImplementedError:
return
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.labels.shape[1] , 1_0 )
# max_target_length will default to max_length if not specified
lowercase_ = tokenizer.prepare_seqaseq_batch(
SCREAMING_SNAKE_CASE_ , tgt_texts=SCREAMING_SNAKE_CASE_ , max_length=3 , return_tensors='''pt''' )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.labels.shape[1] , 3 )
lowercase_ = tokenizer.prepare_seqaseq_batch(
src_texts=SCREAMING_SNAKE_CASE_ , max_length=3 , max_target_length=1_0 , return_tensors='''pt''' )
self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 )
self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 )
self.assertNotIn('''decoder_input_ids''' , SCREAMING_SNAKE_CASE_ )
@unittest.skip('''Unfortunately way too slow to build a BPE with SentencePiece.''' )
def _lowercase ( self : List[Any] ) -> Dict:
pass
def _lowercase ( self : Optional[int] ) -> Optional[int]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
lowercase_ = [AddedToken('''<special>''' , lstrip=SCREAMING_SNAKE_CASE_ )]
lowercase_ = self.rust_tokenizer_class.from_pretrained(
SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
lowercase_ = tokenizer_r.encode('''Hey this is a <special> token''' )
lowercase_ = tokenizer_r.encode('''<special>''' , add_special_tokens=SCREAMING_SNAKE_CASE_ )[0]
self.assertTrue(special_token_id in r_output )
if self.test_slow_tokenizer:
lowercase_ = self.rust_tokenizer_class.from_pretrained(
SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
lowercase_ = self.tokenizer_class.from_pretrained(
SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
lowercase_ = tokenizer_p.encode('''Hey this is a <special> token''' )
lowercase_ = tokenizer_cr.encode('''Hey this is a <special> token''' )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertTrue(special_token_id in p_output )
self.assertTrue(special_token_id in cr_output )
@require_torch
@require_sentencepiece
@require_tokenizers
class lowercase__( unittest.TestCase ):
"""simple docstring"""
a :int = 'facebook/nllb-200-distilled-600M'
a :List[Any] = [
' UN Chief Says There Is No Military Solution in Syria',
' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.',
]
a :Dict = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei'
' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'
' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.',
]
a :Tuple = [
256_047,
16_297,
134_408,
8_165,
248_066,
14_734,
950,
1_135,
105_721,
3_573,
83,
27_352,
108,
49_486,
2,
]
@classmethod
def _lowercase ( cls : int ) -> Any:
lowercase_ = NllbTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='''eng_Latn''' , tgt_lang='''ron_Latn''' )
lowercase_ = 1
return cls
def _lowercase ( self : Optional[Any] ) -> Any:
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Arab'''] , 2_5_6_0_0_1 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Latn'''] , 2_5_6_0_0_2 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''fra_Latn'''] , 2_5_6_0_5_7 )
def _lowercase ( self : Dict ) -> str:
lowercase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ )
def _lowercase ( self : Dict ) -> List[str]:
self.assertIn(SCREAMING_SNAKE_CASE_ , self.tokenizer.all_special_ids )
# fmt: off
lowercase_ = [RO_CODE, 4_2_5_4, 9_8_0_6_8, 1_1_2_9_2_3, 3_9_0_7_2, 3_9_0_9, 7_1_3, 1_0_2_7_6_7, 2_6, 1_7_3_1_4, 3_5_6_4_2, 1_4_6_8_3, 3_3_1_1_8, 2_0_2_2, 6_6_9_8_7, 2, 2_5_6_0_4_7]
# fmt: on
lowercase_ = self.tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
lowercase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertNotIn(self.tokenizer.eos_token , SCREAMING_SNAKE_CASE_ )
def _lowercase ( self : Tuple ) -> Tuple:
lowercase_ = ['''this is gunna be a long sentence ''' * 2_0]
assert isinstance(src_text[0] , SCREAMING_SNAKE_CASE_ )
lowercase_ = 1_0
lowercase_ = self.tokenizer(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ ).input_ids[0]
self.assertEqual(ids[-1] , 2 )
self.assertEqual(ids[0] , SCREAMING_SNAKE_CASE_ )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
def _lowercase ( self : List[Any] ) -> List[str]:
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [2_5_6_2_0_3, 3] )
def _lowercase ( self : Optional[Any] ) -> Tuple:
lowercase_ = tempfile.mkdtemp()
lowercase_ = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ )
lowercase_ = NllbTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , SCREAMING_SNAKE_CASE_ )
@require_torch
def _lowercase ( self : Dict ) -> Optional[int]:
lowercase_ = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , )
lowercase_ = shift_tokens_right(
batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['''ron_Latn'''] )
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual((2, 1_5) , batch.input_ids.shape )
self.assertEqual((2, 1_5) , batch.attention_mask.shape )
lowercase_ = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , batch.decoder_input_ids[0, 0] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def _lowercase ( self : int ) -> Optional[int]:
lowercase_ = self.tokenizer(self.src_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=3 , return_tensors='''pt''' )
lowercase_ = self.tokenizer(
text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=1_0 , return_tensors='''pt''' )
lowercase_ = targets['''input_ids''']
lowercase_ = shift_tokens_right(
SCREAMING_SNAKE_CASE_ , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 )
@require_torch
def _lowercase ( self : Tuple ) -> Optional[int]:
lowercase_ = self.tokenizer._build_translation_inputs(
'''A test''' , return_tensors='''pt''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE_ ) , {
# A, test, EOS, en_XX
'''input_ids''': [[2_5_6_0_4_7, 7_0, 7_3_5_6, 2]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 2_5_6_0_5_7,
} , )
@require_torch
def _lowercase ( self : Optional[int] ) -> Dict:
lowercase_ = True
lowercase_ = self.tokenizer(
'''UN Chief says there is no military solution in Syria''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' )
self.assertEqual(
inputs.input_ids , [1_6_2_9_7, 1_3_4_4_0_8, 2_5_6_5_3, 6_3_7_0, 2_4_8, 2_5_4, 1_0_3_9_2_9, 9_4_9_9_5, 1_0_8, 4_9_4_8_6, 2, 2_5_6_0_4_7] )
lowercase_ = False
lowercase_ = self.tokenizer(
'''UN Chief says there is no military solution in Syria''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' )
self.assertEqual(
inputs.input_ids , [2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 2_5_6_5_3, 6_3_7_0, 2_4_8, 2_5_4, 1_0_3_9_2_9, 9_4_9_9_5, 1_0_8, 4_9_4_8_6, 2] )
| 97
|
import unittest
from transformers import SPIECE_UNDERLINE
from transformers.models.speechta import SpeechTaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.tokenization_utils import AddedToken
from ...test_tokenization_common import TokenizerTesterMixin
snake_case : List[str] = get_tests_dir('fixtures/test_sentencepiece_bpe_char.model')
@require_sentencepiece
@require_tokenizers
class __lowercase ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = SpeechTaTokenizer
SCREAMING_SNAKE_CASE : Optional[int] = False
SCREAMING_SNAKE_CASE : Union[str, Any] = True
def __magic_name__ ( self )-> List[str]:
super().setUp()
# We have a SentencePiece fixture for testing
_SCREAMING_SNAKE_CASE = SpeechTaTokenizer(A_ )
_SCREAMING_SNAKE_CASE = AddedToken('<mask>' , lstrip=A_ , rstrip=A_ )
_SCREAMING_SNAKE_CASE = mask_token
tokenizer.add_special_tokens({'mask_token': mask_token} )
tokenizer.add_tokens(['<ctc_blank>'] )
tokenizer.save_pretrained(self.tmpdirname )
def __magic_name__ ( self , A_ )-> List[str]:
_SCREAMING_SNAKE_CASE = 'this is a test'
_SCREAMING_SNAKE_CASE = 'this is a test'
return input_text, output_text
def __magic_name__ ( self , A_ , A_=False , A_=20 , A_=5 )-> Optional[int]:
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.get_input_output_texts(A_ )
_SCREAMING_SNAKE_CASE = tokenizer.encode(A_ , add_special_tokens=A_ )
_SCREAMING_SNAKE_CASE = tokenizer.decode(A_ , clean_up_tokenization_spaces=A_ )
return text, ids
def __magic_name__ ( self )-> Dict:
_SCREAMING_SNAKE_CASE = '<pad>'
_SCREAMING_SNAKE_CASE = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ )
def __magic_name__ ( self )-> Dict:
_SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-4] , 'œ' )
self.assertEqual(vocab_keys[-2] , '<mask>' )
self.assertEqual(vocab_keys[-1] , '<ctc_blank>' )
self.assertEqual(len(A_ ) , 81 )
def __magic_name__ ( self )-> Optional[Any]:
self.assertEqual(self.get_tokenizer().vocab_size , 79 )
def __magic_name__ ( self )-> Dict:
_SCREAMING_SNAKE_CASE = self.get_tokenizers(do_lower_case=A_ )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
_SCREAMING_SNAKE_CASE = tokenizer.vocab_size
_SCREAMING_SNAKE_CASE = len(A_ )
self.assertNotEqual(A_ , 0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
_SCREAMING_SNAKE_CASE = ['aaaaa bbbbbb', 'cccccccccdddddddd']
_SCREAMING_SNAKE_CASE = tokenizer.add_tokens(A_ )
_SCREAMING_SNAKE_CASE = tokenizer.vocab_size
_SCREAMING_SNAKE_CASE = len(A_ )
self.assertNotEqual(A_ , 0 )
self.assertEqual(A_ , A_ )
self.assertEqual(A_ , len(A_ ) )
self.assertEqual(A_ , all_size + len(A_ ) )
_SCREAMING_SNAKE_CASE = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=A_ )
self.assertGreaterEqual(len(A_ ) , 4 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
_SCREAMING_SNAKE_CASE = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'}
_SCREAMING_SNAKE_CASE = tokenizer.add_special_tokens(A_ )
_SCREAMING_SNAKE_CASE = tokenizer.vocab_size
_SCREAMING_SNAKE_CASE = len(A_ )
self.assertNotEqual(A_ , 0 )
self.assertEqual(A_ , A_ )
self.assertEqual(A_ , len(A_ ) )
self.assertEqual(A_ , all_size_a + len(A_ ) )
_SCREAMING_SNAKE_CASE = tokenizer.encode(
'>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=A_ )
self.assertGreaterEqual(len(A_ ) , 6 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] , tokens[1] )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokens[-4] )
self.assertEqual(tokens[0] , tokenizer.eos_token_id )
self.assertEqual(tokens[-3] , tokenizer.pad_token_id )
def __magic_name__ ( self )-> List[str]:
pass
def __magic_name__ ( self )-> Dict:
pass
def __magic_name__ ( self )-> str:
_SCREAMING_SNAKE_CASE = self.get_tokenizer()
_SCREAMING_SNAKE_CASE = tokenizer.tokenize('This is a test' )
# fmt: off
self.assertListEqual(A_ , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] )
# fmt: on
self.assertListEqual(
tokenizer.convert_tokens_to_ids(A_ ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , )
_SCREAMING_SNAKE_CASE = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
A_ , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] )
_SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(A_ )
# fmt: off
self.assertListEqual(A_ , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] )
# fmt: on
_SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(A_ )
self.assertListEqual(
A_ , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] )
@slow
def __magic_name__ ( self )-> Tuple:
# Use custom sequence because this tokenizer does not handle numbers.
_SCREAMING_SNAKE_CASE = [
'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides '
'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural '
'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained '
'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.',
'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly '
'conditioning on both left and right context in all layers.',
'The quick brown fox jumps over the lazy dog.',
]
# fmt: off
_SCREAMING_SNAKE_CASE = {
'input_ids': [
[4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2],
[4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
],
'attention_mask': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=A_ , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=A_ , )
| 605
| 0
|
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
SCREAMING_SNAKE_CASE__ = {
'vocab_file': {
'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt',
'distilbert-base-uncased-distilled-squad': (
'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt'
),
'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt',
'distilbert-base-cased-distilled-squad': (
'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt'
),
'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt',
'distilbert-base-multilingual-cased': (
'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json',
'distilbert-base-uncased-distilled-squad': (
'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json'
),
'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json',
'distilbert-base-cased-distilled-squad': (
'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json'
),
'distilbert-base-german-cased': (
'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json'
),
'distilbert-base-multilingual-cased': (
'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json'
),
},
}
SCREAMING_SNAKE_CASE__ = {
'distilbert-base-uncased': 5_1_2,
'distilbert-base-uncased-distilled-squad': 5_1_2,
'distilbert-base-cased': 5_1_2,
'distilbert-base-cased-distilled-squad': 5_1_2,
'distilbert-base-german-cased': 5_1_2,
'distilbert-base-multilingual-cased': 5_1_2,
}
SCREAMING_SNAKE_CASE__ = {
'distilbert-base-uncased': {'do_lower_case': True},
'distilbert-base-uncased-distilled-squad': {'do_lower_case': True},
'distilbert-base-cased': {'do_lower_case': False},
'distilbert-base-cased-distilled-squad': {'do_lower_case': False},
'distilbert-base-german-cased': {'do_lower_case': False},
'distilbert-base-multilingual-cased': {'do_lower_case': False},
}
class a_ ( lowerCamelCase ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = PRETRAINED_INIT_CONFIGURATION
lowercase = ["""input_ids""", """attention_mask"""]
lowercase = DistilBertTokenizer
def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="[UNK]" , _SCREAMING_SNAKE_CASE="[SEP]" , _SCREAMING_SNAKE_CASE="[PAD]" , _SCREAMING_SNAKE_CASE="[CLS]" , _SCREAMING_SNAKE_CASE="[MASK]" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> int:
"""simple docstring"""
super().__init__(
_SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , tokenize_chinese_chars=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , _SCREAMING_SNAKE_CASE ) != do_lower_case
or normalizer_state.get("""strip_accents""" , _SCREAMING_SNAKE_CASE ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , _SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars
):
UpperCamelCase = getattr(_SCREAMING_SNAKE_CASE , normalizer_state.pop("""type""" ) )
UpperCamelCase = do_lower_case
UpperCamelCase = strip_accents
UpperCamelCase = tokenize_chinese_chars
UpperCamelCase = normalizer_class(**_SCREAMING_SNAKE_CASE )
UpperCamelCase = do_lower_case
def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]:
"""simple docstring"""
UpperCamelCase = [self.sep_token_id]
UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]:
"""simple docstring"""
UpperCamelCase = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE )
return tuple(_SCREAMING_SNAKE_CASE )
| 714
|
'''simple docstring'''
from math import sqrt
def lowercase__ ( __UpperCamelCase )-> int:
UpperCamelCase = 0
for i in range(1 , int(sqrt(__UpperCamelCase ) + 1 ) ):
if n % i == 0 and i != sqrt(__UpperCamelCase ):
total += i + n // i
elif i == sqrt(__UpperCamelCase ):
total += i
return total - n
def lowercase__ ( __UpperCamelCase = 10000 )-> int:
UpperCamelCase = sum(
i
for i in range(1 , __UpperCamelCase )
if sum_of_divisors(sum_of_divisors(__UpperCamelCase ) ) == i and sum_of_divisors(__UpperCamelCase ) != i )
return total
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 35
| 0
|
import os
import torch
from ..logging import get_logger
from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME
from .versions import is_torch_version
if is_torch_version('>=', FSDP_PYTORCH_VERSION):
import torch.distributed.checkpoint as dist_cp
from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner
from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
__A : Optional[Any] = get_logger(__name__)
def __a ( A__ : Union[str, Any] , A__ : str , A__ : Union[str, Any] , A__ : Optional[Any] , A__ : Optional[int]=0 ):
os.makedirs(A__ , exist_ok=A__ )
with FSDP.state_dict_type(
A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
SCREAMING_SNAKE_CASE = model.state_dict()
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
SCREAMING_SNAKE_CASE = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin"
SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ )
if accelerator.process_index == 0:
logger.info(F"Saving model to {output_model_file}" )
torch.save(A__ , A__ )
logger.info(F"Model saved to {output_model_file}" )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
SCREAMING_SNAKE_CASE = (
F"{MODEL_NAME}_rank{accelerator.process_index}.bin"
if model_index == 0
else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin"
)
SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ )
logger.info(F"Saving model to {output_model_file}" )
torch.save(A__ , A__ )
logger.info(F"Model saved to {output_model_file}" )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
SCREAMING_SNAKE_CASE = os.path.join(A__ , F"{MODEL_NAME}_{model_index}" )
os.makedirs(A__ , exist_ok=A__ )
logger.info(F"Saving model to {ckpt_dir}" )
SCREAMING_SNAKE_CASE = {"model": state_dict}
dist_cp.save_state_dict(
state_dict=A__ , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , )
logger.info(F"Model saved to {ckpt_dir}" )
def __a ( A__ : Any , A__ : Tuple , A__ : Union[str, Any] , A__ : Any , A__ : List[Any]=0 ):
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if type(A__ ) != FSDP and accelerator.process_index != 0:
if not fsdp_plugin.sync_module_states:
raise ValueError(
"Set the `sync_module_states` flag to `True` so that model states are synced across processes when "
"initializing FSDP object" )
return
SCREAMING_SNAKE_CASE = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin"
SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ )
logger.info(F"Loading model from {input_model_file}" )
SCREAMING_SNAKE_CASE = torch.load(A__ )
logger.info(F"Model loaded from {input_model_file}" )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
SCREAMING_SNAKE_CASE = (
F"{MODEL_NAME}_rank{accelerator.process_index}.bin"
if model_index == 0
else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin"
)
SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ )
logger.info(F"Loading model from {input_model_file}" )
SCREAMING_SNAKE_CASE = torch.load(A__ )
logger.info(F"Model loaded from {input_model_file}" )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
SCREAMING_SNAKE_CASE = (
os.path.join(A__ , F"{MODEL_NAME}_{model_index}" )
if F"{MODEL_NAME}" not in input_dir
else input_dir
)
logger.info(F"Loading model from {ckpt_dir}" )
SCREAMING_SNAKE_CASE = {"model": model.state_dict()}
dist_cp.load_state_dict(
state_dict=A__ , storage_reader=dist_cp.FileSystemReader(A__ ) , planner=DefaultLoadPlanner() , )
SCREAMING_SNAKE_CASE = state_dict["model"]
logger.info(F"Model loaded from {ckpt_dir}" )
model.load_state_dict(A__ )
def __a ( A__ : List[Any] , A__ : List[str] , A__ : Tuple , A__ : List[str] , A__ : List[Any] , A__ : int=0 ):
os.makedirs(A__ , exist_ok=A__ )
with FSDP.state_dict_type(
A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
SCREAMING_SNAKE_CASE = FSDP.optim_state_dict(A__ , A__ )
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if accelerator.process_index == 0:
SCREAMING_SNAKE_CASE = (
F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin"
)
SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ )
logger.info(F"Saving Optimizer state to {output_optimizer_file}" )
torch.save(A__ , A__ )
logger.info(F"Optimizer state saved in {output_optimizer_file}" )
else:
SCREAMING_SNAKE_CASE = os.path.join(A__ , F"{OPTIMIZER_NAME}_{optimizer_index}" )
os.makedirs(A__ , exist_ok=A__ )
logger.info(F"Saving Optimizer state to {ckpt_dir}" )
dist_cp.save_state_dict(
state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , )
logger.info(F"Optimizer state saved in {ckpt_dir}" )
def __a ( A__ : str , A__ : List[str] , A__ : List[Any] , A__ : List[str] , A__ : str , A__ : Dict=0 ):
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
SCREAMING_SNAKE_CASE = None
# below check should work but currently it isn't working (mostly opytorch issue),
# in the meantime disabling it at the cost of excess memory usage
# if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only:
SCREAMING_SNAKE_CASE = (
F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin"
)
SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ )
logger.info(F"Loading Optimizer state from {input_optimizer_file}" )
SCREAMING_SNAKE_CASE = torch.load(A__ )
logger.info(F"Optimizer state loaded from {input_optimizer_file}" )
else:
SCREAMING_SNAKE_CASE = (
os.path.join(A__ , F"{OPTIMIZER_NAME}_{optimizer_index}" )
if F"{OPTIMIZER_NAME}" not in input_dir
else input_dir
)
logger.info(F"Loading Optimizer from {ckpt_dir}" )
SCREAMING_SNAKE_CASE = load_sharded_optimizer_state_dict(
model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(A__ ) , )
SCREAMING_SNAKE_CASE = optim_state["optimizer"]
logger.info(F"Optimizer loaded from {ckpt_dir}" )
SCREAMING_SNAKE_CASE = FSDP.optim_state_dict_to_load(A__ , A__ , A__ )
optimizer.load_state_dict(A__ )
| 16
|
import unittest
from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM
@require_torch
class lowercase :
def __init__( self : Any , _lowercase : List[Any] , _lowercase : Optional[Any]=99 , _lowercase : Optional[int]=13 , _lowercase : Tuple=16 , _lowercase : Union[str, Any]=7 , _lowercase : Optional[Any]=True , _lowercase : int=True , _lowercase : Optional[Any]=True , _lowercase : str=False , _lowercase : Union[str, Any]=True , _lowercase : Tuple=2 , _lowercase : Any=32 , _lowercase : int=4 , _lowercase : Dict=4 , _lowercase : Dict=30 , _lowercase : Union[str, Any]=0 , _lowercase : List[str]=1 , _lowercase : Optional[Any]=2 , _lowercase : Tuple=None , ):
SCREAMING_SNAKE_CASE__ : Any = parent
SCREAMING_SNAKE_CASE__ : List[Any] = batch_size
SCREAMING_SNAKE_CASE__ : List[str] = decoder_seq_length
# For common tests
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.decoder_seq_length
SCREAMING_SNAKE_CASE__ : Optional[int] = is_training
SCREAMING_SNAKE_CASE__ : Tuple = use_attention_mask
SCREAMING_SNAKE_CASE__ : Any = use_labels
SCREAMING_SNAKE_CASE__ : Any = vocab_size
SCREAMING_SNAKE_CASE__ : Union[str, Any] = d_model
SCREAMING_SNAKE_CASE__ : Tuple = d_model
SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_layers
SCREAMING_SNAKE_CASE__ : List[str] = decoder_layers
SCREAMING_SNAKE_CASE__ : Optional[Any] = decoder_ffn_dim
SCREAMING_SNAKE_CASE__ : List[Any] = decoder_attention_heads
SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_attention_heads
SCREAMING_SNAKE_CASE__ : str = eos_token_id
SCREAMING_SNAKE_CASE__ : List[Any] = bos_token_id
SCREAMING_SNAKE_CASE__ : str = pad_token_id
SCREAMING_SNAKE_CASE__ : str = decoder_start_token_id
SCREAMING_SNAKE_CASE__ : Optional[Any] = use_cache
SCREAMING_SNAKE_CASE__ : Optional[int] = max_position_embeddings
SCREAMING_SNAKE_CASE__ : Tuple = None
SCREAMING_SNAKE_CASE__ : int = decoder_seq_length
SCREAMING_SNAKE_CASE__ : Optional[int] = 2
SCREAMING_SNAKE_CASE__ : Tuple = 1
def lowercase__ ( self : Dict ):
SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE__ : Optional[Any] = None
if self.use_attention_mask:
SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
if self.use_labels:
SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE__ : Optional[int] = TrOCRConfig(
vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , )
return (config, input_ids, attention_mask, lm_labels)
def lowercase__ ( self : Dict , _lowercase : Any , _lowercase : Dict , _lowercase : Optional[Any] , _lowercase : Optional[Any] , ):
SCREAMING_SNAKE_CASE__ : Dict = True
SCREAMING_SNAKE_CASE__ : Optional[int] = TrOCRDecoder(config=_lowercase ).to(_lowercase ).eval()
SCREAMING_SNAKE_CASE__ : Optional[int] = input_ids[:2]
input_ids[input_ids == 0] += 1
# first forward pass
SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_lowercase , use_cache=_lowercase )
SCREAMING_SNAKE_CASE__ : List[str] = model(_lowercase )
SCREAMING_SNAKE_CASE__ : Tuple = model(_lowercase , use_cache=_lowercase )
self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) )
self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) + 1 )
SCREAMING_SNAKE_CASE__ : int = outputs['''past_key_values''']
# create hypothetical next token and extent to next_input_ids
SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1
# append to next input_ids and
SCREAMING_SNAKE_CASE__ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 )
SCREAMING_SNAKE_CASE__ : int = model(_lowercase )['''last_hidden_state''']
SCREAMING_SNAKE_CASE__ : List[Any] = model(_lowercase , past_key_values=_lowercase )['''last_hidden_state''']
# select random slice
SCREAMING_SNAKE_CASE__ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item()
SCREAMING_SNAKE_CASE__ : Dict = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
SCREAMING_SNAKE_CASE__ : str = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(_lowercase , _lowercase , atol=1E-3 )
def lowercase__ ( self : Optional[int] ):
SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = config_and_inputs
SCREAMING_SNAKE_CASE__ : int = {'''input_ids''': input_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
@require_torch
class lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
lowerCamelCase : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
lowerCamelCase : Dict = (TrOCRForCausalLM,) if is_torch_available() else ()
lowerCamelCase : Tuple = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {}
lowerCamelCase : Any = True
lowerCamelCase : int = False
def lowercase__ ( self : List[Any] ):
SCREAMING_SNAKE_CASE__ : Union[str, Any] = TrOCRStandaloneDecoderModelTester(self , is_training=_lowercase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = ConfigTester(self , config_class=_lowercase )
def lowercase__ ( self : Optional[Any] ):
pass
def lowercase__ ( self : List[Any] ):
pass
def lowercase__ ( self : str ):
pass
def lowercase__ ( self : Dict ):
self.config_tester.run_common_tests()
def lowercase__ ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*_lowercase )
def lowercase__ ( self : Optional[Any] ):
return
@unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :)
def lowercase__ ( self : Tuple ):
pass
| 35
| 0
|
'''simple docstring'''
def _A ( A ,A ,A ,A ,A ,A ) -> Any:
if index == r:
for j in range(lowercase_ ):
print(data[j] ,end=" " )
print(" " )
return
# When no more elements are there to put in data[]
if i >= n:
return
# current is included, put next at next location
lowercase : Optional[Any] = arr[i]
combination_util(lowercase_ ,lowercase_ ,lowercase_ ,index + 1 ,lowercase_ ,i + 1 )
# current is excluded, replace it with
# next (Note that i+1 is passed, but
# index is not changed)
combination_util(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,i + 1 )
# The main function that prints all combinations
# of size r in arr[] of size n. This function
# mainly uses combinationUtil()
def _A ( A ,A ,A ) -> str:
# A temporary array to store all combination one by one
lowercase : Optional[int] = [0] * r
# Print all combination using temporary array 'data[]'
combination_util(lowercase_ ,lowercase_ ,lowercase_ ,0 ,lowercase_ ,0 )
if __name__ == "__main__":
# Driver code to check the function above
lowerCAmelCase : Optional[Any] = [1_0, 2_0, 3_0, 4_0, 5_0]
print_combination(arr, len(arr), 3)
# This code is contributed by Ambuj sahu
| 720
|
'''simple docstring'''
import os
import tempfile
import unittest
from transformers import DistilBertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
)
class _UpperCamelCase ( SCREAMING_SNAKE_CASE):
'''simple docstring'''
def __init__( self , a_ , a_=1_3 , a_=7 , a_=True , a_=True , a_=False , a_=True , a_=9_9 , a_=3_2 , a_=5 , a_=4 , a_=3_7 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_1_2 , a_=1_6 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ) -> Any:
lowercase : List[str] = parent
lowercase : str = batch_size
lowercase : int = seq_length
lowercase : Any = is_training
lowercase : List[Any] = use_input_mask
lowercase : str = use_token_type_ids
lowercase : List[str] = use_labels
lowercase : Optional[Any] = vocab_size
lowercase : List[Any] = hidden_size
lowercase : List[Any] = num_hidden_layers
lowercase : str = num_attention_heads
lowercase : Union[str, Any] = intermediate_size
lowercase : Union[str, Any] = hidden_act
lowercase : Optional[Any] = hidden_dropout_prob
lowercase : Union[str, Any] = attention_probs_dropout_prob
lowercase : List[str] = max_position_embeddings
lowercase : Tuple = type_vocab_size
lowercase : Dict = type_sequence_label_size
lowercase : Optional[Any] = initializer_range
lowercase : int = num_labels
lowercase : int = num_choices
lowercase : Tuple = scope
def a__ ( self ) -> Dict:
lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase : Union[str, Any] = None
if self.use_input_mask:
lowercase : int = random_attention_mask([self.batch_size, self.seq_length] )
lowercase : str = None
lowercase : str = None
lowercase : Optional[int] = None
if self.use_labels:
lowercase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices )
lowercase : Dict = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def a__ ( self ) -> Any:
return DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ ) -> List[Any]:
lowercase : Tuple = DistilBertModel(config=a_ )
model.to(a_ )
model.eval()
lowercase : Optional[Any] = model(a_ , a_ )
lowercase : List[Any] = model(a_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ ) -> str:
lowercase : List[Any] = DistilBertForMaskedLM(config=a_ )
model.to(a_ )
model.eval()
lowercase : Dict = model(a_ , attention_mask=a_ , labels=a_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ ) -> int:
lowercase : Optional[Any] = DistilBertForQuestionAnswering(config=a_ )
model.to(a_ )
model.eval()
lowercase : List[Any] = model(
a_ , attention_mask=a_ , start_positions=a_ , end_positions=a_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ ) -> List[str]:
lowercase : Union[str, Any] = self.num_labels
lowercase : Optional[int] = DistilBertForSequenceClassification(a_ )
model.to(a_ )
model.eval()
lowercase : Dict = model(a_ , attention_mask=a_ , labels=a_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ ) -> List[str]:
lowercase : List[Any] = self.num_labels
lowercase : Optional[Any] = DistilBertForTokenClassification(config=a_ )
model.to(a_ )
model.eval()
lowercase : Optional[Any] = model(a_ , attention_mask=a_ , labels=a_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ ) -> Optional[int]:
lowercase : Optional[int] = self.num_choices
lowercase : Tuple = DistilBertForMultipleChoice(config=a_ )
model.to(a_ )
model.eval()
lowercase : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowercase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowercase : Tuple = model(
a_ , attention_mask=a_ , labels=a_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a__ ( self ) -> Tuple:
lowercase : Any = self.prepare_config_and_inputs()
((lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase)) : int = config_and_inputs
lowercase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class _UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase):
'''simple docstring'''
_snake_case = (
(
DistilBertModel,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
)
if is_torch_available()
else None
)
_snake_case = (
{
'''feature-extraction''': DistilBertModel,
'''fill-mask''': DistilBertForMaskedLM,
'''question-answering''': DistilBertForQuestionAnswering,
'''text-classification''': DistilBertForSequenceClassification,
'''token-classification''': DistilBertForTokenClassification,
'''zero-shot''': DistilBertForSequenceClassification,
}
if is_torch_available()
else {}
)
_snake_case = True
_snake_case = True
_snake_case = True
_snake_case = True
def a__ ( self ) -> int:
lowercase : str = DistilBertModelTester(self )
lowercase : Optional[Any] = ConfigTester(self , config_class=a_ , dim=3_7 )
def a__ ( self ) -> List[Any]:
self.config_tester.run_common_tests()
def a__ ( self ) -> List[Any]:
lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*a_ )
def a__ ( self ) -> Tuple:
lowercase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*a_ )
def a__ ( self ) -> Union[str, Any]:
lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*a_ )
def a__ ( self ) -> Optional[Any]:
lowercase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*a_ )
def a__ ( self ) -> Optional[Any]:
lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*a_ )
def a__ ( self ) -> List[str]:
lowercase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*a_ )
@slow
def a__ ( self ) -> List[Any]:
for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase : Union[str, Any] = DistilBertModel.from_pretrained(a_ )
self.assertIsNotNone(a_ )
@slow
@require_torch_gpu
def a__ ( self ) -> Tuple:
lowercase , lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# BertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == DistilBertForMultipleChoice:
return
lowercase : Any = True
lowercase : List[str] = model_class(config=a_ )
lowercase : Optional[int] = self._prepare_for_class(a_ , a_ )
lowercase : Union[str, Any] = torch.jit.trace(
a_ , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(a_ , os.path.join(a_ , "traced_model.pt" ) )
lowercase : str = torch.jit.load(os.path.join(a_ , "traced_model.pt" ) , map_location=a_ )
loaded(inputs_dict["input_ids"].to(a_ ) , inputs_dict["attention_mask"].to(a_ ) )
@require_torch
class _UpperCamelCase ( unittest.TestCase):
'''simple docstring'''
@slow
def a__ ( self ) -> List[str]:
lowercase : Dict = DistilBertModel.from_pretrained("distilbert-base-uncased" )
lowercase : Union[str, Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] )
lowercase : str = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
lowercase : Union[str, Any] = model(a_ , attention_mask=a_ )[0]
lowercase : List[str] = torch.Size((1, 1_1, 7_6_8) )
self.assertEqual(output.shape , a_ )
lowercase : Optional[int] = torch.tensor(
[[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a_ , atol=1e-4 ) )
| 425
| 0
|
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
import tensorflow as tf
from .utils import logging
_UpperCamelCase = logging.get_logger(__name__)
def _A( lowerCAmelCase ):
if isinstance(lowerCAmelCase , np.ndarray ):
return list(tensor.shape )
A__ : Dict = tf.shape(lowerCAmelCase )
if tensor.shape == tf.TensorShape(lowerCAmelCase ):
return dynamic
A__ : int = tensor.shape.as_list()
return [dynamic[i] if s is None else s for i, s in enumerate(lowerCAmelCase )]
def _A( lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None ):
return tf.nn.softmax(logits=logits + 1E-9 , axis=lowerCAmelCase , name=lowerCAmelCase )
def _A( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=1E-5 , lowerCAmelCase=-1 ):
# This is a very simplified functional layernorm, designed to duplicate
# the functionality of PyTorch nn.functional.layer_norm when this is needed to port
# models in Transformers.
if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(lowerCAmelCase , lowerCAmelCase ):
raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" )
# Get mean and variance on the axis to be normalized
A__ , A__ : Optional[int] = tf.nn.moments(lowerCAmelCase , axes=[axis] , keepdims=lowerCAmelCase )
if axis != -1:
# Reshape scale and weight to have the same rank as inputs, but with 1 dimensions
# on every dimension except axis
A__ : Union[str, Any] = [1] * inputs.shape.rank
A__ : Any = shape_list(lowerCAmelCase )[axis]
A__ : Any = tf.reshape(lowerCAmelCase , lowerCAmelCase )
A__ : Tuple = tf.reshape(lowerCAmelCase , lowerCAmelCase )
# Compute layer normalization using the batch_normalization
# function.
A__ : Any = tf.nn.batch_normalization(
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , offset=lowerCAmelCase , scale=lowerCAmelCase , variance_epsilon=lowerCAmelCase , )
return outputs
def _A( lowerCAmelCase , lowerCAmelCase=0 , lowerCAmelCase=-1 ):
# Replicates the behavior of torch.flatten in TF
# If end_dim or start_dim is negative, count them from the end
if end_dim < 0:
end_dim += input.shape.rank
if start_dim < 0:
start_dim += input.shape.rank
if start_dim == end_dim:
return input
A__ : int = tf.shape(lowerCAmelCase )
A__ : str = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] )
A__ : Any = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 )
return tf.reshape(lowerCAmelCase , lowerCAmelCase )
def _A( lowerCAmelCase ):
if not isinstance(lowerCAmelCase , tf.Tensor ):
A__ : Dict = tf.convert_to_tensor(lowerCAmelCase ) # Catches stray NumPy inputs
if encoder_attention_mask.shape.rank == 3:
A__ : Optional[Any] = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.shape.rank == 2:
A__ : List[Any] = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
# /transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
# encoder_extended_attention_mask.transpose(-1, -2))
A__ : Dict = (
tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask
) * encoder_extended_attention_mask.dtype.min
return encoder_extended_attention_mask
def _A( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = "input_ids" ):
tf.debugging.assert_less(
lowerCAmelCase , tf.cast(lowerCAmelCase , dtype=tensor.dtype ) , message=(
F'''The maximum value of {tensor_name} ({tf.math.reduce_max(lowerCAmelCase )}) must be smaller than the embedding '''
F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.'''
) , )
def _A( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ):
A__ : List[str] = 6_4512
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
# because in that case even chunking the array would not make the saving
# possible.
A__ : Optional[Any] = [x for x in data if len(lowerCAmelCase ) > HDF5_OBJECT_HEADER_LIMIT]
# Expecting this to never be true.
if bad_attributes:
raise RuntimeError(
"""The following attributes cannot be saved to HDF5 file because """
F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} '''
F'''bytes: {bad_attributes}''' )
A__ : int = np.asarray(lowerCAmelCase )
A__ : int = 1
A__ : List[Any] = np.array_split(lowerCAmelCase , lowerCAmelCase )
# This will never loop forever thanks to the test above.
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ):
num_chunks += 1
A__ : Dict = np.array_split(lowerCAmelCase , lowerCAmelCase )
if num_chunks > 1:
for chunk_id, chunk_data in enumerate(lowerCAmelCase ):
A__ : Optional[Any] = chunk_data
else:
A__ : Dict = data
def _A( lowerCAmelCase , lowerCAmelCase ):
if name in group.attrs:
A__ : Any = [n.decode("""utf8""" ) if hasattr(lowerCAmelCase , """decode""" ) else n for n in group.attrs[name]]
else:
A__ : Union[str, Any] = []
A__ : Dict = 0
while "%s%d" % (name, chunk_id) in group.attrs:
data.extend(
[n.decode("""utf8""" ) if hasattr(lowerCAmelCase , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] )
chunk_id += 1
return data
def _A( lowerCAmelCase ):
def _expand_single_ad_tensor(lowerCAmelCase ):
if isinstance(lowerCAmelCase , tf.Tensor ) and t.shape.rank == 1:
return tf.expand_dims(lowerCAmelCase , axis=-1 )
return t
return tf.nest.map_structure(_expand_single_ad_tensor , lowerCAmelCase )
| 363
|
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {"vocab_file": "sentencepiece.model"}
_UpperCamelCase = {
"vocab_file": {
"google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model",
},
}
_UpperCamelCase = {
"google/rembert": 2_56,
}
class __UpperCAmelCase (__A ):
'''simple docstring'''
_UpperCamelCase : Dict = VOCAB_FILES_NAMES
_UpperCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , snake_case_ , snake_case_=False , snake_case_=True , snake_case_=True , snake_case_="[CLS]" , snake_case_="[SEP]" , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , **snake_case_ , ):
'''simple docstring'''
super().__init__(
do_lower_case=snake_case_ , remove_space=snake_case_ , keep_accents=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , **snake_case_ , )
A__ : List[Any] = do_lower_case
A__ : Dict = remove_space
A__ : Optional[int] = keep_accents
A__ : Tuple = vocab_file
A__ : List[str] = spm.SentencePieceProcessor()
self.sp_model.Load(snake_case_ )
@property
def lowerCamelCase ( self ):
'''simple docstring'''
return len(self.sp_model )
def lowerCamelCase ( self ):
'''simple docstring'''
A__ : Optional[Any] = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ):
'''simple docstring'''
A__ : str = self.__dict__.copy()
A__ : Tuple = None
return state
def __setstate__( self , snake_case_ ):
'''simple docstring'''
A__ : Dict = d
A__ : int = spm.SentencePieceProcessor()
self.sp_model.Load(self.vocab_file )
def lowerCamelCase ( self , snake_case_ , snake_case_=False ):
'''simple docstring'''
A__ : Tuple = self.sp_model.EncodeAsPieces(snake_case_ )
return pieces
def lowerCamelCase ( self , snake_case_ ):
'''simple docstring'''
return self.sp_model.PieceToId(snake_case_ )
def lowerCamelCase ( self , snake_case_ ):
'''simple docstring'''
return self.sp_model.IdToPiece(snake_case_ )
def lowerCamelCase ( self , snake_case_ ):
'''simple docstring'''
A__ : str = self.sp_model.decode_pieces(snake_case_ )
return out_string
def lowerCamelCase ( self , snake_case_ , snake_case_ = None ):
'''simple docstring'''
A__ : List[Any] = [self.sep_token_id]
A__ : str = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def lowerCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = False ):
'''simple docstring'''
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"""You should not supply a second sequence if the provided sequence of """
"""ids is already formatted with special tokens for the model.""" )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1]
return [1] + ([0] * len(snake_case_ )) + [1]
def lowerCamelCase ( self , snake_case_ , snake_case_ = None ):
'''simple docstring'''
A__ : int = [self.sep_token_id]
A__ : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCamelCase ( self , snake_case_ , snake_case_ = None ):
'''simple docstring'''
if not os.path.isdir(snake_case_ ):
logger.error("""Vocabulary path ({}) should be a directory""".format(snake_case_ ) )
return
A__ : Any = os.path.join(
snake_case_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ):
copyfile(self.vocab_file , snake_case_ )
return (out_vocab_file,)
| 363
| 1
|
from collections.abc import Iterable
from typing import Generic, TypeVar
lowerCAmelCase__ = TypeVar("_T")
class _a ( Generic[_T] ):
"""simple docstring"""
def __init__( self , lowerCAmelCase_ = None ):
_lowercase =list(iterable or [] )
_lowercase =[]
def __len__( self ):
return len(self._stacka ) + len(self._stacka )
def __repr__( self ):
return F'''Queue({tuple(self._stacka[::-1] + self._stacka )})'''
def __lowerCAmelCase ( self , lowerCAmelCase_ ):
self._stacka.append(lowerCAmelCase_ )
def __lowerCAmelCase ( self ):
_lowercase =self._stacka.pop
_lowercase =self._stacka.append
if not self._stacka:
while self._stacka:
stacka_append(stacka_pop() )
if not self._stacka:
raise IndexError("Queue is empty" )
return self._stacka.pop()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 594
|
import warnings
from typing import Dict, List, Optional, Tuple
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
class _a ( lowerCamelCase_ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask']
def __init__( self , lowerCAmelCase_="</s>" , lowerCAmelCase_="<unk>" , lowerCAmelCase_="<pad>" , lowerCAmelCase_=125 , lowerCAmelCase_=None , **lowerCAmelCase_ , ):
# Add extra_ids to the special token list
if extra_ids > 0 and additional_special_tokens is None:
_lowercase =[F'''<extra_id_{i}>''' for i in range(lowerCAmelCase_ )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra_id special tokens
_lowercase =len(set(filter(lambda lowerCAmelCase_ : bool("extra_id" in str(lowerCAmelCase_ ) ) , lowerCAmelCase_ ) ) )
if extra_tokens != extra_ids:
raise ValueError(
F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are'''
" provided to ByT5Tokenizer. In this case the additional_special_tokens must include the"
" extra_ids tokens" )
_lowercase =AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else pad_token
_lowercase =AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else eos_token
_lowercase =AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else unk_token
super().__init__(
eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , extra_ids=lowerCAmelCase_ , additional_special_tokens=lowerCAmelCase_ , **lowerCAmelCase_ , )
_lowercase =extra_ids
_lowercase =2**8 # utf is 8 bits
# define special tokens dict
_lowercase ={
self.pad_token: 0,
self.eos_token: 1,
self.unk_token: 2,
}
_lowercase =len(self.special_tokens_encoder )
_lowercase =len(lowerCAmelCase_ )
for i, token in enumerate(lowerCAmelCase_ ):
_lowercase =self.vocab_size + i - n
_lowercase ={v: k for k, v in self.special_tokens_encoder.items()}
@property
def __lowerCAmelCase ( self ):
return self._utf_vocab_size + self._num_special_tokens + self._extra_ids
def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ )
# normal case: some special tokens
if token_ids_a is None:
return ([0] * len(lowerCAmelCase_ )) + [1]
return ([0] * len(lowerCAmelCase_ )) + [1] + ([0] * len(lowerCAmelCase_ )) + [1]
def __lowerCAmelCase ( self , lowerCAmelCase_ ):
if len(lowerCAmelCase_ ) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
F'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated'''
" eos tokens being added." )
return token_ids
else:
return token_ids + [self.eos_token_id]
def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ):
_lowercase =[self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ):
_lowercase =self._add_eos_if_not_present(lowerCAmelCase_ )
if token_ids_a is None:
return token_ids_a
else:
_lowercase =self._add_eos_if_not_present(lowerCAmelCase_ )
return token_ids_a + token_ids_a
def __lowerCAmelCase ( self , lowerCAmelCase_ ):
_lowercase =[chr(lowerCAmelCase_ ) for i in text.encode("utf-8" )]
return tokens
def __lowerCAmelCase ( self , lowerCAmelCase_ ):
if token in self.special_tokens_encoder:
_lowercase =self.special_tokens_encoder[token]
elif token in self.added_tokens_encoder:
_lowercase =self.added_tokens_encoder[token]
elif len(lowerCAmelCase_ ) != 1:
_lowercase =self.unk_token_id
else:
_lowercase =ord(lowerCAmelCase_ ) + self._num_special_tokens
return token_id
def __lowerCAmelCase ( self , lowerCAmelCase_ ):
if index in self.special_tokens_decoder:
_lowercase =self.special_tokens_decoder[index]
else:
_lowercase =chr(index - self._num_special_tokens )
return token
def __lowerCAmelCase ( self , lowerCAmelCase_ ):
_lowercase =b""
for token in tokens:
if token in self.special_tokens_decoder:
_lowercase =self.special_tokens_decoder[token].encode("utf-8" )
elif token in self.added_tokens_decoder:
_lowercase =self.special_tokens_decoder[token].encode("utf-8" )
elif token in self.special_tokens_encoder:
_lowercase =token.encode("utf-8" )
elif token in self.added_tokens_encoder:
_lowercase =token.encode("utf-8" )
else:
_lowercase =bytes([ord(lowerCAmelCase_ )] )
bstring += tok_string
_lowercase =bstring.decode("utf-8" , errors="ignore" )
return string
def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ):
return ()
| 594
| 1
|
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> Any:
UpperCAmelCase_ = len(__UpperCamelCase )
for i in range(length - 1 ):
UpperCAmelCase_ = i
for k in range(i + 1 , __UpperCamelCase ):
if collection[k] < collection[least]:
UpperCAmelCase_ = k
if least != i:
UpperCAmelCase_ , UpperCAmelCase_ = (collection[i], collection[least])
return collection
if __name__ == "__main__":
_lowerCamelCase = input('Enter numbers separated by a comma:\n').strip()
_lowerCamelCase = [int(item) for item in user_input.split(',')]
print(selection_sort(unsorted))
| 144
|
def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase) -> float:
if density <= 0:
raise ValueError("Impossible fluid density")
if bulk_modulus <= 0:
raise ValueError("Impossible bulk modulus")
return (bulk_modulus / density) ** 0.5
if __name__ == "__main__":
import doctest
doctest.testmod()
| 515
| 0
|
"""simple docstring"""
from __future__ import annotations
import math
import random
from typing import Any
class lowerCamelCase__ :
"""simple docstring"""
def __init__( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : list[Any] = []
__UpperCAmelCase : int = 0
__UpperCAmelCase : int = 0
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
return self.head == self.tail
def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : Any ):
'''simple docstring'''
self.data.append(UpperCamelCase )
__UpperCAmelCase : int = self.tail + 1
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : Dict = self.data[self.head]
__UpperCAmelCase : Dict = self.head + 1
return ret
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
return self.tail - self.head
def lowerCamelCase__ ( self : Optional[int] ):
'''simple docstring'''
print(self.data )
print("""**************""" )
print(self.data[self.head : self.tail] )
class lowerCamelCase__ :
"""simple docstring"""
def __init__( self : Optional[Any] , UpperCamelCase : Any ):
'''simple docstring'''
__UpperCAmelCase : int = data
__UpperCAmelCase : MyNode | None = None
__UpperCAmelCase : MyNode | None = None
__UpperCAmelCase : int = 1
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
return self.data
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
return self.left
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
return self.right
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
return self.height
def lowerCamelCase__ ( self : Dict , UpperCamelCase : Any ):
'''simple docstring'''
__UpperCAmelCase : List[str] = data
def lowerCamelCase__ ( self : Tuple , UpperCamelCase : MyNode | None ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = node
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : MyNode | None ):
'''simple docstring'''
__UpperCAmelCase : int = node
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : int ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = height
def lowerCamelCase ( _UpperCamelCase : MyNode | None ) -> int:
'''simple docstring'''
if node is None:
return 0
return node.get_height()
def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : int ) -> int:
'''simple docstring'''
if a > b:
return a
return b
def lowerCamelCase ( _UpperCamelCase : MyNode ) -> MyNode:
'''simple docstring'''
print("""left rotation node:""" , node.get_data() )
__UpperCAmelCase : List[Any] = node.get_left()
assert ret is not None
node.set_left(ret.get_right() )
ret.set_right(_UpperCamelCase )
__UpperCAmelCase : Any = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1
node.set_height(_UpperCamelCase )
__UpperCAmelCase : Tuple = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1
ret.set_height(_UpperCamelCase )
return ret
def lowerCamelCase ( _UpperCamelCase : MyNode ) -> MyNode:
'''simple docstring'''
print("""right rotation node:""" , node.get_data() )
__UpperCAmelCase : int = node.get_right()
assert ret is not None
node.set_right(ret.get_left() )
ret.set_left(_UpperCamelCase )
__UpperCAmelCase : int = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1
node.set_height(_UpperCamelCase )
__UpperCAmelCase : List[Any] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1
ret.set_height(_UpperCamelCase )
return ret
def lowerCamelCase ( _UpperCamelCase : MyNode ) -> MyNode:
'''simple docstring'''
__UpperCAmelCase : Any = node.get_left()
assert left_child is not None
node.set_left(left_rotation(_UpperCamelCase ) )
return right_rotation(_UpperCamelCase )
def lowerCamelCase ( _UpperCamelCase : MyNode ) -> MyNode:
'''simple docstring'''
__UpperCAmelCase : Dict = node.get_right()
assert right_child is not None
node.set_right(right_rotation(_UpperCamelCase ) )
return left_rotation(_UpperCamelCase )
def lowerCamelCase ( _UpperCamelCase : MyNode | None , _UpperCamelCase : Any ) -> MyNode | None:
'''simple docstring'''
if node is None:
return MyNode(_UpperCamelCase )
if data < node.get_data():
node.set_left(insert_node(node.get_left() , _UpperCamelCase ) )
if (
get_height(node.get_left() ) - get_height(node.get_right() ) == 2
): # an unbalance detected
__UpperCAmelCase : str = node.get_left()
assert left_child is not None
if (
data < left_child.get_data()
): # new node is the left child of the left child
__UpperCAmelCase : Dict = right_rotation(_UpperCamelCase )
else:
__UpperCAmelCase : Dict = lr_rotation(_UpperCamelCase )
else:
node.set_right(insert_node(node.get_right() , _UpperCamelCase ) )
if get_height(node.get_right() ) - get_height(node.get_left() ) == 2:
__UpperCAmelCase : List[Any] = node.get_right()
assert right_child is not None
if data < right_child.get_data():
__UpperCAmelCase : Dict = rl_rotation(_UpperCamelCase )
else:
__UpperCAmelCase : Any = left_rotation(_UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1
node.set_height(_UpperCamelCase )
return node
def lowerCamelCase ( _UpperCamelCase : MyNode ) -> Any:
'''simple docstring'''
while True:
__UpperCAmelCase : Optional[Any] = root.get_right()
if right_child is None:
break
__UpperCAmelCase : Union[str, Any] = right_child
return root.get_data()
def lowerCamelCase ( _UpperCamelCase : MyNode ) -> Any:
'''simple docstring'''
while True:
__UpperCAmelCase : int = root.get_left()
if left_child is None:
break
__UpperCAmelCase : Union[str, Any] = left_child
return root.get_data()
def lowerCamelCase ( _UpperCamelCase : MyNode , _UpperCamelCase : Any ) -> MyNode | None:
'''simple docstring'''
__UpperCAmelCase : Dict = root.get_left()
__UpperCAmelCase : Tuple = root.get_right()
if root.get_data() == data:
if left_child is not None and right_child is not None:
__UpperCAmelCase : Union[str, Any] = get_left_most(_UpperCamelCase )
root.set_data(_UpperCamelCase )
root.set_right(del_node(_UpperCamelCase , _UpperCamelCase ) )
elif left_child is not None:
__UpperCAmelCase : Dict = left_child
elif right_child is not None:
__UpperCAmelCase : Tuple = right_child
else:
return None
elif root.get_data() > data:
if left_child is None:
print("""No such data""" )
return root
else:
root.set_left(del_node(_UpperCamelCase , _UpperCamelCase ) )
else: # root.get_data() < data
if right_child is None:
return root
else:
root.set_right(del_node(_UpperCamelCase , _UpperCamelCase ) )
if get_height(_UpperCamelCase ) - get_height(_UpperCamelCase ) == 2:
assert right_child is not None
if get_height(right_child.get_right() ) > get_height(right_child.get_left() ):
__UpperCAmelCase : Any = left_rotation(_UpperCamelCase )
else:
__UpperCAmelCase : Tuple = rl_rotation(_UpperCamelCase )
elif get_height(_UpperCamelCase ) - get_height(_UpperCamelCase ) == -2:
assert left_child is not None
if get_height(left_child.get_left() ) > get_height(left_child.get_right() ):
__UpperCAmelCase : List[str] = right_rotation(_UpperCamelCase )
else:
__UpperCAmelCase : Union[str, Any] = lr_rotation(_UpperCamelCase )
__UpperCAmelCase : Dict = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1
root.set_height(_UpperCamelCase )
return root
class lowerCamelCase__ :
"""simple docstring"""
def __init__( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : MyNode | None = None
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
return get_height(self.root )
def lowerCamelCase__ ( self : Dict , UpperCamelCase : Any ):
'''simple docstring'''
print("""insert:""" + str(UpperCamelCase ) )
__UpperCAmelCase : Dict = insert_node(self.root , UpperCamelCase )
def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : Any ):
'''simple docstring'''
print("""delete:""" + str(UpperCamelCase ) )
if self.root is None:
print("""Tree is empty!""" )
return
__UpperCAmelCase : Tuple = del_node(self.root , UpperCamelCase )
def __str__( self : Tuple , ): # a level traversale, gives a more intuitive look on the tree
'''simple docstring'''
__UpperCAmelCase : Tuple = """"""
__UpperCAmelCase : str = MyQueue()
q.push(self.root )
__UpperCAmelCase : Union[str, Any] = self.get_height()
if layer == 0:
return output
__UpperCAmelCase : List[Any] = 0
while not q.is_empty():
__UpperCAmelCase : str = q.pop()
__UpperCAmelCase : Optional[Any] = """ """ * int(math.pow(2 , layer - 1 ) )
output += space
if node is None:
output += "*"
q.push(UpperCamelCase )
q.push(UpperCamelCase )
else:
output += str(node.get_data() )
q.push(node.get_left() )
q.push(node.get_right() )
output += space
__UpperCAmelCase : Union[str, Any] = cnt + 1
for i in range(100 ):
if cnt == math.pow(2 , UpperCamelCase ) - 1:
__UpperCAmelCase : Any = layer - 1
if layer == 0:
output += "\n*************************************"
return output
output += "\n"
break
output += "\n*************************************"
return output
def lowerCamelCase ( ) -> None:
'''simple docstring'''
import doctest
doctest.testmod()
if __name__ == "__main__":
_test()
UpperCAmelCase : Optional[Any] = AVLtree()
UpperCAmelCase : str = list(range(10))
random.shuffle(lst)
for i in lst:
t.insert(i)
print(str(t))
random.shuffle(lst)
for i in lst:
t.del_node(i)
print(str(t))
| 299
|
"""simple docstring"""
def lowerCamelCase ( _UpperCamelCase : int = 3 , _UpperCamelCase : int = 7 , _UpperCamelCase : int = 1_0_0_0_0_0_0 ) -> int:
'''simple docstring'''
__UpperCAmelCase : Dict = 0
__UpperCAmelCase : Optional[int] = 1
for current_denominator in range(1 , limit + 1 ):
__UpperCAmelCase : List[str] = current_denominator * numerator // denominator
if current_denominator % denominator == 0:
current_numerator -= 1
if current_numerator * max_denominator > current_denominator * max_numerator:
__UpperCAmelCase : Union[str, Any] = current_numerator
__UpperCAmelCase : List[Any] = current_denominator
return max_numerator
if __name__ == "__main__":
print(solution(numerator=3, denominator=7, limit=100_0000))
| 299
| 1
|
import itertools
import json
import os
import unittest
from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast
from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class snake_case__(UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
lowercase_ = LongformerTokenizer
lowercase_ = True
lowercase_ = LongformerTokenizerFast
lowercase_ = True
def snake_case ( self : str ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
lowercase__ : Optional[Any] = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
lowercase__ : Tuple = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) )
lowercase__ : Tuple = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
lowercase__ : Optional[int] = {"unk_token": "<unk>"}
lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
lowercase__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(SCREAMING_SNAKE_CASE ) )
def snake_case ( self : Optional[Any] , **SCREAMING_SNAKE_CASE : List[str] ):
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE )
def snake_case ( self : Any , **SCREAMING_SNAKE_CASE : List[str] ):
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE )
def snake_case ( self : Any , SCREAMING_SNAKE_CASE : str ):
lowercase__ : Optional[int] = "lower newer"
lowercase__ : Optional[Any] = "lower newer"
return input_text, output_text
def snake_case ( self : Any ):
lowercase__ : List[str] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map )
lowercase__ : List[Any] = "lower newer"
lowercase__ : Tuple = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"]
lowercase__ : int = tokenizer.tokenize(SCREAMING_SNAKE_CASE ) # , add_prefix_space=True)
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
lowercase__ : str = tokens + [tokenizer.unk_token]
lowercase__ : Dict = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
def snake_case ( self : Optional[int] ):
lowercase__ : Optional[Any] = self.get_tokenizer()
self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=SCREAMING_SNAKE_CASE ) , [0, 31_414, 232, 328, 2] )
self.assertListEqual(
tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=SCREAMING_SNAKE_CASE ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , )
@slow
def snake_case ( self : str ):
lowercase__ : List[str] = self.tokenizer_class.from_pretrained("allenai/longformer-base-4096" )
lowercase__ : Optional[int] = tokenizer.encode("sequence builders" , add_special_tokens=SCREAMING_SNAKE_CASE )
lowercase__ : Tuple = tokenizer.encode("multi-sequence build" , add_special_tokens=SCREAMING_SNAKE_CASE )
lowercase__ : Tuple = tokenizer.encode(
"sequence builders" , add_special_tokens=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE )
lowercase__ : str = tokenizer.encode(
"sequence builders" , "multi-sequence build" , add_special_tokens=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE )
lowercase__ : Dict = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE )
lowercase__ : Dict = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def snake_case ( self : List[str] ):
lowercase__ : Union[str, Any] = self.get_tokenizer()
lowercase__ : Any = "Encode this sequence."
lowercase__ : Tuple = tokenizer.byte_encoder[" ".encode("utf-8" )[0]]
# Testing encoder arguments
lowercase__ : Optional[int] = tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE )
lowercase__ : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
lowercase__ : Any = tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE )
lowercase__ : List[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
tokenizer.add_special_tokens({"bos_token": "<s>"} )
lowercase__ : Optional[Any] = tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE )
lowercase__ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Testing spaces after special tokens
lowercase__ : Tuple = "<mask>"
tokenizer.add_special_tokens(
{"mask_token": AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE )} ) # mask token has a left space
lowercase__ : List[str] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE )
lowercase__ : Tuple = "Encode <mask> sequence"
lowercase__ : Dict = "Encode <mask>sequence"
lowercase__ : int = tokenizer.encode(SCREAMING_SNAKE_CASE )
lowercase__ : str = encoded.index(SCREAMING_SNAKE_CASE )
lowercase__ : List[str] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
lowercase__ : List[str] = tokenizer.encode(SCREAMING_SNAKE_CASE )
lowercase__ : Optional[Any] = encoded.index(SCREAMING_SNAKE_CASE )
lowercase__ : int = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def snake_case ( self : Tuple ):
pass
def snake_case ( self : Optional[int] ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
lowercase__ : List[str] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
lowercase__ : int = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
lowercase__ : Dict = "A, <mask> AllenNLP sentence."
lowercase__ : List[Any] = tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , return_token_type_ids=SCREAMING_SNAKE_CASE )
lowercase__ : Tuple = tokenizer_p.encode_plus(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , return_token_type_ids=SCREAMING_SNAKE_CASE )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , )
lowercase__ : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] )
lowercase__ : Optional[int] = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(
SCREAMING_SNAKE_CASE , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
self.assertSequenceEqual(
SCREAMING_SNAKE_CASE , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
def snake_case ( self : Tuple ):
for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ):
lowercase__ : List[str] = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , trim_offsets=SCREAMING_SNAKE_CASE )
lowercase__ : Tuple = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
lowercase__ : List[str] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state["add_prefix_space"] , SCREAMING_SNAKE_CASE )
self.assertEqual(post_processor_state["add_prefix_space"] , SCREAMING_SNAKE_CASE )
self.assertEqual(post_processor_state["trim_offsets"] , SCREAMING_SNAKE_CASE )
def snake_case ( self : int ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
lowercase__ : Any = "hello" # `hello` is a token in the vocabulary of `pretrained_name`
lowercase__ : Dict = f"""{text_of_1_token} {text_of_1_token}"""
lowercase__ : Tuple = self.rust_tokenizer_class.from_pretrained(
SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , trim_offsets=SCREAMING_SNAKE_CASE )
lowercase__ : str = tokenizer_r(SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE ) + 1, len(SCREAMING_SNAKE_CASE ) + 1 + len(SCREAMING_SNAKE_CASE )) , )
lowercase__ : Any = self.rust_tokenizer_class.from_pretrained(
SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , trim_offsets=SCREAMING_SNAKE_CASE )
lowercase__ : Tuple = tokenizer_r(SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE ) + 1, len(SCREAMING_SNAKE_CASE ) + 1 + len(SCREAMING_SNAKE_CASE )) , )
lowercase__ : List[str] = self.rust_tokenizer_class.from_pretrained(
SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , trim_offsets=SCREAMING_SNAKE_CASE )
lowercase__ : Optional[Any] = tokenizer_r(SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE ), len(SCREAMING_SNAKE_CASE ) + 1 + len(SCREAMING_SNAKE_CASE )) , )
lowercase__ : str = self.rust_tokenizer_class.from_pretrained(
SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , trim_offsets=SCREAMING_SNAKE_CASE )
lowercase__ : Tuple = tokenizer_r(SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE ), len(SCREAMING_SNAKE_CASE ) + 1 + len(SCREAMING_SNAKE_CASE )) , )
lowercase__ : Any = f""" {text}"""
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
lowercase__ : str = self.rust_tokenizer_class.from_pretrained(
SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , trim_offsets=SCREAMING_SNAKE_CASE )
lowercase__ : List[str] = tokenizer_r(SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE ) + 1, 1 + len(SCREAMING_SNAKE_CASE ) + 1 + len(SCREAMING_SNAKE_CASE )) , )
lowercase__ : str = self.rust_tokenizer_class.from_pretrained(
SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , trim_offsets=SCREAMING_SNAKE_CASE )
lowercase__ : Optional[Any] = tokenizer_r(SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE ), 1 + len(SCREAMING_SNAKE_CASE ) + 1 + len(SCREAMING_SNAKE_CASE )) , )
lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(
SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , trim_offsets=SCREAMING_SNAKE_CASE )
lowercase__ : Optional[int] = tokenizer_r(SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE ), 1 + len(SCREAMING_SNAKE_CASE ) + 1 + len(SCREAMING_SNAKE_CASE )) , )
| 496
|
'''simple docstring'''
from __future__ import annotations
def __a ( A__ , A__ = None , A__ = None , A__ = False , ) -> tuple[int, float, str]:
lowerCAmelCase = cipher_alphabet or [chr(A__ ) for i in range(97 , 123 )]
# If the argument is None or the user provided an empty dictionary
if not frequencies_dict:
# Frequencies of letters in the english language (how much they show up)
lowerCAmelCase = {
"a": 0.08_497,
"b": 0.01_492,
"c": 0.02_202,
"d": 0.04_253,
"e": 0.11_162,
"f": 0.02_228,
"g": 0.02_015,
"h": 0.06_094,
"i": 0.07_546,
"j": 0.00_153,
"k": 0.01_292,
"l": 0.04_025,
"m": 0.02_406,
"n": 0.06_749,
"o": 0.07_507,
"p": 0.01_929,
"q": 0.00_095,
"r": 0.07_587,
"s": 0.06_327,
"t": 0.09_356,
"u": 0.02_758,
"v": 0.00_978,
"w": 0.02_560,
"x": 0.00_150,
"y": 0.01_994,
"z": 0.00_077,
}
else:
# Custom frequencies dictionary
lowerCAmelCase = frequencies_dict
if not case_sensitive:
lowerCAmelCase = ciphertext.lower()
# Chi squared statistic values
lowerCAmelCase = {}
# cycle through all of the shifts
for shift in range(len(A__ ) ):
lowerCAmelCase = ""
# decrypt the message with the shift
for letter in ciphertext:
try:
# Try to index the letter in the alphabet
lowerCAmelCase = (alphabet_letters.index(letter.lower() ) - shift) % len(
A__ )
decrypted_with_shift += (
alphabet_letters[new_key].upper()
if case_sensitive and letter.isupper()
else alphabet_letters[new_key]
)
except ValueError:
# Append the character if it isn't in the alphabet
decrypted_with_shift += letter
lowerCAmelCase = 0.0
# Loop through each letter in the decoded message with the shift
for letter in decrypted_with_shift:
if case_sensitive:
lowerCAmelCase = letter.lower()
if letter in frequencies:
# Get the amount of times the letter occurs in the message
lowerCAmelCase = decrypted_with_shift.lower().count(A__ )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
lowerCAmelCase = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
lowerCAmelCase = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
else:
if letter.lower() in frequencies:
# Get the amount of times the letter occurs in the message
lowerCAmelCase = decrypted_with_shift.count(A__ )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
lowerCAmelCase = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
lowerCAmelCase = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
# Add the data to the chi_squared_statistic_values dictionary
lowerCAmelCase = (
chi_squared_statistic,
decrypted_with_shift,
)
# Get the most likely cipher by finding the cipher with the smallest chi squared
# statistic
def chi_squared_statistic_values_sorting_key(A__ ) -> tuple[float, str]:
return chi_squared_statistic_values[key]
lowerCAmelCase = min(
A__ , key=A__ , )
# Get all the data from the most likely cipher (key, decoded message)
(
(
lowerCAmelCase
) , (
lowerCAmelCase
) ,
) = chi_squared_statistic_values[most_likely_cipher]
# Return the data on the most likely shift
return (
most_likely_cipher,
most_likely_cipher_chi_squared_value,
decoded_most_likely_cipher,
)
| 649
| 0
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_UpperCamelCase : Union[str, Any] = {
"configuration_time_series_transformer": [
"TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"TimeSeriesTransformerConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase : Any = [
"TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TimeSeriesTransformerForPrediction",
"TimeSeriesTransformerModel",
"TimeSeriesTransformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TimeSeriesTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TimeSeriesTransformerForPrediction,
TimeSeriesTransformerModel,
TimeSeriesTransformerPreTrainedModel,
)
else:
import sys
_UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 514
|
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _snake_case ( metaclass=a_ ):
SCREAMING_SNAKE_CASE : List[str] = ['''torch''', '''torchsde''']
def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ):
'''simple docstring'''
requires_backends(self , ['torch', 'torchsde'] )
@classmethod
def _SCREAMING_SNAKE_CASE ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ):
'''simple docstring'''
requires_backends(cls , ['torch', 'torchsde'] )
@classmethod
def _SCREAMING_SNAKE_CASE ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ):
'''simple docstring'''
requires_backends(cls , ['torch', 'torchsde'] )
| 514
| 1
|
'''simple docstring'''
from __future__ import annotations
def UpperCamelCase_ ( A__ ): # This function is recursive
a_ = len(A__ )
# If the array contains only one element, we return it (it's the stop condition of
# recursion)
if array_length <= 1:
return array
# Else
a_ = array[0]
a_ = False
a_ = 1
a_ = []
while not is_found and i < array_length:
if array[i] < pivot:
a_ = True
a_ = [element for element in array[i:] if element >= array[i]]
a_ = longest_subsequence(A__ )
if len(A__ ) > len(A__ ):
a_ = temp_array
else:
i += 1
a_ = [element for element in array[1:] if element >= pivot]
a_ = [pivot, *longest_subsequence(A__ )]
if len(A__ ) > len(A__ ):
return temp_array
else:
return longest_subseq
if __name__ == "__main__":
import doctest
doctest.testmod()
| 263
|
'''simple docstring'''
def UpperCamelCase_ ( A__ , A__ , A__ ):
if len(A__ ) != len(A__ ):
raise ValueError("""The length of profit and weight must be same.""" )
if max_weight <= 0:
raise ValueError("""max_weight must greater than zero.""" )
if any(p < 0 for p in profit ):
raise ValueError("""Profit can not be negative.""" )
if any(w < 0 for w in weight ):
raise ValueError("""Weight can not be negative.""" )
# List created to store profit gained for the 1kg in case of each weight
# respectively. Calculate and append profit/weight for each element.
a_ = [p / w for p, w in zip(A__ , A__ )]
# Creating a copy of the list and sorting profit/weight in ascending order
a_ = sorted(A__ )
# declaring useful variables
a_ = len(A__ )
a_ = 0
a_ = 0
a_ = 0
# loop till the total weight do not reach max limit e.g. 15 kg and till i<length
while limit <= max_weight and i < length:
# flag value for encountered greatest element in sorted_profit_by_weight
a_ = sorted_profit_by_weight[length - i - 1]
a_ = profit_by_weight.index(A__ )
a_ = -1
# check if the weight encountered is less than the total weight
# encountered before.
if max_weight - limit >= weight[index]:
limit += weight[index]
# Adding profit gained for the given weight 1 ===
# weight[index]/weight[index]
gain += 1 * profit[index]
else:
# Since the weight encountered is greater than limit, therefore take the
# required number of remaining kgs and calculate profit for it.
# weight remaining / weight[index]
gain += (max_weight - limit) / weight[index] * profit[index]
break
i += 1
return gain
if __name__ == "__main__":
print(
'Input profits, weights, and then max_weight (all positive ints) separated by '
'spaces.'
)
lowercase__ =[int(x) for x in input('Input profits separated by spaces: ').split()]
lowercase__ =[int(x) for x in input('Input weights separated by spaces: ').split()]
lowercase__ =int(input('Max weight allowed: '))
# Function Call
calc_profit(profit, weight, max_weight)
| 263
| 1
|
'''simple docstring'''
__snake_case = range(2, 20 + 1)
__snake_case = [10**k for k in range(ks[-1] + 1)]
__snake_case = {}
def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->List[str]:
lowercase_ = sum(a_i[j] for j in range(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) )
lowercase_ = sum(a_i[j] * base[j] for j in range(min(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) )
lowercase_ , lowercase_ = 0, 0
lowercase_ = n - i
lowercase_ = memo.get(SCREAMING_SNAKE_CASE_ )
if sub_memo is not None:
lowercase_ = sub_memo.get(SCREAMING_SNAKE_CASE_ )
if jumps is not None and len(SCREAMING_SNAKE_CASE_ ) > 0:
# find and make the largest jump without going over
lowercase_ = -1
for _k in range(len(SCREAMING_SNAKE_CASE_ ) - 1 , -1 , -1 ):
if jumps[_k][2] <= k and jumps[_k][1] <= max_dn:
lowercase_ = _k
break
if max_jump >= 0:
lowercase_ , lowercase_ , lowercase_ = jumps[max_jump]
# since the difference between jumps is cached, add c
lowercase_ = diff + c
for j in range(min(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) ):
lowercase_ , lowercase_ = divmod(SCREAMING_SNAKE_CASE_ , 10 )
if new_c > 0:
add(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
else:
lowercase_ = []
else:
lowercase_ = {c: []}
lowercase_ = sub_memo
if dn >= max_dn or c + diff >= base[k]:
return diff, dn
if k > ks[0]:
while True:
# keep doing smaller jumps
lowercase_ , lowercase_ = next_term(SCREAMING_SNAKE_CASE_ , k - 1 , i + dn , SCREAMING_SNAKE_CASE_ )
diff += _diff
dn += terms_jumped
if dn >= max_dn or c + diff >= base[k]:
break
else:
# would be too small a jump, just compute sequential terms instead
lowercase_ , lowercase_ = compute(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , i + dn , SCREAMING_SNAKE_CASE_ )
diff += _diff
dn += terms_jumped
lowercase_ = sub_memo[c]
# keep jumps sorted by # of terms skipped
lowercase_ = 0
while j < len(SCREAMING_SNAKE_CASE_ ):
if jumps[j][1] > dn:
break
j += 1
# cache the jump for this value digitsum(b) and c
sub_memo[c].insert(SCREAMING_SNAKE_CASE_ , (diff, dn, k) )
return (diff, dn)
def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->int:
if i >= n:
return 0, i
if k > len(SCREAMING_SNAKE_CASE_ ):
a_i.extend([0 for _ in range(k - len(SCREAMING_SNAKE_CASE_ ) )] )
# note: a_i -> b * 10^k + c
# ds_b -> digitsum(b)
# ds_c -> digitsum(c)
lowercase_ = i
lowercase_ , lowercase_ , lowercase_ = 0, 0, 0
for j in range(len(SCREAMING_SNAKE_CASE_ ) ):
if j >= k:
ds_b += a_i[j]
else:
ds_c += a_i[j]
while i < n:
i += 1
lowercase_ = ds_c + ds_b
diff += addend
lowercase_ = 0
for j in range(SCREAMING_SNAKE_CASE_ ):
lowercase_ = a_i[j] + addend
lowercase_ , lowercase_ = divmod(SCREAMING_SNAKE_CASE_ , 10 )
ds_c += a_i[j]
if addend > 0:
break
if addend > 0:
add(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return diff, i - start_i
def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->Any:
for j in range(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ):
lowercase_ = digits[j] + addend
if s >= 10:
lowercase_ , lowercase_ = divmod(SCREAMING_SNAKE_CASE_ , 10 )
lowercase_ = addend // 10 + quotient
else:
lowercase_ = s
lowercase_ = addend // 10
if addend == 0:
break
while addend > 0:
lowercase_ , lowercase_ = divmod(SCREAMING_SNAKE_CASE_ , 10 )
digits.append(SCREAMING_SNAKE_CASE_ )
def A_ ( SCREAMING_SNAKE_CASE_ = 10**15 ) ->int:
lowercase_ = [1]
lowercase_ = 1
lowercase_ = 0
while True:
lowercase_ , lowercase_ = next_term(SCREAMING_SNAKE_CASE_ , 20 , i + dn , SCREAMING_SNAKE_CASE_ )
dn += terms_jumped
if dn == n - i:
break
lowercase_ = 0
for j in range(len(SCREAMING_SNAKE_CASE_ ) ):
a_n += digits[j] * 10**j
return a_n
if __name__ == "__main__":
print(f'''{solution() = }''')
| 603
|
'''simple docstring'''
# Lint as: python3
import itertools
import os
import re
__snake_case = re.compile(r"""([A-Z]+)([A-Z][a-z])""")
__snake_case = re.compile(r"""([a-z\d])([A-Z])""")
__snake_case = re.compile(r"""(?<!_)_(?!_)""")
__snake_case = re.compile(r"""(_{2,})""")
__snake_case = r"""^\w+(\.\w+)*$"""
__snake_case = r"""<>:/\|?*"""
def A_ ( SCREAMING_SNAKE_CASE_ ) ->Union[str, Any]:
lowercase_ = _uppercase_uppercase_re.sub(r"""\1_\2""" , SCREAMING_SNAKE_CASE_ )
lowercase_ = _lowercase_uppercase_re.sub(r"""\1_\2""" , SCREAMING_SNAKE_CASE_ )
return name.lower()
def A_ ( SCREAMING_SNAKE_CASE_ ) ->List[Any]:
lowercase_ = _single_underscore_re.split(SCREAMING_SNAKE_CASE_ )
lowercase_ = [_multiple_underscores_re.split(SCREAMING_SNAKE_CASE_ ) for n in name]
return "".join(n.capitalize() for n in itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_ ) if n != """""" )
def A_ ( SCREAMING_SNAKE_CASE_ ) ->Any:
if os.path.basename(SCREAMING_SNAKE_CASE_ ) != name:
raise ValueError(f"""Should be a dataset name, not a path: {name}""" )
return camelcase_to_snakecase(SCREAMING_SNAKE_CASE_ )
def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->Any:
if os.path.basename(SCREAMING_SNAKE_CASE_ ) != name:
raise ValueError(f"""Should be a dataset name, not a path: {name}""" )
if not re.match(_split_re , SCREAMING_SNAKE_CASE_ ):
raise ValueError(f"""Split name should match '{_split_re}'' but got '{split}'.""" )
return f"""{filename_prefix_for_name(SCREAMING_SNAKE_CASE_ )}-{split}"""
def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) ->Tuple:
lowercase_ = filename_prefix_for_split(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if filetype_suffix:
prefix += f""".{filetype_suffix}"""
lowercase_ = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return f"""{filepath}*"""
def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) ->Optional[Any]:
lowercase_ = filename_prefix_for_split(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowercase_ = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if shard_lengths:
lowercase_ = len(SCREAMING_SNAKE_CASE_ )
lowercase_ = [f"""{prefix}-{shard_id:05d}-of-{num_shards:05d}""" for shard_id in range(SCREAMING_SNAKE_CASE_ )]
if filetype_suffix:
lowercase_ = [filename + f""".{filetype_suffix}""" for filename in filenames]
return filenames
else:
lowercase_ = prefix
if filetype_suffix:
filename += f""".{filetype_suffix}"""
return [filename]
| 603
| 1
|
'''simple docstring'''
def lowerCAmelCase__ ( ):
for n in range(1 , 1000000 ):
yield n * (n + 1) // 2
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ ):
__a : List[Any] = 1
__a : Tuple = 2
while i * i <= n:
__a : int = 0
while n % i == 0:
n //= i
multiplicity += 1
divisors_count *= multiplicity + 1
i += 1
if n > 1:
divisors_count *= 2
return divisors_count
def lowerCAmelCase__ ( ):
return next(i for i in triangle_number_generator() if count_divisors(_lowerCamelCase ) > 500 )
if __name__ == "__main__":
print(solution())
| 597
|
'''simple docstring'''
from __future__ import annotations
import numpy as np
def A_ ( _lowerCamelCase : list[float] ):
return np.maximum(0 , _lowerCamelCase )
if __name__ == "__main__":
print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
| 309
| 0
|
'''simple docstring'''
def __UpperCamelCase ( _UpperCAmelCase ):
__UpperCAmelCase : str = min(_UpperCAmelCase ) # min() finds the minimum value
__UpperCAmelCase : Any = max(_UpperCAmelCase ) # max() finds the maximum value
__UpperCAmelCase : Optional[int] = max_val - min_val + 1 # size is difference of max and min values plus one
# list of pigeonholes of size equal to the variable size
__UpperCAmelCase : List[str] = [0] * size
# Populate the pigeonholes.
for x in a:
assert isinstance(_UpperCAmelCase, _UpperCAmelCase ), "integers only please"
holes[x - min_val] += 1
# Putting the elements back into the array in an order.
__UpperCAmelCase : Dict = 0
for count in range(_UpperCAmelCase ):
while holes[count] > 0:
holes[count] -= 1
__UpperCAmelCase : str = count + min_val
i += 1
def __UpperCamelCase ( ):
__UpperCAmelCase : Dict = [8, 3, 2, 7, 4, 6, 8]
pigeonhole_sort(_UpperCAmelCase )
print("Sorted order is:", " ".join(_UpperCAmelCase ) )
if __name__ == "__main__":
main()
| 716
|
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCAmelCase__ : Union[str, Any] = logging.get_logger(__name__)
lowerCAmelCase__ : str = {
"shi-labs/dinat-mini-in1k-224": "https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json",
# See all Dinat models at https://huggingface.co/models?filter=dinat
}
class SCREAMING_SNAKE_CASE__ ( snake_case__ ,snake_case__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE = '''dinat'''
SCREAMING_SNAKE_CASE = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self : List[Any] , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : List[Any]=64 , UpperCAmelCase_ : List[Any]=[3, 4, 6, 5] , UpperCAmelCase_ : Tuple=[2, 4, 8, 16] , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Optional[Any]=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , UpperCAmelCase_ : Tuple=3.0 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : List[Any]=1e-5 , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : Union[str, Any] , ):
"""simple docstring"""
super().__init__(**UpperCAmelCase_ )
__UpperCAmelCase : Optional[int] = patch_size
__UpperCAmelCase : List[Any] = num_channels
__UpperCAmelCase : str = embed_dim
__UpperCAmelCase : List[str] = depths
__UpperCAmelCase : Tuple = len(UpperCAmelCase_ )
__UpperCAmelCase : Union[str, Any] = num_heads
__UpperCAmelCase : Optional[int] = kernel_size
__UpperCAmelCase : Any = dilations
__UpperCAmelCase : List[Any] = mlp_ratio
__UpperCAmelCase : List[str] = qkv_bias
__UpperCAmelCase : Any = hidden_dropout_prob
__UpperCAmelCase : Tuple = attention_probs_dropout_prob
__UpperCAmelCase : Optional[Any] = drop_path_rate
__UpperCAmelCase : str = hidden_act
__UpperCAmelCase : Dict = layer_norm_eps
__UpperCAmelCase : Union[str, Any] = initializer_range
# we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
__UpperCAmelCase : Optional[Any] = int(embed_dim * 2 ** (len(UpperCAmelCase_ ) - 1) )
__UpperCAmelCase : Dict = layer_scale_init_value
__UpperCAmelCase : str = ["stem"] + [f"stage{idx}" for idx in range(1 , len(UpperCAmelCase_ ) + 1 )]
__UpperCAmelCase , __UpperCAmelCase : str = get_aligned_output_features_output_indices(
out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names )
| 329
| 0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.