code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __a :Tuple = logging.get_logger(__name__) __a :int = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, 'constant': get_constant_schedule, 'constant_w_warmup': get_constant_schedule_with_warmup, } class _a ( snake_case_ ): """simple docstring""" def __init__( self : str , UpperCAmelCase : str=None , UpperCAmelCase : Union[str, Any]=None , *UpperCAmelCase : int , **UpperCAmelCase : List[str] ): super().__init__(*UpperCAmelCase , **UpperCAmelCase ) if config is None: assert isinstance(self.model , UpperCAmelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) A_ = self.model.config else: A_ = config A_ = data_args A_ = self.config.tgt_vocab_size if isinstance(self.config , UpperCAmelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' " padding.." ) if self.args.label_smoothing == 0: A_ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss A_ = label_smoothed_nll_loss def __A ( self : Dict , UpperCAmelCase : int ): if self.optimizer is None: A_ = ["bias", "LayerNorm.weight"] A_ = [ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] A_ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: A_ = Adafactor A_ = {"scale_parameter": False, "relative_step": False} else: A_ = AdamW A_ = { "betas": (self.args.adam_betaa, self.args.adam_betaa), "eps": self.args.adam_epsilon, } A_ = self.args.learning_rate if self.sharded_ddp: A_ = OSS( params=UpperCAmelCase , optim=UpperCAmelCase , **UpperCAmelCase , ) else: A_ = optimizer_cls(UpperCAmelCase , **UpperCAmelCase ) if self.lr_scheduler is None: A_ = self._get_lr_scheduler(UpperCAmelCase ) else: # ignoring --lr_scheduler logger.warning("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored." ) def __A ( self : Tuple , UpperCAmelCase : List[Any] ): A_ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": A_ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": A_ = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: A_ = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=UpperCAmelCase ) return scheduler def __A ( self : Optional[int] ): if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def __A ( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : str ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token A_ = model(**UpperCAmelCase , use_cache=UpperCAmelCase )[0] A_ = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models A_ , A_ = model(**UpperCAmelCase , labels=UpperCAmelCase , use_cache=UpperCAmelCase )[:2] else: # compute label smoothed loss A_ = model(**UpperCAmelCase , use_cache=UpperCAmelCase )[0] A_ = torch.nn.functional.log_softmax(UpperCAmelCase , dim=-1 ) A_ , A_ = self.loss_fn(UpperCAmelCase , UpperCAmelCase , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def __A ( self : int , UpperCAmelCase : str , UpperCAmelCase : int ): A_ = inputs.pop("labels" ) A_ , A_ = self._compute_loss(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return loss def __A ( self : Optional[Any] , UpperCAmelCase : nn.Module , UpperCAmelCase : Dict[str, Union[torch.Tensor, Any]] , UpperCAmelCase : bool , UpperCAmelCase : Optional[List[str]] = None , ): A_ = self._prepare_inputs(UpperCAmelCase ) A_ = { "max_length": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: A_ = self.model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , **UpperCAmelCase , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: A_ = self._pad_tensors_to_max_len(UpperCAmelCase , gen_kwargs["max_length"] ) A_ = inputs.pop("labels" ) with torch.no_grad(): # compute loss on predict data A_ , A_ = self._compute_loss(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) A_ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) A_ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: A_ = self._pad_tensors_to_max_len(UpperCAmelCase , gen_kwargs["max_length"] ) return (loss, logits, labels) def __A ( self : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Tuple ): # If PAD token is not defined at least EOS token has to be defined A_ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( "Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be" f''' padded to `max_length`={max_length}''' ) A_ = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) A_ = tensor return padded_tensor
86
"""simple docstring""" import sys lowerCAmelCase__ = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : List[str] = 1 for digit in s: product *= int(SCREAMING_SNAKE_CASE ) return product def a__ ( SCREAMING_SNAKE_CASE : str = N ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = -sys.maxsize - 1 lowerCAmelCase : str = n[:1_3] lowerCAmelCase : Tuple = 1_3 while cur_index < len(SCREAMING_SNAKE_CASE ) - 1_3: if int(n[cur_index] ) >= int(substr[0] ): lowerCAmelCase : Any = substr[1:] + n[cur_index] cur_index += 1 else: lowerCAmelCase : int = max(SCREAMING_SNAKE_CASE , str_eval(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : Dict = n[cur_index : cur_index + 1_3] cur_index += 1_3 return largest_product if __name__ == "__main__": print(F"{solution() = }")
645
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """microsoft/biogpt""": """https://huggingface.co/microsoft/biogpt/resolve/main/config.json""", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = "biogpt" def __init__( self , UpperCAmelCase=42384 , UpperCAmelCase=1024 , UpperCAmelCase=24 , UpperCAmelCase=16 , UpperCAmelCase=4096 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1024 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=2 , **UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' lowercase_ = vocab_size lowercase_ = max_position_embeddings lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = scale_embedding lowercase_ = use_cache lowercase_ = layerdrop lowercase_ = activation_dropout super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
709
from __future__ import annotations from cmath import sqrt def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: int ): '''simple docstring''' if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) lowercase_ = b * b - 4 * a * c lowercase_ = (-b + sqrt(__lowerCamelCase )) / (2 * a) lowercase_ = (-b - sqrt(__lowerCamelCase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ , lowercase_ = quadratic_roots(a=5 , b=6 , c=1 ) print(F'The solutions are: {solutiona} and {solutiona}' ) if __name__ == "__main__": main()
601
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() _A : List[str] = logging.get_logger(__name__) def __snake_case ( lowerCAmelCase_ ) -> List[Any]: # initialize config if "resnet-50" in model_name: SCREAMING_SNAKE_CASE__ = ResNetConfig.from_pretrained('''microsoft/resnet-50''' ) elif "resnet-101" in model_name: SCREAMING_SNAKE_CASE__ = ResNetConfig.from_pretrained('''microsoft/resnet-101''' ) else: raise ValueError('''Model name should include either resnet50 or resnet101''' ) SCREAMING_SNAKE_CASE__ = DetrConfig(use_timm_backbone=lowerCAmelCase_ , backbone_config=lowerCAmelCase_ ) # set label attributes SCREAMING_SNAKE_CASE__ = '''panoptic''' in model_name if is_panoptic: SCREAMING_SNAKE_CASE__ = 2_5_0 else: SCREAMING_SNAKE_CASE__ = 9_1 SCREAMING_SNAKE_CASE__ = '''huggingface/label-files''' SCREAMING_SNAKE_CASE__ = '''coco-detection-id2label.json''' SCREAMING_SNAKE_CASE__ = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type='''dataset''' ) , '''r''' ) ) SCREAMING_SNAKE_CASE__ = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ = idalabel SCREAMING_SNAKE_CASE__ = {v: k for k, v in idalabel.items()} return config, is_panoptic def __snake_case ( lowerCAmelCase_ ) -> List[Any]: # here we list all keys to be renamed (original name on the left, our name on the right) SCREAMING_SNAKE_CASE__ = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.conv1.weight''', '''backbone.conv_encoder.model.embedder.embedder.convolution.weight''') ) rename_keys.append(('''backbone.0.body.bn1.weight''', '''backbone.conv_encoder.model.embedder.embedder.normalization.weight''') ) rename_keys.append(('''backbone.0.body.bn1.bias''', '''backbone.conv_encoder.model.embedder.embedder.normalization.bias''') ) rename_keys.append(('''backbone.0.body.bn1.running_mean''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_mean''') ) rename_keys.append(('''backbone.0.body.bn1.running_var''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_var''') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) return rename_keys def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: SCREAMING_SNAKE_CASE__ = state_dict.pop(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = val def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_=False ) -> List[str]: SCREAMING_SNAKE_CASE__ = '''''' if is_panoptic: SCREAMING_SNAKE_CASE__ = '''detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[:2_5_6, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[:2_5_6] SCREAMING_SNAKE_CASE__ = in_proj_weight[2_5_6:5_1_2, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[2_5_6:5_1_2] SCREAMING_SNAKE_CASE__ = in_proj_weight[-2_5_6:, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[:2_5_6, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[:2_5_6] SCREAMING_SNAKE_CASE__ = in_proj_weight[2_5_6:5_1_2, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[2_5_6:5_1_2] SCREAMING_SNAKE_CASE__ = in_proj_weight[-2_5_6:, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention SCREAMING_SNAKE_CASE__ = state_dict.pop( f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight_cross_attn[:2_5_6, :] SCREAMING_SNAKE_CASE__ = in_proj_bias_cross_attn[:2_5_6] SCREAMING_SNAKE_CASE__ = in_proj_weight_cross_attn[2_5_6:5_1_2, :] SCREAMING_SNAKE_CASE__ = in_proj_bias_cross_attn[2_5_6:5_1_2] SCREAMING_SNAKE_CASE__ = in_proj_weight_cross_attn[-2_5_6:, :] SCREAMING_SNAKE_CASE__ = in_proj_bias_cross_attn[-2_5_6:] def __snake_case ( ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE__ = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=False ) -> Any: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_detr_config(lowerCAmelCase_ ) # load original model from torch hub SCREAMING_SNAKE_CASE__ = { '''detr-resnet-50''': '''detr_resnet50''', '''detr-resnet-101''': '''detr_resnet101''', } logger.info(f'''Converting model {model_name}...''' ) SCREAMING_SNAKE_CASE__ = torch.hub.load('''facebookresearch/detr''' , model_name_to_original_name[model_name] , pretrained=lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE__ = detr.state_dict() # rename keys for src, dest in create_rename_keys(lowerCAmelCase_ ): if is_panoptic: SCREAMING_SNAKE_CASE__ = '''detr.''' + src rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # query, key and value matrices need special treatment read_in_q_k_v(lowerCAmelCase_ , is_panoptic=lowerCAmelCase_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them SCREAMING_SNAKE_CASE__ = '''detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): SCREAMING_SNAKE_CASE__ = state_dict.pop(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: SCREAMING_SNAKE_CASE__ = state_dict.pop(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: SCREAMING_SNAKE_CASE__ = state_dict.pop(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): SCREAMING_SNAKE_CASE__ = state_dict.pop(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = val # finally, create HuggingFace model and load state dict SCREAMING_SNAKE_CASE__ = DetrForSegmentation(lowerCAmelCase_ ) if is_panoptic else DetrForObjectDetection(lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) model.eval() # verify our conversion on an image SCREAMING_SNAKE_CASE__ = '''coco_panoptic''' if is_panoptic else '''coco_detection''' SCREAMING_SNAKE_CASE__ = DetrImageProcessor(format=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = processor(images=prepare_img() , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__ = encoding['''pixel_values'''] SCREAMING_SNAKE_CASE__ = detr(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = model(lowerCAmelCase_ ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: # Upload model and image processor to the hub logger.info('''Uploading PyTorch model and image processor to the hub...''' ) model.push_to_hub(f'''nielsr/{model_name}''' ) processor.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": _A : List[Any] = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""detr-resnet-50""", type=str, choices=["""detr-resnet-50""", """detr-resnet-101"""], help="""Name of the DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub or not.""") _A : Any = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
100
def __snake_case ( ) -> int: return 1 def __snake_case ( lowerCAmelCase_ ) -> int: return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def __snake_case ( lowerCAmelCase_ ) -> int: return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowerCAmelCase_ ) def __snake_case ( lowerCAmelCase_ ) -> int: return 0 if x < 0 else ten_pence(x - 1_0 ) + five_pence(lowerCAmelCase_ ) def __snake_case ( lowerCAmelCase_ ) -> int: return 0 if x < 0 else twenty_pence(x - 2_0 ) + ten_pence(lowerCAmelCase_ ) def __snake_case ( lowerCAmelCase_ ) -> int: return 0 if x < 0 else fifty_pence(x - 5_0 ) + twenty_pence(lowerCAmelCase_ ) def __snake_case ( lowerCAmelCase_ ) -> int: return 0 if x < 0 else one_pound(x - 1_0_0 ) + fifty_pence(lowerCAmelCase_ ) def __snake_case ( lowerCAmelCase_ ) -> int: return 0 if x < 0 else two_pound(x - 2_0_0 ) + one_pound(lowerCAmelCase_ ) def __snake_case ( lowerCAmelCase_ = 2_0_0 ) -> int: return two_pound(lowerCAmelCase_ ) if __name__ == "__main__": print(solution(int(input().strip())))
100
1
"""simple docstring""" # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def SCREAMING_SNAKE_CASE ( *snake_case): with open(snake_case, '''r''') as fh: fcntl.flock(snake_case, fcntl.LOCK_EX) try: print(*snake_case) finally: fcntl.flock(snake_case, fcntl.LOCK_UN) __lowercase : Optional[Any] = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) __lowercase : Optional[Any] = torch.device("cuda", local_rank) __lowercase : List[Any] = socket.gethostname() __lowercase : Tuple = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __lowercase : Union[str, Any] = dist.get_rank() __lowercase : List[Any] = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
93
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class _A ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Optional[int] ) -> List[str]: __snake_case = tempfile.mkdtemp() # fmt: off __snake_case = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __snake_case = dict(zip(A_ , range(len(A_ ) ) ) ) __snake_case = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __snake_case = {'''unk_token''': '''<unk>'''} __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A_ ) ) __snake_case = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } __snake_case = os.path.join(self.tmpdirname , A_ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(A_ , A_ ) def lowercase ( self : Optional[Any] , **A_ : Dict ) -> Any: return CLIPTokenizer.from_pretrained(self.tmpdirname , **A_ ) def lowercase ( self : Optional[int] , **A_ : str ) -> str: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **A_ ) def lowercase ( self : Any , **A_ : Tuple ) -> Tuple: return ViTImageProcessor.from_pretrained(self.tmpdirname , **A_ ) def lowercase ( self : Optional[int] ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def lowercase ( self : int ) -> Optional[Any]: __snake_case = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __snake_case = [Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase ( self : Optional[Any] ) -> Optional[Any]: __snake_case = self.get_tokenizer() __snake_case = self.get_rust_tokenizer() __snake_case = self.get_image_processor() __snake_case = CLIPSegProcessor(tokenizer=A_ , image_processor=A_ ) processor_slow.save_pretrained(self.tmpdirname ) __snake_case = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=A_ ) __snake_case = CLIPSegProcessor(tokenizer=A_ , image_processor=A_ ) processor_fast.save_pretrained(self.tmpdirname ) __snake_case = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A_ ) self.assertIsInstance(processor_fast.tokenizer , A_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A_ ) self.assertIsInstance(processor_fast.image_processor , A_ ) def lowercase ( self : Union[str, Any] ) -> Any: __snake_case = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __snake_case = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __snake_case = self.get_image_processor(do_normalize=A_ , padding_value=1.0 ) __snake_case = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=A_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A_ ) def lowercase ( self : Any ) -> str: __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = CLIPSegProcessor(tokenizer=A_ , image_processor=A_ ) __snake_case = self.prepare_image_inputs() __snake_case = image_processor(A_ , return_tensors='''np''' ) __snake_case = processor(images=A_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase ( self : List[str] ) -> List[Any]: __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = CLIPSegProcessor(tokenizer=A_ , image_processor=A_ ) __snake_case = '''lower newer''' __snake_case = processor(text=A_ ) __snake_case = tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase ( self : List[Any] ) -> str: __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = CLIPSegProcessor(tokenizer=A_ , image_processor=A_ ) __snake_case = '''lower newer''' __snake_case = self.prepare_image_inputs() __snake_case = processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def lowercase ( self : Union[str, Any] ) -> Any: __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = CLIPSegProcessor(tokenizer=A_ , image_processor=A_ ) __snake_case = self.prepare_image_inputs() __snake_case = self.prepare_image_inputs() __snake_case = processor(images=A_ , visual_prompt=A_ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def lowercase ( self : Optional[int] ) -> Dict: __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = CLIPSegProcessor(tokenizer=A_ , image_processor=A_ ) __snake_case = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __snake_case = processor.batch_decode(A_ ) __snake_case = tokenizer.batch_decode(A_ ) self.assertListEqual(A_ , A_ )
93
1
'''simple docstring''' from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def _lowerCamelCase ( lowercase : Any ) -> Union[str, Any]: return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) lowerCAmelCase_ : List[str] = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n' class __SCREAMING_SNAKE_CASE (a_ ): """simple docstring""" @staticmethod def UpperCamelCase__ ( __a : Optional[Any] ): _a = parser.add_parser( "convert" , help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints." , ) train_parser.add_argument("--model_type" , type=_lowercase , required=_lowercase , help="Model\'s type." ) train_parser.add_argument( "--tf_checkpoint" , type=_lowercase , required=_lowercase , help="TensorFlow checkpoint path or folder." ) train_parser.add_argument( "--pytorch_dump_output" , type=_lowercase , required=_lowercase , help="Path to the PyTorch saved model output." ) train_parser.add_argument("--config" , type=_lowercase , default="" , help="Configuration file path or folder." ) train_parser.add_argument( "--finetuning_task_name" , type=_lowercase , default=_lowercase , help="Optional fine-tuning task name if the TF model was a finetuned model." , ) train_parser.set_defaults(func=_lowercase ) def __init__( self : Union[str, Any] , __a : str , __a : str , __a : str , __a : Optional[Any] , __a : int , *__a : Any , ): _a = logging.get_logger("transformers-cli/converting" ) self._logger.info(f'Loading model {model_type}' ) _a = model_type _a = tf_checkpoint _a = pytorch_dump_output _a = config _a = finetuning_task_name def UpperCamelCase__ ( self : Any ): if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) if "ckpt" in self._tf_checkpoint.lower(): _a = self._tf_checkpoint _a = '''''' else: _a = self._tf_checkpoint _a = '''''' convert_transfo_xl_checkpoint_to_pytorch( _lowercase , self._config , self._pytorch_dump_output , _lowercase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( "--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]" )
692
"""simple docstring""" import numpy # List of input, output pairs SCREAMING_SNAKE_CASE__ : Optional[Any] =( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) SCREAMING_SNAKE_CASE__ : str =(((515, 22, 13), 555), ((61, 35, 49), 150)) SCREAMING_SNAKE_CASE__ : int =[2, 4, 1, 5] SCREAMING_SNAKE_CASE__ : Any =len(train_data) SCREAMING_SNAKE_CASE__ : List[Any] =0.009 def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="train" ) ->List[str]: return calculate_hypothesis_value(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) - output( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->Tuple: _lowerCamelCase : int = 0 for i in range(len(SCREAMING_SNAKE_CASE_ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->Union[str, Any]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->Optional[Any]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=m ) ->List[str]: _lowerCamelCase : Tuple = 0 for i in range(SCREAMING_SNAKE_CASE_ ): if index == -1: summation_value += _error(SCREAMING_SNAKE_CASE_ ) else: summation_value += _error(SCREAMING_SNAKE_CASE_ ) * train_data[i][0][index] return summation_value def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->List[str]: _lowerCamelCase : Optional[Any] = summation_of_cost_derivative(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) / m return cost_derivative_value def UpperCamelCase ( ) ->Optional[Any]: global parameter_vector # Tune these values to set a tolerance value for predicted output _lowerCamelCase : Dict = 0.000002 _lowerCamelCase : List[str] = 0 _lowerCamelCase : Union[str, Any] = 0 while True: j += 1 _lowerCamelCase : str = [0, 0, 0, 0] for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): _lowerCamelCase : Optional[int] = get_cost_derivative(i - 1 ) _lowerCamelCase : Optional[Any] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ , rtol=SCREAMING_SNAKE_CASE_ , ): break _lowerCamelCase : List[str] = temp_parameter_vector print(('''Number of iterations:''', j) ) def UpperCamelCase ( ) ->Optional[Any]: for i in range(len(SCREAMING_SNAKE_CASE_ ) ): print(('''Actual output value:''', output(SCREAMING_SNAKE_CASE_ , '''test''' )) ) print(('''Hypothesis output:''', calculate_hypothesis_value(SCREAMING_SNAKE_CASE_ , '''test''' )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
434
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore snake_case : Dict = ''' Human: <<task>> Assistant: ''' snake_case : Optional[int] = '''huggingface-tools/default-prompts''' snake_case : Tuple = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any="run" ): if prompt_or_repo_id is None: a__ = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , __lowerCAmelCase ) is not None: return prompt_or_repo_id a__ = cached_file( __lowerCAmelCase , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} ) with open(__lowerCAmelCase , 'r' , encoding='utf-8' ) as f: return f.read()
657
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case : Dict = logging.get_logger(__name__) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Dict = ['''pixel_values'''] def __init__( self :Optional[Any] ,__snake_case :bool = True ,__snake_case :int = 32 ,__snake_case :Union[str, Any]=PILImageResampling.BILINEAR ,__snake_case :bool = True ,**__snake_case :Tuple ,) -> None: a__ = do_resize a__ = do_rescale a__ = size_divisor a__ = resample super().__init__(**__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :np.ndarray ,__snake_case :int ,__snake_case :Tuple ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :List[Any] ) -> np.ndarray: a__ , a__ = get_image_size(__snake_case ) # Rounds the height and width down to the closest multiple of size_divisor a__ = height // size_divisor * size_divisor a__ = width // size_divisor * size_divisor a__ = resize(__snake_case ,(new_h, new_w) ,resample=__snake_case ,data_format=__snake_case ,**__snake_case ) return image def lowerCamelCase__( self :List[str] ,__snake_case :np.ndarray ,__snake_case :float ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :str ) -> np.ndarray: return rescale(image=__snake_case ,scale=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Tuple ,__snake_case :Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] ,__snake_case :Optional[bool] = None ,__snake_case :Optional[int] = None ,__snake_case :Union[str, Any]=None ,__snake_case :Optional[bool] = None ,__snake_case :Optional[Union[TensorType, str]] = None ,__snake_case :ChannelDimension = ChannelDimension.FIRST ,**__snake_case :List[Any] ,) -> BatchFeature: a__ = do_resize if do_resize is not None else self.do_resize a__ = do_rescale if do_rescale is not None else self.do_rescale a__ = size_divisor if size_divisor is not None else self.size_divisor a__ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) a__ = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. a__ = [to_numpy_array(__snake_case ) for img in images] if do_resize: a__ = [self.resize(__snake_case ,size_divisor=__snake_case ,resample=__snake_case ) for image in images] if do_rescale: a__ = [self.rescale(__snake_case ,scale=1 / 2_55 ) for image in images] a__ = [to_channel_dimension_format(__snake_case ,__snake_case ) for image in images] a__ = {'pixel_values': images} return BatchFeature(data=__snake_case ,tensor_type=__snake_case )
657
1
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def __init__( self : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str]=7 , __lowerCAmelCase : int=3 , __lowerCAmelCase : int=18 , __lowerCAmelCase : Tuple=30 , __lowerCAmelCase : List[str]=4_00 , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Dict=[0.5, 0.5, 0.5] , __lowerCAmelCase : Optional[Any]=[0.5, 0.5, 0.5] , __lowerCAmelCase : Tuple=False , ) -> List[str]: _A = size if size is not None else {'''height''': 20, '''width''': 20} _A = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _A = parent _A = batch_size _A = num_channels _A = image_size _A = min_resolution _A = max_resolution _A = do_resize _A = size _A = do_center_crop _A = crop_size _A = do_normalize _A = image_mean _A = image_std _A = do_reduce_labels def snake_case_ ( self : Optional[int] ) -> Tuple: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def SCREAMING_SNAKE_CASE_ ( ) -> Tuple: _A = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) _A = Image.open(dataset[0]['''file'''] ) _A = Image.open(dataset[1]['''file'''] ) return image, map def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]: _A = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) _A = Image.open(ds[0]['''file'''] ) _A = Image.open(ds[1]['''file'''] ) _A = Image.open(ds[2]['''file'''] ) _A = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class lowerCamelCase__ ( _A , unittest.TestCase): """simple docstring""" a__ : List[Any] = BeitImageProcessor if is_vision_available() else None def snake_case_ ( self : Optional[Any] ) -> Optional[Any]: _A = BeitImageProcessingTester(self ) @property def snake_case_ ( self : Dict ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self : int ) -> List[str]: _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''size''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''center_crop''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_std''' ) ) def snake_case_ ( self : int ) -> List[str]: _A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , __lowerCAmelCase ) _A = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=__lowerCAmelCase ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , __lowerCAmelCase ) def snake_case_ ( self : Union[str, Any] ) -> Optional[Any]: pass def snake_case_ ( self : Union[str, Any] ) -> int: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case_ ( self : Optional[Any] ) -> Any: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case_ ( self : List[Any] ) -> Union[str, Any]: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case_ ( self : int ) -> str: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) _A = [] for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input _A = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched _A = image_processing(__lowerCAmelCase , __lowerCAmelCase , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test not batched input (PIL images) _A , _A = prepare_semantic_single_inputs() _A = image_processing(__lowerCAmelCase , __lowerCAmelCase , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched input (PIL images) _A , _A = prepare_semantic_batch_inputs() _A = image_processing(__lowerCAmelCase , __lowerCAmelCase , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) def snake_case_ ( self : List[str] ) -> Dict: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 _A , _A = prepare_semantic_single_inputs() _A = image_processing(__lowerCAmelCase , __lowerCAmelCase , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 1_50 ) _A = True _A = image_processing(__lowerCAmelCase , __lowerCAmelCase , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
2
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __magic_name__ : Any = {'configuration_glpn': ['GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GLPNConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Dict = ['GLPNFeatureExtractor'] __magic_name__ : Union[str, Any] = ['GLPNImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : int = [ 'GLPN_PRETRAINED_MODEL_ARCHIVE_LIST', 'GLPNForDepthEstimation', 'GLPNLayer', 'GLPNModel', 'GLPNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys __magic_name__ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
281
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ = {"""configuration_ibert""": ["""IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """IBertConfig""", """IBertOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """IBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """IBertForMaskedLM""", """IBertForMultipleChoice""", """IBertForQuestionAnswering""", """IBertForSequenceClassification""", """IBertForTokenClassification""", """IBertModel""", """IBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
def _lowerCamelCase ( a_ : list): if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''') for cell_n in range(1 , len(grid[0])): grid[0][cell_n] += grid[0][cell_n - 1] lowerCamelCase :Any = grid[0] for row_n in range(1 , len(a_)): lowerCamelCase :List[str] = grid[row_n] lowerCamelCase :Union[str, Any] = fill_row(a_ , a_) lowerCamelCase :List[Any] = grid[row_n] return grid[-1][-1] def _lowerCamelCase ( a_ : list , a_ : list): current_row[0] += row_above[0] for cell_n in range(1 , len(a_)): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n]) return current_row if __name__ == "__main__": import doctest doctest.testmod()
49
1
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: lowercase__ : str = mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) else: lowercase__ : List[str] = max( mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) , mf_knapsack(i - 1 , lowercase_ , lowercase_ , j - wt[i - 1] ) + val[i - 1] , ) lowercase__ : List[Any] = val return f[i][j] def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str: '''simple docstring''' lowercase__ : Any = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: lowercase__ : List[Any] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: lowercase__ : Tuple = dp[i - 1][w_] return dp[n][w_], dp def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' if not (isinstance(lowercase_ , (list, tuple) ) and isinstance(lowercase_ , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) lowercase__ : str = len(lowercase_ ) if num_items != len(lowercase_ ): lowercase__ : Optional[int] = ( """The number of weights must be the same as the number of values.\n""" F'But got {num_items} weights and {len(lowercase_ )} values' ) raise ValueError(lowercase_ ) for i in range(lowercase_ ): if not isinstance(wt[i] , lowercase_ ): lowercase__ : int = ( """All weights must be integers but got weight of """ F'type {type(wt[i] )} at index {i}' ) raise TypeError(lowercase_ ) lowercase__ , lowercase__ : Tuple = knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : set = set() _construct_solution(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) return optimal_val, example_optional_set def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(lowercase_ , lowercase_ , i - 1 , lowercase_ , lowercase_ ) else: optimal_set.add(lowercase_ ) _construct_solution(lowercase_ , lowercase_ , i - 1 , j - wt[i - 1] , lowercase_ ) if __name__ == "__main__": lowerCamelCase__ : Dict = [3, 2, 4, 4] lowerCamelCase__ : List[Any] = [4, 3, 2, 3] lowerCamelCase__ : Optional[int] = 4 lowerCamelCase__ : Dict = 6 lowerCamelCase__ : Optional[int] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] lowerCamelCase__ , lowerCamelCase__ : int = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 lowerCamelCase__ , lowerCamelCase__ : Optional[int] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
12
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker lowerCamelCase__ : Union[str, Any] = "CompVis/stable-diffusion-v1-1" lowerCamelCase__ : Optional[Any] = "CompVis/stable-diffusion-v1-2" lowerCamelCase__ : Dict = "CompVis/stable-diffusion-v1-3" lowerCamelCase__ : List[str] = "CompVis/stable-diffusion-v1-4" class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __init__( self :Any , lowerCamelCase_ :AutoencoderKL , lowerCamelCase_ :CLIPTextModel , lowerCamelCase_ :CLIPTokenizer , lowerCamelCase_ :UNetaDConditionModel , lowerCamelCase_ :Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCamelCase_ :StableDiffusionSafetyChecker , lowerCamelCase_ :CLIPImageProcessor , lowerCamelCase_ :bool = True , ) -> List[str]: '''simple docstring''' super()._init_() SCREAMING_SNAKE_CASE : Tuple = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline( vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , requires_safety_checker=lowerCamelCase_ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def __lowerCAmelCase ( self :Dict ) -> Dict[str, Any]: '''simple docstring''' return {k: getattr(self , lowerCamelCase_ ) for k in self.config.keys() if not k.startswith('''_''' )} def __lowerCAmelCase ( self :int , lowerCamelCase_ :Optional[Union[str, int]] = "auto" ) -> Tuple: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase_ ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Dict: '''simple docstring''' self.enable_attention_slicing(lowerCamelCase_ ) @torch.no_grad() def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :List[str] , ) -> Tuple: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :int , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :Tuple , ) -> Optional[Any]: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :Dict , ) -> List[str]: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :int , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :List[Any] , ) -> Optional[Any]: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :Optional[Any] , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = '''cuda''' if torch.cuda.is_available() else '''cpu''' self.to(lowerCamelCase_ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` must be divisible by 8 but are {height} and {width}." ) # Get first result from Stable Diffusion Checkpoint v1.1 SCREAMING_SNAKE_CASE : str = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.2 SCREAMING_SNAKE_CASE : Optional[Any] = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.3 SCREAMING_SNAKE_CASE : Tuple = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.4 SCREAMING_SNAKE_CASE : Union[str, Any] = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
698
0
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): __SCREAMING_SNAKE_CASE : List[str] = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 1_2_8, '''min_length''': 1_2, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 1_4_2, '''min_length''': 5_6, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 6_2, '''min_length''': 1_1, '''num_beams''': 6}, } } __SCREAMING_SNAKE_CASE : List[Any] = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 1_2_8, '''task_specific_params.summarization.min_length''': 1_2, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 1_4_2, '''task_specific_params.summarization_cnn.min_length''': 5_6, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 6_2, '''task_specific_params.summarization_xsum.min_length''': 1_1, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(_lowerCamelCase ) , _lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): __SCREAMING_SNAKE_CASE : Optional[int] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(_lowerCamelCase ) , x.transpose() ) ) __SCREAMING_SNAKE_CASE : Tuple = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(_lowerCamelCase , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def SCREAMING_SNAKE_CASE_ ( self :Dict ): __SCREAMING_SNAKE_CASE : Optional[int] = np.random.randn(3 , 4 ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(_lowerCamelCase ) self.assertTrue(np.allclose(transpose(_lowerCamelCase ) , transpose(_lowerCamelCase ).numpy() ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = np.random.randn(3 , 4 , 5 ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor(_lowerCamelCase ) self.assertTrue(np.allclose(transpose(_lowerCamelCase , axes=(1, 2, 0) ) , transpose(_lowerCamelCase , axes=(1, 2, 0) ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE_ ( self :Dict ): __SCREAMING_SNAKE_CASE : List[Any] = np.random.randn(3 , 4 ) __SCREAMING_SNAKE_CASE : str = tf.constant(_lowerCamelCase ) self.assertTrue(np.allclose(transpose(_lowerCamelCase ) , transpose(_lowerCamelCase ).numpy() ) ) __SCREAMING_SNAKE_CASE : List[str] = np.random.randn(3 , 4 , 5 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tf.constant(_lowerCamelCase ) self.assertTrue(np.allclose(transpose(_lowerCamelCase , axes=(1, 2, 0) ) , transpose(_lowerCamelCase , axes=(1, 2, 0) ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): __SCREAMING_SNAKE_CASE : int = np.random.randn(3 , 4 ) __SCREAMING_SNAKE_CASE : str = jnp.array(_lowerCamelCase ) self.assertTrue(np.allclose(transpose(_lowerCamelCase ) , np.asarray(transpose(_lowerCamelCase ) ) ) ) __SCREAMING_SNAKE_CASE : Any = np.random.randn(3 , 4 , 5 ) __SCREAMING_SNAKE_CASE : List[Any] = jnp.array(_lowerCamelCase ) self.assertTrue(np.allclose(transpose(_lowerCamelCase , axes=(1, 2, 0) ) , np.asarray(transpose(_lowerCamelCase , axes=(1, 2, 0) ) ) ) ) def SCREAMING_SNAKE_CASE_ ( self :Any ): __SCREAMING_SNAKE_CASE : List[str] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(_lowerCamelCase , (4, 3) ) , np.reshape(_lowerCamelCase , (4, 3) ) ) ) __SCREAMING_SNAKE_CASE : List[Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(_lowerCamelCase , (1_2, 5) ) , np.reshape(_lowerCamelCase , (1_2, 5) ) ) ) @require_torch def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): __SCREAMING_SNAKE_CASE : Any = np.random.randn(3 , 4 ) __SCREAMING_SNAKE_CASE : str = torch.tensor(_lowerCamelCase ) self.assertTrue(np.allclose(reshape(_lowerCamelCase , (4, 3) ) , reshape(_lowerCamelCase , (4, 3) ).numpy() ) ) __SCREAMING_SNAKE_CASE : Dict = np.random.randn(3 , 4 , 5 ) __SCREAMING_SNAKE_CASE : Tuple = torch.tensor(_lowerCamelCase ) self.assertTrue(np.allclose(reshape(_lowerCamelCase , (1_2, 5) ) , reshape(_lowerCamelCase , (1_2, 5) ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE_ ( self :Dict ): __SCREAMING_SNAKE_CASE : Optional[Any] = np.random.randn(3 , 4 ) __SCREAMING_SNAKE_CASE : Optional[Any] = tf.constant(_lowerCamelCase ) self.assertTrue(np.allclose(reshape(_lowerCamelCase , (4, 3) ) , reshape(_lowerCamelCase , (4, 3) ).numpy() ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = np.random.randn(3 , 4 , 5 ) __SCREAMING_SNAKE_CASE : int = tf.constant(_lowerCamelCase ) self.assertTrue(np.allclose(reshape(_lowerCamelCase , (1_2, 5) ) , reshape(_lowerCamelCase , (1_2, 5) ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE_ ( self :str ): __SCREAMING_SNAKE_CASE : Tuple = np.random.randn(3 , 4 ) __SCREAMING_SNAKE_CASE : Tuple = jnp.array(_lowerCamelCase ) self.assertTrue(np.allclose(reshape(_lowerCamelCase , (4, 3) ) , np.asarray(reshape(_lowerCamelCase , (4, 3) ) ) ) ) __SCREAMING_SNAKE_CASE : List[str] = np.random.randn(3 , 4 , 5 ) __SCREAMING_SNAKE_CASE : List[Any] = jnp.array(_lowerCamelCase ) self.assertTrue(np.allclose(reshape(_lowerCamelCase , (1_2, 5) ) , np.asarray(reshape(_lowerCamelCase , (1_2, 5) ) ) ) ) def SCREAMING_SNAKE_CASE_ ( self :Any ): __SCREAMING_SNAKE_CASE : Optional[Any] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(_lowerCamelCase ) , np.squeeze(_lowerCamelCase ) ) ) __SCREAMING_SNAKE_CASE : Tuple = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(_lowerCamelCase , axis=2 ) , np.squeeze(_lowerCamelCase , axis=2 ) ) ) @require_torch def SCREAMING_SNAKE_CASE_ ( self :str ): __SCREAMING_SNAKE_CASE : str = np.random.randn(1 , 3 , 4 ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(_lowerCamelCase ) self.assertTrue(np.allclose(squeeze(_lowerCamelCase ) , squeeze(_lowerCamelCase ).numpy() ) ) __SCREAMING_SNAKE_CASE : int = np.random.randn(1 , 4 , 1 , 5 ) __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(_lowerCamelCase ) self.assertTrue(np.allclose(squeeze(_lowerCamelCase , axis=2 ) , squeeze(_lowerCamelCase , axis=2 ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): __SCREAMING_SNAKE_CASE : Any = np.random.randn(1 , 3 , 4 ) __SCREAMING_SNAKE_CASE : List[Any] = tf.constant(_lowerCamelCase ) self.assertTrue(np.allclose(squeeze(_lowerCamelCase ) , squeeze(_lowerCamelCase ).numpy() ) ) __SCREAMING_SNAKE_CASE : Dict = np.random.randn(1 , 4 , 1 , 5 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tf.constant(_lowerCamelCase ) self.assertTrue(np.allclose(squeeze(_lowerCamelCase , axis=2 ) , squeeze(_lowerCamelCase , axis=2 ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE_ ( self :str ): __SCREAMING_SNAKE_CASE : Optional[int] = np.random.randn(1 , 3 , 4 ) __SCREAMING_SNAKE_CASE : Optional[int] = jnp.array(_lowerCamelCase ) self.assertTrue(np.allclose(squeeze(_lowerCamelCase ) , np.asarray(squeeze(_lowerCamelCase ) ) ) ) __SCREAMING_SNAKE_CASE : Any = np.random.randn(1 , 4 , 1 , 5 ) __SCREAMING_SNAKE_CASE : List[Any] = jnp.array(_lowerCamelCase ) self.assertTrue(np.allclose(squeeze(_lowerCamelCase , axis=2 ) , np.asarray(squeeze(_lowerCamelCase , axis=2 ) ) ) ) def SCREAMING_SNAKE_CASE_ ( self :int ): __SCREAMING_SNAKE_CASE : Optional[int] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(_lowerCamelCase , axis=1 ) , np.expand_dims(_lowerCamelCase , axis=1 ) ) ) @require_torch def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): __SCREAMING_SNAKE_CASE : Optional[int] = np.random.randn(3 , 4 ) __SCREAMING_SNAKE_CASE : Tuple = torch.tensor(_lowerCamelCase ) self.assertTrue(np.allclose(expand_dims(_lowerCamelCase , axis=1 ) , expand_dims(_lowerCamelCase , axis=1 ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): __SCREAMING_SNAKE_CASE : List[str] = np.random.randn(3 , 4 ) __SCREAMING_SNAKE_CASE : str = tf.constant(_lowerCamelCase ) self.assertTrue(np.allclose(expand_dims(_lowerCamelCase , axis=1 ) , expand_dims(_lowerCamelCase , axis=1 ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE_ ( self :Dict ): __SCREAMING_SNAKE_CASE : List[str] = np.random.randn(3 , 4 ) __SCREAMING_SNAKE_CASE : List[Any] = jnp.array(_lowerCamelCase ) self.assertTrue(np.allclose(expand_dims(_lowerCamelCase , axis=1 ) , np.asarray(expand_dims(_lowerCamelCase , axis=1 ) ) ) )
712
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch _lowerCamelCase = True except ImportError: _lowerCamelCase = False try: from torch.hub import _get_torch_home _lowerCamelCase = _get_torch_home() except ImportError: _lowerCamelCase = os.path.expanduser( os.getenv('''TORCH_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''torch''')) ) _lowerCamelCase = os.path.join(torch_cache_home, '''transformers''') _lowerCamelCase = '''https://cdn.huggingface.co''' _lowerCamelCase = '''https://s3.amazonaws.com/models.huggingface.co/bert''' _lowerCamelCase = '''/'''.join(str(Path(__file__).resolve()).split('''/''')[:-1]) _lowerCamelCase = os.path.join(PATH, '''config.yaml''') _lowerCamelCase = os.path.join(PATH, '''attributes.txt''') _lowerCamelCase = os.path.join(PATH, '''objects.txt''') _lowerCamelCase = os.getenv('''PYTORCH_PRETRAINED_BERT_CACHE''', default_cache_path) _lowerCamelCase = os.getenv('''PYTORCH_TRANSFORMERS_CACHE''', PYTORCH_PRETRAINED_BERT_CACHE) _lowerCamelCase = os.getenv('''TRANSFORMERS_CACHE''', PYTORCH_TRANSFORMERS_CACHE) _lowerCamelCase = '''pytorch_model.bin''' _lowerCamelCase = '''config.yaml''' def lowerCAmelCase_ ( lowercase_ : Optional[Any]=OBJECTS , lowercase_ : Optional[int]=ATTRIBUTES ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Optional[Any] = [] with open(lowercase_ ) as f: for object in f.readlines(): vg_classes.append(object.split(''',''' )[0].lower().strip() ) __SCREAMING_SNAKE_CASE : str = [] with open(lowercase_ ) as f: for object in f.readlines(): vg_attrs.append(object.split(''',''' )[0].lower().strip() ) return vg_classes, vg_attrs def lowerCAmelCase_ ( lowercase_ : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Tuple = OrderedDict() with open(lowercase_ , '''rb''' ) as f: __SCREAMING_SNAKE_CASE : Optional[Any] = pkl.load(lowercase_ )['''model'''] for k in copy.deepcopy(list(ckp.keys() ) ): __SCREAMING_SNAKE_CASE : Dict = ckp.pop(lowercase_ ) if isinstance(lowercase_ , np.ndarray ): __SCREAMING_SNAKE_CASE : List[str] = torch.tensor(lowercase_ ) else: assert isinstance(lowercase_ , torch.tensor ), type(lowercase_ ) __SCREAMING_SNAKE_CASE : Dict = v return r class snake_case : lowerCamelCase__ = {} def __init__( self :Dict , _lowerCamelCase :dict , _lowerCamelCase :str = "root" , _lowerCamelCase :Any=0 ): __SCREAMING_SNAKE_CASE : int = name __SCREAMING_SNAKE_CASE : Tuple = level __SCREAMING_SNAKE_CASE : List[str] = {} for k, v in dictionary.items(): if v is None: raise ValueError() __SCREAMING_SNAKE_CASE : Union[str, Any] = copy.deepcopy(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = copy.deepcopy(_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): __SCREAMING_SNAKE_CASE : str = Config(_lowerCamelCase , name=_lowerCamelCase , level=level + 1 ) __SCREAMING_SNAKE_CASE : Tuple = v setattr(self , _lowerCamelCase , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = d def __repr__( self :List[str] ): return str(list((self._pointer.keys()) ) ) def __setattr__( self :Dict , _lowerCamelCase :int , _lowerCamelCase :List[str] ): __SCREAMING_SNAKE_CASE : Any = val __SCREAMING_SNAKE_CASE : List[str] = val __SCREAMING_SNAKE_CASE : Optional[Any] = key.split('''.''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = len(_lowerCamelCase ) - 1 __SCREAMING_SNAKE_CASE : int = self._pointer if len(_lowerCamelCase ) > 1: for i, l in enumerate(_lowerCamelCase ): if hasattr(self , _lowerCamelCase ) and isinstance(getattr(self , _lowerCamelCase ) , _lowerCamelCase ): setattr(getattr(self , _lowerCamelCase ) , '''.'''.join(levels[i:] ) , _lowerCamelCase ) if l == last_level: __SCREAMING_SNAKE_CASE : Optional[Any] = val else: __SCREAMING_SNAKE_CASE : Union[str, Any] = pointer[l] def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): return self._pointer def SCREAMING_SNAKE_CASE_ ( self :str , _lowerCamelCase :Union[str, Any] , _lowerCamelCase :Union[str, Any] ): with open(f'''{file_name}''' , '''w''' ) as stream: dump(_lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , _lowerCamelCase :Optional[int] , _lowerCamelCase :List[str] ): with open(f'''{file_name}''' , '''w''' ) as stream: json.dump(_lowerCamelCase , _lowerCamelCase ) @staticmethod def SCREAMING_SNAKE_CASE_ ( _lowerCamelCase :Optional[int] ): with open(_lowerCamelCase ) as stream: __SCREAMING_SNAKE_CASE : Dict = load(_lowerCamelCase , Loader=_lowerCamelCase ) return data def __str__( self :int ): __SCREAMING_SNAKE_CASE : Dict = ''' ''' if self._name != "root": __SCREAMING_SNAKE_CASE : int = f'''{t * (self._level-1)}{self._name}:\n''' else: __SCREAMING_SNAKE_CASE : Any = '''''' __SCREAMING_SNAKE_CASE : Union[str, Any] = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(_lowerCamelCase , _lowerCamelCase ): r += f'''{t * (self._level)}{v}\n''' self._level += 1 else: r += f'''{t * (self._level)}{k}: {v} ({type(_lowerCamelCase ).__name__})\n''' __SCREAMING_SNAKE_CASE : List[Any] = level return r[:-1] @classmethod def SCREAMING_SNAKE_CASE_ ( cls :int , _lowerCamelCase :str , **_lowerCamelCase :List[str] ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = cls.get_config_dict(_lowerCamelCase , **_lowerCamelCase ) return cls(_lowerCamelCase ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls :Optional[Any] , _lowerCamelCase :str , **_lowerCamelCase :Dict ): __SCREAMING_SNAKE_CASE : List[Any] = kwargs.pop('''cache_dir''' , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = kwargs.pop('''force_download''' , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = kwargs.pop('''resume_download''' , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = kwargs.pop('''proxies''' , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Any = kwargs.pop('''local_files_only''' , _lowerCamelCase ) if os.path.isdir(_lowerCamelCase ): __SCREAMING_SNAKE_CASE : str = os.path.join(_lowerCamelCase , _lowerCamelCase ) elif os.path.isfile(_lowerCamelCase ) or is_remote_url(_lowerCamelCase ): __SCREAMING_SNAKE_CASE : Tuple = pretrained_model_name_or_path else: __SCREAMING_SNAKE_CASE : str = hf_bucket_url(_lowerCamelCase , filename=_lowerCamelCase , use_cdn=_lowerCamelCase ) try: # Load from URL or cache if already cached __SCREAMING_SNAKE_CASE : Optional[Any] = cached_path( _lowerCamelCase , cache_dir=_lowerCamelCase , force_download=_lowerCamelCase , proxies=_lowerCamelCase , resume_download=_lowerCamelCase , local_files_only=_lowerCamelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError __SCREAMING_SNAKE_CASE : Optional[int] = Config.load_yaml(_lowerCamelCase ) except EnvironmentError: __SCREAMING_SNAKE_CASE : Optional[Any] = '''Can\'t load config for''' raise EnvironmentError(_lowerCamelCase ) if resolved_config_file == config_file: print('''loading configuration file from path''' ) else: print('''loading configuration file cache''' ) return Config.load_yaml(_lowerCamelCase ), kwargs def lowerCAmelCase_ ( lowercase_ : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.load('''dump.pt''' , map_location=in_tensor.device ) __SCREAMING_SNAKE_CASE : List[str] = in_tensor.numpy() __SCREAMING_SNAKE_CASE : List[str] = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(lowercase_ , lowercase_ , rtol=0.01 , atol=0.1 ), ( F'''{sum([1 for x in np.isclose(lowercase_ , lowercase_ , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %''' " element-wise mismatch" ) raise Exception('''tensors are all good''' ) # Hugging face functions below def lowerCAmelCase_ ( lowercase_ : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE : List[str] = urlparse(lowercase_ ) return parsed.scheme in ("http", "https") def lowerCAmelCase_ ( lowercase_ : str , lowercase_ : str , lowercase_ : Optional[Any]=True ): '''simple docstring''' __SCREAMING_SNAKE_CASE : str = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX __SCREAMING_SNAKE_CASE : Any = '''/''' not in model_id if legacy_format: return F'''{endpoint}/{model_id}-{filename}''' else: return F'''{endpoint}/{model_id}/{filename}''' def lowerCAmelCase_ ( lowercase_ : Dict , lowercase_ : List[str] , lowercase_ : List[str]=None , lowercase_ : int=0 , lowercase_ : Union[str, Any]=None , ): '''simple docstring''' __SCREAMING_SNAKE_CASE : str = '''python/{}'''.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(lowercase_ , lowercase_ ): ua += "; " + "; ".join('''{}/{}'''.format(lowercase_ , lowercase_ ) for k, v in user_agent.items() ) elif isinstance(lowercase_ , lowercase_ ): ua += "; " + user_agent __SCREAMING_SNAKE_CASE : int = {'''user-agent''': ua} if resume_size > 0: __SCREAMING_SNAKE_CASE : Any = '''bytes=%d-''' % (resume_size,) __SCREAMING_SNAKE_CASE : Any = requests.get(lowercase_ , stream=lowercase_ , proxies=lowercase_ , headers=lowercase_ ) if response.status_code == 416: # Range not satisfiable return __SCREAMING_SNAKE_CASE : int = response.headers.get('''Content-Length''' ) __SCREAMING_SNAKE_CASE : int = resume_size + int(lowercase_ ) if content_length is not None else None __SCREAMING_SNAKE_CASE : str = tqdm( unit='''B''' , unit_scale=lowercase_ , total=lowercase_ , initial=lowercase_ , desc='''Downloading''' , ) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(lowercase_ ) ) temp_file.write(lowercase_ ) progress.close() def lowerCAmelCase_ ( lowercase_ : Optional[Any] , lowercase_ : int=None , lowercase_ : str=False , lowercase_ : Union[str, Any]=None , lowercase_ : List[Any]=10 , lowercase_ : Optional[Any]=False , lowercase_ : Tuple=None , lowercase_ : int=False , ): '''simple docstring''' if cache_dir is None: __SCREAMING_SNAKE_CASE : Tuple = TRANSFORMERS_CACHE if isinstance(lowercase_ , lowercase_ ): __SCREAMING_SNAKE_CASE : Optional[int] = str(lowercase_ ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) __SCREAMING_SNAKE_CASE : Dict = None if not local_files_only: try: __SCREAMING_SNAKE_CASE : Tuple = requests.head(lowercase_ , allow_redirects=lowercase_ , proxies=lowercase_ , timeout=lowercase_ ) if response.status_code == 200: __SCREAMING_SNAKE_CASE : Union[str, Any] = response.headers.get('''ETag''' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass __SCREAMING_SNAKE_CASE : Optional[Any] = url_to_filename(lowercase_ , lowercase_ ) # get cache path to put the file __SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(lowercase_ , lowercase_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(lowercase_ ): return cache_path else: __SCREAMING_SNAKE_CASE : int = [ file for file in fnmatch.filter(os.listdir(lowercase_ ) , filename + '''.*''' ) if not file.endswith('''.json''' ) and not file.endswith('''.lock''' ) ] if len(lowercase_ ) > 0: return os.path.join(lowercase_ , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( '''Cannot find the requested files in the cached path and outgoing traffic has been''' ''' disabled. To enable model look-ups and downloads online, set \'local_files_only\'''' ''' to False.''' ) return None # From now on, etag is not None. if os.path.exists(lowercase_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. __SCREAMING_SNAKE_CASE : str = cache_path + '''.lock''' with FileLock(lowercase_ ): # If the download just completed while the lock was activated. if os.path.exists(lowercase_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: __SCREAMING_SNAKE_CASE : Any = cache_path + '''.incomplete''' @contextmanager def _resumable_file_manager(): with open(lowercase_ , '''a+b''' ) as f: yield f __SCREAMING_SNAKE_CASE : Any = _resumable_file_manager if os.path.exists(lowercase_ ): __SCREAMING_SNAKE_CASE : Optional[int] = os.stat(lowercase_ ).st_size else: __SCREAMING_SNAKE_CASE : Dict = 0 else: __SCREAMING_SNAKE_CASE : Optional[int] = partial(tempfile.NamedTemporaryFile , dir=lowercase_ , delete=lowercase_ ) __SCREAMING_SNAKE_CASE : Optional[int] = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '''%s not found in cache or force_download set to True, downloading to %s''' , lowercase_ , temp_file.name , ) http_get( lowercase_ , lowercase_ , proxies=lowercase_ , resume_size=lowercase_ , user_agent=lowercase_ , ) os.replace(temp_file.name , lowercase_ ) __SCREAMING_SNAKE_CASE : List[str] = {'''url''': url, '''etag''': etag} __SCREAMING_SNAKE_CASE : int = cache_path + '''.json''' with open(lowercase_ , '''w''' ) as meta_file: json.dump(lowercase_ , lowercase_ ) return cache_path def lowerCAmelCase_ ( lowercase_ : Dict , lowercase_ : List[Any]=None ): '''simple docstring''' __SCREAMING_SNAKE_CASE : str = url.encode('''utf-8''' ) __SCREAMING_SNAKE_CASE : Dict = shaaaa(lowercase_ ) __SCREAMING_SNAKE_CASE : Tuple = url_hash.hexdigest() if etag: __SCREAMING_SNAKE_CASE : Tuple = etag.encode('''utf-8''' ) __SCREAMING_SNAKE_CASE : str = shaaaa(lowercase_ ) filename += "." + etag_hash.hexdigest() if url.endswith('''.h5''' ): filename += ".h5" return filename def lowerCAmelCase_ ( lowercase_ : Tuple , lowercase_ : List[str]=None , lowercase_ : str=False , lowercase_ : List[str]=None , lowercase_ : Any=False , lowercase_ : str=None , lowercase_ : int=False , lowercase_ : Any=False , lowercase_ : Union[str, Any]=False , ): '''simple docstring''' if cache_dir is None: __SCREAMING_SNAKE_CASE : List[str] = TRANSFORMERS_CACHE if isinstance(lowercase_ , lowercase_ ): __SCREAMING_SNAKE_CASE : List[str] = str(lowercase_ ) if isinstance(lowercase_ , lowercase_ ): __SCREAMING_SNAKE_CASE : Optional[int] = str(lowercase_ ) if is_remote_url(lowercase_ ): # URL, so get it from the cache (downloading if necessary) __SCREAMING_SNAKE_CASE : Any = get_from_cache( lowercase_ , cache_dir=lowercase_ , force_download=lowercase_ , proxies=lowercase_ , resume_download=lowercase_ , user_agent=lowercase_ , local_files_only=lowercase_ , ) elif os.path.exists(lowercase_ ): # File, and it exists. __SCREAMING_SNAKE_CASE : List[Any] = url_or_filename elif urlparse(lowercase_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('''file {} not found'''.format(lowercase_ ) ) else: # Something unknown raise ValueError('''unable to parse {} as a URL or as a local path'''.format(lowercase_ ) ) if extract_compressed_file: if not is_zipfile(lowercase_ ) and not tarfile.is_tarfile(lowercase_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = os.path.split(lowercase_ ) __SCREAMING_SNAKE_CASE : str = output_file.replace('''.''' , '''-''' ) + '''-extracted''' __SCREAMING_SNAKE_CASE : int = os.path.join(lowercase_ , lowercase_ ) if os.path.isdir(lowercase_ ) and os.listdir(lowercase_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions __SCREAMING_SNAKE_CASE : Union[str, Any] = output_path + '''.lock''' with FileLock(lowercase_ ): shutil.rmtree(lowercase_ , ignore_errors=lowercase_ ) os.makedirs(lowercase_ ) if is_zipfile(lowercase_ ): with ZipFile(lowercase_ , '''r''' ) as zip_file: zip_file.extractall(lowercase_ ) zip_file.close() elif tarfile.is_tarfile(lowercase_ ): __SCREAMING_SNAKE_CASE : int = tarfile.open(lowercase_ ) tar_file.extractall(lowercase_ ) tar_file.close() else: raise EnvironmentError('''Archive format of {} could not be identified'''.format(lowercase_ ) ) return output_path_extracted return output_path def lowerCAmelCase_ ( lowercase_ : List[Any] , lowercase_ : str="," ): '''simple docstring''' assert isinstance(lowercase_ , lowercase_ ) if os.path.isfile(lowercase_ ): with open(lowercase_ ) as f: __SCREAMING_SNAKE_CASE : Any = eval(f.read() ) else: __SCREAMING_SNAKE_CASE : Optional[int] = requests.get(lowercase_ ) try: __SCREAMING_SNAKE_CASE : Union[str, Any] = requests.json() except Exception: __SCREAMING_SNAKE_CASE : List[Any] = req.content.decode() assert data is not None, "could not connect" try: __SCREAMING_SNAKE_CASE : List[Any] = eval(lowercase_ ) except Exception: __SCREAMING_SNAKE_CASE : List[str] = data.split('''\n''' ) req.close() return data def lowerCAmelCase_ ( lowercase_ : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE : str = requests.get(lowercase_ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowerCAmelCase_ ( lowercase_ : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Dict = url.split('''/''' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(lowercase_ ) with open(lowercase_ , '''rb''' ) as stream: __SCREAMING_SNAKE_CASE : List[Any] = pkl.load(lowercase_ ) __SCREAMING_SNAKE_CASE : List[str] = weights.pop('''model''' ) __SCREAMING_SNAKE_CASE : Dict = {} for k, v in model.items(): __SCREAMING_SNAKE_CASE : List[str] = torch.from_numpy(lowercase_ ) if "running_var" in k: __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = k.replace('''running_var''' , '''num_batches_tracked''' ) __SCREAMING_SNAKE_CASE : Optional[int] = zero return new def lowerCAmelCase_ ( ): '''simple docstring''' print(F'''{os.path.abspath(os.path.join(lowercase_ , os.pardir ) )}/demo.ipynb''' ) def lowerCAmelCase_ ( lowercase_ : str , lowercase_ : int="RGB" ): '''simple docstring''' assert isinstance(lowercase_ , lowercase_ ) if os.path.isfile(lowercase_ ): __SCREAMING_SNAKE_CASE : List[Any] = cva.imread(lowercase_ ) else: __SCREAMING_SNAKE_CASE : Dict = get_image_from_url(lowercase_ ) assert img is not None, F'''could not connect to: {im}''' __SCREAMING_SNAKE_CASE : Dict = cva.cvtColor(lowercase_ , cva.COLOR_BGR2RGB ) if input_format == "RGB": __SCREAMING_SNAKE_CASE : List[Any] = img[:, :, ::-1] return img def lowerCAmelCase_ ( lowercase_ : Any , lowercase_ : Tuple=1 ): '''simple docstring''' return (images[i : i + batch] for i in range(0 , len(lowercase_ ) , lowercase_ ))
401
0
"""simple docstring""" import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = botoa.client("""iam""" ) UpperCAmelCase = { """Version""": """2012-10-17""", """Statement""": [ {"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=UpperCamelCase_ , AssumeRolePolicyDocument=json.dumps(UpperCamelCase_ , indent=2 ) ) UpperCAmelCase = { """Version""": """2012-10-17""", """Statement""": [ { """Effect""": """Allow""", """Action""": [ """sagemaker:*""", """ecr:GetDownloadUrlForLayer""", """ecr:BatchGetImage""", """ecr:BatchCheckLayerAvailability""", """ecr:GetAuthorizationToken""", """cloudwatch:PutMetricData""", """cloudwatch:GetMetricData""", """cloudwatch:GetMetricStatistics""", """cloudwatch:ListMetrics""", """logs:CreateLogGroup""", """logs:CreateLogStream""", """logs:DescribeLogStreams""", """logs:PutLogEvents""", """logs:GetLogEvents""", """s3:CreateBucket""", """s3:ListBucket""", """s3:GetBucketLocation""", """s3:GetObject""", """s3:PutObject""", ], """Resource""": """*""", } ], } # attach policy to role iam_client.put_role_policy( RoleName=UpperCamelCase_ , PolicyName=F'''{role_name}_policy_permission''' , PolicyDocument=json.dumps(UpperCamelCase_ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F'''role {role_name} already exists. Using existing one''' ) def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = botoa.client("""iam""" ) return iam_client.get_role(RoleName=UpperCamelCase_ )["Role"]["Arn"] def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = _ask_options( """How do you want to authorize?""" , ["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] , UpperCamelCase_ , ) UpperCAmelCase = None if credentials_configuration == 0: UpperCAmelCase = _ask_field("""Enter your AWS Profile name: [default] """ , default="""default""" ) UpperCAmelCase = aws_profile else: print( """Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,""" """`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" ) UpperCAmelCase = _ask_field("""AWS Access Key ID: """ ) UpperCAmelCase = aws_access_key_id UpperCAmelCase = _ask_field("""AWS Secret Access Key: """ ) UpperCAmelCase = aws_secret_access_key UpperCAmelCase = _ask_field("""Enter your AWS Region: [us-east-1]""" , default="""us-east-1""" ) UpperCAmelCase = aws_region UpperCAmelCase = _ask_options( """Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" , ["""Provide IAM Role name""", """Create new IAM role using credentials"""] , UpperCamelCase_ , ) if role_management == 0: UpperCAmelCase = _ask_field("""Enter your IAM role name: """ ) else: UpperCAmelCase = """accelerate_sagemaker_execution_role""" print(F'''Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials''' ) _create_iam_role_for_sagemaker(UpperCamelCase_ ) UpperCAmelCase = _ask_field( """Do you want to use custom Docker image? [yes/NO]: """ , _convert_yes_no_to_bool , default=UpperCamelCase_ , error_message="""Please enter yes or no.""" , ) UpperCAmelCase = None if is_custom_docker_image: UpperCAmelCase = _ask_field("""Enter your Docker image: """ , lambda lowerCAmelCase : str(UpperCamelCase_ ).lower() ) UpperCAmelCase = _ask_field( """Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ , _convert_yes_no_to_bool , default=UpperCamelCase_ , error_message="""Please enter yes or no.""" , ) UpperCAmelCase = None if is_sagemaker_inputs_enabled: UpperCAmelCase = _ask_field( """Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ , lambda lowerCAmelCase : str(UpperCamelCase_ ).lower() , ) UpperCAmelCase = _ask_field( """Do you want to enable SageMaker metrics? [yes/NO]: """ , _convert_yes_no_to_bool , default=UpperCamelCase_ , error_message="""Please enter yes or no.""" , ) UpperCAmelCase = None if is_sagemaker_metrics_enabled: UpperCAmelCase = _ask_field( """Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ , lambda lowerCAmelCase : str(UpperCamelCase_ ).lower() , ) UpperCAmelCase = _ask_options( """What is the distributed mode?""" , ["""No distributed training""", """Data parallelism"""] , _convert_sagemaker_distributed_mode , ) UpperCAmelCase = {} UpperCAmelCase = _ask_field( """Do you wish to optimize your script with torch dynamo?[yes/NO]:""" , _convert_yes_no_to_bool , default=UpperCamelCase_ , error_message="""Please enter yes or no.""" , ) if use_dynamo: UpperCAmelCase = """dynamo_""" UpperCAmelCase = _ask_options( """Which dynamo backend would you like to use?""" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) UpperCAmelCase = _ask_field( """Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ , _convert_yes_no_to_bool , default=UpperCamelCase_ , error_message="""Please enter yes or no.""" , ) if use_custom_options: UpperCAmelCase = _ask_options( """Which mode do you want to use?""" , UpperCamelCase_ , lambda lowerCAmelCase : TORCH_DYNAMO_MODES[int(UpperCamelCase_ )] , default="""default""" , ) UpperCAmelCase = _ask_field( """Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ , _convert_yes_no_to_bool , default=UpperCamelCase_ , error_message="""Please enter yes or no.""" , ) UpperCAmelCase = _ask_field( """Do you want to enable dynamic shape tracing? [yes/NO]: """ , _convert_yes_no_to_bool , default=UpperCamelCase_ , error_message="""Please enter yes or no.""" , ) UpperCAmelCase = """Which EC2 instance type you want to use for your training?""" if distributed_type != SageMakerDistributedType.NO: UpperCAmelCase = _ask_options( UpperCamelCase_ , UpperCamelCase_ , lambda lowerCAmelCase : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(UpperCamelCase_ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" UpperCAmelCase = _ask_field(UpperCamelCase_ , lambda lowerCAmelCase : str(UpperCamelCase_ ).lower() , default="""ml.p3.2xlarge""" ) UpperCAmelCase = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): UpperCAmelCase = _ask_field( """How many machines do you want use? [1]: """ , UpperCamelCase_ , default=1 , ) UpperCAmelCase = _ask_options( """Do you wish to use FP16 or BF16 (mixed precision)?""" , ["""no""", """fp16""", """bf16""", """fp8"""] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( """Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" ) return SageMakerConfig( image_uri=UpperCamelCase_ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=UpperCamelCase_ , use_cpu=UpperCamelCase_ , dynamo_config=UpperCamelCase_ , eca_instance_type=UpperCamelCase_ , profile=UpperCamelCase_ , region=UpperCamelCase_ , iam_role_name=UpperCamelCase_ , mixed_precision=UpperCamelCase_ , num_machines=UpperCamelCase_ , sagemaker_inputs_file=UpperCamelCase_ , sagemaker_metrics_file=UpperCamelCase_ , )
673
"""simple docstring""" import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __magic_name__ = "<<<<<<< This should probably be modified because it mentions: " __magic_name__ = "=======\n>>>>>>>\n" __magic_name__ = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] __magic_name__ = [ # (pattern, replacement) # Order is important here for some replacements (R"tfds\.core", R"datasets"), (R"tf\.io\.gfile\.GFile", R"open"), (R"tf\.([\w\d]+)", R"datasets.Value('\1')"), (R"tfds\.features\.Text\(\)", R"datasets.Value('string')"), (R"tfds\.features\.Text\(", R"datasets.Value('string'),"), (R"features\s*=\s*tfds.features.FeaturesDict\(", R"features=datasets.Features("), (R"tfds\.features\.FeaturesDict\(", R"dict("), (R"The TensorFlow Datasets Authors", R"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (R"tfds\.", R"datasets."), (R"dl_manager\.manual_dir", R"self.config.data_dir"), (R"self\.builder_config", R"self.config"), ] def _lowerCAmelCase ( UpperCamelCase_ ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" @staticmethod def snake_case_ ( lowerCAmelCase__): __SCREAMING_SNAKE_CASE = parser.add_parser( """convert""" , help="""Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.""" , ) train_parser.add_argument( """--tfds_path""" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.""" , ) train_parser.add_argument( """--datasets_directory""" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to the HuggingFace Datasets folder.""") train_parser.set_defaults(func=lowerCAmelCase__) def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__): __SCREAMING_SNAKE_CASE = get_logger("""datasets-cli/converting""") __SCREAMING_SNAKE_CASE = tfds_path __SCREAMING_SNAKE_CASE = datasets_directory def snake_case_ ( self): if os.path.isdir(self._tfds_path): __SCREAMING_SNAKE_CASE = os.path.abspath(self._tfds_path) elif os.path.isfile(self._tfds_path): __SCREAMING_SNAKE_CASE = os.path.dirname(self._tfds_path) else: raise ValueError("""--tfds_path is neither a directory nor a file. Please check path.""") __SCREAMING_SNAKE_CASE = os.path.abspath(self._datasets_directory) self._logger.info(f"Converting datasets from {abs_tfds_path} to {abs_datasets_path}") __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = {} if os.path.isdir(self._tfds_path): __SCREAMING_SNAKE_CASE = os.listdir(lowerCAmelCase__) else: __SCREAMING_SNAKE_CASE = [os.path.basename(self._tfds_path)] for f_name in file_names: self._logger.info(f"Looking at file {f_name}") __SCREAMING_SNAKE_CASE = os.path.join(lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = os.path.join(lowerCAmelCase__ , lowerCAmelCase__) if not os.path.isfile(lowerCAmelCase__) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("""Skipping file""") continue with open(lowerCAmelCase__ , encoding="""utf-8""") as f: __SCREAMING_SNAKE_CASE = f.readlines() __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = [] for line in lines: __SCREAMING_SNAKE_CASE = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __SCREAMING_SNAKE_CASE = """import datasets\n""" elif "import tensorflow" in out_line: # order is important here __SCREAMING_SNAKE_CASE = """""" continue elif "from absl import logging" in out_line: __SCREAMING_SNAKE_CASE = """from datasets import logging\n""" elif "getLogger" in out_line: __SCREAMING_SNAKE_CASE = out_line.replace("""getLogger""" , """get_logger""") elif any(expression in out_line for expression in TO_HIGHLIGHT): __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = list(filter(lambda lowerCAmelCase__: e in out_line , lowerCAmelCase__)) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowerCAmelCase__) + """\n""") out_lines.append(lowerCAmelCase__) out_lines.append(lowerCAmelCase__) continue else: for pattern, replacement in TO_CONVERT: __SCREAMING_SNAKE_CASE = re.sub(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __SCREAMING_SNAKE_CASE = re.match(R"""from\stensorflow_datasets.*import\s([^\.\r\n]+)""" , lowerCAmelCase__) tfds_imports.extend(imp.strip() for imp in match.group(1).split(""",""")) __SCREAMING_SNAKE_CASE = """from . import """ + match.group(1) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"Error converting {out_line.strip()}") if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __SCREAMING_SNAKE_CASE = True out_lines.append(lowerCAmelCase__) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __SCREAMING_SNAKE_CASE = f_name.replace(""".py""" , """""") __SCREAMING_SNAKE_CASE = os.path.join(lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = os.path.join(lowerCAmelCase__ , lowerCAmelCase__) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__) self._logger.info(f"Adding directory {output_dir}") imports_to_builder_map.update({imp: output_dir for imp in tfds_imports}) else: # Utilities will be moved at the end utils_files.append(lowerCAmelCase__) if needs_manual_update: with_manual_update.append(lowerCAmelCase__) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""") as f: f.writelines(lowerCAmelCase__) self._logger.info(f"Converted in {output_file}") for utils_file in utils_files: try: __SCREAMING_SNAKE_CASE = os.path.basename(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = imports_to_builder_map[f_name.replace(""".py""" , """""")] self._logger.info(f"Moving {dest_folder} to {utils_file}") shutil.copy(lowerCAmelCase__ , lowerCAmelCase__) except KeyError: self._logger.error(f"Cannot find destination folder for {utils_file}. Please copy manually.") if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.")
155
0
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): snake_case__ = SwinConfig() snake_case__ = swin_name.split("_" ) snake_case__ = name_split[1] snake_case__ = int(name_split[4] ) snake_case__ = int(name_split[3][-1] ) if model_size == "tiny": snake_case__ = 96 snake_case__ = (2, 2, 6, 2) snake_case__ = (3, 6, 12, 24) elif model_size == "small": snake_case__ = 96 snake_case__ = (2, 2, 18, 2) snake_case__ = (3, 6, 12, 24) elif model_size == "base": snake_case__ = 128 snake_case__ = (2, 2, 18, 2) snake_case__ = (4, 8, 16, 32) else: snake_case__ = 192 snake_case__ = (2, 2, 18, 2) snake_case__ = (6, 12, 24, 48) if "in22k" in swin_name: snake_case__ = 21_841 else: snake_case__ = 1_000 snake_case__ = "huggingface/label-files" snake_case__ = "imagenet-1k-id2label.json" snake_case__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type="dataset" ) , "r" ) ) snake_case__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ = idalabel snake_case__ = {v: k for k, v in idalabel.items()} snake_case__ = img_size snake_case__ = num_classes snake_case__ = embed_dim snake_case__ = depths snake_case__ = num_heads snake_case__ = window_size return config def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): if "patch_embed.proj" in name: snake_case__ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: snake_case__ = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: snake_case__ = "encoder." + name if "attn.proj" in name: snake_case__ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: snake_case__ = name.replace("attn" , "attention.self" ) if "norm1" in name: snake_case__ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: snake_case__ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: snake_case__ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: snake_case__ = name.replace("mlp.fc2" , "output.dense" ) if name == "norm.weight": snake_case__ = "layernorm.weight" if name == "norm.bias": snake_case__ = "layernorm.bias" if "head" in name: snake_case__ = name.replace("head" , "classifier" ) else: snake_case__ = "swin." + name return name def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase ): for key in orig_state_dict.copy().keys(): snake_case__ = orig_state_dict.pop(__lowerCAmelCase ) if "mask" in key: continue elif "qkv" in key: snake_case__ = key.split("." ) snake_case__ = int(key_split[1] ) snake_case__ = int(key_split[3] ) snake_case__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: snake_case__ = val[:dim, :] snake_case__ = val[ dim : dim * 2, : ] snake_case__ = val[-dim:, :] else: snake_case__ = val[ :dim ] snake_case__ = val[ dim : dim * 2 ] snake_case__ = val[ -dim: ] else: snake_case__ = val return orig_state_dict def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase ): snake_case__ = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ) timm_model.eval() snake_case__ = get_swin_config(__lowerCAmelCase ) snake_case__ = SwinForImageClassification(__lowerCAmelCase ) model.eval() snake_case__ = convert_state_dict(timm_model.state_dict() , __lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) snake_case__ = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case__ = AutoImageProcessor.from_pretrained("microsoft/{}".format(swin_name.replace("_" , "-" ) ) ) snake_case__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) snake_case__ = image_processor(images=__lowerCAmelCase , return_tensors="pt" ) snake_case__ = timm_model(inputs["pixel_values"] ) snake_case__ = model(**__lowerCAmelCase ).logits assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) print(F"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swin_name''', default='''swin_tiny_patch4_window7_224''', type=str, help='''Name of the Swin timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __magic_name__ = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
530
from __future__ import annotations from fractions import Fraction def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): snake_case__ = [] snake_case__ = 11 snake_case__ = int("1" + "0" * digit_len ) for num in range(__lowerCAmelCase , __lowerCAmelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(__lowerCAmelCase , __lowerCAmelCase ): solutions.append(F"""{num}/{den}""" ) den += 1 num += 1 snake_case__ = 10 return solutions def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase = 2 ): snake_case__ = 1.0 for fraction in fraction_list(__lowerCAmelCase ): snake_case__ = Fraction(__lowerCAmelCase ) result *= frac.denominator / frac.numerator return int(__lowerCAmelCase ) if __name__ == "__main__": print(solution())
530
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __A = [ """openmmlab/upernet-convnext-tiny""", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __A = """UperNetConfig""" class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = False , __UpperCAmelCase = 1 , ): '''simple docstring''' super().__init__() lowerCAmelCase__ :Optional[int] = nn.Convad( in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , kernel_size=__UpperCAmelCase , padding=__UpperCAmelCase , bias=__UpperCAmelCase , dilation=__UpperCAmelCase , ) lowerCAmelCase__ :Any = nn.BatchNormad(__UpperCAmelCase ) lowerCAmelCase__ :int = nn.ReLU() def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self.conv(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = self.batch_norm(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = self.activation(__UpperCAmelCase ) return output class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() lowerCAmelCase__ :Optional[int] = [ nn.AdaptiveAvgPoolad(__UpperCAmelCase ), UperNetConvModule(__UpperCAmelCase , __UpperCAmelCase , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(__UpperCAmelCase ) , __UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = input for layer in self.layers: lowerCAmelCase__ :Any = layer(__UpperCAmelCase ) return hidden_state class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() lowerCAmelCase__ :Union[str, Any] = pool_scales lowerCAmelCase__ :Union[str, Any] = align_corners lowerCAmelCase__ :List[str] = in_channels lowerCAmelCase__ :Any = channels lowerCAmelCase__ :Optional[int] = [] for i, pool_scale in enumerate(__UpperCAmelCase ): lowerCAmelCase__ :List[Any] = UperNetPyramidPoolingBlock(pool_scale=__UpperCAmelCase , in_channels=__UpperCAmelCase , channels=__UpperCAmelCase ) self.blocks.append(__UpperCAmelCase ) self.add_module(str(__UpperCAmelCase ) , __UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Tuple = [] for ppm in self.blocks: lowerCAmelCase__ :Optional[Any] = ppm(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = nn.functional.interpolate( __UpperCAmelCase , size=x.size()[2:] , mode='bilinear' , align_corners=self.align_corners ) ppm_outs.append(__UpperCAmelCase ) return ppm_outs class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() lowerCAmelCase__ :Union[str, Any] = config lowerCAmelCase__ :List[str] = config.pool_scales # e.g. (1, 2, 3, 6) lowerCAmelCase__ :str = in_channels lowerCAmelCase__ :Optional[int] = config.hidden_size lowerCAmelCase__ :Optional[Any] = False lowerCAmelCase__ :Tuple = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module lowerCAmelCase__ :Optional[int] = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) lowerCAmelCase__ :List[str] = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module lowerCAmelCase__ :str = nn.ModuleList() lowerCAmelCase__ :Union[str, Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer lowerCAmelCase__ :str = UperNetConvModule(__UpperCAmelCase , self.channels , kernel_size=1 ) lowerCAmelCase__ :Optional[int] = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(__UpperCAmelCase ) self.fpn_convs.append(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def snake_case ( self ): '''simple docstring''' self.apply(self._init_weights ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' if isinstance(__UpperCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = inputs[-1] lowerCAmelCase__ :Optional[int] = [x] psp_outs.extend(self.psp_modules(__UpperCAmelCase ) ) lowerCAmelCase__ :Dict = torch.cat(__UpperCAmelCase , dim=1 ) lowerCAmelCase__ :Dict = self.bottleneck(__UpperCAmelCase ) return output def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Any = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(__UpperCAmelCase ) ) # build top-down path lowerCAmelCase__ :Any = len(__UpperCAmelCase ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowerCAmelCase__ :Dict = laterals[i - 1].shape[2:] lowerCAmelCase__ :int = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=__UpperCAmelCase , mode='bilinear' , align_corners=self.align_corners ) # build outputs lowerCAmelCase__ :int = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowerCAmelCase__ :Optional[Any] = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='bilinear' , align_corners=self.align_corners ) lowerCAmelCase__ :List[Any] = torch.cat(__UpperCAmelCase , dim=1 ) lowerCAmelCase__ :Union[str, Any] = self.fpn_bottleneck(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = self.classifier(__UpperCAmelCase ) return output class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase = 2 , __UpperCAmelCase = 3 , __UpperCAmelCase = 1 ): '''simple docstring''' super().__init__() lowerCAmelCase__ :int = config lowerCAmelCase__ :Tuple = config.auxiliary_in_channels lowerCAmelCase__ :List[str] = config.auxiliary_channels lowerCAmelCase__ :Optional[Any] = config.auxiliary_num_convs lowerCAmelCase__ :Dict = config.auxiliary_concat_input lowerCAmelCase__ :Union[str, Any] = in_index lowerCAmelCase__ :str = (kernel_size // 2) * dilation lowerCAmelCase__ :Dict = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=__UpperCAmelCase , padding=__UpperCAmelCase , dilation=__UpperCAmelCase ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=__UpperCAmelCase , padding=__UpperCAmelCase , dilation=__UpperCAmelCase ) ) if self.num_convs == 0: lowerCAmelCase__ :str = nn.Identity() else: lowerCAmelCase__ :Tuple = nn.Sequential(*__UpperCAmelCase ) if self.concat_input: lowerCAmelCase__ :Any = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=__UpperCAmelCase , padding=kernel_size // 2 ) lowerCAmelCase__ :Dict = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def snake_case ( self ): '''simple docstring''' self.apply(self._init_weights ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' if isinstance(__UpperCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[Any] = encoder_hidden_states[self.in_index] lowerCAmelCase__ :Any = self.convs(__UpperCAmelCase ) if self.concat_input: lowerCAmelCase__ :str = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) lowerCAmelCase__ :Tuple = self.classifier(__UpperCAmelCase ) return output class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Optional[Any] = UperNetConfig __magic_name__ :List[str] = """pixel_values""" __magic_name__ :Any = True def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' if isinstance(__UpperCAmelCase , __UpperCAmelCase ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def snake_case ( self ): '''simple docstring''' self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ :Optional[Any] = value __A = R""" Parameters: This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. config ([`UperNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ __A = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.""" , a , ) class _lowerCAmelCase ( a ): """simple docstring""" def __init__( self , __UpperCAmelCase ): '''simple docstring''' super().__init__(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) lowerCAmelCase__ :Union[str, Any] = UperNetHead(__UpperCAmelCase , in_channels=self.backbone.channels ) lowerCAmelCase__ :Optional[int] = UperNetFCNHead(__UpperCAmelCase ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('batch_size, sequence_length' ) ) @replace_return_docstrings(output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC ) def snake_case ( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , ): '''simple docstring''' lowerCAmelCase__ :List[str] = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ :str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ :str = output_attentions if output_attentions is not None else self.config.output_attentions lowerCAmelCase__ :List[Any] = self.backbone.forward_with_filtered_kwargs( __UpperCAmelCase , output_hidden_states=__UpperCAmelCase , output_attentions=__UpperCAmelCase ) lowerCAmelCase__ :List[str] = outputs.feature_maps lowerCAmelCase__ :Optional[Any] = self.decode_head(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = nn.functional.interpolate(__UpperCAmelCase , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=__UpperCAmelCase ) lowerCAmelCase__ :int = None if self.auxiliary_head is not None: lowerCAmelCase__ :Union[str, Any] = self.auxiliary_head(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = nn.functional.interpolate( __UpperCAmelCase , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=__UpperCAmelCase ) lowerCAmelCase__ :Tuple = None if labels is not None: if self.config.num_labels == 1: raise ValueError('The number of labels should be greater than one' ) else: # compute weighted loss lowerCAmelCase__ :List[str] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) lowerCAmelCase__ :Optional[int] = loss_fct(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :List[Any] = loss_fct(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: lowerCAmelCase__ :Any = (logits,) + outputs[1:] else: lowerCAmelCase__ :List[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=__UpperCAmelCase , logits=__UpperCAmelCase , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
93
from math import isqrt, loga def lowerCAmelCase__ ( a__ ) ->list[int]: '''simple docstring''' _UpperCamelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , a__ , a__ ): _UpperCamelCase = False return [i for i in range(2 , a__ ) if is_prime[i]] def lowerCAmelCase__ ( a__ = 800_800 , a__ = 800_800 ) ->int: '''simple docstring''' _UpperCamelCase = degree * loga(a__ ) _UpperCamelCase = int(a__ ) _UpperCamelCase = calculate_prime_numbers(a__ ) _UpperCamelCase = 0 _UpperCamelCase = 0 _UpperCamelCase = len(a__ ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"{solution() = }")
547
0
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __UpperCamelCase (unittest.TestCase ): def _a ( self ) -> List[str]: '''simple docstring''' lowercase = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() lowercase = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) lowercase = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } lowercase = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_6000, """return_attention_mask""": False, """do_normalize""": True, } lowercase = tempfile.mkdtemp() lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase = os.path.join(self.tmpdirname , _lowerCAmelCase ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) # load decoder from hub lowercase = """hf-internal-testing/ngram-beam-search-decoder""" def _a ( self , **_lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase = self.add_kwargs_tokens_map.copy() kwargs.update(_lowerCAmelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def _a ( self , **_lowerCAmelCase ) -> Any: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def _a ( self , **_lowerCAmelCase ) -> List[str]: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_lowerCAmelCase ) def _a ( self ) -> int: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.get_tokenizer() lowercase = self.get_feature_extractor() lowercase = self.get_decoder() lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowercase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _lowerCAmelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _lowerCAmelCase ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match lowercase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def _a ( self ) -> Dict: '''simple docstring''' lowercase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(_lowerCAmelCase , """include""" ): WavaVecaProcessorWithLM( tokenizer=_lowerCAmelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def _a ( self ) -> Tuple: '''simple docstring''' lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = self.get_decoder() lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) lowercase = floats_list((3, 1000) ) lowercase = feature_extractor(_lowerCAmelCase , return_tensors="""np""" ) lowercase = processor(_lowerCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self ) -> int: '''simple docstring''' lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = self.get_decoder() lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) lowercase = """This is a test string""" lowercase = processor(text=_lowerCAmelCase ) lowercase = tokenizer(_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self , _lowerCAmelCase=(2, 10, 16) , _lowerCAmelCase=77 ) -> List[Any]: '''simple docstring''' np.random.seed(_lowerCAmelCase ) return np.random.rand(*_lowerCAmelCase ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = self.get_decoder() lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) lowercase = self._get_dummy_logits(shape=(10, 16) , seed=13 ) lowercase = processor.decode(_lowerCAmelCase ) lowercase = decoder.decode_beams(_lowerCAmelCase )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def _a ( self , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = self.get_decoder() lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) lowercase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: lowercase = processor.batch_decode(_lowerCAmelCase ) else: with get_context(_lowerCAmelCase ).Pool() as pool: lowercase = processor.batch_decode(_lowerCAmelCase , _lowerCAmelCase ) lowercase = list(_lowerCAmelCase ) with get_context("""fork""" ).Pool() as p: lowercase = decoder.decode_beams_batch(_lowerCAmelCase , _lowerCAmelCase ) lowercase , lowercase , lowercase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_lowerCAmelCase , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(_lowerCAmelCase , decoded_processor.logit_score ) self.assertListEqual(_lowerCAmelCase , decoded_processor.lm_score ) def _a ( self ) -> int: '''simple docstring''' lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = self.get_decoder() lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) lowercase = self._get_dummy_logits() lowercase = 15 lowercase = -20.0 lowercase = -4.0 lowercase = processor.batch_decode( _lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , ) lowercase = decoded_processor_out.text lowercase = list(_lowerCAmelCase ) with get_context("""fork""" ).Pool() as pool: lowercase = decoder.decode_beams_batch( _lowerCAmelCase , _lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , ) lowercase = [d[0][0] for d in decoded_decoder_out] lowercase = [d[0][2] for d in decoded_decoder_out] lowercase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , _lowerCAmelCase ) self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , _lowerCAmelCase , atol=1E-3 ) ) self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , _lowerCAmelCase , atol=1E-3 ) ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = self.get_decoder() lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) lowercase = self._get_dummy_logits() lowercase = 2.0 lowercase = 5.0 lowercase = -20.0 lowercase = True lowercase = processor.batch_decode( _lowerCAmelCase , alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , ) lowercase = decoded_processor_out.text lowercase = list(_lowerCAmelCase ) decoder.reset_params( alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , ) with get_context("""fork""" ).Pool() as pool: lowercase = decoder.decode_beams_batch( _lowerCAmelCase , _lowerCAmelCase , ) lowercase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , _lowerCAmelCase ) lowercase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , _lowerCAmelCase ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) lowercase = processor.decoder.model_container[processor.decoder._model_key] lowercase = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() lowercase = os.listdir(_lowerCAmelCase ) lowercase = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = snapshot_download("""hf-internal-testing/processor_with_lm""" ) lowercase = WavaVecaProcessorWithLM.from_pretrained(_lowerCAmelCase ) lowercase = processor.decoder.model_container[processor.decoder._model_key] lowercase = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() lowercase = os.listdir(_lowerCAmelCase ) lowercase = os.listdir(_lowerCAmelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> Any: '''simple docstring''' lowercase = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) lowercase = floats_list((3, 1000) ) lowercase = processor_wavaveca(_lowerCAmelCase , return_tensors="""np""" ) lowercase = processor_auto(_lowerCAmelCase , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) lowercase = self._get_dummy_logits() lowercase = processor_wavaveca.batch_decode(_lowerCAmelCase ) lowercase = processor_auto.batch_decode(_lowerCAmelCase ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = self.get_decoder() lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def _a ( _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase = [d[key] for d in offsets] return retrieved_list def _a ( self ) -> str: '''simple docstring''' lowercase = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) lowercase = self._get_dummy_logits()[0] lowercase = processor.decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) lowercase = self._get_dummy_logits() lowercase = processor.batch_decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def _a ( self ) -> Optional[int]: '''simple docstring''' import torch lowercase = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=_lowerCAmelCase ) lowercase = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_6000 ) ) lowercase = iter(_lowerCAmelCase ) lowercase = next(_lowerCAmelCase ) lowercase = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) lowercase = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train lowercase = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): lowercase = model(_lowerCAmelCase ).logits.cpu().numpy() lowercase = processor.decode(logits[0] , output_word_offsets=_lowerCAmelCase ) lowercase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate lowercase = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] lowercase = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , _lowerCAmelCase ) self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , output.text ) # output times lowercase = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """start_time""" ) ) lowercase = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """end_time""" ) ) # fmt: off lowercase = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) lowercase = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) ) self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) )
716
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def SCREAMING_SNAKE_CASE ( ): lowercase = HfArgumentParser(lowercase_ ) lowercase = parser.parse_args_into_dataclasses()[0] lowercase = TensorFlowBenchmark(args=lowercase_ ) try: lowercase = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowercase = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" lowercase = """ """.join(str(lowercase_ ).split(""" """ )[:-1] ) lowercase = """""" lowercase = eval(str(lowercase_ ).split(""" """ )[-1] ) lowercase = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowercase_ ) if len(lowercase_ ) > 0: lowercase = full_error_msg + begin_error_msg + str(lowercase_ ) raise ValueError(lowercase_ ) benchmark.run() if __name__ == "__main__": main()
653
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.6, "eval_loss": 0.9}, }, { "framework": "tensorflow", "script": "run_tf.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.3, "eval_loss": 0.9}, }, ] ) class __a ( unittest.TestCase ): def UpperCamelCase ( self : List[str])-> List[str]: if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=snake_case_ , ) assert hasattr(self , """env""") def UpperCamelCase ( self : List[Any] , snake_case_ : Union[str, Any]=1)-> Tuple: # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-single""" , instance_count=snake_case_ , instance_type=self.instance_type , debugger_hook_config=snake_case_ , hyperparameters={**self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="""py36""" , ) def UpperCamelCase ( self : int , snake_case_ : Dict)-> List[Any]: TrainingJobAnalytics(snake_case_).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""") def UpperCamelCase ( self : Optional[int])-> List[Any]: # create estimator __lowerCAmelCase =self.create_estimator() # run training estimator.fit() # result dataframe __lowerCAmelCase =TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis __lowerCAmelCase =list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""]) __lowerCAmelCase =list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""]) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowerCAmelCase =( Session().describe_training_job(estimator.latest_training_job.name).get("""TrainingTimeInSeconds""" , 99_99_99) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy) assert all(t <= self.results["""eval_loss"""] for t in eval_loss) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , """w""") as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , snake_case_)
354
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''EleutherAI/gpt-neo-1.3B''': '''https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json''', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __a ( SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = "gpt_neo" SCREAMING_SNAKE_CASE = ["past_key_values"] SCREAMING_SNAKE_CASE = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : Optional[int] , snake_case_ : int=5_02_57 , snake_case_ : Tuple=20_48 , snake_case_ : Optional[int]=20_48 , snake_case_ : int=24 , snake_case_ : List[Any]=[[["global", "local"], 12]] , snake_case_ : Tuple=16 , snake_case_ : Optional[int]=None , snake_case_ : Dict=2_56 , snake_case_ : List[str]="gelu_new" , snake_case_ : List[Any]=0.0 , snake_case_ : Tuple=0.0 , snake_case_ : Tuple=0.0 , snake_case_ : str=0.1 , snake_case_ : Union[str, Any]=1e-5 , snake_case_ : str=0.0_2 , snake_case_ : Union[str, Any]=True , snake_case_ : Optional[int]=5_02_56 , snake_case_ : Tuple=5_02_56 , **snake_case_ : Optional[int] , )-> Tuple: __lowerCAmelCase =vocab_size __lowerCAmelCase =max_position_embeddings __lowerCAmelCase =hidden_size __lowerCAmelCase =num_layers __lowerCAmelCase =num_heads __lowerCAmelCase =intermediate_size __lowerCAmelCase =window_size __lowerCAmelCase =activation_function __lowerCAmelCase =resid_dropout __lowerCAmelCase =embed_dropout __lowerCAmelCase =attention_dropout __lowerCAmelCase =classifier_dropout __lowerCAmelCase =layer_norm_epsilon __lowerCAmelCase =initializer_range __lowerCAmelCase =use_cache __lowerCAmelCase =bos_token_id __lowerCAmelCase =eos_token_id __lowerCAmelCase =attention_types __lowerCAmelCase =self.expand_attention_types_params(snake_case_) if len(self.attention_layers) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ F"""but is `len(config.attention_layers) = {len(self.attention_layers)}`, """ F"""`config.num_layers = {self.num_layers}`. """ """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""") super().__init__(bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_) @staticmethod def UpperCamelCase ( snake_case_ : Optional[int])-> Any: __lowerCAmelCase =[] for item in attention_types: for _ in range(item[1]): attentions.extend(item[0]) return attentions def __lowerCAmelCase ( __lowerCamelCase : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int ) -> int: import torch __lowerCAmelCase =input.size() __lowerCAmelCase =len(__lowerCamelCase ) __lowerCAmelCase =shape[dimension] __lowerCAmelCase =torch.arange(0 , __lowerCamelCase , __lowerCamelCase ) __lowerCAmelCase =torch.div(sizedim - size , __lowerCamelCase , rounding_mode="""floor""" ) + 1 __lowerCAmelCase =torch.arange(__lowerCamelCase ) + low_indices[:min_length][:, None] __lowerCAmelCase =[slice(__lowerCamelCase )] * rank __lowerCAmelCase =indices __lowerCAmelCase =input[s] __lowerCAmelCase =list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(__lowerCamelCase ) def __lowerCAmelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ) -> List[str]: import torch __lowerCAmelCase =torch.arange(1 , __lowerCamelCase ) __lowerCAmelCase =torch.remainder(__lowerCamelCase , __lowerCamelCase ) __lowerCAmelCase =remainders == 0 __lowerCAmelCase =candidates[divisor_indices] __lowerCAmelCase =torch.max(__lowerCamelCase ) return largest_divisor, torch.div(__lowerCamelCase , __lowerCamelCase , rounding_mode="""floor""" ) class __a ( SCREAMING_SNAKE_CASE ): @property def UpperCamelCase ( self : Union[str, Any])-> Mapping[str, Mapping[int, str]]: __lowerCAmelCase =OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}}) if self.use_past: self.fill_with_past_key_values_(snake_case_ , direction="""inputs""") __lowerCAmelCase ={0: """batch""", 1: """past_sequence + sequence"""} else: __lowerCAmelCase ={0: """batch""", 1: """sequence"""} return common_inputs @property def UpperCamelCase ( self : Optional[int])-> int: return self._config.num_heads def UpperCamelCase ( self : int , snake_case_ : PreTrainedTokenizer , snake_case_ : int = -1 , snake_case_ : int = -1 , snake_case_ : bool = False , snake_case_ : Optional[TensorType] = None , )-> Mapping[str, Any]: __lowerCAmelCase =super(snake_case_ , self).generate_dummy_inputs( snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_) # We need to order the input in the way they appears in the forward() __lowerCAmelCase =OrderedDict({"""input_ids""": common_inputs["""input_ids"""]}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""") else: import torch __lowerCAmelCase , __lowerCAmelCase =common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowerCAmelCase =seqlen + 2 __lowerCAmelCase =( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowerCAmelCase =[ (torch.zeros(snake_case_), torch.zeros(snake_case_)) for _ in range(self.num_layers) ] __lowerCAmelCase =common_inputs["""attention_mask"""] if self.use_past: __lowerCAmelCase =ordered_inputs["""attention_mask"""].dtype __lowerCAmelCase =torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(snake_case_ , snake_case_ , dtype=snake_case_)] , dim=1) return ordered_inputs @property def UpperCamelCase ( self : Union[str, Any])-> int: return 13
354
1
'''simple docstring''' import qiskit def __A ( UpperCAmelCase ,UpperCAmelCase ) -> qiskit.result.counts.Counts: '''simple docstring''' _UpperCamelCase : List[str] = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register _UpperCamelCase : Union[str, Any] = qiskit.QuantumCircuit(UpperCAmelCase ,UpperCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] ,[0, 1] ) # Execute the circuit on the qasm simulator _UpperCamelCase : Dict = qiskit.execute(UpperCAmelCase ,UpperCAmelCase ,shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ : str = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
713
'''simple docstring''' from __future__ import annotations lowerCAmelCase_ : Optional[Any] = """Muhammad Umer Farooq""" lowerCAmelCase_ : str = """MIT""" lowerCAmelCase_ : Optional[Any] = """1.0.0""" lowerCAmelCase_ : Union[str, Any] = """Muhammad Umer Farooq""" lowerCAmelCase_ : Any = """contact@muhammadumerfarooq.me""" lowerCAmelCase_ : Dict = """Alpha""" import re from html.parser import HTMLParser from urllib import parse import requests class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] , lowercase__ : str ) ->None: '''simple docstring''' super().__init__() _UpperCamelCase : list[str] = [] _UpperCamelCase : int = domain def snake_case__ ( self : str , lowercase__ : str , lowercase__ : list[tuple[str, str | None]] ) ->None: '''simple docstring''' if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: _UpperCamelCase : Optional[Any] = parse.urljoin(self.domain , lowercase__ ) self.urls.append(lowercase__ ) def __A ( UpperCAmelCase ) -> str: '''simple docstring''' return ".".join(get_sub_domain_name(UpperCAmelCase ).split("." )[-2:] ) def __A ( UpperCAmelCase ) -> str: '''simple docstring''' return parse.urlparse(UpperCAmelCase ).netloc def __A ( UpperCAmelCase = "https://github.com" ) -> list[str]: '''simple docstring''' _UpperCamelCase : int = get_domain_name(UpperCAmelCase ) # Initialize the parser _UpperCamelCase : Any = Parser(UpperCAmelCase ) try: # Open URL _UpperCamelCase : Union[str, Any] = requests.get(UpperCAmelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through _UpperCamelCase : int = set() for link in parser.urls: # open URL. # read = requests.get(link) try: _UpperCamelCase : Dict = requests.get(UpperCAmelCase ) # Get the valid email. _UpperCamelCase : List[str] = re.findall("[a-zA-Z0-9]+@" + domain ,read.text ) # If not in list then append it. for email in emails: valid_emails.add(UpperCAmelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ : List[str] = emails_from_url("""https://github.com""") print(f"""{len(emails)} emails found:""") print("""\n""".join(sorted(emails)))
204
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch lowerCamelCase = random.Random() def _A ( _lowerCAmelCase , _lowerCAmelCase=1.0 , _lowerCAmelCase=None , _lowerCAmelCase=None ): """simple docstring""" if rng is None: __lowercase =global_rng __lowercase =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict=7 , _lowerCAmelCase : List[Any]=4_0_0 , _lowerCAmelCase : Optional[int]=2_0_0_0 , _lowerCAmelCase : List[Any]=1 , _lowerCAmelCase : str=0.0 , _lowerCAmelCase : Optional[Any]=1_6_0_0_0 , _lowerCAmelCase : str=True , _lowerCAmelCase : List[str]=8_0 , _lowerCAmelCase : Dict=1_6 , _lowerCAmelCase : Tuple=6_4 , _lowerCAmelCase : Any="hann_window" , _lowerCAmelCase : Dict=8_0 , _lowerCAmelCase : Optional[int]=7_6_0_0 , _lowerCAmelCase : str=1e-10 , _lowerCAmelCase : Union[str, Any]=True , ): '''simple docstring''' __lowercase =parent __lowercase =batch_size __lowercase =min_seq_length __lowercase =max_seq_length __lowercase =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __lowercase =feature_size __lowercase =padding_value __lowercase =sampling_rate __lowercase =do_normalize __lowercase =num_mel_bins __lowercase =hop_length __lowercase =win_length __lowercase =win_function __lowercase =fmin __lowercase =fmax __lowercase =mel_floor __lowercase =return_attention_mask def __lowerCamelCase ( self : Tuple): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def __lowerCamelCase ( self : List[str] , _lowerCAmelCase : str=False , _lowerCAmelCase : List[Any]=False): '''simple docstring''' def _flatten(_lowerCAmelCase : Optional[Any]): return list(itertools.chain(*_lowerCamelCase)) if equal_length: __lowercase =floats_list((self.batch_size, self.max_seq_length)) else: # make sure that inputs increase in size __lowercase =[ _flatten(floats_list((x, self.feature_size))) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: __lowercase =[np.asarray(_lowerCamelCase) for x in speech_inputs] return speech_inputs def __lowerCamelCase ( self : int , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Optional[int]=False): '''simple docstring''' if equal_length: __lowercase =[floats_list((self.max_seq_length, self.num_mel_bins)) for _ in range(self.batch_size)] else: # make sure that inputs increase in size __lowercase =[ floats_list((x, self.num_mel_bins)) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: __lowercase =[np.asarray(_lowerCamelCase) for x in speech_inputs] return speech_inputs @require_torch class _UpperCamelCase ( _snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = SpeechTaFeatureExtractor def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =SpeechTaFeatureExtractionTester(self) def __lowerCamelCase ( self : Any , _lowerCAmelCase : Tuple): '''simple docstring''' self.assertTrue(np.all(np.mean(_lowerCamelCase , axis=0) < 1e-3)) self.assertTrue(np.all(np.abs(np.var(_lowerCamelCase , axis=0) - 1) < 1e-3)) def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 __lowercase =[floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] __lowercase =[np.asarray(_lowerCamelCase) for speech_input in speech_inputs] # Test not batched input __lowercase =feat_extract(speech_inputs[0] , return_tensors='np').input_values __lowercase =feat_extract(np_speech_inputs[0] , return_tensors='np').input_values self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3)) # Test batched __lowercase =feat_extract(_lowerCamelCase , return_tensors='np').input_values __lowercase =feat_extract(_lowerCamelCase , return_tensors='np').input_values for enc_seq_a, enc_seq_a in zip(_lowerCamelCase , _lowerCamelCase): self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3)) def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __lowercase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __lowercase =[floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] __lowercase =['''longest''', '''max_length''', '''do_not_pad'''] __lowercase =[None, 1_6_0_0, None] for max_length, padding in zip(_lowerCamelCase , _lowerCamelCase): __lowercase =feat_extract(_lowerCamelCase , padding=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors='np') __lowercase =processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0]) self.assertTrue(input_values[0][8_0_0:].sum() < 1e-6) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0]) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1e-6) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0]) def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __lowercase =range(8_0_0 , 1_4_0_0 , 2_0_0) __lowercase =[floats_list((1, x))[0] for x in lengths] __lowercase =['''longest''', '''max_length''', '''do_not_pad'''] __lowercase =[None, 1_6_0_0, None] for max_length, padding in zip(_lowerCamelCase , _lowerCamelCase): __lowercase =feat_extract(_lowerCamelCase , max_length=_lowerCamelCase , padding=_lowerCamelCase) __lowercase =processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0]) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0]) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0]) def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __lowercase =[floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] __lowercase =feat_extract( _lowerCamelCase , truncation=_lowerCamelCase , max_length=1_0_0_0 , padding='max_length' , return_tensors='np') __lowercase =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0]) self._check_zero_mean_unit_variance(input_values[1]) self._check_zero_mean_unit_variance(input_values[2]) def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __lowercase =[floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] __lowercase =feat_extract( _lowerCamelCase , truncation=_lowerCamelCase , max_length=1_0_0_0 , padding='longest' , return_tensors='np') __lowercase =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0]) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0]) self._check_zero_mean_unit_variance(input_values[2]) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0)) __lowercase =[floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] __lowercase =feat_extract( _lowerCamelCase , truncation=_lowerCamelCase , max_length=2_0_0_0 , padding='longest' , return_tensors='np') __lowercase =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0]) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0]) self._check_zero_mean_unit_variance(input_values[2]) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0)) def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __lowercase =np.random.rand(1_0_0).astype(np.floataa) __lowercase =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __lowercase =feature_extractor.pad([{'input_values': inputs}] , return_tensors='np') self.assertTrue(np_processed.input_values.dtype == np.floataa) __lowercase =feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt') self.assertTrue(pt_processed.input_values.dtype == torch.floataa) def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 __lowercase =[floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] __lowercase =[np.asarray(_lowerCamelCase) for speech_input in speech_inputs] # Test feature size __lowercase =feature_extractor(audio_target=_lowerCamelCase , padding=_lowerCamelCase , return_tensors='np').input_values self.assertTrue(input_values.ndim == 3) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins) # Test not batched input __lowercase =feature_extractor(speech_inputs[0] , return_tensors='np').input_values __lowercase =feature_extractor(np_speech_inputs[0] , return_tensors='np').input_values self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3)) # Test batched __lowercase =feature_extractor(_lowerCamelCase , return_tensors='np').input_values __lowercase =feature_extractor(_lowerCamelCase , return_tensors='np').input_values for enc_seq_a, enc_seq_a in zip(_lowerCamelCase , _lowerCamelCase): self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3)) # Test 2-D numpy arrays are batched. __lowercase =[floats_list((1, x))[0] for x in (8_0_0, 8_0_0, 8_0_0)] __lowercase =np.asarray(_lowerCamelCase) __lowercase =feature_extractor(_lowerCamelCase , return_tensors='np').input_values __lowercase =feature_extractor(_lowerCamelCase , return_tensors='np').input_values for enc_seq_a, enc_seq_a in zip(_lowerCamelCase , _lowerCamelCase): self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3)) def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =self.feat_extract_tester.prepare_inputs_for_target() __lowercase =self.feature_extraction_class(**self.feat_extract_dict) __lowercase =feat_extract.model_input_names[0] __lowercase =BatchFeature({input_name: speech_inputs}) self.assertTrue(all(len(_lowerCamelCase) == len(_lowerCamelCase) for x, y in zip(_lowerCamelCase , processed_features[input_name]))) __lowercase =self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCamelCase) __lowercase =BatchFeature({input_name: speech_inputs} , tensor_type='np') __lowercase =processed_features[input_name] if len(batch_features_input.shape) < 3: __lowercase =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.num_mel_bins)) @require_torch def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCamelCase) __lowercase =self.feature_extraction_class(**self.feat_extract_dict) __lowercase =feat_extract.model_input_names[0] __lowercase =BatchFeature({input_name: speech_inputs} , tensor_type='pt') __lowercase =processed_features[input_name] if len(batch_features_input.shape) < 3: __lowercase =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.num_mel_bins)) @require_torch def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =self.feature_extraction_class(**self.feat_extract_dict) __lowercase =self.feat_extract_tester.prepare_inputs_for_target() __lowercase =feat_extract.model_input_names[0] __lowercase =BatchFeature({input_name: speech_inputs}) __lowercase =feat_extract.num_mel_bins # hack! __lowercase =feat_extract.pad(_lowerCamelCase , padding='longest' , return_tensors='np')[input_name] __lowercase =feat_extract.pad(_lowerCamelCase , padding='longest' , return_tensors='pt')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_pt.numpy().astype(np.floataa).sum()) < 1e-2) def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase =self.feat_extract_dict __lowercase =True __lowercase =self.feature_extraction_class(**_lowerCamelCase) __lowercase =self.feat_extract_tester.prepare_inputs_for_target() __lowercase =[len(_lowerCamelCase) for x in speech_inputs] __lowercase =feat_extract.model_input_names[0] __lowercase =BatchFeature({input_name: speech_inputs}) __lowercase =feat_extract.num_mel_bins # hack! __lowercase =feat_extract.pad(_lowerCamelCase , padding='longest' , return_tensors='np') self.assertIn('attention_mask' , _lowerCamelCase) self.assertListEqual(list(processed.attention_mask.shape) , list(processed[input_name].shape[:2])) self.assertListEqual(processed.attention_mask.sum(-1).tolist() , _lowerCamelCase) def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =self.feat_extract_dict __lowercase =True __lowercase =self.feature_extraction_class(**_lowerCamelCase) __lowercase =self.feat_extract_tester.prepare_inputs_for_target() __lowercase =[len(_lowerCamelCase) for x in speech_inputs] __lowercase =feat_extract.model_input_names[0] __lowercase =BatchFeature({input_name: speech_inputs}) __lowercase =min(_lowerCamelCase) __lowercase =feat_extract.num_mel_bins # hack! __lowercase =feat_extract.pad( _lowerCamelCase , padding='max_length' , max_length=_lowerCamelCase , truncation=_lowerCamelCase , return_tensors='np') self.assertIn('attention_mask' , _lowerCamelCase) self.assertListEqual( list(processed_pad.attention_mask.shape) , [processed_pad[input_name].shape[0], max_length]) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1).tolist() , [max_length for x in speech_inputs]) def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : List[str]): '''simple docstring''' from datasets import load_dataset __lowercase =load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation') # automatic decoding with librispeech __lowercase =ds.sort('id').select(range(_lowerCamelCase))[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =torch.tensor( [2.38_04e-03, 2.07_52e-03, 1.98_36e-03, 2.10_57e-03, 1.61_74e-03, 3.05_18e-04, 9.15_53e-05, 3.35_69e-04, 9.76_56e-04, 1.83_11e-03, 2.01_42e-03, 2.10_57e-03, 1.73_95e-03, 4.57_76e-04, -3.96_73e-04, 4.57_76e-04, 1.00_71e-03, 9.15_53e-05, 4.88_28e-04, 1.15_97e-03, 7.32_42e-04, 9.46_04e-04, 1.80_05e-03, 1.83_11e-03, 8.85_01e-04, 4.27_25e-04, 4.88_28e-04, 7.32_42e-04, 1.09_86e-03, 2.10_57e-03]) # fmt: on __lowercase =self._load_datasamples(1) __lowercase =SpeechTaFeatureExtractor() __lowercase =feature_extractor(_lowerCamelCase , return_tensors='pt').input_values self.assertEquals(input_values.shape , (1, 9_3_6_8_0)) self.assertTrue(torch.allclose(input_values[0, :3_0] , _lowerCamelCase , atol=1e-6)) def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase =torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998]) # fmt: on __lowercase =self._load_datasamples(1) __lowercase =SpeechTaFeatureExtractor() __lowercase =feature_extractor(audio_target=_lowerCamelCase , return_tensors='pt').input_values self.assertEquals(input_values.shape , (1, 3_6_6, 8_0)) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , _lowerCamelCase , atol=1e-4))
474
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : Optional[int] = logging.get_logger(__name__) snake_case : Optional[int] = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'unispeech' def __init__( self , _lowerCamelCase=32 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-5 , _lowerCamelCase="group" , _lowerCamelCase="gelu" , _lowerCamelCase=(512, 512, 512, 512, 512, 512, 512) , _lowerCamelCase=(5, 2, 2, 2, 2, 2, 2) , _lowerCamelCase=(10, 3, 3, 3, 3, 2, 2) , _lowerCamelCase=False , _lowerCamelCase=128 , _lowerCamelCase=16 , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.05 , _lowerCamelCase=10 , _lowerCamelCase=2 , _lowerCamelCase=0.0 , _lowerCamelCase=10 , _lowerCamelCase=0 , _lowerCamelCase=320 , _lowerCamelCase=2 , _lowerCamelCase=0.1 , _lowerCamelCase=100 , _lowerCamelCase=256 , _lowerCamelCase=256 , _lowerCamelCase=0.1 , _lowerCamelCase="mean" , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=256 , _lowerCamelCase=80 , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=2 , _lowerCamelCase=0.5 , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase ) a :Any = hidden_size a :str = feat_extract_norm a :List[Any] = feat_extract_activation a :Tuple = list(_lowerCamelCase ) a :Any = list(_lowerCamelCase ) a :List[Any] = list(_lowerCamelCase ) a :Union[str, Any] = conv_bias a :str = num_conv_pos_embeddings a :str = num_conv_pos_embedding_groups a :Tuple = len(self.conv_dim ) a :int = num_hidden_layers a :Any = intermediate_size a :Optional[Any] = hidden_act a :Tuple = num_attention_heads a :Any = hidden_dropout a :Any = attention_dropout a :Optional[Any] = activation_dropout a :Optional[Any] = feat_proj_dropout a :Any = final_dropout a :int = layerdrop a :int = layer_norm_eps a :Dict = initializer_range a :Dict = num_ctc_classes a :Optional[Any] = vocab_size a :str = do_stable_layer_norm a :Tuple = use_weighted_layer_sum a :Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a :List[Any] = apply_spec_augment a :Any = mask_time_prob a :Union[str, Any] = mask_time_length a :str = mask_time_min_masks a :Tuple = mask_feature_prob a :Dict = mask_feature_length a :int = mask_feature_min_masks # parameters for pretraining with codevector quantized representations a :Union[str, Any] = num_codevectors_per_group a :Dict = num_codevector_groups a :List[Any] = contrastive_logits_temperature a :Union[str, Any] = feat_quantizer_dropout a :Optional[Any] = num_negatives a :Tuple = codevector_dim a :Optional[Any] = proj_codevector_dim a :Union[str, Any] = diversity_loss_weight # ctc loss a :List[Any] = ctc_loss_reduction a :Union[str, Any] = ctc_zero_infinity # pretraining loss a :int = replace_prob @property def SCREAMING_SNAKE_CASE__ ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
445
0
import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __snake_case = [ """EAGER""", """AOT_EAGER""", """INDUCTOR""", """NVFUSER""", """AOT_NVFUSER""", """AOT_CUDAGRAPHS""", """OFI""", """FX2TRT""", """ONNXRT""", """IPEX""", ] def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) ->int: lowercase_ = True while ask_again: lowercase_ = input(SCREAMING_SNAKE_CASE_ ) try: if default is not None and len(SCREAMING_SNAKE_CASE_ ) == 0: return default return convert_value(SCREAMING_SNAKE_CASE_ ) if convert_value is not None else result except Exception: if error_message is not None: print(SCREAMING_SNAKE_CASE_ ) def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=[] , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=0 ) ->Dict: lowercase_ = BulletMenu(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = menu.run(default_choice=SCREAMING_SNAKE_CASE_ ) return convert_value(SCREAMING_SNAKE_CASE_ ) if convert_value is not None else result def A_ ( SCREAMING_SNAKE_CASE_ ) ->str: lowercase_ = int(SCREAMING_SNAKE_CASE_ ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def A_ ( SCREAMING_SNAKE_CASE_ ) ->Optional[int]: lowercase_ = int(SCREAMING_SNAKE_CASE_ ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def A_ ( SCREAMING_SNAKE_CASE_ ) ->Tuple: lowercase_ = int(SCREAMING_SNAKE_CASE_ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def A_ ( SCREAMING_SNAKE_CASE_ ) ->Any: lowercase_ = int(SCREAMING_SNAKE_CASE_ ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def A_ ( SCREAMING_SNAKE_CASE_ ) ->List[str]: lowercase_ = int(SCREAMING_SNAKE_CASE_ ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def A_ ( SCREAMING_SNAKE_CASE_ ) ->Optional[int]: return {"yes": True, "no": False}[value.lower()] class _a ( argparse.RawDescriptionHelpFormatter ): """simple docstring""" def lowerCamelCase__ ( self : Any , lowercase_ : str , lowercase_ : Union[str, Any] , lowercase_ : str , lowercase_ : Any ): '''simple docstring''' lowercase_ = super()._format_usage(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase_ = usage.replace("""<command> [<args>] """ , """""" ) return usage
718
'''simple docstring''' def A_ ( SCREAMING_SNAKE_CASE_ = "The quick brown fox jumps over the lazy dog" , ) ->bool: lowercase_ = set() # Replace all the whitespace in our sentence lowercase_ = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(SCREAMING_SNAKE_CASE_ ) == 26 def A_ ( SCREAMING_SNAKE_CASE_ = "The quick brown fox jumps over the lazy dog" , ) ->bool: lowercase_ = [False] * 26 for char in input_str: if char.islower(): lowercase_ = True elif char.isupper(): lowercase_ = True return all(SCREAMING_SNAKE_CASE_ ) def A_ ( SCREAMING_SNAKE_CASE_ = "The quick brown fox jumps over the lazy dog" , ) ->bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def A_ ( ) ->None: from timeit import timeit lowercase_ = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=SCREAMING_SNAKE_CASE_ ) ) print(timeit("""is_pangram_faster()""" , setup=SCREAMING_SNAKE_CASE_ ) ) print(timeit("""is_pangram_fastest()""" , setup=SCREAMING_SNAKE_CASE_ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
603
0
from copy import deepcopy class A_ : """simple docstring""" def __init__( self : Optional[int] ,__A : list[int] | None = None ,__A : int | None = None ) -> None: if arr is None and size is not None: _lowercase = size _lowercase = [0] * size elif arr is not None: self.init(__A ) else: raise ValueError('Either arr or size must be specified' ) def __UpperCAmelCase ( self : Optional[int] ,__A : list[int] ) -> None: _lowercase = len(__A ) _lowercase = deepcopy(__A ) for i in range(1 ,self.size ): _lowercase = self.next_(__A ) if j < self.size: self.tree[j] += self.tree[i] def __UpperCAmelCase ( self : List[Any] ) -> list[int]: _lowercase = self.tree[:] for i in range(self.size - 1 ,0 ,-1 ): _lowercase = self.next_(__A ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def __UpperCAmelCase ( __A : int ) -> int: return index + (index & (-index)) @staticmethod def __UpperCAmelCase ( __A : int ) -> int: return index - (index & (-index)) def __UpperCAmelCase ( self : Any ,__A : int ,__A : int ) -> None: if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value _lowercase = self.next_(__A ) def __UpperCAmelCase ( self : List[Any] ,__A : int ,__A : int ) -> None: self.add(__A ,value - self.get(__A ) ) def __UpperCAmelCase ( self : List[str] ,__A : int ) -> int: if right == 0: return 0 _lowercase = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] _lowercase = self.prev(__A ) return result def __UpperCAmelCase ( self : List[str] ,__A : int ,__A : int ) -> int: return self.prefix(__A ) - self.prefix(__A ) def __UpperCAmelCase ( self : Any ,__A : int ) -> int: return self.query(__A ,index + 1 ) def __UpperCAmelCase ( self : str ,__A : int ) -> int: value -= self.tree[0] if value < 0: return -1 _lowercase = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 _lowercase = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
67
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time snake_case = Lock() def SCREAMING_SNAKE_CASE__ ( snake_case__ :Optional[int] , snake_case__ :Union[str, Any] , snake_case__ :Tuple , snake_case__ :Any , snake_case__ :Dict , snake_case__ :Optional[int] , snake_case__ :List[str] ) -> Optional[Any]: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() _lowercase = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left _lowercase = min(snake_case__ , snake_case__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() _lowercase = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right _lowercase = max(snake_case__ , snake_case__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :str ) -> Dict: _lowercase = [] _lowercase = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop _lowercase = Pipe() _lowercase = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) _lowercase = temp_rs _lowercase = temp_rr for i in range(1 , len(snake_case__ ) - 1 ): _lowercase = Pipe() _lowercase = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) _lowercase = temp_rs _lowercase = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__ ) - 1, arr[len(snake_case__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__ ) ): _lowercase = result_pipe[p][0].recv() process_array_[p].join() return arr def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: _lowercase = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*snake_case__ ) _lowercase = odd_even_transposition(snake_case__ ) print('Sorted List\n' ) print(*snake_case__ ) if __name__ == "__main__": main()
67
1
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _a : int= Lock() def __UpperCAmelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] ) -> str: '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(__lowerCAmelCase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() __snake_case : Union[str, Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left __snake_case : List[Any] = min(__lowerCAmelCase , __lowerCAmelCase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(__lowerCAmelCase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() __snake_case : Optional[int] = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right __snake_case : List[Any] = max(__lowerCAmelCase , __lowerCAmelCase ) # after all swaps are performed, send the values back to main result_pipe[1].send(__lowerCAmelCase ) def __UpperCAmelCase ( UpperCAmelCase_ : List[str] ) -> str: '''simple docstring''' __snake_case : Any = [] __snake_case : int = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop __snake_case : Dict = Pipe() __snake_case : int = Pipe() process_array_.append( Process( target=__lowerCAmelCase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) __snake_case : Optional[Any] = temp_rs __snake_case : Optional[int] = temp_rr for i in range(1 , len(__lowerCAmelCase ) - 1 ): __snake_case : Optional[int] = Pipe() __snake_case : Tuple = Pipe() process_array_.append( Process( target=__lowerCAmelCase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) __snake_case : Dict = temp_rs __snake_case : Optional[Any] = temp_rr process_array_.append( Process( target=__lowerCAmelCase , args=( len(__lowerCAmelCase ) - 1, arr[len(__lowerCAmelCase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(__lowerCAmelCase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(__lowerCAmelCase ) ): __snake_case : Dict = result_pipe[p][0].recv() process_array_[p].join() return arr def __UpperCAmelCase ( ) -> Optional[int]: '''simple docstring''' __snake_case : Optional[int] = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*__lowerCAmelCase ) __snake_case : List[Any] = odd_even_transposition(__lowerCAmelCase ) print('Sorted List\n' ) print(*__lowerCAmelCase ) if __name__ == "__main__": main()
709
"""simple docstring""" import math import tensorflow as tf from packaging import version def __UpperCAmelCase ( UpperCAmelCase_ : Union[str, Any] ) -> Any: '''simple docstring''' __snake_case : List[str] = tf.convert_to_tensor(UpperCAmelCase_ ) __snake_case : List[str] = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __UpperCAmelCase ( UpperCAmelCase_ : Tuple ) -> Optional[Any]: '''simple docstring''' __snake_case : Optional[int] = tf.convert_to_tensor(UpperCAmelCase_ ) __snake_case : Any = tf.cast(math.pi , x.dtype ) __snake_case : List[Any] = tf.cast(0.044_715 , x.dtype ) __snake_case : Union[str, Any] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(UpperCAmelCase_ , 3 )) )) return x * cdf def __UpperCAmelCase ( UpperCAmelCase_ : Tuple ) -> List[Any]: '''simple docstring''' __snake_case : Optional[int] = tf.convert_to_tensor(UpperCAmelCase_ ) return x * tf.tanh(tf.math.softplus(UpperCAmelCase_ ) ) def __UpperCAmelCase ( UpperCAmelCase_ : Tuple ) -> List[str]: '''simple docstring''' __snake_case : Union[str, Any] = tf.convert_to_tensor(UpperCAmelCase_ ) __snake_case : Dict = tf.cast(0.044_715 , x.dtype ) __snake_case : int = tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> Dict: '''simple docstring''' __snake_case : Any = tf.convert_to_tensor(UpperCAmelCase_ ) __snake_case : Dict = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __UpperCAmelCase ( UpperCAmelCase_ : Union[str, Any] ) -> List[Any]: '''simple docstring''' return tf.clip_by_value(_gelu(UpperCAmelCase_ ) , -10 , 10 ) def __UpperCAmelCase ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any=-1 ) -> int: '''simple docstring''' __snake_case , __snake_case : str = tf.split(UpperCAmelCase_ , 2 , axis=UpperCAmelCase_ ) return a * tf.math.sigmoid(UpperCAmelCase_ ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def __UpperCAmelCase ( UpperCAmelCase_ : Tuple ) -> int: '''simple docstring''' return tf.keras.activations.gelu(UpperCAmelCase_ , approximate=UpperCAmelCase_ ) _a : Tuple= tf.keras.activations.gelu _a : Tuple= approximate_gelu_wrap else: _a : Any= _gelu _a : str= _gelu_new _a : List[str]= { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def __UpperCAmelCase ( UpperCAmelCase_ : Optional[Any] ) -> List[Any]: '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
192
0
'''simple docstring''' UpperCamelCase_ = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: Dict ,__UpperCamelCase: Optional[int] ,__UpperCamelCase: List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = [False] * len(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [s] SCREAMING_SNAKE_CASE : Optional[Any] = True while queue: SCREAMING_SNAKE_CASE : Tuple = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__UpperCamelCase ) SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Any = u return visited[t] def lowercase__( __UpperCamelCase: Any ,__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = [-1] * (len(__UpperCamelCase )) SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : List[Any] = [i[:] for i in graph] # Record original cut, copy. while bfs(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ): SCREAMING_SNAKE_CASE : str = float('Inf' ) SCREAMING_SNAKE_CASE : str = sink while s != source: # Find the minimum value in select path SCREAMING_SNAKE_CASE : List[str] = min(__UpperCamelCase ,graph[parent[s]][s] ) SCREAMING_SNAKE_CASE : Optional[Any] = parent[s] max_flow += path_flow SCREAMING_SNAKE_CASE : Union[str, Any] = sink while v != source: SCREAMING_SNAKE_CASE : Any = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow SCREAMING_SNAKE_CASE : Dict = parent[v] for i in range(len(__UpperCamelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
28
"""simple docstring""" a__ : Optional[int] = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] a__ : Optional[int] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] a__ : int = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] a__ : Union[str, Any] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] a__ : int = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] a__ : Optional[Any] = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] a__ : Union[str, Any] = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] a__ : Optional[int] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
589
0
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowerCamelCase : List[Any] = getLogger(__name__) lowerCamelCase : List[str] = 'cuda' if torch.cuda.is_available() else 'cpu' def lowercase__( A , A , A , A = 8 , A = DEFAULT_DEVICE , A=False , A="summarization" , A=None , **A , ): snake_case__ : int = Path(A ).open('w' , encoding='utf-8' ) snake_case__ : Tuple = str(A ) snake_case__ : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(A ).to(A ) if fpaa: snake_case__ : str = model.half() snake_case__ : Any = AutoTokenizer.from_pretrained(A ) logger.info(f'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. snake_case__ : str = time.time() # update config with task specific params use_task_specific_params(A , A ) if prefix is None: snake_case__ : Optional[Any] = prefix or getattr(model.config , 'prefix' , '' ) or '' for examples_chunk in tqdm(list(chunks(A , A ) ) ): snake_case__ : Union[str, Any] = [prefix + text for text in examples_chunk] snake_case__ : List[Any] = tokenizer(A , return_tensors='pt' , truncation=A , padding='longest' ).to(A ) snake_case__ : Optional[Any] = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **A , ) snake_case__ : List[Any] = tokenizer.batch_decode(A , skip_special_tokens=A , clean_up_tokenization_spaces=A ) for hypothesis in dec: fout.write(hypothesis + '\n' ) fout.flush() fout.close() snake_case__ : Tuple = int(time.time() - start_time ) # seconds snake_case__ : List[Any] = len(A ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowercase__( ): return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' ) def lowercase__( A=True ): snake_case__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('model_name' , type=A , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('input_path' , type=A , help='like cnn_dm/test.source' ) parser.add_argument('save_path' , type=A , help='where to save summaries' ) parser.add_argument('--reference_path' , type=A , required=A , help='like cnn_dm/test.target' ) parser.add_argument('--score_path' , type=A , required=A , default='metrics.json' , help='where to save metrics' ) parser.add_argument('--device' , type=A , required=A , default=A , help='cuda, cuda:1, cpu etc.' ) parser.add_argument( '--prefix' , type=A , required=A , default=A , help='will be added to the begininng of src examples' ) parser.add_argument('--task' , type=A , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=A , default=8 , required=A , help='batch size' ) parser.add_argument( '--n_obs' , type=A , default=-1 , required=A , help='How many observations. Defaults to all.' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--dump-args' , action='store_true' , help='print the custom hparams with the results' ) parser.add_argument( '--info' , nargs='?' , type=A , const=datetime_now() , help=( 'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.' ' lang=en-ru. If no value is passed, the current datetime string will be used.' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate snake_case__ , snake_case__ : Union[str, Any] = parser.parse_known_args() snake_case__ : Optional[int] = parse_numeric_n_bool_cl_kwargs(A ) if parsed_args and verbose: print(f'''parsed the following generate kwargs: {parsed_args}''' ) snake_case__ : Tuple = [' ' + x.rstrip() if 't5' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: snake_case__ : Tuple = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=A ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f'''score_path {args.score_path} will be overwritten unless you type ctrl-c.''' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('Can\'t mix --fp16 and --device cpu' ) snake_case__ : Optional[Any] = generate_summaries_or_translations( A , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **A , ) if args.reference_path is None: return {} # Compute scores snake_case__ : Union[str, Any] = calculate_bleu if 'translation' in args.task else calculate_rouge snake_case__ : Union[str, Any] = [x.rstrip() for x in open(args.save_path ).readlines()] snake_case__ : List[str] = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(A )] snake_case__ : dict = score_fn(A , A ) scores.update(A ) if args.dump_args: scores.update(A ) if args.info: snake_case__ : Any = args.info if verbose: print(A ) if args.score_path is not None: json.dump(A , open(args.score_path , 'w' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
303
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) lowerCamelCase : str = 2_9_9_7_9_2_4_5_8 # Symbols lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : Union[str, Any] = symbols('ct x y z') def lowercase__( A ): if velocity > c: raise ValueError('Speed must not exceed light speed 299,792,458 [m/s]!' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('Speed must be greater than or equal to 1!' ) return velocity / c def lowercase__( A ): return 1 / sqrt(1 - beta(A ) ** 2 ) def lowercase__( A ): return np.array( [ [gamma(A ), -gamma(A ) * beta(A ), 0, 0], [-gamma(A ) * beta(A ), gamma(A ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowercase__( A , A = None ): # Ensure event is not empty if event is None: snake_case__ : Union[str, Any] = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(A ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: lowerCamelCase : Dict = transform(2_9_9_7_9_2_4_5) print('Example of four vector: ') print(F"""ct' = {four_vector[0]}""") print(F"""x' = {four_vector[1]}""") print(F"""y' = {four_vector[2]}""") print(F"""z' = {four_vector[3]}""") # Substitute symbols with numerical values lowerCamelCase : List[Any] = {ct: c, x: 1, y: 1, z: 1} lowerCamelCase : Dict = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"""\n{numerical_vector}""")
303
1
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ,lowerCAmelCase__ ): if len(lowerCAmelCase__ ) == 0: return False lowerCamelCase_ : Union[str, Any] = len(lowerCAmelCase__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] ,lowerCAmelCase__ ) else: return binary_search(a_list[midpoint + 1 :] ,lowerCAmelCase__ ) if __name__ == "__main__": _lowercase : Dict =input("""Enter numbers separated by comma:\n""").strip() _lowercase : Dict =[int(item.strip()) for item in user_input.split(""",""")] _lowercase : str =int(input("""Enter the number to be found in the list:\n""").strip()) _lowercase : Tuple ="""""" if binary_search(sequence, target) else """not """ print(F'''{target} was {not_str}found in {sequence}''')
364
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration _lowercase : List[str] =5_0000 _lowercase : str =5000 _lowercase , _lowercase : List[str] =os.path.split(__file__) _lowercase : Union[str, Any] =os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ,lowerCAmelCase__ ): for i in range(lowerCAmelCase__ ): lowerCamelCase_ : Tuple = dataset[i] @get_duration def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): for i in range(0 ,len(lowerCAmelCase__ ) ,lowerCAmelCase__ ): lowerCamelCase_ : Tuple = dataset[i : i + batch_size] @get_duration def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): with dataset.formatted_as(type=lowerCAmelCase__ ): for i in range(lowerCAmelCase__ ): lowerCamelCase_ : Tuple = dataset[i] @get_duration def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): with dataset.formatted_as(type=lowerCAmelCase__ ): for i in range(0 ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ : Optional[int] = dataset[i : i + batch_size] def _SCREAMING_SNAKE_CASE ( ): lowerCamelCase_ : Any = {'num examples': SPEED_TEST_N_EXAMPLES} lowerCamelCase_ : Optional[Any] = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_00}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10_00}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted, {'type': 'pandas', 'length': SMALL_TEST}), (read_formatted, {'type': 'torch', 'length': SMALL_TEST}), (read_formatted, {'type': 'tensorflow', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10_00}), ] lowerCamelCase_ : Optional[Any] = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_00}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10_00}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10_00}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('generating dataset' ) lowerCamelCase_ : List[Any] = datasets.Features( {'list': datasets.Sequence(datasets.Value('float32' ) ), 'numbers': datasets.Value('float32' )} ) lowerCamelCase_ : Union[str, Any] = generate_example_dataset( os.path.join(lowerCAmelCase__ ,'dataset.arrow' ) ,lowerCAmelCase__ ,num_examples=lowerCAmelCase__ ,seq_shapes={'list': (1_00,)} ,) print('first set of iterations' ) for func, kwargs in functions: print(func.__name__ ,str(lowerCAmelCase__ ) ) lowerCamelCase_ : Optional[int] = func(lowerCAmelCase__ ,**lowerCAmelCase__ ) print('shuffling dataset' ) lowerCamelCase_ : int = dataset.shuffle() print('Second set of iterations (after shuffling' ) for func, kwargs in functions_shuffled: print('shuffled ' ,func.__name__ ,str(lowerCAmelCase__ ) ) lowerCamelCase_ : Optional[Any] = func( lowerCAmelCase__ ,**lowerCAmelCase__ ) with open(lowerCAmelCase__ ,'wb' ) as f: f.write(json.dumps(lowerCAmelCase__ ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
364
1
"""simple docstring""" import argparse from collections import defaultdict import yaml UpperCAmelCase__ ="docs/source/en/_toctree.yml" def lowerCAmelCase_ ( UpperCamelCase__ : str ): """simple docstring""" __lowercase = defaultdict(UpperCamelCase__ ) __lowercase = [] __lowercase = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} ) else: new_doc_list.append(UpperCamelCase__ ) __lowercase = new_doc_list __lowercase = [key for key, value in counts.items() if value > 1] __lowercase = [] for duplicate_key in duplicates: __lowercase = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} ) if len(UpperCamelCase__ ) > 1: raise ValueError( f'''{duplicate_key} is present several times in the documentation table of content at ''' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] ) __lowercase = sorted(UpperCamelCase__ , key=lambda UpperCamelCase__ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(UpperCamelCase__ ) > 1: raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" ) overview_doc.extend(UpperCamelCase__ ) # Sort return overview_doc def lowerCAmelCase_ ( UpperCamelCase__ : int=False ): """simple docstring""" with open(UpperCamelCase__ , encoding="""utf-8""" ) as f: __lowercase = yaml.safe_load(f.read() ) # Get to the API doc __lowercase = 0 while content[api_idx]["title"] != "API": api_idx += 1 __lowercase = content[api_idx]["""sections"""] # Then to the model doc __lowercase = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 __lowercase = api_doc[scheduler_idx]["""sections"""] __lowercase = clean_doc_toc(UpperCamelCase__ ) __lowercase = False if new_scheduler_doc != scheduler_doc: __lowercase = True if overwrite: __lowercase = new_scheduler_doc if diff: if overwrite: __lowercase = api_doc with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(UpperCamelCase__ , allow_unicode=UpperCamelCase__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) def lowerCAmelCase_ ( UpperCamelCase__ : Any=False ): """simple docstring""" with open(UpperCamelCase__ , encoding="""utf-8""" ) as f: __lowercase = yaml.safe_load(f.read() ) # Get to the API doc __lowercase = 0 while content[api_idx]["title"] != "API": api_idx += 1 __lowercase = content[api_idx]["""sections"""] # Then to the model doc __lowercase = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 __lowercase = False __lowercase = api_doc[pipeline_idx]["""sections"""] __lowercase = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: __lowercase = pipeline_doc["""section"""] __lowercase = clean_doc_toc(UpperCamelCase__ ) if overwrite: __lowercase = new_sub_pipeline_doc new_pipeline_docs.append(UpperCamelCase__ ) # sort overall pipeline doc __lowercase = clean_doc_toc(UpperCamelCase__ ) if new_pipeline_docs != pipeline_docs: __lowercase = True if overwrite: __lowercase = new_pipeline_docs if diff: if overwrite: __lowercase = api_doc with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(UpperCamelCase__ , allow_unicode=UpperCamelCase__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": UpperCAmelCase__ =argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") UpperCAmelCase__ =parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
442
"""simple docstring""" def lowerCAmelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : list ): """simple docstring""" _enforce_args(UpperCamelCase__ , UpperCamelCase__ ) if n == 0: return 0 __lowercase = float("""-inf""" ) for i in range(1 , n + 1 ): __lowercase = max( UpperCamelCase__ , prices[i - 1] + naive_cut_rod_recursive(n - i , UpperCamelCase__ ) ) return max_revue def lowerCAmelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : list ): """simple docstring""" _enforce_args(UpperCamelCase__ , UpperCamelCase__ ) __lowercase = [float("""-inf""" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : list , UpperCamelCase__ : list ): """simple docstring""" if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: __lowercase = float("""-inf""" ) for i in range(1 , n + 1 ): __lowercase = max( UpperCamelCase__ , prices[i - 1] + _top_down_cut_rod_recursive(n - i , UpperCamelCase__ , UpperCamelCase__ ) , ) __lowercase = max_revenue return max_rev[n] def lowerCAmelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : list ): """simple docstring""" _enforce_args(UpperCamelCase__ , UpperCamelCase__ ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. __lowercase = [float("""-inf""" ) for _ in range(n + 1 )] __lowercase = 0 for i in range(1 , n + 1 ): __lowercase = max_rev[i] for j in range(1 , i + 1 ): __lowercase = max(UpperCamelCase__ , prices[j - 1] + max_rev[i - j] ) __lowercase = max_revenue_i return max_rev[n] def lowerCAmelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : list ): """simple docstring""" if n < 0: __lowercase = f'''n must be greater than or equal to 0. Got n = {n}''' raise ValueError(UpperCamelCase__ ) if n > len(UpperCamelCase__ ): __lowercase = ( """Each integral piece of rod must have a corresponding price. """ f'''Got n = {n} but length of prices = {len(UpperCamelCase__ )}''' ) raise ValueError(UpperCamelCase__ ) def lowerCAmelCase_ ( ): """simple docstring""" __lowercase = [6, 10, 12, 15, 20, 23] __lowercase = len(UpperCamelCase__ ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. __lowercase = 36 __lowercase = top_down_cut_rod(UpperCamelCase__ , UpperCamelCase__ ) __lowercase = bottom_up_cut_rod(UpperCamelCase__ , UpperCamelCase__ ) __lowercase = naive_cut_rod_recursive(UpperCamelCase__ , UpperCamelCase__ ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
442
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) __lowerCAmelCase : Optional[Any] = { 'google/vivit-b-16x2-kinetics400': ( 'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = """vivit""" def __init__( self : Tuple , UpperCamelCase__ : Tuple=224 , UpperCamelCase__ : Optional[Any]=32 , UpperCamelCase__ : Optional[Any]=[2, 16, 16] , UpperCamelCase__ : Optional[int]=3 , UpperCamelCase__ : Tuple=768 , UpperCamelCase__ : List[str]=12 , UpperCamelCase__ : Dict=12 , UpperCamelCase__ : Dict=3072 , UpperCamelCase__ : Optional[int]="gelu_fast" , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : Any=0.02 , UpperCamelCase__ : List[Any]=1E-06 , UpperCamelCase__ : Union[str, Any]=True , **UpperCamelCase__ : Dict , ) -> int: """simple docstring""" __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = initializer_range __magic_name__ = layer_norm_eps __magic_name__ = image_size __magic_name__ = num_frames __magic_name__ = tubelet_size __magic_name__ = num_channels __magic_name__ = qkv_bias super().__init__(**UpperCamelCase__ )
529
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def a__ ( A_ ): '''simple docstring''' __magic_name__ = prime_factors(A_ ) if is_square_free(A_ ): return -1 if len(A_ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
529
1
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A__ = logging.get_logger(__name__) A__ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', } A__ = { '''vocab_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'''}, '''merges_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'''}, } A__ = { '''ctrl''': 256, } A__ = { '''Pregnancy''': 16_8629, '''Christianity''': 7675, '''Explain''': 10_6423, '''Fitness''': 6_3440, '''Saving''': 6_3163, '''Ask''': 2_7171, '''Ass''': 9_5985, '''Joke''': 16_3509, '''Questions''': 4_5622, '''Thoughts''': 4_9605, '''Retail''': 5_2342, '''Feminism''': 16_4338, '''Writing''': 1_1992, '''Atheism''': 19_2263, '''Netflix''': 4_8616, '''Computing''': 3_9639, '''Opinion''': 4_3213, '''Alone''': 4_4967, '''Funny''': 5_8917, '''Gaming''': 4_0358, '''Human''': 4088, '''India''': 1331, '''Joker''': 7_7138, '''Diet''': 3_6206, '''Legal''': 1_1859, '''Norman''': 4939, '''Tip''': 7_2689, '''Weight''': 5_2343, '''Movies''': 4_6273, '''Running''': 2_3425, '''Science''': 2090, '''Horror''': 3_7793, '''Confession''': 6_0572, '''Finance''': 1_2250, '''Politics''': 1_6360, '''Scary''': 19_1985, '''Support''': 1_2654, '''Technologies''': 3_2516, '''Teenage''': 6_6160, '''Event''': 3_2769, '''Learned''': 6_7460, '''Notion''': 18_2770, '''Wikipedia''': 3_7583, '''Books''': 6665, '''Extract''': 7_6050, '''Confessions''': 10_2701, '''Conspiracy''': 7_5932, '''Links''': 6_3674, '''Narcissus''': 15_0425, '''Relationship''': 5_4766, '''Relationships''': 13_4796, '''Reviews''': 4_1671, '''News''': 4256, '''Translation''': 2_6820, '''multilingual''': 12_8406, } def _lowerCAmelCase ( __lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" snake_case__ : List[Any] = set() snake_case__ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ : int = char snake_case__ : List[str] = set(__lowerCAmelCase ) return pairs class a ( __lowerCamelCase ): __lowerCAmelCase : List[str] = VOCAB_FILES_NAMES __lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : List[str] = CONTROL_CODES def __init__( self :List[Any] ,__lowercase :Dict ,__lowercase :List[Any] ,__lowercase :Any="<unk>" ,**__lowercase :Optional[int] ): super().__init__(unk_token=__lowercase ,**__lowercase ) with open(__lowercase ,encoding='''utf-8''' ) as vocab_handle: snake_case__ : Optional[Any] = json.load(__lowercase ) snake_case__ : Any = {v: k for k, v in self.encoder.items()} with open(__lowercase ,encoding='''utf-8''' ) as merges_handle: snake_case__ : Union[str, Any] = merges_handle.read().split('''\n''' )[1:-1] snake_case__ : Any = [tuple(merge.split() ) for merge in merges] snake_case__ : List[Any] = dict(zip(__lowercase ,range(len(__lowercase ) ) ) ) snake_case__ : Tuple = {} @property def __lowerCamelCase ( self :Optional[Any] ): return len(self.encoder ) def __lowerCamelCase ( self :int ): return dict(self.encoder ,**self.added_tokens_encoder ) def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :Optional[Any] ): if token in self.cache: return self.cache[token] snake_case__ : Optional[int] = tuple(__lowercase ) snake_case__ : Tuple = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) snake_case__ : Optional[Any] = get_pairs(__lowercase ) if not pairs: return token while True: snake_case__ : Optional[int] = min(__lowercase ,key=lambda __lowercase : self.bpe_ranks.get(__lowercase ,float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break snake_case__ , snake_case__ : int = bigram snake_case__ : str = [] snake_case__ : Tuple = 0 while i < len(__lowercase ): try: snake_case__ : Dict = word.index(__lowercase ,__lowercase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case__ : Optional[int] = j if word[i] == first and i < len(__lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case__ : List[str] = tuple(__lowercase ) snake_case__ : Any = new_word if len(__lowercase ) == 1: break else: snake_case__ : int = get_pairs(__lowercase ) snake_case__ : Optional[int] = '''@@ '''.join(__lowercase ) snake_case__ : Tuple = word[:-4] snake_case__ : Union[str, Any] = word return word def __lowerCamelCase ( self :Optional[int] ,__lowercase :Dict ): snake_case__ : Union[str, Any] = [] snake_case__ : List[str] = re.findall(r'''\S+\n?''' ,__lowercase ) for token in words: split_tokens.extend(list(self.bpe(__lowercase ).split(''' ''' ) ) ) return split_tokens def __lowerCamelCase ( self :Tuple ,__lowercase :int ): return self.encoder.get(__lowercase ,self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self :str ,__lowercase :Optional[int] ): return self.decoder.get(__lowercase ,self.unk_token ) def __lowerCamelCase ( self :str ,__lowercase :Any ): snake_case__ : Any = ''' '''.join(__lowercase ).replace('''@@ ''' ,'''''' ).strip() return out_string def __lowerCamelCase ( self :Dict ,__lowercase :str ,__lowercase :Optional[str] = None ): if not os.path.isdir(__lowercase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case__ : Tuple = os.path.join( __lowercase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case__ : Tuple = os.path.join( __lowercase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__lowercase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=__lowercase ,ensure_ascii=__lowercase ) + '''\n''' ) snake_case__ : Tuple = 0 with open(__lowercase ,'''w''' ,encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda __lowercase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) snake_case__ : Optional[int] = token_index writer.write(''' '''.join(__lowercase ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
219
from ...configuration_utils import PretrainedConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class a ( __lowerCamelCase ): __lowerCAmelCase : Optional[int] = """markuplm""" def __init__( self :int ,__lowercase :str=3_0_5_2_2 ,__lowercase :str=7_6_8 ,__lowercase :str=1_2 ,__lowercase :Dict=1_2 ,__lowercase :Optional[Any]=3_0_7_2 ,__lowercase :Any="gelu" ,__lowercase :Optional[int]=0.1 ,__lowercase :Dict=0.1 ,__lowercase :Any=5_1_2 ,__lowercase :List[Any]=2 ,__lowercase :Tuple=0.02 ,__lowercase :List[Any]=1e-1_2 ,__lowercase :List[Any]=0 ,__lowercase :Optional[int]=0 ,__lowercase :str=2 ,__lowercase :Optional[Any]=2_5_6 ,__lowercase :List[str]=1_0_2_4 ,__lowercase :List[str]=2_1_6 ,__lowercase :Union[str, Any]=1_0_0_1 ,__lowercase :int=3_2 ,__lowercase :Union[str, Any]=5_0 ,__lowercase :Optional[Any]="absolute" ,__lowercase :int=True ,__lowercase :Optional[Any]=None ,**__lowercase :Union[str, Any] ,): super().__init__( pad_token_id=__lowercase ,bos_token_id=__lowercase ,eos_token_id=__lowercase ,**__lowercase ,) snake_case__ : Optional[int] = vocab_size snake_case__ : Any = hidden_size snake_case__ : Optional[Any] = num_hidden_layers snake_case__ : Any = num_attention_heads snake_case__ : Optional[int] = hidden_act snake_case__ : Dict = intermediate_size snake_case__ : Union[str, Any] = hidden_dropout_prob snake_case__ : Optional[int] = attention_probs_dropout_prob snake_case__ : Union[str, Any] = max_position_embeddings snake_case__ : str = type_vocab_size snake_case__ : str = initializer_range snake_case__ : str = layer_norm_eps snake_case__ : str = position_embedding_type snake_case__ : Optional[Any] = use_cache snake_case__ : Optional[Any] = classifier_dropout # additional properties snake_case__ : Any = max_depth snake_case__ : Optional[Any] = max_xpath_tag_unit_embeddings snake_case__ : Dict = max_xpath_subs_unit_embeddings snake_case__ : str = tag_pad_id snake_case__ : Union[str, Any] = subs_pad_id snake_case__ : List[str] = xpath_unit_hidden_size
219
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _UpperCamelCase ( lowerCAmelCase__ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int =ShapEPipeline __UpperCAmelCase : Union[str, Any] =["""prompt"""] __UpperCAmelCase : int =["""prompt"""] __UpperCAmelCase : List[Any] =[ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] __UpperCAmelCase : Dict =False @property def snake_case ( self ): return 32 @property def snake_case ( self ): return 32 @property def snake_case ( self ): return self.time_input_dim * 4 @property def snake_case ( self ): return 8 @property def snake_case ( self ): __lowerCAmelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def snake_case ( self ): torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(__a ) @property def snake_case ( self ): torch.manual_seed(0 ) __lowerCAmelCase = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } __lowerCAmelCase = PriorTransformer(**__a ) return model @property def snake_case ( self ): torch.manual_seed(0 ) __lowerCAmelCase = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } __lowerCAmelCase = ShapERenderer(**__a ) return model def snake_case ( self ): __lowerCAmelCase = self.dummy_prior __lowerCAmelCase = self.dummy_text_encoder __lowerCAmelCase = self.dummy_tokenizer __lowerCAmelCase = self.dummy_renderer __lowerCAmelCase = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=10_24 , prediction_type="sample" , use_karras_sigmas=__a , clip_sample=__a , clip_sample_range=1.0 , ) __lowerCAmelCase = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def snake_case ( self , __a , __a=0 ): if str(__a ).startswith("mps" ): __lowerCAmelCase = torch.manual_seed(__a ) else: __lowerCAmelCase = torch.Generator(device=__a ).manual_seed(__a ) __lowerCAmelCase = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def snake_case ( self ): __lowerCAmelCase = "cpu" __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**__a ) __lowerCAmelCase = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __lowerCAmelCase = pipe(**self.get_dummy_inputs(__a ) ) __lowerCAmelCase = output.images[0] __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowerCAmelCase = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def snake_case ( self ): __lowerCAmelCase = torch_device == "cpu" __lowerCAmelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__a , relax_max_difference=__a , ) def snake_case ( self ): __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**__a ) __lowerCAmelCase = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __lowerCAmelCase = 1 __lowerCAmelCase = 2 __lowerCAmelCase = self.get_dummy_inputs(__a ) for key in inputs.keys(): if key in self.batch_params: __lowerCAmelCase = batch_size * [inputs[key]] __lowerCAmelCase = pipe(**__a , num_images_per_prompt=__a )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self ): __lowerCAmelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy" ) __lowerCAmelCase = ShapEPipeline.from_pretrained("openai/shap-e" ) __lowerCAmelCase = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __lowerCAmelCase = torch.Generator(device=__a ).manual_seed(0 ) __lowerCAmelCase = pipe( "a shark" , generator=__a , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__a , __a )
636
"""simple docstring""" import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Tuple =(KDPMaDiscreteScheduler,) __UpperCAmelCase : Optional[Any] =1_0 def snake_case ( self , **__a ): __lowerCAmelCase = { "num_train_timesteps": 11_00, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", } config.update(**__a ) return config def snake_case ( self ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def snake_case ( self ): for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def snake_case ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a ) def snake_case ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def snake_case ( self ): __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config(prediction_type="v_prediction" ) __lowerCAmelCase = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowerCAmelCase = self.dummy_model() __lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma __lowerCAmelCase = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase = scheduler.scale_model_input(__a , __a ) __lowerCAmelCase = model(__a , __a ) __lowerCAmelCase = scheduler.step(__a , __a , __a ) __lowerCAmelCase = output.prev_sample __lowerCAmelCase = torch.sum(torch.abs(__a ) ) __lowerCAmelCase = torch.mean(torch.abs(__a ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_9_3_4e-0_7 ) < 1e-2 assert abs(result_mean.item() - 6.1_1_1_2e-1_0 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2e-0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_0_0_2 ) < 1e-3 def snake_case ( self ): if torch_device == "mps": return __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowerCAmelCase = self.dummy_model() __lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma __lowerCAmelCase = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase = scheduler.scale_model_input(__a , __a ) __lowerCAmelCase = model(__a , __a ) __lowerCAmelCase = scheduler.step(__a , __a , __a ) __lowerCAmelCase = output.prev_sample __lowerCAmelCase = torch.sum(torch.abs(__a ) ) __lowerCAmelCase = torch.mean(torch.abs(__a ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 def snake_case ( self ): if torch_device == "mps": return __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowerCAmelCase = self.dummy_model() __lowerCAmelCase = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __lowerCAmelCase = scheduler.scale_model_input(__a , __a ) __lowerCAmelCase = model(__a , __a ) __lowerCAmelCase = scheduler.step(__a , __a , __a ) __lowerCAmelCase = output.prev_sample __lowerCAmelCase = torch.sum(torch.abs(__a ) ) __lowerCAmelCase = torch.mean(torch.abs(__a ) ) if str(__a ).startswith("cpu" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3
636
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Optional[Any] = logging.get_logger(__name__) lowercase : Optional[int] = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = 'swinv2' _A = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self :Union[str, Any] , a :Dict=2_2_4 , a :Dict=4 , a :List[Any]=3 , a :Optional[Any]=9_6 , a :int=[2, 2, 6, 2] , a :int=[3, 6, 1_2, 2_4] , a :Tuple=7 , a :List[Any]=4.0 , a :Union[str, Any]=True , a :Optional[Any]=0.0 , a :int=0.0 , a :str=0.1 , a :str="gelu" , a :List[str]=False , a :Dict=0.02 , a :Dict=1E-5 , a :Optional[int]=3_2 , **a :Optional[Any] , ) -> Optional[Any]: super().__init__(**a ) __UpperCamelCase : List[str] = image_size __UpperCamelCase : Dict = patch_size __UpperCamelCase : List[str] = num_channels __UpperCamelCase : Any = embed_dim __UpperCamelCase : Dict = depths __UpperCamelCase : Dict = len(a ) __UpperCamelCase : Dict = num_heads __UpperCamelCase : Tuple = window_size __UpperCamelCase : int = mlp_ratio __UpperCamelCase : Optional[Any] = qkv_bias __UpperCamelCase : Optional[Any] = hidden_dropout_prob __UpperCamelCase : str = attention_probs_dropout_prob __UpperCamelCase : List[Any] = drop_path_rate __UpperCamelCase : Optional[int] = hidden_act __UpperCamelCase : List[Any] = use_absolute_embeddings __UpperCamelCase : List[str] = layer_norm_eps __UpperCamelCase : Tuple = initializer_range __UpperCamelCase : Any = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __UpperCamelCase : Dict = int(embed_dim * 2 ** (len(a ) - 1) ) __UpperCamelCase : Tuple = (0, 0, 0, 0)
94
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple , _lowerCamelCase : Union[str, Any]) -> List[Any]: '''simple docstring''' __UpperCamelCase : Tuple = BertConfig.from_json_file(_lowerCamelCase) print(F'Building PyTorch model from configuration: {config}') __UpperCamelCase : List[Any] = BertForPreTraining(_lowerCamelCase) # Load weights from tf checkpoint load_tf_weights_in_bert(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}') torch.save(model.state_dict() , _lowerCamelCase) if __name__ == "__main__": lowercase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--bert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowercase : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
94
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"vocab_file": "spiece.model"} SCREAMING_SNAKE_CASE__ : str = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", } } SCREAMING_SNAKE_CASE__ : List[str] = { "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } SCREAMING_SNAKE_CASE__ : Dict = "▁" class lowerCAmelCase__ ( __lowercase ): a__ : Any = VOCAB_FILES_NAMES a__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : int="[CLS]" , SCREAMING_SNAKE_CASE__ : Optional[Any]="[SEP]" , SCREAMING_SNAKE_CASE__ : List[Any]="<unk>" , SCREAMING_SNAKE_CASE__ : List[str]="[SEP]" , SCREAMING_SNAKE_CASE__ : Any="<pad>" , SCREAMING_SNAKE_CASE__ : List[str]="[CLS]" , SCREAMING_SNAKE_CASE__ : Dict="[MASK]" , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __lowerCamelCase = ( AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ , normalized=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token ) __lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=SCREAMING_SNAKE_CASE__ , remove_space=SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = do_lower_case __lowerCamelCase = remove_space __lowerCamelCase = keep_accents __lowerCamelCase = vocab_file __lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE__ ) @property def __A ( self : List[Any] ) -> Dict: return len(self.sp_model ) def __A ( self : List[str] ) -> Tuple: __lowerCamelCase = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ) -> Dict: __lowerCamelCase = self.__dict__.copy() __lowerCamelCase = None return state def __setstate__( self : str , SCREAMING_SNAKE_CASE__ : int ) -> Any: __lowerCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __lowerCamelCase = {} __lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ) -> Optional[int]: if self.remove_space: __lowerCamelCase = ''' '''.join(inputs.strip().split() ) else: __lowerCamelCase = inputs __lowerCamelCase = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: __lowerCamelCase = unicodedata.normalize('''NFKD''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = ''''''.join([c for c in outputs if not unicodedata.combining(SCREAMING_SNAKE_CASE__ )] ) if self.do_lower_case: __lowerCamelCase = outputs.lower() return outputs def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: __lowerCamelCase = self.preprocess_text(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = [] for piece in pieces: if len(SCREAMING_SNAKE_CASE__ ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): __lowerCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(SCREAMING_SNAKE_CASE__ , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __lowerCamelCase = cur_pieces[1:] else: __lowerCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(SCREAMING_SNAKE_CASE__ ) else: new_pieces.append(SCREAMING_SNAKE_CASE__ ) return new_pieces def __A ( self : int , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[str]: return self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ ) def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : Any ) -> str: return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__ ) def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]: __lowerCamelCase = [] __lowerCamelCase = '''''' __lowerCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) + token __lowerCamelCase = True __lowerCamelCase = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) return out_string.strip() def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __A ( self : int , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is not None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCamelCase = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , '''wb''' ) as fi: __lowerCamelCase = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
298
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): @slow def __A ( self : Tuple ) -> Optional[int]: __lowerCamelCase = TFXLMRobertaModel.from_pretrained('''jplu/tf-xlm-roberta-base''' ) __lowerCamelCase = { '''input_ids''': tf.convert_to_tensor([[0, 26_46, 1_02_69, 83, 9_99_42, 2]] , dtype=tf.intaa ), # "My dog is cute" '''attention_mask''': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] __lowerCamelCase = tf.TensorShape((1, 6, 7_68) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) # compare the actual values for a slice. __lowerCamelCase = tf.convert_to_tensor( [ [ [0.0681762, 0.10894451, 0.06772504], [-0.06423668, 0.02366615, 0.04329344], [-0.06057295, 0.09974135, -0.00070584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
298
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _A : List[Any] ={} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Any =['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _A : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
'''simple docstring''' _A : Optional[Any] ='''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def __UpperCamelCase ( _lowercase ) -> bytes: # Make sure the supplied data is a bytes-like object if not isinstance(_lowercase, _lowercase ): _lowercase : Union[str, Any] = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(_lowercase ) _lowercase : int = ''.join(bin(_lowercase )[2:].zfill(8 ) for byte in data ) _lowercase : Dict = len(_lowercase ) % 6 != 0 if padding_needed: # The padding that will be added later _lowercase : Optional[Any] = B'=' * ((6 - len(_lowercase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_lowercase ) % 6) else: _lowercase : Optional[int] = B'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6], 2 )] for index in range(0, len(_lowercase ), 6 ) ).encode() + padding ) def __UpperCamelCase ( _lowercase ) -> bytes: # Make sure encoded_data is either a string or a bytes-like object if not isinstance(_lowercase, _lowercase ) and not isinstance(_lowercase, _lowercase ): _lowercase : int = ( 'argument should be a bytes-like object or ASCII string, ' f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(_lowercase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_lowercase, _lowercase ): try: _lowercase : Optional[int] = encoded_data.decode('utf-8' ) except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters' ) _lowercase : Optional[int] = encoded_data.count('=' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_lowercase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one _lowercase : str = encoded_data[:-padding] _lowercase : Tuple = ''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: _lowercase : Union[str, Any] = ''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data ) _lowercase : List[str] = [ int(binary_stream[index : index + 8], 2 ) for index in range(0, len(_lowercase ), 8 ) ] return bytes(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
4
1
a = { "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } a = {value: key for key, value in encode_dict.items()} def _SCREAMING_SNAKE_CASE ( snake_case ) -> str: _UpperCAmelCase = """""" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("""encode() accepts only letters of the alphabet and spaces""" ) return encoded def _SCREAMING_SNAKE_CASE ( snake_case ) -> str: if set(snake_case ) - {"A", "B", " "} != set(): raise Exception("""decode() accepts only 'A', 'B' and spaces""" ) _UpperCAmelCase = """""" for word in coded.split(): while len(snake_case ) != 0: decoded += decode_dict[word[:5]] _UpperCAmelCase = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
518
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration a = "facebook/wmt19-en-de" a = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model a = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) a = FSMTForConditionalGeneration(config) print(F'num of params {tiny_model.num_parameters()}') # Test a = tokenizer(["Making tiny model"], return_tensors="pt") a = tiny_model(**batch) print("test output:", len(outputs.logits[0])) # Save a = "tiny-wmt19-en-de" tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'Generated {mname_tiny}') # Upload # transformers-cli upload tiny-wmt19-en-de
518
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Optional[Any] = logging.get_logger(__name__) A_ : List[Any] = { 'microsoft/biogpt': 'https://huggingface.co/microsoft/biogpt/resolve/main/config.json', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: List[str] = '''biogpt''' def __init__( self , A__=4_2384 , A__=1024 , A__=24 , A__=16 , A__=4096 , A__="gelu" , A__=0.1 , A__=0.1 , A__=1024 , A__=0.0_2 , A__=1e-12 , A__=True , A__=True , A__=0.0 , A__=0.0 , A__=1 , A__=0 , A__=2 , **A__ , ): A__ : Optional[int] = vocab_size A__ : List[str] = max_position_embeddings A__ : Optional[int] = hidden_size A__ : Tuple = num_hidden_layers A__ : Optional[Any] = num_attention_heads A__ : Optional[int] = intermediate_size A__ : Dict = hidden_act A__ : List[Any] = hidden_dropout_prob A__ : Union[str, Any] = attention_probs_dropout_prob A__ : Union[str, Any] = initializer_range A__ : Optional[int] = layer_norm_eps A__ : Tuple = scale_embedding A__ : Tuple = use_cache A__ : Dict = layerdrop A__ : Optional[Any] = activation_dropout super().__init__(pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ , **A__ )
64
class _a : '''simple docstring''' def __init__( self ): A__ : str = """""" A__ : Any = """""" A__ : List[Any] = [] def __A ( self , A__ , A__ ): if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: A__ : Optional[Any] = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: A__ : Union[str, Any] = self.__min_dist_top_down_dp(A__ , n - 1 ) A__ : Union[str, Any] = self.__min_dist_top_down_dp(m - 1 , A__ ) A__ : Union[str, Any] = self.__min_dist_top_down_dp(m - 1 , n - 1 ) A__ : List[Any] = 1 + min(A__ , A__ , A__ ) return self.dp[m][n] def __A ( self , A__ , A__ ): A__ : Tuple = worda A__ : Dict = worda A__ : Optional[Any] = [[-1 for _ in range(len(A__ ) )] for _ in range(len(A__ ) )] return self.__min_dist_top_down_dp(len(A__ ) - 1 , len(A__ ) - 1 ) def __A ( self , A__ , A__ ): A__ : Optional[Any] = worda A__ : Dict = worda A__ : Union[str, Any] = len(A__ ) A__ : List[str] = len(A__ ) A__ : int = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty A__ : Tuple = j elif j == 0: # second string is empty A__ : Dict = i elif worda[i - 1] == worda[j - 1]: # last characters are equal A__ : str = self.dp[i - 1][j - 1] else: A__ : Union[str, Any] = self.dp[i][j - 1] A__ : str = self.dp[i - 1][j] A__ : Union[str, Any] = self.dp[i - 1][j - 1] A__ : Tuple = 1 + min(A__ , A__ , A__ ) return self.dp[m][n] if __name__ == "__main__": A_ : Union[str, Any] = EditDistance() print('****************** Testing Edit Distance DP Algorithm ******************') print() A_ : int = input('Enter the first string: ').strip() A_ : List[str] = input('Enter the second string: ').strip() print() print(f'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(f'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print('*************** End of Testing Edit Distance DP Algorithm ***************')
64
1
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = F"Input value of [number={number}] must be an integer" raise TypeError(_SCREAMING_SNAKE_CASE ) if number < 1: _A = F"Input value of [number={number}] must be > 0" raise ValueError(_SCREAMING_SNAKE_CASE ) _A = 1 for i in range(1 , _SCREAMING_SNAKE_CASE ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
27
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : Optional[Any] ={ '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict =['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] =[ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys A_ : List[str] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
274
0
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black _lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. _lowerCAmelCase = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def snake_case__ ( self : List[Any] ): __magic_name__ = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , '''models/bert/''' ) ) __magic_name__ = self.transformer_dir shutil.copy( os.path.join(lowercase__ , '''src/transformers/models/bert/modeling_bert.py''' ) , os.path.join(self.transformer_dir , '''models/bert/modeling_bert.py''' ) , ) def snake_case__ ( self : Optional[int] ): __magic_name__ = """src/transformers""" shutil.rmtree(self.transformer_dir ) def snake_case__ ( self : Tuple , a__ : Union[str, Any] , a__ : Optional[int] , a__ : Optional[Any] , a__ : Dict=None ): __magic_name__ = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: __magic_name__ = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result __magic_name__ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) __magic_name__ = black.format_str(lowercase__ , mode=lowercase__ ) __magic_name__ = os.path.join(self.transformer_dir , '''new_code.py''' ) with open(lowercase__ , '''w''' , newline='''\n''' ) as f: f.write(lowercase__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowercase__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowercase__ ) with open(lowercase__ , '''r''' ) as f: self.assertTrue(f.read() , lowercase__ ) def snake_case__ ( self : str ): __magic_name__ = check_copies.find_code_in_transformers('''models.bert.modeling_bert.BertLMPredictionHead''' ) self.assertEqual(lowercase__ , lowercase__ ) def snake_case__ ( self : int ): # Base copy consistency self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , lowercase__ , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , re.sub('''Bert''' , '''TestModel''' , lowercase__ ) , ) # Copy consistency with a really long name __magic_name__ = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , F'''{long_class_name}LMPredictionHead''' , re.sub('''Bert''' , lowercase__ , lowercase__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , lowercase__ , overwrite_result=re.sub('''Bert''' , '''TestModel''' , lowercase__ ) , ) def snake_case__ ( self : List[Any] ): __magic_name__ = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] __magic_name__ = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) __magic_name__ = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) __magic_name__ = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) __magic_name__ = check_copies.convert_to_localized_md( lowercase__ , lowercase__ , localized_readme['''format_model_list'''] ) self.assertFalse(lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) __magic_name__ = check_copies.convert_to_localized_md( lowercase__ , lowercase__ , localized_readme['''format_model_list'''] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowercase__ ) __magic_name__ = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) __magic_name__ = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) __magic_name__ = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) __magic_name__ = check_copies.convert_to_localized_md( lowercase__ , lowercase__ , localized_readme['''format_model_list'''] ) # Check if the model link is synchronized. self.assertEqual(lowercase__ , lowercase__ )
704
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class _SCREAMING_SNAKE_CASE ( __a ): __SCREAMING_SNAKE_CASE :List[str] = """biogpt""" def __init__( self : Union[str, Any] , a__ : Dict=4_2384 , a__ : Union[str, Any]=1024 , a__ : List[Any]=24 , a__ : Any=16 , a__ : List[Any]=4096 , a__ : Any="gelu" , a__ : Optional[int]=0.1 , a__ : List[Any]=0.1 , a__ : Optional[Any]=1024 , a__ : Union[str, Any]=0.02 , a__ : int=1E-12 , a__ : List[Any]=True , a__ : Tuple=True , a__ : str=0.0 , a__ : Any=0.0 , a__ : Optional[int]=1 , a__ : Tuple=0 , a__ : Dict=2 , **a__ : Tuple , ): __magic_name__ = vocab_size __magic_name__ = max_position_embeddings __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = initializer_range __magic_name__ = layer_norm_eps __magic_name__ = scale_embedding __magic_name__ = use_cache __magic_name__ = layerdrop __magic_name__ = activation_dropout super().__init__(pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , **a__ )
245
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Tuple ) -> Dict: __lowerCamelCase : Optional[Any] = TFXLMRobertaModel.from_pretrained('jplu/tf-xlm-roberta-base' ) __lowerCamelCase : List[Any] = { 'input_ids': tf.convert_to_tensor([[0, 2646, 1_0269, 83, 9_9942, 2]] , dtype=tf.intaa ), # "My dog is cute" 'attention_mask': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } __lowerCamelCase : Optional[Any] = model(_a )['last_hidden_state'] __lowerCamelCase : List[str] = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , _a ) # compare the actual values for a slice. __lowerCamelCase : Tuple = tf.convert_to_tensor( [ [ [0.0681762, 0.10894451, 0.06772504], [-0.06423668, 0.02366615, 0.04329344], [-0.06057295, 0.09974135, -0.00070584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
459
'''simple docstring''' import random from typing import Any def a_ ( _lowerCAmelCase ) -> list[Any]: for _ in range(len(_lowerCAmelCase ) ): __lowerCamelCase : Optional[Any] = random.randint(0 ,len(_lowerCAmelCase ) - 1 ) __lowerCamelCase : str = random.randint(0 ,len(_lowerCAmelCase ) - 1 ) __lowerCamelCase ,__lowerCamelCase : List[Any] = data[b], data[a] return data if __name__ == "__main__": _UpperCamelCase = [0, 1, 2, 3, 4, 5, 6, 7] _UpperCamelCase = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
459
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class UpperCAmelCase ( unittest.TestCase): """simple docstring""" def __init__( self : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any]=7 , UpperCamelCase__ : Optional[int]=3 , UpperCamelCase__ : int=18 , UpperCamelCase__ : Dict=30 , UpperCamelCase__ : List[str]=400 , UpperCamelCase__ : int=True , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : int=True , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : int=True , UpperCamelCase__ : str=[0.5, 0.5, 0.5] , UpperCamelCase__ : Union[str, Any]=[0.5, 0.5, 0.5] , ) -> Union[str, Any]: _UpperCamelCase =size if size is not None else {'''shortest_edge''': 18} _UpperCamelCase =crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _UpperCamelCase =parent _UpperCamelCase =batch_size _UpperCamelCase =num_channels _UpperCamelCase =image_size _UpperCamelCase =min_resolution _UpperCamelCase =max_resolution _UpperCamelCase =do_resize _UpperCamelCase =size _UpperCamelCase =do_center_crop _UpperCamelCase =crop_size _UpperCamelCase =do_normalize _UpperCamelCase =image_mean _UpperCamelCase =image_std def UpperCamelCase__ ( self : List[Any] ) -> str: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCAmelCase ( snake_case__ , unittest.TestCase): """simple docstring""" lowerCAmelCase_ = LevitImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self : List[str] ) -> Optional[int]: _UpperCamelCase =LevitImageProcessingTester(self ) @property def UpperCamelCase__ ( self : str ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self : Optional[int] ) -> List[Any]: _UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , '''size''' ) ) def UpperCamelCase__ ( self : int ) -> Any: _UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def UpperCamelCase__ ( self : str ) -> int: pass def UpperCamelCase__ ( self : Dict ) -> Tuple: _UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input _UpperCamelCase =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase =image_processing(UpperCAmelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCamelCase__ ( self : Dict ) -> Optional[int]: _UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input _UpperCamelCase =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase =image_processing(UpperCAmelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCamelCase__ ( self : Tuple ) -> str: _UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input _UpperCamelCase =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase =image_processing(UpperCAmelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
702
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar __lowerCamelCase : Optional[int] = TypeVar('T') class UpperCAmelCase ( Generic[T]): """simple docstring""" lowerCAmelCase_ = 42 # Cache store of keys lowerCAmelCase_ = 42 # References of the keys in cache lowerCAmelCase_ = 10 # Maximum capacity of cache def __init__( self : Union[str, Any] , UpperCamelCase__ : int ) -> None: _UpperCamelCase =deque() _UpperCamelCase =set() if not n: _UpperCamelCase =sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: _UpperCamelCase =n def UpperCamelCase__ ( self : List[str] , UpperCamelCase__ : T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: _UpperCamelCase =self.dq_store.pop() self.key_reference.remove(UpperCamelCase__ ) else: self.dq_store.remove(UpperCamelCase__ ) self.dq_store.appendleft(UpperCamelCase__ ) self.key_reference.add(UpperCamelCase__ ) def UpperCamelCase__ ( self : Union[str, Any] ) -> None: for k in self.dq_store: print(UpperCamelCase__ ) def __repr__( self : str ) -> str: return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() __lowerCamelCase : LRUCache[str | int] = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
271
0
"""simple docstring""" import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCAmelCase = { """gwf-440k""": { """url""": """https://model-server.zqevans2.workers.dev/gwf-440k.ckpt""", """sample_rate""": 4_80_00, """sample_size""": 6_55_36, }, """jmann-small-190k""": { """url""": """https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt""", """sample_rate""": 4_80_00, """sample_size""": 6_55_36, }, """jmann-large-580k""": { """url""": """https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt""", """sample_rate""": 4_80_00, """sample_size""": 13_10_72, }, """maestro-uncond-150k""": { """url""": """https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt""", """sample_rate""": 1_60_00, """sample_size""": 6_55_36, }, """unlocked-uncond-250k""": { """url""": """https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt""", """sample_rate""": 1_60_00, """sample_size""": 6_55_36, }, """honk-140k""": { """url""": """https://model-server.zqevans2.workers.dev/honk-140k.ckpt""", """sample_rate""": 1_60_00, """sample_size""": 6_55_36, }, } def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) ->str: return torch.atana(snake_case_ , snake_case_ ) / math.pi * 2 def lowerCAmelCase_ ( snake_case_ : Any ) ->List[str]: lowerCamelCase__ : Dict =torch.sin(t * math.pi / 2 ) ** 2 lowerCamelCase__ : Union[str, Any] =(1 - sigma**2) ** 0.5 return alpha_sigma_to_t(snake_case_ , snake_case_ ) class A_ ( A__ ): """simple docstring""" pass class A_ ( nn.Module ): """simple docstring""" def __init__( self :List[Any] , lowerCamelCase_ :Optional[Any] ): """simple docstring""" super().__init__() lowerCamelCase__ : str =DiffusionAttnUnetaD(lowerCamelCase_ , n_attn_layers=4 ) lowerCamelCase__ : Union[str, Any] =deepcopy(self.diffusion ) lowerCamelCase__ : Any =torch.quasirandom.SobolEngine(1 , scramble=lowerCamelCase_ ) def lowerCAmelCase_ ( snake_case_ : Any ) ->List[str]: lowerCamelCase__ : str =MODELS_MAP[model_name]['url'] os.system(f"""wget {url} ./""" ) return f"""./{model_name}.ckpt""" lowerCAmelCase = { """1""": """resnets.0""", """2""": """attentions.0""", """3""": """resnets.1""", """4""": """attentions.1""", """5""": """resnets.2""", """6""": """attentions.2""", } lowerCAmelCase = { """8""": """resnets.0""", """9""": """attentions.0""", """10""": """resnets.1""", """11""": """attentions.1""", """12""": """resnets.2""", """13""": """attentions.2""", } lowerCAmelCase = { """1""": """resnets.0""", """2""": """attentions.0""", """3""": """resnets.1""", """4""": """attentions.1""", """5""": """resnets.2""", """6""": """attentions.2""", """8""": """resnets.3""", """9""": """attentions.3""", """10""": """resnets.4""", """11""": """attentions.4""", """12""": """resnets.5""", """13""": """attentions.5""", } lowerCAmelCase = { """0""": """resnets.0""", """1""": """resnets.1""", """2""": """resnets.2""", """4""": """resnets.0""", """5""": """resnets.1""", """6""": """resnets.2""", } lowerCAmelCase = { """skip""": """conv_skip""", """main.0""": """conv_1""", """main.1""": """group_norm_1""", """main.3""": """conv_2""", """main.4""": """group_norm_2""", } lowerCAmelCase = { """norm""": """group_norm""", """qkv_proj""": ["""query""", """key""", """value"""], """out_proj""": ["""proj_attn"""], } def lowerCAmelCase_ ( snake_case_ : Optional[int] ) ->Optional[int]: if name.startswith('skip' ): return name.replace('skip' , RES_CONV_MAP['skip'] ) # name has to be of format main.{digit} if not name.startswith('main.' ): raise ValueError(f"""ResConvBlock error with {name}""" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def lowerCAmelCase_ ( snake_case_ : Optional[Any] ) ->List[str]: for key, value in ATTN_MAP.items(): if name.startswith(snake_case_ ) and not isinstance(snake_case_ , snake_case_ ): return name.replace(snake_case_ , snake_case_ ) elif name.startswith(snake_case_ ): return [name.replace(snake_case_ , snake_case_ ) for v in value] raise ValueError(f"""Attn error with {name}""" ) def lowerCAmelCase_ ( snake_case_ : Union[str, Any] , snake_case_ : Tuple=1_3 ) ->int: lowerCamelCase__ : Tuple =input_string if string.split('.' )[0] == "timestep_embed": return string.replace('timestep_embed' , 'time_proj' ) lowerCamelCase__ : Optional[int] =0 if string.startswith('net.3.' ): depth += 1 lowerCamelCase__ : Union[str, Any] =string[6:] elif string.startswith('net.' ): lowerCamelCase__ : Tuple =string[4:] while string.startswith('main.7.' ): depth += 1 lowerCamelCase__ : Union[str, Any] =string[7:] if string.startswith('main.' ): lowerCamelCase__ : Tuple =string[5:] # mid block if string[:2].isdigit(): lowerCamelCase__ : Any =string[:2] lowerCamelCase__ : str =string[2:] else: lowerCamelCase__ : Union[str, Any] =string[0] lowerCamelCase__ : List[str] =string[1:] if depth == max_depth: lowerCamelCase__ : Dict =MID_NUM_TO_LAYER[layer_num] lowerCamelCase__ : Optional[int] ='mid_block' elif depth > 0 and int(snake_case_ ) < 7: lowerCamelCase__ : Optional[Any] =DOWN_NUM_TO_LAYER[layer_num] lowerCamelCase__ : Union[str, Any] =f"""down_blocks.{depth}""" elif depth > 0 and int(snake_case_ ) > 7: lowerCamelCase__ : Any =UP_NUM_TO_LAYER[layer_num] lowerCamelCase__ : Union[str, Any] =f"""up_blocks.{max_depth - depth - 1}""" elif depth == 0: lowerCamelCase__ : List[Any] =DEPTH_0_TO_LAYER[layer_num] lowerCamelCase__ : Any =f"""up_blocks.{max_depth - 1}""" if int(snake_case_ ) > 3 else 'down_blocks.0' if not string_left.startswith('.' ): raise ValueError(f"""Naming error with {input_string} and string_left: {string_left}.""" ) lowerCamelCase__ : str =string_left[1:] if "resnets" in new_layer: lowerCamelCase__ : Union[str, Any] =convert_resconv_naming(snake_case_ ) elif "attentions" in new_layer: lowerCamelCase__ : Optional[Any] =convert_attn_naming(snake_case_ ) lowerCamelCase__ : List[Any] =new_string_left if not isinstance(snake_case_ , snake_case_ ): lowerCamelCase__ : Optional[int] =prefix + '.' + new_layer + '.' + string_left else: lowerCamelCase__ : List[str] =[prefix + '.' + new_layer + '.' + s for s in string_left] return new_string def lowerCAmelCase_ ( snake_case_ : Tuple ) ->Optional[int]: lowerCamelCase__ : Tuple ={} for k, v in state_dict.items(): if k.endswith('kernel' ): # up- and downsample layers, don't have trainable weights continue lowerCamelCase__ : Dict =rename(snake_case_ ) # check if we need to transform from Conv => Linear for attention if isinstance(snake_case_ , snake_case_ ): lowerCamelCase__ : str =transform_conv_attns(snake_case_ , snake_case_ , snake_case_ ) else: lowerCamelCase__ : Optional[int] =v return new_state_dict def lowerCAmelCase_ ( snake_case_ : Tuple , snake_case_ : Optional[int] , snake_case_ : Any ) ->Optional[int]: if len(snake_case_ ) == 1: if len(v.shape ) == 3: # weight lowerCamelCase__ : Any =v[:, :, 0] else: # bias lowerCamelCase__ : Tuple =v else: # qkv matrices lowerCamelCase__ : str =v.shape[0] lowerCamelCase__ : str =trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: lowerCamelCase__ : Dict =v[i * single_shape : (i + 1) * single_shape, :, 0] else: lowerCamelCase__ : Any =v[i * single_shape : (i + 1) * single_shape] return new_state_dict def lowerCAmelCase_ ( snake_case_ : List[Any] ) ->Tuple: lowerCamelCase__ : Optional[Any] =torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) lowerCamelCase__ : str =args.model_path.split('/' )[-1].split('.' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f"""Make sure to provide one of the official model names {MODELS_MAP.keys()}""" lowerCamelCase__ : Optional[Any] =download(snake_case_ ) lowerCamelCase__ : int =MODELS_MAP[model_name]['sample_rate'] lowerCamelCase__ : List[Any] =MODELS_MAP[model_name]['sample_size'] lowerCamelCase__ : Tuple =Object() lowerCamelCase__ : Any =sample_size lowerCamelCase__ : List[str] =sample_rate lowerCamelCase__ : List[str] =0 lowerCamelCase__ : Optional[Any] =UNetaDModel(sample_size=snake_case_ , sample_rate=snake_case_ ) lowerCamelCase__ : Tuple =diffusers_model.state_dict() lowerCamelCase__ : Union[str, Any] =DiffusionUncond(snake_case_ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=snake_case_ )['state_dict'] ) lowerCamelCase__ : Optional[int] =orig_model.diffusion_ema.eval() lowerCamelCase__ : List[str] =orig_model.state_dict() lowerCamelCase__ : str =rename_orig_weights(snake_case_ ) lowerCamelCase__ : List[Any] =set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) lowerCamelCase__ : Any =set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(snake_case_ ) == 0, f"""Problem with {renamed_minus_diffusers}""" assert all(k.endswith('kernel' ) for k in list(snake_case_ ) ), f"""Problem with {diffusers_minus_renamed}""" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f"""Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}""" if key == "time_proj.weight": lowerCamelCase__ : int =value.squeeze() lowerCamelCase__ : Union[str, Any] =value diffusers_model.load_state_dict(snake_case_ ) lowerCamelCase__ : List[str] =1_0_0 lowerCamelCase__ : Union[str, Any] =3_3 lowerCamelCase__ : Union[str, Any] =IPNDMScheduler(num_train_timesteps=snake_case_ ) lowerCamelCase__ : str =torch.manual_seed(snake_case_ ) lowerCamelCase__ : Union[str, Any] =torch.randn([1, 2, config.sample_size] , generator=snake_case_ ).to(snake_case_ ) lowerCamelCase__ : int =torch.linspace(1 , 0 , steps + 1 , device=snake_case_ )[:-1] lowerCamelCase__ : Dict =get_crash_schedule(snake_case_ ) lowerCamelCase__ : Tuple =DanceDiffusionPipeline(unet=snake_case_ , scheduler=snake_case_ ) lowerCamelCase__ : Optional[int] =torch.manual_seed(3_3 ) lowerCamelCase__ : Optional[Any] =pipe(num_inference_steps=snake_case_ , generator=snake_case_ ).audios lowerCamelCase__ : str =sampling.iplms_sample(snake_case_ , snake_case_ , snake_case_ , {} ) lowerCamelCase__ : Dict =generated.clamp(-1 , 1 ) lowerCamelCase__ : List[str] =(generated - audio).abs().sum() lowerCamelCase__ : str =(generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('Diff sum' , snake_case_ ) print('Diff max' , snake_case_ ) assert diff_max < 1E-3, f"""Diff max: {diff_max} is too much :-/""" print(f"""Conversion for {model_name} successful!""" ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") lowerCAmelCase = parser.parse_args() main(args)
174
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowerCAmelCase = pytest.mark.integration @require_faiss class A_ ( A__ ): """simple docstring""" def UpperCAmelCase__ ( self :str ): """simple docstring""" lowerCamelCase__ : Optional[int] =Dataset.from_dict({'filename': ['my_name-train' + '_' + str(lowerCamelCase_ ) for x in np.arange(30 ).tolist()]} ) return dset def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" import faiss lowerCamelCase__ : Dataset =self._create_dummy_dataset() lowerCamelCase__ : int =dset.map( lambda lowerCamelCase_ , lowerCamelCase_ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=lowerCamelCase_ , keep_in_memory=lowerCamelCase_ ) lowerCamelCase__ : Any =dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase__ , lowerCamelCase__ : int =dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" import faiss lowerCamelCase__ : Dataset =self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase__ , lowerCamelCase__ : List[str] =dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCAmelCase__ ( self :Any ): """simple docstring""" import faiss lowerCamelCase__ : Dataset =self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowerCamelCase_ ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ , lowerCamelCase__ : Tuple =dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCAmelCase__ ( self :Any ): """simple docstring""" lowerCamelCase__ : Dataset =self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(lowerCamelCase_ , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" from elasticsearch import Elasticsearch lowerCamelCase__ : Dataset =self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : Any ={'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase__ : List[Any] ={'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCamelCase__ : Dict =Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=lowerCamelCase_ ) lowerCamelCase__ , lowerCamelCase__ : List[str] =dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class A_ ( A__ ): """simple docstring""" def UpperCAmelCase__ ( self :Dict ): """simple docstring""" import faiss lowerCamelCase__ : Optional[int] =FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase__ : Any =np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Dict =1 lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =index.search(lowerCamelCase_ ) self.assertRaises(lowerCamelCase_ , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase__ : int =np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase__ , lowerCamelCase__ : Dict =index.search_batch(lowerCamelCase_ ) self.assertRaises(lowerCamelCase_ , index.search_batch , queries[0] ) lowerCamelCase__ : List[str] =[scores[0] for scores in total_scores] lowerCamelCase__ : str =[indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCamelCase_ ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , lowerCamelCase_ ) def UpperCAmelCase__ ( self :Dict ): """simple docstring""" import faiss lowerCamelCase__ : Optional[int] =FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase__ : Union[str, Any] =FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(lowerCamelCase_ ): lowerCamelCase__ : List[Any] =FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def UpperCAmelCase__ ( self :Tuple ): """simple docstring""" import faiss lowerCamelCase__ : Any =faiss.IndexFlat(5 ) lowerCamelCase__ : Any =FaissIndex(custom_index=lowerCamelCase_ ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" import faiss lowerCamelCase__ : int =FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowerCamelCase_ ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase__ : Any =FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ : Any =np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : str =1 lowerCamelCase__ , lowerCamelCase__ : Dict =index.search(lowerCamelCase_ ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def lowerCAmelCase_ ( snake_case_ : Dict ) ->int: import faiss lowerCamelCase__ : List[str] =FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCamelCase__ : Optional[int] ='index.faiss' lowerCamelCase__ : Optional[Any] =f"""mock://{index_name}""" index.save(snake_case_ , storage_options=mockfs.storage_options ) lowerCamelCase__ : Dict =FaissIndex.load(snake_case_ , storage_options=mockfs.storage_options ) lowerCamelCase__ : List[Any] =np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Union[str, Any] =1 lowerCamelCase__ , lowerCamelCase__ : List[str] =index.search(snake_case_ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class A_ ( A__ ): """simple docstring""" def UpperCAmelCase__ ( self :Tuple ): """simple docstring""" from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : Union[str, Any] =Elasticsearch() lowerCamelCase__ : int ={'acknowledged': True} lowerCamelCase__ : Optional[Any] =ElasticSearchIndex(es_client=lowerCamelCase_ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCamelCase__ : Union[str, Any] ='foo' lowerCamelCase__ : Optional[Any] ={'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : List[Any] =index.search(lowerCamelCase_ ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase__ : List[str] ='foo' lowerCamelCase__ : Union[str, Any] ={'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : List[Any] =index.search(lowerCamelCase_ , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase__ : List[str] =['foo', 'bar', 'foobar'] lowerCamelCase__ : str ={'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] =index.search_batch(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] =[scores[0] for scores in total_scores] lowerCamelCase__ : Dict =[indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCamelCase_ ) , 0 ) self.assertListEqual([1, 1, 1] , lowerCamelCase_ ) # batched queries with timeout lowerCamelCase__ : str =['foo', 'bar', 'foobar'] lowerCamelCase__ : Any ={'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : Dict =index.search_batch(lowerCamelCase_ , request_timeout=30 ) lowerCamelCase__ : List[str] =[scores[0] for scores in total_scores] lowerCamelCase__ : int =[indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCamelCase_ ) , 0 ) self.assertListEqual([1, 1, 1] , lowerCamelCase_ )
174
1
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class _SCREAMING_SNAKE_CASE : def __init__( self : Tuple , __UpperCamelCase : Any ) -> Any: """simple docstring""" snake_case__ : Any = str(id_ ) snake_case__ : Optional[int] = None snake_case__ : Optional[int] = None snake_case__ : Union[str, Any] = [] snake_case__ : Optional[Any] = {} # {vertex:distance} def __lt__( self : int , __UpperCamelCase : List[Any] ) -> Any: """simple docstring""" return self.key < other.key def __repr__( self : List[str] ) -> str: """simple docstring""" return self.id def lowerCAmelCase ( self : List[str] , __UpperCamelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" self.neighbors.append(__A ) def lowerCAmelCase ( self : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : int ) -> Any: """simple docstring""" snake_case__ : Optional[Any] = weight def __UpperCAmelCase ( UpperCamelCase__ :Union[str, Any] , UpperCamelCase__ :Optional[Any] , UpperCamelCase__ :Union[str, Any] , UpperCamelCase__ :int ) -> List[str]: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , _lowerCAmelCase ) graph[b - 1].add_edge(graph[a - 1] , _lowerCAmelCase ) def __UpperCAmelCase ( UpperCamelCase__ :list , UpperCamelCase__ :Vertex ) -> Any: snake_case__ : str = [] for u in graph: snake_case__ : Any = math.inf snake_case__ : List[str] = None snake_case__ : Tuple = 0 snake_case__ : Tuple = graph[:] while q: snake_case__ : List[str] = min(_lowerCAmelCase ) q.remove(_lowerCAmelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): snake_case__ : int = u snake_case__ : Optional[Any] = u.edges[v.id] for i in range(1 , len(_lowerCAmelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __UpperCAmelCase ( UpperCamelCase__ :list , UpperCamelCase__ :Vertex ) -> str: for u in graph: snake_case__ : Any = math.inf snake_case__ : Tuple = None snake_case__ : int = 0 snake_case__ : Dict = list(_lowerCAmelCase ) hq.heapify(_lowerCAmelCase ) while h: snake_case__ : Dict = hq.heappop(_lowerCAmelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): snake_case__ : List[Any] = u snake_case__ : List[str] = u.edges[v.id] hq.heapify(_lowerCAmelCase ) for i in range(1 , len(_lowerCAmelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __UpperCAmelCase ( ) -> int: pass if __name__ == "__main__": import doctest doctest.testmod()
711
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _lowercase : Any =logging.getLogger(__name__) @dataclass class _SCREAMING_SNAKE_CASE : A__ = field( default='tab_fact', metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) A__ = field( default='tab_fact', metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}, ) A__ = field( default=1024, metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) A__ = field( default=lowercase__, metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) A__ = field( default=lowercase__, metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) }, ) A__ = field( default=lowercase__, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) }, ) A__ = field( default=lowercase__, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) }, ) A__ = field( default=lowercase__, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) }, ) A__ = field( default=lowercase__, metadata={'help': 'A csv or a json file containing the training data.'} ) A__ = field( default=lowercase__, metadata={'help': 'A csv or a json file containing the validation data.'} ) A__ = field(default=lowercase__, metadata={'help': 'A csv or a json file containing the test data.'} ) def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' ) else: snake_case__ : int = self.train_file.split('''.''' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." snake_case__ : str = self.validation_file.split('''.''' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class _SCREAMING_SNAKE_CASE : A__ = field( default=lowercase__, metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) A__ = field( default=lowercase__, metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) A__ = field( default=lowercase__, metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) A__ = field( default=lowercase__, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, ) A__ = field( default=lowercase__, metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'}, ) A__ = field( default='main', metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'}, ) A__ = field( default=lowercase__, metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) }, ) def __UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case__ : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case__ , snake_case__ , snake_case__ : Any = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case__ , snake_case__ , snake_case__ : Optional[Any] = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) snake_case__ : Optional[int] = training_args.get_process_log_level() logger.setLevel(UpperCamelCase__ ) datasets.utils.logging.set_verbosity(UpperCamelCase__ ) transformers.utils.logging.set_verbosity(UpperCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. snake_case__ : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case__ : Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. snake_case__ : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. snake_case__ : Optional[int] = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: snake_case__ : int = data_args.train_file.split('''.''' )[-1] snake_case__ : str = data_args.test_file.split('''.''' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." snake_case__ : List[str] = data_args.test_file else: raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' ) for key in data_files.keys(): logger.info(F'''load a local file for {key}: {data_files[key]}''' ) if data_args.train_file.endswith('''.csv''' ): # Loading a dataset from local csv files snake_case__ : Any = load_dataset('''csv''' , data_files=UpperCamelCase__ , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files snake_case__ : Union[str, Any] = load_dataset('''json''' , data_files=UpperCamelCase__ , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels snake_case__ : List[Any] = raw_datasets['''train'''].features['''label'''].names snake_case__ : Optional[Any] = len(UpperCamelCase__ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case__ : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer snake_case__ : Optional[Any] = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=UpperCamelCase__ , ) snake_case__ : Tuple = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: snake_case__ : List[str] = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch snake_case__ : str = False # Some models have set the order of the labels to use, so let's make sure we do use it. snake_case__ : List[Any] = {'''Refused''': 0, '''Entailed''': 1} snake_case__ : Optional[Any] = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) snake_case__ : Dict = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(UpperCamelCase__ :Tuple ): # Tokenize the texts def _convert_table_text_to_pandas(UpperCamelCase__ :List[Any] ): snake_case__ : str = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )] snake_case__ : List[Any] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd snake_case__ : Optional[Any] = examples['''statement'''] snake_case__ : str = list(map(_convert_table_text_to_pandas , examples['''table_text'''] ) ) snake_case__ : Tuple = tokenizer(UpperCamelCase__ , UpperCamelCase__ , padding=UpperCamelCase__ , max_length=UpperCamelCase__ , truncation=UpperCamelCase__ ) snake_case__ : List[str] = examples['''label'''] return result with training_args.main_process_first(desc='''dataset map pre-processing''' ): snake_case__ : str = raw_datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on dataset''' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) snake_case__ : Optional[int] = raw_datasets['''train'''] if data_args.max_train_samples is not None: snake_case__ : List[Any] = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) snake_case__ : int = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: snake_case__ : Union[str, Any] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('''--do_predict requires a test dataset''' ) snake_case__ : Union[str, Any] = raw_datasets['''test'''] if data_args.max_predict_samples is not None: snake_case__ : str = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(UpperCamelCase__ ) ) , 3 ): logger.info(F'''Sample {index} of the training set: {train_dataset[index]}.''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(UpperCamelCase__ :EvalPrediction ): snake_case__ : Optional[Any] = p.predictions[0] if isinstance(p.predictions , UpperCamelCase__ ) else p.predictions snake_case__ : Dict = np.argmax(UpperCamelCase__ , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: snake_case__ : str = default_data_collator elif training_args.fpaa: snake_case__ : List[str] = DataCollatorWithPadding(UpperCamelCase__ , pad_to_multiple_of=8 ) else: snake_case__ : str = None # Initialize our Trainer snake_case__ : Optional[Any] = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=UpperCamelCase__ , tokenizer=UpperCamelCase__ , data_collator=UpperCamelCase__ , ) # Training if training_args.do_train: snake_case__ : Optional[Any] = None if training_args.resume_from_checkpoint is not None: snake_case__ : Union[str, Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case__ : List[Any] = last_checkpoint snake_case__ : Union[str, Any] = trainer.train(resume_from_checkpoint=UpperCamelCase__ ) snake_case__ : Dict = train_result.metrics snake_case__ : Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCamelCase__ ) ) snake_case__ : Any = min(UpperCamelCase__ , len(UpperCamelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , UpperCamelCase__ ) trainer.save_metrics('''train''' , UpperCamelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) snake_case__ : Union[str, Any] = trainer.evaluate(eval_dataset=UpperCamelCase__ ) snake_case__ : str = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCamelCase__ ) snake_case__ : Tuple = min(UpperCamelCase__ , len(UpperCamelCase__ ) ) trainer.log_metrics('''eval''' , UpperCamelCase__ ) trainer.save_metrics('''eval''' , UpperCamelCase__ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. snake_case__ : Any = predict_dataset.remove_columns('''label''' ) snake_case__ : Union[str, Any] = trainer.predict(UpperCamelCase__ , metric_key_prefix='''predict''' ).predictions snake_case__ : Optional[Any] = np.argmax(UpperCamelCase__ , axis=1 ) snake_case__ : str = os.path.join(training_args.output_dir , '''predict_results_tabfact.txt''' ) if trainer.is_world_process_zero(): with open(UpperCamelCase__ , '''w''' ) as writer: logger.info('''***** Predict Results *****''' ) writer.write('''index\tprediction\n''' ) for index, item in enumerate(UpperCamelCase__ ): snake_case__ : Tuple = label_list[item] writer.write(F'''{index}\t{item}\n''' ) snake_case__ : List[str] = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**UpperCamelCase__ ) else: trainer.create_model_card(**UpperCamelCase__ ) def __UpperCAmelCase ( UpperCamelCase__ :List[Any] ) -> Optional[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
574
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ : Optional[Any] ={ '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : int =[ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys lowerCAmelCase__ : Optional[int] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
148
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class a_ ( snake_case ): UpperCAmelCase : str = (CMStochasticIterativeScheduler,) UpperCAmelCase : int = 10 def UpperCamelCase ( self : Dict , **a_ : List[str] ) -> Any: snake_case: Any ={ 'num_train_timesteps': 2_0_1, 'sigma_min': 0.0_0_2, 'sigma_max': 8_0.0, } config.update(**a_ ) return config def UpperCamelCase ( self : List[Any] ) -> List[Any]: snake_case: Any =1_0 snake_case: List[str] =self.get_scheduler_config() snake_case: List[Any] =self.scheduler_classes[0](**a_ ) scheduler.set_timesteps(a_ ) snake_case: Dict =scheduler.timesteps[0] snake_case: Union[str, Any] =scheduler.timesteps[1] snake_case: List[str] =self.dummy_sample snake_case: List[str] =0.1 * sample snake_case: int =scheduler.step(a_ , a_ , a_ ).prev_sample snake_case: Optional[Any] =scheduler.step(a_ , a_ , a_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase ( self : int ) -> int: for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=a_ ) def UpperCamelCase ( self : Optional[Any] ) -> Dict: for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=a_ ) def UpperCamelCase ( self : Tuple ) -> List[str]: snake_case: List[Any] =self.scheduler_classes[0] snake_case: List[Any] =self.get_scheduler_config() snake_case: Any =scheduler_class(**a_ ) snake_case: Dict =1 scheduler.set_timesteps(a_ ) snake_case: List[Any] =scheduler.timesteps snake_case: Optional[Any] =torch.manual_seed(0 ) snake_case: Optional[Any] =self.dummy_model() snake_case: List[Any] =self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(a_ ): # 1. scale model input snake_case: Any =scheduler.scale_model_input(a_ , a_ ) # 2. predict noise residual snake_case: List[str] =model(a_ , a_ ) # 3. predict previous sample x_t-1 snake_case: Dict =scheduler.step(a_ , a_ , a_ , generator=a_ ).prev_sample snake_case: List[Any] =pred_prev_sample snake_case: Optional[Any] =torch.sum(torch.abs(a_ ) ) snake_case: Optional[Any] =torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 1_9_2.7_6_1_4 ) < 1E-2 assert abs(result_mean.item() - 0.2_5_1_0 ) < 1E-3 def UpperCamelCase ( self : Dict ) -> Union[str, Any]: snake_case: Dict =self.scheduler_classes[0] snake_case: Tuple =self.get_scheduler_config() snake_case: str =scheduler_class(**a_ ) snake_case: List[Any] =[1_0_6, 0] scheduler.set_timesteps(timesteps=a_ ) snake_case: Optional[Any] =scheduler.timesteps snake_case: Dict =torch.manual_seed(0 ) snake_case: Optional[int] =self.dummy_model() snake_case: Any =self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input snake_case: List[Any] =scheduler.scale_model_input(a_ , a_ ) # 2. predict noise residual snake_case: Any =model(a_ , a_ ) # 3. predict previous sample x_t-1 snake_case: List[str] =scheduler.step(a_ , a_ , a_ , generator=a_ ).prev_sample snake_case: Optional[Any] =pred_prev_sample snake_case: Union[str, Any] =torch.sum(torch.abs(a_ ) ) snake_case: Tuple =torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 3_4_7.6_3_5_7 ) < 1E-2 assert abs(result_mean.item() - 0.4_5_2_7 ) < 1E-3 def UpperCamelCase ( self : int ) -> Tuple: snake_case: List[Any] =self.scheduler_classes[0] snake_case: Union[str, Any] =self.get_scheduler_config() snake_case: str =scheduler_class(**a_ ) snake_case: str =[3_9, 3_0, 1_2, 1_5, 0] with self.assertRaises(a_ , msg='`timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=a_ ) def UpperCamelCase ( self : Dict ) -> Optional[int]: snake_case: Optional[Any] =self.scheduler_classes[0] snake_case: Dict =self.get_scheduler_config() snake_case: str =scheduler_class(**a_ ) snake_case: Any =[3_9, 3_0, 1_2, 1, 0] snake_case: List[Any] =len(a_ ) with self.assertRaises(a_ , msg='Can only pass one of `num_inference_steps` or `timesteps`.' ): scheduler.set_timesteps(num_inference_steps=a_ , timesteps=a_ ) def UpperCamelCase ( self : Optional[Any] ) -> Tuple: snake_case: Any =self.scheduler_classes[0] snake_case: int =self.get_scheduler_config() snake_case: Optional[Any] =scheduler_class(**a_ ) snake_case: List[Any] =[scheduler.config.num_train_timesteps] with self.assertRaises( a_ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=a_ )
350
0
"""simple docstring""" from __future__ import annotations import csv import requests from bsa import BeautifulSoup def __magic_name__ ( __snake_case : str = "" ) -> dict[str, float]: lowercase : Optional[int] = url or "https://www.imdb.com/chart/top/?ref_=nv_mv_250" lowercase : Optional[Any] = BeautifulSoup(requests.get(__snake_case ).text , "html.parser" ) lowercase : Tuple = soup.find_all("td" , attrs="titleColumn" ) lowercase : Optional[Any] = soup.find_all("td" , class_="ratingColumn imdbRating" ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(__snake_case , __snake_case ) } def __magic_name__ ( __snake_case : str = "IMDb_Top_250_Movies.csv" ) -> None: lowercase : Tuple = get_imdb_top_aaa_movies() with open(__snake_case , "w" , newline="" ) as out_file: lowercase : Tuple = csv.writer(__snake_case ) writer.writerow(["Movie title", "IMDb rating"] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
518
"""simple docstring""" import os import jsonlines import numpy as np from tqdm import tqdm _A : int = 20_48 _A : List[Any] = 40_96 _A : Any = 42 _A : List[Any] = os.environ.pop("""PROCESS_TRAIN""", """false""") _A : Union[str, Any] = {"""null""": 0, """short""": 1, """long""": 2, """yes""": 3, """no""": 4} def __magic_name__ ( __snake_case : Dict ) -> Optional[Any]: def choose_first(__snake_case : Any , __snake_case : str=False ): assert isinstance(__snake_case , __snake_case ) if len(__snake_case ) == 1: lowercase : List[Any] = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: lowercase : Any = {k: [a[k]] for k in a} if len(a["start_token"] ) > 0: break return a lowercase : Any = {"id": example["id"]} lowercase : List[str] = example["annotations"] lowercase : Optional[int] = annotation["yes_no_answer"] if 0 in yes_no_answer or 1 in yes_no_answer: lowercase : Optional[int] = ["yes"] if 1 in yes_no_answer else ["no"] lowercase : List[Any] = [] lowercase : Dict = [] lowercase : str = ["<cls>"] else: lowercase : int = ["short"] lowercase : Optional[int] = choose_first(annotation["short_answers"] ) if len(out["start_token"] ) == 0: # answer will be long if short is not available lowercase : Dict = ["long"] lowercase : Optional[int] = choose_first(annotation["long_answer"] , is_long_answer=__snake_case ) lowercase : int = [] answer.update(__snake_case ) # disregard some samples if len(answer["start_token"] ) > 1 or answer["start_token"] == answer["end_token"]: lowercase : str = True else: lowercase : List[str] = False lowercase : Optional[Any] = ["start_token", "end_token", "start_byte", "end_byte", "text"] if not all(isinstance(answer[k] , __snake_case ) for k in cols ): raise ValueError("Issue in ID" , example["id"] ) return answer def __magic_name__ ( __snake_case : Union[str, Any] , __snake_case : Tuple=False ) -> Union[str, Any]: lowercase : Tuple = _get_single_answer(__snake_case ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element lowercase : Any = example["document"]["tokens"] lowercase : List[str] = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) return { "context": " ".join(__snake_case ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples lowercase : List[Any] = ["start_token", "end_token"] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 lowercase : Optional[int] = example["document"]["tokens"] lowercase : Union[str, Any] = answer["start_token"] lowercase : List[str] = answer["end_token"] lowercase : int = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 lowercase : Dict = " ".join(context[start_token:end_token] ) # checking above code if assertion: lowercase : List[str] = doc["is_html"][answer["start_token"] : answer["end_token"]] lowercase : Any = doc["token"][answer["start_token"] : answer["end_token"]] lowercase : Dict = " ".join([old[i] for i in range(len(__snake_case ) ) if not is_html[i]] ) if new != old: print("ID:" , example["id"] ) print("New:" , __snake_case , end="\n" ) print("Old:" , __snake_case , end="\n\n" ) return { "context": " ".join(__snake_case ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def __magic_name__ ( __snake_case : Optional[int] , __snake_case : Optional[int] , __snake_case : int=2048 , __snake_case : Optional[Any]=4096 , __snake_case : int=True ) -> Tuple: # overlap will be of doc_stride - q_len lowercase : List[Any] = get_context_and_ans(__snake_case , assertion=__snake_case ) lowercase : List[Any] = out["answer"] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } lowercase : Tuple = tokenizer(example["question"]["text"] , out["context"] ).input_ids lowercase : Optional[int] = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element lowercase : List[str] = [] lowercase : Optional[int] = [] lowercase : Any = input_ids[:q_len] lowercase : List[Any] = range(__snake_case , len(__snake_case ) , max_length - doc_stride ) for i in doc_start_indices: lowercase : List[Any] = i + max_length - q_len lowercase : Dict = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["category"][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(__snake_case ), "end_token": [-100] * len(__snake_case ), "category": category, }, } lowercase : List[str] = out["context"].split() lowercase : Tuple = splitted_context[answer["end_token"]] lowercase : List[str] = len( tokenizer( " ".join(splitted_context[: answer["start_token"]] ) , add_special_tokens=__snake_case , ).input_ids ) lowercase : Tuple = len( tokenizer(" ".join(splitted_context[: answer["end_token"]] ) , add_special_tokens=__snake_case ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token lowercase : List[str] = len(tokenizer(__snake_case , add_special_tokens=__snake_case ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 lowercase : Optional[Any] = input_ids[answer["start_token"] : answer["end_token"] + 1] # right & left are inclusive lowercase : Tuple = answer["start_token"] lowercase : Optional[Any] = answer["end_token"] if assertion: lowercase : str = tokenizer.decode(__snake_case ) if answer["span"] != new: print("ISSUE IN TOKENIZATION" ) print("OLD:" , answer["span"] ) print("NEW:" , __snake_case , end="\n\n" ) if len(__snake_case ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } lowercase : Dict = input_ids[:q_len] lowercase : Any = range(__snake_case , len(__snake_case ) , max_length - doc_stride ) lowercase : List[str] = [] lowercase : Any = [] lowercase : Dict = [] lowercase : Tuple = [] # null, yes, no, long, short for i in doc_start_indices: lowercase : List[str] = i + max_length - q_len lowercase : List[Any] = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: lowercase : List[Any] = start_token - i + q_len lowercase : str = end_token - i + q_len answers_category.append(answer["category"][0] ) # ["short"] -> "short" else: lowercase : List[Any] = -100 lowercase : Optional[int] = -100 answers_category.append("null" ) lowercase : Optional[Any] = inputs[-1][start_token : end_token + 1] answers_start_token.append(__snake_case ) answers_end_token.append(__snake_case ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("ISSUE in strided for ID:" , example["id"] ) print("New:" , tokenizer.decode(__snake_case ) ) print("Old:" , tokenizer.decode(__snake_case ) , end="\n\n" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def __magic_name__ ( __snake_case : str , __snake_case : str , __snake_case : Optional[Any]=2048 , __snake_case : Optional[int]=4096 , __snake_case : int=False ) -> List[str]: lowercase : List[str] = get_strided_contexts_and_ans( __snake_case , __snake_case , doc_stride=__snake_case , max_length=__snake_case , assertion=__snake_case , ) return example def __magic_name__ ( __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> Union[str, Any]: with jsonlines.open(__snake_case , "a" ) as writer: for example in tqdm(__snake_case , total=len(__snake_case ) , desc="Saving samples ... " ): lowercase : List[str] = example["labels"] for ids, start, end, cat in zip( example["input_ids"] , labels["start_token"] , labels["end_token"] , labels["category"] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { "input_ids": ids, "start_token": start, "end_token": end, "category": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer _A : Union[str, Any] = load_dataset("""natural_questions""") _A : Union[str, Any] = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""") _A : Dict = data["""train""" if PROCESS_TRAIN == """true""" else """validation"""] _A : int = { """tokenizer""": tokenizer, """doc_stride""": DOC_STRIDE, """max_length""": MAX_LENGTH, """assertion""": False, } _A : List[str] = data.map(prepare_inputs, fn_kwargs=fn_kwargs) _A : List[Any] = data.remove_columns(["""annotations""", """document""", """id""", """question"""]) print(data) np.random.seed(SEED) _A : str = """nq-training.jsonl""" if PROCESS_TRAIN == """true""" else """nq-validation.jsonl""" save_to_disk(data, file_name=cache_file_name)
518
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase_ = { """tokenizer_file""": { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json""", }, } UpperCamelCase_ = { """gpt-neox-20b""": 2048, } class __SCREAMING_SNAKE_CASE ( lowercase__ ): lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any] , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : str=None , UpperCAmelCase__ : Optional[Any]="<|endoftext|>" , UpperCAmelCase__ : str="<|endoftext|>" , UpperCAmelCase__ : Optional[Any]="<|endoftext|>" , UpperCAmelCase__ : int=False , **UpperCAmelCase__ : int , ): '''simple docstring''' super().__init__( UpperCAmelCase__ , UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , **UpperCAmelCase__ , ) lowercase : Tuple =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCAmelCase__ ) != add_prefix_space: lowercase : Any =getattr(UpperCAmelCase__ , pre_tok_state.pop('''type''' ) ) lowercase : List[str] =add_prefix_space lowercase : List[str] =pre_tok_class(**UpperCAmelCase__ ) lowercase : Optional[int] =add_prefix_space def lowerCamelCase_ ( self : int , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ): '''simple docstring''' lowercase : int =self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ ) def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : "Conversation" ): '''simple docstring''' lowercase : Dict =[] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) + [self.eos_token_id] ) if len(UpperCAmelCase__ ) > self.model_max_length: lowercase : Optional[Any] =input_ids[-self.model_max_length :] return input_ids
92
from __future__ import annotations def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: if len(_SCREAMING_SNAKE_CASE ) < k or k < 0: raise ValueError('Invalid Input' ) lowercase__ = lowercase__ = sum(array[:k] ) for i in range(len(_SCREAMING_SNAKE_CASE ) - k ): lowercase__ = current_sum - array[i] + array[i + k] lowercase__ = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() lowercase_ = [randint(-1_000, 1_000) for i in range(100)] lowercase_ = randint(0, 110) print(f'''The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}''')
235
0
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer A = ['bert-base-uncased', 'bert-base-cased'] A = 'hf-internal-testing/tiny-bert-tf-only' if is_tf_available(): class UpperCAmelCase__ ( tf.keras.Model ): def __init__( self : Tuple , snake_case : Optional[int] ) -> List[str]: '''simple docstring''' super().__init__() A = tokenizer A = AutoConfig.from_pretrained(snake_case ) A = TFAutoModel.from_config(snake_case ) def A_ ( self : Any , snake_case : Optional[int] ) -> Dict: '''simple docstring''' A = self.tokenizer(snake_case ) A = self.bert(**snake_case ) return out["pooler_output"] @require_tf @require_tensorflow_text class UpperCAmelCase__ ( unittest.TestCase ): def A_ ( self : int ) -> Tuple: '''simple docstring''' super().setUp() A = [ BertTokenizer.from_pretrained(snake_case ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false A = [TFBertTokenizer.from_pretrained(snake_case ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(snake_case , use_fast_bert_tokenizer=snake_case ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) A = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] A = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def A_ ( self : List[Any] ) -> Dict: '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): A = tokenizer(snake_case , return_tensors='tf' , padding='longest' ) A = tf_tokenizer(snake_case ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def A_ ( self : Tuple ) -> Tuple: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: A = tf_tokenizer(self.paired_sentences ) A = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def A_ ( self : Any ) -> Tuple: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: A = tf.function(snake_case ) for test_inputs in (self.test_sentences, self.paired_sentences): A = tf.constant(snake_case ) A = compiled_tokenizer(snake_case ) A = tf_tokenizer(snake_case ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def A_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: A = ModelToSave(tokenizer=snake_case ) A = tf.convert_to_tensor(self.test_sentences ) A = model(snake_case ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: A = Path(snake_case ) / 'saved.model' model.save(snake_case ) A = tf.keras.models.load_model(snake_case ) A = loaded_model(snake_case ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
109
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available A = { 'configuration_gpt_neo': ['GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoConfig', 'GPTNeoOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoForCausalLM', 'GPTNeoForQuestionAnswering', 'GPTNeoForSequenceClassification', 'GPTNeoForTokenClassification', 'GPTNeoModel', 'GPTNeoPreTrainedModel', 'load_tf_weights_in_gpt_neo', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'FlaxGPTNeoForCausalLM', 'FlaxGPTNeoModel', 'FlaxGPTNeoPreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
109
1
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __a: Tuple = { '''facebook/mask2former-swin-small-coco-instance''': ( '''https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json''' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __a: Optional[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = '''mask2former''' _lowerCamelCase = ['''swin'''] _lowerCamelCase = {'''hidden_size''': '''hidden_dim'''} def __init__( self : Tuple , lowerCamelCase : Optional[Dict] = None , lowerCamelCase : int = 256 , lowerCamelCase : int = 256 , lowerCamelCase : int = 256 , lowerCamelCase : int = 1024 , lowerCamelCase : str = "relu" , lowerCamelCase : int = 6 , lowerCamelCase : int = 10 , lowerCamelCase : int = 8 , lowerCamelCase : float = 0.0 , lowerCamelCase : int = 2048 , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : int = 4 , lowerCamelCase : int = 255 , lowerCamelCase : int = 100 , lowerCamelCase : float = 0.1 , lowerCamelCase : float = 2.0 , lowerCamelCase : float = 5.0 , lowerCamelCase : float = 5.0 , lowerCamelCase : int = 1_2544 , lowerCamelCase : float = 3.0 , lowerCamelCase : float = 0.75 , lowerCamelCase : float = 0.02 , lowerCamelCase : float = 1.0 , lowerCamelCase : bool = True , lowerCamelCase : List[int] = [4, 8, 16, 32] , lowerCamelCase : bool = None , **lowerCamelCase : Optional[Any] , ) -> Tuple: """simple docstring""" if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" ) _UpperCAmelCase = CONFIG_MAPPING["""swin"""]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowerCamelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(lowerCamelCase , lowerCamelCase ): _UpperCAmelCase = backbone_config.pop("""model_type""" ) _UpperCAmelCase = CONFIG_MAPPING[backbone_model_type] _UpperCAmelCase = config_class.from_dict(lowerCamelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) _UpperCAmelCase = backbone_config _UpperCAmelCase = feature_size _UpperCAmelCase = mask_feature_size _UpperCAmelCase = hidden_dim _UpperCAmelCase = encoder_feedforward_dim _UpperCAmelCase = activation_function _UpperCAmelCase = encoder_layers _UpperCAmelCase = decoder_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = dropout _UpperCAmelCase = dim_feedforward _UpperCAmelCase = pre_norm _UpperCAmelCase = enforce_input_projection _UpperCAmelCase = common_stride _UpperCAmelCase = ignore_value _UpperCAmelCase = num_queries _UpperCAmelCase = no_object_weight _UpperCAmelCase = class_weight _UpperCAmelCase = mask_weight _UpperCAmelCase = dice_weight _UpperCAmelCase = train_num_points _UpperCAmelCase = oversample_ratio _UpperCAmelCase = importance_sample_ratio _UpperCAmelCase = init_std _UpperCAmelCase = init_xavier_std _UpperCAmelCase = use_auxiliary_loss _UpperCAmelCase = feature_strides _UpperCAmelCase = output_auxiliary_logits _UpperCAmelCase = decoder_layers super().__init__(**lowerCamelCase ) @classmethod def lowerCamelCase ( cls : Union[str, Any] , lowerCamelCase : PretrainedConfig , **lowerCamelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return cls( backbone_config=lowerCamelCase , **lowerCamelCase , ) def lowerCamelCase ( self : Optional[Any] ) -> Dict[str, any]: """simple docstring""" _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.backbone_config.to_dict() _UpperCAmelCase = self.__class__.model_type return output
108
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) __magic_name__ = logging.getLogger(__name__) __magic_name__ = '''Hello world! cécé herlolip''' __magic_name__ = namedtuple( '''BertAbsConfig''', [ '''temp_dir''', '''large''', '''use_bert_emb''', '''finetune_bert''', '''encoder''', '''share_emb''', '''max_pos''', '''enc_layers''', '''enc_hidden_size''', '''enc_heads''', '''enc_ff_size''', '''enc_dropout''', '''dec_layers''', '''dec_hidden_size''', '''dec_heads''', '''dec_ff_size''', '''dec_dropout''', ], ) def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_): '''simple docstring''' lowerCamelCase_ : str = BertAbsConfig( temp_dir="." , finetune_bert=lowerCAmelCase_ , large=lowerCAmelCase_ , share_emb=lowerCAmelCase_ , use_bert_emb=lowerCAmelCase_ , encoder="bert" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) lowerCamelCase_ : Dict = torch.load(lowerCAmelCase_ , lambda lowerCAmelCase_ , lowerCAmelCase_: storage) lowerCamelCase_ : Optional[int] = AbsSummarizer(lowerCAmelCase_ , torch.device("cpu") , lowerCAmelCase_) original.eval() lowerCamelCase_ : str = BertAbsSummarizer(lowerCAmelCase_ , torch.device("cpu")) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model") new_model.bert.load_state_dict(original.bert.state_dict()) new_model.decoder.load_state_dict(original.decoder.state_dict()) new_model.generator.load_state_dict(original.generator.state_dict()) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical") lowerCamelCase_ : List[Any] = BertTokenizer.from_pretrained("bert-base-uncased") # prepare the model inputs lowerCamelCase_ : List[Any] = tokenizer.encode("This is sample éàalj'-.") encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(lowerCAmelCase_))) lowerCamelCase_ : List[Any] = torch.tensor(lowerCAmelCase_).unsqueeze(0) lowerCamelCase_ : Optional[int] = tokenizer.encode("This is sample 3 éàalj'-.") decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(lowerCAmelCase_))) lowerCamelCase_ : List[Any] = torch.tensor(lowerCAmelCase_).unsqueeze(0) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight)) == 0 # forward pass lowerCamelCase_ : Union[str, Any] = encoder_input_ids lowerCamelCase_ : Union[str, Any] = decoder_input_ids lowerCamelCase_ : Union[str, Any] = None lowerCamelCase_ : Tuple = None lowerCamelCase_ : List[Any] = None lowerCamelCase_ : Dict = None lowerCamelCase_ : Tuple = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical lowerCamelCase_ : int = original(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)[0] lowerCamelCase_ : Any = original.generator(lowerCAmelCase_) lowerCamelCase_ : Optional[int] = new_model( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)[0] lowerCamelCase_ : Dict = new_model.generator(lowerCAmelCase_) lowerCamelCase_ : str = torch.max(torch.abs(output_converted_model - output_original_model)).item() print("Maximum absolute difference beween weights: {:.2f}".format(lowerCAmelCase_)) lowerCamelCase_ : int = torch.max(torch.abs(output_converted_generator - output_original_generator)).item() print("Maximum absolute difference beween weights: {:.2f}".format(lowerCAmelCase_)) lowerCamelCase_ : str = torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-3) if are_identical: logging.info("all weights are equal up to 1e-3") else: raise ValueError("the weights are different. The new model is likely different from the original one.") # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary") torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin") if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument( '''--bertabs_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''', ) __magic_name__ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
250
0
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP a__ : Dict =False try: a__ : int =_is_package_available('''google.colab''') except ModuleNotFoundError: pass @input.register class snake_case : """simple docstring""" def __init__( self : Tuple , __A : str = None , __A : list = [] ): __UpperCamelCase = 0 __UpperCamelCase = choices __UpperCamelCase = prompt if sys.platform == "win32": __UpperCamelCase = '*' else: __UpperCamelCase = '➔ ' def _lowerCamelCase ( self : Tuple , __A : List[str] , __A : str = "" ): if sys.platform != "win32": writeColor(self.choices[index] , 3_2 , __A ) else: forceWrite(self.choices[index] , __A ) def _lowerCamelCase ( self : List[Any] , __A : int ): if index == self.position: forceWrite(f''' {self.arrow_char} ''' ) self.write_choice(__A ) else: forceWrite(f''' {self.choices[index]}''' ) reset_cursor() def _lowerCamelCase ( self : Any , __A : Direction , __A : int = 1 ): __UpperCamelCase = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__A ) move_cursor(__A , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['up'] ) def _lowerCamelCase ( self : List[str] ): self.move_direction(Direction.UP ) @input.mark(KEYMAP['down'] ) def _lowerCamelCase ( self : Union[str, Any] ): self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['newline'] ) def _lowerCamelCase ( self : List[Any] ): move_cursor(len(self.choices ) - self.position , 'DOWN' ) return self.position @input.mark(KEYMAP['interrupt'] ) def _lowerCamelCase ( self : Any ): move_cursor(len(self.choices ) - self.position , 'DOWN' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__A )] for number in range(1_0 )] ) def _lowerCamelCase ( self : int ): __UpperCamelCase = int(chr(self.current_selection ) ) __UpperCamelCase = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , __A ) else: return else: return def _lowerCamelCase ( self : Tuple , __A : int = 0 ): if self.prompt: linebreak() forceWrite(self.prompt , '\n' ) if in_colab: forceWrite('Please input a choice index (starting from 0), and press enter' , '\n' ) else: forceWrite('Please select a choice using the arrow or number keys, and selecting with enter' , '\n' ) __UpperCamelCase = default_choice for i in range(len(self.choices ) ): self.print_choice(__A ) forceWrite('\n' ) move_cursor(len(self.choices ) - self.position , 'UP' ) with cursor.hide(): while True: if in_colab: try: __UpperCamelCase = int(builtins.input() ) except ValueError: __UpperCamelCase = default_choice else: __UpperCamelCase = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , 'UP' ) clear_line() self.write_choice(__A , '\n' ) return choice
434
'''simple docstring''' a__ : dict[str, float] ={ "km/h": 1.0, "m/s": 3.6, "mph": 1.609_344, "knot": 1.852, } a__ : dict[str, float] ={ "km/h": 1.0, "m/s": 0.277_777_778, "mph": 0.621_371_192, "knot": 0.539_956_803, } def lowercase__ ( __lowercase : float , __lowercase : str , __lowercase : str ) -> float: """simple docstring""" if unit_to not in speed_chart or unit_from not in speed_chart_inverse: __UpperCamelCase = ( F'''Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n''' F'''Valid values are: {', '.join(__lowercase )}''' ) raise ValueError(__lowercase ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
434
1
"""simple docstring""" def _snake_case ( _snake_case : str , _snake_case : str ) -> int: '''simple docstring''' if len(_snake_case ) != len(_snake_case ): raise ValueError('String lengths must match!' ) _A = 0 for chara, chara in zip(_snake_case , _snake_case ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
7
"""simple docstring""" import math from datetime import datetime, timedelta def _snake_case ( _snake_case : int ) -> datetime: '''simple docstring''' _A = year % 19 _A = year % 4 _A = year % 7 _A = math.floor(year / 1_00 ) _A = math.floor((13 + 8 * leap_day_inhibits) / 25 ) _A = leap_day_inhibits / 4 _A = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 _A = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 _A = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon _A = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(_snake_case , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(_snake_case , 4 , 18 ) else: return datetime(_snake_case , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_994, 2_000, 2_010, 2_021, 2_023): a = '''will be''' if year > datetime.now().year else '''was''' print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
7
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase : Optional[int] = logging.get_logger(__name__) __UpperCAmelCase : Union[str, Any] = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class lowerCamelCase ( SCREAMING_SNAKE_CASE ): UpperCAmelCase : Optional[Any] = 'distilbert' UpperCAmelCase : Optional[Any] = { 'hidden_size': 'dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', } def __init__( self : str , __snake_case : List[Any]=30522 , __snake_case : int=512 , __snake_case : List[str]=False , __snake_case : Tuple=6 , __snake_case : List[str]=12 , __snake_case : List[Any]=768 , __snake_case : List[Any]=4 * 768 , __snake_case : List[str]=0.1 , __snake_case : str=0.1 , __snake_case : Optional[int]="gelu" , __snake_case : Tuple=0.02 , __snake_case : Any=0.1 , __snake_case : Optional[int]=0.2 , __snake_case : str=0 , **__snake_case : Union[str, Any] , ) -> str: _a : Tuple = vocab_size _a : List[Any] = max_position_embeddings _a : Union[str, Any] = sinusoidal_pos_embds _a : Tuple = n_layers _a : List[str] = n_heads _a : Optional[Any] = dim _a : Union[str, Any] = hidden_dim _a : List[str] = dropout _a : Optional[Any] = attention_dropout _a : Optional[Any] = activation _a : Union[str, Any] = initializer_range _a : List[Any] = qa_dropout _a : List[Any] = seq_classif_dropout super().__init__(**__snake_case , pad_token_id=__snake_case ) class lowerCamelCase ( SCREAMING_SNAKE_CASE ): @property def snake_case_ ( self : Dict ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _a : Any = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _a : Any = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
249
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class lowerCamelCase : def __init__( self : Tuple , __snake_case : Any , __snake_case : List[str]=13 , __snake_case : Dict=2 , __snake_case : Dict=24 , __snake_case : Optional[int]=16 , __snake_case : Optional[Any]=True , __snake_case : Any=True , __snake_case : Dict=32 , __snake_case : Optional[Any]=5 , __snake_case : Union[str, Any]=4 , __snake_case : Optional[Any]=37 , __snake_case : str="gelu" , __snake_case : Dict=0.1 , __snake_case : int=0.1 , __snake_case : Optional[int]=10 , __snake_case : str=0.02 , __snake_case : Any=None , __snake_case : Optional[Any]=2 , __snake_case : Optional[Any]=2 , ) -> Optional[Any]: _a : str = parent _a : Dict = batch_size _a : Union[str, Any] = patch_size _a : int = max_length _a : Dict = num_mel_bins _a : str = is_training _a : Optional[Any] = use_labels _a : List[Any] = hidden_size _a : Union[str, Any] = num_hidden_layers _a : Any = num_attention_heads _a : List[Any] = intermediate_size _a : Any = hidden_act _a : Union[str, Any] = hidden_dropout_prob _a : Tuple = attention_probs_dropout_prob _a : Any = type_sequence_label_size _a : Any = initializer_range _a : Optional[Any] = scope _a : List[Any] = frequency_stride _a : Tuple = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _a : int = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 _a : Dict = (self.max_length - self.patch_size) // self.time_stride + 1 _a : str = frequency_out_dimension * time_out_dimension _a : Union[str, Any] = num_patches + 2 def snake_case_ ( self : List[str] ) -> List[Any]: _a : str = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) _a : Union[str, Any] = None if self.use_labels: _a : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a : Optional[int] = self.get_config() return config, input_values, labels def snake_case_ ( self : Dict ) -> Optional[int]: return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def snake_case_ ( self : Dict , __snake_case : Optional[int] , __snake_case : Optional[int] , __snake_case : Optional[Any] ) -> Tuple: _a : Any = ASTModel(config=__snake_case ) model.to(__snake_case ) model.eval() _a : Any = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self : Union[str, Any] ) -> str: _a : Optional[int] = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ) : Tuple = config_and_inputs _a : Tuple = {'''input_values''': input_values} return config, inputs_dict @require_torch class lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): UpperCAmelCase : str = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) UpperCAmelCase : Union[str, Any] = ( {'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel} if is_torch_available() else {} ) UpperCAmelCase : Tuple = False UpperCAmelCase : str = False UpperCAmelCase : Union[str, Any] = False UpperCAmelCase : int = False def snake_case_ ( self : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : Optional[int] ) -> List[Any]: if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def snake_case_ ( self : List[str] ) -> List[Any]: _a : str = ASTModelTester(self ) _a : str = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def snake_case_ ( self : int ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''AST does not use inputs_embeds''' ) def snake_case_ ( self : Optional[int] ) -> Optional[int]: pass def snake_case_ ( self : Any ) -> int: _a , _a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[str] = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _a : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def snake_case_ ( self : Optional[Any] ) -> Optional[int]: _a , _a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Any = model_class(__snake_case ) _a : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : str = [*signature.parameters.keys()] _a : Union[str, Any] = ['''input_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def snake_case_ ( self : List[Any] ) -> Optional[Any]: _a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) @slow def snake_case_ ( self : Any ) -> List[str]: for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Tuple = ASTModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def lowerCamelCase_ ( ): _a : int = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' ) _a , _a : Tuple = torchaudio.load(UpperCamelCase_ ) return audio, sampling_rate @require_torch @require_torchaudio class lowerCamelCase ( unittest.TestCase ): @cached_property def snake_case_ ( self : List[Any] ) -> List[str]: return ( ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ) if is_torchaudio_available() else None ) @slow def snake_case_ ( self : Union[str, Any] ) -> Dict: _a : List[Any] = self.default_feature_extractor _a : List[str] = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ).to(__snake_case ) _a : Union[str, Any] = self.default_feature_extractor _a , _a : str = prepare_audio() _a : List[str] = audio.squeeze().numpy() _a : str = feature_extractor(__snake_case , sampling_rate=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): _a : Dict = model(**__snake_case ) # verify the logits _a : Union[str, Any] = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , __snake_case ) _a : str = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1E-4 ) )
249
1
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class __lowercase (__SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _UpperCAmelCase = PriorTransformer _UpperCAmelCase = """hidden_states""" @property def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = 4 SCREAMING_SNAKE_CASE_ : int = 8 SCREAMING_SNAKE_CASE_ : Optional[Any] = 7 SCREAMING_SNAKE_CASE_ : List[str] = floats_tensor((batch_size, embedding_dim) ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = floats_tensor((batch_size, embedding_dim) ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase__ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def UpperCamelCase__ ( self , lowerCAmelCase__=0 ): """simple docstring""" torch.manual_seed(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 4 SCREAMING_SNAKE_CASE_ : Tuple = 8 SCREAMING_SNAKE_CASE_ : List[str] = 7 SCREAMING_SNAKE_CASE_ : str = torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase__ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def UpperCamelCase__ ( self ): """simple docstring""" return (4, 8) @property def UpperCamelCase__ ( self ): """simple docstring""" return (4, 8) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = { 'num_attention_heads': 2, 'attention_head_dim': 4, 'num_layers': 2, 'embedding_dim': 8, 'num_embeddings': 7, 'additional_embeddings': 4, } SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = PriorTransformer.from_pretrained( 'hf-internal-testing/prior-dummy' , output_loading_info=lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[Any] = self.model_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ : Any = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ : Optional[Any] = ['hidden_states', 'timestep'] self.assertListEqual(arg_names[:2] , lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = PriorTransformer.from_pretrained('hf-internal-testing/prior-dummy' ) SCREAMING_SNAKE_CASE_ : Tuple = model.to(lowerCAmelCase__ ) if hasattr(lowerCAmelCase__ , 'set_default_attn_processor' ): model.set_default_attn_processor() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_dummy_seed_input() with torch.no_grad(): SCREAMING_SNAKE_CASE_ : List[str] = model(**lowerCAmelCase__ )[0] SCREAMING_SNAKE_CASE_ : List[str] = output[0, :5].flatten().cpu() print(lowerCAmelCase__ ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([-1.3_436, -0.2_870, 0.7_538, 0.4_368, -0.0_239] ) self.assertTrue(torch_all_close(lowerCAmelCase__ , lowerCAmelCase__ , rtol=1E-2 ) ) @slow class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self , lowerCAmelCase__=1 , lowerCAmelCase__=7_6_8 , lowerCAmelCase__=7_7 , lowerCAmelCase__=0 ): """simple docstring""" torch.manual_seed(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = batch_size SCREAMING_SNAKE_CASE_ : List[str] = embedding_dim SCREAMING_SNAKE_CASE_ : Dict = num_embeddings SCREAMING_SNAKE_CASE_ : Tuple = torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase__ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [1_3, [-0.5_861, 0.1_283, -0.0_931, 0.0_882, 0.4_476, 0.1_329, -0.0_498, 0.0_640]], [3_7, [-0.4_913, 0.0_110, -0.0_483, 0.0_541, 0.4_954, -0.0_170, 0.0_354, 0.1_651]], # fmt: on ] ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = PriorTransformer.from_pretrained('kandinsky-community/kandinsky-2-1-prior' , subfolder='prior' ) model.to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_dummy_seed_input(seed=lowerCAmelCase__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : str = model(**lowerCAmelCase__ )[0] assert list(sample.shape ) == [1, 7_6_8] SCREAMING_SNAKE_CASE_ : Optional[Any] = sample[0, :8].flatten().cpu() print(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor(lowerCAmelCase__ ) assert torch_all_close(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 )
101
'''simple docstring''' def lowerCamelCase__ ( a ): __snake_case = int(a ) if n_element < 1: __snake_case = ValueError('a should be a positive number' ) raise my_error __snake_case = [1] __snake_case , __snake_case , __snake_case = (0, 0, 0) __snake_case = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": _lowercase = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") _lowercase = hamming(int(n)) print("""-----------------------------------------------------""") print(f'''The list with nth numbers is: {hamming_numbers}''') print("""-----------------------------------------------------""")
356
0
'''simple docstring''' from __future__ import annotations def lowerCAmelCase__ ( a_ : str , a_ : list[str] | None = None , a_ : dict[str, float] | None = None , a_ : bool = False , ) -> tuple[int, float, str]: UpperCAmelCase__ : List[Any] = cipher_alphabet or [chr(a_ ) for i in range(9_7 , 1_2_3 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) UpperCAmelCase__ : Tuple = { '''a''': 0.08_497, '''b''': 0.01_492, '''c''': 0.02_202, '''d''': 0.04_253, '''e''': 0.11_162, '''f''': 0.02_228, '''g''': 0.02_015, '''h''': 0.06_094, '''i''': 0.07_546, '''j''': 0.00_153, '''k''': 0.01_292, '''l''': 0.04_025, '''m''': 0.02_406, '''n''': 0.06_749, '''o''': 0.07_507, '''p''': 0.01_929, '''q''': 0.00_095, '''r''': 0.07_587, '''s''': 0.06_327, '''t''': 0.09_356, '''u''': 0.02_758, '''v''': 0.00_978, '''w''': 0.02_560, '''x''': 0.00_150, '''y''': 0.01_994, '''z''': 0.00_077, } else: # Custom frequencies dictionary UpperCAmelCase__ : Optional[int] = frequencies_dict if not case_sensitive: UpperCAmelCase__ : Tuple = ciphertext.lower() # Chi squared statistic values UpperCAmelCase__ : dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(a_ ) ): UpperCAmelCase__ : Tuple = '''''' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet UpperCAmelCase__ : List[str] = (alphabet_letters.index(letter.lower() ) - shift) % len( a_ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter UpperCAmelCase__ : int = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: UpperCAmelCase__ : Any = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message UpperCAmelCase__ : Union[str, Any] = decrypted_with_shift.lower().count(a_ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCAmelCase__ : Optional[Any] = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCAmelCase__ : Tuple = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message UpperCAmelCase__ : List[Any] = decrypted_with_shift.count(a_ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCAmelCase__ : str = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCAmelCase__ : int = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary UpperCAmelCase__ : List[Any] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(a_ : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] UpperCAmelCase__ : int = min( a_ , key=a_ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : int = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
599
'''simple docstring''' from collections import Counter from timeit import timeit def lowerCAmelCase__ ( a_ : str = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(''' ''' , '''''' ).lower() ).values() ) < 2 def lowerCAmelCase__ ( a_ : str = "" ) -> bool: if len(a_ ) == 0: return True UpperCAmelCase__ : int = input_str.replace(''' ''' , '''''' ).lower() # character_freq_dict: Stores the frequency of every character in the input string UpperCAmelCase__ : dict[str, int] = {} for character in lower_case_input_str: UpperCAmelCase__ : Optional[Any] = character_freq_dict.get(a_ , 0 ) + 1 UpperCAmelCase__ : str = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def lowerCAmelCase__ ( a_ : str = "" ) -> None: print('''\nFor string = ''' , a_ , ''':''' ) print( '''> can_string_be_rearranged_as_palindrome_counter()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome_counter(a_ ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome_counter(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) print( '''> can_string_be_rearranged_as_palindrome()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome(a_ ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) if __name__ == "__main__": UpperCamelCase_ = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) UpperCamelCase_ = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
599
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : Dict = BlipImageProcessor() SCREAMING_SNAKE_CASE_ : Optional[int] = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) SCREAMING_SNAKE_CASE_ : str = BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert' ) SCREAMING_SNAKE_CASE_ : Optional[int] = InstructBlipProcessor(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self , **lowerCAmelCase__ ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ).tokenizer def UpperCamelCase__ ( self , **lowerCAmelCase__ ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ).image_processor def UpperCamelCase__ ( self , **lowerCAmelCase__ ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ).qformer_tokenizer def UpperCamelCase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] SCREAMING_SNAKE_CASE_ : Optional[int] = [Image.fromarray(np.moveaxis(lowerCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : str = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) SCREAMING_SNAKE_CASE_ : int = self.get_image_processor(do_normalize=lowerCAmelCase__ , padding_value=1.0 ) SCREAMING_SNAKE_CASE_ : Any = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowerCAmelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase__ ) self.assertIsInstance(processor.qformer_tokenizer , lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : List[str] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Dict = self.get_qformer_tokenizer() SCREAMING_SNAKE_CASE_ : str = InstructBlipProcessor( tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ , qformer_tokenizer=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : List[str] = image_processor(lowerCAmelCase__ , return_tensors='np' ) SCREAMING_SNAKE_CASE_ : Optional[int] = processor(images=lowerCAmelCase__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Tuple = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_qformer_tokenizer() SCREAMING_SNAKE_CASE_ : Any = InstructBlipProcessor( tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ , qformer_tokenizer=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = 'lower newer' SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor(text=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer(lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = qformer_tokenizer(lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['qformer_' + key] ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : str = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : List[Any] = self.get_qformer_tokenizer() SCREAMING_SNAKE_CASE_ : Tuple = InstructBlipProcessor( tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ , qformer_tokenizer=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = 'lower newer' SCREAMING_SNAKE_CASE_ : int = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : List[str] = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : str = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : List[str] = self.get_qformer_tokenizer() SCREAMING_SNAKE_CASE_ : List[str] = InstructBlipProcessor( tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ , qformer_tokenizer=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor.batch_decode(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = tokenizer.batch_decode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.get_image_processor() SCREAMING_SNAKE_CASE_ : str = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : List[Any] = self.get_qformer_tokenizer() SCREAMING_SNAKE_CASE_ : Tuple = InstructBlipProcessor( tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ , qformer_tokenizer=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = 'lower newer' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Any = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , )
101
"""simple docstring""" import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _A : str = False try: _A : Dict = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class a__ : def __init__( self , _a = None , _a = [] ): lowercase : Union[str, Any] = 0 lowercase : str = choices lowercase : List[Any] = prompt if sys.platform == "win32": lowercase : Union[str, Any] = "*" else: lowercase : int = "➔ " def __magic_name__ ( self , _a , _a = "" ): if sys.platform != "win32": writeColor(self.choices[index] , 32 , _a ) else: forceWrite(self.choices[index] , _a ) def __magic_name__ ( self , _a ): if index == self.position: forceWrite(f""" {self.arrow_char} """ ) self.write_choice(_a ) else: forceWrite(f""" {self.choices[index]}""" ) reset_cursor() def __magic_name__ ( self , _a , _a = 1 ): lowercase : Optional[int] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_a ) move_cursor(_a , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["up"] ) def __magic_name__ ( self ): self.move_direction(Direction.UP ) @input.mark(KEYMAP["down"] ) def __magic_name__ ( self ): self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["newline"] ) def __magic_name__ ( self ): move_cursor(len(self.choices ) - self.position , "DOWN" ) return self.position @input.mark(KEYMAP["interrupt"] ) def __magic_name__ ( self ): move_cursor(len(self.choices ) - self.position , "DOWN" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_a )] for number in range(10 )] ) def __magic_name__ ( self ): lowercase : List[str] = int(chr(self.current_selection ) ) lowercase : Union[str, Any] = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _a ) else: return else: return def __magic_name__ ( self , _a = 0 ): if self.prompt: linebreak() forceWrite(self.prompt , "\n" ) if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter" , "\n" ) else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter" , "\n" ) lowercase : Tuple = default_choice for i in range(len(self.choices ) ): self.print_choice(_a ) forceWrite("\n" ) move_cursor(len(self.choices ) - self.position , "UP" ) with cursor.hide(): while True: if in_colab: try: lowercase : Tuple = int(builtins.input() ) except ValueError: lowercase : Optional[int] = default_choice else: lowercase : int = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , "UP" ) clear_line() self.write_choice(_a , "\n" ) return choice
361
0
from typing import TYPE_CHECKING from ...utils import _LazyModule _lowercase = {'''tokenization_bertweet''': ['''BertweetTokenizer''']} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
714
from __future__ import annotations from random import random class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : int | None = None ) -> int: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Any = random() lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Any ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f'''\'{self.value}: {self.prior:.5}\'''' else: return pformat( {f'''{self.value}: {self.prior:.5}''': (self.left, self.right)} ,indent=1 ) def __str__( self : str ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = str(self.value ) + " " lowerCAmelCase_ : List[Any] = str(self.left or "" ) lowerCAmelCase_ : Union[str, Any] = str(self.right or "" ) return value + left + right def UpperCamelCase ( snake_case__ , snake_case__): if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowerCAmelCase_ , lowerCAmelCase_ : Any = split(root.left , snake_case__) return left, root else: lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = split(root.right , snake_case__) return root, right def UpperCamelCase ( snake_case__ , snake_case__): if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowerCAmelCase_ : Dict = merge(left.right , snake_case__) return left else: lowerCAmelCase_ : List[str] = merge(snake_case__ , right.left) return right def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = Node(snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = split(snake_case__ , snake_case__) return merge(merge(snake_case__ , snake_case__) , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : List[str] = split(snake_case__ , value - 1) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = split(snake_case__ , snake_case__) return merge(snake_case__ , snake_case__) def UpperCamelCase ( snake_case__): if not root: # None return else: inorder(root.left) print(root.value , end=",") inorder(root.right) def UpperCamelCase ( snake_case__ , snake_case__): for arg in args.split(): if arg[0] == "+": lowerCAmelCase_ : List[str] = insert(snake_case__ , int(arg[1:])) elif arg[0] == "-": lowerCAmelCase_ : Optional[int] = erase(snake_case__ , int(arg[1:])) else: print("Unknown command") return root def UpperCamelCase ( ): lowerCAmelCase_ : str = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. ") lowerCAmelCase_ : str = input() while args != "q": lowerCAmelCase_ : int = interact_treap(snake_case__ , snake_case__) print(snake_case__) lowerCAmelCase_ : str = input() print("good by!") if __name__ == "__main__": import doctest doctest.testmod() main()
683
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { "andreasmadsen/efficient_mlm_m0.40": ( "https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json" ), } class __A ( snake_case__ ): '''simple docstring''' a_ = '''roberta-prelayernorm''' def __init__( self , _snake_case=5_0265 , _snake_case=768 , _snake_case=12 , _snake_case=12 , _snake_case=3072 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=512 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-1_2 , _snake_case=1 , _snake_case=0 , _snake_case=2 , _snake_case="absolute" , _snake_case=True , _snake_case=None , **_snake_case , ): super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case ) _lowerCAmelCase : Any = vocab_size _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : Optional[int] = num_attention_heads _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : Optional[int] = intermediate_size _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = max_position_embeddings _lowerCAmelCase : Any = type_vocab_size _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : List[Any] = layer_norm_eps _lowerCAmelCase : str = position_embedding_type _lowerCAmelCase : int = use_cache _lowerCAmelCase : Optional[Any] = classifier_dropout class __A ( snake_case__ ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE__ ( self ): if self.task == "multiple-choice": _lowerCAmelCase : Dict = {0: "batch", 1: "choice", 2: "sequence"} else: _lowerCAmelCase : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
424
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo snake_case = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" snake_case = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" snake_case = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case = 1 , _snake_case = 4 , ): return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_snake_case , hypotheses=_snake_case , min_len=_snake_case , max_len=_snake_case ) }
424
1
'''simple docstring''' def snake_case_ (): UpperCAmelCase = [] UpperCAmelCase = 1 while len(_a ) < 1E6: constant.append(str(_a ) ) i += 1 UpperCAmelCase = ''''''.join(_a ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[9_9] ) * int(constant[9_9_9] ) * int(constant[9_9_9_9] ) * int(constant[9_9_9_9_9] ) * int(constant[9_9_9_9_9_9] ) ) if __name__ == "__main__": print(solution())
358
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _a ( __a , unittest.TestCase ): __a : Tuple = ShapEPipeline __a : Tuple = ["""prompt"""] __a : Tuple = ["""prompt"""] __a : str = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] __a : Union[str, Any] = False @property def A ( self : Optional[Any] ): '''simple docstring''' return 32 @property def A ( self : List[Any] ): '''simple docstring''' return 32 @property def A ( self : Union[str, Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def A ( self : Dict ): '''simple docstring''' return 8 @property def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def A ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(lowercase ) @property def A ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } UpperCAmelCase = PriorTransformer(**lowercase ) return model @property def A ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } UpperCAmelCase = ShapERenderer(**lowercase ) return model def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = self.dummy_prior UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = self.dummy_tokenizer UpperCAmelCase = self.dummy_renderer UpperCAmelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1_024 , prediction_type='''sample''' , use_karras_sigmas=lowercase , clip_sample=lowercase , clip_sample_range=1.0 , ) UpperCAmelCase = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def A ( self : Dict , lowercase : Optional[int] , lowercase : Optional[int]=0 ): '''simple docstring''' if str(lowercase ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(lowercase ) else: UpperCAmelCase = torch.Generator(device=lowercase ).manual_seed(lowercase ) UpperCAmelCase = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def A ( self : str ): '''simple docstring''' UpperCAmelCase = '''cpu''' UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**lowercase ) UpperCAmelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) UpperCAmelCase = pipe(**self.get_dummy_inputs(lowercase ) ) UpperCAmelCase = output.images[0] UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) UpperCAmelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self : int ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = torch_device == '''cpu''' UpperCAmelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowercase , relax_max_difference=lowercase , ) def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**lowercase ) UpperCAmelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) UpperCAmelCase = 1 UpperCAmelCase = 2 UpperCAmelCase = self.get_dummy_inputs(lowercase ) for key in inputs.keys(): if key in self.batch_params: UpperCAmelCase = batch_size * [inputs[key]] UpperCAmelCase = pipe(**lowercase , num_images_per_prompt=lowercase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _a ( unittest.TestCase ): def A ( self : str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : int ): '''simple docstring''' UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) UpperCAmelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' ) UpperCAmelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) UpperCAmelCase = torch.Generator(device=lowercase ).manual_seed(0 ) UpperCAmelCase = pipe( '''a shark''' , generator=lowercase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowercase , lowercase )
358
1
'''simple docstring''' import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml _lowerCAmelCase = NewType("DataClass", Any) _lowerCAmelCase = NewType("DataClassType", Any) def UpperCamelCase ( a ) -> Dict: '''simple docstring''' if isinstance(a , a ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def UpperCamelCase ( a ) -> Callable[[str], Any]: '''simple docstring''' __magic_name__ = {str(a ): choice for choice in choices} return lambda a : str_to_choice.get(a , a ) def UpperCamelCase ( *, a = None , a = None , a = dataclasses.MISSING , a = dataclasses.MISSING , a = None , **a , ) -> dataclasses.Field: '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __magic_name__ = {} if aliases is not None: __magic_name__ = aliases if help is not None: __magic_name__ = help return dataclasses.field(metadata=a , default=a , default_factory=a , **a ) class _SCREAMING_SNAKE_CASE ( __a ): __SCREAMING_SNAKE_CASE :Iterable[DataClassType] def __init__( self : Tuple , a__ : Union[DataClassType, Iterable[DataClassType]] , **a__ : Tuple ): # To make the default appear when using --help if "formatter_class" not in kwargs: __magic_name__ = ArgumentDefaultsHelpFormatter super().__init__(**a__ ) if dataclasses.is_dataclass(a__ ): __magic_name__ = [dataclass_types] __magic_name__ = list(a__ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(a__ ) @staticmethod def snake_case__ ( a__ : ArgumentParser , a__ : dataclasses.Field ): __magic_name__ = F'''--{field.name}''' __magic_name__ = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , a__ ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) __magic_name__ = kwargs.pop('''aliases''' , [] ) if isinstance(a__ , a__ ): __magic_name__ = [aliases] __magic_name__ = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(a__ , '''UnionType''' ) and isinstance(a__ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(a__ ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' F''' Problem encountered in field \'{field.name}\'.''' ) if type(a__ ) not in field.type.__args__: # filter `str` in Union __magic_name__ = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __magic_name__ = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __magic_name__ = ( field.type.__args__[0] if isinstance(a__ , field.type.__args__[1] ) else field.type.__args__[1] ) __magic_name__ = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __magic_name__ = {} if origin_type is Literal or (isinstance(field.type , a__ ) and issubclass(field.type , a__ )): if origin_type is Literal: __magic_name__ = field.type.__args__ else: __magic_name__ = [x.value for x in field.type] __magic_name__ = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: __magic_name__ = field.default else: __magic_name__ = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __magic_name__ = copy(a__ ) # Hack because type=bool in argparse does not behave as we want. __magic_name__ = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __magic_name__ = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __magic_name__ = default # This tells argparse we accept 0 or 1 value after --field_name __magic_name__ = '''?''' # This is the value that will get picked if we do --field_name (without value) __magic_name__ = True elif isclass(a__ ) and issubclass(a__ , a__ ): __magic_name__ = field.type.__args__[0] __magic_name__ = '''+''' if field.default_factory is not dataclasses.MISSING: __magic_name__ = field.default_factory() elif field.default is dataclasses.MISSING: __magic_name__ = True else: __magic_name__ = field.type if field.default is not dataclasses.MISSING: __magic_name__ = field.default elif field.default_factory is not dataclasses.MISSING: __magic_name__ = field.default_factory() else: __magic_name__ = True parser.add_argument(a__ , *a__ , **a__ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __magic_name__ = False parser.add_argument(F'''--no_{field.name}''' , action='''store_false''' , dest=field.name , **a__ ) def snake_case__ ( self : Any , a__ : DataClassType ): if hasattr(a__ , '''_argument_group_name''' ): __magic_name__ = self.add_argument_group(dtype._argument_group_name ) else: __magic_name__ = self try: __magic_name__ = get_type_hints(a__ ) except NameError: raise RuntimeError( F'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(a__ ): __magic_name__ = '''.'''.join(map(a__ , sys.version_info[:3] ) ) raise RuntimeError( F'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(a__ ): if not field.init: continue __magic_name__ = type_hints[field.name] self._parse_dataclass_field(a__ , a__ ) def snake_case__ ( self : str , a__ : int=None , a__ : Dict=False , a__ : Dict=True , a__ : int=None , a__ : List[Any]=None , ): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __magic_name__ = [] if args_filename: args_files.append(Path(a__ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __magic_name__ = ArgumentParser() args_file_parser.add_argument(a__ , type=a__ , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) __magic_name__ , __magic_name__ = args_file_parser.parse_known_args(args=a__ ) __magic_name__ = vars(a__ ).get(args_file_flag.lstrip('''-''' ) , a__ ) if cmd_args_file_paths: args_files.extend([Path(a__ ) for p in cmd_args_file_paths] ) __magic_name__ = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __magic_name__ = file_args + args if args is not None else file_args + sys.argv[1:] __magic_name__ , __magic_name__ = self.parse_known_args(args=a__ ) __magic_name__ = [] for dtype in self.dataclass_types: __magic_name__ = {f.name for f in dataclasses.fields(a__ ) if f.init} __magic_name__ = {k: v for k, v in vars(a__ ).items() if k in keys} for k in keys: delattr(a__ , a__ ) __magic_name__ = dtype(**a__ ) outputs.append(a__ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(a__ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def snake_case__ ( self : List[Any] , a__ : Dict[str, Any] , a__ : bool = False ): __magic_name__ = set(args.keys() ) __magic_name__ = [] for dtype in self.dataclass_types: __magic_name__ = {f.name for f in dataclasses.fields(a__ ) if f.init} __magic_name__ = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __magic_name__ = dtype(**a__ ) outputs.append(a__ ) if not allow_extra_keys and unused_keys: raise ValueError(F'''Some keys are not used by the HfArgumentParser: {sorted(a__ )}''' ) return tuple(a__ ) def snake_case__ ( self : Dict , a__ : str , a__ : bool = False ): with open(Path(a__ ) , encoding='''utf-8''' ) as open_json_file: __magic_name__ = json.loads(open_json_file.read() ) __magic_name__ = self.parse_dict(a__ , allow_extra_keys=a__ ) return tuple(a__ ) def snake_case__ ( self : str , a__ : str , a__ : bool = False ): __magic_name__ = self.parse_dict(yaml.safe_load(Path(a__ ).read_text() ) , allow_extra_keys=a__ ) return tuple(a__ )
432
'''simple docstring''' import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 _lowerCAmelCase = 0B10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 _lowerCAmelCase = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class _SCREAMING_SNAKE_CASE : def __init__( self : List[Any] ): __magic_name__ = WATERMARK_BITS __magic_name__ = WatermarkEncoder() self.encoder.set_watermark('''bits''' , self.watermark ) def snake_case__ ( self : Optional[Any] , a__ : torch.FloatTensor ): # can't encode images that are smaller than 256 if images.shape[-1] < 256: return images __magic_name__ = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __magic_name__ = [self.encoder.encode(a__ , '''dwtDct''' ) for image in images] __magic_name__ = torch.from_numpy(np.array(a__ ) ).permute(0 , 3 , 1 , 2 ) __magic_name__ = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
432
1
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets __snake_case = """\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } """ __snake_case = """\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. """ __snake_case = """ Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: \"accuracy\": Accuracy \"f1\": F1 score \"pearson\": Pearson Correlation \"spearmanr\": Spearman Correlation \"matthews_correlation\": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> glue_metric = datasets.load_metric('glue', 'stsb') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)}) {'pearson': 1.0, 'spearmanr': 1.0} >>> glue_metric = datasets.load_metric('glue', 'cola') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: '''simple docstring''' return float((preds == labels).mean() ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ = simple_accuracy(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = float(fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = float(pearsonr(UpperCamelCase_ , UpperCamelCase_ )[0] ) SCREAMING_SNAKE_CASE__ = float(spearmanr(UpperCamelCase_ , UpperCamelCase_ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): def A_ ( self : List[str] ): if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def A_ ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple ): if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(UpperCAmelCase_ , UpperCAmelCase_ )} elif self.config_name == "stsb": return pearson_and_spearman(UpperCAmelCase_ , UpperCAmelCase_ ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(UpperCAmelCase_ , UpperCAmelCase_ ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
701
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowercase__ ( _UpperCAmelCase ): A__ : torch.FloatTensor class lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ): @register_to_config def __init__( self : List[Any] , UpperCAmelCase_ : int = 65536 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : str = "fourier" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , UpperCAmelCase_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , UpperCAmelCase_ : Tuple[str] = "UNetMidBlock1D" , UpperCAmelCase_ : str = None , UpperCAmelCase_ : Tuple[int] = (32, 32, 64) , UpperCAmelCase_ : str = None , UpperCAmelCase_ : int = 8 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = False , ): super().__init__() SCREAMING_SNAKE_CASE__ = sample_size # time if time_embedding_type == "fourier": SCREAMING_SNAKE_CASE__ = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=UpperCAmelCase_ , log=UpperCAmelCase_ , flip_sin_to_cos=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = 2 * block_out_channels[0] elif time_embedding_type == "positional": SCREAMING_SNAKE_CASE__ = Timesteps( block_out_channels[0] , flip_sin_to_cos=UpperCAmelCase_ , downscale_freq_shift=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = block_out_channels[0] if use_timestep_embedding: SCREAMING_SNAKE_CASE__ = block_out_channels[0] * 4 SCREAMING_SNAKE_CASE__ = TimestepEmbedding( in_channels=UpperCAmelCase_ , time_embed_dim=UpperCAmelCase_ , act_fn=UpperCAmelCase_ , out_dim=block_out_channels[0] , ) SCREAMING_SNAKE_CASE__ = nn.ModuleList([] ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = nn.ModuleList([] ) SCREAMING_SNAKE_CASE__ = None # down SCREAMING_SNAKE_CASE__ = in_channels for i, down_block_type in enumerate(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = output_channel SCREAMING_SNAKE_CASE__ = block_out_channels[i] if i == 0: input_channel += extra_in_channels SCREAMING_SNAKE_CASE__ = i == len(UpperCAmelCase_ ) - 1 SCREAMING_SNAKE_CASE__ = get_down_block( UpperCAmelCase_ , num_layers=UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(UpperCAmelCase_ ) # mid SCREAMING_SNAKE_CASE__ = get_mid_block( UpperCAmelCase_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=UpperCAmelCase_ , add_downsample=UpperCAmelCase_ , ) # up SCREAMING_SNAKE_CASE__ = list(reversed(UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE__ = reversed_block_out_channels[0] if out_block_type is None: SCREAMING_SNAKE_CASE__ = out_channels else: SCREAMING_SNAKE_CASE__ = block_out_channels[0] for i, up_block_type in enumerate(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = output_channel SCREAMING_SNAKE_CASE__ = ( reversed_block_out_channels[i + 1] if i < len(UpperCAmelCase_ ) - 1 else final_upsample_channels ) SCREAMING_SNAKE_CASE__ = i == len(UpperCAmelCase_ ) - 1 SCREAMING_SNAKE_CASE__ = get_up_block( UpperCAmelCase_ , num_layers=UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = output_channel # out SCREAMING_SNAKE_CASE__ = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) SCREAMING_SNAKE_CASE__ = get_out_block( out_block_type=UpperCAmelCase_ , num_groups_out=UpperCAmelCase_ , embed_dim=block_out_channels[0] , out_channels=UpperCAmelCase_ , act_fn=UpperCAmelCase_ , fc_dim=block_out_channels[-1] // 4 , ) def A_ ( self : List[Any] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : Union[torch.Tensor, float, int] , UpperCAmelCase_ : bool = True , ): SCREAMING_SNAKE_CASE__ = timestep if not torch.is_tensor(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(UpperCAmelCase_ ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE__ = timesteps[None].to(sample.device ) SCREAMING_SNAKE_CASE__ = self.time_proj(UpperCAmelCase_ ) if self.config.use_timestep_embedding: SCREAMING_SNAKE_CASE__ = self.time_mlp(UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE__ = timestep_embed[..., None] SCREAMING_SNAKE_CASE__ = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) SCREAMING_SNAKE_CASE__ = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down SCREAMING_SNAKE_CASE__ = () for downsample_block in self.down_blocks: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = downsample_block(hidden_states=UpperCAmelCase_ , temb=UpperCAmelCase_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: SCREAMING_SNAKE_CASE__ = self.mid_block(UpperCAmelCase_ , UpperCAmelCase_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): SCREAMING_SNAKE_CASE__ = down_block_res_samples[-1:] SCREAMING_SNAKE_CASE__ = down_block_res_samples[:-1] SCREAMING_SNAKE_CASE__ = upsample_block(UpperCAmelCase_ , res_hidden_states_tuple=UpperCAmelCase_ , temb=UpperCAmelCase_ ) # 5. post-process if self.out_block: SCREAMING_SNAKE_CASE__ = self.out_block(UpperCAmelCase_ , UpperCAmelCase_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=UpperCAmelCase_ )
400
0
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class UpperCAmelCase: """simple docstring""" @staticmethod def __a ( *lowerCamelCase , **lowerCamelCase ) -> List[str]: """simple docstring""" pass def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> str: lowercase__ : Optional[Any] = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Dict: lowercase__ : Dict = np.array(__lowerCamelCase ) lowercase__ : List[str] = npimg.shape return {"hash": hashimage(__lowerCamelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class UpperCAmelCase( unittest.TestCase ): """simple docstring""" a : List[Any] = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) a : Optional[int] = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Dict: """simple docstring""" lowercase__ : Optional[Any] = MaskGenerationPipeline(model=snake_case_ , image_processor=snake_case_ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __a ( self , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: """simple docstring""" pass @require_tf @unittest.skip("Image segmentation not implemented in TF" ) def __a ( self ) -> List[str]: """simple docstring""" pass @slow @require_torch def __a ( self ) -> Any: """simple docstring""" lowercase__ : Dict = pipeline("mask-generation" , model="facebook/sam-vit-huge" ) lowercase__ : str = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg" , points_per_batch=256 ) # Shortening by hashing lowercase__ : Any = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(snake_case_ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.04_44}, {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.0_21}, {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.01_67}, {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.01_32}, {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.00_53}, {"mask": {"hash": "e2d0b7a0b7", "shape": (480, 640)}, "scores": 0.99_67}, {"mask": {"hash": "453c7844bd", "shape": (480, 640)}, "scores": 0.9_93}, {"mask": {"hash": "3d44f2926d", "shape": (480, 640)}, "scores": 0.99_09}, {"mask": {"hash": "64033ddc3f", "shape": (480, 640)}, "scores": 0.98_79}, {"mask": {"hash": "801064ff79", "shape": (480, 640)}, "scores": 0.98_34}, {"mask": {"hash": "6172f276ef", "shape": (480, 640)}, "scores": 0.97_16}, {"mask": {"hash": "b49e60e084", "shape": (480, 640)}, "scores": 0.96_12}, {"mask": {"hash": "a811e775fd", "shape": (480, 640)}, "scores": 0.95_99}, {"mask": {"hash": "a6a8ebcf4b", "shape": (480, 640)}, "scores": 0.95_52}, {"mask": {"hash": "9d8257e080", "shape": (480, 640)}, "scores": 0.95_32}, {"mask": {"hash": "32de6454a8", "shape": (480, 640)}, "scores": 0.95_16}, {"mask": {"hash": "af3d4af2c8", "shape": (480, 640)}, "scores": 0.94_99}, {"mask": {"hash": "3c6db475fb", "shape": (480, 640)}, "scores": 0.94_83}, {"mask": {"hash": "c290813fb9", "shape": (480, 640)}, "scores": 0.94_64}, {"mask": {"hash": "b6f0b8f606", "shape": (480, 640)}, "scores": 0.9_43}, {"mask": {"hash": "92ce16bfdf", "shape": (480, 640)}, "scores": 0.9_43}, {"mask": {"hash": "c749b25868", "shape": (480, 640)}, "scores": 0.94_08}, {"mask": {"hash": "efb6cab859", "shape": (480, 640)}, "scores": 0.93_35}, {"mask": {"hash": "1ff2eafb30", "shape": (480, 640)}, "scores": 0.93_26}, {"mask": {"hash": "788b798e24", "shape": (480, 640)}, "scores": 0.92_62}, {"mask": {"hash": "abea804f0e", "shape": (480, 640)}, "scores": 0.89_99}, {"mask": {"hash": "7b9e8ddb73", "shape": (480, 640)}, "scores": 0.89_86}, {"mask": {"hash": "cd24047c8a", "shape": (480, 640)}, "scores": 0.89_84}, {"mask": {"hash": "6943e6bcbd", "shape": (480, 640)}, "scores": 0.88_73}, {"mask": {"hash": "b5f47c9191", "shape": (480, 640)}, "scores": 0.88_71} ] , ) # fmt: on @require_torch @slow def __a ( self ) -> Tuple: """simple docstring""" lowercase__ : Tuple = "facebook/sam-vit-huge" lowercase__ : Optional[int] = pipeline("mask-generation" , model=snake_case_ ) lowercase__ : str = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing lowercase__ : Optional[Any] = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(snake_case_ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.04_44}, {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.02_10}, {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.01_67}, {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.01_32}, {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.00_53}, ] , )
397
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __a : @staticmethod def UpperCamelCase ( *snake_case_ : Any , **snake_case_ : str)-> int: pass @is_pipeline_test @require_vision class __a ( unittest.TestCase ): @require_torch def UpperCamelCase ( self : Dict)-> List[str]: __lowerCAmelCase =pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , ) __lowerCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") __lowerCAmelCase =image_classifier(snake_case_ , candidate_labels=["""a""", """b""", """c"""]) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(snake_case_) , [ [{"""score""": 0.3_3_3, """label""": """a"""}, {"""score""": 0.3_3_3, """label""": """b"""}, {"""score""": 0.3_3_3, """label""": """c"""}], [{"""score""": 0.3_3_3, """label""": """a"""}, {"""score""": 0.3_3_3, """label""": """c"""}, {"""score""": 0.3_3_3, """label""": """b"""}], ] , ) __lowerCAmelCase =image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2) self.assertEqual( nested_simplify(snake_case_) , [ [ {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, ], [ {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, ], [ {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, ], [ {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, ], [ {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, ], ] , ) @require_tf def UpperCamelCase ( self : Dict)-> Optional[Any]: __lowerCAmelCase =pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , framework="""tf""") __lowerCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") __lowerCAmelCase =image_classifier(snake_case_ , candidate_labels=["""a""", """b""", """c"""]) self.assertEqual( nested_simplify(snake_case_) , [{"""score""": 0.3_3_3, """label""": """a"""}, {"""score""": 0.3_3_3, """label""": """b"""}, {"""score""": 0.3_3_3, """label""": """c"""}] , ) __lowerCAmelCase =image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2) self.assertEqual( nested_simplify(snake_case_) , [ [ {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, ], [ {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, ], [ {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, ], [ {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, ], [ {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, ], ] , ) @slow @require_torch def UpperCamelCase ( self : Any)-> Dict: __lowerCAmelCase =pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , ) # This is an image of 2 cats with remotes and no planes __lowerCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") __lowerCAmelCase =image_classifier(snake_case_ , candidate_labels=["""cat""", """plane""", """remote"""]) self.assertEqual( nested_simplify(snake_case_) , [ {"""score""": 0.5_1_1, """label""": """remote"""}, {"""score""": 0.4_8_5, """label""": """cat"""}, {"""score""": 0.0_0_4, """label""": """plane"""}, ] , ) __lowerCAmelCase =image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2) self.assertEqual( nested_simplify(snake_case_) , [ [ {"""score""": 0.5_1_1, """label""": """remote"""}, {"""score""": 0.4_8_5, """label""": """cat"""}, {"""score""": 0.0_0_4, """label""": """plane"""}, ], ] * 5 , ) @slow @require_tf def UpperCamelCase ( self : Optional[int])-> int: __lowerCAmelCase =pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , framework="""tf""") # This is an image of 2 cats with remotes and no planes __lowerCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") __lowerCAmelCase =image_classifier(snake_case_ , candidate_labels=["""cat""", """plane""", """remote"""]) self.assertEqual( nested_simplify(snake_case_) , [ {"""score""": 0.5_1_1, """label""": """remote"""}, {"""score""": 0.4_8_5, """label""": """cat"""}, {"""score""": 0.0_0_4, """label""": """plane"""}, ] , ) __lowerCAmelCase =image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2) self.assertEqual( nested_simplify(snake_case_) , [ [ {"""score""": 0.5_1_1, """label""": """remote"""}, {"""score""": 0.4_8_5, """label""": """cat"""}, {"""score""": 0.0_0_4, """label""": """plane"""}, ], ] * 5 , )
354
0
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = [ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] UpperCamelCase_ = [ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def lowercase__( __UpperCamelCase: Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = torch.load(__UpperCamelCase ,map_location='cpu' ) return sd def lowercase__( __UpperCamelCase: List[Any] ,__UpperCamelCase: str ,__UpperCamelCase: int=rename_keys_prefix ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = OrderedDict() SCREAMING_SNAKE_CASE : int = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue SCREAMING_SNAKE_CASE : Any = key for name_pair in rename_keys_prefix: SCREAMING_SNAKE_CASE : str = new_key.replace(name_pair[0] ,name_pair[1] ) SCREAMING_SNAKE_CASE : List[str] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately SCREAMING_SNAKE_CASE : Union[str, Any] = new_d['cls.predictions.bias'] return new_d @torch.no_grad() def lowercase__( __UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Union[str, Any] ): """simple docstring""" assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), f"The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}." # Get Config if "pre" in checkpoint_path: SCREAMING_SNAKE_CASE : str = 'pretraining' if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE : Dict = {'visual_embedding_dim': 5_12} elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE : Any = {'visual_embedding_dim': 20_48} elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE : int = {'visual_embedding_dim': 20_48} elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE : int = {'visual_embedding_dim': 10_24} else: raise NotImplementedError(f"No implementation found for `{checkpoint_path}`." ) else: if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE : Union[str, Any] = {'visual_embedding_dim': 5_12} SCREAMING_SNAKE_CASE : Union[str, Any] = 'multichoice' elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE : int = {'visual_embedding_dim': 20_48} SCREAMING_SNAKE_CASE : Union[str, Any] = 'vqa_advanced' elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE : List[Any] = {'visual_embedding_dim': 20_48, 'num_labels': 31_29} SCREAMING_SNAKE_CASE : Dict = 'vqa' elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE : Tuple = { 'visual_embedding_dim': 10_24, 'num_labels': 2, } SCREAMING_SNAKE_CASE : Dict = 'nlvr' SCREAMING_SNAKE_CASE : List[Any] = VisualBertConfig(**__UpperCamelCase ) # Load State Dict SCREAMING_SNAKE_CASE : List[str] = load_state_dict(__UpperCamelCase ) SCREAMING_SNAKE_CASE : str = get_new_dict(__UpperCamelCase ,__UpperCamelCase ) if model_type == "pretraining": SCREAMING_SNAKE_CASE : Union[str, Any] = VisualBertForPreTraining(__UpperCamelCase ) elif model_type == "vqa": SCREAMING_SNAKE_CASE : Optional[int] = VisualBertForQuestionAnswering(__UpperCamelCase ) elif model_type == "nlvr": SCREAMING_SNAKE_CASE : List[Any] = VisualBertForVisualReasoning(__UpperCamelCase ) elif model_type == "multichoice": SCREAMING_SNAKE_CASE : str = VisualBertForMultipleChoice(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) # Save Checkpoints Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") UpperCamelCase_ = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
508
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class _a : '''simple docstring''' @staticmethod def UpperCamelCase_ ( *A, **A ): '''simple docstring''' pass def lowercase__( __UpperCamelCase: Image ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def lowercase__( __UpperCamelCase: Image ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = np.array(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Tuple = npimg.shape return {"hash": hashimage(__UpperCamelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class _a ( unittest.TestCase ): '''simple docstring''' A : str = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) A : str = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = MaskGenerationPipeline(model=A, image_processor=A ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCamelCase_ ( self, A, A ): '''simple docstring''' pass @require_tf @unittest.skip('Image segmentation not implemented in TF' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @slow @require_torch def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = pipeline('mask-generation', model='facebook/sam-vit-huge' ) SCREAMING_SNAKE_CASE : Union[str, Any] = image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg', points_per_batch=256 ) # Shortening by hashing SCREAMING_SNAKE_CASE : Any = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(A ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(A, decimals=4 ), [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.04_44}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.0_21}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.01_67}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.01_32}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.00_53}, {'mask': {'hash': 'e2d0b7a0b7', 'shape': (480, 640)}, 'scores': 0.99_67}, {'mask': {'hash': '453c7844bd', 'shape': (480, 640)}, 'scores': 0.9_93}, {'mask': {'hash': '3d44f2926d', 'shape': (480, 640)}, 'scores': 0.99_09}, {'mask': {'hash': '64033ddc3f', 'shape': (480, 640)}, 'scores': 0.98_79}, {'mask': {'hash': '801064ff79', 'shape': (480, 640)}, 'scores': 0.98_34}, {'mask': {'hash': '6172f276ef', 'shape': (480, 640)}, 'scores': 0.97_16}, {'mask': {'hash': 'b49e60e084', 'shape': (480, 640)}, 'scores': 0.96_12}, {'mask': {'hash': 'a811e775fd', 'shape': (480, 640)}, 'scores': 0.95_99}, {'mask': {'hash': 'a6a8ebcf4b', 'shape': (480, 640)}, 'scores': 0.95_52}, {'mask': {'hash': '9d8257e080', 'shape': (480, 640)}, 'scores': 0.95_32}, {'mask': {'hash': '32de6454a8', 'shape': (480, 640)}, 'scores': 0.95_16}, {'mask': {'hash': 'af3d4af2c8', 'shape': (480, 640)}, 'scores': 0.94_99}, {'mask': {'hash': '3c6db475fb', 'shape': (480, 640)}, 'scores': 0.94_83}, {'mask': {'hash': 'c290813fb9', 'shape': (480, 640)}, 'scores': 0.94_64}, {'mask': {'hash': 'b6f0b8f606', 'shape': (480, 640)}, 'scores': 0.9_43}, {'mask': {'hash': '92ce16bfdf', 'shape': (480, 640)}, 'scores': 0.9_43}, {'mask': {'hash': 'c749b25868', 'shape': (480, 640)}, 'scores': 0.94_08}, {'mask': {'hash': 'efb6cab859', 'shape': (480, 640)}, 'scores': 0.93_35}, {'mask': {'hash': '1ff2eafb30', 'shape': (480, 640)}, 'scores': 0.93_26}, {'mask': {'hash': '788b798e24', 'shape': (480, 640)}, 'scores': 0.92_62}, {'mask': {'hash': 'abea804f0e', 'shape': (480, 640)}, 'scores': 0.89_99}, {'mask': {'hash': '7b9e8ddb73', 'shape': (480, 640)}, 'scores': 0.89_86}, {'mask': {'hash': 'cd24047c8a', 'shape': (480, 640)}, 'scores': 0.89_84}, {'mask': {'hash': '6943e6bcbd', 'shape': (480, 640)}, 'scores': 0.88_73}, {'mask': {'hash': 'b5f47c9191', 'shape': (480, 640)}, 'scores': 0.88_71} ], ) # fmt: on @require_torch @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = 'facebook/sam-vit-huge' SCREAMING_SNAKE_CASE : int = pipeline('mask-generation', model=A ) SCREAMING_SNAKE_CASE : Optional[Any] = image_segmenter( 'http://images.cocodataset.org/val2017/000000039769.jpg', pred_iou_thresh=1, points_per_batch=256 ) # Shortening by hashing SCREAMING_SNAKE_CASE : List[Any] = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(A ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(A, decimals=4 ), [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.04_44}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.02_10}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.01_67}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.01_32}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.00_53}, ], )
508
1
from datetime import datetime import requests def lowercase_ (A : str ): snake_case__ : Dict = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' snake_case__ : Any = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(A ).content if __name__ == "__main__": a_ :Any = input("Enter Video/IGTV url: ").strip() a_ :Union[str, Any] = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, "wb") as fp: fp.write(download_video(url)) print(F"""Done. Video saved to disk as {file_name}.""")
478
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a_ :List[Any] = {"configuration_unispeech": ["UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP", "UniSpeechConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :str = [ "UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST", "UniSpeechForCTC", "UniSpeechForPreTraining", "UniSpeechForSequenceClassification", "UniSpeechModel", "UniSpeechPreTrainedModel", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys a_ :int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
478
1
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class a_ : @staticmethod def lowerCAmelCase__ ( *UpperCAmelCase , **UpperCAmelCase ): pass def UpperCamelCase_ ( A__ ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. lowercase__ =( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class a_ ( unittest.TestCase ): lowerCamelCase__ : int = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): a_ : Any = pipeline( """document-question-answering""" , model=UpperCAmelCase , tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) a_ : str = INVOICE_URL a_ : Dict = list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , """""" ) ) ) a_ : Optional[int] = """What is the placebo?""" a_ : Dict = [ { """image""": load_image(UpperCAmelCase ), """question""": question, }, { """image""": image, """question""": question, }, { """image""": image, """question""": question, """word_boxes""": word_boxes, }, ] return dqa_pipeline, examples def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): a_ : Tuple = dqa_pipeline(UpperCAmelCase , top_k=2 ) self.assertEqual( UpperCAmelCase , [ [ {"""score""": ANY(UpperCAmelCase ), """answer""": ANY(UpperCAmelCase ), """start""": ANY(UpperCAmelCase ), """end""": ANY(UpperCAmelCase )}, {"""score""": ANY(UpperCAmelCase ), """answer""": ANY(UpperCAmelCase ), """start""": ANY(UpperCAmelCase ), """end""": ANY(UpperCAmelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def lowerCAmelCase__ ( self ): a_ : str = pipeline("""document-question-answering""" , model="""hf-internal-testing/tiny-random-layoutlmv2""" ) a_ : Dict = INVOICE_URL a_ : int = """How many cats are there?""" a_ : Union[str, Any] = [ {"""score""": 0.00_01, """answer""": """oy 2312/2019""", """start""": 38, """end""": 39}, {"""score""": 0.00_01, """answer""": """oy 2312/2019 DUE""", """start""": 38, """end""": 40}, ] a_ : List[str] = dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) a_ : Any = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably a_ : int = """./tests/fixtures/tests_samples/COCO/000000039769.png""" a_ : Optional[Any] = dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) # We can optionnally pass directly the words and bounding boxes a_ : List[Any] = """./tests/fixtures/tests_samples/COCO/000000039769.png""" a_ : Optional[int] = [] a_ : Union[str, Any] = [] a_ : Optional[Any] = dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , words=UpperCAmelCase , boxes=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def lowerCAmelCase__ ( self ): a_ : Tuple = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , ) a_ : List[str] = INVOICE_URL a_ : Union[str, Any] = """What is the invoice number?""" a_ : Optional[int] = dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.99_44, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.00_09, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) a_ : Dict = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.99_44, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.00_09, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) a_ : List[str] = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {"""score""": 0.99_44, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.00_09, """answer""": """us-001""", """start""": 16, """end""": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def lowerCAmelCase__ ( self ): a_ : Optional[int] = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , max_seq_len=50 , ) a_ : str = INVOICE_URL a_ : str = """What is the invoice number?""" a_ : int = dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.99_74, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.99_48, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) a_ : List[Any] = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.99_74, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.99_48, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) a_ : Optional[Any] = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {"""score""": 0.99_74, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.99_48, """answer""": """us-001""", """start""": 16, """end""": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def lowerCAmelCase__ ( self ): a_ : Tuple = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=UpperCAmelCase ) a_ : Union[str, Any] = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=UpperCAmelCase , revision="""3dc6de3""" , ) a_ : Tuple = INVOICE_URL a_ : Union[str, Any] = """What is the invoice number?""" a_ : str = dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.42_51, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.08_19, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) a_ : Dict = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.42_51, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.08_19, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) a_ : List[Any] = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {"""score""": 0.42_51, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.08_19, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] ] * 2 , ) a_ : List[Any] = list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , """""" ) ) ) # This model should also work if `image` is set to None a_ : str = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.42_51, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.08_19, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def lowerCAmelCase__ ( self ): a_ : List[str] = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=UpperCAmelCase ) a_ : Tuple = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=UpperCAmelCase , revision="""3dc6de3""" , max_seq_len=50 , ) a_ : Tuple = INVOICE_URL a_ : Dict = """What is the invoice number?""" a_ : Any = dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.99_99, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.99_98, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) a_ : List[Any] = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {"""score""": 0.99_99, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.99_98, """answer""": """us-001""", """start""": 16, """end""": 16}, ] ] * 2 , ) a_ : Tuple = list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , """""" ) ) ) # This model should also work if `image` is set to None a_ : List[Any] = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.99_99, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.99_98, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) @slow @require_torch def lowerCAmelCase__ ( self ): a_ : Optional[int] = pipeline( """document-question-answering""" , model="""naver-clova-ix/donut-base-finetuned-docvqa""" , tokenizer=AutoTokenizer.from_pretrained("""naver-clova-ix/donut-base-finetuned-docvqa""" ) , feature_extractor="""naver-clova-ix/donut-base-finetuned-docvqa""" , ) a_ : Union[str, Any] = INVOICE_URL a_ : str = """What is the invoice number?""" a_ : Optional[Any] = dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , [{"""answer""": """us-001"""}] ) @require_tf @unittest.skip("""Document question answering not implemented in TF""" ) def lowerCAmelCase__ ( self ): pass
706
'''simple docstring''' import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available lowercase__ =logging.getLogger(__name__) @dataclass class a_ : lowerCamelCase__ : str lowerCamelCase__ : List[str] lowerCamelCase__ : Optional[List[str]] @dataclass class a_ : lowerCamelCase__ : List[int] lowerCamelCase__ : List[int] lowerCamelCase__ : Optional[List[int]] = None lowerCamelCase__ : Optional[List[int]] = None class a_ ( UpperCamelCase__ ): lowerCamelCase__ : Any = 'train' lowerCamelCase__ : Optional[int] = 'dev' lowerCamelCase__ : int = 'test' class a_ : @staticmethod def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase ): raise NotImplementedError @staticmethod def lowerCAmelCase__ ( UpperCAmelCase ): raise NotImplementedError @staticmethod def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase="[CLS]" , UpperCAmelCase=1 , UpperCAmelCase="[SEP]" , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=0 , UpperCAmelCase=0 , UpperCAmelCase=-1_00 , UpperCAmelCase=0 , UpperCAmelCase=True , ): a_ = {label: i for i, label in enumerate(UpperCAmelCase )} a_ = [] for ex_index, example in enumerate(UpperCAmelCase ): if ex_index % 1_00_00 == 0: logger.info("""Writing example %d of %d""" , UpperCAmelCase , len(UpperCAmelCase ) ) a_ = [] a_ = [] for word, label in zip(example.words , example.labels ): a_ = tokenizer.tokenize(UpperCAmelCase ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(UpperCAmelCase ) > 0: tokens.extend(UpperCAmelCase ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(UpperCAmelCase ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. a_ = tokenizer.num_special_tokens_to_add() if len(UpperCAmelCase ) > max_seq_length - special_tokens_count: a_ = tokens[: (max_seq_length - special_tokens_count)] a_ = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] a_ = [sequence_a_segment_id] * len(UpperCAmelCase ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: a_ = [cls_token] + tokens a_ = [pad_token_label_id] + label_ids a_ = [cls_token_segment_id] + segment_ids a_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. a_ = [1 if mask_padding_with_zero else 0] * len(UpperCAmelCase ) # Zero-pad up to the sequence length. a_ = max_seq_length - len(UpperCAmelCase ) if pad_on_left: a_ = ([pad_token] * padding_length) + input_ids a_ = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask a_ = ([pad_token_segment_id] * padding_length) + segment_ids a_ = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(UpperCAmelCase ) == max_seq_length assert len(UpperCAmelCase ) == max_seq_length assert len(UpperCAmelCase ) == max_seq_length assert len(UpperCAmelCase ) == max_seq_length if ex_index < 5: logger.info("""*** Example ***""" ) logger.info("""guid: %s""" , example.guid ) logger.info("""tokens: %s""" , """ """.join([str(UpperCAmelCase ) for x in tokens] ) ) logger.info("""input_ids: %s""" , """ """.join([str(UpperCAmelCase ) for x in input_ids] ) ) logger.info("""input_mask: %s""" , """ """.join([str(UpperCAmelCase ) for x in input_mask] ) ) logger.info("""segment_ids: %s""" , """ """.join([str(UpperCAmelCase ) for x in segment_ids] ) ) logger.info("""label_ids: %s""" , """ """.join([str(UpperCAmelCase ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: a_ = None features.append( InputFeatures( input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , label_ids=UpperCAmelCase ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class a_ ( UpperCamelCase__ ): lowerCamelCase__ : List[InputFeatures] lowerCamelCase__ : int = nn.CrossEntropyLoss().ignore_index def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase=False , UpperCAmelCase = Split.train , ): # Load data features from cache or dataset file a_ = os.path.join( UpperCAmelCase , """cached_{}_{}_{}""".format(mode.value , tokenizer.__class__.__name__ , str(UpperCAmelCase ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. a_ = cached_features_file + """.lock""" with FileLock(UpperCAmelCase ): if os.path.exists(UpperCAmelCase ) and not overwrite_cache: logger.info(f'''Loading features from cached file {cached_features_file}''' ) a_ = torch.load(UpperCAmelCase ) else: logger.info(f'''Creating features from dataset file at {data_dir}''' ) a_ = token_classification_task.read_examples_from_file(UpperCAmelCase , UpperCAmelCase ) # TODO clean up all this to leverage built-in features of tokenizers a_ = token_classification_task.convert_examples_to_features( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=UpperCAmelCase , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f'''Saving features into cached file {cached_features_file}''' ) torch.save(self.features , UpperCAmelCase ) def __len__( self ): return len(self.features ) def __getitem__( self , UpperCAmelCase ): return self.features[i] if is_tf_available(): import tensorflow as tf class a_ : lowerCamelCase__ : List[InputFeatures] lowerCamelCase__ : int = -100 def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase=False , UpperCAmelCase = Split.train , ): a_ = token_classification_task.read_examples_from_file(UpperCAmelCase , UpperCAmelCase ) # TODO clean up all this to leverage built-in features of tokenizers a_ = token_classification_task.convert_examples_to_features( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=UpperCAmelCase , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: a_ = tf.data.Dataset.from_generator( UpperCAmelCase , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa}, tf.intaa) , ( {"""input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: a_ = tf.data.Dataset.from_generator( UpperCAmelCase , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa}, tf.intaa) , ( { """input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] ), """token_type_ids""": tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def lowerCAmelCase__ ( self ): a_ = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self ): return len(self.features ) def __getitem__( self , UpperCAmelCase ): return self.features[i]
511
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_00 ) -> int: __lowerCamelCase : Union[str, Any] = n * (n + 1) * (2 * n + 1) / 6 __lowerCamelCase : Union[str, Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'''{solution() = }''')
13
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image snake_case__ : Optional[int] = ['''text''', '''image''', '''audio'''] def lowercase ( _lowerCAmelCase ): UpperCAmelCase__ = [] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): inputs.append(create_inputs(_lowerCAmelCase ) ) else: raise ValueError(F'''Invalid type requested: {input_type}''' ) return inputs def lowercase ( _lowerCAmelCase ): UpperCAmelCase__ = [] for output in outputs: if isinstance(_lowerCAmelCase , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(_lowerCAmelCase , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(_lowerCAmelCase , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(F'''Invalid output: {output}''' ) return output_types @is_tool_test class snake_case : '''simple docstring''' def UpperCAmelCase ( self : List[Any] ) ->List[Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , """inputs""" ) ) self.assertTrue(hasattr(self.tool , """outputs""" ) ) UpperCAmelCase__ = self.tool.inputs for _input in inputs: if isinstance(_input , lowerCamelCase_ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) UpperCAmelCase__ = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def UpperCAmelCase ( self : List[Any] ) ->Tuple: '''simple docstring''' UpperCAmelCase__ = create_inputs(self.tool.inputs ) UpperCAmelCase__ = self.tool(*lowerCamelCase_ ) # There is a single output if len(self.tool.outputs ) == 1: UpperCAmelCase__ = [outputs] self.assertListEqual(output_types(lowerCamelCase_ ) , self.tool.outputs ) def UpperCAmelCase ( self : Tuple ) ->Any: '''simple docstring''' self.assertTrue(hasattr(self.tool , """description""" ) ) self.assertTrue(hasattr(self.tool , """default_checkpoint""" ) ) self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) ) def UpperCAmelCase ( self : List[Any] ) ->str: '''simple docstring''' UpperCAmelCase__ = create_inputs(self.tool.inputs ) UpperCAmelCase__ = self.tool(*lowerCamelCase_ ) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase__ = [outputs] self.assertEqual(len(lowerCamelCase_ ) , len(self.tool.outputs ) ) for output, output_type in zip(lowerCamelCase_ , self.tool.outputs ): UpperCAmelCase__ = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCamelCase_ , lowerCamelCase_ ) ) def UpperCAmelCase ( self : List[str] ) ->str: '''simple docstring''' UpperCAmelCase__ = create_inputs(self.tool.inputs ) UpperCAmelCase__ = [] for _input, input_type in zip(lowerCamelCase_ , self.tool.inputs ): if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error UpperCAmelCase__ = self.tool(*lowerCamelCase_ ) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase__ = [outputs] self.assertEqual(len(lowerCamelCase_ ) , len(self.tool.outputs ) )
392
0
from __future__ import annotations from typing import Any class UpperCamelCase ( lowercase__ ): '''simple docstring''' pass class UpperCamelCase : '''simple docstring''' def __init__( self , UpperCamelCase_ ): lowercase_ :Any = data lowercase_ :Node | None = None def __iter__( self ): lowercase_ :Dict = self lowercase_ :Dict = [] while node: if node in visited: raise ContainsLoopError visited.append(UpperCamelCase_ ) yield node.data lowercase_ :int = node.next_node @property def UpperCamelCase ( self ): try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[int] = Node(1) SCREAMING_SNAKE_CASE : List[Any] = Node(2) SCREAMING_SNAKE_CASE : List[Any] = Node(3) SCREAMING_SNAKE_CASE : int = Node(4) print(root_node.has_loop) # False SCREAMING_SNAKE_CASE : List[str] = root_node.next_node print(root_node.has_loop) # True SCREAMING_SNAKE_CASE : List[Any] = Node(5) SCREAMING_SNAKE_CASE : Optional[Any] = Node(6) SCREAMING_SNAKE_CASE : Optional[int] = Node(5) SCREAMING_SNAKE_CASE : Tuple = Node(6) print(root_node.has_loop) # False SCREAMING_SNAKE_CASE : Optional[int] = Node(1) print(root_node.has_loop) # False
441
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase ( self ): lowercase_ :Dict = 1 lowercase_ :Optional[Any] = 3 lowercase_ :Optional[int] = (32, 32) lowercase_ :Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase_ ) return image @property def UpperCamelCase ( self ): torch.manual_seed(0 ) lowercase_ :Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def UpperCamelCase ( self ): torch.manual_seed(0 ) lowercase_ :Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def UpperCamelCase ( self ): torch.manual_seed(0 ) lowercase_ :str = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(UpperCamelCase_ ) @property def UpperCamelCase ( self ): def extract(*UpperCamelCase_ , **UpperCamelCase_ ): class UpperCamelCase : '''simple docstring''' def __init__( self ): lowercase_ :List[str] = torch.ones([0] ) def UpperCamelCase ( self , UpperCamelCase_ ): self.pixel_values.to(UpperCamelCase_ ) return self return Out() return extract def UpperCamelCase ( self ): lowercase_ :List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase_ :Dict = self.dummy_cond_unet lowercase_ :Optional[Any] = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) lowercase_ :Union[str, Any] = self.dummy_vae lowercase_ :Any = self.dummy_text_encoder lowercase_ :List[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowercase_ :List[str] = 77 lowercase_ :int = self.dummy_image.to(UpperCamelCase_ ) lowercase_ :Optional[Any] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowercase_ :str = AltDiffusionImgaImgPipeline( unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , safety_checker=UpperCamelCase_ , feature_extractor=self.dummy_extractor , ) lowercase_ :List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCamelCase_ ) lowercase_ :int = alt_pipe.to(UpperCamelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase_ :Any = '''A painting of a squirrel eating a burger''' lowercase_ :Tuple = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase_ :Optional[int] = alt_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=UpperCamelCase_ , ) lowercase_ :Dict = output.images lowercase_ :Tuple = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase_ :Optional[int] = alt_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=UpperCamelCase_ , return_dict=UpperCamelCase_ , )[0] lowercase_ :Optional[int] = image[0, -3:, -3:, -1] lowercase_ :Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase_ :int = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCamelCase ( self ): lowercase_ :List[str] = self.dummy_cond_unet lowercase_ :Dict = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) lowercase_ :Tuple = self.dummy_vae lowercase_ :Dict = self.dummy_text_encoder lowercase_ :Tuple = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowercase_ :str = 77 lowercase_ :str = self.dummy_image.to(UpperCamelCase_ ) # put models in fp16 lowercase_ :Union[str, Any] = unet.half() lowercase_ :Union[str, Any] = vae.half() lowercase_ :List[str] = bert.half() # make sure here that pndm scheduler skips prk lowercase_ :List[Any] = AltDiffusionImgaImgPipeline( unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , safety_checker=UpperCamelCase_ , feature_extractor=self.dummy_extractor , ) lowercase_ :List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCamelCase_ ) lowercase_ :List[str] = alt_pipe.to(UpperCamelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase_ :str = '''A painting of a squirrel eating a burger''' lowercase_ :Union[str, Any] = torch.manual_seed(0 ) lowercase_ :Any = alt_pipe( [prompt] , generator=UpperCamelCase_ , num_inference_steps=2 , output_type='''np''' , image=UpperCamelCase_ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCamelCase ( self ): lowercase_ :Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 lowercase_ :Optional[Any] = init_image.resize((760, 504) ) lowercase_ :List[str] = '''BAAI/AltDiffusion''' lowercase_ :Optional[Any] = AltDiffusionImgaImgPipeline.from_pretrained( UpperCamelCase_ , safety_checker=UpperCamelCase_ , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() lowercase_ :Optional[Any] = '''A fantasy landscape, trending on artstation''' lowercase_ :Optional[Any] = torch.manual_seed(0 ) lowercase_ :str = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , strength=0.75 , guidance_scale=7.5 , generator=UpperCamelCase_ , output_type='''np''' , ) lowercase_ :Optional[Any] = output.images[0] lowercase_ :Optional[int] = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) lowercase_ :Any = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ): lowercase_ :Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) lowercase_ :Any = init_image.resize((768, 512) ) lowercase_ :List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) lowercase_ :List[Any] = '''BAAI/AltDiffusion''' lowercase_ :Tuple = AltDiffusionImgaImgPipeline.from_pretrained( UpperCamelCase_ , safety_checker=UpperCamelCase_ , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() lowercase_ :List[str] = '''A fantasy landscape, trending on artstation''' lowercase_ :Optional[int] = torch.manual_seed(0 ) lowercase_ :Tuple = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , strength=0.75 , guidance_scale=7.5 , generator=UpperCamelCase_ , output_type='''np''' , ) lowercase_ :int = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
441
1
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType _lowerCamelCase : Tuple = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''vision-encoder-decoder''' UpperCAmelCase__ = True def __init__( self : Tuple , **UpperCAmelCase__ : List[str]) ->Optional[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase__) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"""A configuraton of type {self.model_type} cannot be instantiated because """ f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""") A__ = kwargs.pop('''encoder''') A__ = encoder_config.pop('''model_type''') A__ = kwargs.pop('''decoder''') A__ = decoder_config.pop('''model_type''') A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__) A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__) A__ = True @classmethod def SCREAMING_SNAKE_CASE ( cls : Tuple , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : List[Any]) ->PretrainedConfig: '''simple docstring''' logger.info('''Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''') A__ = True A__ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__) A__ = self.encoder.to_dict() A__ = self.decoder.to_dict() A__ = self.__class__.model_type return output class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE ( self : Dict) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def SCREAMING_SNAKE_CASE ( self : List[Any]) ->float: '''simple docstring''' return 1e-4 @property def SCREAMING_SNAKE_CASE ( self : List[str]) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict({'''last_hidden_state''': {0: '''batch''', 1: '''encoder_sequence'''}}) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE ( self : Tuple) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' A__ = OrderedDict() A__ = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} A__ = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} A__ = {0: '''batch''', 1: '''encoder_sequence'''} return common_inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : "PreTrainedTokenizerBase" , UpperCAmelCase__ : int = -1 , UpperCAmelCase__ : int = -1 , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional["TensorType"] = None , ) ->Mapping[str, Any]: '''simple docstring''' import torch A__ = OrderedDict() A__ = super().generate_dummy_inputs( UpperCAmelCase__ , batch_size=UpperCAmelCase__ , seq_length=UpperCAmelCase__ , is_pair=UpperCAmelCase__ , framework=UpperCAmelCase__) A__ , A__ = dummy_input['''input_ids'''].shape A__ = (batch, encoder_sequence, self._config.encoder_hidden_size) A__ = dummy_input.pop('''input_ids''') A__ = dummy_input.pop('''attention_mask''') A__ = torch.zeros(UpperCAmelCase__) return common_inputs class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE ( self : List[Any]) ->None: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : PretrainedConfig) ->OnnxConfig: '''simple docstring''' return VisionEncoderDecoderEncoderOnnxConfig(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : str = "default") ->OnnxConfig: '''simple docstring''' A__ = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(UpperCAmelCase__ , UpperCAmelCase__)
87
class UpperCamelCase_ : # Public class to implement a graph '''simple docstring''' def __init__( self : str , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : list[list[bool]]) ->None: '''simple docstring''' A__ = row A__ = col A__ = graph def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : list[list[bool]]) ->bool: '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : list[list[bool]]) ->None: '''simple docstring''' A__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order A__ = [-1, 0, 1, -1, 1, -1, 0, 1] A__ = True # Make those cells visited for k in range(8): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , UpperCAmelCase__): self.diffs(i + row_nbr[k] , j + col_nbr[k] , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->int: # And finally, count all islands. '''simple docstring''' A__ = [[False for j in range(self.COL)] for i in range(self.ROW)] A__ = 0 for i in range(self.ROW): for j in range(self.COL): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) count += 1 return count
87
1
from __future__ import annotations def UpperCamelCase ( lowerCAmelCase_ ) -> float: '''simple docstring''' if not nums: raise ValueError('List is empty' ) return sum(lowerCAmelCase_ ) / len(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
703
UpperCAmelCase_ = { '''Pillow''': '''Pillow<10.0.0''', '''accelerate''': '''accelerate>=0.20.3''', '''av''': '''av==9.2.0''', '''beautifulsoup4''': '''beautifulsoup4''', '''black''': '''black~=23.1''', '''codecarbon''': '''codecarbon==1.2.0''', '''cookiecutter''': '''cookiecutter==1.7.3''', '''dataclasses''': '''dataclasses''', '''datasets''': '''datasets!=2.5.0''', '''decord''': '''decord==0.6.0''', '''deepspeed''': '''deepspeed>=0.9.3''', '''diffusers''': '''diffusers''', '''dill''': '''dill<0.3.5''', '''evaluate''': '''evaluate>=0.2.0''', '''fairscale''': '''fairscale>0.3''', '''faiss-cpu''': '''faiss-cpu''', '''fastapi''': '''fastapi''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1,<=0.7.0''', '''ftfy''': '''ftfy''', '''fugashi''': '''fugashi>=1.0''', '''GitPython''': '''GitPython<3.1.19''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.14.1,<1.0''', '''importlib_metadata''': '''importlib_metadata''', '''ipadic''': '''ipadic>=1.0.0,<2.0''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2,<=0.4.13''', '''jaxlib''': '''jaxlib>=0.1.65,<=0.4.13''', '''jieba''': '''jieba''', '''kenlm''': '''kenlm''', '''keras-nlp''': '''keras-nlp>=0.3.1''', '''librosa''': '''librosa''', '''nltk''': '''nltk''', '''natten''': '''natten>=0.14.6''', '''numpy''': '''numpy>=1.17''', '''onnxconverter-common''': '''onnxconverter-common''', '''onnxruntime-tools''': '''onnxruntime-tools>=1.4.2''', '''onnxruntime''': '''onnxruntime>=1.4.0''', '''opencv-python''': '''opencv-python''', '''optuna''': '''optuna''', '''optax''': '''optax>=0.0.8,<=0.1.4''', '''packaging''': '''packaging>=20.0''', '''parameterized''': '''parameterized''', '''phonemizer''': '''phonemizer''', '''protobuf''': '''protobuf''', '''psutil''': '''psutil''', '''pyyaml''': '''pyyaml>=5.1''', '''pydantic''': '''pydantic<2''', '''pytest''': '''pytest>=7.2.0''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''python''': '''python>=3.8.0''', '''ray[tune]''': '''ray[tune]''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''rhoknp''': '''rhoknp>=1.1.0,<1.3.1''', '''rjieba''': '''rjieba''', '''rouge-score''': '''rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1''', '''ruff''': '''ruff>=0.0.241,<=0.0.259''', '''sacrebleu''': '''sacrebleu>=1.4.12,<2.0.0''', '''sacremoses''': '''sacremoses''', '''safetensors''': '''safetensors>=0.3.1''', '''sagemaker''': '''sagemaker>=2.31.0''', '''scikit-learn''': '''scikit-learn''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''sigopt''': '''sigopt''', '''starlette''': '''starlette''', '''sudachipy''': '''sudachipy>=0.6.6''', '''sudachidict_core''': '''sudachidict_core>=20220729''', '''tensorflow-cpu''': '''tensorflow-cpu>=2.6,<2.14''', '''tensorflow''': '''tensorflow>=2.6,<2.14''', '''tensorflow-text''': '''tensorflow-text<2.14''', '''tf2onnx''': '''tf2onnx''', '''timeout-decorator''': '''timeout-decorator''', '''timm''': '''timm''', '''tokenizers''': '''tokenizers>=0.11.1,!=0.11.3,<0.14''', '''torch''': '''torch>=1.9,!=1.12.0''', '''torchaudio''': '''torchaudio''', '''torchvision''': '''torchvision''', '''pyctcdecode''': '''pyctcdecode>=0.4.0''', '''tqdm''': '''tqdm>=4.27''', '''unidic''': '''unidic>=1.0.2''', '''unidic_lite''': '''unidic_lite>=1.0.7''', '''urllib3''': '''urllib3<2.0.0''', '''uvicorn''': '''uvicorn''', }
476
0
from __future__ import annotations import pandas as pd def UpperCAmelCase__ ( __snake_case , __snake_case , __snake_case ) -> list[int]: _A = [0] * no_of_processes _A = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(__snake_case ): _A = burst_time[i] _A = 0 _A = 0 _A = 999_999_999 _A = 0 _A = False # Process until all processes are completed while complete != no_of_processes: for j in range(__snake_case ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: _A = remaining_time[j] _A = j _A = True if not check: increment_time += 1 continue remaining_time[short] -= 1 _A = remaining_time[short] if minm == 0: _A = 999_999_999 if remaining_time[short] == 0: complete += 1 _A = False # Find finish time of current process _A = increment_time + 1 # Calculate waiting time _A = finish_time - arrival_time[short] _A = finar - burst_time[short] if waiting_time[short] < 0: _A = 0 # Increment time increment_time += 1 return waiting_time def UpperCAmelCase__ ( __snake_case , __snake_case , __snake_case ) -> list[int]: _A = [0] * no_of_processes for i in range(__snake_case ): _A = burst_time[i] + waiting_time[i] return turn_around_time def UpperCAmelCase__ ( __snake_case , __snake_case , __snake_case ) -> None: _A = 0 _A = 0 for i in range(__snake_case ): _A = total_waiting_time + waiting_time[i] _A = total_turn_around_time + turn_around_time[i] print(F'''Average waiting time = {total_waiting_time / no_of_processes:.5f}''' ) print('''Average turn around time =''' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("""Enter how many process you want to analyze""") __lowerCamelCase = int(input()) __lowerCamelCase = [0] * no_of_processes __lowerCamelCase = [0] * no_of_processes __lowerCamelCase = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("""Enter the arrival time and burst time for process:--""" + str(i + 1)) __lowerCamelCase , __lowerCamelCase = map(int, input().split()) __lowerCamelCase = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __lowerCamelCase = burst_time __lowerCamelCase = no_of_processes __lowerCamelCase = waiting_time __lowerCamelCase = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) __lowerCamelCase = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ """Process""", """BurstTime""", """ArrivalTime""", """WaitingTime""", """TurnAroundTime""", ], ) # Printing the dataFrame pd.set_option("""display.max_rows""", fcfs.shape[0] + 1) print(fcfs)
317
from __future__ import annotations def UpperCAmelCase__ ( __snake_case , __snake_case ) -> bool: _A = get_failure_array(__snake_case ) # 2) Step through text searching for pattern _A , _A = 0, 0 # index into text, pattern while i < len(__snake_case ): if pattern[j] == text[i]: if j == (len(__snake_case ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: _A = failure[j - 1] continue i += 1 return False def UpperCAmelCase__ ( __snake_case ) -> list[int]: _A = [0] _A = 0 _A = 1 while j < len(__snake_case ): if pattern[i] == pattern[j]: i += 1 elif i > 0: _A = failure[i - 1] continue j += 1 failure.append(__snake_case ) return failure if __name__ == "__main__": # Test 1) __lowerCamelCase = """abc1abc12""" __lowerCamelCase = """alskfjaldsabc1abc1abc12k23adsfabcabc""" __lowerCamelCase = """alskfjaldsk23adsfabcabc""" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) __lowerCamelCase = """ABABX""" __lowerCamelCase = """ABABZABABYABABX""" assert kmp(pattern, text) # Test 3) __lowerCamelCase = """AAAB""" __lowerCamelCase = """ABAAAAAB""" assert kmp(pattern, text) # Test 4) __lowerCamelCase = """abcdabcy""" __lowerCamelCase = """abcxabcdabxabcdabcdabcy""" assert kmp(pattern, text) # Test 5) __lowerCamelCase = """aabaabaaa""" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
317
1
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = IFInpaintingSuperResolutionPipeline a__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} a__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) a__ = PipelineTesterMixin.required_optional_params - {"latents"} def A__ ( self): return self._get_superresolution_dummy_components() def A__ ( self , __snake_case , __snake_case=0): if str(__snake_case).startswith('mps'): _UpperCamelCase : List[str] = torch.manual_seed(__snake_case) else: _UpperCamelCase : Any = torch.Generator(device=__snake_case).manual_seed(__snake_case) _UpperCamelCase : Union[str, Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(__snake_case)).to(__snake_case) _UpperCamelCase : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case)).to(__snake_case) _UpperCamelCase : List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case)).to(__snake_case) _UpperCamelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def A__ ( self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) def A__ ( self): self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def A__ ( self): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1) def A__ ( self): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2) def A__ ( self): self._test_save_load_local() def A__ ( self): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
714
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=99 , __snake_case=64 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=37 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=16 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=3 , __snake_case=4 , __snake_case=None , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Optional[Any] = batch_size _UpperCamelCase : int = seq_length _UpperCamelCase : str = is_training _UpperCamelCase : Tuple = use_input_mask _UpperCamelCase : Union[str, Any] = use_token_type_ids _UpperCamelCase : Union[str, Any] = use_labels _UpperCamelCase : Optional[Any] = vocab_size _UpperCamelCase : List[Any] = hidden_size _UpperCamelCase : Optional[Any] = embedding_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : int = intermediate_size _UpperCamelCase : int = hidden_act _UpperCamelCase : Tuple = hidden_dropout_prob _UpperCamelCase : int = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : List[str] = type_vocab_size _UpperCamelCase : Dict = type_sequence_label_size _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : Optional[Any] = num_labels _UpperCamelCase : Tuple = num_choices _UpperCamelCase : List[str] = scope def A__ ( self): _UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase : Any = None if self.use_input_mask: _UpperCamelCase : int = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase : Optional[Any] = None if self.use_token_type_ids: _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase : int = None _UpperCamelCase : List[str] = None _UpperCamelCase : Dict = None if self.use_labels: _UpperCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = MegatronBertModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Dict = model(__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForMaskedLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = MegatronBertForCausalLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Tuple = MegatronBertForNextSentencePrediction(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = MegatronBertForPreTraining(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[str] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , next_sentence_label=__snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForQuestionAnswering(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[int] = self.num_labels _UpperCamelCase : Union[str, Any] = MegatronBertForSequenceClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Any = self.num_labels _UpperCamelCase : Optional[int] = MegatronBertForTokenClassification(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = self.num_choices _UpperCamelCase : Optional[int] = MegatronBertForMultipleChoice(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : List[Any] = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Optional[Any] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Union[str, Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Optional[int] = config_and_inputs _UpperCamelCase : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) a__ = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) a__ = True # test_resize_embeddings = False a__ = False def A__ ( self , __snake_case , __snake_case , __snake_case=False): _UpperCamelCase : str = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case) if return_labels: if model_class in get_values(__snake_case): _UpperCamelCase : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__snake_case) _UpperCamelCase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case) return inputs_dict def A__ ( self): _UpperCamelCase : Any = MegatronBertModelTester(self) _UpperCamelCase : int = ConfigTester(self , config_class=__snake_case , hidden_size=37) def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__snake_case) def A__ ( self): _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__snake_case) def A__ ( self): _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__snake_case) def A__ ( self): _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__snake_case) def A__ ( self): _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__snake_case) def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> Optional[Any]: '''simple docstring''' return torch.tensor( UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ , ) lowerCAmelCase__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip('Model is not available.') def A__ ( self): _UpperCamelCase : int = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: _UpperCamelCase : int = os.path.join(os.environ['MYDIR'] , __snake_case) _UpperCamelCase : Optional[int] = MegatronBertModel.from_pretrained(__snake_case) model.to(__snake_case) model.half() _UpperCamelCase : Optional[Any] = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]]) with torch.no_grad(): _UpperCamelCase : str = model(__snake_case)[0] _UpperCamelCase : Optional[int] = torch.Size((1, 9, 10_24)) self.assertEqual(output.shape , __snake_case) _UpperCamelCase : Union[str, Any] = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3): for jj in range(3): _UpperCamelCase : Optional[Any] = output[0, ii, jj] _UpperCamelCase : Dict = expected[3 * ii + jj] _UpperCamelCase : Optional[int] = 'ii={} jj={} a={} b={}'.format(__snake_case , __snake_case , __snake_case , __snake_case) self.assertTrue(math.isclose(__snake_case , __snake_case , rel_tol=__snake_case , abs_tol=__snake_case) , msg=__snake_case)
648
0
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 10 def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [1, 2, 3, 4] __SCREAMING_SNAKE_CASE = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(lowerCamelCase ,self.block_size ,0 ) ,lowerCamelCase ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] __SCREAMING_SNAKE_CASE = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowerCamelCase ,self.block_size ,0 ) ,lowerCamelCase ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] __SCREAMING_SNAKE_CASE = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowerCamelCase ,self.block_size ,0 ) ,lowerCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = process_story(lowerCamelCase ) self.assertEqual(lowerCamelCase ,[] ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = process_story(lowerCamelCase ) self.assertEqual(lowerCamelCase ,[] ) self.assertEqual(lowerCamelCase ,[] ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( """It was the year of Our Lord one thousand seven hundred and """ """seventy-five\n\nSpiritual revelations were conceded to England """ """at that favoured period, as at this.\n@highlight\n\nIt was the best of times""" ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = process_story(lowerCamelCase ) __SCREAMING_SNAKE_CASE = [ """It was the year of Our Lord one thousand seven hundred and seventy-five.""", """Spiritual revelations were conceded to England at that favoured period, as at this.""", ] self.assertEqual(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = ["""It was the best of times."""] self.assertEqual(lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = torch.tensor([1, 2, 3, 4] ) __SCREAMING_SNAKE_CASE = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(lowerCamelCase ,0 ).numpy() ,expected.numpy() ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) __SCREAMING_SNAKE_CASE = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCamelCase ,23 ).numpy() ,expected.numpy() ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) __SCREAMING_SNAKE_CASE = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCamelCase ,1 ).numpy() ,expected.numpy() ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 101 __SCREAMING_SNAKE_CASE = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) __SCREAMING_SNAKE_CASE = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) __SCREAMING_SNAKE_CASE = compute_token_type_ids(lowerCamelCase ,lowerCamelCase ) np.testing.assert_array_equal(lowerCamelCase ,lowerCamelCase )
109
def lowerCAmelCase_ ( __UpperCAmelCase: Union[str, Any] , __UpperCAmelCase: List[str] ) -> Optional[int]: UpperCamelCase__ : Union[str, Any] = [1] for i in range(2 , __UpperCAmelCase ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" UpperCamelCase__ : List[str] = [] UpperCamelCase__ : Any = list(range(__UpperCAmelCase ) ) # Find permutation while factorials: UpperCamelCase__ : Tuple = factorials.pop() UpperCamelCase__ ,UpperCamelCase__ : Any = divmod(__UpperCAmelCase , __UpperCAmelCase ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
253
0
"""simple docstring""" import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __magic_name__ ( SCREAMING_SNAKE_CASE__ ): UpperCamelCase_ = (KDPMaDiscreteScheduler,) UpperCamelCase_ = 10 def lowercase_ ( self , **A_ ) -> List[Any]: """simple docstring""" _lowercase: Tuple = { '''num_train_timesteps''': 1100, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**A_ ) return config def lowercase_ ( self ) -> List[str]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=A_ ) def lowercase_ ( self ) -> Tuple: """simple docstring""" for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=A_ , beta_end=A_ ) def lowercase_ ( self ) -> int: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=A_ ) def lowercase_ ( self ) -> str: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A_ ) def lowercase_ ( self ) -> Tuple: """simple docstring""" _lowercase: Optional[int] = self.scheduler_classes[0] _lowercase: List[str] = self.get_scheduler_config(prediction_type='''v_prediction''' ) _lowercase: List[Any] = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowercase: List[str] = self.dummy_model() _lowercase: Dict = self.dummy_sample_deter * scheduler.init_noise_sigma _lowercase: List[Any] = sample.to(A_ ) for i, t in enumerate(scheduler.timesteps ): _lowercase: Optional[int] = scheduler.scale_model_input(A_ , A_ ) _lowercase: Optional[Any] = model(A_ , A_ ) _lowercase: List[str] = scheduler.step(A_ , A_ , A_ ) _lowercase: str = output.prev_sample _lowercase: Dict = torch.sum(torch.abs(A_ ) ) _lowercase: Optional[int] = torch.mean(torch.abs(A_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.69_34E-07 ) < 1E-2 assert abs(result_mean.item() - 6.11_12E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72E-07 ) < 1E-2 assert abs(result_mean.item() - 0.00_02 ) < 1E-3 def lowercase_ ( self ) -> str: """simple docstring""" if torch_device == "mps": return _lowercase: List[str] = self.scheduler_classes[0] _lowercase: Optional[int] = self.get_scheduler_config() _lowercase: int = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowercase: Tuple = self.dummy_model() _lowercase: Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma _lowercase: Any = sample.to(A_ ) for i, t in enumerate(scheduler.timesteps ): _lowercase: Any = scheduler.scale_model_input(A_ , A_ ) _lowercase: List[Any] = model(A_ , A_ ) _lowercase: Any = scheduler.step(A_ , A_ , A_ ) _lowercase: List[Any] = output.prev_sample _lowercase: Optional[Any] = torch.sum(torch.abs(A_ ) ) _lowercase: Tuple = torch.mean(torch.abs(A_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 def lowercase_ ( self ) -> Any: """simple docstring""" if torch_device == "mps": return _lowercase: int = self.scheduler_classes[0] _lowercase: Union[str, Any] = self.get_scheduler_config() _lowercase: Optional[Any] = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps , device=A_ ) _lowercase: List[str] = self.dummy_model() _lowercase: Union[str, Any] = self.dummy_sample_deter.to(A_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _lowercase: Optional[Any] = scheduler.scale_model_input(A_ , A_ ) _lowercase: int = model(A_ , A_ ) _lowercase: Tuple = scheduler.step(A_ , A_ , A_ ) _lowercase: int = output.prev_sample _lowercase: Union[str, Any] = torch.sum(torch.abs(A_ ) ) _lowercase: Dict = torch.mean(torch.abs(A_ ) ) if str(A_ ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3
715
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss A__ : Any = pytest.mark.integration @require_faiss class __magic_name__ ( SCREAMING_SNAKE_CASE__ ): def lowercase_ ( self ) -> List[Any]: """simple docstring""" _lowercase: str = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(A_ ) for x in np.arange(30 ).tolist()]} ) return dset def lowercase_ ( self ) -> int: """simple docstring""" import faiss _lowercase: Dataset = self._create_dummy_dataset() _lowercase: List[str] = dset.map( lambda A_ , A_ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=A_ , keep_in_memory=A_ ) _lowercase: Dict = dset.add_faiss_index('''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) _lowercase , _lowercase: Union[str, Any] = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) dset.drop_index('''vecs''' ) def lowercase_ ( self ) -> List[Any]: """simple docstring""" import faiss _lowercase: Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) _lowercase , _lowercase: Dict = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def lowercase_ ( self ) -> List[str]: """simple docstring""" import faiss _lowercase: Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A_ ) as tmp_file: dset.save_faiss_index('''vecs''' , tmp_file.name ) dset.load_faiss_index('''vecs2''' , tmp_file.name ) os.unlink(tmp_file.name ) _lowercase , _lowercase: Dict = dset.get_nearest_examples('''vecs2''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def lowercase_ ( self ) -> int: """simple docstring""" _lowercase: Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' ) dset.drop_index('''vecs''' ) self.assertRaises(A_ , partial(dset.get_nearest_examples , '''vecs2''' , np.ones(5 , dtype=np.floataa ) ) ) def lowercase_ ( self ) -> List[Any]: """simple docstring""" from elasticsearch import Elasticsearch _lowercase: Dataset = self._create_dummy_dataset() with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: _lowercase: List[Any] = {'''acknowledged''': True} mocked_bulk.return_value([(True, None)] * 30 ) _lowercase: List[str] = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 29}]}} _lowercase: int = Elasticsearch() dset.add_elasticsearch_index('''filename''' , es_client=A_ ) _lowercase , _lowercase: Dict = dset.get_nearest_examples('''filename''' , '''my_name-train_29''' ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) @require_faiss class __magic_name__ ( SCREAMING_SNAKE_CASE__ ): def lowercase_ ( self ) -> Any: """simple docstring""" import faiss _lowercase: str = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query _lowercase: List[Any] = np.zeros(5 , dtype=np.floataa ) _lowercase: int = 1 _lowercase , _lowercase: Optional[Any] = index.search(A_ ) self.assertRaises(A_ , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries _lowercase: Tuple = np.eye(5 , dtype=np.floataa )[::-1] _lowercase , _lowercase: str = index.search_batch(A_ ) self.assertRaises(A_ , index.search_batch , queries[0] ) _lowercase: Tuple = [scores[0] for scores in total_scores] _lowercase: Union[str, Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(A_ ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , A_ ) def lowercase_ ( self ) -> Union[str, Any]: """simple docstring""" import faiss _lowercase: Union[str, Any] = FaissIndex(string_factory='''Flat''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) _lowercase: Dict = FaissIndex(string_factory='''LSH''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(A_ ): _lowercase: List[str] = FaissIndex(string_factory='''Flat''' , custom_index=faiss.IndexFlat(5 ) ) def lowercase_ ( self ) -> List[str]: """simple docstring""" import faiss _lowercase: Any = faiss.IndexFlat(5 ) _lowercase: List[Any] = FaissIndex(custom_index=A_ ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def lowercase_ ( self ) -> str: """simple docstring""" import faiss _lowercase: Tuple = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A_ ) as tmp_file: index.save(tmp_file.name ) _lowercase: Optional[Any] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) _lowercase: Optional[Any] = np.zeros(5 , dtype=np.floataa ) _lowercase: Union[str, Any] = 1 _lowercase , _lowercase: Tuple = index.search(A_ ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" import faiss _lowercase: Dict = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) _lowercase: Tuple = '''index.faiss''' _lowercase: str = f'''mock://{index_name}''' index.save(_UpperCamelCase , storage_options=mockfs.storage_options ) _lowercase: List[Any] = FaissIndex.load(_UpperCamelCase , storage_options=mockfs.storage_options ) _lowercase: Union[str, Any] = np.zeros(5 , dtype=np.floataa ) _lowercase: Dict = 1 _lowercase , _lowercase: str = index.search(_UpperCamelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class __magic_name__ ( SCREAMING_SNAKE_CASE__ ): def lowercase_ ( self ) -> int: """simple docstring""" from elasticsearch import Elasticsearch with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: _lowercase: int = Elasticsearch() _lowercase: Tuple = {'''acknowledged''': True} _lowercase: Tuple = ElasticSearchIndex(es_client=A_ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['''foo''', '''bar''', '''foobar'''] ) # single query _lowercase: Dict = '''foo''' _lowercase: Union[str, Any] = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} _lowercase , _lowercase: Optional[Any] = index.search(A_ ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout _lowercase: Optional[int] = '''foo''' _lowercase: Union[str, Any] = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} _lowercase , _lowercase: List[Any] = index.search(A_ , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries _lowercase: Union[str, Any] = ['''foo''', '''bar''', '''foobar'''] _lowercase: str = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} _lowercase , _lowercase: Optional[int] = index.search_batch(A_ ) _lowercase: Any = [scores[0] for scores in total_scores] _lowercase: List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(A_ ) , 0 ) self.assertListEqual([1, 1, 1] , A_ ) # batched queries with timeout _lowercase: List[str] = ['''foo''', '''bar''', '''foobar'''] _lowercase: Dict = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} _lowercase , _lowercase: Optional[int] = index.search_batch(A_ , request_timeout=30 ) _lowercase: Optional[Any] = [scores[0] for scores in total_scores] _lowercase: Dict = [indices[0] for indices in total_indices] self.assertGreater(np.min(A_ ) , 0 ) self.assertListEqual([1, 1, 1] , A_ )
272
0
'''simple docstring''' import numpy as np import datasets _UpperCamelCase : str = '\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' _UpperCamelCase : List[str] = '\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' _UpperCamelCase : Any = '\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class snake_case__ ( datasets.Metric): def A ( self : str ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''X''': datasets.Sequence(datasets.Value('''float''' , id='''sequence''' ) , id='''X''' ), } ) , ) def A ( self : List[Any] , _A : Dict , _A : Optional[int] ) -> List[str]: # convert to numpy arrays UpperCAmelCase_ : int = np.array(_A ) UpperCAmelCase_ : List[str] = np.array(_A ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError('''Expected `X` to be a 2D vector''' ) if len(reference_distribution.shape ) != 2: raise ValueError('''Expected `reference_distribution` to be a 2D vector''' ) if reference_distribution.shape[0] < 2: raise ValueError( '''Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension''' ) # Get mahalanobis distance for each prediction UpperCAmelCase_ : Optional[Any] = X - np.mean(_A ) UpperCAmelCase_ : Union[str, Any] = np.cov(reference_distribution.T ) try: UpperCAmelCase_ : Optional[int] = np.linalg.inv(_A ) except np.linalg.LinAlgError: UpperCAmelCase_ : str = np.linalg.pinv(_A ) UpperCAmelCase_ : Dict = np.dot(_A , _A ) UpperCAmelCase_ : str = np.dot(_A , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
541
'''simple docstring''' _UpperCamelCase : Dict = range(2, 20 + 1) _UpperCamelCase : str = [10**k for k in range(ks[-1] + 1)] _UpperCamelCase : dict[int, dict[int, list[list[int]]]] = {} def __UpperCAmelCase ( A : List[Any] , A : str , A : Union[str, Any] , A : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = sum(a_i[j] for j in range(A , len(A ) ) ) UpperCAmelCase_ : Union[str, Any] = sum(a_i[j] * base[j] for j in range(min(len(A ) , A ) ) ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = 0, 0 UpperCAmelCase_ : str = n - i UpperCAmelCase_ : Union[str, Any] = memo.get(A ) if sub_memo is not None: UpperCAmelCase_ : Dict = sub_memo.get(A ) if jumps is not None and len(A ) > 0: # find and make the largest jump without going over UpperCAmelCase_ : str = -1 for _k in range(len(A ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: UpperCAmelCase_ : Any = _k break if max_jump >= 0: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = jumps[max_jump] # since the difference between jumps is cached, add c UpperCAmelCase_ : Union[str, Any] = diff + c for j in range(min(A , len(A ) ) ): UpperCAmelCase_ , UpperCAmelCase_ : Tuple = divmod(A , 1_0 ) if new_c > 0: add(A , A , A ) else: UpperCAmelCase_ : Tuple = [] else: UpperCAmelCase_ : List[str] = {c: []} UpperCAmelCase_ : List[str] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = next_term(A , k - 1 , i + dn , A ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead UpperCAmelCase_ , UpperCAmelCase_ : int = compute(A , A , i + dn , A ) diff += _diff dn += terms_jumped UpperCAmelCase_ : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped UpperCAmelCase_ : List[Any] = 0 while j < len(A ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(A , (diff, dn, k) ) return (diff, dn) def __UpperCAmelCase ( A : List[str] , A : Dict , A : List[str] , A : Union[str, Any] ) -> str: if i >= n: return 0, i if k > len(A ): a_i.extend([0 for _ in range(k - len(A ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) UpperCAmelCase_ : int = i UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = 0, 0, 0 for j in range(len(A ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 UpperCAmelCase_ : Optional[int] = ds_c + ds_b diff += addend UpperCAmelCase_ : Any = 0 for j in range(A ): UpperCAmelCase_ : Dict = a_i[j] + addend UpperCAmelCase_ , UpperCAmelCase_ : Tuple = divmod(A , 1_0 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(A , A , A ) return diff, i - start_i def __UpperCAmelCase ( A : Dict , A : Union[str, Any] , A : str ) -> List[Any]: for j in range(A , len(A ) ): UpperCAmelCase_ : List[str] = digits[j] + addend if s >= 1_0: UpperCAmelCase_ , UpperCAmelCase_ : Any = divmod(A , 1_0 ) UpperCAmelCase_ : str = addend // 1_0 + quotient else: UpperCAmelCase_ : Any = s UpperCAmelCase_ : Any = addend // 1_0 if addend == 0: break while addend > 0: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = divmod(A , 1_0 ) digits.append(A ) def __UpperCAmelCase ( A : int = 1_0**1_5 ) -> int: UpperCAmelCase_ : Any = [1] UpperCAmelCase_ : Union[str, Any] = 1 UpperCAmelCase_ : List[Any] = 0 while True: UpperCAmelCase_ , UpperCAmelCase_ : str = next_term(A , 2_0 , i + dn , A ) dn += terms_jumped if dn == n - i: break UpperCAmelCase_ : Any = 0 for j in range(len(A ) ): a_n += digits[j] * 1_0**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
541
1
from __future__ import annotations from math import pow, sqrt def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" if (resistance, reactance, impedance).count(0) != 1: raise ValueError("""One and only one argument must be 0""") if resistance == 0: return {"resistance": sqrt(pow(UpperCAmelCase_ , 2) - pow(UpperCAmelCase_ , 2))} elif reactance == 0: return {"reactance": sqrt(pow(UpperCAmelCase_ , 2) - pow(UpperCAmelCase_ , 2))} elif impedance == 0: return {"impedance": sqrt(pow(UpperCAmelCase_ , 2) + pow(UpperCAmelCase_ , 2))} else: raise ValueError("""Exactly one argument must be 0""") if __name__ == "__main__": import doctest doctest.testmod()
716
def _lowercase ( UpperCAmelCase_): """simple docstring""" snake_case__ : Any = 1 snake_case__ : Dict = 2 while i * i <= n: snake_case__ : Dict = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _lowercase ( ): """simple docstring""" snake_case__ : int = 1 snake_case__ : str = 1 while True: i += 1 t_num += i if count_divisors(UpperCAmelCase_) > 500: break return t_num if __name__ == "__main__": print(solution())
127
0
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() __lowerCAmelCase : int = logging.get_logger(__name__) __lowerCAmelCase : int = {name: getattr(transformers, name + 'Fast') for name in SLOW_TO_FAST_CONVERTERS} def a__ ( A_, A_, A_, A_ ): '''simple docstring''' if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.''' ) if tokenizer_name is None: __magic_name__ = TOKENIZER_CLASSES else: __magic_name__ = {tokenizer_name: getattr(UpperCamelCase_, tokenizer_name + """Fast""" )} logger.info(f'''Loading tokenizer classes: {tokenizer_names}''' ) for tokenizer_name in tokenizer_names: __magic_name__ = TOKENIZER_CLASSES[tokenizer_name] __magic_name__ = True if checkpoint_name is None: __magic_name__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: __magic_name__ = [checkpoint_name] logger.info(f'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''' ) for checkpoint in checkpoint_names: logger.info(f'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''' ) # Load tokenizer __magic_name__ = tokenizer_class.from_pretrained(UpperCamelCase_, force_download=UpperCamelCase_ ) # Save fast tokenizer logger.info(f'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''' ) # For organization names we create sub-directories if "/" in checkpoint: __magic_name__ , __magic_name__ = checkpoint.split("""/""" ) __magic_name__ = os.path.join(UpperCamelCase_, UpperCamelCase_ ) elif add_prefix: __magic_name__ = checkpoint __magic_name__ = dump_path else: __magic_name__ = None __magic_name__ = dump_path logger.info(f'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: __magic_name__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] __magic_name__ = file_path.split(UpperCamelCase_ )[-1][0] if next_char == "/": __magic_name__ = os.path.join(UpperCamelCase_, UpperCamelCase_ ) __magic_name__ = None logger.info(f'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) __magic_name__ = tokenizer.save_pretrained( UpperCamelCase_, legacy_format=UpperCamelCase_, filename_prefix=UpperCamelCase_ ) logger.info(f'''=> File names {file_names}''' ) for file_name in file_names: if not file_name.endswith("""tokenizer.json""" ): os.remove(UpperCamelCase_ ) logger.info(f'''=> removing {file_name}''' ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output generated fast tokenizer files.' ) parser.add_argument( '--tokenizer_name', default=None, type=str, help=( F'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ''' 'download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--checkpoint_name', default=None, type=str, help='Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.', ) parser.add_argument( '--force_download', action='store_true', help='Re-download checkpoints.', ) __lowerCAmelCase : List[Any] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
529
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def a_ ( ) -> Dict: """simple docstring""" lowerCamelCase = 1_0 lowerCamelCase = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) lowerCamelCase = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [9_7], 'text': ['1976']}] * 1_0, 'id': list(range(UpperCamelCase_ ) ), } , features=UpperCamelCase_ , ) return dataset @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=UpperCamelCase_ ) return filename # FILE_CONTENT + files _lowerCAmelCase : List[str] = '\\n Text data.\n Second line of data.' @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'file.txt' lowerCamelCase = FILE_CONTENT with open(UpperCamelCase_ , 'w' ) as f: f.write(UpperCamelCase_ ) return filename @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Optional[Any] ) -> str: """simple docstring""" import bza lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' lowerCamelCase = bytes(UpperCamelCase_ , 'utf-8' ) with bza.open(UpperCamelCase_ , 'wb' ) as f: f.write(UpperCamelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Optional[int] ) -> Dict: """simple docstring""" import gzip lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) lowerCamelCase = bytes(UpperCamelCase_ , 'utf-8' ) with gzip.open(UpperCamelCase_ , 'wb' ) as f: f.write(UpperCamelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Optional[int] ) -> Optional[int]: """simple docstring""" if datasets.config.LZ4_AVAILABLE: import lza.frame lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' lowerCamelCase = bytes(UpperCamelCase_ , 'utf-8' ) with lza.frame.open(UpperCamelCase_ , 'wb' ) as f: f.write(UpperCamelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any] ) -> Any: """simple docstring""" if datasets.config.PY7ZR_AVAILABLE: import pyazr lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(UpperCamelCase_ , 'w' ) as archive: archive.write(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" import tarfile lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(UpperCamelCase_ , 'w' ) as f: f.add(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Dict ) -> Optional[Any]: """simple docstring""" import lzma lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' lowerCamelCase = bytes(UpperCamelCase_ , 'utf-8' ) with lzma.open(UpperCamelCase_ , 'wb' ) as f: f.write(UpperCamelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : str , UpperCamelCase_ : List[str] ) -> Optional[Any]: """simple docstring""" import zipfile lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(UpperCamelCase_ , 'w' ) as f: f.write(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : List[str] ) -> int: """simple docstring""" if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' lowerCamelCase = bytes(UpperCamelCase_ , 'utf-8' ) with zstd.open(UpperCamelCase_ , 'wb' ) as f: f.write(UpperCamelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'file.xml' lowerCamelCase = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(UpperCamelCase_ , 'w' ) as f: f.write(UpperCamelCase_ ) return filename _lowerCAmelCase : int = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] _lowerCAmelCase : Dict = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] _lowerCAmelCase : List[str] = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } _lowerCAmelCase : Tuple = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] _lowerCAmelCase : Union[str, Any] = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope='session' ) def a_ ( ) -> List[Any]: """simple docstring""" return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Any ) -> List[str]: """simple docstring""" lowerCamelCase = datasets.Dataset.from_dict(UpperCamelCase_ ) lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=UpperCamelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Optional[int] ) -> Any: """simple docstring""" lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(UpperCamelCase_ ) ) as con: lowerCamelCase = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Dict ) -> List[Any]: """simple docstring""" lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(UpperCamelCase_ , 'w' , newline='' ) as f: lowerCamelCase = csv.DictWriter(UpperCamelCase_ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(UpperCamelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(UpperCamelCase_ , 'w' , newline='' ) as f: lowerCamelCase = csv.DictWriter(UpperCamelCase_ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(UpperCamelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : str , UpperCamelCase_ : Any ) -> Optional[Any]: """simple docstring""" import bza lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(UpperCamelCase_ , 'rb' ) as f: lowerCamelCase = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(UpperCamelCase_ , 'wb' ) as f: f.write(UpperCamelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Any ) -> Tuple: """simple docstring""" lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(UpperCamelCase_ , 'w' ) as f: f.write(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) f.write(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(UpperCamelCase_ , 'w' ) as f: f.write(UpperCamelCase_ , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(UpperCamelCase_ , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(UpperCamelCase_ , 'w' ) as f: f.write(UpperCamelCase_ , arcname=os.path.join('main_dir' , os.path.basename(UpperCamelCase_ ) ) ) f.write(UpperCamelCase_ , arcname=os.path.join('main_dir' , os.path.basename(UpperCamelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Dict ) -> List[str]: """simple docstring""" lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) lowerCamelCase = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(UpperCamelCase_ , 'wb' ) as f: lowerCamelCase = pq.ParquetWriter(UpperCamelCase_ , schema=UpperCamelCase_ ) lowerCamelCase = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(UpperCamelCase_ ) )] for k in DATA[0]} , schema=UpperCamelCase_ ) writer.write_table(UpperCamelCase_ ) writer.close() return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) lowerCamelCase = {'data': DATA} with open(UpperCamelCase_ , 'w' ) as f: json.dump(UpperCamelCase_ , UpperCamelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : str ) -> List[str]: """simple docstring""" lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) lowerCamelCase = {'data': DATA_DICT_OF_LISTS} with open(UpperCamelCase_ , 'w' ) as f: json.dump(UpperCamelCase_ , UpperCamelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(UpperCamelCase_ , 'w' ) as f: for item in DATA: f.write(json.dumps(UpperCamelCase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Tuple ) -> Tuple: """simple docstring""" lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(UpperCamelCase_ , 'w' ) as f: for item in DATA: f.write(json.dumps(UpperCamelCase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(UpperCamelCase_ , 'w' ) as f: for item in DATA_312: f.write(json.dumps(UpperCamelCase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Optional[int] ) -> int: """simple docstring""" lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(UpperCamelCase_ , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(UpperCamelCase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : str , UpperCamelCase_ : int ) -> Union[str, Any]: """simple docstring""" import gzip lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(UpperCamelCase_ , 'rb' ) as orig_file: with gzip.open(UpperCamelCase_ , 'wb' ) as zipped_file: zipped_file.writelines(UpperCamelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int] ) -> Optional[int]: """simple docstring""" import gzip lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(UpperCamelCase_ , 'rb' ) as orig_file: with gzip.open(UpperCamelCase_ , 'wb' ) as zipped_file: zipped_file.writelines(UpperCamelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(UpperCamelCase_ , 'w' ) as f: f.write(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) f.write(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int ) -> int: """simple docstring""" lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(UpperCamelCase_ , 'w' ) as f: f.write(UpperCamelCase_ , arcname=os.path.join('nested' , os.path.basename(UpperCamelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple ) -> int: """simple docstring""" lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(UpperCamelCase_ , 'w' ) as f: f.write(UpperCamelCase_ , arcname=os.path.join('main_dir' , os.path.basename(UpperCamelCase_ ) ) ) f.write(UpperCamelCase_ , arcname=os.path.join('main_dir' , os.path.basename(UpperCamelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int ) -> Optional[int]: """simple docstring""" lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(UpperCamelCase_ , 'w' ) as f: f.add(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) f.add(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any] ) -> str: """simple docstring""" lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(UpperCamelCase_ , 'w' ) as f: f.add(UpperCamelCase_ , arcname=os.path.join('nested' , os.path.basename(UpperCamelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase = ['0', '1', '2', '3'] lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(UpperCamelCase_ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : List[Any] ) -> int: """simple docstring""" lowerCamelCase = ['0', '1', '2', '3'] lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(UpperCamelCase_ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase = ['0', '1', '2', '3'] lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(UpperCamelCase_ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : Any ) -> Optional[Any]: """simple docstring""" lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(UpperCamelCase_ , 'w' ) as f: f.write(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) f.write(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : int ) -> Optional[int]: """simple docstring""" lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(UpperCamelCase_ , 'w' ) as f: f.write(UpperCamelCase_ , arcname=os.path.join('main_dir' , os.path.basename(UpperCamelCase_ ) ) ) f.write(UpperCamelCase_ , arcname=os.path.join('main_dir' , os.path.basename(UpperCamelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : str , UpperCamelCase_ : Tuple , UpperCamelCase_ : Union[str, Any] ) -> str: """simple docstring""" lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(UpperCamelCase_ , 'w' ) as f: f.write(UpperCamelCase_ , arcname=os.path.basename('unsupported.ext' ) ) f.write(UpperCamelCase_ , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(UpperCamelCase_ , 'w' , encoding='utf-8' ) as f: f.write(UpperCamelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( ) -> List[str]: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def a_ ( ) -> List[str]: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any ) -> Optional[Any]: """simple docstring""" lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(UpperCamelCase_ , 'w' ) as f: f.write(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) f.write(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : List[str] ) -> Optional[Any]: """simple docstring""" lowerCamelCase = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) return data_dir
246
0
from string import ascii_uppercase SCREAMING_SNAKE_CASE : int = {char: i for i, char in enumerate(ascii_uppercase)} SCREAMING_SNAKE_CASE : str = dict(enumerate(ascii_uppercase)) def UpperCamelCase ( _a , _a ) -> str: '''simple docstring''' lowercase_ :str = len(_a ) lowercase_ :List[Any] = 0 while True: if x == i: lowercase_ :Optional[Any] = 0 if len(_a ) == len(_a ): break key += key[i] i += 1 return key def UpperCamelCase ( _a , _a ) -> str: '''simple docstring''' lowercase_ :List[str] = '''''' lowercase_ :int = 0 for letter in message: if letter == " ": cipher_text += " " else: lowercase_ :List[str] = (dicta[letter] - dicta[key_new[i]]) % 2_6 i += 1 cipher_text += dicta[x] return cipher_text def UpperCamelCase ( _a , _a ) -> str: '''simple docstring''' lowercase_ :Any = '''''' lowercase_ :Any = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: lowercase_ :Optional[Any] = (dicta[letter] + dicta[key_new[i]] + 2_6) % 2_6 i += 1 or_txt += dicta[x] return or_txt def UpperCamelCase ( ) -> None: '''simple docstring''' lowercase_ :Optional[Any] = '''THE GERMAN ATTACK''' lowercase_ :List[Any] = '''SECRET''' lowercase_ :int = generate_key(_a , _a ) lowercase_ :Union[str, Any] = cipher_text(_a , _a ) print(f"Encrypted Text = {s}" ) print(f"Original Text = {original_text(_a , _a )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
704
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=99 , UpperCamelCase_=32 , UpperCamelCase_=5 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=512 , UpperCamelCase_=16 , UpperCamelCase_=2 , UpperCamelCase_=0.02 , UpperCamelCase_=4 , ): lowercase_ :Union[str, Any] = parent lowercase_ :int = batch_size lowercase_ :int = seq_length lowercase_ :str = is_training lowercase_ :Dict = use_attention_mask lowercase_ :List[Any] = use_token_type_ids lowercase_ :str = use_labels lowercase_ :str = vocab_size lowercase_ :Optional[int] = hidden_size lowercase_ :Dict = num_hidden_layers lowercase_ :List[str] = num_attention_heads lowercase_ :int = intermediate_size lowercase_ :Union[str, Any] = hidden_act lowercase_ :Optional[int] = hidden_dropout_prob lowercase_ :Tuple = attention_probs_dropout_prob lowercase_ :int = max_position_embeddings lowercase_ :List[Any] = type_vocab_size lowercase_ :Any = type_sequence_label_size lowercase_ :Tuple = initializer_range lowercase_ :Any = num_choices def UpperCamelCase ( self ): lowercase_ :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ :List[str] = None if self.use_attention_mask: lowercase_ :Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ :List[Any] = None if self.use_token_type_ids: lowercase_ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ :Union[str, Any] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase ( self ): lowercase_ :Optional[Any] = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ , lowercase_ :List[str] = config_and_inputs lowercase_ :Union[str, Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def UpperCamelCase ( self ): lowercase_ :Dict = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ , lowercase_ :Dict = config_and_inputs lowercase_ :str = True lowercase_ :Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase_ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' lowercase : int =True lowercase : Dict =( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase ( self ): lowercase_ :Union[str, Any] = FlaxBertModelTester(self ) @slow def UpperCamelCase ( self ): # Only check this for base model, not necessary for all model classes. # This will also help speed-up tests. lowercase_ :Dict = FlaxBertModel.from_pretrained('''bert-base-cased''' ) lowercase_ :str = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase_ )
441
0
'''simple docstring''' import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class A ( nn.Module ): lowercase_ = 42 lowercase_ = 42 lowercase_ = 0.0 lowercase_ = 1 lowercase_ = 1 lowercase_ = True lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = jnp.floataa def __lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _a = [] _a = [] for i in range(self.num_layers ): _a = self.in_channels if i == 0 else self.out_channels _a = FlaxResnetBlockaD( in_channels=lowerCAmelCase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase_ ) _a = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCAmelCase_ ) _a = resnets _a = attentions if self.add_downsample: _a = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str=True ) -> str: """simple docstring""" _a = () for resnet, attn in zip(self.resnets , self.attentions ): _a = resnet(lowerCAmelCase_ , lowerCAmelCase_ , deterministic=lowerCAmelCase_ ) _a = attn(lowerCAmelCase_ , lowerCAmelCase_ , deterministic=lowerCAmelCase_ ) output_states += (hidden_states,) if self.add_downsample: _a = self.downsamplers_a(lowerCAmelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class A ( nn.Module ): lowercase_ = 42 lowercase_ = 42 lowercase_ = 0.0 lowercase_ = 1 lowercase_ = True lowercase_ = jnp.floataa def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" _a = [] for i in range(self.num_layers ): _a = self.in_channels if i == 0 else self.out_channels _a = FlaxResnetBlockaD( in_channels=lowerCAmelCase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase_ ) _a = resnets if self.add_downsample: _a = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str]=True ) -> Optional[Any]: """simple docstring""" _a = () for resnet in self.resnets: _a = resnet(lowerCAmelCase_ , lowerCAmelCase_ , deterministic=lowerCAmelCase_ ) output_states += (hidden_states,) if self.add_downsample: _a = self.downsamplers_a(lowerCAmelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class A ( nn.Module ): lowercase_ = 42 lowercase_ = 42 lowercase_ = 42 lowercase_ = 0.0 lowercase_ = 1 lowercase_ = 1 lowercase_ = True lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = jnp.floataa def __lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _a = [] _a = [] for i in range(self.num_layers ): _a = self.in_channels if (i == self.num_layers - 1) else self.out_channels _a = self.prev_output_channel if i == 0 else self.out_channels _a = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase_ ) _a = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCAmelCase_ ) _a = resnets _a = attentions if self.add_upsample: _a = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int]=True ) -> int: """simple docstring""" for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states _a = res_hidden_states_tuple[-1] _a = res_hidden_states_tuple[:-1] _a = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _a = resnet(lowerCAmelCase_ , lowerCAmelCase_ , deterministic=lowerCAmelCase_ ) _a = attn(lowerCAmelCase_ , lowerCAmelCase_ , deterministic=lowerCAmelCase_ ) if self.add_upsample: _a = self.upsamplers_a(lowerCAmelCase_ ) return hidden_states class A ( nn.Module ): lowercase_ = 42 lowercase_ = 42 lowercase_ = 42 lowercase_ = 0.0 lowercase_ = 1 lowercase_ = True lowercase_ = jnp.floataa def __lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" _a = [] for i in range(self.num_layers ): _a = self.in_channels if (i == self.num_layers - 1) else self.out_channels _a = self.prev_output_channel if i == 0 else self.out_channels _a = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase_ ) _a = resnets if self.add_upsample: _a = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int]=True ) -> Optional[Any]: """simple docstring""" for resnet in self.resnets: # pop res hidden states _a = res_hidden_states_tuple[-1] _a = res_hidden_states_tuple[:-1] _a = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _a = resnet(lowerCAmelCase_ , lowerCAmelCase_ , deterministic=lowerCAmelCase_ ) if self.add_upsample: _a = self.upsamplers_a(lowerCAmelCase_ ) return hidden_states class A ( nn.Module ): lowercase_ = 42 lowercase_ = 0.0 lowercase_ = 1 lowercase_ = 1 lowercase_ = False lowercase_ = False lowercase_ = jnp.floataa def __lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" _a = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] _a = [] for _ in range(self.num_layers ): _a = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCAmelCase_ ) _a = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase_ ) _a = resnets _a = attentions def __call__( self : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int]=True ) -> List[str]: """simple docstring""" _a = self.resnets[0](lowerCAmelCase_ , lowerCAmelCase_ ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): _a = attn(lowerCAmelCase_ , lowerCAmelCase_ , deterministic=lowerCAmelCase_ ) _a = resnet(lowerCAmelCase_ , lowerCAmelCase_ , deterministic=lowerCAmelCase_ ) return hidden_states
22
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( __lowerCamelCase, unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[str] = CanineTokenizer __UpperCAmelCase : int = False def _UpperCamelCase ( self ): super().setUp() lowerCamelCase_ : int = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ): return CanineTokenizer.from_pretrained("google/canine-s" ) def _UpperCamelCase ( self , **a_ ): lowerCamelCase_ : List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname , **a_ ) lowerCamelCase_ : Dict = 1024 return tokenizer @require_torch def _UpperCamelCase ( self ): lowerCamelCase_ : Optional[Any] = self.canine_tokenizer lowerCamelCase_ : str = ["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off lowerCamelCase_ : Dict = [5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on lowerCamelCase_ : List[Any] = tokenizer(a_ , padding=a_ , return_tensors="pt" ) self.assertIsInstance(a_ , a_ ) lowerCamelCase_ : List[str] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(a_ , a_ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def _UpperCamelCase ( self ): lowerCamelCase_ : Any = self.canine_tokenizer lowerCamelCase_ : Tuple = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] lowerCamelCase_ : Union[str, Any] = tokenizer(a_ , padding=a_ , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , a_ ) self.assertIn("attention_mask" , a_ ) self.assertIn("token_type_ids" , a_ ) @require_torch def _UpperCamelCase ( self ): lowerCamelCase_ : int = self.canine_tokenizer lowerCamelCase_ : Tuple = [ "What's the weater?", "It's about 25 degrees.", ] lowerCamelCase_ : Optional[Any] = tokenizer( text_target=a_ , max_length=32 , padding="max_length" , truncation=a_ , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def _UpperCamelCase ( self ): # safety check on max_len default value so we are sure the test works lowerCamelCase_ : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowerCamelCase_ : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase_ : Optional[int] = tempfile.mkdtemp() lowerCamelCase_ : Dict = " He is very happy, UNwant\u00E9d,running" lowerCamelCase_ : Optional[int] = tokenizer.encode(a_ , add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) lowerCamelCase_ : Union[str, Any] = tokenizer.__class__.from_pretrained(a_ ) lowerCamelCase_ : List[Any] = after_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) shutil.rmtree(a_ ) lowerCamelCase_ : List[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase_ : List[Any] = tempfile.mkdtemp() lowerCamelCase_ : Tuple = " He is very happy, UNwant\u00E9d,running" lowerCamelCase_ : Dict = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: lowerCamelCase_ : List[str] = chr(0Xe007 ) additional_special_tokens.append(a_ ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) lowerCamelCase_ : List[str] = tokenizer.encode(a_ , add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) lowerCamelCase_ : Any = tokenizer.__class__.from_pretrained(a_ ) lowerCamelCase_ : Any = after_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) self.assertIn(a_ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowerCamelCase_ : int = tokenizer.__class__.from_pretrained(a_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(a_ ) def _UpperCamelCase ( self ): lowerCamelCase_ : List[str] = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCamelCase_ ,lowerCamelCase_ : str = self.get_clean_sequence(a_ ) # a special token for Canine can be defined as follows: lowerCamelCase_ : Tuple = 0Xe005 lowerCamelCase_ : Dict = chr(a_ ) tokenizer.add_special_tokens({"cls_token": special_token} ) lowerCamelCase_ : List[str] = tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertEqual(len(a_ ) , 1 ) lowerCamelCase_ : List[Any] = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=a_ ) lowerCamelCase_ : List[Any] = tokenizer.encode(a_ , add_special_tokens=a_ ) lowerCamelCase_ : Dict = tokenizer.encode(a_ , add_special_tokens=a_ ) lowerCamelCase_ : Any = tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertEqual(a_ , input_encoded + special_token_id ) lowerCamelCase_ : Optional[int] = tokenizer.decode(a_ , skip_special_tokens=a_ ) self.assertTrue(special_token not in decoded ) def _UpperCamelCase ( self ): lowerCamelCase_ : Tuple = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCamelCase_ : Optional[int] = chr(0Xe005 ) lowerCamelCase_ : str = chr(0Xe006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=a_ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) lowerCamelCase_ : Tuple = tokenizer.tokenize(a_ ) lowerCamelCase_ : List[Any] = tokenizer.tokenize(a_ ) self.assertEqual(len(a_ ) , 1 ) self.assertEqual(len(a_ ) , 1 ) self.assertEqual(token_a[0] , a_ ) self.assertEqual(token_a[0] , a_ ) @require_tokenizers def _UpperCamelCase ( self ): lowerCamelCase_ : Tuple = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # a special token for Canine can be defined as follows: lowerCamelCase_ : List[str] = 0Xe006 lowerCamelCase_ : Any = chr(a_ ) lowerCamelCase_ : str = AddedToken(a_ , lstrip=a_ ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(a_ ) tokenizer.from_pretrained(a_ ) def _UpperCamelCase ( self ): lowerCamelCase_ : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a_ ) with open(os.path.join(a_ , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: lowerCamelCase_ : List[Any] = json.load(a_ ) with open(os.path.join(a_ , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: lowerCamelCase_ : int = json.load(a_ ) # a special token for Canine can be defined as follows: lowerCamelCase_ : Any = 0Xe006 lowerCamelCase_ : List[Any] = chr(a_ ) lowerCamelCase_ : Any = [new_token_a] lowerCamelCase_ : Optional[Any] = [new_token_a] with open(os.path.join(a_ , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(a_ , a_ ) with open(os.path.join(a_ , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(a_ , a_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCamelCase_ : str = tokenizer_class.from_pretrained(a_ , extra_ids=0 ) self.assertIn(a_ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) lowerCamelCase_ : Optional[int] = 0Xe007 lowerCamelCase_ : List[str] = chr(a_ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCamelCase_ : int = [AddedToken(a_ , lstrip=a_ )] lowerCamelCase_ : Dict = tokenizer_class.from_pretrained( a_ , additional_special_tokens=a_ , extra_ids=0 ) self.assertIn(a_ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def _UpperCamelCase ( self ): lowerCamelCase_ : Dict = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCamelCase_ : Union[str, Any] = "hello world" if self.space_between_special_tokens: lowerCamelCase_ : int = "[CLS] hello world [SEP]" else: lowerCamelCase_ : int = input lowerCamelCase_ : Optional[Any] = tokenizer.encode(a_ , add_special_tokens=a_ ) lowerCamelCase_ : Any = tokenizer.decode(a_ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(a_ , [output, output.lower()] ) def _UpperCamelCase ( self ): lowerCamelCase_ : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCamelCase_ : Tuple = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] lowerCamelCase_ : Optional[int] = "a" lowerCamelCase_ : Dict = ord(a_ ) for attr in attributes_list: setattr(a_ , attr + "_id" , a_ ) self.assertEqual(getattr(a_ , a_ ) , a_ ) self.assertEqual(getattr(a_ , attr + "_id" ) , a_ ) setattr(a_ , attr + "_id" , a_ ) self.assertEqual(getattr(a_ , a_ ) , a_ ) self.assertEqual(getattr(a_ , attr + "_id" ) , a_ ) setattr(a_ , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(a_ , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(a_ , "additional_special_tokens_ids" ) , [] ) lowerCamelCase_ : Optional[int] = 0Xe006 lowerCamelCase_ : List[str] = chr(a_ ) setattr(a_ , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(a_ , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(a_ , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass
250
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt' ), } } SCREAMING_SNAKE_CASE = { 'junnyu/roformer_chinese_small': 1536, 'junnyu/roformer_chinese_base': 1536, 'junnyu/roformer_chinese_char_small': 512, 'junnyu/roformer_chinese_char_base': 512, 'junnyu/roformer_small_discriminator': 128, 'junnyu/roformer_small_generator': 128, } SCREAMING_SNAKE_CASE = { 'junnyu/roformer_chinese_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_base': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_base': {'do_lower_case': True}, 'junnyu/roformer_small_discriminator': {'do_lower_case': True}, 'junnyu/roformer_small_generator': {'do_lower_case': True}, } class _lowerCamelCase (__lowerCamelCase ): _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = PRETRAINED_INIT_CONFIGURATION _snake_case = RoFormerTokenizer def __init__( self : List[Any] , lowerCamelCase_ : Any=None , lowerCamelCase_ : List[str]=None , lowerCamelCase_ : Tuple=True , lowerCamelCase_ : List[Any]="[UNK]" , lowerCamelCase_ : Tuple="[SEP]" , lowerCamelCase_ : Optional[int]="[PAD]" , lowerCamelCase_ : Dict="[CLS]" , lowerCamelCase_ : List[str]="[MASK]" , lowerCamelCase_ : Tuple=True , lowerCamelCase_ : int=None , **lowerCamelCase_ : Optional[int] , ): """simple docstring""" super().__init__( lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , do_lower_case=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , tokenize_chinese_chars=lowerCamelCase_ , strip_accents=lowerCamelCase_ , **lowerCamelCase_ , ) _lowercase : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' , lowerCamelCase_ ) != do_lower_case or pre_tok_state.get('strip_accents' , lowerCamelCase_ ) != strip_accents ): _lowercase : List[str] = getattr(lowerCamelCase_ , pre_tok_state.pop('type' ) ) _lowercase : Optional[int] = do_lower_case _lowercase : Tuple = strip_accents _lowercase : str = pre_tok_class(**lowerCamelCase_ ) _lowercase : Dict = do_lower_case def __getstate__( self : Optional[int] ): """simple docstring""" _lowercase : Optional[int] = self.__dict__.copy() _lowercase : Union[str, Any] = BertPreTokenizer() return state def __setstate__( self : str , lowerCamelCase_ : str ): """simple docstring""" _lowercase : Optional[Any] = d _lowercase : Dict = self.__dict__['_tokenizer'].get_vocab() _lowercase : Union[str, Any] = PreTokenizer.custom(JiebaPreTokenizer(lowerCamelCase_ ) ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Tuple=None ): """simple docstring""" _lowercase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): """simple docstring""" _lowercase : Dict = [self.sep_token_id] _lowercase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): """simple docstring""" _lowercase : Dict = self._tokenizer.model.save(lowerCamelCase_ , name=lowerCamelCase_ ) return tuple(lowerCamelCase_ ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Optional[int]=None , lowerCamelCase_ : Dict=False , **lowerCamelCase_ : List[Any] , ): """simple docstring""" _lowercase : Optional[Any] = BertPreTokenizer() return super().save_pretrained(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ )
283
"""simple docstring""" import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all BART models at https://huggingface.co/models?filter=bart SCREAMING_SNAKE_CASE = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, } SCREAMING_SNAKE_CASE = { 'facebook/bart-base': 1024, 'facebook/bart-large': 1024, 'facebook/bart-large-mnli': 1024, 'facebook/bart-large-cnn': 1024, 'facebook/bart-large-xsum': 1024, 'yjernite/bart_eli5': 1024, } @lru_cache() def __lowerCAmelCase( ): """simple docstring""" _lowercase : Tuple = ( list(range(ord('!' ) ,ord('~' ) + 1 ) ) + list(range(ord('¡' ) ,ord('¬' ) + 1 ) ) + list(range(ord('®' ) ,ord('ÿ' ) + 1 ) ) ) _lowercase : List[Any] = bs[:] _lowercase : Optional[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(__UpperCAmelCase ) cs.append(2**8 + n ) n += 1 _lowercase : Dict = [chr(__UpperCAmelCase ) for n in cs] return dict(zip(__UpperCAmelCase ,__UpperCAmelCase ) ) def __lowerCAmelCase( __UpperCAmelCase ): """simple docstring""" _lowercase : Tuple = set() _lowercase : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowercase : Union[str, Any] = char return pairs class _lowerCamelCase (__lowerCamelCase ): _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["input_ids", "attention_mask"] def __init__( self : int , lowerCamelCase_ : Dict , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any]="replace" , lowerCamelCase_ : List[str]="<s>" , lowerCamelCase_ : Optional[int]="</s>" , lowerCamelCase_ : Tuple="</s>" , lowerCamelCase_ : str="<s>" , lowerCamelCase_ : Dict="<unk>" , lowerCamelCase_ : Optional[Any]="<pad>" , lowerCamelCase_ : List[Any]="<mask>" , lowerCamelCase_ : str=False , **lowerCamelCase_ : str , ): """simple docstring""" _lowercase : int = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else bos_token _lowercase : int = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else eos_token _lowercase : Dict = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else sep_token _lowercase : Optional[int] = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else cls_token _lowercase : Any = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else unk_token _lowercase : Union[str, Any] = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowercase : str = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token super().__init__( errors=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , **lowerCamelCase_ , ) with open(lowerCamelCase_ , encoding='utf-8' ) as vocab_handle: _lowercase : str = json.load(lowerCamelCase_ ) _lowercase : Tuple = {v: k for k, v in self.encoder.items()} _lowercase : Any = errors # how to handle errors in decoding _lowercase : str = bytes_to_unicode() _lowercase : Optional[int] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase_ , encoding='utf-8' ) as merges_handle: _lowercase : Union[str, Any] = merges_handle.read().split('\n' )[1:-1] _lowercase : Dict = [tuple(merge.split() ) for merge in bpe_merges] _lowercase : Any = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) _lowercase : Tuple = {} _lowercase : Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowercase : int = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def __UpperCAmelCase ( self : Dict ): """simple docstring""" return len(self.encoder ) def __UpperCAmelCase ( self : int ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : Optional[int] ): """simple docstring""" if token in self.cache: return self.cache[token] _lowercase : str = tuple(lowerCamelCase_ ) _lowercase : Dict = get_pairs(lowerCamelCase_ ) if not pairs: return token while True: _lowercase : List[str] = min(lowerCamelCase_ , key=lambda lowerCamelCase_ : self.bpe_ranks.get(lowerCamelCase_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowercase , _lowercase : List[Any] = bigram _lowercase : Optional[int] = [] _lowercase : Optional[Any] = 0 while i < len(lowerCamelCase_ ): try: _lowercase : int = word.index(lowerCamelCase_ , lowerCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowercase : Dict = j if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowercase : Tuple = tuple(lowerCamelCase_ ) _lowercase : Dict = new_word if len(lowerCamelCase_ ) == 1: break else: _lowercase : str = get_pairs(lowerCamelCase_ ) _lowercase : str = ' '.join(lowerCamelCase_ ) _lowercase : List[str] = word return word def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : str ): """simple docstring""" _lowercase : Union[str, Any] = [] for token in re.findall(self.pat , lowerCamelCase_ ): _lowercase : List[str] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase_ ).split(' ' ) ) return bpe_tokens def __UpperCAmelCase ( self : int , lowerCamelCase_ : Optional[Any] ): """simple docstring""" return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token ) ) def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Dict ): """simple docstring""" return self.decoder.get(lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : Any ): """simple docstring""" _lowercase : Dict = ''.join(lowerCamelCase_ ) _lowercase : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def __UpperCAmelCase ( self : int , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowercase : Union[str, Any] = os.path.join( lowerCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowercase : List[Any] = os.path.join( lowerCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowerCamelCase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase_ , ensure_ascii=lowerCamelCase_ ) + '\n' ) _lowercase : Optional[int] = 0 with open(lowerCamelCase_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) _lowercase : int = token_index writer.write(' '.join(lowerCamelCase_ ) + '\n' ) index += 1 return vocab_file, merge_file def __UpperCAmelCase ( self : Any , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowercase : Optional[Any] = [self.cls_token_id] _lowercase : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None , lowerCamelCase_ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): """simple docstring""" _lowercase : int = [self.sep_token_id] _lowercase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str=False , **lowerCamelCase_ : int ): """simple docstring""" _lowercase : Dict = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase_ ) > 0 and not text[0].isspace()): _lowercase : Dict = ' ' + text return (text, kwargs)
283
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class a ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Tuple: _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = BlipImageProcessor() _UpperCAmelCase = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) _UpperCAmelCase = BlipaProcessor(snake_case_ , snake_case_ ) processor.save_pretrained(self.tmpdirname ) def __A ( self , **snake_case_ ) -> Dict: return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case_ ).tokenizer def __A ( self , **snake_case_ ) -> Any: return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case_ ).image_processor def __A ( self ) -> List[str]: shutil.rmtree(self.tmpdirname ) def __A ( self ) -> List[str]: _UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _UpperCAmelCase = [Image.fromarray(np.moveaxis(snake_case_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self ) -> Tuple: _UpperCAmelCase = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) _UpperCAmelCase = self.get_image_processor(do_normalize=snake_case_ , padding_value=1.0 ) _UpperCAmelCase = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case_ ) def __A ( self ) -> Optional[int]: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = BlipaProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = image_processor(snake_case_ , return_tensors="np" ) _UpperCAmelCase = processor(images=snake_case_ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self ) -> Union[str, Any]: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = BlipaProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) _UpperCAmelCase = "lower newer" _UpperCAmelCase = processor(text=snake_case_ ) _UpperCAmelCase = tokenizer(snake_case_ , return_token_type_ids=snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self ) -> Tuple: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = BlipaProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) _UpperCAmelCase = "lower newer" _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = processor(text=snake_case_ , images=snake_case_ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(snake_case_ ): processor() def __A ( self ) -> str: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = BlipaProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) _UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCAmelCase = processor.batch_decode(snake_case_ ) _UpperCAmelCase = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def __A ( self ) -> Optional[int]: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = BlipaProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) _UpperCAmelCase = "lower newer" _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = processor(text=snake_case_ , images=snake_case_ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
426
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class a ( _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" A__ : Union[str, Any] = XLNetTokenizer A__ : Tuple = XLNetTokenizerFast A__ : List[Any] = True A__ : int = True def __A ( self ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase = XLNetTokenizer(snake_case_ , keep_accents=snake_case_ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def __A ( self ) -> Optional[int]: _UpperCAmelCase = "<s>" _UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def __A ( self ) -> Optional[int]: _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<eod>" ) self.assertEqual(len(snake_case_ ) , 1006 ) def __A ( self ) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def __A ( self ) -> Tuple: _UpperCAmelCase = XLNetTokenizer(snake_case_ , keep_accents=snake_case_ ) _UpperCAmelCase = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , [285, 46, 10, 170, 382] ) _UpperCAmelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual(snake_case_ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual( snake_case_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def __A ( self ) -> List[Any]: _UpperCAmelCase = XLNetTokenizer(snake_case_ , do_lower_case=snake_case_ ) _UpperCAmelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case_ , [ SPIECE_UNDERLINE + "", "i", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "se", ".", ] , ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["▁he", "ll", "o"] ) def __A ( self ) -> Tuple: _UpperCAmelCase = XLNetTokenizer(snake_case_ , do_lower_case=snake_case_ ) _UpperCAmelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "se", ".", ] , ) @slow def __A ( self ) -> Union[str, Any]: _UpperCAmelCase = XLNetTokenizer.from_pretrained("xlnet-base-cased" ) _UpperCAmelCase = tokenizer.encode("sequence builders" , add_special_tokens=snake_case_ ) _UpperCAmelCase = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case_ ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def __A ( self ) -> Union[str, Any]: # fmt: off _UpperCAmelCase = {"input_ids": [[17, 21442, 270, 17, 10, 14645, 318, 34, 17, 4546, 3145, 787, 13, 7752, 22018, 23, 21, 17, 4546, 3145, 787, 13, 3352, 14431, 13, 5500, 11, 1176, 580, 13, 16819, 4797, 23, 17, 10, 17135, 658, 19, 457, 7932, 13, 184, 19, 3154, 17135, 6468, 19, 1404, 12269, 19, 4229, 5356, 16264, 46, 19, 17, 20545, 10395, 9, 9, 9, 11, 28, 6421, 9531, 20729, 17, 10, 353, 17022, 11, 21, 6421, 9531, 16949, 17, 10, 11509, 753, 11, 33, 95, 2421, 7385, 956, 14431, 2626, 25, 842, 7385, 4836, 21, 1429, 2272, 9855, 3120, 161, 24738, 19, 13203, 658, 218, 787, 21, 430, 18482, 847, 2637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 22178, 27, 1064, 22, 956, 13, 11101, 1429, 5854, 24313, 18953, 40, 422, 24366, 68, 1758, 37, 10483, 14257, 31, 207, 263, 21, 203, 3773, 25, 71, 9735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2049, 3442, 17, 13894, 3380, 23, 95, 18, 17634, 2288, 9, 4, 3]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="xlnet-base-cased" , revision="c841166438c31ec7ca9a106dee7bb312b73ae511" , )
426
1
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename snake_case_ : Any = "http://www.mocksite.com/file1.txt" snake_case_ : Dict = "\"text\": [\"foo\", \"foo\"]" snake_case_ : Optional[Any] = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class snake_case_ : '''simple docstring''' lowerCamelCase = 2_00 lowerCamelCase = {"Content-Length": "100"} lowerCamelCase = {} def __SCREAMING_SNAKE_CASE ( self : str , **__magic_name__ : Union[str, Any] ) -> str: return [bytes(__magic_name__ , "utf-8" )] def __a ( *__UpperCAmelCase : Dict , **__UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" return MockResponse() @pytest.mark.parametrize("urls_type" , [str, list, dict] ) def __a ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Any , __UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" import requests monkeypatch.setattr(_lowerCamelCase , "request" , _lowerCamelCase ) lowerCamelCase_ : str = URL if issubclass(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase_ : Union[str, Any] = url elif issubclass(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase_ : Any = [url] elif issubclass(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase_ : Union[str, Any] = {"train": url} lowerCamelCase_ : Tuple = "dummy" lowerCamelCase_ : Optional[Any] = "downloads" lowerCamelCase_ : List[Any] = tmp_path lowerCamelCase_ : Optional[int] = DownloadConfig( cache_dir=os.path.join(_lowerCamelCase , _lowerCamelCase ) , use_etag=_lowerCamelCase , ) lowerCamelCase_ : Union[str, Any] = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) lowerCamelCase_ : Tuple = dl_manager.download(_lowerCamelCase ) lowerCamelCase_ : Dict = urls for downloaded_paths in [downloaded_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase_ : str = [downloaded_paths] lowerCamelCase_ : List[Any] = [urls] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in downloaded_paths.keys() lowerCamelCase_ : Union[str, Any] = downloaded_paths.values() lowerCamelCase_ : Optional[int] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_lowerCamelCase , _lowerCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] lowerCamelCase_ : Dict = Path(_lowerCamelCase ) lowerCamelCase_ : Optional[Any] = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() lowerCamelCase_ : Optional[int] = downloaded_path.read_text() assert content == CONTENT lowerCamelCase_ : Union[str, Any] = downloaded_path.with_suffix(".json" ) assert metadata_downloaded_path.exists() lowerCamelCase_ : Optional[Any] = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("paths_type" , [str, list, dict] ) def __a ( __UpperCAmelCase : Any , __UpperCAmelCase : int , __UpperCAmelCase : Any ) -> List[Any]: """simple docstring""" lowerCamelCase_ : str = str(_lowerCamelCase ) if issubclass(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase_ : Optional[Any] = filename elif issubclass(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase_ : int = [filename] elif issubclass(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase_ : List[str] = {"train": filename} lowerCamelCase_ : Tuple = "dummy" lowerCamelCase_ : int = xz_file.parent lowerCamelCase_ : List[Any] = "extracted" lowerCamelCase_ : Dict = DownloadConfig( cache_dir=_lowerCamelCase , use_etag=_lowerCamelCase , ) lowerCamelCase_ : Tuple = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) lowerCamelCase_ : Tuple = dl_manager.extract(_lowerCamelCase ) lowerCamelCase_ : List[Any] = paths for extracted_paths in [extracted_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase_ : Any = [extracted_paths] lowerCamelCase_ : Optional[Any] = [paths] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in extracted_paths.keys() lowerCamelCase_ : str = extracted_paths.values() lowerCamelCase_ : Any = paths.values() assert extracted_paths for extracted_path, input_path in zip(_lowerCamelCase , _lowerCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] lowerCamelCase_ : Any = Path(_lowerCamelCase ) lowerCamelCase_ : Any = extracted_path.parts assert parts[-1] == hash_url_to_filename(_lowerCamelCase , etag=_lowerCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() lowerCamelCase_ : int = extracted_path.read_text() lowerCamelCase_ : str = text_file.read_text() assert extracted_file_content == expected_file_content def __a ( __UpperCAmelCase : Any , __UpperCAmelCase : List[Any] ) -> List[str]: """simple docstring""" assert path.endswith(".jsonl" ) for num_items, line in enumerate(_lowerCamelCase , start=1 ): lowerCamelCase_ : List[str] = json.loads(line.decode("utf-8" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("archive_jsonl" , ["tar_jsonl_path", "zip_jsonl_path"] ) def __a ( __UpperCAmelCase : Tuple , __UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_ : List[Any] = request.getfixturevalue(_lowerCamelCase ) lowerCamelCase_ : List[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize("archive_nested_jsonl" , ["tar_nested_jsonl_path", "zip_nested_jsonl_path"] ) def __a ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : int ) -> List[Any]: """simple docstring""" lowerCamelCase_ : Tuple = request.getfixturevalue(_lowerCamelCase ) lowerCamelCase_ : List[str] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def __a ( __UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_ : Optional[int] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_lowerCamelCase ) , start=1 ): assert os.path.basename(_lowerCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
704
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. snake_case_ : List[Any] = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. snake_case_ : Tuple = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. snake_case_ : Optional[Any] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def __a ( __UpperCAmelCase : str , __UpperCAmelCase : str ) -> tuple[str, float]: """simple docstring""" lowerCamelCase_ : Tuple = len([g for position, g in enumerate(__UpperCAmelCase ) if g == main_target[position]] ) return (item, float(__UpperCAmelCase )) def __a ( __UpperCAmelCase : str , __UpperCAmelCase : str ) -> tuple[str, str]: """simple docstring""" lowerCamelCase_ : Optional[Any] = random.randint(0 , len(__UpperCAmelCase ) - 1 ) lowerCamelCase_ : Union[str, Any] = parent_a[:random_slice] + parent_a[random_slice:] lowerCamelCase_ : str = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def __a ( __UpperCAmelCase : str , __UpperCAmelCase : list[str] ) -> str: """simple docstring""" lowerCamelCase_ : Dict = list(__UpperCAmelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: lowerCamelCase_ : Optional[int] = random.choice(__UpperCAmelCase ) return "".join(__UpperCAmelCase ) def __a ( __UpperCAmelCase : tuple[str, float] , __UpperCAmelCase : list[tuple[str, float]] , __UpperCAmelCase : list[str] , ) -> list[str]: """simple docstring""" lowerCamelCase_ : Tuple = [] # Generate more children proportionally to the fitness score. lowerCamelCase_ : str = int(parent_a[1] * 100 ) + 1 lowerCamelCase_ : List[str] = 10 if child_n >= 10 else child_n for _ in range(__UpperCAmelCase ): lowerCamelCase_ : str = population_score[random.randint(0 , __UpperCAmelCase )][0] lowerCamelCase_ , lowerCamelCase_ : str = crossover(parent_a[0] , __UpperCAmelCase ) # Append new string to the population list. pop.append(mutate(__UpperCAmelCase , __UpperCAmelCase ) ) pop.append(mutate(__UpperCAmelCase , __UpperCAmelCase ) ) return pop def __a ( __UpperCAmelCase : str , __UpperCAmelCase : list[str] , __UpperCAmelCase : bool = True ) -> tuple[int, int, str]: """simple docstring""" if N_POPULATION < N_SELECTED: lowerCamelCase_ : Tuple = f"{N_POPULATION} must be bigger than {N_SELECTED}" raise ValueError(__UpperCAmelCase ) # Verify that the target contains no genes besides the ones inside genes variable. lowerCamelCase_ : int = sorted({c for c in target if c not in genes} ) if not_in_genes_list: lowerCamelCase_ : Optional[int] = f"{not_in_genes_list} is not in genes list, evolution cannot converge" raise ValueError(__UpperCAmelCase ) # Generate random starting population. lowerCamelCase_ : int = [] for _ in range(__UpperCAmelCase ): population.append("".join([random.choice(__UpperCAmelCase ) for i in range(len(__UpperCAmelCase ) )] ) ) # Just some logs to know what the algorithms is doing. lowerCamelCase_ , lowerCamelCase_ : List[str] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__UpperCAmelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. lowerCamelCase_ : int = [evaluate(__UpperCAmelCase , __UpperCAmelCase ) for item in population] # Check if there is a matching evolution. lowerCamelCase_ : Any = sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x[1] , reverse=__UpperCAmelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f"\nGeneration: {generation}" f"\nTotal Population:{total_population}" f"\nBest score: {population_score[0][1]}" f"\nBest string: {population_score[0][0]}" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. lowerCamelCase_ : List[Any] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(__UpperCAmelCase ) # Normalize population score to be between 0 and 1. lowerCamelCase_ : Optional[int] = [ (item, score / len(__UpperCAmelCase )) for item, score in population_score ] # This is selection for i in range(__UpperCAmelCase ): population.extend(select(population_score[int(__UpperCAmelCase )] , __UpperCAmelCase , __UpperCAmelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__UpperCAmelCase ) > N_POPULATION: break if __name__ == "__main__": snake_case_ : str = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) snake_case_ : Optional[int] = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) snake_case_ , snake_case_ , snake_case_ : Union[str, Any] = basic(target_str, genes_list) print( f"\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}" )
253
0
import requests from bsa import BeautifulSoup def lowercase_ ( _UpperCamelCase = "AAPL" ): '''simple docstring''' __lowercase = F'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' __lowercase = BeautifulSoup(requests.get(_UpperCamelCase ).text , '''html.parser''' ) __lowercase = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
639
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES a : Union[str, Any] = '''tiny-wmt19-en-ru''' # Build # borrowed from a test a : Tuple = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] a : List[Any] = dict(zip(vocab, range(len(vocab)))) a : Optional[int] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] with tempfile.TemporaryDirectory() as tmpdirname: a : Union[str, Any] = Path(tmpdirname) a : Dict = build_dir / VOCAB_FILES_NAMES['''src_vocab_file'''] a : Optional[int] = build_dir / VOCAB_FILES_NAMES['''tgt_vocab_file'''] a : Tuple = build_dir / VOCAB_FILES_NAMES['''merges_file'''] with open(src_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, '''w''') as fp: fp.write('''\n'''.join(merges)) a : Optional[int] = FSMTTokenizer( langs=['''en''', '''ru'''], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) a : List[str] = FSMTConfig( langs=['''ru''', '''en'''], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) a : Union[str, Any] = FSMTForConditionalGeneration(config) print(f'''num of params {tiny_model.num_parameters()}''') # Test a : Dict = tokenizer(['''Making tiny model'''], return_tensors='''pt''') a : Union[str, Any] = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-ru
639
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self : List[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCamelCase : List[str] = tempfile.mkdtemp() _UpperCamelCase : Optional[int] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _UpperCamelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) _UpperCamelCase : Dict = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], "image_std": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } _UpperCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , lowercase__ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(lowercase__ , lowercase__ ) def snake_case__ ( self : Optional[Any] , **lowercase__ : Union[str, Any] ) ->Dict: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def snake_case__ ( self : Tuple , **lowercase__ : str ) ->Dict: '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **lowercase__ ) def snake_case__ ( self : List[Any] , **lowercase__ : List[Any] ) ->Optional[Any]: '''simple docstring''' return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **lowercase__ ) def snake_case__ ( self : Any ) ->Dict: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def snake_case__ ( self : Union[str, Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCamelCase : Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _UpperCamelCase : Dict = [Image.fromarray(np.moveaxis(lowercase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case__ ( self : Any ) ->Tuple: '''simple docstring''' _UpperCamelCase : Dict = self.get_tokenizer() _UpperCamelCase : Any = self.get_rust_tokenizer() _UpperCamelCase : List[Any] = self.get_image_processor() _UpperCamelCase : Union[str, Any] = AlignProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) processor_slow.save_pretrained(self.tmpdirname ) _UpperCamelCase : int = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase__ ) _UpperCamelCase : Any = AlignProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) processor_fast.save_pretrained(self.tmpdirname ) _UpperCamelCase : List[str] = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowercase__ ) self.assertIsInstance(processor_fast.tokenizer , lowercase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowercase__ ) self.assertIsInstance(processor_fast.image_processor , lowercase__ ) def snake_case__ ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCamelCase : str = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _UpperCamelCase : List[str] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) _UpperCamelCase : Tuple = self.get_image_processor(do_normalize=lowercase__ , padding_value=1.0 ) _UpperCamelCase : Union[str, Any] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowercase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase__ ) def snake_case__ ( self : Tuple ) ->List[Any]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.get_image_processor() _UpperCamelCase : Optional[Any] = self.get_tokenizer() _UpperCamelCase : int = AlignProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) _UpperCamelCase : Optional[int] = self.prepare_image_inputs() _UpperCamelCase : List[Any] = image_processor(lowercase__ , return_tensors="np" ) _UpperCamelCase : Optional[int] = processor(images=lowercase__ , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case__ ( self : Dict ) ->Optional[int]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.get_image_processor() _UpperCamelCase : Optional[int] = self.get_tokenizer() _UpperCamelCase : List[Any] = AlignProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) _UpperCamelCase : Any = "lower newer" _UpperCamelCase : Union[str, Any] = processor(text=lowercase__ ) _UpperCamelCase : Optional[Any] = tokenizer(lowercase__ , padding="max_length" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case__ ( self : Union[str, Any] ) ->List[Any]: '''simple docstring''' _UpperCamelCase : str = self.get_image_processor() _UpperCamelCase : str = self.get_tokenizer() _UpperCamelCase : Union[str, Any] = AlignProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) _UpperCamelCase : Optional[int] = "lower newer" _UpperCamelCase : Dict = self.prepare_image_inputs() _UpperCamelCase : Dict = processor(text=lowercase__ , images=lowercase__ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(lowercase__ ): processor() def snake_case__ ( self : Optional[Any] ) ->Any: '''simple docstring''' _UpperCamelCase : List[str] = self.get_image_processor() _UpperCamelCase : Dict = self.get_tokenizer() _UpperCamelCase : Dict = AlignProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) _UpperCamelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCamelCase : Dict = processor.batch_decode(lowercase__ ) _UpperCamelCase : Dict = tokenizer.batch_decode(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) def snake_case__ ( self : Any ) ->Dict: '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.get_image_processor() _UpperCamelCase : Optional[Any] = self.get_tokenizer() _UpperCamelCase : Optional[int] = AlignProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) _UpperCamelCase : Optional[Any] = "lower newer" _UpperCamelCase : Optional[int] = self.prepare_image_inputs() _UpperCamelCase : List[Any] = processor(text=lowercase__ , images=lowercase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
204
'''simple docstring''' import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ : int = logging.get_logger(__name__) lowerCAmelCase_ : List[str] = {"""vocab_file""": """vocab.txt"""} lowerCAmelCase_ : Optional[Any] = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } lowerCAmelCase_ : int = { """openbmb/cpm-ant-10b""": 1024, } def __A ( UpperCAmelCase ) -> List[str]: '''simple docstring''' _UpperCamelCase : Optional[int] = collections.OrderedDict() with open(UpperCAmelCase ,"r" ,encoding="utf-8" ) as reader: _UpperCamelCase : int = reader.readlines() for index, token in enumerate(UpperCAmelCase ): _UpperCamelCase : Optional[int] = token.rstrip("\n" ) _UpperCamelCase : List[str] = index return vocab class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Dict , lowercase__ : List[str] , lowercase__ : Any="<unk>" , lowercase__ : str=200 ) ->Optional[int]: '''simple docstring''' _UpperCamelCase : Any = vocab _UpperCamelCase : str = unk_token _UpperCamelCase : List[Any] = max_input_chars_per_word def snake_case__ ( self : Union[str, Any] , lowercase__ : Any ) ->Dict: '''simple docstring''' _UpperCamelCase : int = list(lowercase__ ) if len(lowercase__ ) > self.max_input_chars_per_word: return [self.unk_token] _UpperCamelCase : int = 0 _UpperCamelCase : List[str] = [] while start < len(lowercase__ ): _UpperCamelCase : Union[str, Any] = len(lowercase__ ) _UpperCamelCase : Union[str, Any] = None while start < end: _UpperCamelCase : Dict = "".join(chars[start:end] ) if substr in self.vocab: _UpperCamelCase : int = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(lowercase__ ) _UpperCamelCase : List[str] = end return sub_tokens class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ = False def __init__( self : int , lowercase__ : str , lowercase__ : int="<d>" , lowercase__ : Tuple="</d>" , lowercase__ : Optional[int]="<s>" , lowercase__ : Optional[int]="</s>" , lowercase__ : List[str]="<pad>" , lowercase__ : Optional[int]="<unk>" , lowercase__ : int="</n>" , lowercase__ : Optional[Any]="</_>" , lowercase__ : int="left" , **lowercase__ : List[str] , ) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ["jieba"] ) super().__init__( bod_token=lowercase__ , eod_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , pad_token=lowercase__ , unk_token=lowercase__ , line_token=lowercase__ , space_token=lowercase__ , padding_side=lowercase__ , **lowercase__ , ) _UpperCamelCase : Union[str, Any] = bod_token _UpperCamelCase : Union[str, Any] = eod_token _UpperCamelCase : int = load_vocab(lowercase__ ) _UpperCamelCase : Any = self.encoder[space_token] _UpperCamelCase : List[str] = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] _UpperCamelCase : Dict = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowercase__ : x[1] ) ) _UpperCamelCase : Any = {v: k for k, v in self.encoder.items()} _UpperCamelCase : Any = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def snake_case__ ( self : Tuple ) ->List[str]: '''simple docstring''' return self.encoder[self.bod_token] @property def snake_case__ ( self : Tuple ) ->List[Any]: '''simple docstring''' return self.encoder[self.eod_token] @property def snake_case__ ( self : List[str] ) ->int: '''simple docstring''' return self.encoder["\n"] @property def snake_case__ ( self : List[str] ) ->int: '''simple docstring''' return len(self.encoder ) def snake_case__ ( self : Dict ) ->Tuple: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def snake_case__ ( self : Optional[int] , lowercase__ : Tuple ) ->Tuple: '''simple docstring''' _UpperCamelCase : Tuple = [] for x in jieba.cut(lowercase__ , cut_all=lowercase__ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowercase__ ) ) return output_tokens def snake_case__ ( self : Optional[Any] , lowercase__ : Any , **lowercase__ : Tuple ) ->Union[str, Any]: '''simple docstring''' _UpperCamelCase : Optional[int] = [i for i in token_ids if i >= 0] _UpperCamelCase : Union[str, Any] = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowercase__ , **lowercase__ ) def snake_case__ ( self : Optional[Any] , lowercase__ : Tuple ) ->Union[str, Any]: '''simple docstring''' return token in self.encoder def snake_case__ ( self : str , lowercase__ : List[str] ) ->str: '''simple docstring''' return "".join(lowercase__ ) def snake_case__ ( self : List[Any] , lowercase__ : Optional[Any] ) ->int: '''simple docstring''' return self.encoder.get(lowercase__ , self.encoder.get(self.unk_token ) ) def snake_case__ ( self : Any , lowercase__ : Dict ) ->Dict: '''simple docstring''' return self.decoder.get(lowercase__ , self.unk_token ) def snake_case__ ( self : Tuple , lowercase__ : str , lowercase__ : Optional[str] = None ) ->Tuple[str]: '''simple docstring''' if os.path.isdir(lowercase__ ): _UpperCamelCase : Tuple = os.path.join( lowercase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: _UpperCamelCase : Optional[int] = (filename_prefix + "-" if filename_prefix else "") + save_directory _UpperCamelCase : List[str] = 0 if " " in self.encoder: _UpperCamelCase : Dict = self.encoder[" "] del self.encoder[" "] if "\n" in self.encoder: _UpperCamelCase : int = self.encoder["\n"] del self.encoder["\n"] _UpperCamelCase : List[str] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowercase__ : x[1] ) ) with open(lowercase__ , "w" , encoding="utf-8" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' " Please check that the vocabulary is not corrupted!" ) _UpperCamelCase : str = token_index writer.write(token + "\n" ) index += 1 return (vocab_file,) def snake_case__ ( self : List[Any] , lowercase__ : List[int] , lowercase__ : List[int] = None ) ->List[int]: '''simple docstring''' if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def snake_case__ ( self : Optional[int] , lowercase__ : List[int] , lowercase__ : Optional[List[int]] = None , lowercase__ : bool = False ) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__ ) if token_ids_a is not None: return [1] + ([0] * len(lowercase__ )) + [1] + ([0] * len(lowercase__ )) return [1] + ([0] * len(lowercase__ ))
204
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase__ : str = '''ZinengTang/tvlt-base''' UpperCAmelCase__ : int = tempfile.mkdtemp() def lowerCAmelCase__ ( self ,**lowerCamelCase_ ) -> Union[str, Any]: '''simple docstring''' return TvltImageProcessor.from_pretrained(self.checkpoint ,**__snake_case ) def lowerCAmelCase__ ( self ,**lowerCamelCase_ ) -> Optional[Any]: '''simple docstring''' return TvltFeatureExtractor.from_pretrained(self.checkpoint ,**__snake_case ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.get_image_processor() UpperCAmelCase__ : Optional[Any] = self.get_feature_extractor() UpperCAmelCase__ : List[str] = TvltProcessor(image_processor=__snake_case ,feature_extractor=__snake_case ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ : List[str] = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor ,__snake_case ) self.assertIsInstance(processor.image_processor ,__snake_case ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.get_image_processor() UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : Any = TvltProcessor(image_processor=__snake_case ,feature_extractor=__snake_case ) UpperCAmelCase__ : List[str] = np.ones([12000] ) UpperCAmelCase__ : List[str] = feature_extractor(__snake_case ,return_tensors='''np''' ) UpperCAmelCase__ : Tuple = processor(audio=__snake_case ,return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ : Any = self.get_image_processor() UpperCAmelCase__ : int = self.get_feature_extractor() UpperCAmelCase__ : Any = TvltProcessor(image_processor=__snake_case ,feature_extractor=__snake_case ) UpperCAmelCase__ : Dict = np.ones([3, 224, 224] ) UpperCAmelCase__ : Dict = image_processor(__snake_case ,return_tensors='''np''' ) UpperCAmelCase__ : Dict = processor(images=__snake_case ,return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase__ : int = self.get_image_processor() UpperCAmelCase__ : List[str] = self.get_feature_extractor() UpperCAmelCase__ : Optional[int] = TvltProcessor(image_processor=__snake_case ,feature_extractor=__snake_case ) UpperCAmelCase__ : Tuple = np.ones([12000] ) UpperCAmelCase__ : List[Any] = np.ones([3, 224, 224] ) UpperCAmelCase__ : str = processor(audio=__snake_case ,images=__snake_case ) self.assertListEqual(list(inputs.keys() ) ,['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(__snake_case ): processor() def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ : Any = self.get_image_processor() UpperCAmelCase__ : Dict = self.get_feature_extractor() UpperCAmelCase__ : Dict = TvltProcessor(image_processor=__snake_case ,feature_extractor=__snake_case ) self.assertListEqual( processor.model_input_names ,image_processor.model_input_names + feature_extractor.model_input_names ,msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' ,)
614
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _SCREAMING_SNAKE_CASE : int = logging.getLogger() def UpperCAmelCase__ (): """simple docstring""" snake_case = argparse.ArgumentParser() parser.add_argument('''-f''' ) snake_case = parser.parse_args() return args.f class A__ ( snake_case__ ): """simple docstring""" def a_ ( self ): snake_case = logging.StreamHandler(sys.stdout ) logger.addHandler(__snake_case ) def a_ ( self , __snake_case ): snake_case = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , '''run_glue_deebert.py''' ) with patch.object(__snake_case , '''argv''' , __snake_case ): snake_case = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(__snake_case , 0.666 ) @slow @require_torch_non_multi_gpu def a_ ( self ): snake_case = ''' --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage '''.split() self.run_and_check(__snake_case ) snake_case = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(__snake_case ) snake_case = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(__snake_case )
550
0
'''simple docstring''' import os def __lowerCamelCase ( ) -> Tuple: """simple docstring""" with open(os.path.dirname(A__ ) + '/p022_names.txt' ) as file: UpperCamelCase = str(file.readlines()[0] ) UpperCamelCase = names.replace('"' , '' ).split(',' ) names.sort() UpperCamelCase = 0 UpperCamelCase = 0 for i, name in enumerate(A__ ): for letter in name: name_score += ord(A__ ) - 64 total_score += (i + 1) * name_score UpperCamelCase = 0 return total_score if __name__ == "__main__": print(solution())
324
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __init__( self : Tuple , UpperCamelCase__ : VQModel , UpperCamelCase__ : UNetaDModel , UpperCamelCase__ : DDIMScheduler ): """simple docstring""" super().__init__() self.register_modules(vqvae=UpperCamelCase__ , unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) @torch.no_grad() def __call__( self : Any , UpperCamelCase__ : int = 1 , UpperCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : int = 5_0 , UpperCamelCase__ : Optional[str] = "pil" , UpperCamelCase__ : bool = True , **UpperCamelCase__ : Any , ): """simple docstring""" UpperCamelCase = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=UpperCamelCase__ , ) UpperCamelCase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(UpperCamelCase__ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature UpperCamelCase = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase = {} if accepts_eta: UpperCamelCase = eta for t in self.progress_bar(self.scheduler.timesteps ): UpperCamelCase = self.scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) # predict the noise residual UpperCamelCase = self.unet(UpperCamelCase__ , UpperCamelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase = self.scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample # decode the image latents with the VAE UpperCamelCase = self.vqvae.decode(UpperCamelCase__ ).sample UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase__ )
324
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def a__ ( self ) -> Dict: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: A: List[str] = AutoConfig.from_pretrained(A ) self.assertIsNotNone(A ) self.assertIsInstance(A , A ) A: Tuple = TFAutoModel.from_pretrained(A , from_pt=A ) self.assertIsNotNone(A ) self.assertIsInstance(A , A ) A: Optional[Any] = AutoModel.from_pretrained(A , from_tf=A ) self.assertIsNotNone(A ) self.assertIsInstance(A , A ) @slow def a__ ( self ) -> int: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: A: str = AutoConfig.from_pretrained(A ) self.assertIsNotNone(A ) self.assertIsInstance(A , A ) A: Union[str, Any] = TFAutoModelForPreTraining.from_pretrained(A , from_pt=A ) self.assertIsNotNone(A ) self.assertIsInstance(A , A ) A: Optional[int] = AutoModelForPreTraining.from_pretrained(A , from_tf=A ) self.assertIsNotNone(A ) self.assertIsInstance(A , A ) @slow def a__ ( self ) -> Tuple: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A: List[str] = AutoConfig.from_pretrained(A ) self.assertIsNotNone(A ) self.assertIsInstance(A , A ) A: Dict = TFAutoModelForCausalLM.from_pretrained(A , from_pt=A ) A , A: List[str] = TFAutoModelForCausalLM.from_pretrained( A , output_loading_info=A , from_pt=A ) self.assertIsNotNone(A ) self.assertIsInstance(A , A ) A: Optional[int] = AutoModelForCausalLM.from_pretrained(A , from_tf=A ) A , A: Tuple = AutoModelForCausalLM.from_pretrained( A , output_loading_info=A , from_tf=A ) self.assertIsNotNone(A ) self.assertIsInstance(A , A ) @slow def a__ ( self ) -> Any: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A: List[str] = AutoConfig.from_pretrained(A ) self.assertIsNotNone(A ) self.assertIsInstance(A , A ) A: str = TFAutoModelWithLMHead.from_pretrained(A , from_pt=A ) self.assertIsNotNone(A ) self.assertIsInstance(A , A ) A: Tuple = AutoModelWithLMHead.from_pretrained(A , from_tf=A ) self.assertIsNotNone(A ) self.assertIsInstance(A , A ) @slow def a__ ( self ) -> str: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A: Union[str, Any] = AutoConfig.from_pretrained(A ) self.assertIsNotNone(A ) self.assertIsInstance(A , A ) A: List[Any] = TFAutoModelForMaskedLM.from_pretrained(A , from_pt=A ) A , A: Optional[Any] = TFAutoModelForMaskedLM.from_pretrained( A , output_loading_info=A , from_pt=A ) self.assertIsNotNone(A ) self.assertIsInstance(A , A ) A: Union[str, Any] = AutoModelForMaskedLM.from_pretrained(A , from_tf=A ) A , A: Dict = AutoModelForMaskedLM.from_pretrained( A , output_loading_info=A , from_tf=A ) self.assertIsNotNone(A ) self.assertIsInstance(A , A ) @slow def a__ ( self ) -> str: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A: Tuple = AutoConfig.from_pretrained(A ) self.assertIsNotNone(A ) self.assertIsInstance(A , A ) A: Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(A , from_pt=A ) A , A: Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained( A , output_loading_info=A , from_pt=A ) self.assertIsNotNone(A ) self.assertIsInstance(A , A ) A: List[str] = AutoModelForSeqaSeqLM.from_pretrained(A , from_tf=A ) A , A: Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained( A , output_loading_info=A , from_tf=A ) self.assertIsNotNone(A ) self.assertIsInstance(A , A ) @slow def a__ ( self ) -> Union[str, Any]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: A: Union[str, Any] = AutoConfig.from_pretrained(A ) self.assertIsNotNone(A ) self.assertIsInstance(A , A ) A: Tuple = TFAutoModelForSequenceClassification.from_pretrained(A , from_pt=A ) self.assertIsNotNone(A ) self.assertIsInstance(A , A ) A: Optional[Any] = AutoModelForSequenceClassification.from_pretrained(A , from_tf=A ) self.assertIsNotNone(A ) self.assertIsInstance(A , A ) @slow def a__ ( self ) -> str: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: A: str = AutoConfig.from_pretrained(A ) self.assertIsNotNone(A ) self.assertIsInstance(A , A ) A: str = TFAutoModelForQuestionAnswering.from_pretrained(A , from_pt=A ) self.assertIsNotNone(A ) self.assertIsInstance(A , A ) A: Any = AutoModelForQuestionAnswering.from_pretrained(A , from_tf=A ) self.assertIsNotNone(A ) self.assertIsInstance(A , A ) def a__ ( self ) -> Any: A: str = TFAutoModelWithLMHead.from_pretrained(A , from_pt=A ) self.assertIsInstance(A , A ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=A ) , 1_44_10 ) A: List[str] = AutoModelWithLMHead.from_pretrained(A , from_tf=A ) self.assertIsInstance(A , A ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=A ) , 1_44_10 ) def a__ ( self ) -> Union[str, Any]: A: int = TFAutoModelWithLMHead.from_pretrained(A , from_pt=A ) self.assertIsInstance(A , A ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=A ) , 1_44_10 ) A: Union[str, Any] = AutoModelWithLMHead.from_pretrained(A , from_tf=A ) self.assertIsInstance(A , A ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=A ) , 1_44_10 )
135
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __SCREAMING_SNAKE_CASE : Dict =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Tuple ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED __SCREAMING_SNAKE_CASE : Any ={ 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } __SCREAMING_SNAKE_CASE : int ={ 'allenai/led-base-16384': 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' A: List[str] = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) A: Union[str, Any] = bs[:] A: List[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase__ ) cs.append(2**8 + n ) n += 1 A: List[str] = [chr(lowerCamelCase__ ) for n in cs] return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : List[Any] ): '''simple docstring''' A: List[str] = set() A: List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A: Union[str, Any] = char return pairs class SCREAMING_SNAKE_CASE__ ( snake_case_ ): """simple docstring""" A__ : Tuple = VOCAB_FILES_NAMES A__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self , A , A , A="replace" , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , A=False , **A , ) -> Optional[int]: A: Optional[int] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else bos_token A: Union[str, Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else eos_token A: List[Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else sep_token A: Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else cls_token A: Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token A: List[str] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A: Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( errors=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , add_prefix_space=A , **A , ) with open(A , encoding="""utf-8""" ) as vocab_handle: A: Union[str, Any] = json.load(A ) A: Tuple = {v: k for k, v in self.encoder.items()} A: Optional[Any] = errors # how to handle errors in decoding A: str = bytes_to_unicode() A: Dict = {v: k for k, v in self.byte_encoder.items()} with open(A , encoding="""utf-8""" ) as merges_handle: A: List[str] = merges_handle.read().split("""\n""" )[1:-1] A: Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] A: Optional[Any] = dict(zip(A , range(len(A ) ) ) ) A: List[Any] = {} A: str = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions A: Tuple = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def a__ ( self ) -> Optional[int]: return len(self.encoder ) def a__ ( self ) -> int: return dict(self.encoder , **self.added_tokens_encoder ) def a__ ( self , A ) -> Optional[int]: if token in self.cache: return self.cache[token] A: Tuple = tuple(A ) A: Optional[int] = get_pairs(A ) if not pairs: return token while True: A: Optional[Any] = min(A , key=lambda A : self.bpe_ranks.get(A , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A , A: Tuple = bigram A: Any = [] A: Union[str, Any] = 0 while i < len(A ): try: A: Dict = word.index(A , A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A: Tuple = j if word[i] == first and i < len(A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A: str = tuple(A ) A: List[Any] = new_word if len(A ) == 1: break else: A: Optional[int] = get_pairs(A ) A: List[str] = """ """.join(A ) A: Dict = word return word def a__ ( self , A ) -> List[str]: A: Dict = [] for token in re.findall(self.pat , A ): A: Union[str, Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A ).split(""" """ ) ) return bpe_tokens def a__ ( self , A ) -> int: return self.encoder.get(A , self.encoder.get(self.unk_token ) ) def a__ ( self , A ) -> int: return self.decoder.get(A ) def a__ ( self , A ) -> int: A: Tuple = """""".join(A ) A: List[str] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def a__ ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A: str = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A: Optional[int] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A , ensure_ascii=A ) + """\n""" ) A: Optional[Any] = 0 with open(A , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) A: Union[str, Any] = token_index writer.write(""" """.join(A ) + """\n""" ) index += 1 return vocab_file, merge_file def a__ ( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A: int = [self.cls_token_id] A: Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a__ ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def a__ ( self , A , A = None ) -> List[int]: A: Optional[Any] = [self.sep_token_id] A: List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ ( self , A , A=False , **A ) -> Dict: A: Any = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A ) > 0 and not text[0].isspace()): A: Optional[int] = """ """ + text return (text, kwargs) def a__ ( self , A , A = None , A = PaddingStrategy.DO_NOT_PAD , A = None , A = None , ) -> dict: A: Any = super()._pad( encoded_inputs=A , max_length=A , padding_strategy=A , pad_to_multiple_of=A , return_attention_mask=A , ) # Load from model defaults if return_attention_mask is None: A: str = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: A: List[str] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. A: Optional[int] = len(encoded_inputs["""global_attention_mask"""] ) != len(A ) if needs_to_be_padded: A: Union[str, Any] = len(A ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` A: List[Any] = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": A: List[Any] = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
135
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __UpperCAmelCase : def __init__( self : Optional[Any] , a_ : List[Any] , a_ : List[str]=13 , a_ : Optional[int]=7 , a_ : str=True , a_ : Union[str, Any]=True , a_ : List[str]=True , a_ : Optional[Any]=True , a_ : int=99 , a_ : int=32 , a_ : List[Any]=2 , a_ : Optional[int]=4 , a_ : str=37 , a_ : Optional[int]="gelu" , a_ : Any=0.1 , a_ : Optional[Any]=0.1 , a_ : Optional[int]=5_12 , a_ : int=16 , a_ : List[str]=2 , a_ : Any=0.02 , a_ : Optional[int]=False , a_ : Dict=True , a_ : int="None" , a_ : Dict=3 , a_ : Tuple=4 , a_ : Optional[Any]=None , ) -> List[str]: '''simple docstring''' a__ : Union[str, Any] = parent a__ : Optional[Any] = batch_size a__ : Optional[int] = seq_length a__ : Optional[Any] = is_training a__ : Optional[int] = use_input_mask a__ : List[Any] = use_token_type_ids a__ : List[Any] = use_labels a__ : Union[str, Any] = vocab_size a__ : int = hidden_size a__ : Tuple = num_hidden_layers a__ : Any = num_attention_heads a__ : Optional[int] = intermediate_size a__ : str = hidden_act a__ : str = hidden_dropout_prob a__ : Union[str, Any] = attention_probs_dropout_prob a__ : Tuple = max_position_embeddings a__ : List[Any] = type_vocab_size a__ : Union[str, Any] = type_sequence_label_size a__ : Optional[int] = initializer_range a__ : List[str] = num_labels a__ : int = num_choices a__ : Optional[Any] = relative_attention a__ : Union[str, Any] = position_biased_input a__ : Dict = pos_att_type a__ : int = scope def UpperCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ : Union[str, Any] = None if self.use_input_mask: a__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) a__ : Dict = None if self.use_token_type_ids: a__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a__ : Dict = None a__ : Optional[Any] = None a__ : Optional[int] = None if self.use_labels: a__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a__ : List[str] = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=a_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self : Optional[Any] , a_ : Any , a_ : int , a_ : Any , a_ : Optional[int] , a_ : int , a_ : List[str] , a_ : List[Any] ) -> Dict: '''simple docstring''' a__ : int = TFDebertaVaModel(config=a_ ) a__ : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a__ : Dict = [input_ids, input_mask] a__ : Any = model(a_ ) a__ : List[Any] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : List[str] , a_ : List[str] , a_ : Dict , a_ : Any , a_ : List[str] , a_ : Optional[int] , a_ : Union[str, Any] , a_ : Dict ) -> List[Any]: '''simple docstring''' a__ : str = TFDebertaVaForMaskedLM(config=a_ ) a__ : List[Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } a__ : List[str] = model(a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self : Optional[int] , a_ : Optional[int] , a_ : Tuple , a_ : int , a_ : int , a_ : str , a_ : Dict , a_ : List[str] ) -> Any: '''simple docstring''' a__ : List[str] = self.num_labels a__ : Dict = TFDebertaVaForSequenceClassification(config=a_ ) a__ : List[str] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } a__ : Optional[Any] = model(a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Union[str, Any] , a_ : Optional[int] , a_ : List[str] , a_ : str , a_ : Optional[Any] , a_ : List[str] , a_ : List[str] , a_ : Tuple ) -> Union[str, Any]: '''simple docstring''' a__ : Any = self.num_labels a__ : Dict = TFDebertaVaForTokenClassification(config=a_ ) a__ : List[str] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } a__ : str = model(a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self : str , a_ : List[str] , a_ : Optional[int] , a_ : int , a_ : Optional[Any] , a_ : Dict , a_ : int , a_ : Tuple ) -> str: '''simple docstring''' a__ : int = TFDebertaVaForQuestionAnswering(config=a_ ) a__ : List[str] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } a__ : Tuple = model(a_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : List[str] ) -> List[Any]: '''simple docstring''' a__ : List[str] = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) : int = config_and_inputs a__ : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __lowerCamelCase : Union[str, Any] = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) __lowerCamelCase : str = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) __lowerCamelCase : List[str] = False __lowerCamelCase : str = False def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' a__ : List[Any] = TFDebertaVaModelTester(self ) a__ : List[Any] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self : Union[str, Any] ) -> int: '''simple docstring''' a__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def UpperCAmelCase ( self : List[str] ) -> int: '''simple docstring''' a__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a_ ) def UpperCAmelCase ( self : Any ) -> Union[str, Any]: '''simple docstring''' a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) def UpperCAmelCase ( self : List[str] ) -> Dict: '''simple docstring''' a__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a_ ) def UpperCAmelCase ( self : List[Any] ) -> Optional[int]: '''simple docstring''' a__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a_ ) @slow def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' a__ : List[Any] = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) self.assertIsNotNone(a_ ) @require_tf class __UpperCAmelCase ( unittest.TestCase ): @unittest.skip(reason="Model not available yet" ) def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' pass @slow def UpperCAmelCase ( self : Dict ) -> Optional[Any]: '''simple docstring''' a__ : str = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) a__ : Optional[Any] = tf.constant([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) a__ : Optional[Any] = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) a__ : Union[str, Any] = model(a_ , attention_mask=a_ )[0] a__ : Any = tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , a_ , atol=1E-4 )
251
"""simple docstring""" __UpperCAmelCase = { '''meter''': '''m''', '''kilometer''': '''km''', '''megametre''': '''Mm''', '''gigametre''': '''Gm''', '''terametre''': '''Tm''', '''petametre''': '''Pm''', '''exametre''': '''Em''', '''zettametre''': '''Zm''', '''yottametre''': '''Ym''', } # Exponent of the factor(meter) __UpperCAmelCase = { '''m''': 0, '''km''': 3, '''Mm''': 6, '''Gm''': 9, '''Tm''': 12, '''Pm''': 15, '''Em''': 18, '''Zm''': 21, '''Ym''': 24, } def lowercase__ ( lowerCAmelCase__ : float , lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> float: '''simple docstring''' a__ : Optional[int] = from_type.lower().strip("s" ) a__ : Any = to_type.lower().strip("s" ) a__ : List[Any] = UNIT_SYMBOL.get(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Optional[int] = UNIT_SYMBOL.get(lowerCAmelCase__ , lowerCAmelCase__ ) if from_sanitized not in METRIC_CONVERSION: a__ : int = ( F"Invalid 'from_type' value: {from_type!r}.\n" F"Conversion abbreviations are: {', '.join(lowerCAmelCase__ )}" ) raise ValueError(lowerCAmelCase__ ) if to_sanitized not in METRIC_CONVERSION: a__ : Optional[Any] = ( F"Invalid 'to_type' value: {to_type!r}.\n" F"Conversion abbreviations are: {', '.join(lowerCAmelCase__ )}" ) raise ValueError(lowerCAmelCase__ ) a__ : List[str] = METRIC_CONVERSION[from_sanitized] a__ : str = METRIC_CONVERSION[to_sanitized] a__ : List[Any] = 1 if from_exponent > to_exponent: a__ : Tuple = from_exponent - to_exponent else: a__ : List[Any] = -(to_exponent - from_exponent) return value * pow(1_0 , lowerCAmelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
251
1
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( __snake_case : list ): if len(__snake_case ) <= 1: return [tuple(__snake_case )] _A = [] def generate(__snake_case : int , __snake_case : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , __snake_case ) for i in range(k - 1 ): if k % 2 == 0: # k is even _A , _A = arr[k - 1], arr[i] else: # k is odd _A , _A = arr[k - 1], arr[0] generate(k - 1 , __snake_case ) generate(len(__snake_case ) , __snake_case ) return res if __name__ == "__main__": _UpperCAmelCase : List[Any] = input('''Enter numbers separated by a comma:\n''').strip() _UpperCAmelCase : Optional[int] = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
107
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCAmelCase ( _snake_case ): UpperCAmelCase = ["image_processor", "tokenizer"] UpperCAmelCase = "OwlViTImageProcessor" UpperCAmelCase = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[str] , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Optional[Any]=None , **__lowerCamelCase : str ): UpperCAmelCase__ :int = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __lowerCamelCase , ) UpperCAmelCase__ :Union[str, Any] = kwargs.pop('''feature_extractor''' ) UpperCAmelCase__ :List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__lowerCamelCase , __lowerCamelCase ) def __call__( self : int , __lowerCamelCase : str=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Dict=None , __lowerCamelCase : str="max_length" , __lowerCamelCase : Any="np" , **__lowerCamelCase : Tuple ): if text is None and query_images is None and images is None: raise ValueError( '''You have to specify at least one text or query image or image. All three cannot be none.''' ) if text is not None: if isinstance(__lowerCamelCase , __lowerCamelCase ) or (isinstance(__lowerCamelCase , __lowerCamelCase ) and not isinstance(text[0] , __lowerCamelCase )): UpperCAmelCase__ :Any = [self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase )] elif isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(text[0] , __lowerCamelCase ): UpperCAmelCase__ :Tuple = [] # Maximum number of queries across batch UpperCAmelCase__ :List[str] = max([len(__lowerCamelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__lowerCamelCase ) != max_num_queries: UpperCAmelCase__ :str = t + [''' '''] * (max_num_queries - len(__lowerCamelCase )) UpperCAmelCase__ :Tuple = self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) encodings.append(__lowerCamelCase ) else: raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' ) if return_tensors == "np": UpperCAmelCase__ :List[Any] = np.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) UpperCAmelCase__ :Any = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp UpperCAmelCase__ :List[Any] = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) UpperCAmelCase__ :Union[str, Any] = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch UpperCAmelCase__ :Any = torch.cat([encoding['''input_ids'''] for encoding in encodings] , dim=0 ) UpperCAmelCase__ :List[str] = torch.cat([encoding['''attention_mask'''] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf UpperCAmelCase__ :Optional[Any] = tf.stack([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) UpperCAmelCase__ :int = tf.stack([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) else: raise ValueError('''Target return tensor type could not be returned''' ) UpperCAmelCase__ :List[Any] = BatchEncoding() UpperCAmelCase__ :Union[str, Any] = input_ids UpperCAmelCase__ :Dict = attention_mask if query_images is not None: UpperCAmelCase__ :Tuple = BatchEncoding() UpperCAmelCase__ :int = self.image_processor( __lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ).pixel_values UpperCAmelCase__ :Optional[int] = query_pixel_values if images is not None: UpperCAmelCase__ :str = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) if text is not None and images is not None: UpperCAmelCase__ :Dict = image_features.pixel_values return encoding elif query_images is not None and images is not None: UpperCAmelCase__ :Tuple = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCamelCase ) , tensor_type=__lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : int , *__lowerCamelCase : Optional[int] , **__lowerCamelCase : int ): return self.image_processor.post_process(*__lowerCamelCase , **__lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : Dict , *__lowerCamelCase : Any , **__lowerCamelCase : Tuple ): return self.image_processor.post_process_object_detection(*__lowerCamelCase , **__lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , *__lowerCamelCase : Tuple , **__lowerCamelCase : str ): return self.image_processor.post_process_image_guided_detection(*__lowerCamelCase , **__lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : int , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Union[str, Any] ): return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : Dict ): return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __lowerCamelCase , ) return self.image_processor_class @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __lowerCamelCase , ) return self.image_processor
467
0
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser __snake_case : Any = re.compile(R'\s+') def _UpperCAmelCase ( _UpperCamelCase : Optional[int] ) -> List[Any]: return {"hash": hashlib.mda(re.sub(_UpperCamelCase, '''''', example['''content'''] ).encode('''utf-8''' ) ).hexdigest()} def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> Optional[int]: A_ = [len(_UpperCamelCase ) for line in example['''content'''].splitlines()] return {"line_mean": np.mean(_UpperCamelCase ), "line_max": max(_UpperCamelCase )} def _UpperCAmelCase ( _UpperCamelCase : Optional[Any] ) -> int: A_ = np.mean([c.isalnum() for c in example['''content''']] ) return {"alpha_frac": alpha_frac} def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any], _UpperCamelCase : Union[str, Any] ) -> List[Any]: if example["hash"] in uniques: uniques.remove(example['''hash'''] ) return True else: return False def _UpperCAmelCase ( _UpperCamelCase : str, _UpperCamelCase : List[str]=5 ) -> List[Any]: A_ = ['''auto-generated''', '''autogenerated''', '''automatically generated'''] A_ = example['''content'''].splitlines() for _, line in zip(range(_UpperCamelCase ), _UpperCamelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def _UpperCAmelCase ( _UpperCamelCase : int, _UpperCamelCase : str=5, _UpperCamelCase : Optional[int]=0.0_5 ) -> Any: A_ = ['''unit tests''', '''test file''', '''configuration file'''] A_ = example['''content'''].splitlines() A_ = 0 A_ = 0 # first test for _, line in zip(range(_UpperCamelCase ), _UpperCamelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test A_ = example['''content'''].count('''\n''' ) A_ = int(coeff * nlines ) for line in lines: count_config += line.lower().count('''config''' ) count_test += line.lower().count('''test''' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def _UpperCAmelCase ( _UpperCamelCase : Tuple ) -> int: A_ = ['''def ''', '''class ''', '''for ''', '''while '''] A_ = example['''content'''].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def _UpperCAmelCase ( _UpperCamelCase : Optional[Any], _UpperCamelCase : str=4 ) -> Dict: A_ = example['''content'''].splitlines() A_ = 0 for line in lines: counter += line.lower().count('''=''' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def _UpperCAmelCase ( _UpperCamelCase : List[Any] ) -> int: A_ = tokenizer(example['''content'''], truncation=_UpperCamelCase )['''input_ids'''] A_ = len(example['''content'''] ) / len(_UpperCamelCase ) return {"ratio": ratio} def _UpperCAmelCase ( _UpperCamelCase : str ) -> Any: A_ = {} results.update(get_hash(_UpperCamelCase ) ) results.update(line_stats(_UpperCamelCase ) ) results.update(alpha_stats(_UpperCamelCase ) ) results.update(char_token_ratio(_UpperCamelCase ) ) results.update(is_autogenerated(_UpperCamelCase ) ) results.update(is_config_or_test(_UpperCamelCase ) ) results.update(has_no_keywords(_UpperCamelCase ) ) results.update(has_few_assignments(_UpperCamelCase ) ) return results def _UpperCAmelCase ( _UpperCamelCase : Optional[Any], _UpperCamelCase : List[Any], _UpperCamelCase : Tuple ) -> Dict: if not check_uniques(_UpperCamelCase, _UpperCamelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def _UpperCAmelCase ( _UpperCamelCase : List[Any] ) -> Union[str, Any]: with open(_UpperCamelCase, '''rb''' ) as f_in: with gzip.open(str(_UpperCamelCase ) + '''.gz''', '''wb''', compresslevel=6 ) as f_out: shutil.copyfileobj(_UpperCamelCase, _UpperCamelCase ) os.unlink(_UpperCamelCase ) # Settings __snake_case : int = HfArgumentParser(PreprocessingArguments) __snake_case : str = parser.parse_args() if args.num_workers is None: __snake_case : List[Any] = multiprocessing.cpu_count() __snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset __snake_case : Optional[int] = time.time() __snake_case : int = load_dataset(args.dataset_name, split='train') print(F"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing __snake_case : List[str] = time.time() __snake_case : List[str] = ds.map(preprocess, num_proc=args.num_workers) print(F"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes __snake_case : Any = set(ds.unique('hash')) __snake_case : Tuple = len(uniques) / len(ds) print(F"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics __snake_case : List[Any] = time.time() __snake_case : List[Any] = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(F"""Time to filter dataset: {time.time()-t_start:.2f}""") print(F"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: __snake_case : Optional[Any] = time.time() __snake_case , __snake_case : Dict = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(F"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file __snake_case : Tuple = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) __snake_case : str = output_dir / 'data' data_dir.mkdir(exist_ok=True) __snake_case : Optional[Any] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): __snake_case : Tuple = str(data_dir / F"""file-{file_number+1:012}.json""") __snake_case : Optional[int] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F"""Time to save dataset: {time.time()-t_start:.2f}""")
174
'''simple docstring''' import requests __snake_case : int = 'YOUR API KEY' def _UpperCAmelCase ( _UpperCamelCase : str, _UpperCamelCase : str = giphy_api_key ) -> list: A_ = '''+'''.join(query.split() ) A_ = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' A_ = requests.get(_UpperCamelCase ).json()['''data'''] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
174
1
import functools from typing import Any def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ ): # Validation if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or len(lowerCamelCase_ ) == 0: raise ValueError('''the string should be not empty string''' ) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or not all( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and len(lowerCamelCase_ ) > 0 for item in words ): raise ValueError('''the words should be a list of non-empty strings''' ) # Build trie A : dict[str, Any] = {} A : Union[str, Any] = '''WORD_KEEPER''' for word in words: A : int = trie for c in word: if c not in trie_node: A : Dict = {} A : Optional[Any] = trie_node[c] A : Tuple = True A : Dict = len(lowerCamelCase_ ) # Dynamic programming method @functools.cache def is_breakable(lowerCamelCase_ ) -> bool: if index == len_string: return True A : Optional[Any] = trie for i in range(lowerCamelCase_ , lowerCamelCase_ ): A : List[Any] = trie_node.get(string[i] , lowerCamelCase_ ) if trie_node is None: return False if trie_node.get(lowerCamelCase_ , lowerCamelCase_ ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
542
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowercase : Optional[int] = logging.get_logger(__name__) lowercase : Optional[Any] = {"vocab_file": "vocab.txt"} lowercase : Optional[int] = { "vocab_file": { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt", } } lowercase : Tuple = { "YituTech/conv-bert-base": 5_12, "YituTech/conv-bert-medium-small": 5_12, "YituTech/conv-bert-small": 5_12, } lowercase : Optional[int] = { "YituTech/conv-bert-base": {"do_lower_case": True}, "YituTech/conv-bert-medium-small": {"do_lower_case": True}, "YituTech/conv-bert-small": {"do_lower_case": True}, } class __lowercase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ : int = VOCAB_FILES_NAMES UpperCAmelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : List[Any] = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Optional[int] = ConvBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[int]: super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) A : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __UpperCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __UpperCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __UpperCAmelCase ) != tokenize_chinese_chars ): A : Tuple = getattr(__UpperCAmelCase , normalizer_state.pop('''type''' ) ) A : int = do_lower_case A : int = strip_accents A : Union[str, Any] = tokenize_chinese_chars A : str = normalizer_class(**__UpperCAmelCase ) A : str = do_lower_case def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> Optional[int]: A : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: A : List[Any] = [self.sep_token_id] A : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: A : Optional[int] = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
542
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase : Dict = { """vocab_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase : Any = { """yjernite/retribert-base-uncased""": 5_1_2, } _lowerCAmelCase : Optional[int] = { """yjernite/retribert-base-uncased""": {"""do_lower_case""": True}, } class snake_case ( __UpperCAmelCase ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = RetriBertTokenizer _lowerCAmelCase = ['input_ids', 'attention_mask'] def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase="[UNK]" , lowerCamelCase="[SEP]" , lowerCamelCase="[PAD]" , lowerCamelCase="[CLS]" , lowerCamelCase="[MASK]" , lowerCamelCase=True , lowerCamelCase=None , **lowerCamelCase , ) -> Union[str, Any]: """simple docstring""" super().__init__( lowerCamelCase , tokenizer_file=lowerCamelCase , do_lower_case=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , pad_token=lowerCamelCase , cls_token=lowerCamelCase , mask_token=lowerCamelCase , tokenize_chinese_chars=lowerCamelCase , strip_accents=lowerCamelCase , **lowerCamelCase , ) snake_case__ : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCamelCase ) != tokenize_chinese_chars ): snake_case__ : Optional[Any] = getattr(lowerCamelCase , normalizer_state.pop('''type''' ) ) snake_case__ : Optional[int] = do_lower_case snake_case__ : Dict = strip_accents snake_case__ : Optional[Any] = tokenize_chinese_chars snake_case__ : Tuple = normalizer_class(**lowerCamelCase ) snake_case__ : List[str] = do_lower_case def lowercase__ ( self , lowerCamelCase , lowerCamelCase=None ) -> Dict: """simple docstring""" snake_case__ : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> Dict: """simple docstring""" snake_case__ : Optional[Any] = [self.sep_token_id] snake_case__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> str: """simple docstring""" snake_case__ : Optional[int] = self._tokenizer.model.save(lowerCamelCase , name=lowerCamelCase ) return tuple(lowerCamelCase )
717
'''simple docstring''' import socket def _A ( ): snake_case__ : Any = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) snake_case__ : str = socket.gethostname() snake_case__ : Union[str, Any] = 1_23_12 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: snake_case__ : int = sock.recv(10_24 ) if not data: break out_file.write(snake_case__ ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
694
0
import cva import numpy as np class lowercase_ : def __init__( self , lowercase_ , lowercase_ ): if k in (0.04, 0.06): _snake_case : List[Any] = k _snake_case : int = window_size else: raise ValueError("invalid k value" ) def __str__( self ): return str(self.k ) def UpperCamelCase ( self , lowercase_ ): _snake_case : Tuple = cva.imread(lowercase_ , 0 ) _snake_case ,_snake_case : str = img.shape _snake_case : list[list[int]] = [] _snake_case : int = img.copy() _snake_case : int = cva.cvtColor(lowercase_ , cva.COLOR_GRAY2RGB ) _snake_case ,_snake_case : List[Any] = np.gradient(lowercase_ ) _snake_case : List[str] = dx**2 _snake_case : List[str] = dy**2 _snake_case : str = dx * dy _snake_case : List[str] = 0.04 _snake_case : List[str] = self.window_size // 2 for y in range(lowercase_ , h - offset ): for x in range(lowercase_ , w - offset ): _snake_case : List[str] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _snake_case : Tuple = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _snake_case : List[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _snake_case : Any = (wxx * wyy) - (wxy**2) _snake_case : Dict = wxx + wyy _snake_case : str = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": __SCREAMING_SNAKE_CASE : str = HarrisCorner(0.04, 3) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE : Any = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
670
from manim import * class lowercase_ ( __snake_case ): def UpperCamelCase ( self ): _snake_case : Tuple = Rectangle(height=0.5 , width=0.5 ) _snake_case : List[str] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _snake_case : List[str] = [mem.copy() for i in range(6 )] _snake_case : Any = [mem.copy() for i in range(6 )] _snake_case : Any = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : Any = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : str = VGroup(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : int = Text("CPU" , font_size=24 ) _snake_case : str = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase_ ) _snake_case : int = [mem.copy() for i in range(4 )] _snake_case : Dict = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : str = Text("GPU" , font_size=24 ) _snake_case : Optional[int] = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase_ ) _snake_case : Any = [mem.copy() for i in range(6 )] _snake_case : Any = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : Dict = Text("Model" , font_size=24 ) _snake_case : Dict = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) model.move_to([3, -1.0, 0] ) self.add(lowercase_ ) _snake_case : str = [] for i, rect in enumerate(lowercase_ ): rect.set_stroke(lowercase_ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _snake_case : Union[str, Any] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase_ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowercase_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase_ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase_ , buff=0.0 ) self.add(lowercase_ ) cpu_targs.append(lowercase_ ) _snake_case : List[Any] = [mem.copy() for i in range(6 )] _snake_case : Union[str, Any] = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : Optional[Any] = Text("Loaded Checkpoint" , font_size=24 ) _snake_case : Union[str, Any] = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , aligned_edge=lowercase_ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) _snake_case : Optional[int] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _snake_case : Optional[Any] = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase_ , lowercase_ ) _snake_case : Union[str, Any] = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowercase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) _snake_case : List[Any] = MarkupText( f"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase_ ) , Write(lowercase_ ) ) self.play(Write(lowercase_ , run_time=1 ) , Create(lowercase_ , run_time=1 ) ) _snake_case : int = [] _snake_case : str = [] for i, rect in enumerate(lowercase_ ): _snake_case : Dict = fill.copy().set_fill(lowercase_ , opacity=0.7 ) target.move_to(lowercase_ ) first_animations.append(GrowFromCenter(lowercase_ , run_time=1 ) ) _snake_case : Dict = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowercase_ , run_time=1.5 ) ) self.play(*lowercase_ ) self.play(*lowercase_ ) self.wait()
670
1
'''simple docstring''' from pathlib import Path import numpy as np from PIL import Image def a__ ( lowerCAmelCase__ ) -> np.ndarray: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_9_8_9 * r + 0.5_8_7_0 * g + 0.1_1_4_0 * b def a__ ( lowerCAmelCase__ ) -> np.ndarray: return (gray > 1_27) & (gray <= 2_55) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> np.ndarray: UpperCAmelCase__ : List[str] = np.zeros_like(lowerCAmelCase__ ) UpperCAmelCase__ : Optional[int] = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image UpperCAmelCase__ : Union[str, Any] = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): UpperCAmelCase__ : Any = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() UpperCAmelCase__ : Dict = int(summation > 0 ) return output if __name__ == "__main__": # read original image UpperCamelCase__ = Path(__file__).resolve().parent / '''image_data''' / '''lena.jpg''' UpperCamelCase__ = np.array(Image.open(lena_path)) # kernel to be applied UpperCamelCase__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) UpperCamelCase__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image UpperCamelCase__ = Image.fromarray(output).convert('''RGB''') pil_img.save('''result_dilation.png''')
312
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'markuplm' def __init__( self : Union[str, Any] , _A : int=30_522 , _A : Optional[Any]=768 , _A : Any=12 , _A : Optional[Any]=12 , _A : str=3_072 , _A : Tuple="gelu" , _A : int=0.1 , _A : Union[str, Any]=0.1 , _A : str=512 , _A : Any=2 , _A : int=0.0_2 , _A : Tuple=1e-12 , _A : List[str]=0 , _A : Dict=0 , _A : Any=2 , _A : Union[str, Any]=256 , _A : str=1_024 , _A : Optional[int]=216 , _A : Tuple=1_001 , _A : Tuple=32 , _A : Union[str, Any]=50 , _A : List[str]="absolute" , _A : int=True , _A : Tuple=None , **_A : Dict , ): '''simple docstring''' super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A , ) UpperCAmelCase__ : Optional[Any] = vocab_size UpperCAmelCase__ : Dict = hidden_size UpperCAmelCase__ : List[Any] = num_hidden_layers UpperCAmelCase__ : Dict = num_attention_heads UpperCAmelCase__ : Optional[int] = hidden_act UpperCAmelCase__ : List[str] = intermediate_size UpperCAmelCase__ : int = hidden_dropout_prob UpperCAmelCase__ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase__ : Any = max_position_embeddings UpperCAmelCase__ : Dict = type_vocab_size UpperCAmelCase__ : List[Any] = initializer_range UpperCAmelCase__ : Union[str, Any] = layer_norm_eps UpperCAmelCase__ : Optional[Any] = position_embedding_type UpperCAmelCase__ : str = use_cache UpperCAmelCase__ : int = classifier_dropout # additional properties UpperCAmelCase__ : Tuple = max_depth UpperCAmelCase__ : List[str] = max_xpath_tag_unit_embeddings UpperCAmelCase__ : List[Any] = max_xpath_subs_unit_embeddings UpperCAmelCase__ : int = tag_pad_id UpperCAmelCase__ : Dict = subs_pad_id UpperCAmelCase__ : str = xpath_unit_hidden_size
312
1
_lowerCAmelCase : Tuple =""" # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowerCAmelCase : Optional[int] =[{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowerCAmelCase : Optional[Any] ={ """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
113
_lowerCAmelCase : int =""" # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowerCAmelCase : List[str] =[{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowerCAmelCase : int ={ """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
113
1
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): __lowercase :int = True from torch.cuda.amp import autocast __lowercase :str = logging.getLogger(__name__) @dataclass class _a : """simple docstring""" snake_case_ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case_ = field( default=lowercase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) snake_case_ = field( default=lowercase__ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) snake_case_ = field( default=lowercase__ , metadata={"help": "Whether to log verbose messages or not."} , ) snake_case_ = field( default=2.0 , metadata={"help": "Maximum temperature for gumbel softmax."} ) snake_case_ = field( default=0.5 , metadata={"help": "Minimum temperature for gumbel softmax."} ) snake_case_ = field( default=0.9_9_9_9_9_5 , metadata={"help": "Decay of gumbel temperature during training."} ) def UpperCAmelCase ( _lowerCamelCase : ModelArguments , _lowerCamelCase : TrainingArguments ): '''simple docstring''' logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) SCREAMING_SNAKE_CASE__ : str = logging.WARNING if model_args.verbose_logging: SCREAMING_SNAKE_CASE__ : str = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): SCREAMING_SNAKE_CASE__ : List[str] = logging.INFO logger.setLevel(_lowerCamelCase ) @dataclass class _a : """simple docstring""" snake_case_ = field( default=lowercase__ , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) snake_case_ = field( default=lowercase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) snake_case_ = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) snake_case_ = field( default="validation" , metadata={ "help": ( "The name of the validation data set split to use (via the datasets library). Defaults to 'validation'" ) } , ) snake_case_ = field( default="file" , metadata={"help": "Column in the dataset that contains speech file path. Defaults to 'file'"} , ) snake_case_ = field( default=lowercase__ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) snake_case_ = field( default=1 , metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" } , ) snake_case_ = field( default=lowercase__ , metadata={"help": "The number of processes to use for the preprocessing."} , ) snake_case_ = field( default=20.0 , metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"} ) @dataclass class _a : """simple docstring""" snake_case_ = 42 snake_case_ = 42 snake_case_ = "longest" snake_case_ = None snake_case_ = None def __call__( self : Any , a : List[Dict[str, Union[List[int], torch.Tensor]]] ) ->Dict[str, torch.Tensor]: # reformat list to dict and set to pytorch format SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.feature_extractor.pad( a , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1] ) SCREAMING_SNAKE_CASE__ : int = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula SCREAMING_SNAKE_CASE__ : List[Any] = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1 ) ).to( torch.long ) SCREAMING_SNAKE_CASE__ : int = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["input_values"].device ) # these two operations makes sure that all values # before the output lengths indices are attended to SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1 SCREAMING_SNAKE_CASE__ : Optional[int] = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices SCREAMING_SNAKE_CASE__ : Optional[Any] = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=a , min_masks=2 , ) return batch class _a ( lowercase__ ): """simple docstring""" def __init__( self : Union[str, Any] , *a : Dict , a : List[Any]=1 , a : Optional[Any]=0 , a : Tuple=1.0 , **a : Tuple ) ->Optional[int]: super().__init__(*a , **a ) SCREAMING_SNAKE_CASE__ : List[str] = 0 SCREAMING_SNAKE_CASE__ : str = max_gumbel_temp SCREAMING_SNAKE_CASE__ : str = min_gumbel_temp SCREAMING_SNAKE_CASE__ : Union[str, Any] = gumbel_temp_decay def A_ ( self : Any , a : nn.Module , a : Dict[str, Union[torch.Tensor, Any]] ) ->torch.Tensor: model.train() SCREAMING_SNAKE_CASE__ : int = self._prepare_inputs(a ) if self.use_amp: with autocast(): SCREAMING_SNAKE_CASE__ : Optional[int] = self.compute_loss(a , a ) else: SCREAMING_SNAKE_CASE__ : List[str] = self.compute_loss(a , a ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": SCREAMING_SNAKE_CASE__ : Any = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": SCREAMING_SNAKE_CASE__ : Tuple = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: SCREAMING_SNAKE_CASE__ : Union[str, Any] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(a ).backward() elif self.use_apex: with amp.scale_loss(a , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(a ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) SCREAMING_SNAKE_CASE__ : int = parser.parse_args_into_dataclasses() configure_logger(_lowerCamelCase , _lowerCamelCase ) # Downloading and loading a dataset from the hub. SCREAMING_SNAKE_CASE__ : Tuple = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" SCREAMING_SNAKE_CASE__ : Optional[int] = DatasetDict() SCREAMING_SNAKE_CASE__ : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}[:{data_args.validation_split_percentage}%]""" , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE__ : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}[{data_args.validation_split_percentage}%:]""" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" SCREAMING_SNAKE_CASE__ : str = DatasetDict() SCREAMING_SNAKE_CASE__ : int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE__ : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}""" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported SCREAMING_SNAKE_CASE__ : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_lowerCamelCase ) def prepare_dataset(_lowerCamelCase : Any ): # check that all files have the correct sampling rate SCREAMING_SNAKE_CASE__ : Dict = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays SCREAMING_SNAKE_CASE__ : Optional[Any] = datasets.map( _lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long SCREAMING_SNAKE_CASE__ : int = vectorized_datasets.filter( lambda _lowerCamelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(_lowerCamelCase : Union[str, Any] ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` SCREAMING_SNAKE_CASE__ : int = vectorized_datasets.map( _lowerCamelCase , batched=_lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 SCREAMING_SNAKE_CASE__ : Any = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) SCREAMING_SNAKE_CASE__ : Dict = WavaVecaForPreTraining(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = DataCollatorForWavaVecaPretraining(model=_lowerCamelCase , feature_extractor=_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Any = WavaVecaPreTrainer( model=_lowerCamelCase , data_collator=_lowerCamelCase , args=_lowerCamelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=_lowerCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
718
def UpperCAmelCase ( _lowerCamelCase : int = 1_000 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = -1 SCREAMING_SNAKE_CASE__ : str = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c SCREAMING_SNAKE_CASE__ : Tuple = (n * n - 2 * a * n) // (2 * n - 2 * a) SCREAMING_SNAKE_CASE__ : Dict = n - a - b if c * c == (a * a + b * b): SCREAMING_SNAKE_CASE__ : str = a * b * c if candidate >= product: SCREAMING_SNAKE_CASE__ : List[str] = candidate return product if __name__ == "__main__": print(f"{solution() = }")
26
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase_ ( _lowercase , unittest.TestCase): snake_case__ = KandinskyVaaInpaintPipeline snake_case__ = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] snake_case__ = [ '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] snake_case__ = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] snake_case__ = False @property def _UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: return 32 @property def _UpperCamelCase ( self : Optional[int] ) -> Optional[int]: return 32 @property def _UpperCamelCase ( self : Tuple ) -> List[str]: return self.time_input_dim @property def _UpperCamelCase ( self : Optional[int] ) -> Tuple: return self.time_input_dim * 4 @property def _UpperCamelCase ( self : str ) -> List[Any]: return 100 @property def _UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: torch.manual_seed(0 ) _UpperCamelCase = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _UpperCamelCase = UNetaDConditionModel(**__UpperCamelCase ) return model @property def _UpperCamelCase ( self : int ) -> List[Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _UpperCamelCase ( self : Optional[int] ) -> Tuple: torch.manual_seed(0 ) _UpperCamelCase = VQModel(**self.dummy_movq_kwargs ) return model def _UpperCamelCase ( self : Tuple ) -> Any: _UpperCamelCase = self.dummy_unet _UpperCamelCase = self.dummy_movq _UpperCamelCase = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__UpperCamelCase , set_alpha_to_one=__UpperCamelCase , steps_offset=1 , prediction_type='''epsilon''' , thresholding=__UpperCamelCase , ) _UpperCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _UpperCamelCase ( self : int , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int]=0 ) -> List[str]: _UpperCamelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) _UpperCamelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __UpperCamelCase ) # create init_image _UpperCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) _UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCamelCase = Image.fromarray(np.uinta(__UpperCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) # create mask _UpperCamelCase = np.ones((64, 64) , dtype=np.floataa ) _UpperCamelCase = 0 if str(__UpperCamelCase ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(__UpperCamelCase ) else: _UpperCamelCase = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) _UpperCamelCase = { '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def _UpperCamelCase ( self : Optional[int] ) -> List[Any]: _UpperCamelCase = '''cpu''' _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**__UpperCamelCase ) _UpperCamelCase = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) _UpperCamelCase = pipe(**self.get_dummy_inputs(__UpperCamelCase ) ) _UpperCamelCase = output.images _UpperCamelCase = pipe( **self.get_dummy_inputs(__UpperCamelCase ) , return_dict=__UpperCamelCase , )[0] _UpperCamelCase = image[0, -3:, -3:, -1] _UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) _UpperCamelCase = np.array( [0.5_0_7_7_5_9_0_3, 0.4_9_5_2_7_1_9_5, 0.4_8_8_2_4_5_4_3, 0.5_0_1_9_2_2_3_7, 0.4_8_6_4_4_9_0_6, 0.4_9_3_7_3_8_1_4, 0.4_7_8_0_5_9_8, 0.4_7_2_3_4_8_2_7, 0.4_8_3_2_7_8_4_8] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def _UpperCamelCase ( self : Dict ) -> int: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): def _UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy''' ) _UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _UpperCamelCase = np.ones((768, 768) , dtype=np.floataa ) _UpperCamelCase = 0 _UpperCamelCase = '''a hat''' _UpperCamelCase = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__UpperCamelCase ) _UpperCamelCase = KandinskyVaaInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder-inpaint''' , torch_dtype=torch.floataa ) _UpperCamelCase = pipeline.to(__UpperCamelCase ) pipeline.set_progress_bar_config(disable=__UpperCamelCase ) _UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) _UpperCamelCase , _UpperCamelCase = pipe_prior( __UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _UpperCamelCase = pipeline( image=__UpperCamelCase , mask_image=__UpperCamelCase , image_embeds=__UpperCamelCase , negative_image_embeds=__UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=100 , height=768 , width=768 , output_type='''np''' , ) _UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__UpperCamelCase , __UpperCamelCase )
420
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def lowercase ( a__ : int = 1000000 , a__ : int = 10 ) -> int: _UpperCamelCase = defaultdict(a__ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _UpperCamelCase = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: _UpperCamelCase = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(a__ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F'''{solution() = }''')
420
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): SCREAMING_SNAKE_CASE = AltDiffusionPipeline SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase ( self : Union[str, Any])-> str: torch.manual_seed(0) __lowerCAmelCase =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __lowerCAmelCase =DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=snake_case_ , set_alpha_to_one=snake_case_ , ) torch.manual_seed(0) __lowerCAmelCase =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0) __lowerCAmelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_02 , ) __lowerCAmelCase =CLIPTextModel(snake_case_) __lowerCAmelCase =XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""") __lowerCAmelCase =77 __lowerCAmelCase ={ """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCamelCase ( self : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[int]=0)-> Any: if str(snake_case_).startswith("""mps"""): __lowerCAmelCase =torch.manual_seed(snake_case_) else: __lowerCAmelCase =torch.Generator(device=snake_case_).manual_seed(snake_case_) __lowerCAmelCase ={ """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCamelCase ( self : str)-> str: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3) def UpperCamelCase ( self : Tuple)-> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) def UpperCamelCase ( self : List[Any])-> Tuple: __lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase =self.get_dummy_components() torch.manual_seed(0) __lowerCAmelCase =RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=50_02 , ) # TODO: remove after fixing the non-deterministic text encoder __lowerCAmelCase =RobertaSeriesModelWithTransformation(snake_case_) __lowerCAmelCase =text_encoder __lowerCAmelCase =AltDiffusionPipeline(**snake_case_) __lowerCAmelCase =alt_pipe.to(snake_case_) alt_pipe.set_progress_bar_config(disable=snake_case_) __lowerCAmelCase =self.get_dummy_inputs(snake_case_) __lowerCAmelCase ="""A photo of an astronaut""" __lowerCAmelCase =alt_pipe(**snake_case_) __lowerCAmelCase =output.images __lowerCAmelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCAmelCase =np.array( [0.5_7_4_8_1_6_2, 0.6_0_4_4_7_1_4_5, 0.4_8_8_2_1_2_1_7, 0.5_0_1_0_0_6_3_6, 0.5_4_3_1_1_8_5, 0.4_5_7_6_3_6_8_3, 0.4_9_6_5_7_6_9_6, 0.4_8_1_3_2_7_3_3, 0.4_7_5_7_3_0_9_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCamelCase ( self : Optional[Any])-> Union[str, Any]: __lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase =self.get_dummy_components() __lowerCAmelCase =PNDMScheduler(skip_prk_steps=snake_case_) torch.manual_seed(0) __lowerCAmelCase =RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=50_02 , ) # TODO: remove after fixing the non-deterministic text encoder __lowerCAmelCase =RobertaSeriesModelWithTransformation(snake_case_) __lowerCAmelCase =text_encoder __lowerCAmelCase =AltDiffusionPipeline(**snake_case_) __lowerCAmelCase =alt_pipe.to(snake_case_) alt_pipe.set_progress_bar_config(disable=snake_case_) __lowerCAmelCase =self.get_dummy_inputs(snake_case_) __lowerCAmelCase =alt_pipe(**snake_case_) __lowerCAmelCase =output.images __lowerCAmelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCAmelCase =np.array( [0.5_1_6_0_5_0_9_3, 0.5_7_0_7_2_4_1, 0.4_7_3_6_5_5_0_7, 0.5_0_5_7_8_8_8_6, 0.5_6_3_3_8_7_7, 0.4_6_4_2_5_0_3, 0.5_1_8_2_0_8_1, 0.4_8_7_6_3_4_8_4, 0.4_9_0_8_4_2_3_7]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class __a ( unittest.TestCase ): def UpperCamelCase ( self : Optional[int])-> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : Any)-> int: # make sure here that pndm scheduler skips prk __lowerCAmelCase =AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , safety_checker=snake_case_) __lowerCAmelCase =alt_pipe.to(snake_case_) alt_pipe.set_progress_bar_config(disable=snake_case_) __lowerCAmelCase ="""A painting of a squirrel eating a burger""" __lowerCAmelCase =torch.manual_seed(0) __lowerCAmelCase =alt_pipe([prompt] , generator=snake_case_ , guidance_scale=6.0 , num_inference_steps=20 , output_type="""np""") __lowerCAmelCase =output.images __lowerCAmelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) __lowerCAmelCase =np.array([0.1_0_1_0, 0.0_8_0_0, 0.0_7_9_4, 0.0_8_8_5, 0.0_8_4_3, 0.0_7_6_2, 0.0_7_6_9, 0.0_7_2_9, 0.0_5_8_6]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCamelCase ( self : Optional[Any])-> Tuple: __lowerCAmelCase =DDIMScheduler.from_pretrained("""BAAI/AltDiffusion""" , subfolder="""scheduler""") __lowerCAmelCase =AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , scheduler=snake_case_ , safety_checker=snake_case_) __lowerCAmelCase =alt_pipe.to(snake_case_) alt_pipe.set_progress_bar_config(disable=snake_case_) __lowerCAmelCase ="""A painting of a squirrel eating a burger""" __lowerCAmelCase =torch.manual_seed(0) __lowerCAmelCase =alt_pipe([prompt] , generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""") __lowerCAmelCase =output.images __lowerCAmelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) __lowerCAmelCase =np.array([0.4_0_1_9, 0.4_0_5_2, 0.3_8_1_0, 0.4_1_1_9, 0.3_9_1_6, 0.3_9_8_2, 0.4_6_5_1, 0.4_1_9_5, 0.5_3_2_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
456
def __lowerCAmelCase ( __lowerCamelCase : int = 3 , __lowerCamelCase : int = 7 , __lowerCamelCase : int = 1000000 ) -> int: __lowerCAmelCase =0 __lowerCAmelCase =1 for current_denominator in range(1 , limit + 1 ): __lowerCAmelCase =current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: __lowerCAmelCase =current_numerator __lowerCAmelCase =current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_00_00_00))
456
1
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase__ : """simple docstring""" def __init__( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Any=13 , __lowerCamelCase : List[str]=7 , __lowerCamelCase : str=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Any=True , __lowerCamelCase : str=True , __lowerCamelCase : Any=99 , __lowerCamelCase : Any=32 , __lowerCamelCase : Optional[int]=5 , __lowerCamelCase : List[str]=4 , __lowerCamelCase : Optional[int]=37 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : Any=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : str=512 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : int=0.02 , __lowerCamelCase : int=3 , __lowerCamelCase : Dict=4 , __lowerCamelCase : str=None , ) -> List[Any]: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_mask SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = scope def lowercase_ ( self : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self : Optional[int] ) -> List[str]: return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , ) def lowercase_ ( self : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple ) -> Any: SCREAMING_SNAKE_CASE__ = NystromformerModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : str , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = NystromformerForMaskedLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE__ = NystromformerForQuestionAnswering(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self : List[Any] , __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : List[str] ) -> int: SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = NystromformerForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = NystromformerForTokenClassification(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.num_choices SCREAMING_SNAKE_CASE__ = NystromformerForMultipleChoice(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ ( self : Optional[Any] ) -> str: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ), ) = config_and_inputs SCREAMING_SNAKE_CASE__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A__ , A__ , unittest.TestCase ): """simple docstring""" a = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) a = ( { "feature-extraction": NystromformerModel, "fill-mask": NystromformerForMaskedLM, "question-answering": NystromformerForQuestionAnswering, "text-classification": NystromformerForSequenceClassification, "token-classification": NystromformerForTokenClassification, "zero-shot": NystromformerForSequenceClassification, } if is_torch_available() else {} ) a = False a = False def lowercase_ ( self : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = NystromformerModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def lowercase_ ( self : str ) -> str: self.config_tester.run_common_tests() def lowercase_ ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def lowercase_ ( self : Any ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE__ = type self.model_tester.create_and_check_model(*__lowerCamelCase ) def lowercase_ ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def lowercase_ ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def lowercase_ ( self : List[str] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def lowercase_ ( self : List[str] ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def lowercase_ ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase ) @slow def lowercase_ ( self : Tuple ) -> Union[str, Any]: for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = NystromformerModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self : List[str] ) -> List[str]: SCREAMING_SNAKE_CASE__ = NystromformerModel.from_pretrained('''uw-madison/nystromformer-512''' ) SCREAMING_SNAKE_CASE__ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase )[0] SCREAMING_SNAKE_CASE__ = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCamelCase , atol=1e-4 ) ) @slow def lowercase_ ( self : str ) -> List[Any]: SCREAMING_SNAKE_CASE__ = '''the [MASK] of Belgium is Brussels''' SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''uw-madison/nystromformer-512''' ) SCREAMING_SNAKE_CASE__ = NystromformerForMaskedLM.from_pretrained('''uw-madison/nystromformer-512''' ) SCREAMING_SNAKE_CASE__ = tokenizer(__lowerCamelCase , return_tensors='''pt''' ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(encoding.input_ids ).logits SCREAMING_SNAKE_CASE__ = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(__lowerCamelCase ) , '''capital''' )
493
def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = int(_A ) if n_element < 1: SCREAMING_SNAKE_CASE__ = ValueError('''a should be a positive number''' ) raise my_error SCREAMING_SNAKE_CASE__ = [1] SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = (0, 0, 0) SCREAMING_SNAKE_CASE__ = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Tuple = input('''Enter the last number (nth term) of the Hamming Number Series: ''') print('''Formula of Hamming Number Series => 2^i * 3^j * 5^k''') _SCREAMING_SNAKE_CASE : int = hamming(int(n)) print('''-----------------------------------------------------''') print(F"The list with nth numbers is: {hamming_numbers}") print('''-----------------------------------------------------''')
493
1
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCAmelCase ( __UpperCAmelCase , unittest.TestCase ): pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): @property def a ( self : Optional[Any] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a ( self : str ): __UpperCAmelCase = ort.SessionOptions() __UpperCAmelCase = False return options def a ( self : int ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __UpperCAmelCase = '''A red cat sitting on a park bench''' __UpperCAmelCase = np.random.RandomState(0 ) __UpperCAmelCase = pipe( prompt=_lowerCamelCase , image=_lowerCamelCase , mask_image=_lowerCamelCase , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCamelCase , output_type='''np''' , ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __UpperCAmelCase = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def a ( self : Optional[Any] ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __UpperCAmelCase = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) __UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __UpperCAmelCase = '''A red cat sitting on a park bench''' __UpperCAmelCase = np.random.RandomState(0 ) __UpperCAmelCase = pipe( prompt=_lowerCamelCase , image=_lowerCamelCase , mask_image=_lowerCamelCase , guidance_scale=7.5 , num_inference_steps=20 , generator=_lowerCamelCase , output_type='''np''' , ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __UpperCAmelCase = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
701
"""simple docstring""" from typing import Any def lowercase__ ( snake_case_ :list , snake_case_ :list , snake_case_ :dict , snake_case_ :dict , snake_case_ :dict , ): _validation( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) # Creates data structures and fill initial step __UpperCAmelCase = {} __UpperCAmelCase = {} for state in states_space: __UpperCAmelCase = observations_space[0] __UpperCAmelCase = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __UpperCAmelCase = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case_ ) ): __UpperCAmelCase = observations_space[o] __UpperCAmelCase = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __UpperCAmelCase = '''''' __UpperCAmelCase = -1 for k_state in states_space: __UpperCAmelCase = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __UpperCAmelCase = probability __UpperCAmelCase = k_state # Update probabilities and pointers dicts __UpperCAmelCase = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __UpperCAmelCase = arg_max # The final observation __UpperCAmelCase = observations_space[len(snake_case_ ) - 1] # argmax for given final observation __UpperCAmelCase = '''''' __UpperCAmelCase = -1 for k_state in states_space: __UpperCAmelCase = probabilities[(k_state, final_observation)] if probability > max_probability: __UpperCAmelCase = probability __UpperCAmelCase = k_state __UpperCAmelCase = arg_max # Process pointers backwards __UpperCAmelCase = last_state __UpperCAmelCase = [] for o in range(len(snake_case_ ) - 1 , -1 , -1 ): result.append(snake_case_ ) __UpperCAmelCase = pointers[previous, observations_space[o]] result.reverse() return result def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): _validate_not_empty( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) _validate_lists(snake_case_ , snake_case_ ) _validate_dicts( snake_case_ , snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any ): _validate_list(snake_case_ , '''observations_space''' ) _validate_list(snake_case_ , '''states_space''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :str ): if not isinstance(_object , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a list''' raise ValueError(snake_case_ ) else: for x in _object: if not isinstance(snake_case_ , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a list of strings''' raise ValueError(snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): _validate_dict(snake_case_ , '''initial_probabilities''' , snake_case_ ) _validate_nested_dict(snake_case_ , '''transition_probabilities''' ) _validate_nested_dict(snake_case_ , '''emission_probabilities''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :str ): _validate_dict(_object , snake_case_ , snake_case_ ) for x in _object.values(): _validate_dict(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :str , snake_case_ :type , snake_case_ :bool = False ): if not isinstance(_object , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a dict''' raise ValueError(snake_case_ ) if not all(isinstance(snake_case_ , snake_case_ ) for x in _object ): __UpperCAmelCase = F'''{var_name} all keys must be strings''' raise ValueError(snake_case_ ) if not all(isinstance(snake_case_ , snake_case_ ) for x in _object.values() ): __UpperCAmelCase = '''nested dictionary ''' if nested else '''''' __UpperCAmelCase = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(snake_case_ ) if __name__ == "__main__": from doctest import testmod testmod()
397
0
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _snake_case : UpperCamelCase__ : int UpperCamelCase__ : int class _snake_case : def __init__( self : Union[str, Any], __lowercase : Dict ): lowercase__ = [[] for _ in range(_SCREAMING_SNAKE_CASE )] lowercase__ = size def __getitem__( self : Optional[int], __lowercase : int ): return iter(self._graph[vertex] ) @property def A__ ( self : int ): return self._size def A__ ( self : List[str], __lowercase : Optional[int], __lowercase : List[str], __lowercase : int ): if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) ) def A__ ( self : int, __lowercase : str, __lowercase : Union[str, Any] ): lowercase__ = deque([start_vertex] ) lowercase__ = [None] * self.size lowercase__ = 0 while queue: lowercase__ = queue.popleft() lowercase__ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowercase__ = current_distance + edge.weight lowercase__ = distances[edge.destination_vertex] if ( isinstance(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) and new_distance >= dest_vertex_distance ): continue lowercase__ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
413
"""simple docstring""" from __future__ import annotations def _snake_case ( UpperCamelCase : list[int] , UpperCamelCase : int ): if len(UpperCamelCase ) < k or k < 0: raise ValueError("""Invalid Input""" ) UpperCAmelCase : Optional[Any] = sum(array[:k] ) for i in range(len(UpperCamelCase ) - k ): UpperCAmelCase : str = current_sum - array[i] + array[i + k] UpperCAmelCase : Tuple = max(UpperCamelCase , UpperCamelCase ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() A: str = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0_0)] A: int = randint(0, 1_1_0) print(f"""The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}""")
160
0
'''simple docstring''' import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=9_9 , snake_case_=3_2 , snake_case_=5 , snake_case_=4 , snake_case_=3_7 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_1_2 , snake_case_=1_6 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ): '''simple docstring''' UpperCAmelCase_ : Dict = parent UpperCAmelCase_ : str = batch_size UpperCAmelCase_ : Optional[Any] = seq_length UpperCAmelCase_ : List[str] = is_training UpperCAmelCase_ : List[Any] = use_input_mask UpperCAmelCase_ : Union[str, Any] = use_token_type_ids UpperCAmelCase_ : Optional[Any] = use_labels UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : List[Any] = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : int = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : Dict = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Union[str, Any] = max_position_embeddings UpperCAmelCase_ : Optional[int] = type_vocab_size UpperCAmelCase_ : Dict = type_sequence_label_size UpperCAmelCase_ : Dict = initializer_range UpperCAmelCase_ : str = num_labels UpperCAmelCase_ : int = num_choices UpperCAmelCase_ : Dict = scope def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : List[Any] = None if self.use_input_mask: UpperCAmelCase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : int = None if self.use_token_type_ids: UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[str] = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self ): '''simple docstring''' return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = NystromformerModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() UpperCAmelCase_ : int = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) UpperCAmelCase_ : Any = model(UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) UpperCAmelCase_ : Any = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Tuple = NystromformerForMaskedLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() UpperCAmelCase_ : Tuple = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = NystromformerForQuestionAnswering(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() UpperCAmelCase_ : int = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , start_positions=UpperCAmelCase__ , end_positions=UpperCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.num_labels UpperCAmelCase_ : Any = NystromformerForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() UpperCAmelCase_ : Optional[int] = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.num_labels UpperCAmelCase_ : Optional[Any] = NystromformerForTokenClassification(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() UpperCAmelCase_ : int = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Any = self.num_choices UpperCAmelCase_ : List[str] = NystromformerForMultipleChoice(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() UpperCAmelCase_ : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Union[str, Any] = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Dict = self.prepare_config_and_inputs() ( UpperCAmelCase_ ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ :Optional[Any] = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase_ :Optional[int] = ( { '''feature-extraction''': NystromformerModel, '''fill-mask''': NystromformerForMaskedLM, '''question-answering''': NystromformerForQuestionAnswering, '''text-classification''': NystromformerForSequenceClassification, '''token-classification''': NystromformerForTokenClassification, '''zero-shot''': NystromformerForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase_ :Tuple = False lowerCamelCase_ :Any = False def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : List[Any] = NystromformerModelTester(self ) UpperCAmelCase_ : Tuple = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=3_7 ) def _UpperCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ : Dict = type self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase__ ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase__ ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase__ ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase__ ) @slow def _UpperCamelCase ( self ): '''simple docstring''' for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : List[Any] = NystromformerModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Dict = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) UpperCAmelCase_ : Any = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): UpperCAmelCase_ : Tuple = model(UpperCAmelCase__ )[0] UpperCAmelCase_ : int = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , UpperCAmelCase__ ) UpperCAmelCase_ : Dict = torch.tensor( [[[-0.45_32, -0.09_36, 0.51_37], [-0.26_76, 0.06_28, 0.61_86], [-0.36_29, -0.17_26, 0.47_16]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=1E-4 ) ) @slow def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = '''the [MASK] of Belgium is Brussels''' UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) UpperCAmelCase_ : Optional[int] = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) UpperCAmelCase_ : List[Any] = tokenizer(UpperCAmelCase__ , return_tensors='pt' ) with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(encoding.input_ids ).logits UpperCAmelCase_ : Tuple = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(UpperCAmelCase__ ) , 'capital' )
700
'''simple docstring''' def _lowerCamelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any] ): """simple docstring""" UpperCAmelCase_ : str = [0 for i in range(r + 1 )] # nc0 = 1 UpperCAmelCase_ : Union[str, Any] = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. UpperCAmelCase_ : Union[str, Any] = min(lowerCamelCase_ , lowerCamelCase_ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
389
0
def __a ( __lowerCAmelCase = 1000 ) -> int: SCREAMING_SNAKE_CASE : Optional[int] = 2**power SCREAMING_SNAKE_CASE : Any = str(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = list(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : str = 0 for i in list_num: sum_of_num += int(__lowerCAmelCase ) return sum_of_num if __name__ == "__main__": _lowerCamelCase : Optional[Any] = int(input("""Enter the power of 2: """).strip()) print("""2 ^ """, power, """ = """, 2**power) _lowerCamelCase : Tuple = solution(power) print("""Sum of the digits is: """, result)
352
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowercase : '''simple docstring''' @staticmethod def lowerCamelCase_ ( *snake_case : Dict , **snake_case : List[Any] ): '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class lowercase ( unittest.TestCase): '''simple docstring''' UpperCAmelCase : Any = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCamelCase_ ( self : List[Any] , snake_case : List[str] , snake_case : int , snake_case : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' ) SCREAMING_SNAKE_CASE : Any = [ { 'image': Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'question': 'How many cats are there?', }, { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'question': 'How many cats are there?', }, ] return vqa_pipeline, examples def lowerCamelCase_ ( self : int , snake_case : int , snake_case : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = vqa_pipeline(snake_case , top_k=1 ) self.assertEqual( snake_case , [ [{'score': ANY(snake_case ), 'answer': ANY(snake_case )}], [{'score': ANY(snake_case ), 'answer': ANY(snake_case )}], ] , ) @require_torch def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' ) SCREAMING_SNAKE_CASE : List[Any] = './tests/fixtures/tests_samples/COCO/000000039769.png' SCREAMING_SNAKE_CASE : Any = 'How many cats are there?' SCREAMING_SNAKE_CASE : Optional[Any] = vqa_pipeline(image=snake_case , question='How many cats are there?' , top_k=2 ) self.assertEqual( snake_case , [{'score': ANY(snake_case ), 'answer': ANY(snake_case )}, {'score': ANY(snake_case ), 'answer': ANY(snake_case )}] ) SCREAMING_SNAKE_CASE : int = vqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( snake_case , [{'score': ANY(snake_case ), 'answer': ANY(snake_case )}, {'score': ANY(snake_case ), 'answer': ANY(snake_case )}] ) @slow @require_torch def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = pipeline('visual-question-answering' , model='dandelin/vilt-b32-finetuned-vqa' ) SCREAMING_SNAKE_CASE : int = './tests/fixtures/tests_samples/COCO/000000039769.png' SCREAMING_SNAKE_CASE : Dict = 'How many cats are there?' SCREAMING_SNAKE_CASE : int = vqa_pipeline(image=snake_case , question=snake_case , top_k=2 ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}] ) SCREAMING_SNAKE_CASE : List[str] = vqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}] ) SCREAMING_SNAKE_CASE : Any = vqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [[{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}]] * 2 , ) @require_tf @unittest.skip('Visual question answering not implemented in TF' ) def lowerCamelCase_ ( self : str ): '''simple docstring''' pass
352
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class snake_case_ ( A__ ): """simple docstring""" __lowerCAmelCase : Dict ='''unispeech''' def __init__( self , UpperCamelCase=32 , UpperCamelCase=7_68 , UpperCamelCase=12 , UpperCamelCase=12 , UpperCamelCase=30_72 , UpperCamelCase="gelu" , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=0.0 , UpperCamelCase=0.0 , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=0.0_2 , UpperCamelCase=1E-5 , UpperCamelCase="group" , UpperCamelCase="gelu" , UpperCamelCase=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , UpperCamelCase=(5, 2, 2, 2, 2, 2, 2) , UpperCamelCase=(10, 3, 3, 3, 3, 2, 2) , UpperCamelCase=False , UpperCamelCase=1_28 , UpperCamelCase=16 , UpperCamelCase=False , UpperCamelCase=True , UpperCamelCase=0.0_5 , UpperCamelCase=10 , UpperCamelCase=2 , UpperCamelCase=0.0 , UpperCamelCase=10 , UpperCamelCase=0 , UpperCamelCase=3_20 , UpperCamelCase=2 , UpperCamelCase=0.1 , UpperCamelCase=1_00 , UpperCamelCase=2_56 , UpperCamelCase=2_56 , UpperCamelCase=0.1 , UpperCamelCase="mean" , UpperCamelCase=False , UpperCamelCase=False , UpperCamelCase=2_56 , UpperCamelCase=80 , UpperCamelCase=0 , UpperCamelCase=1 , UpperCamelCase=2 , UpperCamelCase=0.5 , **UpperCamelCase , ): super().__init__(**UpperCamelCase , pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase) lowerCamelCase__ = hidden_size lowerCamelCase__ = feat_extract_norm lowerCamelCase__ = feat_extract_activation lowerCamelCase__ = list(UpperCamelCase) lowerCamelCase__ = list(UpperCamelCase) lowerCamelCase__ = list(UpperCamelCase) lowerCamelCase__ = conv_bias lowerCamelCase__ = num_conv_pos_embeddings lowerCamelCase__ = num_conv_pos_embedding_groups lowerCamelCase__ = len(self.conv_dim) lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = num_attention_heads lowerCamelCase__ = hidden_dropout lowerCamelCase__ = attention_dropout lowerCamelCase__ = activation_dropout lowerCamelCase__ = feat_proj_dropout lowerCamelCase__ = final_dropout lowerCamelCase__ = layerdrop lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = initializer_range lowerCamelCase__ = num_ctc_classes lowerCamelCase__ = vocab_size lowerCamelCase__ = do_stable_layer_norm lowerCamelCase__ = use_weighted_layer_sum lowerCamelCase__ = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase__ = apply_spec_augment lowerCamelCase__ = mask_time_prob lowerCamelCase__ = mask_time_length lowerCamelCase__ = mask_time_min_masks lowerCamelCase__ = mask_feature_prob lowerCamelCase__ = mask_feature_length lowerCamelCase__ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCamelCase__ = num_codevectors_per_group lowerCamelCase__ = num_codevector_groups lowerCamelCase__ = contrastive_logits_temperature lowerCamelCase__ = feat_quantizer_dropout lowerCamelCase__ = num_negatives lowerCamelCase__ = codevector_dim lowerCamelCase__ = proj_codevector_dim lowerCamelCase__ = diversity_loss_weight # ctc loss lowerCamelCase__ = ctc_loss_reduction lowerCamelCase__ = ctc_zero_infinity # pretraining loss lowerCamelCase__ = replace_prob @property def __UpperCAmelCase ( self): return functools.reduce(operator.mul , self.conv_stride , 1)
426
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case_ : """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase=13 , UpperCamelCase=32 , UpperCamelCase=3 , UpperCamelCase=4 , UpperCamelCase=[10, 20, 30, 40] , UpperCamelCase=[2, 2, 3, 2] , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=37 , UpperCamelCase="gelu" , UpperCamelCase=10 , UpperCamelCase=0.0_2 , UpperCamelCase=["stage2", "stage3", "stage4"] , UpperCamelCase=[2, 3, 4] , UpperCamelCase=None , ): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = image_size lowerCamelCase__ = num_channels lowerCamelCase__ = num_stages lowerCamelCase__ = hidden_sizes lowerCamelCase__ = depths lowerCamelCase__ = is_training lowerCamelCase__ = use_labels lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = num_labels lowerCamelCase__ = initializer_range lowerCamelCase__ = out_features lowerCamelCase__ = out_indices lowerCamelCase__ = scope def __UpperCAmelCase ( self): lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] , self.num_labels) lowerCamelCase__ = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self): return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __UpperCAmelCase ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase): lowerCamelCase__ = ConvNextVaModel(config=UpperCamelCase) model.to(UpperCamelCase) model.eval() lowerCamelCase__ = model(UpperCamelCase) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __UpperCAmelCase ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase): lowerCamelCase__ = ConvNextVaForImageClassification(UpperCamelCase) model.to(UpperCamelCase) model.eval() lowerCamelCase__ = model(UpperCamelCase , labels=UpperCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __UpperCAmelCase ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase): lowerCamelCase__ = ConvNextVaBackbone(config=UpperCamelCase) model.to(UpperCamelCase) model.eval() lowerCamelCase__ = model(UpperCamelCase) # verify hidden states self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:]) # verify backbone works with out_features=None lowerCamelCase__ = None lowerCamelCase__ = ConvNextVaBackbone(config=UpperCamelCase) model.to(UpperCamelCase) model.eval() lowerCamelCase__ = model(UpperCamelCase) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def __UpperCAmelCase ( self): lowerCamelCase__ = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = config_and_inputs lowerCamelCase__ = {"pixel_values": pixel_values} return config, inputs_dict def __UpperCAmelCase ( self): lowerCamelCase__ = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = config_and_inputs lowerCamelCase__ = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class snake_case_ ( A__ , A__ , unittest.TestCase ): """simple docstring""" __lowerCAmelCase : Optional[Any] =( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) __lowerCAmelCase : Optional[int] =( {'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase : Dict =False __lowerCAmelCase : List[Any] =False __lowerCAmelCase : Union[str, Any] =False __lowerCAmelCase : Tuple =False __lowerCAmelCase : Tuple =False def __UpperCAmelCase ( self): lowerCamelCase__ = ConvNextVaModelTester(self) lowerCamelCase__ = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase , hidden_size=37) def __UpperCAmelCase ( self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCAmelCase ( self): return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds") def __UpperCAmelCase ( self): pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings") def __UpperCAmelCase ( self): pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking") def __UpperCAmelCase ( self): pass def __UpperCAmelCase ( self): if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_with_labels() lowerCamelCase__ = True if model_class.__name__ in [ *get_values(UpperCamelCase), *get_values(UpperCamelCase), ]: continue lowerCamelCase__ = model_class(UpperCamelCase) model.to(UpperCamelCase) model.train() lowerCamelCase__ = self._prepare_for_class(UpperCamelCase , UpperCamelCase , return_labels=UpperCamelCase) lowerCamelCase__ = model(**UpperCamelCase).loss loss.backward() def __UpperCAmelCase ( self): if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_with_labels() lowerCamelCase__ = False lowerCamelCase__ = True if ( model_class.__name__ in [*get_values(UpperCamelCase), *get_values(UpperCamelCase)] or not model_class.supports_gradient_checkpointing ): continue lowerCamelCase__ = model_class(UpperCamelCase) model.to(UpperCamelCase) model.gradient_checkpointing_enable() model.train() lowerCamelCase__ = self._prepare_for_class(UpperCamelCase , UpperCamelCase , return_labels=UpperCamelCase) lowerCamelCase__ = model(**UpperCamelCase).loss loss.backward() def __UpperCAmelCase ( self): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(UpperCamelCase) lowerCamelCase__ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ = [*signature.parameters.keys()] lowerCamelCase__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase) def __UpperCAmelCase ( self): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase) def __UpperCAmelCase ( self): def check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase): lowerCamelCase__ = model_class(UpperCamelCase) model.to(UpperCamelCase) model.eval() with torch.no_grad(): lowerCamelCase__ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase)) lowerCamelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase__ = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase) , expected_num_stages + 1) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase) def __UpperCAmelCase ( self): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase) @slow def __UpperCAmelCase ( self): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = ConvNextVaModel.from_pretrained(UpperCamelCase) self.assertIsNotNone(UpperCamelCase) def lowerCAmelCase( ): '''simple docstring''' lowerCamelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class snake_case_ ( unittest.TestCase ): """simple docstring""" @cached_property def __UpperCAmelCase ( self): return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224") if is_vision_available() else None @slow def __UpperCAmelCase ( self): lowerCamelCase__ = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224").to(UpperCamelCase) lowerCamelCase__ = self.default_image_processor lowerCamelCase__ = prepare_img() lowerCamelCase__ = preprocessor(images=UpperCamelCase , return_tensors="pt").to(UpperCamelCase) # forward pass with torch.no_grad(): lowerCamelCase__ = model(**UpperCamelCase) # verify the logits lowerCamelCase__ = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , UpperCamelCase) lowerCamelCase__ = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6]).to(UpperCamelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1E-4))
426
1
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow lowerCamelCase__ = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase_ ( self : Optional[int] ,_lowerCAmelCase : Path ,_lowerCAmelCase : Union[str, None] = None ,_lowerCAmelCase : Union[List[str], None] = None ,_lowerCAmelCase : Union[str, List[str], None] = None ,_lowerCAmelCase : bool = True ,): """simple docstring""" __snake_case = [file for file in os.listdir(_lowerCAmelCase ) if os.path.isfile(os.path.join(_lowerCAmelCase ,_lowerCAmelCase ) )] if identifier is not None: __snake_case = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): for n_ in n_identifier: __snake_case = [file for file in files if n_ not in file] else: __snake_case = [file for file in files if n_identifier not in file] __snake_case = ignore_files or [] ignore_files.append("__init__.py" ) __snake_case = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" ,_lowerCAmelCase ) if only_modules: __snake_case = file.split("." )[0] try: __snake_case = getattr(_lowerCAmelCase ,_lowerCAmelCase ) __snake_case = doctest.DocTestSuite(_lowerCAmelCase ) __snake_case = unittest.TextTestRunner().run(_lowerCAmelCase ) self.assertIs(len(result.failures ) ,0 ) except AttributeError: logger.info(F"""{module_identifier} is not a module.""" ) else: __snake_case = doctest.testfile(str(".." / directory / file ) ,optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed ,0 ) def UpperCamelCase_ ( self : Tuple ): """simple docstring""" __snake_case = Path("src/transformers" ) __snake_case = "modeling" __snake_case = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(_lowerCAmelCase ,identifier=_lowerCAmelCase ,ignore_files=_lowerCAmelCase ) def UpperCamelCase_ ( self : Optional[Any] ): """simple docstring""" __snake_case = Path("src/transformers" ) __snake_case = "tokenization" self.analyze_directory(_lowerCAmelCase ,identifier=_lowerCAmelCase ) def UpperCamelCase_ ( self : str ): """simple docstring""" __snake_case = Path("src/transformers" ) __snake_case = "configuration" self.analyze_directory(_lowerCAmelCase ,identifier=_lowerCAmelCase ) def UpperCamelCase_ ( self : Tuple ): """simple docstring""" __snake_case = Path("src/transformers" ) __snake_case = ["configuration", "modeling", "tokenization"] self.analyze_directory(_lowerCAmelCase ,n_identifier=_lowerCAmelCase ) def UpperCamelCase_ ( self : Optional[Any] ): """simple docstring""" __snake_case = Path("docs/source" ) __snake_case = ["favicon.ico"] self.analyze_directory(_lowerCAmelCase ,ignore_files=_lowerCAmelCase ,only_modules=_lowerCAmelCase )
524
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowerCamelCase__ = 1.0_54_57_18_17E-34 # unit of ℏ : J * s lowerCamelCase__ = 3E8 # unit of c : m * s^-1 def _lowerCamelCase( __snake_case , __snake_case , __snake_case ) -> dict[str, float]: if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: __snake_case = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: __snake_case = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: __snake_case = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
524
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule SCREAMING_SNAKE_CASE__ = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
707
'''simple docstring''' from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-1' SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-2' SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-3' SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-4' class a_ ( lowerCamelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , ) -> Any: """simple docstring""" super()._init_() UpperCamelCase = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = StableDiffusionPipeline( vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , requires_safety_checker=_SCREAMING_SNAKE_CASE , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def A__ ( self ) -> Dict[str, Any]: """simple docstring""" return {k: getattr(self , _SCREAMING_SNAKE_CASE ) for k in self.config.keys() if not k.startswith("""_""" )} def A__ ( self , _SCREAMING_SNAKE_CASE = "auto" ) -> Optional[Any]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Tuple: """simple docstring""" self.enable_attention_slicing(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> Dict: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" UpperCamelCase = """cuda""" if torch.cuda.is_available() else """cpu""" self.to(_SCREAMING_SNAKE_CASE ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` must be divisible by 8 but are {height} and {width}." ) # Get first result from Stable Diffusion Checkpoint v1.1 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.2 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.3 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.4 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
35
0
import math def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> int: _UpperCAmelCase = len(UpperCAmelCase_ ) _UpperCAmelCase = int(math.floor(math.sqrt(UpperCAmelCase_ ) ) ) _UpperCAmelCase = 0 while arr[min(UpperCAmelCase_ , UpperCAmelCase_ ) - 1] < x: _UpperCAmelCase = step step += int(math.floor(math.sqrt(UpperCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: _UpperCAmelCase = prev + 1 if prev == min(UpperCAmelCase_ , UpperCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": __lowerCAmelCase = input("Enter numbers separated by a comma:\n").strip() __lowerCAmelCase = [int(item) for item in user_input.split(",")] __lowerCAmelCase = int(input("Enter the number to be searched:\n")) __lowerCAmelCase = jump_search(arr, x) if res == -1: print("Number not found!") else: print(F'''Number {x} is at index {res}''')
684
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __snake_case ( unittest.TestCase ): def _snake_case ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self ) -> str: snake_case__ = 1 snake_case__ = 3 snake_case__ = (32, 32) snake_case__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase_ ) return image @property def _snake_case ( self ) -> Union[str, Any]: torch.manual_seed(0 ) snake_case__ = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=UpperCamelCase_ , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def _snake_case ( self ) -> Optional[Any]: torch.manual_seed(0 ) snake_case__ = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def _snake_case ( self ) -> List[str]: torch.manual_seed(0 ) snake_case__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) return CLIPTextModel(UpperCamelCase_ ) def _snake_case ( self ) -> Union[str, Any]: snake_case__ = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case__ = self.dummy_cond_unet_upscale snake_case__ = DDPMScheduler() snake_case__ = DDIMScheduler(prediction_type='v_prediction' ) snake_case__ = self.dummy_vae snake_case__ = self.dummy_text_encoder snake_case__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) snake_case__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case__ = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk snake_case__ = StableDiffusionUpscalePipeline( unet=UpperCamelCase_ , low_res_scheduler=UpperCamelCase_ , scheduler=UpperCamelCase_ , vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , max_noise_level=350 , ) snake_case__ = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) snake_case__ = 'A painting of a squirrel eating a burger' snake_case__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) snake_case__ = sd_pipe( [prompt] , image=UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) snake_case__ = output.images snake_case__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) snake_case__ = sd_pipe( [prompt] , image=UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , return_dict=UpperCamelCase_ , )[0] snake_case__ = image[0, -3:, -3:, -1] snake_case__ = image_from_tuple[0, -3:, -3:, -1] snake_case__ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) snake_case__ = np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> List[str]: snake_case__ = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case__ = self.dummy_cond_unet_upscale snake_case__ = DDPMScheduler() snake_case__ = DDIMScheduler(prediction_type='v_prediction' ) snake_case__ = self.dummy_vae snake_case__ = self.dummy_text_encoder snake_case__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) snake_case__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case__ = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk snake_case__ = StableDiffusionUpscalePipeline( unet=UpperCamelCase_ , low_res_scheduler=UpperCamelCase_ , scheduler=UpperCamelCase_ , vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , max_noise_level=350 , ) snake_case__ = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) snake_case__ = 'A painting of a squirrel eating a burger' snake_case__ = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) snake_case__ = output.images assert image.shape[0] == 2 snake_case__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) snake_case__ = sd_pipe( [prompt] , image=UpperCamelCase_ , generator=UpperCamelCase_ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) snake_case__ = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def _snake_case ( self ) -> str: snake_case__ = self.dummy_cond_unet_upscale snake_case__ = DDPMScheduler() snake_case__ = DDIMScheduler(prediction_type='v_prediction' ) snake_case__ = self.dummy_vae snake_case__ = self.dummy_text_encoder snake_case__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) snake_case__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case__ = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('RGB' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 snake_case__ = unet.half() snake_case__ = text_encoder.half() # make sure here that pndm scheduler skips prk snake_case__ = StableDiffusionUpscalePipeline( unet=UpperCamelCase_ , low_res_scheduler=UpperCamelCase_ , scheduler=UpperCamelCase_ , vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , max_noise_level=350 , ) snake_case__ = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) snake_case__ = 'A painting of a squirrel eating a burger' snake_case__ = torch.manual_seed(0 ) snake_case__ = sd_pipe( [prompt] , image=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=2 , output_type='np' , ).images snake_case__ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def _snake_case ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> Optional[int]: snake_case__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) snake_case__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat.npy' ) snake_case__ = 'stabilityai/stable-diffusion-x4-upscaler' snake_case__ = StableDiffusionUpscalePipeline.from_pretrained(UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() snake_case__ = 'a cat sitting on a park bench' snake_case__ = torch.manual_seed(0 ) snake_case__ = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type='np' , ) snake_case__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def _snake_case ( self ) -> List[Any]: snake_case__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) snake_case__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat_fp16.npy' ) snake_case__ = 'stabilityai/stable-diffusion-x4-upscaler' snake_case__ = StableDiffusionUpscalePipeline.from_pretrained( UpperCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() snake_case__ = 'a cat sitting on a park bench' snake_case__ = torch.manual_seed(0 ) snake_case__ = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type='np' , ) snake_case__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def _snake_case ( self ) -> int: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) snake_case__ = 'stabilityai/stable-diffusion-x4-upscaler' snake_case__ = StableDiffusionUpscalePipeline.from_pretrained( UpperCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case__ = 'a cat sitting on a park bench' snake_case__ = torch.manual_seed(0 ) snake_case__ = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=5 , output_type='np' , ) snake_case__ = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
368
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { """configuration_jukebox""": [ """JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """JukeboxConfig""", """JukeboxPriorConfig""", """JukeboxVQVAEConfig""", ], """tokenization_jukebox""": ["""JukeboxTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """JukeboxModel""", """JukeboxPreTrainedModel""", """JukeboxVQVAE""", """JukeboxPrior""", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
286
import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class UpperCAmelCase__ ( snake_case , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ : Any = WavaVecaPhonemeCTCTokenizer lowerCAmelCase__ : List[str] = False def _UpperCAmelCase ( self: Any ) -> List[str]: '''simple docstring''' super().setUp() __UpperCAmelCase = ( "<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː " "ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː " "ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 " "oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ " "pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ " "yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ " "əʊ S ɡʲ onɡ2 u\" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ " "ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ " "ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ " "uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ " "ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ " "ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ " "ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4" ).split(" " ) __UpperCAmelCase = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) __UpperCAmelCase = {"pad_token": "<pad>", "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"} __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + "\n" ) def _UpperCAmelCase ( self: List[Any] , __lowerCAmelCase: Tuple , __lowerCAmelCase: Dict=False , __lowerCAmelCase: Union[str, Any]=20 , __lowerCAmelCase: Tuple=5 ) -> Tuple[str, list]: '''simple docstring''' __UpperCAmelCase = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=__lowerCAmelCase )) for i in range(len(__lowerCAmelCase ) )] __UpperCAmelCase = list(filter(lambda __lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , do_phonemize=__lowerCAmelCase ) , __lowerCAmelCase ) ) if max_length is not None and len(__lowerCAmelCase ) > max_length: __UpperCAmelCase = toks[:max_length] if min_length is not None and len(__lowerCAmelCase ) < min_length and len(__lowerCAmelCase ) > 0: while len(__lowerCAmelCase ) < min_length: __UpperCAmelCase = toks + toks # toks_str = [t[1] for t in toks] __UpperCAmelCase = [t[0] for t in toks] # Ensure consistency __UpperCAmelCase = tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) if " " not in output_txt and len(__lowerCAmelCase ) > 1: __UpperCAmelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__lowerCAmelCase ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__lowerCAmelCase ) ) if with_prefix_space: __UpperCAmelCase = " " + output_txt __UpperCAmelCase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) return output_txt, output_ids def _UpperCAmelCase ( self: str , **__lowerCAmelCase: List[Any] ) -> str: '''simple docstring''' kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def _UpperCAmelCase ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) # check adding a single token tokenizer.add_tokens("xxx" ) __UpperCAmelCase = tokenizer("m xxx ɪ" , do_phonemize=__lowerCAmelCase ).input_ids self.assertEqual(__lowerCAmelCase , [13, 392, 17] ) # xxx should be last token tokenizer.add_tokens(["aaa", "bbb", "ccc"] ) __UpperCAmelCase = tokenizer("m aaa ɪ ccc" , do_phonemize=__lowerCAmelCase ).input_ids self.assertEqual(__lowerCAmelCase , [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa __UpperCAmelCase = tokenizer("maɪ c" , do_phonemize=__lowerCAmelCase ).input_ids self.assertEqual(__lowerCAmelCase , [3, 200] ) # mai should be <unk> (=3) def _UpperCAmelCase ( self: int ) -> int: '''simple docstring''' __UpperCAmelCase = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) __UpperCAmelCase = "Hello how are you" __UpperCAmelCase = tokenizer.phonemize(__lowerCAmelCase , phonemizer_lang="en-us" ) self.assertEqual(__lowerCAmelCase , "h ə l oʊ h aʊ ɑːɹ j uː" ) def _UpperCAmelCase ( self: List[str] ) -> List[str]: '''simple docstring''' __UpperCAmelCase = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) __UpperCAmelCase = "Hello how are you" __UpperCAmelCase = tokenizer.phonemize(__lowerCAmelCase , phonemizer_lang="en-us" ) self.assertEqual(tokenizer(__lowerCAmelCase ).input_ids , tokenizer(__lowerCAmelCase , do_phonemize=__lowerCAmelCase ).input_ids ) def _UpperCAmelCase ( self: Any ) -> Any: '''simple docstring''' __UpperCAmelCase = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) __UpperCAmelCase = "Hello how are you" __UpperCAmelCase = tokenizer.phonemize(__lowerCAmelCase , phonemizer_lang="en-us" ) __UpperCAmelCase = tokenizer.decode(tokenizer(__lowerCAmelCase ).input_ids ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def _UpperCAmelCase ( self: str ) -> Any: '''simple docstring''' __UpperCAmelCase = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) __UpperCAmelCase = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] __UpperCAmelCase = tokenizer.decode(sample_ids[0] ) __UpperCAmelCase = tokenizer.batch_decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , batch_tokens[0] ) self.assertEqual(__lowerCAmelCase , ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"] ) def _UpperCAmelCase ( self: Optional[int] ) -> Dict: '''simple docstring''' __UpperCAmelCase = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" ) tokenizer.add_tokens("|" ) __UpperCAmelCase = "Hello how are you" __UpperCAmelCase = tokenizer.phonemize(__lowerCAmelCase , phonemizer_lang="en-us" ) self.assertEqual(__lowerCAmelCase , "h ə l oʊ | h aʊ | ɑːɹ | j uː |" ) def _UpperCAmelCase ( self: Union[str, Any] ) -> str: '''simple docstring''' __UpperCAmelCase = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" ) tokenizer.add_tokens("|" ) __UpperCAmelCase = "Hello how are you" __UpperCAmelCase = tokenizer.phonemize(__lowerCAmelCase , phonemizer_lang="en-us" ) self.assertEqual(tokenizer(__lowerCAmelCase ).input_ids , tokenizer(__lowerCAmelCase , do_phonemize=__lowerCAmelCase ).input_ids ) def _UpperCAmelCase ( self: List[str] ) -> int: '''simple docstring''' __UpperCAmelCase = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" ) tokenizer.add_tokens("|" ) # fmt: off __UpperCAmelCase = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter __UpperCAmelCase = tokenizer.decode(sample_ids[0] ) __UpperCAmelCase = tokenizer.batch_decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , batch_tokens[0] ) self.assertEqual(__lowerCAmelCase , ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"] ) # decode with no word_del_token filter __UpperCAmelCase = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=__lowerCAmelCase ) __UpperCAmelCase = tokenizer.batch_decode(__lowerCAmelCase , filter_word_delimiter_token=__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , batch_tokens[0] ) self.assertEqual(__lowerCAmelCase , ["k s ɾ | ɾ l | ɭʲ", "| j ð | s j ð s oːɹ"] ) def _UpperCAmelCase ( self: Any ) -> List[str]: '''simple docstring''' __UpperCAmelCase = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" ) tokenizer.add_tokens("|" ) __UpperCAmelCase = "Hello how are you" __UpperCAmelCase = tokenizer.phonemize(__lowerCAmelCase , phonemizer_lang="en-us" ) __UpperCAmelCase = tokenizer.decode(tokenizer(__lowerCAmelCase ).input_ids , filter_word_delimiter_token=__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def _UpperCAmelCase ( self: Dict ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" ) tokenizer.add_tokens("|" ) __UpperCAmelCase = "Hello how are you" __UpperCAmelCase = tokenizer.phonemize(__lowerCAmelCase , phonemizer_lang="en-us" ) __UpperCAmelCase = tokenizer.decode(tokenizer(__lowerCAmelCase ).input_ids , filter_word_delimiter_token=__lowerCAmelCase ) self.assertEqual(" ".join([p.strip() for p in phonemes.split(" |" )] ).strip() , __lowerCAmelCase ) def _UpperCAmelCase ( self: Tuple ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token=__lowerCAmelCase ) __UpperCAmelCase = "Hello how are you" __UpperCAmelCase = tokenizer(__lowerCAmelCase , phonemizer_lang="en-us" ).input_ids __UpperCAmelCase = tokenizer(__lowerCAmelCase , phonemizer_lang="fr-fr" ).input_ids self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) __UpperCAmelCase = tokenizer.decode(__lowerCAmelCase ) __UpperCAmelCase = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , "h ə l oʊ h aʊ ɑːɹ j uː" ) self.assertEqual(__lowerCAmelCase , "ɛ l o h aʊ a ʁ j u" ) def _UpperCAmelCase ( self: Tuple ) -> Tuple: '''simple docstring''' __UpperCAmelCase = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) __UpperCAmelCase = "Hello how Are you" __UpperCAmelCase = "hello how are you" __UpperCAmelCase = tokenizer(__lowerCAmelCase ).input_ids __UpperCAmelCase = tokenizer(__lowerCAmelCase ).input_ids self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def _UpperCAmelCase ( self: List[str] ) -> List[str]: '''simple docstring''' __UpperCAmelCase = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) tokenizer.add_tokens(["!", "?"] ) tokenizer.add_special_tokens({"cls_token": "$$$"} ) # fmt: off __UpperCAmelCase = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394], ] # fmt: on __UpperCAmelCase = tokenizer.batch_decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , ["k s ɾ ɾ l ɭʲ!?!? $$$", "j ð s j ð s oːɹ $$$"] ) @staticmethod def _UpperCAmelCase ( __lowerCAmelCase: List[Any] , __lowerCAmelCase: List[str] ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = [d[key] for d in offsets] return retrieved_list def _UpperCAmelCase ( self: int ) -> Dict: '''simple docstring''' __UpperCAmelCase = self.get_tokenizer(word_delimiter_token="|" ) tokenizer.add_tokens("|" ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" __UpperCAmelCase = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on __UpperCAmelCase = tokenizer.decode(__lowerCAmelCase , output_char_offsets=__lowerCAmelCase , filter_word_delimiter_token=__lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue("text" in outputs ) self.assertTrue("char_offsets" in outputs ) self.assertTrue(isinstance(__lowerCAmelCase , __lowerCAmelCase ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(" ".join(self.get_from_offsets(outputs["char_offsets"] , "char" ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs["char_offsets"] , "char" ) , ["k", "s", "ɾ", "ɾ", "|", "ɾ", "l", "|", "ɭʲ"] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs["char_offsets"] , "start_offset" ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs["char_offsets"] , "end_offset" ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def _UpperCAmelCase ( self: Tuple ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = self.get_tokenizer(word_delimiter_token="|" ) def check_list_tuples_equal(__lowerCAmelCase: List[Any] , __lowerCAmelCase: Optional[int] ): self.assertTrue(isinstance(__lowerCAmelCase , __lowerCAmelCase ) ) self.assertTrue(isinstance(outputs_list[0] , __lowerCAmelCase ) ) # transform list to ModelOutput __UpperCAmelCase = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch["text"] , outputs_batch_a["text"] ) def recursive_check(__lowerCAmelCase: Optional[int] , __lowerCAmelCase: List[Any] ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): [recursive_check(__lowerCAmelCase , __lowerCAmelCase ) for la, la in zip(__lowerCAmelCase , __lowerCAmelCase )] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch["char_offsets"] , outputs_batch_a["char_offsets"] ) # fmt: off __UpperCAmelCase = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char __UpperCAmelCase = tokenizer.batch_decode(__lowerCAmelCase , output_char_offsets=__lowerCAmelCase ) __UpperCAmelCase = [tokenizer.decode(__lowerCAmelCase , output_char_offsets=__lowerCAmelCase ) for ids in sample_ids] check_list_tuples_equal(__lowerCAmelCase , __lowerCAmelCase ) @unittest.skip("Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes" ) def _UpperCAmelCase ( self: Dict ) -> Optional[int]: '''simple docstring''' pass @unittest.skip("Wav2Vec2PhonemeTokenizer always puts spaces between phonemes" ) def _UpperCAmelCase ( self: Dict ) -> int: '''simple docstring''' pass @unittest.skip("encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency" ) def _UpperCAmelCase ( self: Union[str, Any] ) -> Any: '''simple docstring''' pass @unittest.skip("Wav2Vec2PhonemeModel has no max model length => no testing" ) def _UpperCAmelCase ( self: List[Any] ) -> List[Any]: '''simple docstring''' pass def _UpperCAmelCase ( self: str ) -> List[str]: '''simple docstring''' __UpperCAmelCase = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase = tokenizer.vocab_size __UpperCAmelCase = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) __UpperCAmelCase = ["aaaaa bbbbbb", "cccccccccdddddddd"] __UpperCAmelCase = tokenizer.add_tokens(__lowerCAmelCase ) __UpperCAmelCase = tokenizer.vocab_size __UpperCAmelCase = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase , 0 ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase , all_size + len(__lowerCAmelCase ) ) __UpperCAmelCase = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" , add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) __UpperCAmelCase = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} __UpperCAmelCase = tokenizer.add_special_tokens(__lowerCAmelCase ) __UpperCAmelCase = tokenizer.vocab_size __UpperCAmelCase = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase , 0 ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase , all_size_a + len(__lowerCAmelCase ) ) __UpperCAmelCase = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" , add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode." ) def _UpperCAmelCase ( self: Any ) -> List[Any]: '''simple docstring''' pass @unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode." ) def _UpperCAmelCase ( self: str ) -> Optional[Any]: '''simple docstring''' pass def _UpperCAmelCase ( self: Dict ) -> Dict: '''simple docstring''' __UpperCAmelCase = self.get_tokenizers(fast=__lowerCAmelCase , do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase = ["ð", "ɪ", "s", "ɪ", "z", "ɐ", "t", "ɛ", "k", "s", "t"] __UpperCAmelCase = tokenizer.convert_tokens_to_string(__lowerCAmelCase ) self.assertIsInstance(output["text"] , __lowerCAmelCase )
286
1