code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import doctest from collections import deque import numpy as np class A : def __init__( self ) -> None: _a = [2, 1, 2, -1] _a = [1, 2, 3, 4] def __lowerCAmelCase ( self ) -> list[float]: _a = len(self.first_signal ) _a = len(self.second_signal ) _a = max(snake_case_ , snake_case_ ) # create a zero matrix of max_length x max_length _a = [[0] * max_length for i in range(snake_case_ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(snake_case_ ): _a = deque(self.second_signal ) rotated_signal.rotate(snake_case_ ) for j, item in enumerate(snake_case_ ): matrix[i][j] += item # multiply the matrix with the first signal _a = np.matmul(np.transpose(snake_case_ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(snake_case_ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
131
'''simple docstring''' import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class A ( unittest.TestCase ): __UpperCAmelCase : List[str] = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING __UpperCAmelCase : Optional[Any] = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: _a = AudioClassificationPipeline(model=snake_case_ , feature_extractor=snake_case_ ) # test with a raw waveform _a = np.zeros((3_4_0_0_0,) ) _a = np.zeros((1_4_0_0_0,) ) return audio_classifier, [audioa, audio] def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Dict: _a , _a = examples _a = audio_classifier(snake_case_ ) # by default a model is initialized with num_labels=2 self.assertEqual( snake_case_ , [ {"score": ANY(snake_case_ ), "label": ANY(snake_case_ )}, {"score": ANY(snake_case_ ), "label": ANY(snake_case_ )}, ] , ) _a = audio_classifier(snake_case_ , top_k=1 ) self.assertEqual( snake_case_ , [ {"score": ANY(snake_case_ ), "label": ANY(snake_case_ )}, ] , ) self.run_torchaudio(snake_case_ ) @require_torchaudio def __lowerCAmelCase ( self , snake_case_ ) -> Optional[Any]: import datasets # test with a local file _a = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) _a = dataset[0]["audio"]["array"] _a = audio_classifier(snake_case_ ) self.assertEqual( snake_case_ , [ {"score": ANY(snake_case_ ), "label": ANY(snake_case_ )}, {"score": ANY(snake_case_ ), "label": ANY(snake_case_ )}, ] , ) @require_torch def __lowerCAmelCase ( self ) -> int: _a = "anton-l/wav2vec2-random-tiny-classifier" _a = pipeline("audio-classification" , model=snake_case_ ) _a = np.ones((8_0_0_0,) ) _a = audio_classifier(snake_case_ , top_k=4 ) _a = [ {"score": 0.0_842, "label": "no"}, {"score": 0.0_838, "label": "up"}, {"score": 0.0_837, "label": "go"}, {"score": 0.0_834, "label": "right"}, ] _a = [ {"score": 0.0_845, "label": "stop"}, {"score": 0.0_844, "label": "on"}, {"score": 0.0_841, "label": "right"}, {"score": 0.0_834, "label": "left"}, ] self.assertIn(nested_simplify(snake_case_ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) _a = {"array": np.ones((8_0_0_0,) ), "sampling_rate": audio_classifier.feature_extractor.sampling_rate} _a = audio_classifier(snake_case_ , top_k=4 ) self.assertIn(nested_simplify(snake_case_ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __lowerCAmelCase ( self ) -> Optional[Any]: import datasets _a = "superb/wav2vec2-base-superb-ks" _a = pipeline("audio-classification" , model=snake_case_ ) _a = datasets.load_dataset("anton-l/superb_dummy" , "ks" , split="test" ) _a = np.array(dataset[3]["speech"] , dtype=np.floataa ) _a = audio_classifier(snake_case_ , top_k=4 ) self.assertEqual( nested_simplify(snake_case_ , decimals=3 ) , [ {"score": 0.981, "label": "go"}, {"score": 0.007, "label": "up"}, {"score": 0.006, "label": "_unknown_"}, {"score": 0.001, "label": "down"}, ] , ) @require_tf @unittest.skip("Audio classification is not implemented for TF" ) def __lowerCAmelCase ( self ) -> Dict: pass
131
1
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging lowerCamelCase :Optional[Any] = logging.get_logger(__name__) def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> List[str]: _a = set() _a = [] def parse_line(_UpperCamelCase ): for line in fp: if isinstance(_UpperCamelCase , _UpperCamelCase ): _a = line.decode('''UTF-8''' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(''' ''' ): # process a single warning and move it to `selected_warnings`. if len(_UpperCamelCase ) > 0: _a = '''\n'''.join(_UpperCamelCase ) # Only keep the warnings specified in `targets` if any(f": {x}: " in warning for x in targets ): selected_warnings.add(_UpperCamelCase ) buffer.clear() continue else: _a = line.strip() buffer.append(_UpperCamelCase ) if from_gh: for filename in os.listdir(_UpperCamelCase ): _a = os.path.join(_UpperCamelCase , _UpperCamelCase ) if not os.path.isdir(_UpperCamelCase ): # read the file if filename != "warnings.txt": continue with open(_UpperCamelCase ) as fp: parse_line(_UpperCamelCase ) else: try: with zipfile.ZipFile(_UpperCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_UpperCamelCase ): # read the file if filename != "warnings.txt": continue with z.open(_UpperCamelCase ) as fp: parse_line(_UpperCamelCase ) except Exception: logger.warning( f"{artifact_path} is either an invalid zip file or something else wrong. This file is skipped." ) return selected_warnings def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> List[Any]: _a = set() _a = [os.path.join(_UpperCamelCase , _UpperCamelCase ) for p in os.listdir(_UpperCamelCase ) if (p.endswith('''.zip''' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_UpperCamelCase , _UpperCamelCase ) ) return selected_warnings if __name__ == "__main__": def __snake_case ( _UpperCamelCase ) -> Union[str, Any]: return values.split(''',''' ) lowerCamelCase :Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') # optional parameters parser.add_argument( '--targets', default='DeprecationWarning,UserWarning,FutureWarning', type=list_str, help='Comma-separated list of target warning(s) which we want to extract.', ) parser.add_argument( '--from_gh', action='store_true', help='If running from a GitHub action workflow and collecting warnings from its artifacts.', ) lowerCamelCase :List[str] = parser.parse_args() lowerCamelCase :Union[str, Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links lowerCamelCase :Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('=' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts lowerCamelCase :Union[str, Any] = extract_warnings(args.output_dir, args.targets) lowerCamelCase :Any = sorted(selected_warnings) with open(os.path.join(args.output_dir, 'selected_warnings.json'), 'w', encoding='UTF-8') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
709
def __snake_case ( _UpperCamelCase ) -> str: if number > 0: raise ValueError('''input must be a negative integer''' ) _a = len(bin(_UpperCamelCase )[3:] ) _a = bin(abs(_UpperCamelCase ) - (1 << binary_number_length) )[3:] _a = ( ( '''1''' + '''0''' * (binary_number_length - len(_UpperCamelCase )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
346
0
'''simple docstring''' import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(A ) , 'Tatoeba directory does not exist.' ) class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ) -> List[str]: """simple docstring""" _a = tempfile.mkdtemp() return TatoebaConverter(save_dir=A ) @slow def a__ (self ) -> Dict: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def a__ (self ) -> Tuple: """simple docstring""" _a , _a = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=A ) assert mmeta["long_pair"] == "heb-eng"
11
"""simple docstring""" import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def a_ ( lowercase__ :Union[dict, list, tuple, torch.Tensor] ): __lowerCamelCase = [] if isinstance(lowercase__, lowercase__ ): for v in tree.values(): shapes.extend(_fetch_dims(lowercase__ ) ) elif isinstance(lowercase__, (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(lowercase__ ) ) elif isinstance(lowercase__, torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("""Not supported""" ) return shapes @torch.jit.ignore def a_ ( lowercase__ :int, lowercase__ :Tuple[int, ...] ): __lowerCamelCase = [] for d in reversed(lowercase__ ): idx.append(flat_idx % d ) __lowerCamelCase = flat_idx // d return tuple(reversed(lowercase__ ) ) @torch.jit.ignore def a_ ( lowercase__ :Sequence[int], lowercase__ :Sequence[int], lowercase__ :Sequence[int], lowercase__ :Optional[Sequence[bool]] = None, lowercase__ :Optional[Sequence[bool]] = None, ): # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowercase__ :List[bool] ) -> None: __lowerCamelCase = True for i in range(len(lowercase__ ) ): __lowerCamelCase = -1 * (i + 1) l[reversed_idx] &= tally __lowerCamelCase = l[reversed_idx] if start_edges is None: __lowerCamelCase = [s == 0 for s in start] reduce_edge_list(lowercase__ ) if end_edges is None: __lowerCamelCase = [e == (d - 1) for e, d in zip(lowercase__, lowercase__ )] reduce_edge_list(lowercase__ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowercase__ ) == 0: return [()] elif len(lowercase__ ) == 1: return [(slice(start[0], end[0] + 1 ),)] __lowerCamelCase = [] __lowerCamelCase = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowercase__, lowercase__ ): if s == e: path_list.append(slice(lowercase__, s + 1 ) ) else: break __lowerCamelCase = tuple(lowercase__ ) __lowerCamelCase = len(lowercase__ ) # start == end, and we're done if divergence_idx == len(lowercase__ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __lowerCamelCase = start[divergence_idx] return tuple( path + (slice(lowercase__, sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :], [d - 1 for d in dims[divergence_idx + 1 :]], dims[divergence_idx + 1 :], start_edges=start_edges[divergence_idx + 1 :], end_edges=[True for _ in end_edges[divergence_idx + 1 :]], ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __lowerCamelCase = end[divergence_idx] return tuple( path + (slice(lowercase__, edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]], end[divergence_idx + 1 :], dims[divergence_idx + 1 :], start_edges=[True for _ in start_edges[divergence_idx + 1 :]], end_edges=end_edges[divergence_idx + 1 :], ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx], end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx], end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1, end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) __lowerCamelCase = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1, end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def a_ ( lowercase__ :torch.Tensor, lowercase__ :int, lowercase__ :int, lowercase__ :int ): __lowerCamelCase = t.shape[:no_batch_dims] __lowerCamelCase = list(_flat_idx_to_idx(lowercase__, lowercase__ ) ) # _get_minimal_slice_set is inclusive __lowerCamelCase = list(_flat_idx_to_idx(flat_end - 1, lowercase__ ) ) # Get an ordered list of slices to perform __lowerCamelCase = _get_minimal_slice_set( lowercase__, lowercase__, lowercase__, ) __lowerCamelCase = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def a_ ( lowercase__ :Callable, lowercase__ :Dict[str, Any], lowercase__ :int, lowercase__ :int, lowercase__ :bool = False, lowercase__ :Any = None, lowercase__ :bool = False, ): if not (len(lowercase__ ) > 0): raise ValueError("""Must provide at least one input""" ) __lowerCamelCase = [shape[:no_batch_dims] for shape in _fetch_dims(lowercase__ )] __lowerCamelCase = tuple([max(lowercase__ ) for s in zip(*lowercase__ )] ) def _prep_inputs(lowercase__ :torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: __lowerCamelCase = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) __lowerCamelCase = t.reshape(-1, *t.shape[no_batch_dims:] ) else: __lowerCamelCase = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t __lowerCamelCase = tensor_tree_map(_prep_inputs, lowercase__ ) __lowerCamelCase = None if _out is not None: __lowerCamelCase = tensor_tree_map(lambda lowercase__ : t.view([-1] + list(t.shape[no_batch_dims:] ) ), _out ) __lowerCamelCase = 1 for d in orig_batch_dims: flat_batch_dim *= d __lowerCamelCase = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowercase__ :torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t __lowerCamelCase = 0 __lowerCamelCase = prepped_outputs for _ in range(lowercase__ ): # Chunk the input if not low_mem: __lowerCamelCase = _select_chunk else: __lowerCamelCase = partial( _chunk_slice, flat_start=lowercase__, flat_end=min(lowercase__, i + chunk_size ), no_batch_dims=len(lowercase__ ), ) __lowerCamelCase = tensor_tree_map(lowercase__, lowercase__ ) # Run the layer on the chunk __lowerCamelCase = layer(**lowercase__ ) # Allocate space for the output if out is None: __lowerCamelCase = tensor_tree_map(lambda lowercase__ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ), lowercase__ ) # Put the chunk in its pre-allocated space if isinstance(lowercase__, lowercase__ ): def assign(lowercase__ :dict, lowercase__ :dict ) -> None: for k, v in da.items(): if isinstance(lowercase__, lowercase__ ): assign(lowercase__, da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: __lowerCamelCase = da[k] assign(lowercase__, lowercase__ ) elif isinstance(lowercase__, lowercase__ ): for xa, xa in zip(lowercase__, lowercase__ ): if _add_into_out: xa[i : i + chunk_size] += xa else: __lowerCamelCase = xa elif isinstance(lowercase__, torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: __lowerCamelCase = output_chunk else: raise ValueError("""Not supported""" ) i += chunk_size __lowerCamelCase = tensor_tree_map(lambda lowercase__ : t.view(orig_batch_dims + t.shape[1:] ), lowercase__ ) return out class __snake_case : def __init__( self: Union[str, Any] , A_: int = 5_12 , ): __lowerCamelCase = max_chunk_size __lowerCamelCase = None __lowerCamelCase = None def __a ( self: Tuple , A_: Callable , A_: tuple , A_: int ): logging.info("""Tuning chunk size...""" ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size __lowerCamelCase = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] __lowerCamelCase = [c for c in candidates if c > min_chunk_size] __lowerCamelCase = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(A_: int ) -> bool: try: with torch.no_grad(): fn(*A_ , chunk_size=A_ ) return True except RuntimeError: return False __lowerCamelCase = 0 __lowerCamelCase = len(A_ ) - 1 while i > min_viable_chunk_size_index: __lowerCamelCase = test_chunk_size(candidates[i] ) if not viable: __lowerCamelCase = (min_viable_chunk_size_index + i) // 2 else: __lowerCamelCase = i __lowerCamelCase = (i + len(A_ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def __a ( self: Tuple , A_: Iterable , A_: Iterable ): __lowerCamelCase = True for aa, aa in zip(A_ , A_ ): assert type(A_ ) == type(A_ ) if isinstance(A_ , (list, tuple) ): consistent &= self._compare_arg_caches(A_ , A_ ) elif isinstance(A_ , A_ ): __lowerCamelCase = [v for _, v in sorted(aa.items() , key=lambda A_ : x[0] )] __lowerCamelCase = [v for _, v in sorted(aa.items() , key=lambda A_ : x[0] )] consistent &= self._compare_arg_caches(A_ , A_ ) else: consistent &= aa == aa return consistent def __a ( self: str , A_: Callable , A_: tuple , A_: int , ): __lowerCamelCase = True __lowerCamelCase = tree_map(lambda A_ : a.shape if isinstance(A_ , torch.Tensor ) else a , A_ , A_ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(A_ ) __lowerCamelCase = self._compare_arg_caches(self.cached_arg_data , A_ ) else: # Otherwise, we can reuse the precomputed value __lowerCamelCase = False if not consistent: __lowerCamelCase = self._determine_favorable_chunk_size( A_ , A_ , A_ , ) __lowerCamelCase = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
281
0
'''simple docstring''' import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger lowerCamelCase__ = get_logger(__name__) class _UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : Optional[str] = None) -> Tuple: """simple docstring""" _UpperCamelCase = ( os.path.join(__A , config.EXTRACTED_DATASETS_DIR) if cache_dir else config.EXTRACTED_DATASETS_PATH ) _UpperCamelCase = Extractor def __UpperCAmelCase ( self : List[str] , lowercase_ : str) -> str: """simple docstring""" from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" _UpperCamelCase = os.path.abspath(__A) return os.path.join(self.extract_dir , hash_url_to_filename(__A)) def __UpperCAmelCase ( self : Optional[int] , lowercase_ : str , lowercase_ : bool) -> List[Any]: """simple docstring""" return force_extract or ( not os.path.isfile(__A) and not (os.path.isdir(__A) and os.listdir(__A)) ) def __UpperCAmelCase ( self : Tuple , lowercase_ : str , lowercase_ : bool = False) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = self.extractor.infer_extractor_format(__A) if not extractor_format: return input_path _UpperCamelCase = self._get_output_path(__A) if self._do_extract(__A , __A): self.extractor.extract(__A , __A , __A) return output_path class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' @classmethod @abstractmethod def __UpperCAmelCase ( cls : Union[str, Any] , lowercase_ : Union[Path, str] , **lowercase_ : int) -> Dict: """simple docstring""" ... @staticmethod @abstractmethod def __UpperCAmelCase ( lowercase_ : Union[Path, str] , lowercase_ : Union[Path, str]) -> Tuple: """simple docstring""" ... class _UpperCAmelCase ( lowerCAmelCase, lowerCAmelCase ): '''simple docstring''' __A = [] @staticmethod def __UpperCAmelCase ( lowercase_ : Union[Path, str] , lowercase_ : int) -> Optional[Any]: """simple docstring""" with open(__A , "rb") as f: return f.read(__A) @classmethod def __UpperCAmelCase ( cls : int , lowercase_ : Union[Path, str] , lowercase_ : bytes = b"") -> Any: """simple docstring""" if not magic_number: _UpperCamelCase = max(len(__A) for cls_magic_number in cls.magic_numbers) try: _UpperCamelCase = cls.read_magic_number(__A , __A) except OSError: return False return any(magic_number.startswith(__A) for cls_magic_number in cls.magic_numbers) class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' @classmethod def __UpperCAmelCase ( cls : Union[str, Any] , lowercase_ : Union[Path, str] , **lowercase_ : Optional[int]) -> List[Any]: """simple docstring""" return tarfile.is_tarfile(__A) @staticmethod def __UpperCAmelCase ( lowercase_ : Optional[Any] , lowercase_ : Dict) -> int: """simple docstring""" def resolved(lowercase_ : str) -> str: return os.path.realpath(os.path.abspath(__A)) def badpath(lowercase_ : str , lowercase_ : str) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(__A , __A)).startswith(__A) def badlink(lowercase_ : int , lowercase_ : str) -> bool: # Links are interpreted relative to the directory containing the link _UpperCamelCase = resolved(os.path.join(__A , os.path.dirname(info.name))) return badpath(info.linkname , base=__A) _UpperCamelCase = resolved(__A) for finfo in members: if badpath(finfo.name , __A): logger.error(f'Extraction of {finfo.name} is blocked (illegal path)') elif finfo.issym() and badlink(__A , __A): logger.error(f'Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}') elif finfo.islnk() and badlink(__A , __A): logger.error(f'Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}') else: yield finfo @staticmethod def __UpperCAmelCase ( lowercase_ : Union[Path, str] , lowercase_ : Union[Path, str]) -> List[Any]: """simple docstring""" os.makedirs(__A , exist_ok=__A) _UpperCamelCase = tarfile.open(__A) tar_file.extractall(__A , members=TarExtractor.safemembers(__A , __A)) tar_file.close() class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = [B'''\x1F\x8B'''] @staticmethod def __UpperCAmelCase ( lowercase_ : Union[Path, str] , lowercase_ : Union[Path, str]) -> str: """simple docstring""" with gzip.open(__A , "rb") as gzip_file: with open(__A , "wb") as extracted_file: shutil.copyfileobj(__A , __A) class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = [ B'''PK\x03\x04''', B'''PK\x05\x06''', # empty archive B'''PK\x07\x08''', # spanned archive ] @classmethod def __UpperCAmelCase ( cls : Union[str, Any] , lowercase_ : Union[Path, str] , lowercase_ : bytes = b"") -> Optional[int]: """simple docstring""" if super().is_extractable(__A , magic_number=__A): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(__A , "rb") as fp: _UpperCamelCase = _EndRecData(__A) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET]) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: _UpperCamelCase = fp.read(__A) # CD is where we expect it to be if len(__A) == sizeCentralDir: _UpperCamelCase = struct.unpack(__A , __A) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def __UpperCAmelCase ( lowercase_ : Union[Path, str] , lowercase_ : Union[Path, str]) -> Optional[Any]: """simple docstring""" os.makedirs(__A , exist_ok=__A) with zipfile.ZipFile(__A , "r") as zip_file: zip_file.extractall(__A) zip_file.close() class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = [B'''\xFD\x37\x7A\x58\x5A\x00'''] @staticmethod def __UpperCAmelCase ( lowercase_ : Union[Path, str] , lowercase_ : Union[Path, str]) -> Any: """simple docstring""" with lzma.open(__A) as compressed_file: with open(__A , "wb") as extracted_file: shutil.copyfileobj(__A , __A) class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = [B'''Rar!\x1a\x07\x00''', B'''Rar!\x1a\x07\x01\x00'''] # RAR_ID # RAR5_ID @staticmethod def __UpperCAmelCase ( lowercase_ : Union[Path, str] , lowercase_ : Union[Path, str]) -> Any: """simple docstring""" if not config.RARFILE_AVAILABLE: raise ImportError("Please pip install rarfile") import rarfile os.makedirs(__A , exist_ok=__A) _UpperCamelCase = rarfile.RarFile(__A) rf.extractall(__A) rf.close() class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = [B'''\x28\xb5\x2F\xFD'''] @staticmethod def __UpperCAmelCase ( lowercase_ : Union[Path, str] , lowercase_ : Union[Path, str]) -> Union[str, Any]: """simple docstring""" if not config.ZSTANDARD_AVAILABLE: raise ImportError("Please pip install zstandard") import zstandard as zstd _UpperCamelCase = zstd.ZstdDecompressor() with open(__A , "rb") as ifh, open(__A , "wb") as ofh: dctx.copy_stream(__A , __A) class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = [B'''\x42\x5A\x68'''] @staticmethod def __UpperCAmelCase ( lowercase_ : Union[Path, str] , lowercase_ : Union[Path, str]) -> Dict: """simple docstring""" with bza.open(__A , "rb") as compressed_file: with open(__A , "wb") as extracted_file: shutil.copyfileobj(__A , __A) class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = [B'''\x37\x7A\xBC\xAF\x27\x1C'''] @staticmethod def __UpperCAmelCase ( lowercase_ : Union[Path, str] , lowercase_ : Union[Path, str]) -> Tuple: """simple docstring""" if not config.PY7ZR_AVAILABLE: raise ImportError("Please pip install py7zr") import pyazr os.makedirs(__A , exist_ok=__A) with pyazr.SevenZipFile(__A , "r") as archive: archive.extractall(__A) class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = [B'''\x04\x22\x4D\x18'''] @staticmethod def __UpperCAmelCase ( lowercase_ : Union[Path, str] , lowercase_ : Union[Path, str]) -> List[Any]: """simple docstring""" if not config.LZ4_AVAILABLE: raise ImportError("Please pip install lz4") import lza.frame with lza.frame.open(__A , "rb") as compressed_file: with open(__A , "wb") as extracted_file: shutil.copyfileobj(__A , __A) class _UpperCAmelCase : '''simple docstring''' __A = { '''tar''': TarExtractor, '''gzip''': GzipExtractor, '''zip''': ZipExtractor, '''xz''': XzExtractor, '''rar''': RarExtractor, '''zstd''': ZstdExtractor, '''bz2''': BzipaExtractor, '''7z''': SevenZipExtractor, # <Added version="2.4.0"/> '''lz4''': LzaExtractor, # <Added version="2.4.0"/> } @classmethod def __UpperCAmelCase ( cls : Optional[Any]) -> int: """simple docstring""" return max( len(__A) for extractor in cls.extractors.values() if issubclass(__A , __A) for extractor_magic_number in extractor.magic_numbers) @staticmethod def __UpperCAmelCase ( lowercase_ : Union[Path, str] , lowercase_ : int) -> Any: """simple docstring""" try: return MagicNumberBaseExtractor.read_magic_number(__A , magic_number_length=__A) except OSError: return b"" @classmethod def __UpperCAmelCase ( cls : List[str] , lowercase_ : Union[Path, str] , lowercase_ : bool = False) -> Union[str, Any]: """simple docstring""" warnings.warn( "Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'infer_extractor_format' instead." , category=__A , ) _UpperCamelCase = cls.infer_extractor_format(__A) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def __UpperCAmelCase ( cls : Optional[int] , lowercase_ : Union[Path, str]) -> int: # <Added version="2.4.0"/> """simple docstring""" _UpperCamelCase = cls._get_magic_number_max_length() _UpperCamelCase = cls._read_magic_number(__A , __A) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(__A , magic_number=__A): return extractor_format @classmethod def __UpperCAmelCase ( cls : List[Any] , lowercase_ : Union[Path, str] , lowercase_ : Union[Path, str] , lowercase_ : Optional[str] = None , lowercase_ : Optional[BaseExtractor] = "deprecated" , ) -> Optional[int]: """simple docstring""" os.makedirs(os.path.dirname(__A) , exist_ok=__A) # Prevent parallel extractions _UpperCamelCase = str(Path(__A).with_suffix(".lock")) with FileLock(__A): shutil.rmtree(__A , ignore_errors=__A) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(__A , __A): # passed as positional arg warnings.warn( "Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'extractor_format' instead." , category=__A , ) _UpperCamelCase = extractor if extractor != "deprecated" else extractor_format else: _UpperCamelCase = cls.extractors[extractor_format] return extractor.extract(__A , __A) else: warnings.warn( "Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an " "exception in 3.0.0." , category=__A , ) for extractor in cls.extractors.values(): if extractor.is_extractable(__A): return extractor.extract(__A , __A)
711
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'''vocab_file''': '''spiece.model'''} lowerCamelCase__ = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', } } # TODO(PVP) - this should be removed in Transformers v5 lowerCamelCase__ = { '''t5-small''': 512, '''t5-base''': 512, '''t5-large''': 512, '''t5-3b''': 512, '''t5-11b''': 512, } lowerCamelCase__ = '''▁''' class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , lowercase_ : int , lowercase_ : str="</s>" , lowercase_ : Optional[Any]="<unk>" , lowercase_ : Dict="<pad>" , lowercase_ : Tuple=100 , lowercase_ : str=None , lowercase_ : Optional[Dict[str, Any]] = None , lowercase_ : str=True , **lowercase_ : Optional[Any] , ) -> None: """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: _UpperCamelCase = [f'<extra_id_{i}>' for i in range(lowercase_)] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _UpperCamelCase = len(set(filter(lambda lowercase_: bool("extra_id" in str(lowercase_)) , lowercase_))) if extra_tokens != extra_ids: raise ValueError( f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens") if legacy: logger.warning_once( f'You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to' " read the related pull request available at https://github.com/huggingface/transformers/pull/24565") _UpperCamelCase = legacy _UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , extra_ids=lowercase_ , additional_special_tokens=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , legacy=lowercase_ , **lowercase_ , ) _UpperCamelCase = vocab_file _UpperCamelCase = extra_ids _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowercase_) @staticmethod def __UpperCAmelCase ( lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : str) -> Any: """simple docstring""" if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: _UpperCamelCase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" f' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" f' {pretrained_model_name_or_path} automatically truncating your input to' f' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' f' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , lowercase_ , ) return max_model_length @property def __UpperCAmelCase ( self : Dict) -> Optional[int]: """simple docstring""" return self.sp_model.get_piece_size() + self._extra_ids def __UpperCAmelCase ( self : Dict) -> Optional[int]: """simple docstring""" _UpperCamelCase = {self.convert_ids_to_tokens(lowercase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __UpperCAmelCase ( self : Dict , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowercase_)) + [1] return ([0] * len(lowercase_)) + [1] + ([0] * len(lowercase_)) + [1] def __UpperCAmelCase ( self : str) -> Dict: """simple docstring""" return list( set(filter(lambda lowercase_: bool(re.search(R"<extra_id_\d+>" , lowercase_)) is not None , self.additional_special_tokens))) def __UpperCAmelCase ( self : List[Any]) -> Dict: """simple docstring""" return [self._convert_token_to_id(lowercase_) for token in self.get_sentinel_tokens()] def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : List[int]) -> List[int]: """simple docstring""" if len(lowercase_) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' " eos tokens being added.") return token_ids else: return token_ids + [self.eos_token_id] def __UpperCAmelCase ( self : List[str] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCamelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos) * [0] return len(token_ids_a + eos + token_ids_a + eos) * [0] def __UpperCAmelCase ( self : Optional[int] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCamelCase = self._add_eos_if_not_present(lowercase_) if token_ids_a is None: return token_ids_a else: _UpperCamelCase = self._add_eos_if_not_present(lowercase_) return token_ids_a + token_ids_a def __getstate__( self : Tuple) -> Any: """simple docstring""" _UpperCamelCase = self.__dict__.copy() _UpperCamelCase = None return state def __setstate__( self : Optional[Any] , lowercase_ : Any) -> Optional[int]: """simple docstring""" _UpperCamelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs"): _UpperCamelCase = {} _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def __UpperCAmelCase ( self : int , lowercase_ : "TextInput" , **lowercase_ : Optional[int]) -> List[str]: """simple docstring""" if not self.legacy: _UpperCamelCase = SPIECE_UNDERLINE + text.replace(lowercase_ , " ") return super().tokenize(lowercase_ , **lowercase_) def __UpperCAmelCase ( self : Union[str, Any] , lowercase_ : int , **lowercase_ : Optional[int]) -> List[str]: """simple docstring""" if not self.legacy: _UpperCamelCase = text.startswith(lowercase_) if is_first: _UpperCamelCase = text[1:] _UpperCamelCase = self.sp_model.encode(lowercase_ , out_type=lowercase_) if not self.legacy and not is_first and not text.startswith(" ") and tokens[0].startswith(lowercase_): _UpperCamelCase = ([tokens[0][1:]] if len(tokens[0]) > 1 else []) + tokens[1:] return tokens def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : Optional[Any]) -> List[Any]: """simple docstring""" if token.startswith("<extra_id_"): _UpperCamelCase = re.match(R"<extra_id_(\d+)>" , lowercase_) _UpperCamelCase = int(match.group(1)) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(lowercase_) def __UpperCAmelCase ( self : List[Any] , lowercase_ : Any) -> int: """simple docstring""" if index < self.sp_model.get_piece_size(): _UpperCamelCase = self.sp_model.IdToPiece(lowercase_) else: _UpperCamelCase = f'<extra_id_{self.vocab_size - 1 - index}>' return token def __UpperCAmelCase ( self : Dict , lowercase_ : Optional[int]) -> Optional[Any]: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = "" _UpperCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase_) + token _UpperCamelCase = True _UpperCamelCase = [] else: current_sub_tokens.append(lowercase_) _UpperCamelCase = False out_string += self.sp_model.decode(lowercase_) return out_string.strip() def __UpperCAmelCase ( self : List[str] , lowercase_ : str , lowercase_ : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowercase_): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return _UpperCamelCase = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(lowercase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowercase_) elif not os.path.isfile(self.vocab_file): with open(lowercase_ , "wb") as fi: _UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowercase_) return (out_vocab_file,)
82
0
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO, ) a_ = logging.getLogger(__name__) def a__ ( _UpperCamelCase : str ): __lowerCamelCase = git.Repo(search_parent_directories=_UpperCamelCase ) __lowerCamelCase = { '''repo_id''': str(_UpperCamelCase ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(_UpperCamelCase ,'''git_log.json''' ) ,'''w''' ) as f: json.dump(_UpperCamelCase ,_UpperCamelCase ,indent=4 ) def a__ ( _UpperCamelCase : str ): if params.n_gpu <= 0: __lowerCamelCase = 0 __lowerCamelCase = -1 __lowerCamelCase = True __lowerCamelCase = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 __lowerCamelCase = int(os.environ['''WORLD_SIZE'''] ) __lowerCamelCase = int(os.environ['''N_GPU_NODE'''] ) __lowerCamelCase = int(os.environ['''RANK'''] ) # number of nodes / node ID __lowerCamelCase = params.world_size // params.n_gpu_per_node __lowerCamelCase = params.global_rank // params.n_gpu_per_node __lowerCamelCase = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 __lowerCamelCase = 1 __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = 1 __lowerCamelCase = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode __lowerCamelCase = params.node_id == 0 and params.local_rank == 0 __lowerCamelCase = params.n_nodes > 1 # summary __lowerCamelCase = F"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' ,backend='''nccl''' ,) def a__ ( _UpperCamelCase : Tuple ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
175
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def a__ ( _UpperCamelCase : List[str] ): __lowerCamelCase = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __lowerCamelCase = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: __lowerCamelCase = 4 __lowerCamelCase = 48 __lowerCamelCase = '''pixelshuffle_aux''' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __lowerCamelCase = [6, 6, 6, 6] __lowerCamelCase = 60 __lowerCamelCase = [6, 6, 6, 6] __lowerCamelCase = '''pixelshuffledirect''' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __lowerCamelCase = 4 __lowerCamelCase = '''nearest+conv''' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: __lowerCamelCase = 1 __lowerCamelCase = 1 __lowerCamelCase = 1_26 __lowerCamelCase = 7 __lowerCamelCase = 255.0 __lowerCamelCase = '''''' return config def a__ ( _UpperCamelCase : List[Any] ,_UpperCamelCase : List[str] ): if "patch_embed.proj" in name and "layers" not in name: __lowerCamelCase = name.replace('''patch_embed.proj''' ,'''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: __lowerCamelCase = name.replace('''patch_embed.norm''' ,'''embeddings.patch_embeddings.layernorm''' ) if "layers" in name: __lowerCamelCase = name.replace('''layers''' ,'''encoder.stages''' ) if "residual_group.blocks" in name: __lowerCamelCase = name.replace('''residual_group.blocks''' ,'''layers''' ) if "attn.proj" in name: __lowerCamelCase = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in name: __lowerCamelCase = name.replace('''attn''' ,'''attention.self''' ) if "norm1" in name: __lowerCamelCase = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name: __lowerCamelCase = name.replace('''norm2''' ,'''layernorm_after''' ) if "mlp.fc1" in name: __lowerCamelCase = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: __lowerCamelCase = name.replace('''mlp.fc2''' ,'''output.dense''' ) if "q_bias" in name: __lowerCamelCase = name.replace('''q_bias''' ,'''query.bias''' ) if "k_bias" in name: __lowerCamelCase = name.replace('''k_bias''' ,'''key.bias''' ) if "v_bias" in name: __lowerCamelCase = name.replace('''v_bias''' ,'''value.bias''' ) if "cpb_mlp" in name: __lowerCamelCase = name.replace('''cpb_mlp''' ,'''continuous_position_bias_mlp''' ) if "patch_embed.proj" in name: __lowerCamelCase = name.replace('''patch_embed.proj''' ,'''patch_embed.projection''' ) if name == "norm.weight": __lowerCamelCase = '''layernorm.weight''' if name == "norm.bias": __lowerCamelCase = '''layernorm.bias''' if "conv_first" in name: __lowerCamelCase = name.replace('''conv_first''' ,'''first_convolution''' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: __lowerCamelCase = name.replace('''conv_last''' ,'''final_convolution''' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: __lowerCamelCase = name.replace('''conv_before_upsample.0''' ,'''conv_before_upsample''' ) if "upsample.0" in name: __lowerCamelCase = name.replace('''upsample.0''' ,'''upsample.convolution_0''' ) if "upsample.2" in name: __lowerCamelCase = name.replace('''upsample.2''' ,'''upsample.convolution_1''' ) __lowerCamelCase = '''upsample.''' + name elif config.upsampler == "pixelshuffledirect": __lowerCamelCase = name.replace('''upsample.0.weight''' ,'''upsample.conv.weight''' ) __lowerCamelCase = name.replace('''upsample.0.bias''' ,'''upsample.conv.bias''' ) else: pass else: __lowerCamelCase = '''swin2sr.''' + name return name def a__ ( _UpperCamelCase : List[Any] ,_UpperCamelCase : Union[str, Any] ): for key in orig_state_dict.copy().keys(): __lowerCamelCase = orig_state_dict.pop(_UpperCamelCase ) if "qkv" in key: __lowerCamelCase = key.split('''.''' ) __lowerCamelCase = int(key_split[1] ) __lowerCamelCase = int(key_split[4] ) __lowerCamelCase = config.embed_dim if "weight" in key: __lowerCamelCase = val[:dim, :] __lowerCamelCase = val[dim : dim * 2, :] __lowerCamelCase = val[-dim:, :] else: __lowerCamelCase = val[:dim] __lowerCamelCase = val[dim : dim * 2] __lowerCamelCase = val[-dim:] pass else: __lowerCamelCase = val return orig_state_dict def a__ ( _UpperCamelCase : str ,_UpperCamelCase : int ,_UpperCamelCase : Any ): __lowerCamelCase = get_config(_UpperCamelCase ) __lowerCamelCase = SwinaSRForImageSuperResolution(_UpperCamelCase ) model.eval() __lowerCamelCase = torch.hub.load_state_dict_from_url(_UpperCamelCase ,map_location='''cpu''' ) __lowerCamelCase = convert_state_dict(_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase = model.load_state_dict(_UpperCamelCase ,strict=_UpperCamelCase ) if len(_UpperCamelCase ) > 0: raise ValueError('''Missing keys when converting: {}'''.format(_UpperCamelCase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F"""Unexpected key {key} in state_dict""" ) # verify values __lowerCamelCase = '''https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true''' __lowerCamelCase = Image.open(requests.get(_UpperCamelCase ,stream=_UpperCamelCase ).raw ).convert('''RGB''' ) __lowerCamelCase = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values __lowerCamelCase = 1_26 if '''Jpeg''' in checkpoint_url else 2_56 __lowerCamelCase = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] ,std=[0.229, 0.224, 0.225] ), ] ) __lowerCamelCase = transforms(_UpperCamelCase ).unsqueeze(0 ) if config.num_channels == 1: __lowerCamelCase = pixel_values[:, 0, :, :].unsqueeze(1 ) __lowerCamelCase = model(_UpperCamelCase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: __lowerCamelCase = torch.Size([1, 3, 5_12, 5_12] ) __lowerCamelCase = torch.tensor( [[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __lowerCamelCase = torch.Size([1, 3, 10_24, 10_24] ) __lowerCamelCase = torch.tensor( [[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here __lowerCamelCase = torch.Size([1, 3, 10_24, 10_24] ) __lowerCamelCase = torch.tensor( [[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __lowerCamelCase = torch.Size([1, 3, 5_12, 5_12] ) __lowerCamelCase = torch.tensor( [[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __lowerCamelCase = torch.Size([1, 3, 10_24, 10_24] ) __lowerCamelCase = torch.tensor( [[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F"""Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}""" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] ,_UpperCamelCase ,atol=1e-3 ) print('''Looks ok!''' ) __lowerCamelCase = { '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''': ( '''swin2SR-classical-sr-x2-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth''': ( '''swin2SR-classical-sr-x4-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth''': ( '''swin2SR-compressed-sr-x4-48''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth''': ( '''swin2SR-lightweight-x2-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth''': ( '''swin2SR-realworld-sr-x4-64-bsrgan-psnr''' ), } __lowerCamelCase = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_UpperCamelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(_UpperCamelCase ) if push_to_hub: model.push_to_hub(F"""caidas/{model_name}""" ) processor.push_to_hub(F"""caidas/{model_name}""" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""", type=str, help="""URL of the original Swin2SR checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""") a_ = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
175
1
'''simple docstring''' def UpperCAmelCase ( A : List[str] ): return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(UpperCamelCase__ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('doctest').testmod()
703
'''simple docstring''' from bisect import bisect from itertools import accumulate def UpperCAmelCase ( A : Tuple , A : Optional[Any] , A : Dict , A : Any ): SCREAMING_SNAKE_CASE : List[str] = sorted(zip(A , A ) , key=lambda A : x[0] / x[1] , reverse=A ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = [i[0] for i in r], [i[1] for i in r] SCREAMING_SNAKE_CASE : Union[str, Any] = list(accumulate(A ) ) SCREAMING_SNAKE_CASE : List[Any] = bisect(A , A ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
464
0
"""simple docstring""" from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowerCamelCase = input("""Enter image url: """).strip() print(F"Downloading image from {url} ...") lowerCamelCase = BeautifulSoup(requests.get(url).content, """html.parser""") # The image URL is in the content field of the first meta tag with property og:image lowerCamelCase = soup.find("""meta""", {"""property""": """og:image"""})["""content"""] lowerCamelCase = requests.get(image_url).content lowerCamelCase = F"{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg" with open(file_name, """wb""") as fp: fp.write(image_data) print(F"Done. Image saved to disk as {file_name}.")
82
"""simple docstring""" lowerCamelCase = """Alexander Joslin""" import operator as op from .stack import Stack def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = {"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub} UpperCAmelCase_ = Stack() UpperCAmelCase_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowerCAmelCase__ ) ) elif i in operators: # RULE 2 operator_stack.push(lowerCAmelCase__ ) elif i == ")": # RULE 4 UpperCAmelCase_ = operator_stack.peek() operator_stack.pop() UpperCAmelCase_ = operand_stack.peek() operand_stack.pop() UpperCAmelCase_ = operand_stack.peek() operand_stack.pop() UpperCAmelCase_ = operators[opr](lowerCAmelCase__ , lowerCAmelCase__ ) operand_stack.push(lowerCAmelCase__ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F"{equation} = {dijkstras_two_stack_algorithm(equation)}")
82
1
from manim import * class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' def a_ ( self : str ) -> Optional[Any]: """simple docstring""" A__ = Rectangle(height=0.5 , width=0.5 ) A__ = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) A__ = [mem.copy() for i in range(6 )] A__ = [mem.copy() for i in range(6 )] A__ = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) A__ = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) A__ = VGroup(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) A__ = Text("""CPU""" , font_size=24 ) A__ = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowerCAmelCase ) A__ = [mem.copy() for i in range(1 )] A__ = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) A__ = Text("""GPU""" , font_size=24 ) A__ = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) gpu.align_to(__lowerCAmelCase , __lowerCAmelCase ) gpu.set_x(gpu.get_x() - 1 ) self.add(__lowerCAmelCase ) A__ = [mem.copy() for i in range(6 )] A__ = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) A__ = Text("""Model""" , font_size=24 ) A__ = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.play( Create(__lowerCAmelCase , run_time=1 ) , Create(__lowerCAmelCase , run_time=1 ) , Create(__lowerCAmelCase , run_time=1 ) , ) A__ = MarkupText( f'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , ) A__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) A__ = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCAmelCase , run_time=2.5 ) , Write(__lowerCAmelCase ) , Write(__lowerCAmelCase ) ) self.add(__lowerCAmelCase ) A__ = [] A__ = [] A__ = [] for i, rect in enumerate(__lowerCAmelCase ): A__ = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(__lowerCAmelCase , opacity=0.7 ) cpu_target.move_to(__lowerCAmelCase ) cpu_target.generate_target() A__ = 0.4_6 / 4 A__ = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=__lowerCAmelCase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=__lowerCAmelCase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=__lowerCAmelCase , buff=0.0 ) cpu_targs.append(__lowerCAmelCase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(__lowerCAmelCase ) ) second_animations.append(MoveToTarget(__lowerCAmelCase , run_time=1.5 ) ) self.play(*__lowerCAmelCase ) self.play(*__lowerCAmelCase ) self.wait()
247
# limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" super().__init__() self.register_modules(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase ) @torch.no_grad() def __call__( self : Optional[Any] , __lowerCAmelCase : int = 1 , __lowerCAmelCase : Optional[torch.Generator] = None , __lowerCAmelCase : int = 50 , __lowerCAmelCase : Optional[str] = "pil" , __lowerCAmelCase : bool = True , **__lowerCAmelCase : List[str] , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" A__ = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=__lowerCAmelCase , ) A__ = image.to(self.device ) # set step values self.scheduler.set_timesteps(__lowerCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output A__ = self.unet(__lowerCAmelCase , __lowerCAmelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 A__ = self.scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample A__ = (image / 2 + 0.5).clamp(0 , 1 ) A__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A__ = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=__lowerCAmelCase ), "This is a local test"
247
1
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : List[str]=13 , __lowerCamelCase : Optional[int]=7 , __lowerCamelCase : str=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Tuple=99 , __lowerCamelCase : Any=32 , __lowerCamelCase : Dict=5 , __lowerCamelCase : Any=4 , __lowerCamelCase : Tuple=37 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : List[str]=512 , __lowerCamelCase : str=16 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : Any=0.02 , __lowerCamelCase : Tuple=False , __lowerCamelCase : Dict=True , __lowerCamelCase : int="None" , __lowerCamelCase : Any=3 , __lowerCamelCase : List[str]=4 , __lowerCamelCase : List[str]=None , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = relative_attention SCREAMING_SNAKE_CASE = position_biased_input SCREAMING_SNAKE_CASE = pos_att_type SCREAMING_SNAKE_CASE = scope def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self : int ): return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def _snake_case ( self : Any , __lowerCamelCase : List[str] ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def _snake_case ( self : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): SCREAMING_SNAKE_CASE = DebertaVaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase )[0] SCREAMING_SNAKE_CASE = model(__lowerCamelCase , token_type_ids=__lowerCamelCase )[0] SCREAMING_SNAKE_CASE = model(__lowerCamelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def _snake_case ( self : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = DebertaVaForMaskedLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = DebertaVaForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__lowerCamelCase ) def _snake_case ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = DebertaVaForTokenClassification(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE = DebertaVaForQuestionAnswering(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = DebertaVaForMultipleChoice(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) lowerCamelCase__ = ( { "feature-extraction": DebertaVaModel, "fill-mask": DebertaVaForMaskedLM, "question-answering": DebertaVaForQuestionAnswering, "text-classification": DebertaVaForSequenceClassification, "token-classification": DebertaVaForTokenClassification, "zero-shot": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = DebertaVaModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def _snake_case ( self : Union[str, Any] ): self.config_tester.run_common_tests() def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__lowerCamelCase ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__lowerCamelCase ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__lowerCamelCase ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__lowerCamelCase ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__lowerCamelCase ) def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*__lowerCamelCase ) @slow def _snake_case ( self : Optional[int] ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = DebertaVaModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason="Model not available yet" ) def _snake_case ( self : List[Any] ): pass @slow def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = DebertaVaModel.from_pretrained("microsoft/deberta-v2-xlarge" ) SCREAMING_SNAKE_CASE = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] # compare the actual values for a slice. SCREAMING_SNAKE_CASE = torch.tensor( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1e-4 ) , f"{output[:, 1:4, 1:4]}" )
16
'''simple docstring''' def lowerCamelCase_ ( __UpperCamelCase : list , __UpperCamelCase : int , __UpperCamelCase : int = 0 , __UpperCamelCase : int = 0 ) -> int: """simple docstring""" _A = right or len(__UpperCamelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__UpperCamelCase , __UpperCamelCase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
292
0
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def A__ ( A : List[str]): '''simple docstring''' UpperCamelCase : Tuple = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", "decoder.output_projection.weight", ] for k in ignore_keys: state_dict.pop(A , A) def A__ ( A : List[str]): '''simple docstring''' UpperCamelCase : List[str] = emb.weight.shape UpperCamelCase : Optional[int] = nn.Linear(A , A , bias=A) UpperCamelCase : List[Any] = emb.weight.data return lin_layer def A__ ( A : int , A : List[str]="facebook/mbart-large-en-ro" , A : Tuple=False , A : Optional[Any]=False): '''simple docstring''' UpperCamelCase : str = torch.load(A , map_location="cpu")["model"] remove_ignore_keys_(A) UpperCamelCase : Tuple = state_dict["encoder.embed_tokens.weight"].shape[0] UpperCamelCase : Optional[int] = MBartConfig.from_pretrained(A , vocab_size=A) if mbart_aa and finetuned: UpperCamelCase : Optional[int] = "relu" UpperCamelCase : Optional[Any] = state_dict["decoder.embed_tokens.weight"] UpperCamelCase : List[str] = MBartForConditionalGeneration(A) model.model.load_state_dict(A) if finetuned: UpperCamelCase : Dict = make_linear_from_emb(model.model.shared) return model if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
721
'''simple docstring''' class UpperCAmelCase_ : """simple docstring""" def __init__( self , lowerCamelCase ) -> Dict: '''simple docstring''' UpperCamelCase : Union[str, Any] = arr.split("," ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' UpperCamelCase : Optional[Any] = [int(self.array[0] )] * len(self.array ) UpperCamelCase : int = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): UpperCamelCase : Tuple = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) UpperCamelCase : Optional[Any] = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": lowerCAmelCase_ = input('please input some numbers:') lowerCAmelCase_ = SubArray(whole_array) lowerCAmelCase_ = array.solve_sub_array() print(('the results is:', re))
435
0
import qiskit def SCREAMING_SNAKE_CASE__ ( snake_case_ = 2 ) -> qiskit.result.counts.Counts: """simple docstring""" a = qubits # Using Aer's simulator a = qiskit.Aer.get_backend('''aer_simulator''' ) # Creating a Quantum Circuit acting on the q register a = qiskit.QuantumCircuit(snake_case_, snake_case_ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1, snake_case_ ): # Adding CX (CNOT) gate circuit.cx(i - 1, snake_case_ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(snake_case_ ) ), list(range(snake_case_ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator a = qiskit.execute(snake_case_, snake_case_, shots=1_0_0_0 ) return job.result().get_counts(snake_case_ ) if __name__ == "__main__": print(F"Total count for various states are: {quantum_entanglement(3)}")
387
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Dict: """simple docstring""" a = 3_8_4 if "tiny" in model_name: a = [3, 3, 9, 3] a = [9_6, 1_9_2, 3_8_4, 7_6_8] if "small" in model_name: a = [3, 3, 2_7, 3] a = [9_6, 1_9_2, 3_8_4, 7_6_8] if "base" in model_name: a = [3, 3, 2_7, 3] a = [1_2_8, 2_5_6, 5_1_2, 1_0_2_4] a = 5_1_2 if "large" in model_name: a = [3, 3, 2_7, 3] a = [1_9_2, 3_8_4, 7_6_8, 1_5_3_6] a = 7_6_8 if "xlarge" in model_name: a = [3, 3, 2_7, 3] a = [2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] a = 1_0_2_4 # set label information a = 1_5_0 a = '''huggingface/label-files''' a = '''ade20k-id2label.json''' a = json.load(open(hf_hub_download(snake_case_, snake_case_, repo_type='''dataset''' ), '''r''' ) ) a = {int(snake_case_ ): v for k, v in idalabel.items()} a = {v: k for k, v in idalabel.items()} a = ConvNextConfig( depths=snake_case_, hidden_sizes=snake_case_, out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) a = UperNetConfig( backbone_config=snake_case_, auxiliary_in_channels=snake_case_, num_labels=snake_case_, idalabel=snake_case_, labelaid=snake_case_, ) return config def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Dict: """simple docstring""" a = [] # fmt: off # stem rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''') ) rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.stages.{i}.{j}.gamma""", f"""backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.depthwise_conv.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.dwconv.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.depthwise_conv.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.dwconv.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.norm.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.layernorm.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.norm.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.layernorm.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv1.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv1.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv2.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv2.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias""") ) if i > 0: rename_keys.append((f"""backbone.downsample_layers.{i}.0.weight""", f"""backbone.encoder.stages.{i}.downsampling_layer.0.weight""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.0.bias""", f"""backbone.encoder.stages.{i}.downsampling_layer.0.bias""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.1.weight""", f"""backbone.encoder.stages.{i}.downsampling_layer.1.weight""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.1.bias""", f"""backbone.encoder.stages.{i}.downsampling_layer.1.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> Optional[Any]: """simple docstring""" a = dct.pop(snake_case_ ) a = val def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> Optional[int]: """simple docstring""" a = { '''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''', '''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''', '''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''', '''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''', '''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''', } a = model_name_to_url[model_name] a = torch.hub.load_state_dict_from_url(snake_case_, map_location='''cpu''' )['''state_dict'''] a = get_upernet_config(snake_case_ ) a = UperNetForSemanticSegmentation(snake_case_ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): a = state_dict.pop(snake_case_ ) if "bn" in key: a = key.replace('''bn''', '''batch_norm''' ) a = val # rename keys a = create_rename_keys(snake_case_ ) for src, dest in rename_keys: rename_key(snake_case_, snake_case_, snake_case_ ) model.load_state_dict(snake_case_ ) # verify on image a = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' a = Image.open(requests.get(snake_case_, stream=snake_case_ ).raw ).convert('''RGB''' ) a = SegformerImageProcessor() a = processor(snake_case_, return_tensors='''pt''' ).pixel_values with torch.no_grad(): a = model(snake_case_ ) if model_name == "upernet-convnext-tiny": a = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": a = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": a = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": a = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": a = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print('''Logits:''', outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3], snake_case_, atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case_ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(snake_case_ ) if push_to_hub: print(f"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(f"""openmmlab/{model_name}""" ) processor.push_to_hub(f"""openmmlab/{model_name}""" ) if __name__ == "__main__": UpperCamelCase__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[F"upernet-convnext-{size}" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) UpperCamelCase__ : int = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
387
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowercase__ : List[str] = { """vocab_file""": { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt""" ), } } lowercase__ : List[str] = { """junnyu/roformer_chinese_small""": 1_5_3_6, """junnyu/roformer_chinese_base""": 1_5_3_6, """junnyu/roformer_chinese_char_small""": 5_1_2, """junnyu/roformer_chinese_char_base""": 5_1_2, """junnyu/roformer_small_discriminator""": 1_2_8, """junnyu/roformer_small_generator""": 1_2_8, } lowercase__ : List[str] = { """junnyu/roformer_chinese_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_base""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True}, """junnyu/roformer_small_discriminator""": {"""do_lower_case""": True}, """junnyu/roformer_small_generator""": {"""do_lower_case""": True}, } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE = RoFormerTokenizer def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : str=None , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : Tuple="[UNK]" , SCREAMING_SNAKE_CASE_ : str="[SEP]" , SCREAMING_SNAKE_CASE_ : Optional[int]="[PAD]" , SCREAMING_SNAKE_CASE_ : Dict="[CLS]" , SCREAMING_SNAKE_CASE_ : Any="[MASK]" , SCREAMING_SNAKE_CASE_ : Any=True , SCREAMING_SNAKE_CASE_ : List[str]=None , **SCREAMING_SNAKE_CASE_ : List[Any] , ): super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowerCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or pre_tok_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents ): lowerCAmelCase_ : str = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('type' ) ) lowerCAmelCase_ : str = do_lower_case lowerCAmelCase_ : Optional[int] = strip_accents lowerCAmelCase_ : int = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = do_lower_case def __getstate__( self : List[str] ): lowerCAmelCase_ : str = self.__dict__.copy() lowerCAmelCase_ : Optional[Any] = BertPreTokenizer() return state def __setstate__( self : Any , SCREAMING_SNAKE_CASE_ : Tuple ): lowerCAmelCase_ : int = d lowerCAmelCase_ : int = self.__dict__['_tokenizer'].get_vocab() lowerCAmelCase_ : Union[str, Any] = PreTokenizer.custom(JiebaPreTokenizer(SCREAMING_SNAKE_CASE_ ) ) def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None ): lowerCAmelCase_ : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE__ ( self : List[str] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ): lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ): lowerCAmelCase_ : Dict = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any]=None , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : Optional[int]=False , **SCREAMING_SNAKE_CASE_ : str , ): lowerCAmelCase_ : Union[str, Any] = BertPreTokenizer() return super().save_pretrained(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
721
"""simple docstring""" import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 lowercase__ : str = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") lowercase__ : int = get_tests_dir("""fixtures/vocab.json""") lowercase__ : List[str] = get_tests_dir("""fixtures""") class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] def SCREAMING_SNAKE_CASE__ ( self : Any ): lowerCAmelCase_ : int = 0 def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): lowerCAmelCase_ : Union[str, Any] = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Any ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ : Optional[int] = WavaVecaConfig() lowerCAmelCase_ : Tuple = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) # save in new folder model_config.save_pretrained(SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[str] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) copyfile(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , 'vocab.json' ) ) lowerCAmelCase_ : Union[str, Any] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ : List[Any] = WavaVecaFeatureExtractor() lowerCAmelCase_ : Dict = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) lowerCAmelCase_ : List[str] = WavaVecaProcessor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # save in new folder processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) # drop `processor_class` in tokenizer with open(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , 'r' ) as f: lowerCAmelCase_ : Optional[Any] = json.load(SCREAMING_SNAKE_CASE_ ) config_dict.pop('processor_class' ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , 'w' ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE_ ) ) lowerCAmelCase_ : Optional[int] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ : List[str] = WavaVecaFeatureExtractor() lowerCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) lowerCAmelCase_ : List[str] = WavaVecaProcessor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # save in new folder processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) # drop `processor_class` in feature extractor with open(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , 'r' ) as f: lowerCAmelCase_ : int = json.load(SCREAMING_SNAKE_CASE_ ) config_dict.pop('processor_class' ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , 'w' ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE_ ) ) lowerCAmelCase_ : Any = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : str ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ : int = WavaVecaConfig(processor_class='Wav2Vec2Processor' ) model_config.save_pretrained(SCREAMING_SNAKE_CASE_ ) # copy relevant files copyfile(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , 'vocab.json' ) ) # create emtpy sample processor with open(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , 'w' ) as f: f.write('{}' ) lowerCAmelCase_ : Union[str, Any] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase_ : Tuple = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase_ : Optional[int] = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' , trust_remote_code=SCREAMING_SNAKE_CASE_ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) lowerCAmelCase_ : Tuple = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) lowerCAmelCase_ : Any = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) # Test we can also load the slow version lowerCAmelCase_ : Any = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[Any] = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , 'NewTokenizer' ) else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): try: AutoConfig.register('custom' , SCREAMING_SNAKE_CASE_ ) AutoFeatureExtractor.register(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) AutoTokenizer.register(SCREAMING_SNAKE_CASE_ , slow_tokenizer_class=SCREAMING_SNAKE_CASE_ ) AutoProcessor.register(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE_ ): AutoProcessor.register(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCAmelCase_ : Dict = CustomFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE_ , 'vocab.txt' ) with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) lowerCAmelCase_ : Dict = CustomTokenizer(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Union[str, Any] = CustomProcessor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Any = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self : Tuple ): class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = False class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = False class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """AutoFeatureExtractor""" _SCREAMING_SNAKE_CASE = """AutoTokenizer""" _SCREAMING_SNAKE_CASE = False try: AutoConfig.register('custom' , SCREAMING_SNAKE_CASE_ ) AutoFeatureExtractor.register(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) AutoTokenizer.register(SCREAMING_SNAKE_CASE_ , slow_tokenizer_class=SCREAMING_SNAKE_CASE_ ) AutoProcessor.register(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # If remote code is not set, the default is to use local classes. lowerCAmelCase_ : Tuple = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. lowerCAmelCase_ : List[str] = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. lowerCAmelCase_ : Optional[Any] = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self : str ): lowerCAmelCase_ : List[str] = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(processor.__class__.__name__ , 'BertTokenizerFast' ) def SCREAMING_SNAKE_CASE__ ( self : str ): lowerCAmelCase_ : Optional[int] = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-convnext' ) self.assertEqual(processor.__class__.__name__ , 'ConvNextImageProcessor' ) @is_staging_test class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def SCREAMING_SNAKE_CASE__ ( cls : str ): lowerCAmelCase_ : Union[str, Any] = TOKEN HfFolder.save_token(SCREAMING_SNAKE_CASE_ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[str] ): try: delete_repo(token=cls._token , repo_id='test-processor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-processor' ) except HTTPError: pass def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowerCAmelCase_ : List[str] = WavaVecaProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(SCREAMING_SNAKE_CASE_ , 'test-processor' ) , push_to_hub=SCREAMING_SNAKE_CASE_ , use_auth_token=self._token ) lowerCAmelCase_ : Optional[Any] = WavaVecaProcessor.from_pretrained(F"{USER}/test-processor" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(new_processor.feature_extractor , SCREAMING_SNAKE_CASE_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : Union[str, Any] = WavaVecaProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(SCREAMING_SNAKE_CASE_ , 'test-processor-org' ) , push_to_hub=SCREAMING_SNAKE_CASE_ , use_auth_token=self._token , organization='valid_org' , ) lowerCAmelCase_ : List[Any] = WavaVecaProcessor.from_pretrained('valid_org/test-processor-org' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(new_processor.feature_extractor , SCREAMING_SNAKE_CASE_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self : Any ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() lowerCAmelCase_ : Dict = CustomFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE_ , 'vocab.txt' ) with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) lowerCAmelCase_ : Optional[int] = CustomTokenizer(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = CustomProcessor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"{USER}/test-dynamic-processor" , token=self._token ) lowerCAmelCase_ : Dict = Repository(SCREAMING_SNAKE_CASE_ , clone_from=F"{USER}/test-dynamic-processor" , token=self._token ) processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { 'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor', 'AutoProcessor': 'custom_processing.CustomProcessor', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(SCREAMING_SNAKE_CASE_ , 'tokenizer_config.json' ) ) as f: lowerCAmelCase_ : List[Any] = json.load(SCREAMING_SNAKE_CASE_ ) self.assertDictEqual( tokenizer_config['auto_map'] , { 'AutoTokenizer': ['custom_tokenization.CustomTokenizer', None], 'AutoProcessor': 'custom_processing.CustomProcessor', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE_ , 'custom_feature_extraction.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE_ , 'custom_tokenization.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE_ , 'custom_processing.py' ) ) ) repo.push_to_hub() lowerCAmelCase_ : Tuple = AutoProcessor.from_pretrained(F"{USER}/test-dynamic-processor" , trust_remote_code=SCREAMING_SNAKE_CASE_ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , 'CustomProcessor' )
317
0
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class __A : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=3_2 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=1_6 , _lowerCamelCase=[1, 2, 1] , _lowerCamelCase=[2, 2, 4] , _lowerCamelCase=2 , _lowerCamelCase=2.0 , _lowerCamelCase=True , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-5 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=1_0 , _lowerCamelCase=8 , _lowerCamelCase=["stage1", "stage2", "stage3"] , _lowerCamelCase=[1, 2, 3] , )-> Optional[Any]: lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = embed_dim lowercase__ = depths lowercase__ = num_heads lowercase__ = window_size lowercase__ = mlp_ratio lowercase__ = qkv_bias lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = drop_path_rate lowercase__ = hidden_act lowercase__ = use_absolute_embeddings lowercase__ = patch_norm lowercase__ = layer_norm_eps lowercase__ = initializer_range lowercase__ = is_training lowercase__ = scope lowercase__ = use_labels lowercase__ = type_sequence_label_size lowercase__ = encoder_stride lowercase__ = out_features lowercase__ = out_indices def snake_case_( self )-> Dict: lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def snake_case_( self )-> Union[str, Any]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def snake_case_( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )-> Optional[Any]: lowercase__ = MaskFormerSwinModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowercase__ = model(_lowerCamelCase ) lowercase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def snake_case_( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )-> Optional[int]: lowercase__ = MaskFormerSwinBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowercase__ = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [1_3, 1_6, 1_6, 1_6] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4] ) # verify ValueError with self.parent.assertRaises(_lowerCamelCase ): lowercase__ = ['''stem'''] lowercase__ = MaskFormerSwinBackbone(config=_lowerCamelCase ) def snake_case_( self )-> List[str]: lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( a , a , unittest.TestCase ): """simple docstring""" A_ = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) A_ = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} A_ = False A_ = False A_ = False A_ = False A_ = False def snake_case_( self )-> Optional[int]: lowercase__ = MaskFormerSwinModelTester(self ) lowercase__ = ConfigTester(self , config_class=_lowerCamelCase , embed_dim=3_7 ) @require_torch_multi_gpu @unittest.skip( reason=( '''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with''' ''' `nn.DataParallel`''' ) ) def snake_case_( self )-> List[Any]: pass def snake_case_( self )-> Optional[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case_( self )-> List[str]: return def snake_case_( self )-> Any: lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def snake_case_( self )-> List[Any]: lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCamelCase ) @unittest.skip('''Swin does not use inputs_embeds''' ) def snake_case_( self )-> Any: pass @unittest.skip('''Swin does not support feedforward chunking''' ) def snake_case_( self )-> str: pass def snake_case_( self )-> List[str]: lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def snake_case_( self )-> Optional[Any]: lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_lowerCamelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) @unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' ) def snake_case_( self )-> str: pass @unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' ) def snake_case_( self )-> Optional[int]: pass def snake_case_( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )-> Any: lowercase__ = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) lowercase__ = outputs.hidden_states lowercase__ = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) # Swin has a different seq_length lowercase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def snake_case_( self )-> Optional[Any]: lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase__ = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def snake_case_( self )-> Dict: lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = 3 lowercase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase__ = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) ) @unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' ) def snake_case_( self )-> str: pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def snake_case_( self )-> Union[str, Any]: pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def snake_case_( self )-> List[str]: pass def snake_case_( self )-> Any: lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_lowerCamelCase ): lowercase__ = 0 return t def check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase={} ): with torch.no_grad(): lowercase__ = model(**_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ) lowercase__ = model(**_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ).to_tuple() def recursive_check(_lowerCamelCase , _lowerCamelCase ): if isinstance(_lowerCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowerCamelCase , _lowerCamelCase ): recursive_check(_lowerCamelCase , _lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_lowerCamelCase , _lowerCamelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_lowerCamelCase ) , set_nan_tensor_to_zero(_lowerCamelCase ) , atol=1e-5 ) , msg=( '''Tuple and dict output are not equal. Difference:''' f''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' f''' {torch.isnan(_lowerCamelCase ).any()} and `inf`: {torch.isinf(_lowerCamelCase )}. Dict has''' f''' `nan`: {torch.isnan(_lowerCamelCase ).any()} and `inf`: {torch.isinf(_lowerCamelCase )}.''' ) , ) recursive_check(_lowerCamelCase , _lowerCamelCase ) for model_class in self.all_model_classes: lowercase__ = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowercase__ = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) lowercase__ = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowercase__ = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) lowercase__ = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowercase__ = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) lowercase__ = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {'''output_hidden_states''': True} ) lowercase__ = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) lowercase__ = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {'''output_hidden_states''': True} ) @require_torch class __A ( unittest.TestCase , a ): """simple docstring""" A_ = (MaskFormerSwinBackbone,) if is_torch_available() else () A_ = MaskFormerSwinConfig def snake_case_( self )-> str: lowercase__ = MaskFormerSwinModelTester(self ) def snake_case_( self )-> int: lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = inputs_dict['''pixel_values'''].shape[0] for backbone_class in self.all_model_classes: lowercase__ = backbone_class(_lowerCamelCase ) backbone.to(_lowerCamelCase ) backbone.eval() lowercase__ = backbone(**_lowerCamelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _lowerCamelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True lowercase__ = backbone(**_lowerCamelCase , output_hidden_states=_lowerCamelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) lowercase__ , lowercase__ , lowercase__ = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: lowercase__ = backbone(**_lowerCamelCase , output_attentions=_lowerCamelCase ) self.assertIsNotNone(outputs.attentions )
161
'''simple docstring''' def _lowerCAmelCase ( lowercase : int = 1_0**1_2 ) ->int: """simple docstring""" lowercase__ = 1 lowercase__ = 0 lowercase__ = 1 lowercase__ = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f'''{solution() = }''')
161
1
def __lowercase ( __lowerCAmelCase : int ): if num <= 0: raise ValueError('Input must be a positive integer' ) a__ = [True] * (num + 1) a__ = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , __lowerCAmelCase ): a__ = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() snake_case : int = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
657
from __future__ import annotations def __lowercase ( __lowerCAmelCase : list[int] ): # This function is recursive a__ = len(__lowerCAmelCase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else a__ = array[0] a__ = False a__ = 1 a__ = [] while not is_found and i < array_length: if array[i] < pivot: a__ = True a__ = [element for element in array[i:] if element >= array[i]] a__ = longest_subsequence(__lowerCAmelCase ) if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): a__ = temp_array else: i += 1 a__ = [element for element in array[1:] if element >= pivot] a__ = [pivot, *longest_subsequence(__lowerCAmelCase )] if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
657
1
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_): '''simple docstring''' lowerCamelCase_ : Union[str, Any] = StableDiffusionPipeline.from_pretrained(lowerCAmelCase_ , torch_dtype=torch.floataa) # load LoRA weight from .safetensors lowerCamelCase_ : str = load_file(lowerCAmelCase_) lowerCamelCase_ : List[Any] = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowerCamelCase_ : Union[str, Any] = key.split(".")[0].split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_") lowerCamelCase_ : str = pipeline.text_encoder else: lowerCamelCase_ : Any = key.split(".")[0].split(LORA_PREFIX_UNET + "_")[-1].split("_") lowerCamelCase_ : Union[str, Any] = pipeline.unet # find the target layer lowerCamelCase_ : Union[str, Any] = layer_infos.pop(0) while len(lowerCAmelCase_) > -1: try: lowerCamelCase_ : Dict = curr_layer.__getattr__(lowerCAmelCase_) if len(lowerCAmelCase_) > 0: lowerCamelCase_ : List[str] = layer_infos.pop(0) elif len(lowerCAmelCase_) == 0: break except Exception: if len(lowerCAmelCase_) > 0: temp_name += "_" + layer_infos.pop(0) else: lowerCamelCase_ : List[str] = layer_infos.pop(0) lowerCamelCase_ : Tuple = [] if "lora_down" in key: pair_keys.append(key.replace("lora_down" , "lora_up")) pair_keys.append(lowerCAmelCase_) else: pair_keys.append(lowerCAmelCase_) pair_keys.append(key.replace("lora_up" , "lora_down")) # update weight if len(state_dict[pair_keys[0]].shape) == 4: lowerCamelCase_ : Union[str, Any] = state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.floataa) lowerCamelCase_ : Optional[Any] = state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.floataa) curr_layer.weight.data += alpha * torch.mm(lowerCAmelCase_ , lowerCAmelCase_).unsqueeze(2).unsqueeze(3) else: lowerCamelCase_ : List[Any] = state_dict[pair_keys[0]].to(torch.floataa) lowerCamelCase_ : str = state_dict[pair_keys[1]].to(torch.floataa) curr_layer.weight.data += alpha * torch.mm(lowerCAmelCase_ , lowerCAmelCase_) # update visited list for item in pair_keys: visited.append(lowerCAmelCase_) return pipeline if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument( '''--base_model_path''', default=None, type=str, required=True, help='''Path to the base model in diffusers format.''' ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--lora_prefix_unet''', default='''lora_unet''', type=str, help='''The prefix of UNet weight in safetensors''' ) parser.add_argument( '''--lora_prefix_text_encoder''', default='''lora_te''', type=str, help='''The prefix of text encoder weight in safetensors''', ) parser.add_argument('''--alpha''', default=0.75, type=float, help='''The merging ratio in W = W0 + alpha * deltaW''') parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''' ) parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') __magic_name__ = parser.parse_args() __magic_name__ = args.base_model_path __magic_name__ = args.checkpoint_path __magic_name__ = args.dump_path __magic_name__ = args.lora_prefix_unet __magic_name__ = args.lora_prefix_text_encoder __magic_name__ = args.alpha __magic_name__ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) __magic_name__ = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
250
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES __magic_name__ = '''tiny-wmt19-en-ru''' # Build # borrowed from a test __magic_name__ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __magic_name__ = dict(zip(vocab, range(len(vocab)))) __magic_name__ = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] with tempfile.TemporaryDirectory() as tmpdirname: __magic_name__ = Path(tmpdirname) __magic_name__ = build_dir / VOCAB_FILES_NAMES['''src_vocab_file'''] __magic_name__ = build_dir / VOCAB_FILES_NAMES['''tgt_vocab_file'''] __magic_name__ = build_dir / VOCAB_FILES_NAMES['''merges_file'''] with open(src_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, '''w''') as fp: fp.write('''\n'''.join(merges)) __magic_name__ = FSMTTokenizer( langs=['''en''', '''ru'''], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) __magic_name__ = FSMTConfig( langs=['''ru''', '''en'''], src_vocab_size=1_0_0_0, tgt_vocab_size=1_0_0_0, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) __magic_name__ = FSMTForConditionalGeneration(config) print(f'''num of params {tiny_model.num_parameters()}''') # Test __magic_name__ = tokenizer(['''Making tiny model'''], return_tensors='''pt''') __magic_name__ = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-ru
250
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable lowercase_ = { 'configuration_gpt_neox_japanese': ['GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXJapaneseConfig'], 'tokenization_gpt_neox_japanese': ['GPTNeoXJapaneseTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoXJapaneseForCausalLM', 'GPTNeoXJapaneseLayer', 'GPTNeoXJapaneseModel', 'GPTNeoXJapanesePreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
380
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=os.environ.get('LOGLEVEL', 'INFO').upper(), stream=sys.stdout, ) lowercase_ = logging.getLogger(__name__) lowercase_ = {'facebook/bart-base': BartForConditionalGeneration} lowercase_ = {'facebook/bart-base': BartTokenizer} def a ( ) -> Optional[Any]: """simple docstring""" _lowercase =argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=A__ , default=A__ , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=A__ , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=A__ , default=A__ , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=A__ , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=A__ , ) parser.add_argument( '--config_name' , type=A__ , default=A__ , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=A__ , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=A__ , default=A__ , help='Where to store the final ONNX file.' ) _lowercase =parser.parse_args() return args def a ( A__ : int , A__ : Optional[int]="cpu" ) -> Optional[int]: """simple docstring""" _lowercase =model_dict[model_name].from_pretrained(A__ ).to(A__ ) _lowercase =tokenizer_dict[model_name].from_pretrained(A__ ) if model_name in ["facebook/bart-base"]: _lowercase =0 _lowercase =None _lowercase =0 return huggingface_model, tokenizer def a ( A__ : List[str] , A__ : Optional[Any] , A__ : List[Any] , A__ : Dict , A__ : Tuple ) -> List[str]: """simple docstring""" model.eval() _lowercase =None _lowercase =torch.jit.script(BARTBeamSearchGenerator(A__ ) ) with torch.no_grad(): _lowercase ='My friends are cool but they eat too many carbs.' _lowercase =tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors='pt' ).to(model.device ) _lowercase =model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=A__ , max_length=A__ , early_stopping=A__ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( A__ , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , A__ , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=A__ , ) logger.info('Model exported to {}'.format(A__ ) ) _lowercase =remove_dup_initializers(os.path.abspath(A__ ) ) logger.info('Deduplicated and optimized model written to {}'.format(A__ ) ) _lowercase =onnxruntime.InferenceSession(A__ ) _lowercase =ort_sess.run( A__ , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(A__ ), 'max_length': np.array(A__ ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def a ( ) -> int: """simple docstring""" _lowercase =parse_args() _lowercase =5 _lowercase =4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _lowercase =torch.device(args.device ) _lowercase , _lowercase =load_model_tokenizer(args.model_name_or_path , A__ ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(A__ ) if args.max_length: _lowercase =args.max_length if args.num_beams: _lowercase =args.num_beams if args.output_file_path: _lowercase =args.output_file_path else: _lowercase ='BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(A__ , A__ , A__ , A__ , A__ ) if __name__ == "__main__": main()
380
1
import os def a__ ( ): SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join(os.path.dirname(A__ ), 'num.txt' ) with open(A__ ) as file_hand: return str(sum(int(A__ ) for line in file_hand ) )[:1_0] if __name__ == "__main__": print(solution())
101
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json", } class a ( __UpperCAmelCase ): lowercase_ : Optional[int] = 'layoutlmv3' def __init__( self : Dict , snake_case__ : Dict=50_265 , snake_case__ : Optional[Any]=768 , snake_case__ : Dict=12 , snake_case__ : List[Any]=12 , snake_case__ : int=3_072 , snake_case__ : Dict="gelu" , snake_case__ : Any=0.1 , snake_case__ : Optional[Any]=0.1 , snake_case__ : Tuple=512 , snake_case__ : str=2 , snake_case__ : Optional[int]=0.0_2 , snake_case__ : Optional[Any]=1E-5 , snake_case__ : Tuple=1 , snake_case__ : str=0 , snake_case__ : Dict=2 , snake_case__ : int=1_024 , snake_case__ : Optional[Any]=128 , snake_case__ : List[str]=128 , snake_case__ : Dict=True , snake_case__ : Optional[int]=32 , snake_case__ : str=128 , snake_case__ : Dict=64 , snake_case__ : Any=256 , snake_case__ : Union[str, Any]=True , snake_case__ : Union[str, Any]=True , snake_case__ : Tuple=True , snake_case__ : List[Any]=224 , snake_case__ : str=3 , snake_case__ : Dict=16 , snake_case__ : Tuple=None , **snake_case__ : Any , ): """simple docstring""" super().__init__( vocab_size=snake_case__ , hidden_size=snake_case__ , num_hidden_layers=snake_case__ , num_attention_heads=snake_case__ , intermediate_size=snake_case__ , hidden_act=snake_case__ , hidden_dropout_prob=snake_case__ , attention_probs_dropout_prob=snake_case__ , max_position_embeddings=snake_case__ , type_vocab_size=snake_case__ , initializer_range=snake_case__ , layer_norm_eps=snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ , ) __lowerCAmelCase = max_ad_position_embeddings __lowerCAmelCase = coordinate_size __lowerCAmelCase = shape_size __lowerCAmelCase = has_relative_attention_bias __lowerCAmelCase = rel_pos_bins __lowerCAmelCase = max_rel_pos __lowerCAmelCase = has_spatial_attention_bias __lowerCAmelCase = rel_ad_pos_bins __lowerCAmelCase = max_rel_ad_pos __lowerCAmelCase = text_embed __lowerCAmelCase = visual_embed __lowerCAmelCase = input_size __lowerCAmelCase = num_channels __lowerCAmelCase = patch_size __lowerCAmelCase = classifier_dropout class a ( __UpperCAmelCase ): lowercase_ : int = version.parse('1.12' ) @property def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) else: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels"}), ] ) @property def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" return 1E-5 @property def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" return 12 def UpperCAmelCase__ ( self : Dict , snake_case__ : "ProcessorMixin" , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional["TensorType"] = None , snake_case__ : int = 3 , snake_case__ : int = 40 , snake_case__ : int = 40 , ): """simple docstring""" setattr(processor.image_processor , "apply_ocr" , snake_case__ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowerCAmelCase = compute_effective_axis_dimension( snake_case__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowerCAmelCase = processor.tokenizer.num_special_tokens_to_add(snake_case__ ) __lowerCAmelCase = compute_effective_axis_dimension( snake_case__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case__ ) # Generate dummy inputs according to compute batch and sequence __lowerCAmelCase = [[" ".join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowerCAmelCase = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowerCAmelCase = self._generate_dummy_images(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) __lowerCAmelCase = dict( processor( snake_case__ , text=snake_case__ , boxes=snake_case__ , return_tensors=snake_case__ , ) ) return inputs
611
0
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class __A( snake_case_ ): SCREAMING_SNAKE_CASE = 42 @flax_register_to_config class __A( nn.Module , snake_case_ , snake_case_ ): SCREAMING_SNAKE_CASE = 3_2 SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) SCREAMING_SNAKE_CASE = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = 8 SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = 1_2_8_0 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = False def lowercase__ ( self : int , __UpperCamelCase : Dict ): # init input tensors lowerCamelCase_ = (1, self.in_channels, self.sample_size, self.sample_size) lowerCamelCase_ = jnp.zeros(__UpperCamelCase , dtype=jnp.floataa ) lowerCamelCase_ = jnp.ones((1,) , dtype=jnp.intaa ) lowerCamelCase_ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowerCamelCase_ , lowerCamelCase_ = jax.random.split(__UpperCamelCase ) lowerCamelCase_ = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )["params"] def lowercase__ ( self : Optional[int] ): lowerCamelCase_ = self.block_out_channels lowerCamelCase_ = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( """At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.""" ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCamelCase_ = self.num_attention_heads or self.attention_head_dim # input lowerCamelCase_ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCamelCase_ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowerCamelCase_ = FlaxTimestepEmbedding(__UpperCamelCase , dtype=self.dtype ) lowerCamelCase_ = self.only_cross_attention if isinstance(__UpperCamelCase , __UpperCamelCase ): lowerCamelCase_ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__UpperCamelCase , __UpperCamelCase ): lowerCamelCase_ = (num_attention_heads,) * len(self.down_block_types ) # down lowerCamelCase_ = [] lowerCamelCase_ = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): lowerCamelCase_ = output_channel lowerCamelCase_ = block_out_channels[i] lowerCamelCase_ = i == len(__UpperCamelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCamelCase_ = FlaxCrossAttnDownBlockaD( in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: lowerCamelCase_ = FlaxDownBlockaD( in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__UpperCamelCase ) lowerCamelCase_ = down_blocks # mid lowerCamelCase_ = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up lowerCamelCase_ = [] lowerCamelCase_ = list(reversed(__UpperCamelCase ) ) lowerCamelCase_ = list(reversed(__UpperCamelCase ) ) lowerCamelCase_ = list(reversed(__UpperCamelCase ) ) lowerCamelCase_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): lowerCamelCase_ = output_channel lowerCamelCase_ = reversed_block_out_channels[i] lowerCamelCase_ = reversed_block_out_channels[min(i + 1 , len(__UpperCamelCase ) - 1 )] lowerCamelCase_ = i == len(__UpperCamelCase ) - 1 if up_block_type == "CrossAttnUpBlock2D": lowerCamelCase_ = FlaxCrossAttnUpBlockaD( in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , prev_output_channel=__UpperCamelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: lowerCamelCase_ = FlaxUpBlockaD( in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , prev_output_channel=__UpperCamelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(__UpperCamelCase ) lowerCamelCase_ = output_channel lowerCamelCase_ = up_blocks # out lowerCamelCase_ = nn.GroupNorm(num_groups=3_2 , epsilon=1E-5 ) lowerCamelCase_ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Any , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : str=None , __UpperCamelCase : Optional[Any] = True , __UpperCamelCase : Union[str, Any] = False , ): # 1. time if not isinstance(__UpperCamelCase , jnp.ndarray ): lowerCamelCase_ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__UpperCamelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCamelCase_ = timesteps.astype(dtype=jnp.floataa ) lowerCamelCase_ = jnp.expand_dims(__UpperCamelCase , 0 ) lowerCamelCase_ = self.time_proj(__UpperCamelCase ) lowerCamelCase_ = self.time_embedding(__UpperCamelCase ) # 2. pre-process lowerCamelCase_ = jnp.transpose(__UpperCamelCase , (0, 2, 3, 1) ) lowerCamelCase_ = self.conv_in(__UpperCamelCase ) # 3. down lowerCamelCase_ = (sample,) for down_block in self.down_blocks: if isinstance(__UpperCamelCase , __UpperCamelCase ): lowerCamelCase_ , lowerCamelCase_ = down_block(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , deterministic=not train ) else: lowerCamelCase_ , lowerCamelCase_ = down_block(__UpperCamelCase , __UpperCamelCase , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: lowerCamelCase_ = () for down_block_res_sample, down_block_additional_residual in zip( __UpperCamelCase , __UpperCamelCase ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) lowerCamelCase_ = new_down_block_res_samples # 4. mid lowerCamelCase_ = self.mid_block(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: lowerCamelCase_ = down_block_res_samples[-(self.layers_per_block + 1) :] lowerCamelCase_ = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(__UpperCamelCase , __UpperCamelCase ): lowerCamelCase_ = up_block( __UpperCamelCase , temb=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , res_hidden_states_tuple=__UpperCamelCase , deterministic=not train , ) else: lowerCamelCase_ = up_block(__UpperCamelCase , temb=__UpperCamelCase , res_hidden_states_tuple=__UpperCamelCase , deterministic=not train ) # 6. post-process lowerCamelCase_ = self.conv_norm_out(__UpperCamelCase ) lowerCamelCase_ = nn.silu(__UpperCamelCase ) lowerCamelCase_ = self.conv_out(__UpperCamelCase ) lowerCamelCase_ = jnp.transpose(__UpperCamelCase , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=__UpperCamelCase )
701
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __A( UpperCAmelCase , UpperCAmelCase ): @register_to_config def __init__( self : int , __UpperCamelCase : int = 1_2_8 , __UpperCamelCase : int = 2_5_6 , __UpperCamelCase : float = 2000.0 , __UpperCamelCase : int = 7_6_8 , __UpperCamelCase : int = 1_2 , __UpperCamelCase : int = 1_2 , __UpperCamelCase : int = 6_4 , __UpperCamelCase : int = 2_0_4_8 , __UpperCamelCase : float = 0.1 , ): super().__init__() lowerCamelCase_ = nn.Sequential( nn.Linear(__UpperCamelCase , d_model * 4 , bias=__UpperCamelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__UpperCamelCase ) , nn.SiLU() , ) lowerCamelCase_ = nn.Embedding(__UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = False lowerCamelCase_ = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) lowerCamelCase_ = nn.Dropout(p=__UpperCamelCase ) lowerCamelCase_ = nn.ModuleList() for lyr_num in range(__UpperCamelCase ): # FiLM conditional T5 decoder lowerCamelCase_ = DecoderLayer(d_model=__UpperCamelCase , d_kv=__UpperCamelCase , num_heads=__UpperCamelCase , d_ff=__UpperCamelCase , dropout_rate=__UpperCamelCase ) self.decoders.append(__UpperCamelCase ) lowerCamelCase_ = TaLayerNorm(__UpperCamelCase ) lowerCamelCase_ = nn.Dropout(p=__UpperCamelCase ) lowerCamelCase_ = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : int ): lowerCamelCase_ = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def lowercase__ ( self : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] ): lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. lowerCamelCase_ = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) lowerCamelCase_ = self.conditioning_emb(__UpperCamelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) lowerCamelCase_ = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. lowerCamelCase_ = torch.broadcast_to( torch.arange(__UpperCamelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) lowerCamelCase_ = self.position_encoding(__UpperCamelCase ) lowerCamelCase_ = self.continuous_inputs_projection(__UpperCamelCase ) inputs += position_encodings lowerCamelCase_ = self.dropout(__UpperCamelCase ) # decoder: No padding present. lowerCamelCase_ = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. lowerCamelCase_ = [(x, self.encoder_decoder_mask(__UpperCamelCase , __UpperCamelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings lowerCamelCase_ = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) lowerCamelCase_ = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: lowerCamelCase_ = lyr( __UpperCamelCase , conditioning_emb=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , )[0] lowerCamelCase_ = self.decoder_norm(__UpperCamelCase ) lowerCamelCase_ = self.post_dropout(__UpperCamelCase ) lowerCamelCase_ = self.spec_out(__UpperCamelCase ) return spec_out class __A( nn.Module ): def __init__( self : int , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Any , __UpperCamelCase : int=1E-6 ): super().__init__() lowerCamelCase_ = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__UpperCamelCase , d_kv=__UpperCamelCase , num_heads=__UpperCamelCase , dropout_rate=__UpperCamelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__UpperCamelCase , d_kv=__UpperCamelCase , num_heads=__UpperCamelCase , dropout_rate=__UpperCamelCase , layer_norm_epsilon=__UpperCamelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__UpperCamelCase , d_ff=__UpperCamelCase , dropout_rate=__UpperCamelCase , layer_norm_epsilon=__UpperCamelCase ) ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : List[str]=None , __UpperCamelCase : Dict=None , __UpperCamelCase : Dict=None , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : Tuple=None , ): lowerCamelCase_ = self.layer[0]( __UpperCamelCase , conditioning_emb=__UpperCamelCase , attention_mask=__UpperCamelCase , ) if encoder_hidden_states is not None: lowerCamelCase_ = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) lowerCamelCase_ = self.layer[1]( __UpperCamelCase , key_value_states=__UpperCamelCase , attention_mask=__UpperCamelCase , ) # Apply Film Conditional Feed Forward layer lowerCamelCase_ = self.layer[-1](__UpperCamelCase , __UpperCamelCase ) return (hidden_states,) class __A( nn.Module ): def __init__( self : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): super().__init__() lowerCamelCase_ = TaLayerNorm(__UpperCamelCase ) lowerCamelCase_ = TaFiLMLayer(in_features=d_model * 4 , out_features=__UpperCamelCase ) lowerCamelCase_ = Attention(query_dim=__UpperCamelCase , heads=__UpperCamelCase , dim_head=__UpperCamelCase , out_bias=__UpperCamelCase , scale_qk=__UpperCamelCase ) lowerCamelCase_ = nn.Dropout(__UpperCamelCase ) def lowercase__ ( self : Any , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : int=None , ): # pre_self_attention_layer_norm lowerCamelCase_ = self.layer_norm(__UpperCamelCase ) if conditioning_emb is not None: lowerCamelCase_ = self.FiLMLayer(__UpperCamelCase , __UpperCamelCase ) # Self-attention block lowerCamelCase_ = self.attention(__UpperCamelCase ) lowerCamelCase_ = hidden_states + self.dropout(__UpperCamelCase ) return hidden_states class __A( nn.Module ): def __init__( self : List[Any] , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] ): super().__init__() lowerCamelCase_ = Attention(query_dim=__UpperCamelCase , heads=__UpperCamelCase , dim_head=__UpperCamelCase , out_bias=__UpperCamelCase , scale_qk=__UpperCamelCase ) lowerCamelCase_ = TaLayerNorm(__UpperCamelCase , eps=__UpperCamelCase ) lowerCamelCase_ = nn.Dropout(__UpperCamelCase ) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : int=None , ): lowerCamelCase_ = self.layer_norm(__UpperCamelCase ) lowerCamelCase_ = self.attention( __UpperCamelCase , encoder_hidden_states=__UpperCamelCase , attention_mask=attention_mask.squeeze(1 ) , ) lowerCamelCase_ = hidden_states + self.dropout(__UpperCamelCase ) return layer_output class __A( nn.Module ): def __init__( self : Any , __UpperCamelCase : List[str] , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] ): super().__init__() lowerCamelCase_ = TaDenseGatedActDense(d_model=__UpperCamelCase , d_ff=__UpperCamelCase , dropout_rate=__UpperCamelCase ) lowerCamelCase_ = TaFiLMLayer(in_features=d_model * 4 , out_features=__UpperCamelCase ) lowerCamelCase_ = TaLayerNorm(__UpperCamelCase , eps=__UpperCamelCase ) lowerCamelCase_ = nn.Dropout(__UpperCamelCase ) def lowercase__ ( self : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict=None ): lowerCamelCase_ = self.layer_norm(__UpperCamelCase ) if conditioning_emb is not None: lowerCamelCase_ = self.film(__UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = self.DenseReluDense(__UpperCamelCase ) lowerCamelCase_ = hidden_states + self.dropout(__UpperCamelCase ) return hidden_states class __A( nn.Module ): def __init__( self : Dict , __UpperCamelCase : int , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] ): super().__init__() lowerCamelCase_ = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) lowerCamelCase_ = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) lowerCamelCase_ = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) lowerCamelCase_ = nn.Dropout(__UpperCamelCase ) lowerCamelCase_ = NewGELUActivation() def lowercase__ ( self : Tuple , __UpperCamelCase : Union[str, Any] ): lowerCamelCase_ = self.act(self.wi_a(__UpperCamelCase ) ) lowerCamelCase_ = self.wi_a(__UpperCamelCase ) lowerCamelCase_ = hidden_gelu * hidden_linear lowerCamelCase_ = self.dropout(__UpperCamelCase ) lowerCamelCase_ = self.wo(__UpperCamelCase ) return hidden_states class __A( nn.Module ): def __init__( self : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Any=1E-6 ): super().__init__() lowerCamelCase_ = nn.Parameter(torch.ones(__UpperCamelCase ) ) lowerCamelCase_ = eps def lowercase__ ( self : Dict , __UpperCamelCase : Any ): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 lowerCamelCase_ = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__UpperCamelCase ) lowerCamelCase_ = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: lowerCamelCase_ = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __A( nn.Module ): def lowercase__ ( self : Any , __UpperCamelCase : torch.Tensor ): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044715 * torch.pow(__UpperCamelCase , 3.0 )) )) class __A( nn.Module ): def __init__( self : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] ): super().__init__() lowerCamelCase_ = nn.Linear(__UpperCamelCase , out_features * 2 , bias=__UpperCamelCase ) def lowercase__ ( self : int , __UpperCamelCase : Tuple , __UpperCamelCase : str ): lowerCamelCase_ = self.scale_bias(__UpperCamelCase ) lowerCamelCase_ , lowerCamelCase_ = torch.chunk(__UpperCamelCase , 2 , -1 ) lowerCamelCase_ = x * (1 + scale) + shift return x
103
0
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCAmelCase_ = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] lowerCAmelCase_ = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] lowerCAmelCase_ = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) lowerCAmelCase_ = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) lowerCAmelCase_ = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase ) -> int: for tf_name, hf_name in patterns: lowerCAmelCase__ : List[Any] = k.replace(UpperCamelCase , UpperCamelCase ) return k def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase ) -> BigBirdPegasusForConditionalGeneration: lowerCAmelCase__ : List[str] = BigBirdPegasusConfig(**UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = BigBirdPegasusForConditionalGeneration(UpperCamelCase ) lowerCAmelCase__ : str = torch_model.state_dict() lowerCAmelCase__ : Tuple = {} # separating decoder weights lowerCAmelCase__ : Any = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} lowerCAmelCase__ : Dict = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() , '''tf -> hf conversion''' ): lowerCAmelCase__ : List[Any] = [k.endswith(UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(UpperCamelCase ): continue lowerCAmelCase__ : Tuple = DECODER_PATTERNS lowerCAmelCase__ : List[Any] = rename_state_dict_key(UpperCamelCase , UpperCamelCase ) if new_k not in state_dict: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): lowerCAmelCase__ : Union[str, Any] = v.T lowerCAmelCase__ : int = torch.from_numpy(UpperCamelCase ) assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() , '''tf -> hf conversion''' ): lowerCAmelCase__ : Tuple = [k.endswith(UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(UpperCamelCase ): continue lowerCAmelCase__ : List[str] = REMAINING_PATTERNS lowerCAmelCase__ : Union[str, Any] = rename_state_dict_key(UpperCamelCase , UpperCamelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): lowerCAmelCase__ : Optional[Any] = v.T lowerCAmelCase__ : Union[str, Any] = torch.from_numpy(UpperCamelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" lowerCAmelCase__ : List[Any] = mapping['''model.embed_positions.weight'''] lowerCAmelCase__ : Tuple = mapping.pop('''model.embed_positions.weight''' ) lowerCAmelCase__ , lowerCAmelCase__ : Any = torch_model.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) lowerCAmelCase__ : Optional[int] = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def __lowerCAmelCase ( UpperCamelCase ) -> Dict: lowerCAmelCase__ : Any = tf.train.list_variables(UpperCamelCase ) lowerCAmelCase__ : Dict = {} lowerCAmelCase__ : Union[str, Any] = ['''global_step'''] for name, shape in tqdm(UpperCamelCase , desc='''converting tf checkpoint to dict''' ): lowerCAmelCase__ : Union[str, Any] = any(pat in name for pat in ignore_name ) if skip_key: continue lowerCAmelCase__ : Tuple = tf.train.load_variable(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : List[str] = array return tf_weights def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Dict: lowerCAmelCase__ : Union[str, Any] = get_tf_weights_as_numpy(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = convert_bigbird_pegasus(UpperCamelCase , UpperCamelCase ) torch_model.save_pretrained(UpperCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
678
def __lowerCAmelCase ( UpperCamelCase ) -> str: return "".join([hex(UpperCamelCase )[2:].zfill(2 ).upper() for byte in list(UpperCamelCase )] ) def __lowerCAmelCase ( UpperCamelCase ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(UpperCamelCase ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(UpperCamelCase ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(UpperCamelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
678
1
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger __SCREAMING_SNAKE_CASE : Optional[int] = get_logger(__name__) __SCREAMING_SNAKE_CASE : Union[str, Any] = R'\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n' class __A : '''simple docstring''' @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : int , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray ) ->jnp.ndarray: """simple docstring""" raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class __A : '''simple docstring''' @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : Dict , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray ) ->jnp.ndarray: """simple docstring""" raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class __A (snake_case__): '''simple docstring''' @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : int , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int , **UpperCAmelCase_ : List[Any] ) ->jnp.ndarray: """simple docstring""" for processor in self: snake_case_ = inspect.signature(processor.__call__ ).parameters if len(UpperCAmelCase_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F"""Make sure that all the required parameters: {list(function_args.keys() )} for """ F"""{processor.__class__} are passed to the logits processor.""" ) snake_case_ = processor(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) else: snake_case_ = processor(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return scores class __A (snake_case__): '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : float ) ->Optional[int]: """simple docstring""" if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not (temperature > 0): raise ValueError(F"""`temperature` has to be a strictly positive float, but is {temperature}""" ) snake_case_ = temperature def __call__( self : Dict , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ) ->jnp.ndarray: """simple docstring""" snake_case_ = scores / self.temperature return scores class __A (snake_case__): '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : float , UpperCAmelCase_ : float = -float("""Inf""" ) , UpperCAmelCase_ : int = 1 ) ->str: """simple docstring""" if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(F"""`top_p` has to be a float > 0 and < 1, but is {top_p}""" ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or (min_tokens_to_keep < 1): raise ValueError(F"""`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}""" ) snake_case_ = top_p snake_case_ = filter_value snake_case_ = min_tokens_to_keep def __call__( self : Union[str, Any] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ) ->jnp.ndarray: """simple docstring""" snake_case_ , snake_case_ = lax.top_k(UpperCAmelCase_ , scores.shape[-1] ) snake_case_ = jnp.full_like(UpperCAmelCase_ , self.filter_value ) snake_case_ = jax.nn.softmax(UpperCAmelCase_ , axis=-1 ).cumsum(axis=-1 ) snake_case_ = cumulative_probs < self.top_p # include the token that is higher than top_p as well snake_case_ = jnp.roll(UpperCAmelCase_ , 1 ) score_mask |= score_mask.at[:, 0].set(UpperCAmelCase_ ) # min tokens to keep snake_case_ = score_mask.at[:, : self.min_tokens_to_keep].set(UpperCAmelCase_ ) snake_case_ = jnp.where(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = jax.lax.sort_key_val(UpperCAmelCase_ , UpperCAmelCase_ )[-1] return next_scores class __A (snake_case__): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = -float("""Inf""" ) , UpperCAmelCase_ : int = 1 ) ->Dict: """simple docstring""" if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or top_k <= 0: raise ValueError(F"""`top_k` has to be a strictly positive integer, but is {top_k}""" ) snake_case_ = max(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = filter_value def __call__( self : Tuple , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ) ->jnp.ndarray: """simple docstring""" snake_case_ , snake_case_ = scores.shape snake_case_ = jnp.full(batch_size * vocab_size , self.filter_value ) snake_case_ = min(self.top_k , scores.shape[-1] ) # Safety check snake_case_ , snake_case_ = lax.top_k(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = jnp.broadcast_to((jnp.arange(UpperCAmelCase_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() snake_case_ = topk_scores.flatten() snake_case_ = topk_indices.flatten() + shift snake_case_ = next_scores_flat.at[topk_indices_flat].set(UpperCAmelCase_ ) snake_case_ = next_scores_flat.reshape(UpperCAmelCase_ , UpperCAmelCase_ ) return next_scores class __A (snake_case__): '''simple docstring''' def __init__( self : Any , UpperCAmelCase_ : int ) ->Optional[Any]: """simple docstring""" snake_case_ = bos_token_id def __call__( self : Tuple , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ) ->jnp.ndarray: """simple docstring""" snake_case_ = jnp.full(scores.shape , -float("""inf""" ) ) snake_case_ = 1 - jnp.bool_(cur_len - 1 ) snake_case_ = jnp.where(UpperCAmelCase_ , new_scores.at[:, self.bos_token_id].set(0 ) , UpperCAmelCase_ ) return scores class __A (snake_case__): '''simple docstring''' def __init__( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) ->Tuple: """simple docstring""" snake_case_ = max_length snake_case_ = eos_token_id def __call__( self : List[Any] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ) ->jnp.ndarray: """simple docstring""" snake_case_ = jnp.full(scores.shape , -float("""inf""" ) ) snake_case_ = 1 - jnp.bool_(cur_len - self.max_length + 1 ) snake_case_ = jnp.where(UpperCAmelCase_ , new_scores.at[:, self.eos_token_id].set(0 ) , UpperCAmelCase_ ) return scores class __A (snake_case__): '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) ->List[str]: """simple docstring""" if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or min_length < 0: raise ValueError(F"""`min_length` has to be a positive integer, but is {min_length}""" ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or eos_token_id < 0: raise ValueError(F"""`eos_token_id` has to be a positive integer, but is {eos_token_id}""" ) snake_case_ = min_length snake_case_ = eos_token_id def __call__( self : Union[str, Any] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ) ->jnp.ndarray: """simple docstring""" snake_case_ = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) snake_case_ = jnp.where(UpperCAmelCase_ , scores.at[:, self.eos_token_id].set(-float("""inf""" ) ) , UpperCAmelCase_ ) return scores class __A (snake_case__): '''simple docstring''' def __init__( self : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] ) ->Optional[int]: """simple docstring""" snake_case_ = list(UpperCAmelCase_ ) snake_case_ = begin_index def __call__( self : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int ) ->List[str]: """simple docstring""" snake_case_ = 1 - jnp.bool_(cur_len - self.begin_index ) snake_case_ = jnp.where(UpperCAmelCase_ , scores.at[:, self.begin_suppress_tokens].set(-float("""inf""" ) ) , UpperCAmelCase_ ) return scores class __A (snake_case__): '''simple docstring''' def __init__( self : Any , UpperCAmelCase_ : list ) ->List[str]: """simple docstring""" snake_case_ = list(UpperCAmelCase_ ) def __call__( self : int , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ) ->jnp.ndarray: """simple docstring""" snake_case_ = scores.at[..., self.suppress_tokens].set(-float("""inf""" ) ) return scores class __A (snake_case__): '''simple docstring''' def __init__( self : str , UpperCAmelCase_ : Tuple ) ->Optional[Any]: """simple docstring""" snake_case_ = dict(UpperCAmelCase_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. snake_case_ = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: snake_case_ = force_token_array.at[index].set(UpperCAmelCase_ ) snake_case_ = jnp.intaa(UpperCAmelCase_ ) def __call__( self : Optional[Any] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ) ->jnp.ndarray: """simple docstring""" def _force_token(UpperCAmelCase_ : List[Any] ): snake_case_ = scores.shape[0] snake_case_ = self.force_token_array[generation_idx] snake_case_ = jnp.ones_like(UpperCAmelCase_ , dtype=scores.dtype ) * -float("""inf""" ) snake_case_ = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) snake_case_ = lax.dynamic_update_slice(UpperCAmelCase_ , UpperCAmelCase_ , (0, current_token) ) return new_scores snake_case_ = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(UpperCAmelCase_ ) , lambda: scores , ) , ) return scores class __A (snake_case__): '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str ) ->int: """simple docstring""" snake_case_ = generate_config.eos_token_id snake_case_ = generate_config.no_timestamps_token_id snake_case_ = generate_config.no_timestamps_token_id + 1 snake_case_ = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(UpperCAmelCase_ , """max_initial_timestamp_index""" ): snake_case_ = generate_config.max_initial_timestamp_index else: snake_case_ = model_config.vocab_size if self.max_initial_timestamp_index is None: snake_case_ = model_config.vocab_size def __call__( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] ) ->Dict: """simple docstring""" snake_case_ = scores.at[:, self.no_timestamps_token_id].set(-float("""inf""" ) ) def handle_pairs(UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ): snake_case_ = jnp.where((cur_len - self.begin_index) >= 1 , UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , UpperCAmelCase_ , ) snake_case_ = jnp.where((cur_len - self.begin_index) < 2 , UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , UpperCAmelCase_ , UpperCAmelCase_ , ) return jnp.where( UpperCAmelCase_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("""inf""" ) ) , scores_k.at[: self.eos_token_id].set(-float("""inf""" ) ) , ) , UpperCAmelCase_ , ) snake_case_ = jax.vmap(UpperCAmelCase_ )(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = jnp.where(cur_len == self.begin_index , UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , UpperCAmelCase_ , ) snake_case_ = self.timestamp_begin + self.max_initial_timestamp_index snake_case_ = jnp.where( UpperCAmelCase_ , scores.at[:, last_allowed + 1 :].set(-float("""inf""" ) ) , UpperCAmelCase_ , ) # if sum of probability over timestamps is above any other token, sample timestamp snake_case_ = jax.nn.log_softmax(UpperCAmelCase_ , axis=-1 ) def handle_cumulative_probs(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ): snake_case_ = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) snake_case_ = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("""inf""" ) ) , UpperCAmelCase_ , ) snake_case_ = jax.vmap(UpperCAmelCase_ )(UpperCAmelCase_ , UpperCAmelCase_ ) return scores
2
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def _a ( _SCREAMING_SNAKE_CASE = 8 ) -> str: snake_case_ = ascii_letters + digits + punctuation return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(_SCREAMING_SNAKE_CASE ) snake_case_ = i // 3 snake_case_ = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) snake_case_ = ( chars_incl + random(_SCREAMING_SNAKE_CASE , quotient + remainder ) + random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) + random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) snake_case_ = list(_SCREAMING_SNAKE_CASE ) shuffle(_SCREAMING_SNAKE_CASE ) return "".join(_SCREAMING_SNAKE_CASE ) # random is a generalised function for letters, characters and numbers def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: pass # Put your code here... def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: pass # Put your code here... def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: pass # Put your code here... def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 8 ) -> bool: if len(_SCREAMING_SNAKE_CASE ) < min_length: # Your Password must be at least 8 characters long return False snake_case_ = any(char in ascii_uppercase for char in password ) snake_case_ = any(char in ascii_lowercase for char in password ) snake_case_ = any(char in digits for char in password ) snake_case_ = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def _a ( ) -> str: snake_case_ = int(input("""Please indicate the max length of your password: """ ).strip() ) snake_case_ = input( """Please indicate the characters that must be in your password: """ ).strip() print("""Password generated:""" , password_generator(_SCREAMING_SNAKE_CASE ) ) print( """Alternative Password generated:""" , alternative_password_generator(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , ) print("""[If you are thinking of using this passsword, You better save it.]""" ) if __name__ == "__main__": main()
2
1
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = "https://openaipublic.azureedge.net/jukebox/models/" _UpperCamelCase = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def _A( lowerCAmelCase ): if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10: A__ : str = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" ) elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10: A__ : Any = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" ) elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10: A__ : Optional[Any] = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" ) elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10: A__ : Any = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" ) if "conditioner_blocks.0." in key: A__ : Dict = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" ) if "prime_prior" in key: A__ : Dict = key.replace("""prime_prior""" , """encoder""" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: A__ : Dict = key.replace(""".emb.""" , """.""" ) if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(""".k""" , """.codebook""" ) if "y_emb." in key: return key.replace("""y_emb.""" , """metadata_embedding.""" ) if "x_emb.emb." in key: A__ : List[Any] = key.replace("""0.x_emb.emb""" , """embed_tokens""" ) if "prime_state_ln" in key: return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" ) if ".ln" in key: return key.replace(""".ln""" , """.layer_norm""" ) if "_ln" in key: return key.replace("""_ln""" , """_layer_norm""" ) if "prime_state_proj" in key: return key.replace("""prime_state_proj""" , """encoder.proj_in""" ) if "prime_x_out" in key: return key.replace("""prime_x_out""" , """encoder.lm_head""" ) if "prior.x_out" in key: return key.replace("""x_out""" , """fc_proj_out""" ) if "x_emb" in key: return key.replace("""x_emb""" , """embed_tokens""" ) return key def _A( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): A__ : Any = {} import re A__ : Tuple = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) A__ : Optional[int] = re.compile( r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) A__ : List[str] = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) A__ : Optional[int] = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) A__ : str = re.compile( r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) A__ : Tuple = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) A__ : List[Any] = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" ) A__ : Optional[Any] = re.compile( r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) A__ : Optional[int] = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(lowerCAmelCase ): A__ : Dict = re_encoder_block_conv_in.match(lowerCAmelCase ) A__ : str = regex_match.groups() A__ : Any = int(groups[2] ) * 2 + int(groups[3] ) A__ : str = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' A__ : Optional[int] = re_encoder_block_conv_in.sub(lowerCAmelCase , lowerCAmelCase ) elif re_encoder_block_resnet.fullmatch(lowerCAmelCase ): A__ : List[Any] = re_encoder_block_resnet.match(lowerCAmelCase ) A__ : str = regex_match.groups() A__ : int = int(groups[2] ) * 2 + int(groups[3] ) A__ : List[Any] = {"""1""": 1, """3""": 2}[groups[-2]] A__ : int = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' A__ : Tuple = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' A__ : Optional[int] = prefix + resnet_block A__ : Any = re_encoder_block_resnet.sub(lowerCAmelCase , lowerCAmelCase ) elif re_encoder_block_proj_out.fullmatch(lowerCAmelCase ): A__ : Union[str, Any] = re_encoder_block_proj_out.match(lowerCAmelCase ) A__ : Union[str, Any] = regex_match.groups() A__ : int = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' A__ : List[Any] = re_encoder_block_proj_out.sub(lowerCAmelCase , lowerCAmelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(lowerCAmelCase ): A__ : Any = re_decoder_block_conv_out.match(lowerCAmelCase ) A__ : Dict = regex_match.groups() A__ : List[str] = int(groups[2] ) * 2 + int(groups[3] ) - 2 A__ : List[Any] = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' A__ : Optional[int] = re_decoder_block_conv_out.sub(lowerCAmelCase , lowerCAmelCase ) elif re_decoder_block_resnet.fullmatch(lowerCAmelCase ): A__ : Any = re_decoder_block_resnet.match(lowerCAmelCase ) A__ : int = regex_match.groups() A__ : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 A__ : List[Any] = {"""1""": 1, """3""": 2}[groups[-2]] A__ : List[str] = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' A__ : List[Any] = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' A__ : Optional[int] = prefix + resnet_block A__ : str = re_decoder_block_resnet.sub(lowerCAmelCase , lowerCAmelCase ) elif re_decoder_block_proj_in.fullmatch(lowerCAmelCase ): A__ : int = re_decoder_block_proj_in.match(lowerCAmelCase ) A__ : Tuple = regex_match.groups() A__ : Tuple = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' A__ : List[Any] = re_decoder_block_proj_in.sub(lowerCAmelCase , lowerCAmelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(lowerCAmelCase ): A__ : Optional[Any] = re_prior_cond_conv_out.match(lowerCAmelCase ) A__ : Tuple = regex_match.groups() A__ : str = int(groups[1] ) * 2 + int(groups[2] ) - 2 A__ : Any = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' A__ : int = re_prior_cond_conv_out.sub(lowerCAmelCase , lowerCAmelCase ) elif re_prior_cond_resnet.fullmatch(lowerCAmelCase ): A__ : Dict = re_prior_cond_resnet.match(lowerCAmelCase ) A__ : Tuple = regex_match.groups() A__ : List[str] = int(groups[1] ) * 2 + int(groups[2] ) - 2 A__ : int = {"""1""": 1, """3""": 2}[groups[-2]] A__ : Optional[Any] = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' A__ : Union[str, Any] = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' A__ : Union[str, Any] = prefix + resnet_block A__ : int = re_prior_cond_resnet.sub(lowerCAmelCase , lowerCAmelCase ) elif re_prior_cond_proj_in.fullmatch(lowerCAmelCase ): A__ : List[Any] = re_prior_cond_proj_in.match(lowerCAmelCase ) A__ : List[Any] = regex_match.groups() A__ : Dict = F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' A__ : int = re_prior_cond_proj_in.sub(lowerCAmelCase , lowerCAmelCase ) # keep original key else: A__ : str = original_key A__ : Optional[Any] = replace_key(lowerCAmelCase ) if F'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(F'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape: A__ : int = model_state_dict[F'''{key_prefix}.{key}'''] print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) A__ : Optional[int] = original_key A__ : Optional[Any] = original_key A__ : Any = value return new_dict @torch.no_grad() def _A( lowerCAmelCase=None , lowerCAmelCase=None ): for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' ): A__ : Optional[Any] = requests.get(F'''{PREFIX}{file}''' , allow_redirects=lowerCAmelCase ) os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=lowerCAmelCase ) open(F'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' , """wb""" ).write(r.content ) A__ : Tuple = MODEL_MAPPING[model_name.split("""/""" )[-1]] A__ : Optional[int] = JukeboxConfig.from_pretrained(lowerCAmelCase ) A__ : List[str] = JukeboxModel(lowerCAmelCase ) A__ : List[str] = [] A__ : str = {} for i, dict_name in enumerate(lowerCAmelCase ): A__ : Union[str, Any] = torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}''' )["""model"""] A__ : List[Any] = {} for k in old_dic.keys(): if k.endswith(""".b""" ): A__ : Tuple = old_dic[k] elif k.endswith(""".w""" ): A__ : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: A__ : List[Any] = old_dic[k] else: A__ : Any = old_dic[k] A__ : Dict = """vqvae""" if i == 0 else F'''priors.{3 - i}''' A__ : int = fix_jukebox_keys(lowerCAmelCase , model.state_dict() , lowerCAmelCase , lowerCAmelCase ) weight_dict.append(lowerCAmelCase ) A__ : Tuple = weight_dict.pop(0 ) model.vqvae.load_state_dict(lowerCAmelCase ) for i in range(len(lowerCAmelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) with open(F'''{pytorch_dump_folder_path}/mapping.json''' , """w""" ) as txtfile: json.dump(lowerCAmelCase , lowerCAmelCase ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase ) return weight_dict if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) _UpperCamelCase = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
363
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def _A( lowerCAmelCase ): A__ : int = fname.split(os.path.sep )[-1] return re.search(r"""^(.*)_\d+\.jpg$""" , lowerCAmelCase ).groups()[0] class __UpperCAmelCase (__A ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=None , snake_case_=None ): '''simple docstring''' A__ : Dict = file_names A__ : str = image_transform A__ : Dict = label_to_id def __len__( self ): '''simple docstring''' return len(self.file_names ) def __getitem__( self , snake_case_ ): '''simple docstring''' A__ : Optional[Any] = self.file_names[idx] A__ : Optional[Any] = PIL.Image.open(snake_case_ ) A__ : str = raw_image.convert("""RGB""" ) if self.image_transform is not None: A__ : Optional[int] = self.image_transform(snake_case_ ) A__ : Dict = extract_label(snake_case_ ) if self.label_to_id is not None: A__ : List[Any] = self.label_to_id[label] return {"image": image, "label": label} def _A( lowerCAmelCase , lowerCAmelCase ): # Initialize accelerator if args.with_tracking: A__ : List[Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="""all""" , project_dir=args.project_dir ) else: A__ : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ : List[Any] = config["""lr"""] A__ : Any = int(config["""num_epochs"""] ) A__ : List[Any] = int(config["""seed"""] ) A__ : Tuple = int(config["""batch_size"""] ) A__ : List[str] = config["""image_size"""] if not isinstance(lowerCAmelCase , (list, tuple) ): A__ : List[str] = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , """isdigit""" ): if args.checkpointing_steps == "epoch": A__ : List[Any] = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): A__ : int = int(args.checkpointing_steps ) else: raise ValueError( F'''Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.''' ) else: A__ : Any = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: A__ : int = os.path.split(lowerCAmelCase )[-1].split(""".""" )[0] accelerator.init_trackers(lowerCAmelCase , lowerCAmelCase ) # Grab all the image filenames A__ : Union[str, Any] = [os.path.join(args.data_dir , lowerCAmelCase ) for fname in os.listdir(args.data_dir ) if fname.endswith(""".jpg""" )] # Build the label correspondences A__ : int = [extract_label(lowerCAmelCase ) for fname in file_names] A__ : Dict = list(set(lowerCAmelCase ) ) id_to_label.sort() A__ : int = {lbl: i for i, lbl in enumerate(lowerCAmelCase )} # Set the seed before splitting the data. np.random.seed(lowerCAmelCase ) torch.manual_seed(lowerCAmelCase ) torch.cuda.manual_seed_all(lowerCAmelCase ) # Split our filenames between train and validation A__ : str = np.random.permutation(len(lowerCAmelCase ) ) A__ : Optional[int] = int(0.8 * len(lowerCAmelCase ) ) A__ : Union[str, Any] = random_perm[:cut] A__ : Optional[int] = random_perm[cut:] # For training we use a simple RandomResizedCrop A__ : Union[str, Any] = Compose([RandomResizedCrop(lowerCAmelCase , scale=(0.5, 1.0) ), ToTensor()] ) A__ : Dict = PetsDataset( [file_names[i] for i in train_split] , image_transform=lowerCAmelCase , label_to_id=lowerCAmelCase ) # For evaluation, we use a deterministic Resize A__ : Optional[int] = Compose([Resize(lowerCAmelCase ), ToTensor()] ) A__ : Optional[Any] = PetsDataset([file_names[i] for i in eval_split] , image_transform=lowerCAmelCase , label_to_id=lowerCAmelCase ) # Instantiate dataloaders. A__ : List[Any] = DataLoader(lowerCAmelCase , shuffle=lowerCAmelCase , batch_size=lowerCAmelCase , num_workers=4 ) A__ : str = DataLoader(lowerCAmelCase , shuffle=lowerCAmelCase , batch_size=lowerCAmelCase , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ : Dict = create_model("""resnet50d""" , pretrained=lowerCAmelCase , num_classes=len(lowerCAmelCase ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ : Tuple = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): A__ : Any = False for param in model.get_classifier().parameters(): A__ : Dict = True # We normalize the batches of images to be a bit faster. A__ : List[Any] = torch.tensor(model.default_cfg["""mean"""] )[None, :, None, None].to(accelerator.device ) A__ : int = torch.tensor(model.default_cfg["""std"""] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer A__ : str = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler A__ : Optional[int] = OneCycleLR(optimizer=lowerCAmelCase , max_lr=lowerCAmelCase , epochs=lowerCAmelCase , steps_per_epoch=len(lowerCAmelCase ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ : Dict = accelerator.prepare( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # We need to keep track of how many total steps we have iterated over A__ : str = 0 # We also need to keep track of the starting epoch so files are named properly A__ : Union[str, Any] = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F'''Resumed from checkpoint: {args.resume_from_checkpoint}''' ) accelerator.load_state(args.resume_from_checkpoint ) A__ : Dict = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint A__ : Tuple = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) A__ : Optional[Any] = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` A__ : Optional[Any] = os.path.splitext(lowerCAmelCase )[0] if "epoch" in training_difference: A__ : Optional[Any] = int(training_difference.replace("""epoch_""" , """""" ) ) + 1 A__ : int = None else: A__ : Optional[Any] = int(training_difference.replace("""step_""" , """""" ) ) A__ : Union[str, Any] = resume_step // len(lowerCAmelCase ) resume_step -= starting_epoch * len(lowerCAmelCase ) # Now we train the model for epoch in range(lowerCAmelCase , lowerCAmelCase ): model.train() if args.with_tracking: A__ : List[Any] = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step A__ : int = accelerator.skip_first_batches(lowerCAmelCase , lowerCAmelCase ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader A__ : Optional[int] = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. A__ : Union[str, Any] = {k: v.to(accelerator.device ) for k, v in batch.items()} A__ : Any = (batch["""image"""] - mean) / std A__ : Tuple = model(lowerCAmelCase ) A__ : int = torch.nn.functional.cross_entropy(lowerCAmelCase , batch["""label"""] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(lowerCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(lowerCAmelCase , lowerCAmelCase ): A__ : Union[str, Any] = F'''step_{overall_step}''' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: A__ : List[str] = os.path.join(args.output_dir , lowerCAmelCase ) accelerator.save_state(lowerCAmelCase ) model.eval() A__ : Any = 0 A__ : Tuple = 0 for step, batch in enumerate(lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. A__ : List[Any] = {k: v.to(accelerator.device ) for k, v in batch.items()} A__ : Any = (batch["""image"""] - mean) / std with torch.no_grad(): A__ : Optional[int] = model(lowerCAmelCase ) A__ : Tuple = outputs.argmax(dim=-1 ) A__ , A__ : Tuple = accelerator.gather_for_metrics((predictions, batch["""label"""]) ) A__ : int = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() A__ : List[Any] = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}: {100 * eval_metric:.2f}''' ) if args.with_tracking: accelerator.log( { """accuracy""": 100 * eval_metric, """train_loss""": total_loss.item() / len(lowerCAmelCase ), """epoch""": epoch, } , step=lowerCAmelCase , ) if checkpointing_steps == "epoch": A__ : Any = F'''epoch_{epoch}''' if args.output_dir is not None: A__ : Any = os.path.join(args.output_dir , lowerCAmelCase ) accelerator.save_state(lowerCAmelCase ) if args.with_tracking: accelerator.end_training() def _A( ): A__ : Union[str, Any] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument("""--data_dir""" , required=lowerCAmelCase , help="""The data folder on disk.""" ) parser.add_argument("""--fp16""" , action="""store_true""" , help="""If passed, will use FP16 training.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCAmelCase , default=lowerCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) parser.add_argument( """--checkpointing_steps""" , type=lowerCAmelCase , default=lowerCAmelCase , help="""Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.""" , ) parser.add_argument( """--output_dir""" , type=lowerCAmelCase , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=lowerCAmelCase , default=lowerCAmelCase , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--with_tracking""" , action="""store_true""" , help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" , ) parser.add_argument( """--project_dir""" , type=lowerCAmelCase , default="""logs""" , help="""Location on where to store experiment tracking logs` and relevent project information""" , ) A__ : Optional[Any] = parser.parse_args() A__ : Any = {"""lr""": 3E-2, """num_epochs""": 3, """seed""": 42, """batch_size""": 64, """image_size""": 224} training_function(lowerCAmelCase , lowerCAmelCase ) if __name__ == "__main__": main()
363
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ,A_ : Optional[Any] ,) -> Optional[int]: A = parent A = 13 A = 7 A = True A = True A = True A = 99 A = 32 A = 2 A = 4 A = 37 A = 'gelu' A = 0.1 A = 0.1 A = 512 A = 16 A = 2 A = 0.02 A = 3 A = 4 A = None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,self.num_choices ) A = EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,pad_token_id=1 ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = self.prepare_config_and_inputs() A = True A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : List[str] ,A_ : Optional[int] ,A_ : List[Any] ,A_ : Any ,A_ : Any ) -> Dict: A = TFEsmModel(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) A = [input_ids, input_mask] A = model(A_ ) A = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Any ,A_ : Union[str, Any] ,A_ : Tuple ,A_ : int ,A_ : List[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[str] ,) -> Optional[int]: A = True A = TFEsmModel(config=A_ ) A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } A = model(A_ ) A = [input_ids, input_mask] A = model(A_ ,encoder_hidden_states=A_ ) # Also check the case where encoder outputs are not passed A = model(A_ ,attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : List[Any] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[Any] ) -> Dict: A = TFEsmForMaskedLM(config=A_ ) A = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : str ,A_ : List[Any] ,A_ : int ,A_ : Tuple ,A_ : Optional[int] ) -> Union[str, Any]: A = self.num_labels A = TFEsmForTokenClassification(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) _lowerCamelCase: List[str] = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase: Union[str, Any] = False _lowerCamelCase: List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: A = TFEsmModelTester(self ) A = ConfigTester(self ,config_class=A_ ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = TFEsmModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip('Protein models do not support embedding resizing.' ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip('Protein models do not support embedding resizing.' ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ) assert isinstance(model.get_input_embeddings() ,tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer A = model.get_bias() assert isinstance(A_ ,A_ ) for k, v in name.items(): assert isinstance(A_ ,tf.Variable ) else: A = model.get_output_embeddings() assert x is None A = model.get_bias() assert name is None @require_tf class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A = tf.constant([[0, 1, 2, 3, 4, 5]] ) A = model(A_ )[0] A = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) ,A_ ) # compare the actual values for a slice. A = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-2 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) A = model(A_ )[0] # compare the actual values for a slice. A = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
22
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ,A_ : Optional[Any] ,) -> Optional[int]: A = parent A = 13 A = 7 A = True A = True A = True A = 99 A = 32 A = 2 A = 4 A = 37 A = 'gelu' A = 0.1 A = 0.1 A = 512 A = 16 A = 2 A = 0.02 A = 3 A = 4 A = None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,self.num_choices ) A = EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,pad_token_id=1 ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = self.prepare_config_and_inputs() A = True A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : List[str] ,A_ : Optional[int] ,A_ : List[Any] ,A_ : Any ,A_ : Any ) -> Dict: A = TFEsmModel(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) A = [input_ids, input_mask] A = model(A_ ) A = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Any ,A_ : Union[str, Any] ,A_ : Tuple ,A_ : int ,A_ : List[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[str] ,) -> Optional[int]: A = True A = TFEsmModel(config=A_ ) A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } A = model(A_ ) A = [input_ids, input_mask] A = model(A_ ,encoder_hidden_states=A_ ) # Also check the case where encoder outputs are not passed A = model(A_ ,attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : List[Any] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[Any] ) -> Dict: A = TFEsmForMaskedLM(config=A_ ) A = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : str ,A_ : List[Any] ,A_ : int ,A_ : Tuple ,A_ : Optional[int] ) -> Union[str, Any]: A = self.num_labels A = TFEsmForTokenClassification(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) _lowerCamelCase: List[str] = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase: Union[str, Any] = False _lowerCamelCase: List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: A = TFEsmModelTester(self ) A = ConfigTester(self ,config_class=A_ ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = TFEsmModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip('Protein models do not support embedding resizing.' ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip('Protein models do not support embedding resizing.' ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ) assert isinstance(model.get_input_embeddings() ,tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer A = model.get_bias() assert isinstance(A_ ,A_ ) for k, v in name.items(): assert isinstance(A_ ,tf.Variable ) else: A = model.get_output_embeddings() assert x is None A = model.get_bias() assert name is None @require_tf class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A = tf.constant([[0, 1, 2, 3, 4, 5]] ) A = model(A_ )[0] A = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) ,A_ ) # compare the actual values for a slice. A = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-2 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) A = model(A_ )[0] # compare the actual values for a slice. A = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
22
1
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = MobileBertTokenizer _SCREAMING_SNAKE_CASE : str = MobileBertTokenizerFast _SCREAMING_SNAKE_CASE : Union[str, Any] = True _SCREAMING_SNAKE_CASE : List[str] = True _SCREAMING_SNAKE_CASE : Optional[Any] = filter_non_english _SCREAMING_SNAKE_CASE : Optional[Any] = "google/mobilebert-uncased" def a ( self : Any ) -> Any: super().setUp() __snake_case = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) __snake_case = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int ) -> List[Any]: __snake_case = 'UNwant\u00E9d,running' __snake_case = 'unwanted, running' return input_text, output_text def a ( self : Dict ) -> Any: __snake_case = self.tokenizer_class(self.vocab_file ) __snake_case = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [9, 6, 7, 12, 10, 11] ) def a ( self : Optional[Any] ) -> List[Any]: if not self.test_rust_tokenizer: return __snake_case = self.get_tokenizer() __snake_case = self.get_rust_tokenizer() __snake_case = 'UNwant\u00E9d,running' __snake_case = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) __snake_case = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) __snake_case = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_rust_tokenizer() __snake_case = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) __snake_case = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # With lower casing __snake_case = self.get_tokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_rust_tokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ ) __snake_case = 'UNwant\u00E9d,running' __snake_case = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) __snake_case = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) __snake_case = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_rust_tokenizer() __snake_case = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) __snake_case = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> Dict: __snake_case = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def a ( self : Dict ) -> Union[str, Any]: __snake_case = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a ( self : str ) -> int: __snake_case = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def a ( self : Any ) -> Optional[Any]: __snake_case = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a ( self : List[Any] ) -> Dict: __snake_case = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a ( self : Optional[int] ) -> Dict: __snake_case = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a ( self : Dict ) -> Dict: __snake_case = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a ( self : Union[str, Any] ) -> Union[str, Any]: __snake_case = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a ( self : int ) -> Optional[Any]: __snake_case = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def a ( self : List[Any] ) -> Dict: __snake_case = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __snake_case = {} for i, token in enumerate(SCREAMING_SNAKE_CASE_ ): __snake_case = i __snake_case = WordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def a ( self : Optional[Any] ) -> Optional[int]: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def a ( self : List[str] ) -> List[str]: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def a ( self : Dict ) -> Optional[int]: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def a ( self : Any ) -> Dict: __snake_case = self.get_tokenizer() __snake_case = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def a ( self : List[Any] ) -> Optional[int]: __snake_case = self.tokenizer_class.from_pretrained('google/mobilebert-uncased' ) __snake_case = tokenizer.encode('sequence builders' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.encode('multi-sequence build' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def a ( self : Dict ) -> List[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __snake_case = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' __snake_case = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , ) __snake_case = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE_ , 'do_lower_case' ) else False __snake_case = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def a ( self : Union[str, Any] ) -> Tuple: __snake_case = ['的', '人', '有'] __snake_case = ''.join(SCREAMING_SNAKE_CASE_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __snake_case = True __snake_case = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = False __snake_case = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) # it is expected that only the first Chinese character is not preceded by "##". __snake_case = [ f'##{token}' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE_ ) ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class A__ ( unittest.TestCase ): def A ( self : Dict ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =tempfile.mkdtemp() _SCREAMING_SNAKE_CASE =BlipImageProcessor() _SCREAMING_SNAKE_CASE =GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) _SCREAMING_SNAKE_CASE =BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert' ) _SCREAMING_SNAKE_CASE =InstructBlipProcessor(_a , _a , _a ) processor.save_pretrained(self.tmpdirname ) def A ( self : List[str] , **_a : List[Any] ) -> List[str]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_a ).tokenizer def A ( self : Dict , **_a : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_a ).image_processor def A ( self : List[str] , **_a : Dict ) -> List[str]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_a ).qformer_tokenizer def A ( self : Optional[int] ) -> int: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def A ( self : int ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _SCREAMING_SNAKE_CASE =[Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def A ( self : str ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _SCREAMING_SNAKE_CASE =self.get_image_processor(do_normalize=_a , padding_value=1.0 ) _SCREAMING_SNAKE_CASE =InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) self.assertIsInstance(processor.qformer_tokenizer , _a ) def A ( self : int ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =self.get_qformer_tokenizer() _SCREAMING_SNAKE_CASE =InstructBlipProcessor( tokenizer=_a , image_processor=_a , qformer_tokenizer=_a ) _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =image_processor(_a , return_tensors='np' ) _SCREAMING_SNAKE_CASE =processor(images=_a , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A ( self : int ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =self.get_qformer_tokenizer() _SCREAMING_SNAKE_CASE =InstructBlipProcessor( tokenizer=_a , image_processor=_a , qformer_tokenizer=_a ) _SCREAMING_SNAKE_CASE ='lower newer' _SCREAMING_SNAKE_CASE =processor(text=_a ) _SCREAMING_SNAKE_CASE =tokenizer(_a , return_token_type_ids=_a ) _SCREAMING_SNAKE_CASE =qformer_tokenizer(_a , return_token_type_ids=_a ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['qformer_' + key] ) def A ( self : int ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =self.get_qformer_tokenizer() _SCREAMING_SNAKE_CASE =InstructBlipProcessor( tokenizer=_a , image_processor=_a , qformer_tokenizer=_a ) _SCREAMING_SNAKE_CASE ='lower newer' _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =processor(text=_a , images=_a ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def A ( self : Optional[Any] ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =self.get_qformer_tokenizer() _SCREAMING_SNAKE_CASE =InstructBlipProcessor( tokenizer=_a , image_processor=_a , qformer_tokenizer=_a ) _SCREAMING_SNAKE_CASE =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _SCREAMING_SNAKE_CASE =processor.batch_decode(_a ) _SCREAMING_SNAKE_CASE =tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def A ( self : Tuple ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =self.get_qformer_tokenizer() _SCREAMING_SNAKE_CASE =InstructBlipProcessor( tokenizer=_a , image_processor=_a , qformer_tokenizer=_a ) _SCREAMING_SNAKE_CASE ='lower newer' _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =processor(text=_a , images=_a ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , )
405
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) def _lowerCAmelCase ( __a , __a=False ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase :Any =[] # fmt: off # stem: rename_keys.append(("""cls_token""", """vit.embeddings.cls_token""") ) rename_keys.append(("""pos_embed""", """vit.embeddings.position_embeddings""") ) rename_keys.append(("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias""") ) # backbone rename_keys.append(("""patch_embed.backbone.stem.conv.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.bias""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias""") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _UpperCamelCase :str =[(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) # fmt: on return rename_keys def _lowerCAmelCase ( __a , __a , __a=False ) -> Dict: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _UpperCamelCase :int ="" else: _UpperCamelCase :Dict ="vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCamelCase :int =state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) _UpperCamelCase :Any =state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase :str =in_proj_weight[ : config.hidden_size, : ] _UpperCamelCase :int =in_proj_bias[: config.hidden_size] _UpperCamelCase :Optional[Any] =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCamelCase :Any =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCamelCase :Tuple =in_proj_weight[ -config.hidden_size :, : ] _UpperCamelCase :Any =in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( __a ) -> Tuple: '''simple docstring''' _UpperCamelCase :str =["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def _lowerCAmelCase ( __a , __a , __a ) -> Any: '''simple docstring''' _UpperCamelCase :Any =dct.pop(_lowerCAmelCase ) _UpperCamelCase :Union[str, Any] =val def _lowerCAmelCase ( ) -> Any: '''simple docstring''' _UpperCamelCase :Optional[int] ="http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCamelCase :str =Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( __a , __a , __a=False ) -> List[str]: '''simple docstring''' _UpperCamelCase :Any =BitConfig( global_padding="""same""" , layer_type="""bottleneck""" , depths=(3, 4, 9) , out_features=["""stage3"""] , embedding_dynamic_padding=_lowerCAmelCase , ) _UpperCamelCase :List[Any] =ViTHybridConfig(backbone_config=_lowerCAmelCase , image_size=3_84 , num_labels=10_00 ) _UpperCamelCase :Tuple =False # load original model from timm _UpperCamelCase :int =timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _UpperCamelCase :Optional[Any] =timm_model.state_dict() if base_model: remove_classification_head_(_lowerCAmelCase ) _UpperCamelCase :Any =create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _UpperCamelCase :Union[str, Any] ="huggingface/label-files" _UpperCamelCase :List[str] ="imagenet-1k-id2label.json" _UpperCamelCase :int =json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) _UpperCamelCase :List[Any] ={int(_lowerCAmelCase ): v for k, v in idalabel.items()} _UpperCamelCase :Tuple =idalabel _UpperCamelCase :Optional[Any] ={v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": _UpperCamelCase :Optional[int] =ViTHybridModel(_lowerCAmelCase ).eval() else: _UpperCamelCase :Any =ViTHybridForImageClassification(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # create image processor _UpperCamelCase :Dict =create_transform(**resolve_data_config({} , model=_lowerCAmelCase ) ) _UpperCamelCase :Union[str, Any] =transform.transforms _UpperCamelCase :List[Any] ={ "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } _UpperCamelCase :Tuple =ViTHybridImageProcessor( do_resize=_lowerCAmelCase , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_lowerCAmelCase , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=_lowerCAmelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) _UpperCamelCase :Tuple =prepare_img() _UpperCamelCase :Dict =transform(_lowerCAmelCase ).unsqueeze(0 ) _UpperCamelCase :Tuple =processor(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase ) # verify logits with torch.no_grad(): _UpperCamelCase :Optional[Any] =model(_lowerCAmelCase ) _UpperCamelCase :str =outputs.logits print("""Predicted class:""" , logits.argmax(-1 ).item() ) if base_model: _UpperCamelCase :Union[str, Any] =timm_model.forward_features(_lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCAmelCase , outputs.pooler_output , atol=1e-3 ) else: _UpperCamelCase :List[str] =timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCAmelCase ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print(F'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(F'''ybelkada/{vit_name}''' ) processor.push_to_hub(F'''ybelkada/{vit_name}''' ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) _lowerCamelCase = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
716
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Any = logging.get_logger(__name__) _lowerCamelCase : str = { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""", } class lowerCamelCase__ ( __snake_case ): __UpperCAmelCase = """mvp""" __UpperCAmelCase = ["""past_key_values"""] __UpperCAmelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , lowerCAmelCase__=50_267 , lowerCAmelCase__=1_024 , lowerCAmelCase__=12 , lowerCAmelCase__=4_096 , lowerCAmelCase__=16 , lowerCAmelCase__=12 , lowerCAmelCase__=4_096 , lowerCAmelCase__=16 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__="gelu" , lowerCAmelCase__=1_024 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.02 , lowerCAmelCase__=0.0 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=False , lowerCAmelCase__=100 , lowerCAmelCase__=800 , **lowerCAmelCase__ , ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase :Dict =vocab_size _UpperCamelCase :List[Any] =max_position_embeddings _UpperCamelCase :Tuple =d_model _UpperCamelCase :List[Any] =encoder_ffn_dim _UpperCamelCase :Optional[int] =encoder_layers _UpperCamelCase :List[str] =encoder_attention_heads _UpperCamelCase :List[Any] =decoder_ffn_dim _UpperCamelCase :Union[str, Any] =decoder_layers _UpperCamelCase :int =decoder_attention_heads _UpperCamelCase :Union[str, Any] =dropout _UpperCamelCase :Tuple =attention_dropout _UpperCamelCase :Union[str, Any] =activation_dropout _UpperCamelCase :Optional[Any] =activation_function _UpperCamelCase :Dict =init_std _UpperCamelCase :Optional[Any] =encoder_layerdrop _UpperCamelCase :List[Any] =decoder_layerdrop _UpperCamelCase :Optional[int] =classifier_dropout _UpperCamelCase :Optional[Any] =use_cache _UpperCamelCase :List[Any] =encoder_layers _UpperCamelCase :List[str] =scale_embedding # scale factor will be sqrt(d_model) if True _UpperCamelCase :Dict =use_prompt _UpperCamelCase :Optional[Any] =prompt_length _UpperCamelCase :Tuple =prompt_mid_dim super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , forced_eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , lowerCAmelCase__ ): _UpperCamelCase :Dict =self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' """The config can simply be saved and uploaded again to be fixed.""" )
512
0
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : str = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ) -> List[Any]: __A : Tuple = RobertaPreLayerNormConfig.from_pretrained( a__ ,architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict __A : List[str] = torch.load(hf_hub_download(repo_id=a__ ,filename="""pytorch_model.bin""" ) ) __A : Dict = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): __A : Optional[Any] = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue __A : List[Any] = tensor_value __A : List[Any] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=a__ ,config=a__ ,state_dict=a__ ) model.save_pretrained(a__ ) # convert tokenizer __A : int = AutoTokenizer.from_pretrained(a__ ) tokenizer.save_pretrained(a__ ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCAmelCase_ : Dict = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
17
from statistics import mean, stdev def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: list , lowerCAmelCase: int = 3 ) -> list: _UpperCAmelCase : Tuple = min(lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = max(lowerCAmelCase ) # normalize data return [round((x - x_min) / (x_max - x_min) , lowerCAmelCase ) for x in data] def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: list , lowerCAmelCase: int = 3 ) -> list: _UpperCAmelCase : Union[str, Any] = mean(lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = stdev(lowerCAmelCase ) # standardize data return [round((x - mu) / (sigma) , lowerCAmelCase ) for x in data]
300
0
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device a_ = False class UpperCAmelCase_ ( unittest.TestCase ): pass @nightly @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): def snake_case__ ( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self): snake_case_ : str = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa) pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) snake_case_ : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg") snake_case_ : Dict = torch.manual_seed(0) snake_case_ : int = pipe.dual_guided( prompt="first prompt" , image=lowercase_ , text_to_image_strength=0.75 , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowercase_) snake_case_ : Dict = VersatileDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa) pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) snake_case_ : List[Any] = generator.manual_seed(0) snake_case_ : Any = pipe.dual_guided( prompt="first prompt" , image=lowercase_ , text_to_image_strength=0.75 , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images assert np.abs(image - new_image).sum() < 1E-5, "Models don't have the same forward pass" def snake_case__ ( self): snake_case_ : Dict = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa) pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) snake_case_ : List[Any] = "cyberpunk 2077" snake_case_ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg") snake_case_ : Any = torch.manual_seed(0) snake_case_ : Tuple = pipe.dual_guided( prompt=lowercase_ , image=lowercase_ , text_to_image_strength=0.75 , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" , ).images snake_case_ : List[Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case_ : int = np.array([0.1_448, 0.1_619, 0.1_741, 0.1_086, 0.1_147, 0.1_128, 0.1_199, 0.1_165, 0.1_001]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 snake_case_ : Tuple = "A painting of a squirrel eating a burger " snake_case_ : Dict = torch.manual_seed(0) snake_case_ : str = pipe.text_to_image( prompt=lowercase_ , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy").images snake_case_ : Optional[Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case_ : Dict = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 snake_case_ : Tuple = pipe.image_variation(lowercase_ , generator=lowercase_ , output_type="numpy").images snake_case_ : List[Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case_ : Optional[Any] = np.array([0.3_076, 0.3_123, 0.3_284, 0.3_782, 0.3_770, 0.3_894, 0.4_297, 0.4_331, 0.4_456]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1
92
'''simple docstring''' from __future__ import annotations import math def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ): """simple docstring""" if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(__SCREAMING_SNAKE_CASE ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1, node_index * 2, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ), minimax(depth + 1, node_index * 2 + 1, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ), ) return min( minimax(depth + 1, node_index * 2, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ), minimax(depth + 1, node_index * 2 + 1, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ), ) def UpperCamelCase_ ( ): """simple docstring""" snake_case_ : int = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] snake_case_ : Union[str, Any] = math.log(len(__SCREAMING_SNAKE_CASE ), 2 ) print("Optimal value : ", end="" ) print(minimax(0, 0, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
92
1
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
61
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : int = "layoutlmv3" def __init__( self , SCREAMING_SNAKE_CASE__=50265 , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=3072 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=512 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.0_2 , SCREAMING_SNAKE_CASE__=1e-5 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=1024 , SCREAMING_SNAKE_CASE__=128 , SCREAMING_SNAKE_CASE__=128 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=128 , SCREAMING_SNAKE_CASE__=64 , SCREAMING_SNAKE_CASE__=256 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=224 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ , ) -> Any: super().__init__( vocab_size=SCREAMING_SNAKE_CASE__ , hidden_size=SCREAMING_SNAKE_CASE__ , num_hidden_layers=SCREAMING_SNAKE_CASE__ , num_attention_heads=SCREAMING_SNAKE_CASE__ , intermediate_size=SCREAMING_SNAKE_CASE__ , hidden_act=SCREAMING_SNAKE_CASE__ , hidden_dropout_prob=SCREAMING_SNAKE_CASE__ , attention_probs_dropout_prob=SCREAMING_SNAKE_CASE__ , max_position_embeddings=SCREAMING_SNAKE_CASE__ , type_vocab_size=SCREAMING_SNAKE_CASE__ , initializer_range=SCREAMING_SNAKE_CASE__ , layer_norm_eps=SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) A__ = max_ad_position_embeddings A__ = coordinate_size A__ = shape_size A__ = has_relative_attention_bias A__ = rel_pos_bins A__ = max_rel_pos A__ = has_spatial_attention_bias A__ = rel_ad_pos_bins A__ = max_rel_ad_pos A__ = text_embed A__ = visual_embed A__ = input_size A__ = num_channels A__ = patch_size A__ = classifier_dropout class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : Union[str, Any] = version.parse("1.12" ) @property def snake_case__ ( self ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) else: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels"}), ] ) @property def snake_case__ ( self ) -> float: return 1e-5 @property def snake_case__ ( self ) -> int: return 12 def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 3 , SCREAMING_SNAKE_CASE__ = 40 , SCREAMING_SNAKE_CASE__ = 40 , ) -> Mapping[str, Any]: setattr(processor.image_processor , "apply_ocr" , SCREAMING_SNAKE_CASE__ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A__ = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A__ = processor.tokenizer.num_special_tokens_to_add(SCREAMING_SNAKE_CASE__ ) A__ = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=SCREAMING_SNAKE_CASE__ ) # Generate dummy inputs according to compute batch and sequence A__ = [[" ".join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes A__ = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) A__ = self._generate_dummy_images(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = dict( processor( SCREAMING_SNAKE_CASE__ , text=SCREAMING_SNAKE_CASE__ , boxes=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , ) ) return inputs
104
0
from ..utils import DummyObject, requires_backends class lowercase_ ( metaclass=A ): __lowerCamelCase = ["transformers", "torch", "note_seq"] def __init__( self , *__A , **__A ) -> Any: requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def _snake_case ( cls , *__A , **__A ) -> Dict: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def _snake_case ( cls , *__A , **__A ) -> int: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
715
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ ( A ): def __init__( self , __A , __A=13 , __A=7 , __A=True , __A=True , __A=True , __A=True , __A=99 , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=16 , __A=2 , __A=0.02 , __A=False , __A=True , __A="None" , __A=3 , __A=4 , __A=None , ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ : Any =parent SCREAMING_SNAKE_CASE_ : Tuple =batch_size SCREAMING_SNAKE_CASE_ : Dict =seq_length SCREAMING_SNAKE_CASE_ : Dict =is_training SCREAMING_SNAKE_CASE_ : Any =use_input_mask SCREAMING_SNAKE_CASE_ : Dict =use_token_type_ids SCREAMING_SNAKE_CASE_ : List[Any] =use_labels SCREAMING_SNAKE_CASE_ : Any =vocab_size SCREAMING_SNAKE_CASE_ : Dict =hidden_size SCREAMING_SNAKE_CASE_ : int =num_hidden_layers SCREAMING_SNAKE_CASE_ : Any =num_attention_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] =intermediate_size SCREAMING_SNAKE_CASE_ : Dict =hidden_act SCREAMING_SNAKE_CASE_ : Any =hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : str =max_position_embeddings SCREAMING_SNAKE_CASE_ : Optional[Any] =type_vocab_size SCREAMING_SNAKE_CASE_ : List[Any] =type_sequence_label_size SCREAMING_SNAKE_CASE_ : Dict =initializer_range SCREAMING_SNAKE_CASE_ : List[str] =num_labels SCREAMING_SNAKE_CASE_ : Optional[int] =num_choices SCREAMING_SNAKE_CASE_ : Optional[Any] =relative_attention SCREAMING_SNAKE_CASE_ : Optional[Any] =position_biased_input SCREAMING_SNAKE_CASE_ : Union[str, Any] =pos_att_type SCREAMING_SNAKE_CASE_ : Tuple =scope def _snake_case ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ : int =None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) SCREAMING_SNAKE_CASE_ : Tuple =None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : Optional[Any] =None SCREAMING_SNAKE_CASE_ : List[str] =None SCREAMING_SNAKE_CASE_ : Optional[int] =None if self.use_labels: SCREAMING_SNAKE_CASE_ : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ : Optional[Any] =ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ : str =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ) -> Dict: return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def _snake_case ( self , __A ) -> Tuple: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def _snake_case ( self , __A , __A , __A , __A , __A , __A , __A ) -> List[Any]: SCREAMING_SNAKE_CASE_ : str =DebertaVaModel(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE_ : int =model(__A , attention_mask=__A , token_type_ids=__A )[0] SCREAMING_SNAKE_CASE_ : Optional[Any] =model(__A , token_type_ids=__A )[0] SCREAMING_SNAKE_CASE_ : int =model(__A )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def _snake_case ( self , __A , __A , __A , __A , __A , __A , __A ) -> str: SCREAMING_SNAKE_CASE_ : List[str] =DebertaVaForMaskedLM(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE_ : int =model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , __A , __A , __A , __A , __A , __A , __A ) -> List[Any]: SCREAMING_SNAKE_CASE_ : Tuple =self.num_labels SCREAMING_SNAKE_CASE_ : Dict =DebertaVaForSequenceClassification(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE_ : List[str] =model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__A ) def _snake_case ( self , __A , __A , __A , __A , __A , __A , __A ) -> Dict: SCREAMING_SNAKE_CASE_ : str =self.num_labels SCREAMING_SNAKE_CASE_ : int =DebertaVaForTokenClassification(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] =model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , __A , __A , __A , __A , __A , __A , __A ) -> Tuple: SCREAMING_SNAKE_CASE_ : Any =DebertaVaForQuestionAnswering(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE_ : Dict =model( __A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , __A , __A , __A , __A , __A , __A , __A ) -> List[str]: SCREAMING_SNAKE_CASE_ : Any =DebertaVaForMultipleChoice(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE_ : Tuple =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE_ : Any =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE_ : Dict =model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self ) -> int: SCREAMING_SNAKE_CASE_ : List[str] =self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : Optional[Any] =config_and_inputs SCREAMING_SNAKE_CASE_ : Dict ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase_ ( A , A , unittest.TestCase ): __lowerCamelCase = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) __lowerCamelCase = ( { "feature-extraction": DebertaVaModel, "fill-mask": DebertaVaForMaskedLM, "question-answering": DebertaVaForQuestionAnswering, "text-classification": DebertaVaForSequenceClassification, "token-classification": DebertaVaForTokenClassification, "zero-shot": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def _snake_case ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ : int =DebertaVaModelTester(self ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =ConfigTester(self , config_class=__A , hidden_size=37 ) def _snake_case ( self ) -> Tuple: self.config_tester.run_common_tests() def _snake_case ( self ) -> str: SCREAMING_SNAKE_CASE_ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__A ) def _snake_case ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__A ) def _snake_case ( self ) -> Any: SCREAMING_SNAKE_CASE_ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__A ) def _snake_case ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__A ) def _snake_case ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__A ) def _snake_case ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*__A ) @slow def _snake_case ( self ) -> Tuple: for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Union[str, Any] =DebertaVaModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_torch @require_sentencepiece @require_tokenizers class lowercase_ ( unittest.TestCase ): @unittest.skip(reason='''Model not available yet''' ) def _snake_case ( self ) -> str: pass @slow def _snake_case ( self ) -> str: SCREAMING_SNAKE_CASE_ : List[Any] =DebertaVaModel.from_pretrained('''microsoft/deberta-v2-xlarge''' ) SCREAMING_SNAKE_CASE_ : List[str] =torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) SCREAMING_SNAKE_CASE_ : Tuple =torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[Any] =model(__A , attention_mask=__A )[0] # compare the actual values for a slice. SCREAMING_SNAKE_CASE_ : int =torch.tensor( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __A , atol=1e-4 ) , F'{output[:, 1:4, 1:4]}' )
431
0
'''simple docstring''' def __UpperCAmelCase ( A : int ) -> int: if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(A , A ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(A ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
541
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class snake_case__ ( UpperCamelCase): a_ = ["image_processor", "tokenizer"] a_ = "LayoutLMv2ImageProcessor" a_ = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : Optional[int] , _A : str=None , _A : Optional[Any]=None , **_A : Any ) -> Tuple: if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _A , ) UpperCAmelCase_ : int = kwargs.pop('''feature_extractor''' ) UpperCAmelCase_ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_A , _A ) def __call__( self : str , _A : Optional[int] , _A : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _A : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _A : Union[List[List[int]], List[List[List[int]]]] = None , _A : Optional[Union[List[int], List[List[int]]]] = None , _A : bool = True , _A : Union[bool, str, PaddingStrategy] = False , _A : Union[bool, str, TruncationStrategy] = None , _A : Optional[int] = None , _A : int = 0 , _A : Optional[int] = None , _A : Optional[bool] = None , _A : Optional[bool] = None , _A : bool = False , _A : bool = False , _A : bool = False , _A : bool = False , _A : bool = True , _A : Optional[Union[str, TensorType]] = None , **_A : Dict , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor UpperCAmelCase_ : int = self.image_processor(images=_A , return_tensors=_A ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_A , _A ): UpperCAmelCase_ : int = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase_ : int = features['''words'''] UpperCAmelCase_ : str = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=_A , add_special_tokens=_A , padding=_A , truncation=_A , max_length=_A , stride=_A , pad_to_multiple_of=_A , return_token_type_ids=_A , return_attention_mask=_A , return_overflowing_tokens=_A , return_special_tokens_mask=_A , return_offsets_mapping=_A , return_length=_A , verbose=_A , return_tensors=_A , **_A , ) # add pixel values UpperCAmelCase_ : int = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: UpperCAmelCase_ : List[Any] = self.get_overflowing_images(_A , encoded_inputs['''overflow_to_sample_mapping'''] ) UpperCAmelCase_ : Optional[int] = images return encoded_inputs def A ( self : Union[str, Any] , _A : int , _A : Tuple ) -> Dict: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image UpperCAmelCase_ : Tuple = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_A ) != len(_A ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' F" {len(_A )} and {len(_A )}" ) return images_with_overflow def A ( self : Optional[Any] , *_A : Union[str, Any] , **_A : Union[str, Any] ) -> Tuple: return self.tokenizer.batch_decode(*_A , **_A ) def A ( self : Any , *_A : Optional[Any] , **_A : Tuple ) -> Tuple: return self.tokenizer.decode(*_A , **_A ) @property def A ( self : Union[str, Any] ) -> List[Any]: return ["input_ids", "bbox", "attention_mask", "image"] @property def A ( self : Tuple ) -> Optional[int]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _A , ) return self.image_processor_class @property def A ( self : Tuple ) -> str: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _A , ) return self.image_processor
541
1
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( """kwargs, expected""" , [ ({"""num_shards""": 0, """max_num_jobs""": 1}, []), ({"""num_shards""": 10, """max_num_jobs""": 1}, [range(10 )]), ({"""num_shards""": 10, """max_num_jobs""": 10}, [range(_lowerCamelCase , i + 1 ) for i in range(10 )]), ({"""num_shards""": 1, """max_num_jobs""": 10}, [range(1 )]), ({"""num_shards""": 10, """max_num_jobs""": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({"""num_shards""": 3, """max_num_jobs""": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> str: """simple docstring""" A : str = _distribute_shards(**_lowerCamelCase ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, max_num_jobs, expected""" , [ ({"""foo""": 0}, 10, [{"""foo""": 0}]), ({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]), ({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]), ({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]), ({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]), ] , ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: """simple docstring""" A : str = _split_gen_kwargs(_lowerCamelCase , _lowerCamelCase ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, expected""" , [ ({"""foo""": 0}, 1), ({"""shards""": [0]}, 1), ({"""shards""": [0, 1, 2, 3]}, 4), ({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4), ({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4), ({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError), ] , ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Any: """simple docstring""" if expected is RuntimeError: with pytest.raises(_lowerCamelCase ): _number_of_shards_in_gen_kwargs(_lowerCamelCase ) else: A : Dict = _number_of_shards_in_gen_kwargs(_lowerCamelCase ) assert out == expected
704
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging SCREAMING_SNAKE_CASE_:List[str] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Tuple = ["input_features", "is_longer"] def __init__( self, lowerCamelCase__=64, lowerCamelCase__=4_8000, lowerCamelCase__=480, lowerCamelCase__=10, lowerCamelCase__=1024, lowerCamelCase__=0.0, lowerCamelCase__=False, lowerCamelCase__ = 0, lowerCamelCase__ = 1_4000, lowerCamelCase__ = None, lowerCamelCase__ = "fusion", lowerCamelCase__ = "repeatpad", **lowerCamelCase__, ): super().__init__( feature_size=lowerCamelCase__, sampling_rate=lowerCamelCase__, padding_value=lowerCamelCase__, return_attention_mask=lowerCamelCase__, **lowerCamelCase__, ) A : Dict = top_db A : Tuple = truncation A : Union[str, Any] = padding A : Optional[int] = fft_window_size A : Optional[int] = (fft_window_size >> 1) + 1 A : Optional[int] = hop_length A : List[Any] = max_length_s A : List[str] = max_length_s * sampling_rate A : List[str] = sampling_rate A : Optional[int] = frequency_min A : int = frequency_max A : Any = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase__, min_frequency=lowerCamelCase__, max_frequency=lowerCamelCase__, sampling_rate=lowerCamelCase__, norm=lowerCamelCase__, mel_scale="""htk""", ) A : Union[str, Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase__, min_frequency=lowerCamelCase__, max_frequency=lowerCamelCase__, sampling_rate=lowerCamelCase__, norm="""slaney""", mel_scale="""slaney""", ) def _lowerCAmelCase ( self ): A : Optional[Any] = copy.deepcopy(self.__dict__ ) A : Tuple = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None ): A : List[str] = spectrogram( lowerCamelCase__, window_function(self.fft_window_size, """hann""" ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=lowerCamelCase__, log_mel="""dB""", ) return log_mel_spectrogram.T def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : Union[str, Any] = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk A : Dict = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk A : Union[str, Any] = [0] # randomly choose index for each part A : str = np.random.choice(ranges[0] ) A : Optional[Any] = np.random.choice(ranges[1] ) A : int = np.random.choice(ranges[2] ) A : int = mel[idx_front : idx_front + chunk_frames, :] A : Tuple = mel[idx_middle : idx_middle + chunk_frames, :] A : Union[str, Any] = mel[idx_back : idx_back + chunk_frames, :] A : Tuple = torch.tensor(mel[None, None, :] ) A : Any = torch.nn.functional.interpolate( lowerCamelCase__, size=[chunk_frames, 64], mode="""bilinear""", align_corners=lowerCamelCase__ ) A : List[str] = mel_shrink[0][0].numpy() A : Any = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 ) return mel_fusion def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": A : Tuple = True # random crop to max_length (for compatibility) -> this should be handled by self.pad A : Union[str, Any] = len(lowerCamelCase__ ) - max_length A : Dict = np.random.randint(0, overflow + 1 ) A : Union[str, Any] = waveform[idx : idx + max_length] A : List[str] = self._np_extract_fbank_features(lowerCamelCase__, self.mel_filters_slaney )[None, :] elif truncation == "fusion": A : Tuple = self._np_extract_fbank_features(lowerCamelCase__, self.mel_filters ) A : Optional[int] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed A : Optional[int] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. A : Any = np.stack([mel, mel, mel, mel], axis=0 ) A : Optional[Any] = False else: A : Tuple = self._random_mel_fusion(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) A : List[Any] = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: A : str = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": A : List[Any] = int(max_length / len(lowerCamelCase__ ) ) A : List[str] = np.stack(np.tile(lowerCamelCase__, n_repeat + 1 ) )[:max_length] if padding == "repeatpad": A : List[Any] = int(max_length / len(lowerCamelCase__ ) ) A : List[str] = np.stack(np.tile(lowerCamelCase__, lowerCamelCase__ ) ) A : Any = np.pad(lowerCamelCase__, (0, max_length - waveform.shape[0]), mode="""constant""", constant_values=0 ) if truncation == "fusion": A : str = self._np_extract_fbank_features(lowerCamelCase__, self.mel_filters ) A : Optional[Any] = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 ) else: A : Optional[int] = self._np_extract_fbank_features(lowerCamelCase__, self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self, lowerCamelCase__, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, **lowerCamelCase__, ): A : Any = truncation if truncation is not None else self.truncation A : str = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) A : Any = isinstance(lowerCamelCase__, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) A : Optional[Any] = is_batched_numpy or ( isinstance(lowerCamelCase__, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: A : Tuple = [np.asarray(lowerCamelCase__, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase__, np.ndarray ): A : str = np.asarray(lowerCamelCase__, dtype=np.floataa ) elif isinstance(lowerCamelCase__, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A : int = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A : List[str] = [np.asarray(lowerCamelCase__ )] # convert to mel spectrogram, truncate and pad if needed. A : int = [ self._get_input_mel(lowerCamelCase__, max_length if max_length else self.nb_max_samples, lowerCamelCase__, lowerCamelCase__ ) for waveform in raw_speech ] A : Optional[Any] = [] A : Optional[int] = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase__ ) is_longer.append(lowerCamelCase__ ) if truncation == "fusion" and sum(lowerCamelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer A : Optional[Any] = np.random.randint(0, len(lowerCamelCase__ ) ) A : Union[str, Any] = True if isinstance(input_mel[0], lowerCamelCase__ ): A : List[Any] = [np.asarray(lowerCamelCase__, dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool A : Optional[Any] = [[longer] for longer in is_longer] A : Tuple = {"""input_features""": input_mel, """is_longer""": is_longer} A : Any = BatchFeature(lowerCamelCase__ ) if return_tensors is not None: A : Dict = input_features.convert_to_tensors(lowerCamelCase__ ) return input_features
520
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class _lowerCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE_: torch.FloatTensor class _lowerCAmelCase ( snake_case_ , snake_case_ ): @register_to_config def __init__( self , lowerCAmelCase_ = 1_6 , lowerCAmelCase_ = 8_8 , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 0.0 , lowerCAmelCase_ = 3_2 , lowerCAmelCase_ = None , lowerCAmelCase_ = False , lowerCAmelCase_ = None , lowerCAmelCase_ = "geglu" , lowerCAmelCase_ = True , lowerCAmelCase_ = True , ) -> Union[str, Any]: super().__init__() _SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads _SCREAMING_SNAKE_CASE : Optional[Any] = attention_head_dim _SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads * attention_head_dim _SCREAMING_SNAKE_CASE : str = in_channels _SCREAMING_SNAKE_CASE : List[Any] = torch.nn.GroupNorm(num_groups=lowerCAmelCase_ , num_channels=lowerCAmelCase_ , eps=1e-6 , affine=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Optional[int] = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ ) # 3. Define transformers blocks _SCREAMING_SNAKE_CASE : Optional[Any] = nn.ModuleList( [ BasicTransformerBlock( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , dropout=lowerCAmelCase_ , cross_attention_dim=lowerCAmelCase_ , activation_fn=lowerCAmelCase_ , attention_bias=lowerCAmelCase_ , double_self_attention=lowerCAmelCase_ , norm_elementwise_affine=lowerCAmelCase_ , ) for d in range(lowerCAmelCase_ ) ] ) _SCREAMING_SNAKE_CASE : Tuple = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ ) def A ( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=1 , lowerCAmelCase_=None , lowerCAmelCase_ = True , ) -> str: _SCREAMING_SNAKE_CASE : Optional[Any] = hidden_states.shape _SCREAMING_SNAKE_CASE : Optional[Any] = batch_frames // num_frames _SCREAMING_SNAKE_CASE : List[str] = hidden_states _SCREAMING_SNAKE_CASE : List[str] = hidden_states[None, :].reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Dict = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) _SCREAMING_SNAKE_CASE : List[str] = self.norm(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : List[Any] = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , lowerCAmelCase_ , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Optional[Any] = self.proj_in(lowerCAmelCase_ ) # 2. Blocks for block in self.transformer_blocks: _SCREAMING_SNAKE_CASE : int = block( lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , timestep=lowerCAmelCase_ , cross_attention_kwargs=lowerCAmelCase_ , class_labels=lowerCAmelCase_ , ) # 3. Output _SCREAMING_SNAKE_CASE : Tuple = self.proj_out(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : List[str] = ( hidden_states[None, None, :] .reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) _SCREAMING_SNAKE_CASE : Optional[int] = hidden_states.reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Optional[int] = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=lowerCAmelCase_ )
621
'''simple docstring''' import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class SCREAMING_SNAKE_CASE__ ( snake_case_ ): """simple docstring""" A__ : int = ['''image_processor''', '''tokenizer'''] A__ : List[Any] = '''BlipImageProcessor''' A__ : int = '''AutoTokenizer''' def __init__( self , A , A , A ) -> str: super().__init__(A , A ) # add QFormer tokenizer A: List[str] = qformer_tokenizer def __call__( self , A = None , A = None , A = True , A = False , A = None , A = None , A = 0 , A = None , A = None , A = False , A = False , A = False , A = False , A = False , A = True , A = None , **A , ) -> BatchFeature: if images is None and text is None: raise ValueError("""You have to specify at least images or text.""" ) A: Dict = BatchFeature() if text is not None: A: Tuple = self.tokenizer( text=A , add_special_tokens=A , padding=A , truncation=A , max_length=A , stride=A , pad_to_multiple_of=A , return_attention_mask=A , return_overflowing_tokens=A , return_special_tokens_mask=A , return_offsets_mapping=A , return_token_type_ids=A , return_length=A , verbose=A , return_tensors=A , **A , ) encoding.update(A ) A: Optional[int] = self.qformer_tokenizer( text=A , add_special_tokens=A , padding=A , truncation=A , max_length=A , stride=A , pad_to_multiple_of=A , return_attention_mask=A , return_overflowing_tokens=A , return_special_tokens_mask=A , return_offsets_mapping=A , return_token_type_ids=A , return_length=A , verbose=A , return_tensors=A , **A , ) A: Union[str, Any] = qformer_text_encoding.pop("""input_ids""" ) A: Any = qformer_text_encoding.pop("""attention_mask""" ) if images is not None: A: Union[str, Any] = self.image_processor(A , return_tensors=A ) encoding.update(A ) return encoding def a__ ( self , *A , **A ) -> Dict: return self.tokenizer.batch_decode(*A , **A ) def a__ ( self , *A , **A ) -> List[str]: return self.tokenizer.decode(*A , **A ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def a__ ( self ) -> int: A: Any = self.tokenizer.model_input_names A: Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def a__ ( self , A , **A ) -> Optional[int]: if os.path.isfile(A ): raise ValueError(f'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(A , exist_ok=A ) A: Union[str, Any] = os.path.join(A , """qformer_tokenizer""" ) self.qformer_tokenizer.save_pretrained(A ) return super().save_pretrained(A , **A ) @classmethod def a__ ( cls , A , **A ) -> List[str]: A: int = AutoTokenizer.from_pretrained(A , subfolder="""qformer_tokenizer""" ) A: List[str] = cls._get_arguments_from_pretrained(A , **A ) args.append(A ) return cls(*A )
135
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Any = StableDiffusionInstructPixaPixPipeline UpperCAmelCase__ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width', 'cross_attention_kwargs'} UpperCAmelCase__ : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase__ : int = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase__ : int = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase__ ( self: int ): torch.manual_seed(0 ) __lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __lowerCamelCase = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) torch.manual_seed(0 ) __lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __lowerCamelCase = CLIPTextModel(UpperCamelCase_ ) __lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCamelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: List[str]=0 ): __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert("""RGB""" ) if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase_ ) __lowerCamelCase = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) __lowerCamelCase = sd_pipe(**UpperCamelCase_ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCamelCase = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase_ ) __lowerCamelCase = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) __lowerCamelCase = """french fries""" __lowerCamelCase = sd_pipe(**UpperCamelCase_ , negative_prompt=UpperCamelCase_ ) __lowerCamelCase = output.images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCamelCase = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase_ ) __lowerCamelCase = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) __lowerCamelCase = [inputs["""prompt"""]] * 2 __lowerCamelCase = np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0 __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).unsqueeze(0 ).to(UpperCamelCase_ ) __lowerCamelCase = image / 2 + 0.5 __lowerCamelCase = image.permute(0 , 3 , 1 , 2 ) __lowerCamelCase = image.repeat(2 , 1 , 1 , 1 ) __lowerCamelCase = sd_pipe(**UpperCamelCase_ ).images __lowerCamelCase = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) __lowerCamelCase = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) __lowerCamelCase = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase_ ) __lowerCamelCase = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) __lowerCamelCase = sd_pipe(**UpperCamelCase_ ).images __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = [round(UpperCamelCase_ , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(UpperCamelCase_ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) __lowerCamelCase = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCAmelCase__ ( self: Union[str, Any] ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase_ ) __lowerCamelCase = VaeImageProcessor(do_resize=UpperCamelCase_ , do_normalize=UpperCamelCase_ ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = pipe(**self.get_dummy_inputs_by_type(UpperCamelCase_ , input_image_type="""pt""" ) )[0] __lowerCamelCase = components["""vae"""] __lowerCamelCase = self.get_dummy_inputs_by_type(UpperCamelCase_ , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): __lowerCamelCase = vae.encode(inputs[image_param] ).latent_dist.mode() __lowerCamelCase = pipe(**UpperCamelCase_ )[0] __lowerCamelCase = np.abs(out - out_latents_inputs ).max() self.assertLess(UpperCamelCase_ , 1E-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Union[str, Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: str=0 ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) __lowerCamelCase = { """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def lowerCAmelCase__ ( self: str ): __lowerCamelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() __lowerCamelCase = self.get_inputs() __lowerCamelCase = pipe(**UpperCamelCase_ ).images __lowerCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) __lowerCamelCase = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=UpperCamelCase_ ) __lowerCamelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() __lowerCamelCase = self.get_inputs() __lowerCamelCase = pipe(**UpperCamelCase_ ).images __lowerCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) __lowerCamelCase = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=UpperCamelCase_ ) __lowerCamelCase = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() __lowerCamelCase = self.get_inputs() __lowerCamelCase = pipe(**UpperCamelCase_ ).images __lowerCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) __lowerCamelCase = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = 0 def callback_fn(UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: torch.FloatTensor ) -> None: __lowerCamelCase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: __lowerCamelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __lowerCamelCase = latents[0, -3:, -3:, -1] __lowerCamelCase = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: __lowerCamelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __lowerCamelCase = latents[0, -3:, -3:, -1] __lowerCamelCase = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 __lowerCamelCase = False __lowerCamelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=UpperCamelCase_ , torch_dtype=torch.floataa ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() __lowerCamelCase = self.get_inputs() pipe(**UpperCamelCase_ , callback=UpperCamelCase_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowerCAmelCase__ ( self: List[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowerCamelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=UpperCamelCase_ , torch_dtype=torch.floataa ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __lowerCamelCase = self.get_inputs() __lowerCamelCase = pipe(**UpperCamelCase_ ) __lowerCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def lowerCAmelCase__ ( self: str ): __lowerCamelCase = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 __lowerCamelCase = inputs["""image"""].resize((5_04, 5_04) ) __lowerCamelCase = """timbrooks/instruct-pix2pix""" __lowerCamelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( UpperCamelCase_ , safety_checker=UpperCamelCase_ , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() __lowerCamelCase = pipe(**UpperCamelCase_ ) __lowerCamelCase = output.images[0] __lowerCamelCase = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 5_04, 3) __lowerCamelCase = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
703
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ = get_tests_dir('fixtures/test_sentencepiece_bpe.model') class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : int = BartphoTokenizer UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : List[str] = True def lowerCAmelCase__ ( self: Tuple ): super().setUp() __lowerCamelCase = ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] __lowerCamelCase = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __lowerCamelCase = {"""unk_token""": """<unk>"""} __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""monolingual_vocab_file"""] ) with open(self.monolingual_vocab_file , """w""" , encoding="""utf-8""" ) as fp: for token in vocab_tokens: fp.write(F'{token} {vocab_tokens[token]}\n' ) __lowerCamelCase = BartphoTokenizer(UpperCamelCase_ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self: List[str] , **UpperCamelCase_: List[str] ): kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: str ): __lowerCamelCase = """This is a là test""" __lowerCamelCase = """This is a<unk><unk> test""" return input_text, output_text def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = BartphoTokenizer(UpperCamelCase_ , self.monolingual_vocab_file , **self.special_tokens_map ) __lowerCamelCase = """This is a là test""" __lowerCamelCase = """▁This ▁is ▁a ▁l à ▁t est""".split() __lowerCamelCase = tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = tokens + [tokenizer.unk_token] __lowerCamelCase = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , UpperCamelCase_ )
80
0
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _SCREAMING_SNAKE_CASE ( __snake_case : List[Any] ): if not is_accelerate_available(): return method _A = version.parse(accelerate.__version__ ).base_version if version.parse(__snake_case ) < version.parse('0.17.0' ): return method def wrapper(self : Optional[int] , *__snake_case : List[str] , **__snake_case : int ): if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ): self._hf_hook.pre_forward(self ) return method(self , *__snake_case , **__snake_case ) return wrapper
107
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class lowercase_ : """simple docstring""" def __init__( self : Optional[Any], UpperCamelCase__ : Tuple, UpperCamelCase__ : Any=2, UpperCamelCase__ : Union[str, Any]=True, UpperCamelCase__ : Optional[Any]=False, UpperCamelCase__ : int=10, UpperCamelCase__ : List[str]=3, UpperCamelCase__ : List[str]=32 * 4, UpperCamelCase__ : List[Any]=32 * 6, UpperCamelCase__ : Dict=4, UpperCamelCase__ : str=32, ) -> Dict: _A = parent _A = batch_size _A = is_training _A = use_auxiliary_loss _A = num_queries _A = num_channels _A = min_size _A = max_size _A = num_labels _A = mask_feature_size def __UpperCAmelCase ( self : List[Any] ) -> Tuple: _A = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( UpperCamelCase__ ) _A = torch.ones([self.batch_size, self.min_size, self.max_size], device=UpperCamelCase__ ) _A = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size], device=UpperCamelCase__ ) > 0.5 ).float() _A = (torch.rand((self.batch_size, self.num_labels), device=UpperCamelCase__ ) > 0.5).long() _A = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __UpperCAmelCase ( self : Tuple ) -> Optional[int]: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1], ), decoder_config=DetrConfig( decoder_ffn_dim=1_28, num_queries=self.num_queries, decoder_attention_heads=2, d_model=self.mask_feature_size, ), mask_feature_size=self.mask_feature_size, fpn_feature_size=self.mask_feature_size, num_channels=self.num_channels, num_labels=self.num_labels, ) def __UpperCAmelCase ( self : int ) -> Tuple: _A , _A , _A , _A , _A = self.prepare_config_and_inputs() _A = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def __UpperCAmelCase ( self : Optional[int], UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Dict ) -> List[Any]: _A = output.encoder_hidden_states _A = output.pixel_decoder_hidden_states _A = output.transformer_decoder_hidden_states self.parent.assertTrue(len(UpperCamelCase__ ), len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCamelCase__ ), len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCamelCase__ ), config.decoder_config.decoder_layers ) def __UpperCAmelCase ( self : Any, UpperCamelCase__ : Any, UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Optional[int], UpperCamelCase__ : Optional[Any]=False ) -> Optional[Any]: with torch.no_grad(): _A = MaskFormerModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _A = model(pixel_values=UpperCamelCase__, pixel_mask=UpperCamelCase__ ) _A = model(UpperCamelCase__, output_hidden_states=UpperCamelCase__ ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape, (self.batch_size, self.num_queries, self.mask_feature_size), ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(UpperCamelCase__, UpperCamelCase__ ) def __UpperCAmelCase ( self : List[Any], UpperCamelCase__ : Tuple, UpperCamelCase__ : Optional[Any], UpperCamelCase__ : int, UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Tuple ) -> str: _A = MaskFormerForInstanceSegmentation(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() def comm_check_on_output(UpperCamelCase__ : Any ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape, (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4), ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _A = model(pixel_values=UpperCamelCase__, pixel_mask=UpperCamelCase__ ) _A = model(UpperCamelCase__ ) comm_check_on_output(UpperCamelCase__ ) _A = model( pixel_values=UpperCamelCase__, pixel_mask=UpperCamelCase__, mask_labels=UpperCamelCase__, class_labels=UpperCamelCase__ ) comm_check_on_output(UpperCamelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape, torch.Size([1] ) ) @require_torch class lowercase_ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" __lowerCAmelCase = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () __lowerCAmelCase = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def __UpperCAmelCase ( self : Optional[Any] ) -> Tuple: _A = MaskFormerModelTester(self ) _A = ConfigTester(self, config_class=UpperCamelCase__, has_text_modality=UpperCamelCase__ ) def __UpperCAmelCase ( self : List[str] ) -> int: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Dict ) -> int: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCamelCase__, **UpperCamelCase__, output_hidden_states=UpperCamelCase__ ) def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*UpperCamelCase__ ) @unittest.skip(reason='MaskFormer does not use inputs_embeds' ) def __UpperCAmelCase ( self : Optional[Any] ) -> Any: pass @unittest.skip(reason='MaskFormer does not have a get_input_embeddings method' ) def __UpperCAmelCase ( self : Dict ) -> Union[str, Any]: pass @unittest.skip(reason='MaskFormer is not a generative model' ) def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: pass @unittest.skip(reason='MaskFormer does not use token embeddings' ) def __UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip( reason='MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def __UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __UpperCAmelCase ( self : Any ) -> Any: pass def __UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(UpperCamelCase__ ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ['pixel_values'] self.assertListEqual(arg_names[:1], UpperCamelCase__ ) @slow def __UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: for model_name in ["facebook/maskformer-swin-small-coco"]: _A = MaskFormerModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def __UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: _A = (self.model_tester.min_size,) * 2 _A = { 'pixel_values': torch.randn((2, 3, *size), device=UpperCamelCase__ ), 'mask_labels': torch.randn((2, 10, *size), device=UpperCamelCase__ ), 'class_labels': torch.zeros(2, 10, device=UpperCamelCase__ ).long(), } _A = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(UpperCamelCase__ ) _A = model(**UpperCamelCase__ ) self.assertTrue(outputs.loss is not None ) def __UpperCAmelCase ( self : Dict ) -> Dict: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCamelCase__, **UpperCamelCase__, output_hidden_states=UpperCamelCase__ ) def __UpperCAmelCase ( self : int ) -> Tuple: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(UpperCamelCase__ ).to(UpperCamelCase__ ) _A = model(**UpperCamelCase__, output_attentions=UpperCamelCase__ ) self.assertTrue(outputs.attentions is not None ) def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss _A = self.all_model_classes[1] _A , _A , _A , _A , _A = self.model_tester.prepare_config_and_inputs() _A = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() _A = model(UpperCamelCase__, mask_labels=UpperCamelCase__, class_labels=UpperCamelCase__ ).loss loss.backward() def __UpperCAmelCase ( self : Dict ) -> List[str]: # only MaskFormerForInstanceSegmentation has the loss _A = self.all_model_classes[1] _A , _A , _A , _A , _A = self.model_tester.prepare_config_and_inputs() _A = True _A = True _A = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() _A = model(UpperCamelCase__, mask_labels=UpperCamelCase__, class_labels=UpperCamelCase__ ) _A = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _A = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't _A = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _A = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=UpperCamelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _UpperCAmelCase : Any = 1E-4 def _SCREAMING_SNAKE_CASE ( ): _A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class lowercase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __UpperCAmelCase ( self : str ) -> Optional[int]: return ( MaskFormerImageProcessor.from_pretrained('facebook/maskformer-swin-small-coco' ) if is_vision_available() else None ) def __UpperCAmelCase ( self : Any ) -> List[str]: _A = MaskFormerModel.from_pretrained('facebook/maskformer-swin-small-coco' ).to(UpperCamelCase__ ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(UpperCamelCase__, return_tensors='pt' ).to(UpperCamelCase__ ) _A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCamelCase__, (1, 3, 8_00, 10_88) ) with torch.no_grad(): _A = model(**UpperCamelCase__ ) _A = torch.tensor( [[-0.0_482, 0.9_228, 0.4_951], [-0.2_547, 0.8_017, 0.8_527], [-0.0_069, 0.3_385, -0.0_089]] ).to(UpperCamelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3], UpperCamelCase__, atol=UpperCamelCase__ ) ) _A = torch.tensor( [[-0.8_422, -0.8_434, -0.9_718], [-1.0_144, -0.5_565, -0.4_195], [-1.0_038, -0.4_484, -0.1_961]] ).to(UpperCamelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3], UpperCamelCase__, atol=UpperCamelCase__ ) ) _A = torch.tensor( [[0.2_852, -0.0_159, 0.9_735], [0.6_254, 0.1_858, 0.8_529], [-0.0_680, -0.4_116, 1.8_413]] ).to(UpperCamelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3], UpperCamelCase__, atol=UpperCamelCase__ ) ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: _A = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(UpperCamelCase__ ) .eval() ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(UpperCamelCase__, return_tensors='pt' ).to(UpperCamelCase__ ) _A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCamelCase__, (1, 3, 8_00, 10_88) ) with torch.no_grad(): _A = model(**UpperCamelCase__ ) # masks_queries_logits _A = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape, (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4), ) _A = [ [-1.3_737_124, -1.7_724_937, -1.9_364_233], [-1.5_977_281, -1.9_867_939, -2.1_523_695], [-1.5_795_398, -1.9_269_832, -2.093_942], ] _A = torch.tensor(UpperCamelCase__ ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3], UpperCamelCase__, atol=UpperCamelCase__ ) ) # class_queries_logits _A = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape, (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _A = torch.tensor( [ [1.6512e00, -5.2572e00, -3.3519e00], [3.6169e-02, -5.9025e00, -2.9313e00], [1.0766e-04, -7.7630e00, -5.1263e00], ] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3], UpperCamelCase__, atol=UpperCamelCase__ ) ) def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: _A = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-resnet101-coco-stuff' ) .to(UpperCamelCase__ ) .eval() ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(UpperCamelCase__, return_tensors='pt' ).to(UpperCamelCase__ ) _A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCamelCase__, (1, 3, 8_00, 10_88) ) with torch.no_grad(): _A = model(**UpperCamelCase__ ) # masks_queries_logits _A = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape, (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4), ) _A = [[-0.9_046, -2.6_366, -4.6_062], [-3.4_179, -5.7_890, -8.8_057], [-4.9_179, -7.6_560, -10.7_711]] _A = torch.tensor(UpperCamelCase__ ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3], UpperCamelCase__, atol=UpperCamelCase__ ) ) # class_queries_logits _A = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape, (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _A = torch.tensor( [[4.7_188, -3.2_585, -2.8_857], [6.6_871, -2.9_181, -1.2_487], [7.2_449, -2.2_764, -2.1_874]] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3], UpperCamelCase__, atol=UpperCamelCase__ ) ) def __UpperCAmelCase ( self : Dict ) -> int: _A = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(UpperCamelCase__ ) .eval() ) _A = self.default_image_processor _A = image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )], segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )], return_tensors='pt', ) _A = inputs['pixel_values'].to(UpperCamelCase__ ) _A = [el.to(UpperCamelCase__ ) for el in inputs['mask_labels']] _A = [el.to(UpperCamelCase__ ) for el in inputs['class_labels']] with torch.no_grad(): _A = model(**UpperCamelCase__ ) self.assertTrue(outputs.loss is not None )
107
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : List[Any] = { 'configuration_distilbert': [ 'DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DistilBertConfig', 'DistilBertOnnxConfig', ], 'tokenization_distilbert': ['DistilBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int = ['DistilBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict = [ 'DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DistilBertForMaskedLM', 'DistilBertForMultipleChoice', 'DistilBertForQuestionAnswering', 'DistilBertForSequenceClassification', 'DistilBertForTokenClassification', 'DistilBertModel', 'DistilBertPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any = [ 'TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDistilBertForMaskedLM', 'TFDistilBertForMultipleChoice', 'TFDistilBertForQuestionAnswering', 'TFDistilBertForSequenceClassification', 'TFDistilBertForTokenClassification', 'TFDistilBertMainLayer', 'TFDistilBertModel', 'TFDistilBertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[int] = [ 'FlaxDistilBertForMaskedLM', 'FlaxDistilBertForMultipleChoice', 'FlaxDistilBertForQuestionAnswering', 'FlaxDistilBertForSequenceClassification', 'FlaxDistilBertForTokenClassification', 'FlaxDistilBertModel', 'FlaxDistilBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __lowerCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
662
import math import flax.linen as nn import jax.numpy as jnp def __magic_name__ ( A : jnp.ndarray, A : int, A : float = 1, A : float = 1, A : float = 1.0E4, A : bool = False, A : float = 1.0, ): '''simple docstring''' assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F"""Embedding dimension {embedding_dim} should be even""" a = float(embedding_dim // 2 ) a = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) a = min_timescale * jnp.exp(jnp.arange(A, dtype=jnp.floataa ) * -log_timescale_increment ) a = jnp.expand_dims(A, 1 ) * jnp.expand_dims(A, 0 ) # scale embeddings a = scale * emb if flip_sin_to_cos: a = jnp.concatenate([jnp.cos(A ), jnp.sin(A )], axis=1 ) else: a = jnp.concatenate([jnp.sin(A ), jnp.cos(A )], axis=1 ) a = jnp.reshape(A, [jnp.shape(A )[0], embedding_dim] ) return signal class snake_case__ (nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = 32 SCREAMING_SNAKE_CASE_ : jnp.dtype = jnp.floataa @nn.compact def __call__( self : Tuple , __lowerCamelCase : Optional[Any] ) -> List[Any]: a = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="linear_1" )(__lowerCamelCase ) a = nn.silu(__lowerCamelCase ) a = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="linear_2" )(__lowerCamelCase ) return temb class snake_case__ (nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = 32 SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : float = 1 @nn.compact def __call__( self : Tuple , __lowerCamelCase : int ) -> Union[str, Any]: return get_sinusoidal_embeddings( __lowerCamelCase , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
662
1
"""simple docstring""" import os from collections import deque import torch from torch.utils.data import Dataset class UpperCamelCase_ ( a_ ): def __init__( self , snake_case__="" , snake_case__="train" ) -> Optional[Any]: """simple docstring""" assert os.path.isdir(snake_case__ ) UpperCAmelCase = [] UpperCAmelCase = os.listdir(snake_case__ ) for story_filename in story_filenames_list: if "summary" in story_filename: continue UpperCAmelCase = os.path.join(snake_case__ , snake_case__ ) if not os.path.isfile(snake_case__ ): continue self.documents.append(snake_case__ ) def __len__( self ) -> Optional[Any]: """simple docstring""" return len(self.documents ) def __getitem__( self , snake_case__ ) -> Tuple: """simple docstring""" UpperCAmelCase = self.documents[idx] UpperCAmelCase = document_path.split("""/""" )[-1] with open(snake_case__ , encoding="""utf-8""" ) as source: UpperCAmelCase = source.read() UpperCAmelCase , UpperCAmelCase = process_story(snake_case__ ) return document_name, story_lines, summary_lines def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = list(filter(lambda lowerCAmelCase : len(lowerCAmelCase ) != 0 , [line.strip() for line in raw_story.split("""\n""" )] ) ) # for some unknown reason some lines miss a period, add it UpperCAmelCase = [_add_missing_period(lowerCAmelCase ) for line in nonempty_lines] # gather article lines UpperCAmelCase = [] UpperCAmelCase = deque(lowerCAmelCase ) while True: try: UpperCAmelCase = lines.popleft() if element.startswith("""@highlight""" ): break story_lines.append(lowerCAmelCase ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines UpperCAmelCase = list(filter(lambda lowerCAmelCase : not t.startswith("""@highlight""" ) , lowerCAmelCase ) ) return story_lines, summary_lines def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = [""".""", """!""", """?""", """...""", """'""", """`""", """\"""", """\u2019""", """\u2019""", """)"""] if line.startswith("""@highlight""" ): return line if line[-1] in END_TOKENS: return line return line + "." def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' if len(lowerCAmelCase ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(lowerCAmelCase )) ) return sequence def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = torch.ones_like(lowerCAmelCase ) UpperCAmelCase = sequence == pad_token_id UpperCAmelCase = 0 return mask def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = [tokenizer.encode(lowerCAmelCase ) for line in story_lines] UpperCAmelCase = [token for sentence in story_lines_token_ids for token in sentence] UpperCAmelCase = [tokenizer.encode(lowerCAmelCase ) for line in summary_lines] UpperCAmelCase = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = [] for sequence in batch: UpperCAmelCase = -1 UpperCAmelCase = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(lowerCAmelCase ) return torch.tensor(lowerCAmelCase )
673
"""simple docstring""" import math def _lowerCAmelCase ( lowerCAmelCase = 100 ): '''simple docstring''' UpperCAmelCase = sum(i * i for i in range(1 , n + 1 ) ) UpperCAmelCase = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'{solution() = }')
673
1
from __future__ import annotations from typing import Any class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase ): _lowercase : Any = num_of_nodes _lowercase : list[list[int]] = [] _lowercase : dict[int, int] = {} def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): self.m_edges.append([u_node, v_node, weight] ) def __a ( self , _lowerCAmelCase ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def __a ( self , _lowerCAmelCase ): if self.m_component[u_node] != u_node: for k in self.m_component: _lowercase : Optional[int] = self.find_component(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if component_size[u_node] <= component_size[v_node]: _lowercase : str = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowerCAmelCase ) elif component_size[u_node] >= component_size[v_node]: _lowercase : Any = self.find_component(_lowerCAmelCase ) component_size[u_node] += component_size[v_node] self.set_component(_lowerCAmelCase ) def __a ( self ): _lowercase : Any = [] _lowercase : Optional[Any] = 0 _lowercase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _lowercase : str = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _lowercase , _lowercase , _lowercase : List[str] = edge _lowercase : Union[str, Any] = self.m_component[u] _lowercase : Union[str, Any] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _lowercase : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase , _lowercase , _lowercase : int = edge _lowercase : Optional[int] = self.m_component[u] _lowercase : Optional[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 _lowercase : str = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def __magic_name__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
677
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Dict = "longformer" def __init__( self , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 1 , _lowerCAmelCase = 0 , _lowerCAmelCase = 2 , _lowerCAmelCase = 3_0_5_2_2 , _lowerCAmelCase = 7_6_8 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 3_0_7_2 , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 1E-12 , _lowerCAmelCase = False , **_lowerCAmelCase , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) _lowercase : Optional[int] = attention_window _lowercase : str = sep_token_id _lowercase : Optional[Any] = bos_token_id _lowercase : List[Any] = eos_token_id _lowercase : Optional[Any] = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Optional[int] = num_attention_heads _lowercase : List[str] = hidden_act _lowercase : List[str] = intermediate_size _lowercase : List[Any] = hidden_dropout_prob _lowercase : str = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : int = type_vocab_size _lowercase : Optional[int] = initializer_range _lowercase : List[Any] = layer_norm_eps _lowercase : List[str] = onnx_export class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase = "default" , _lowerCAmelCase = None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : str = True @property def __a ( self ): if self.task == "multiple-choice": _lowercase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowercase : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def __a ( self ): _lowercase : Optional[int] = super().outputs if self.task == "default": _lowercase : List[str] = {0: 'batch'} return outputs @property def __a ( self ): return 1E-4 @property def __a ( self ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 1_4 ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ): _lowercase : int = super().generate_dummy_inputs( preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly _lowercase : str = torch.zeros_like(inputs['input_ids'] ) # make every second token global _lowercase : Any = 1 return inputs
677
1
'''simple docstring''' import itertools import string from collections.abc import Generator, Iterable def __a ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] ): a__ : str = iter(lowerCamelCase__ ) while True: a__ : str = tuple(itertools.islice(lowerCamelCase__ , lowerCamelCase__ ) ) if not chunk: return yield chunk def __a ( lowerCAmelCase__ : Union[str, Any] ): a__ : List[str] = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] ) a__ : int = '''''' if len(lowerCamelCase__ ) < 2: return dirty for i in range(len(lowerCamelCase__ ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(lowerCamelCase__ ) & 1: clean += "X" return clean def __a ( lowerCAmelCase__ : Dict ): # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) a__ : Optional[Any] = '''ABCDEFGHIKLMNOPQRSTUVWXYZ''' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler a__ : List[Any] = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(lowerCamelCase__ ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(lowerCamelCase__ ) return table def __a ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] ): a__ : str = generate_table(lowerCamelCase__ ) a__ : Tuple = prepare_input(lowerCamelCase__ ) a__ : int = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowerCamelCase__ , 2 ): a__ , a__ : int = divmod(table.index(lowerCamelCase__ ) , 5 ) a__ , a__ : List[Any] = divmod(table.index(lowerCamelCase__ ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def __a ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple ): a__ : List[Any] = generate_table(lowerCamelCase__ ) a__ : Dict = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowerCamelCase__ , 2 ): a__ , a__ : int = divmod(table.index(lowerCamelCase__ ) , 5 ) a__ , a__ : Any = divmod(table.index(lowerCamelCase__ ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
688
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 'MCTCTFeatureExtractor' lowerCAmelCase__ = 'AutoTokenizer' def __init__( self , lowercase , lowercase ) -> str: super().__init__(lowercase , lowercase ) lowerCamelCase_ = self.feature_extractor lowerCamelCase_ = False def __call__( self , *lowercase , **lowercase ) -> List[str]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowercase , **lowercase ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) lowerCamelCase_ = kwargs.pop("raw_speech" ) else: lowerCamelCase_ = kwargs.pop("audio" , lowercase ) lowerCamelCase_ = kwargs.pop("sampling_rate" , lowercase ) lowerCamelCase_ = kwargs.pop("text" , lowercase ) if len(lowercase ) > 0: lowerCamelCase_ = args[0] lowerCamelCase_ = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: lowerCamelCase_ = self.feature_extractor(lowercase , *lowercase , sampling_rate=lowercase , **lowercase ) if text is not None: lowerCamelCase_ = self.tokenizer(lowercase , **lowercase ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase_ = encodings["input_ids"] return inputs def SCREAMING_SNAKE_CASE_( self , *lowercase , **lowercase ) -> Optional[Any]: return self.tokenizer.batch_decode(*lowercase , **lowercase ) def SCREAMING_SNAKE_CASE_( self , *lowercase , **lowercase ) -> Optional[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*lowercase , **lowercase ) lowerCamelCase_ = kwargs.pop("input_features" , lowercase ) lowerCamelCase_ = kwargs.pop("labels" , lowercase ) if len(lowercase ) > 0: lowerCamelCase_ = args[0] lowerCamelCase_ = args[1:] if input_features is not None: lowerCamelCase_ = self.feature_extractor.pad(lowercase , *lowercase , **lowercase ) if labels is not None: lowerCamelCase_ = self.tokenizer.pad(lowercase , **lowercase ) if labels is None: return input_features elif input_features is None: return labels else: lowerCamelCase_ = labels["input_ids"] return input_features def SCREAMING_SNAKE_CASE_( self , *lowercase , **lowercase ) -> List[str]: return self.tokenizer.decode(*lowercase , **lowercase ) @contextmanager def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) lowerCamelCase_ = True lowerCamelCase_ = self.tokenizer yield lowerCamelCase_ = self.feature_extractor lowerCamelCase_ = False
463
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : Dict = { """configuration_blip_2""": [ """BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Blip2Config""", """Blip2QFormerConfig""", """Blip2VisionConfig""", ], """processing_blip_2""": ["""Blip2Processor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = [ """BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Blip2Model""", """Blip2QFormerModel""", """Blip2PreTrainedModel""", """Blip2ForConditionalGeneration""", """Blip2VisionModel""", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
703
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class A_ ( a_ , a_ , a_ ): @register_to_config def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : bool = False , ): super().__init__() __a = nn.Embedding(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __a = nn.Embedding(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __a = False __a = nn.Dropout(p=__SCREAMING_SNAKE_CASE ) __a = TaConfig( vocab_size=__SCREAMING_SNAKE_CASE , d_model=__SCREAMING_SNAKE_CASE , num_heads=__SCREAMING_SNAKE_CASE , d_kv=__SCREAMING_SNAKE_CASE , d_ff=__SCREAMING_SNAKE_CASE , dropout_rate=__SCREAMING_SNAKE_CASE , feed_forward_proj=__SCREAMING_SNAKE_CASE , is_decoder=__SCREAMING_SNAKE_CASE , is_encoder_decoder=__SCREAMING_SNAKE_CASE , ) __a = nn.ModuleList() for lyr_num in range(__SCREAMING_SNAKE_CASE ): __a = TaBlock(__SCREAMING_SNAKE_CASE ) self.encoders.append(__SCREAMING_SNAKE_CASE ) __a = TaLayerNorm(__SCREAMING_SNAKE_CASE ) __a = nn.Dropout(p=__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any ): __a = self.token_embedder(__SCREAMING_SNAKE_CASE ) __a = encoder_input_tokens.shape[1] __a = torch.arange(__SCREAMING_SNAKE_CASE , device=encoder_input_tokens.device ) x += self.position_encoding(__SCREAMING_SNAKE_CASE ) __a = self.dropout_pre(__SCREAMING_SNAKE_CASE ) # inverted the attention mask __a = encoder_input_tokens.size() __a = self.get_extended_attention_mask(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for lyr in self.encoders: __a = lyr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )[0] __a = self.layer_norm(__SCREAMING_SNAKE_CASE ) return self.dropout_post(__SCREAMING_SNAKE_CASE ), encoder_inputs_mask
525
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=snake_case ) class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = field(default="question-answering-extractive" , metadata={"include_in_asdict_even_if_is_default": True} ) A_ = Features({"question": Value("string" ), "context": Value("string" )} ) A_ = Features( { "answers": Sequence( { "text": Value("string" ), "answer_start": Value("int32" ), } ) } ) A_ = "question" A_ = "context" A_ = "answers" @property def __A ( self: Union[str, Any] ) -> Dict[str, str]: return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
484
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
484
1
from __future__ import annotations lowerCamelCase_ = 1.6_0_2_1E-1_9 # units = C def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ , ) -> tuple[str, float]: '''simple docstring''' if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif conductivity < 0: raise ValueError("""Conductivity cannot be negative""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative""" ) elif mobility < 0: raise ValueError("""mobility cannot be negative""" ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
709
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) lowerCamelCase_ = {'''configuration_beit''': ['''BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BeitConfig''', '''BeitOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['''BeitFeatureExtractor'''] lowerCamelCase_ = ['''BeitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''BEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BeitForImageClassification''', '''BeitForMaskedImageModeling''', '''BeitForSemanticSegmentation''', '''BeitModel''', '''BeitPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''FlaxBeitForImageClassification''', '''FlaxBeitForMaskedImageModeling''', '''FlaxBeitModel''', '''FlaxBeitPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
161
0
lowercase_ : List[str] = { 'Pillow': 'Pillow', 'accelerate': 'accelerate>=0.11.0', 'compel': 'compel==0.1.8', 'black': 'black~=23.1', 'datasets': 'datasets', 'filelock': 'filelock', 'flax': 'flax>=0.4.1', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.13.2', 'requests-mock': 'requests-mock==1.10.0', 'importlib_metadata': 'importlib_metadata', 'invisible-watermark': 'invisible-watermark', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2', 'jaxlib': 'jaxlib>=0.1.65', 'Jinja2': 'Jinja2', 'k-diffusion': 'k-diffusion>=0.0.12', 'torchsde': 'torchsde', 'note_seq': 'note_seq', 'librosa': 'librosa', 'numpy': 'numpy', 'omegaconf': 'omegaconf', 'parameterized': 'parameterized', 'protobuf': 'protobuf>=3.20.3,<4', 'pytest': 'pytest', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'ruff': 'ruff>=0.0.241', 'safetensors': 'safetensors', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'scipy': 'scipy', 'onnx': 'onnx', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'tensorboard': 'tensorboard', 'torch': 'torch>=1.4', 'torchvision': 'torchvision', 'transformers': 'transformers>=4.25.1', 'urllib3': 'urllib3<=2.0.0', }
64
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class _UpperCAmelCase ( yaml.SafeLoader ): def _snake_case ( self : Dict , UpperCAmelCase : Union[str, Any]): SCREAMING_SNAKE_CASE_ :List[Any] = [self.constructed_objects[key_node] for key_node, _ in node.value] SCREAMING_SNAKE_CASE_ :Optional[Any] = [tuple(UpperCAmelCase) if isinstance(UpperCAmelCase , UpperCAmelCase) else key for key in keys] SCREAMING_SNAKE_CASE_ :List[Any] = Counter(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :str = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F"Got duplicate yaml keys: {duplicate_keys}") def _snake_case ( self : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any]=False): SCREAMING_SNAKE_CASE_ :Optional[int] = super().construct_mapping(UpperCAmelCase , deep=UpperCAmelCase) self._check_no_duplicates_on_constructed_node(UpperCAmelCase) return mapping def lowercase ( a ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :Any = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: SCREAMING_SNAKE_CASE_ :Union[str, Any] = full_content[1:].index("---" ) + 1 SCREAMING_SNAKE_CASE_ :List[Any] = "\n".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(a ) class _UpperCAmelCase ( lowercase ): # class attributes lowerCamelCase_ : List[Any] = {"""train_eval_index"""} # train-eval-index in the YAML metadata @classmethod def _snake_case ( cls : Optional[int] , UpperCAmelCase : Path): with open(UpperCAmelCase , encoding="utf-8") as readme_file: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Optional[Any] = _split_yaml_from_readme(readme_file.read()) if yaml_string is not None: return cls.from_yaml_string(UpperCAmelCase) else: return cls() def _snake_case ( self : Dict , UpperCAmelCase : Path): if path.exists(): with open(UpperCAmelCase , encoding="utf-8") as readme_file: SCREAMING_SNAKE_CASE_ :Optional[Any] = readme_file.read() else: SCREAMING_SNAKE_CASE_ :List[str] = None SCREAMING_SNAKE_CASE_ :List[Any] = self._to_readme(UpperCAmelCase) with open(UpperCAmelCase , "w" , encoding="utf-8") as readme_file: readme_file.write(UpperCAmelCase) def _snake_case ( self : Union[str, Any] , UpperCAmelCase : Optional[str] = None): if readme_content is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :List[str] = _split_yaml_from_readme(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :int = "---\n" + self.to_yaml_string() + "---\n" + content else: SCREAMING_SNAKE_CASE_ :Any = "---\n" + self.to_yaml_string() + "---\n" return full_content @classmethod def _snake_case ( cls : List[str] , UpperCAmelCase : str): SCREAMING_SNAKE_CASE_ :Optional[Any] = yaml.load(UpperCAmelCase , Loader=_NoDuplicateSafeLoader) or {} # Convert the YAML keys to DatasetMetadata fields SCREAMING_SNAKE_CASE_ :Union[str, Any] = { (key.replace("-" , "_") if key.replace("-" , "_") in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**UpperCAmelCase) def _snake_case ( self : str): return yaml.safe_dump( { (key.replace("_" , "-") if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=UpperCAmelCase , allow_unicode=UpperCAmelCase , encoding="utf-8" , ).decode("utf-8") SCREAMING_SNAKE_CASE__ = { "image-classification": [], "translation": [], "image-segmentation": [], "fill-mask": [], "automatic-speech-recognition": [], "token-classification": [], "sentence-similarity": [], "audio-classification": [], "question-answering": [], "summarization": [], "zero-shot-classification": [], "table-to-text": [], "feature-extraction": [], "other": [], "multiple-choice": [], "text-classification": [], "text-to-image": [], "text2text-generation": [], "zero-shot-image-classification": [], "tabular-classification": [], "tabular-regression": [], "image-to-image": [], "tabular-to-text": [], "unconditional-image-generation": [], "text-retrieval": [], "text-to-speech": [], "object-detection": [], "audio-to-audio": [], "text-generation": [], "conversational": [], "table-question-answering": [], "visual-question-answering": [], "image-to-text": [], "reinforcement-learning": [], "voice-activity-detection": [], "time-series-forecasting": [], "document-question-answering": [], } if __name__ == "__main__": from argparse import ArgumentParser SCREAMING_SNAKE_CASE__ = ArgumentParser(usage="Validate the yaml metadata block of a README.md file.") ap.add_argument("readme_filepath") SCREAMING_SNAKE_CASE__ = ap.parse_args() SCREAMING_SNAKE_CASE__ = Path(args.readme_filepath) SCREAMING_SNAKE_CASE__ = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
631
0
def lowerCAmelCase ( UpperCAmelCase = 50 ) ->int: """simple docstring""" __magic_name__ : List[str] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2, 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f"{solution() = }")
705
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING lowercase_ = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class A__ ( __SCREAMING_SNAKE_CASE ): def __init__( self , *lowerCamelCase , **lowerCamelCase ) -> Dict: """simple docstring""" super().__init__(*lowerCamelCase , **lowerCamelCase ) requires_backends(self , '''decord''' ) self.check_model_type(lowerCamelCase ) def lowercase ( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None ) -> List[Any]: """simple docstring""" __magic_name__ : List[str] = {} if frame_sampling_rate is not None: __magic_name__ : Optional[int] = frame_sampling_rate if num_frames is not None: __magic_name__ : Optional[Any] = num_frames __magic_name__ : Union[str, Any] = {} if top_k is not None: __magic_name__ : Union[str, Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self , lowerCamelCase , **lowerCamelCase ) -> List[Any]: """simple docstring""" return super().__call__(lowerCamelCase , **lowerCamelCase ) def lowercase ( self , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=1 ) -> int: """simple docstring""" if num_frames is None: __magic_name__ : Any = self.model.config.num_frames if video.startswith('''http://''' ) or video.startswith('''https://''' ): __magic_name__ : str = BytesIO(requests.get(lowerCamelCase ).content ) __magic_name__ : Optional[int] = VideoReader(lowerCamelCase ) videoreader.seek(0 ) __magic_name__ : Union[str, Any] = 0 __magic_name__ : Tuple = num_frames * frame_sampling_rate - 1 __magic_name__ : Tuple = np.linspace(lowerCamelCase , lowerCamelCase , num=lowerCamelCase , dtype=np.intaa ) __magic_name__ : Union[str, Any] = videoreader.get_batch(lowerCamelCase ).asnumpy() __magic_name__ : List[str] = list(lowerCamelCase ) __magic_name__ : Tuple = self.image_processor(lowerCamelCase , return_tensors=self.framework ) return model_inputs def lowercase ( self , lowerCamelCase ) -> str: """simple docstring""" __magic_name__ : Union[str, Any] = self.model(**lowerCamelCase ) return model_outputs def lowercase ( self , lowerCamelCase , lowerCamelCase=5 ) -> Optional[Any]: """simple docstring""" if top_k > self.model.config.num_labels: __magic_name__ : Dict = self.model.config.num_labels if self.framework == "pt": __magic_name__ : Tuple = model_outputs.logits.softmax(-1 )[0] __magic_name__ , __magic_name__ : str = probs.topk(lowerCamelCase ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) __magic_name__ : List[str] = scores.tolist() __magic_name__ : Tuple = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCamelCase , lowerCamelCase )]
336
0
'''simple docstring''' import math import unittest def A__ ( A_ ) -> bool: assert isinstance(A_ , A_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case ( self : Optional[Any] ): """simple docstring""" self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(1_1 ) ) self.assertTrue(is_prime(1_3 ) ) self.assertTrue(is_prime(1_7 ) ) self.assertTrue(is_prime(1_9 ) ) self.assertTrue(is_prime(2_3 ) ) self.assertTrue(is_prime(2_9 ) ) def snake_case ( self : int ): """simple docstring""" with self.assertRaises(__A ): is_prime(-1_9 ) self.assertFalse( is_prime(0 ) , "Zero doesn't have any positive factors, primes must have exactly two." , ) self.assertFalse( is_prime(1 ) , "One only has 1 positive factor, primes must have exactly two." , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
497
'''simple docstring''' import os import sys __magic_name__ : str = os.path.join(os.path.dirname(__file__), '''src''') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) __magic_name__ : List[Any] = [ '''torch''', '''numpy''', '''tokenizers''', '''filelock''', '''requests''', '''tqdm''', '''regex''', '''sentencepiece''', '''sacremoses''', '''importlib_metadata''', '''huggingface_hub''', ] @add_start_docstrings(AutoConfig.__doc__ ) def A__ ( *A_ , **A_ ) -> List[str]: return AutoConfig.from_pretrained(*A_ , **A_ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def A__ ( *A_ , **A_ ) -> str: return AutoTokenizer.from_pretrained(*A_ , **A_ ) @add_start_docstrings(AutoModel.__doc__ ) def A__ ( *A_ , **A_ ) -> Dict: return AutoModel.from_pretrained(*A_ , **A_ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def A__ ( *A_ , **A_ ) -> int: return AutoModelForCausalLM.from_pretrained(*A_ , **A_ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def A__ ( *A_ , **A_ ) -> int: return AutoModelForMaskedLM.from_pretrained(*A_ , **A_ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def A__ ( *A_ , **A_ ) -> Any: return AutoModelForSequenceClassification.from_pretrained(*A_ , **A_ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def A__ ( *A_ , **A_ ) -> str: return AutoModelForQuestionAnswering.from_pretrained(*A_ , **A_ )
497
1
'''simple docstring''' def __lowerCAmelCase ( snake_case__ ): if edge <= 0 or not isinstance(snake_case__ , snake_case__ ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __lowerCAmelCase ( snake_case__ ): if edge <= 0 or not isinstance(snake_case__ , snake_case__ ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
701
'''simple docstring''' import math import sys import cva import numpy as np def __lowerCAmelCase ( snake_case__ , snake_case__ ): # For applying gaussian function for each element in matrix. __UpperCamelCase : Dict = math.sqrt(snake_case__ ) __UpperCamelCase : int = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ): __UpperCamelCase : List[Any] = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __lowerCAmelCase ( snake_case__ , snake_case__ ): # Creates a gaussian kernel of given dimension. __UpperCamelCase : Optional[Any] = np.zeros((kernel_size, kernel_size) ) for i in range(0 , snake_case__ ): for j in range(0 , snake_case__ ): __UpperCamelCase : Optional[Any] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(snake_case__ , snake_case__ ) def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): __UpperCamelCase : Dict = np.zeros(img.shape ) __UpperCamelCase : Dict = get_gauss_kernel(snake_case__ , snake_case__ ) __UpperCamelCase , __UpperCamelCase : Optional[Any] = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __UpperCamelCase : Tuple = get_slice(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) __UpperCamelCase : Optional[Any] = img_s - img_s[kernel_size // 2, kernel_size // 2] __UpperCamelCase : Union[str, Any] = vec_gaussian(snake_case__ , snake_case__ ) __UpperCamelCase : Optional[int] = np.multiply(snake_case__ , snake_case__ ) __UpperCamelCase : int = np.multiply(snake_case__ , snake_case__ ) __UpperCamelCase : List[Any] = np.sum(snake_case__ ) / np.sum(snake_case__ ) __UpperCamelCase : Optional[int] = val return imga def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : Any = args[1] if args[1:] else "../image_data/lena.jpg" __UpperCamelCase : Optional[Any] = float(args[2] ) if args[2:] else 1.0 __UpperCamelCase : Union[str, Any] = float(args[3] ) if args[3:] else 1.0 if args[4:]: __UpperCamelCase : Any = int(args[4] ) __UpperCamelCase : List[Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: __UpperCamelCase : Optional[Any] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parse_args(sys.argv) _lowerCAmelCase = cva.imread(filename, 0) cva.imshow('''input image''', img) _lowerCAmelCase = img / 255 _lowerCAmelCase = out.astype('''float32''') _lowerCAmelCase = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) _lowerCAmelCase = out * 255 _lowerCAmelCase = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
399
0
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar _UpperCAmelCase = TypeVar("""T""") class a ( Generic[T] ): UpperCamelCase : deque[T] # Cache store of keys UpperCamelCase : set[T] # References of the keys in cache UpperCamelCase : int = 1_0 # Maximum capacity of cache def __init__( self : Optional[int] , lowerCAmelCase : int ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =deque() SCREAMING_SNAKE_CASE_: Tuple =set() if not n: SCREAMING_SNAKE_CASE_: List[Any] =sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: SCREAMING_SNAKE_CASE_: Optional[Any] =n def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : T ) -> None: '''simple docstring''' if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: SCREAMING_SNAKE_CASE_: int =self.dq_store.pop() self.key_reference.remove(lowerCAmelCase ) else: self.dq_store.remove(lowerCAmelCase ) self.dq_store.appendleft(lowerCAmelCase ) self.key_reference.add(lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] ) -> None: '''simple docstring''' for k in self.dq_store: print(lowerCAmelCase ) def __repr__( self : List[Any] ) -> str: '''simple docstring''' return f'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase = LRUCache(4) lru_cache.refer("""A""") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("""A""") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
409
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """nvidia/segformer-b0-finetuned-ade-512-512""": ( """https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json""" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class a ( UpperCAmelCase__ ): UpperCamelCase : str = 'segformer' def __init__( self : Tuple , lowerCAmelCase : str=3 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : List[str]=[2, 2, 2, 2] , lowerCAmelCase : Optional[Any]=[8, 4, 2, 1] , lowerCAmelCase : Optional[int]=[32, 64, 160, 256] , lowerCAmelCase : int=[7, 3, 3, 3] , lowerCAmelCase : str=[4, 2, 2, 2] , lowerCAmelCase : str=[1, 2, 5, 8] , lowerCAmelCase : Union[str, Any]=[4, 4, 4, 4] , lowerCAmelCase : Union[str, Any]="gelu" , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : str=0.0_2 , lowerCAmelCase : int=0.1 , lowerCAmelCase : Union[str, Any]=1E-6 , lowerCAmelCase : List[Any]=256 , lowerCAmelCase : Tuple=255 , **lowerCAmelCase : Tuple , ) -> Tuple: '''simple docstring''' super().__init__(**lowerCAmelCase ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , lowerCAmelCase , ) SCREAMING_SNAKE_CASE_: int =num_channels SCREAMING_SNAKE_CASE_: int =num_encoder_blocks SCREAMING_SNAKE_CASE_: List[str] =depths SCREAMING_SNAKE_CASE_: Tuple =sr_ratios SCREAMING_SNAKE_CASE_: Any =hidden_sizes SCREAMING_SNAKE_CASE_: List[str] =patch_sizes SCREAMING_SNAKE_CASE_: Dict =strides SCREAMING_SNAKE_CASE_: Optional[int] =mlp_ratios SCREAMING_SNAKE_CASE_: List[str] =num_attention_heads SCREAMING_SNAKE_CASE_: int =hidden_act SCREAMING_SNAKE_CASE_: Union[str, Any] =hidden_dropout_prob SCREAMING_SNAKE_CASE_: str =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: int =classifier_dropout_prob SCREAMING_SNAKE_CASE_: Dict =initializer_range SCREAMING_SNAKE_CASE_: Any =drop_path_rate SCREAMING_SNAKE_CASE_: Union[str, Any] =layer_norm_eps SCREAMING_SNAKE_CASE_: Dict =decoder_hidden_size SCREAMING_SNAKE_CASE_: Optional[Any] =kwargs.get("""reshape_last_stage""" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =semantic_loss_ignore_index class a ( UpperCAmelCase__ ): UpperCamelCase : List[str] = version.parse('1.11' ) @property def lowerCamelCase__ ( self : str ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase__ ( self : List[Any] ) -> float: '''simple docstring''' return 1E-4 @property def lowerCamelCase__ ( self : List[Any] ) -> int: '''simple docstring''' return 12
409
1
'''simple docstring''' from __future__ import annotations import math def _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): if len(snake_case_ ) != 2 or len(a[0] ) != 2 or len(snake_case_ ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) _lowercase = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(snake_case_ ) ) ] def _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(snake_case_ ) ) ] def _SCREAMING_SNAKE_CASE ( snake_case_ ): if len(snake_case_ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) _lowercase = len(snake_case_ ) _lowercase = matrix_length // 2 _lowercase = [[a[i][j] for j in range(snake_case_ , snake_case_ )] for i in range(snake_case_ )] _lowercase = [ [a[i][j] for j in range(snake_case_ , snake_case_ )] for i in range(snake_case_ , snake_case_ ) ] _lowercase = [[a[i][j] for j in range(snake_case_ )] for i in range(snake_case_ )] _lowercase = [[a[i][j] for j in range(snake_case_ )] for i in range(snake_case_ , snake_case_ )] return top_left, top_right, bot_left, bot_right def _SCREAMING_SNAKE_CASE ( snake_case_ ): return len(snake_case_ ), len(matrix[0] ) def _SCREAMING_SNAKE_CASE ( snake_case_ ): print("""\n""".join(str(snake_case_ ) for line in matrix ) ) def _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): if matrix_dimensions(snake_case_ ) == (2, 2): return default_matrix_multiplication(snake_case_ , snake_case_ ) _lowercase , _lowercase , _lowercase , _lowercase = split_matrix(snake_case_ ) _lowercase , _lowercase , _lowercase , _lowercase = split_matrix(snake_case_ ) _lowercase = actual_strassen(snake_case_ , matrix_subtraction(snake_case_ , snake_case_ ) ) _lowercase = actual_strassen(matrix_addition(snake_case_ , snake_case_ ) , snake_case_ ) _lowercase = actual_strassen(matrix_addition(snake_case_ , snake_case_ ) , snake_case_ ) _lowercase = actual_strassen(snake_case_ , matrix_subtraction(snake_case_ , snake_case_ ) ) _lowercase = actual_strassen(matrix_addition(snake_case_ , snake_case_ ) , matrix_addition(snake_case_ , snake_case_ ) ) _lowercase = actual_strassen(matrix_subtraction(snake_case_ , snake_case_ ) , matrix_addition(snake_case_ , snake_case_ ) ) _lowercase = actual_strassen(matrix_subtraction(snake_case_ , snake_case_ ) , matrix_addition(snake_case_ , snake_case_ ) ) _lowercase = matrix_addition(matrix_subtraction(matrix_addition(snake_case_ , snake_case_ ) , snake_case_ ) , snake_case_ ) _lowercase = matrix_addition(snake_case_ , snake_case_ ) _lowercase = matrix_addition(snake_case_ , snake_case_ ) _lowercase = matrix_subtraction(matrix_subtraction(matrix_addition(snake_case_ , snake_case_ ) , snake_case_ ) , snake_case_ ) # construct the new matrix from our 4 quadrants _lowercase = [] for i in range(len(snake_case_ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(snake_case_ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): if matrix_dimensions(snake_case_ )[1] != matrix_dimensions(snake_case_ )[0]: _lowercase = ( """Unable to multiply these matrices, please check the dimensions.\n""" F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(snake_case_ ) _lowercase = matrix_dimensions(snake_case_ ) _lowercase = matrix_dimensions(snake_case_ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] _lowercase = max(*snake_case_ , *snake_case_ ) _lowercase = int(math.pow(2 , math.ceil(math.loga(snake_case_ ) ) ) ) _lowercase = matrixa _lowercase = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , snake_case_ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , snake_case_ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , snake_case_ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) _lowercase = actual_strassen(snake_case_ , snake_case_ ) # Removing the additional zeros for i in range(0 , snake_case_ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , snake_case_ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": _lowerCamelCase = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] _lowerCamelCase = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
717
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class __a ( _snake_case ): __SCREAMING_SNAKE_CASE : torch.FloatTensor __SCREAMING_SNAKE_CASE : Optional[torch.FloatTensor] = None def _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_=0.999 , snake_case_="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case_ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case_ ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _lowercase = [] for i in range(snake_case_ ): _lowercase = i / num_diffusion_timesteps _lowercase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(snake_case_ ) / alpha_bar_fn(snake_case_ ) , snake_case_ ) ) return torch.tensor(snake_case_ , dtype=torch.floataa ) class __a ( _snake_case ,_snake_case ): @register_to_config def __init__( self : Tuple , lowercase__ : int = 10_00 , lowercase__ : str = "fixed_small_log" , lowercase__ : bool = True , lowercase__ : Optional[float] = 1.0 , lowercase__ : str = "epsilon" , lowercase__ : str = "squaredcos_cap_v2" , ) ->Optional[Any]: """simple docstring""" if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""") _lowercase = betas_for_alpha_bar(lowercase__) _lowercase = 1.0 - self.betas _lowercase = torch.cumprod(self.alphas , dim=0) _lowercase = torch.tensor(1.0) # standard deviation of the initial noise distribution _lowercase = 1.0 # setable values _lowercase = None _lowercase = torch.from_numpy(np.arange(0 , lowercase__)[::-1].copy()) _lowercase = variance_type def _UpperCAmelCase ( self : Optional[Any] , lowercase__ : torch.FloatTensor , lowercase__ : Optional[int] = None) ->torch.FloatTensor: """simple docstring""" return sample def _UpperCAmelCase ( self : List[str] , lowercase__ : int , lowercase__ : Union[str, torch.device] = None) ->List[str]: """simple docstring""" _lowercase = num_inference_steps _lowercase = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) _lowercase = (np.arange(0 , lowercase__) * step_ratio).round()[::-1].copy().astype(np.intaa) _lowercase = torch.from_numpy(lowercase__).to(lowercase__) def _UpperCAmelCase ( self : int , lowercase__ : Optional[Any] , lowercase__ : int=None , lowercase__ : Optional[int]=None , lowercase__ : int=None) ->Tuple: """simple docstring""" if prev_timestep is None: _lowercase = t - 1 _lowercase = self.alphas_cumprod[t] _lowercase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _lowercase = 1 - alpha_prod_t _lowercase = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _lowercase = self.betas[t] else: _lowercase = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _lowercase = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: _lowercase = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": _lowercase = torch.log(torch.clamp(lowercase__ , min=1e-20)) _lowercase = torch.exp(0.5 * variance) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler _lowercase = variance.log() _lowercase = beta.log() _lowercase = (predicted_variance + 1) / 2 _lowercase = frac * max_log + (1 - frac) * min_log return variance def _UpperCAmelCase ( self : int , lowercase__ : torch.FloatTensor , lowercase__ : int , lowercase__ : torch.FloatTensor , lowercase__ : Optional[int] = None , lowercase__ : Any=None , lowercase__ : bool = True , ) ->Union[UnCLIPSchedulerOutput, Tuple]: """simple docstring""" _lowercase = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": _lowercase , _lowercase = torch.split(lowercase__ , sample.shape[1] , dim=1) else: _lowercase = None # 1. compute alphas, betas if prev_timestep is None: _lowercase = t - 1 _lowercase = self.alphas_cumprod[t] _lowercase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _lowercase = 1 - alpha_prod_t _lowercase = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _lowercase = self.betas[t] _lowercase = self.alphas[t] else: _lowercase = 1 - alpha_prod_t / alpha_prod_t_prev _lowercase = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _lowercase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _lowercase = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" """ for the UnCLIPScheduler.""") # 3. Clip "predicted x_0" if self.config.clip_sample: _lowercase = torch.clamp( lowercase__ , -self.config.clip_sample_range , self.config.clip_sample_range) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowercase = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t _lowercase = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowercase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _lowercase = 0 if t > 0: _lowercase = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=lowercase__ , device=model_output.device) _lowercase = self._get_variance( lowercase__ , predicted_variance=lowercase__ , prev_timestep=lowercase__ , ) if self.variance_type == "fixed_small_log": _lowercase = variance elif self.variance_type == "learned_range": _lowercase = (0.5 * variance).exp() else: raise ValueError( f"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" """ for the UnCLIPScheduler.""") _lowercase = variance * variance_noise _lowercase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=lowercase__ , pred_original_sample=lowercase__) def _UpperCAmelCase ( self : Dict , lowercase__ : torch.FloatTensor , lowercase__ : torch.FloatTensor , lowercase__ : torch.IntTensor , ) ->torch.FloatTensor: """simple docstring""" _lowercase = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype) _lowercase = timesteps.to(original_samples.device) _lowercase = alphas_cumprod[timesteps] ** 0.5 _lowercase = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape) < len(original_samples.shape): _lowercase = sqrt_alpha_prod.unsqueeze(-1) _lowercase = (1 - alphas_cumprod[timesteps]) ** 0.5 _lowercase = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): _lowercase = sqrt_one_minus_alpha_prod.unsqueeze(-1) _lowercase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
572
0
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase_ ( A__ ): def __init__( self :List[str] , *__A :List[str] , **__A :Any ) -> None: """simple docstring""" warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
6
'''simple docstring''' from __future__ import annotations UpperCamelCase__: Tuple = 1.60_21E-19 # units = C def snake_case_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float , ) -> tuple[str, float]: if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
127
0
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): # Initialise PyTorch model UpperCAmelCase_ : Optional[int] = FunnelConfig.from_json_file(__lowercase ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase_ : Optional[Any] = FunnelBaseModel(__lowercase ) if base_model else FunnelModel(__lowercase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(__lowercase , __lowercase , __lowercase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __lowercase ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--base_model', action='store_true', help='Whether you want just the base model (no decoder) or not.' ) __UpperCamelCase : str = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
711
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = multiprocessing.Manager() UpperCAmelCase_ : Union[str, Any] = manager.list() UpperCAmelCase_ : int = multiprocessing.Process(target=__lowercase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def snake_case_ ( __lowercase , __lowercase , __lowercase ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil UpperCAmelCase_ : str = shutil.rmtree UpperCAmelCase_ : Tuple = os.rmdir UpperCAmelCase_ : Dict = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: UpperCAmelCase_ : Optional[int] = {} with swallow_io(): with time_limit(__lowercase ): exec(__lowercase , __lowercase ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. UpperCAmelCase_ : Optional[int] = rmtree UpperCAmelCase_ : Optional[Any] = rmdir UpperCAmelCase_ : Optional[Any] = chdir @contextlib.contextmanager def snake_case_ ( __lowercase ): def signal_handler(__lowercase , __lowercase ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , __lowercase ) signal.signal(signal.SIGALRM , __lowercase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def snake_case_ ( ): UpperCAmelCase_ : Optional[Any] = WriteOnlyStringIO() with contextlib.redirect_stdout(__lowercase ): with contextlib.redirect_stderr(__lowercase ): with redirect_stdin(__lowercase ): yield @contextlib.contextmanager def snake_case_ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(__lowercase ): yield dirname class lowerCAmelCase__( snake_case__ ): '''simple docstring''' pass class lowerCAmelCase__( io.StringIO ): '''simple docstring''' def _lowerCamelCase ( self : Dict , *__snake_case : List[Any] , **__snake_case : int ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Dict , *__snake_case : int , **__snake_case : Any ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : int , *__snake_case : List[str] , **__snake_case : Optional[Any] ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): '''simple docstring''' return False class lowerCAmelCase__( contextlib._RedirectStream ): # type: ignore '''simple docstring''' A_ : Optional[Any] = 'stdin' @contextlib.contextmanager def snake_case_ ( __lowercase ): if root == ".": yield return UpperCAmelCase_ : Tuple = os.getcwd() os.chdir(__lowercase ) try: yield except BaseException as exc: raise exc finally: os.chdir(__lowercase ) def snake_case_ ( __lowercase=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = None import os UpperCAmelCase_ : Union[str, Any] = '''1''' UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None import shutil UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = None import subprocess UpperCAmelCase_ : Dict = None # type: ignore UpperCAmelCase_ : Union[str, Any] = None import sys UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None
641
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __A ( unittest.TestCase ): def __init__( self :Tuple , __snake_case :str , __snake_case :List[Any]=7 , __snake_case :Optional[int]=3 , __snake_case :List[str]=18 , __snake_case :Optional[int]=30 , __snake_case :str=4_00 , __snake_case :Dict=True , __snake_case :Optional[Any]=None , __snake_case :List[Any]=True , ): '''simple docstring''' __magic_name__ : Tuple =size if size is not None else {"""height""": 18, """width""": 18} __magic_name__ : List[Any] =parent __magic_name__ : Any =batch_size __magic_name__ : str =num_channels __magic_name__ : List[str] =image_size __magic_name__ : str =min_resolution __magic_name__ : Union[str, Any] =max_resolution __magic_name__ : Tuple =do_resize __magic_name__ : Optional[Any] =size __magic_name__ : Dict =apply_ocr def A__ ( self :Any ): '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ : Dict =LayoutLMvaImageProcessingTester(self ) @property def A__ ( self :Dict ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Tuple =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , """do_resize""" ) ) self.assertTrue(hasattr(__snake_case , """size""" ) ) self.assertTrue(hasattr(__snake_case , """apply_ocr""" ) ) def A__ ( self :int ): '''simple docstring''' __magic_name__ : Dict =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) __magic_name__ : Tuple =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def A__ ( self :str ): '''simple docstring''' pass def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : List[str] =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input __magic_name__ : Optional[Any] =image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , __snake_case ) self.assertIsInstance(encoding.boxes , __snake_case ) # Test batched __magic_name__ : Optional[int] =image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Optional[int] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input __magic_name__ : str =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Dict =image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : Dict =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input __magic_name__ : Optional[Any] =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Union[str, Any] =image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def A__ ( self :int ): '''simple docstring''' __magic_name__ : int =LayoutLMvaImageProcessor() from datasets import load_dataset __magic_name__ : Union[str, Any] =load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) __magic_name__ : Dict =Image.open(ds[0]["""file"""] ).convert("""RGB""" ) __magic_name__ : str =image_processing(__snake_case , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __magic_name__ : Tuple =[["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 __magic_name__ : Any =[[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __snake_case ) self.assertListEqual(encoding.boxes , __snake_case ) # with apply_OCR = False __magic_name__ : Dict =LayoutLMvaImageProcessor(apply_ocr=__snake_case ) __magic_name__ : Union[str, Any] =image_processing(__snake_case , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
21
from collections.abc import Sequence def lowerCAmelCase_ ( lowerCamelCase = None ): if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __magic_name__ : str =nums[0] for i in range(1 , len(lowerCamelCase ) ): __magic_name__ : Any =nums[i] __magic_name__ : Dict =max(lowerCamelCase , ans + num , lowerCamelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user UpperCAmelCase_ : List[str] = int(input("Enter number of elements : ").strip()) UpperCAmelCase_ : Tuple = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
21
1
'''simple docstring''' def UpperCamelCase_ ( snake_case_ : str , snake_case_ : list[str] ) -> str: '''simple docstring''' __lowerCAmelCase = """""" for word_or_phrase in separated: if not isinstance(snake_case_ , snake_case_ ): raise Exception("""join() accepts only strings to be joined""" ) joined += word_or_phrase + separator return joined.strip(snake_case_ ) if __name__ == "__main__": from doctest import testmod testmod()
330
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class _lowercase : '''simple docstring''' _SCREAMING_SNAKE_CASE : torch.Tensor # [batch_size x 3] _SCREAMING_SNAKE_CASE : torch.Tensor # [batch_size x 3] _SCREAMING_SNAKE_CASE : torch.Tensor # [batch_size x 3] _SCREAMING_SNAKE_CASE : torch.Tensor # [batch_size x 3] _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : float _SCREAMING_SNAKE_CASE : float _SCREAMING_SNAKE_CASE : Tuple[int] def a ( self : str ) -> List[Any]: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def a ( self : Optional[Any] ) -> Dict: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def a ( self : Optional[Any] ) -> Optional[Any]: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def a ( self : List[Any] ) -> torch.Tensor: __lowerCAmelCase = torch.arange(self.height * self.width ) __lowerCAmelCase = torch.stack( [ pixel_indices % self.width, torch.div(SCREAMING_SNAKE_CASE__ , self.width , rounding_mode="""trunc""" ), ] , axis=1 , ) return coords @property def a ( self : Tuple ) -> int: __lowerCAmelCase , *__lowerCAmelCase = self.shape __lowerCAmelCase = int(np.prod(SCREAMING_SNAKE_CASE__ ) ) __lowerCAmelCase = self.get_image_coords() __lowerCAmelCase = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) __lowerCAmelCase = self.get_camera_rays(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = rays.view(SCREAMING_SNAKE_CASE__ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : torch.Tensor ) -> torch.Tensor: __lowerCAmelCase , *__lowerCAmelCase , __lowerCAmelCase = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] __lowerCAmelCase = coords.view(SCREAMING_SNAKE_CASE__ , -1 , 2 ) __lowerCAmelCase = self.resolution() __lowerCAmelCase = self.fov() __lowerCAmelCase = (flat.float() / (res - 1)) * 2 - 1 __lowerCAmelCase = fracs * torch.tan(fov / 2 ) __lowerCAmelCase = fracs.view(SCREAMING_SNAKE_CASE__ , -1 , 2 ) __lowerCAmelCase = ( self.z.view(SCREAMING_SNAKE_CASE__ , 1 , 3 ) + self.x.view(SCREAMING_SNAKE_CASE__ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(SCREAMING_SNAKE_CASE__ , 1 , 3 ) * fracs[:, :, 1:] ) __lowerCAmelCase = directions / directions.norm(dim=-1 , keepdim=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = torch.stack( [ torch.broadcast_to(self.origin.view(SCREAMING_SNAKE_CASE__ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , 2 , 3 ) def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=SCREAMING_SNAKE_CASE__ , height=SCREAMING_SNAKE_CASE__ , x_fov=self.x_fov , y_fov=self.y_fov , ) def UpperCamelCase_ ( snake_case_ : int ) -> DifferentiableProjectiveCamera: '''simple docstring''' __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): __lowerCAmelCase = np.array([np.sin(snake_case_ ), np.cos(snake_case_ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) __lowerCAmelCase = -z * 4 __lowerCAmelCase = np.array([np.cos(snake_case_ ), -np.sin(snake_case_ ), 0.0] ) __lowerCAmelCase = np.cross(snake_case_ , snake_case_ ) origins.append(snake_case_ ) xs.append(snake_case_ ) ys.append(snake_case_ ) zs.append(snake_case_ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(snake_case_ , axis=0 ) ).float() , x=torch.from_numpy(np.stack(snake_case_ , axis=0 ) ).float() , y=torch.from_numpy(np.stack(snake_case_ , axis=0 ) ).float() , z=torch.from_numpy(np.stack(snake_case_ , axis=0 ) ).float() , width=snake_case_ , height=snake_case_ , x_fov=0.7 , y_fov=0.7 , shape=(1, len(snake_case_ )) , )
330
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): A__ : Optional[int] = ['''torch''', '''scipy'''] def __init__( self : Any , *__lowerCamelCase : List[Any] , **__lowerCamelCase : Any ): """simple docstring""" requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def __UpperCAmelCase ( cls : Dict , *__lowerCamelCase : List[str] , **__lowerCamelCase : Tuple ): """simple docstring""" requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def __UpperCAmelCase ( cls : int , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : Tuple ): """simple docstring""" requires_backends(cls , ['''torch''', '''scipy'''] )
103
'''simple docstring''' import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _SCREAMING_SNAKE_CASE ( __a ): def __init__( self : int , a__ : Optional[int] , a__ : Union[str, Any]=768 ): super().__init__(a__ ) __magic_name__ = proj_size __magic_name__ = CLIPVisionModel(a__ ) __magic_name__ = PaintByExampleMapper(a__ ) __magic_name__ = nn.LayerNorm(config.hidden_size ) __magic_name__ = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling __magic_name__ = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def snake_case__ ( self : Tuple , a__ : Any , a__ : List[str]=False ): __magic_name__ = self.model(pixel_values=a__ ) __magic_name__ = clip_output.pooler_output __magic_name__ = self.mapper(latent_states[:, None] ) __magic_name__ = self.final_layer_norm(a__ ) __magic_name__ = self.proj_out(a__ ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Any , a__ : Dict ): super().__init__() __magic_name__ = (config.num_hidden_layers + 1) // 5 __magic_name__ = config.hidden_size __magic_name__ = 1 __magic_name__ = nn.ModuleList( [ BasicTransformerBlock(a__ , a__ , a__ , activation_fn='''gelu''' , attention_bias=a__ ) for _ in range(a__ ) ] ) def snake_case__ ( self : List[str] , a__ : List[Any] ): for block in self.blocks: __magic_name__ = block(a__ ) return hidden_states
432
0
from itertools import count def _lowercase ( a_ : int = 5_0 ) -> List[Any]: '''simple docstring''' __magic_name__ = [1] * min_block_length for n in count(a_ ): fill_count_functions.append(1 ) for block_length in range(a_ ,n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_0_0_0_0_0_0: break return n if __name__ == "__main__": print(f'''{solution() = }''')
711
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowercase : Dict = StableDiffusionDiffEditPipeline _lowercase : Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} _lowercase : Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} _lowercase : str = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _lowercase : int = frozenset([] ) def _SCREAMING_SNAKE_CASE ( self: Dict ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__UpperCamelCase , ) __magic_name__ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__UpperCamelCase , set_alpha_to_one=__UpperCamelCase , ) __magic_name__ = DDIMInverseScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__UpperCamelCase , set_alpha_to_zero=__UpperCamelCase , ) torch.manual_seed(0 ) __magic_name__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __magic_name__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , ) __magic_name__ = CLIPTextModel(__UpperCamelCase ) __magic_name__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __magic_name__ = { 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _SCREAMING_SNAKE_CASE ( self: Optional[int] , __UpperCamelCase: Optional[Any] , __UpperCamelCase: List[Any]=0 ): '''simple docstring''' __magic_name__ = floats_tensor((1, 16, 16) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) __magic_name__ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) if str(__UpperCamelCase ).startswith('mps' ): __magic_name__ = torch.manual_seed(__UpperCamelCase ) else: __magic_name__ = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) __magic_name__ = { 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def _SCREAMING_SNAKE_CASE ( self: str , __UpperCamelCase: str , __UpperCamelCase: Optional[int]=0 ): '''simple docstring''' __magic_name__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) __magic_name__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] __magic_name__ = Image.fromarray(np.uinta(__UpperCamelCase ) ).convert('RGB' ) if str(__UpperCamelCase ).startswith('mps' ): __magic_name__ = torch.manual_seed(__UpperCamelCase ) else: __magic_name__ = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) __magic_name__ = { 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def _SCREAMING_SNAKE_CASE ( self: List[Any] , __UpperCamelCase: Optional[int] , __UpperCamelCase: Optional[int]=0 ): '''simple docstring''' __magic_name__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) __magic_name__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] __magic_name__ = Image.fromarray(np.uinta(__UpperCamelCase ) ).convert('RGB' ) if str(__UpperCamelCase ).startswith('mps' ): __magic_name__ = torch.manual_seed(__UpperCamelCase ) else: __magic_name__ = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) __magic_name__ = { 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): '''simple docstring''' if not hasattr(self.pipeline_class , '_optional_components' ): return __magic_name__ = self.get_dummy_components() __magic_name__ = self.pipeline_class(**__UpperCamelCase ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) __magic_name__ = self.get_dummy_inputs(__UpperCamelCase ) __magic_name__ = pipe(**__UpperCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__UpperCamelCase ) __magic_name__ = self.pipeline_class.from_pretrained(__UpperCamelCase ) pipe_loaded.to(__UpperCamelCase ) pipe_loaded.set_progress_bar_config(disable=__UpperCamelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(__UpperCamelCase , __UpperCamelCase ) is None , F'`{optional_component}` did not stay set to None after loading.' , ) __magic_name__ = self.get_dummy_inputs(__UpperCamelCase ) __magic_name__ = pipe_loaded(**__UpperCamelCase )[0] __magic_name__ = np.abs(output - output_loaded ).max() self.assertLess(__UpperCamelCase , 1E-4 ) def _SCREAMING_SNAKE_CASE ( self: Tuple ): '''simple docstring''' __magic_name__ = 'cpu' __magic_name__ = self.get_dummy_components() __magic_name__ = self.pipeline_class(**__UpperCamelCase ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) __magic_name__ = self.get_dummy_mask_inputs(__UpperCamelCase ) __magic_name__ = pipe.generate_mask(**__UpperCamelCase ) __magic_name__ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) __magic_name__ = np.array([0] * 9 ) __magic_name__ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(__UpperCamelCase , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def _SCREAMING_SNAKE_CASE ( self: Optional[int] ): '''simple docstring''' __magic_name__ = 'cpu' __magic_name__ = self.get_dummy_components() __magic_name__ = self.pipeline_class(**__UpperCamelCase ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) __magic_name__ = self.get_dummy_inversion_inputs(__UpperCamelCase ) __magic_name__ = pipe.invert(**__UpperCamelCase ).images __magic_name__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __magic_name__ = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , ) __magic_name__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__UpperCamelCase , 1E-3 ) def _SCREAMING_SNAKE_CASE ( self: Tuple ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def _SCREAMING_SNAKE_CASE ( self: Dict ): '''simple docstring''' __magic_name__ = 'cpu' __magic_name__ = self.get_dummy_components() __magic_name__ = {'beta_start': 0.00085, 'beta_end': 0.012, 'beta_schedule': 'scaled_linear'} __magic_name__ = DPMSolverMultistepScheduler(**__UpperCamelCase ) __magic_name__ = DPMSolverMultistepInverseScheduler(**__UpperCamelCase ) __magic_name__ = self.pipeline_class(**__UpperCamelCase ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) __magic_name__ = self.get_dummy_inversion_inputs(__UpperCamelCase ) __magic_name__ = pipe.invert(**__UpperCamelCase ).images __magic_name__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __magic_name__ = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , ) __magic_name__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__UpperCamelCase , 1E-3 ) @require_torch_gpu @slow class __UpperCamelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self: Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def _SCREAMING_SNAKE_CASE ( cls: List[str] ): '''simple docstring''' __magic_name__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) __magic_name__ = raw_image.convert('RGB' ).resize((7_68, 7_68) ) __magic_name__ = raw_image def _SCREAMING_SNAKE_CASE ( self: Optional[Any] ): '''simple docstring''' __magic_name__ = torch.manual_seed(0 ) __magic_name__ = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=__UpperCamelCase , torch_dtype=torch.floataa ) __magic_name__ = DDIMScheduler.from_config(pipe.scheduler.config ) __magic_name__ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__UpperCamelCase ) __magic_name__ = 'a bowl of fruit' __magic_name__ = 'a bowl of pears' __magic_name__ = pipe.generate_mask( image=self.raw_image , source_prompt=__UpperCamelCase , target_prompt=__UpperCamelCase , generator=__UpperCamelCase , ) __magic_name__ = pipe.invert( prompt=__UpperCamelCase , image=self.raw_image , inpaint_strength=0.7 , generator=__UpperCamelCase ).latents __magic_name__ = pipe( prompt=__UpperCamelCase , mask_image=__UpperCamelCase , image_latents=__UpperCamelCase , generator=__UpperCamelCase , negative_prompt=__UpperCamelCase , inpaint_strength=0.7 , output_type='numpy' , ).images[0] __magic_name__ = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5E-1 def _SCREAMING_SNAKE_CASE ( self: int ): '''simple docstring''' __magic_name__ = torch.manual_seed(0 ) __magic_name__ = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=__UpperCamelCase , torch_dtype=torch.floataa ) __magic_name__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __magic_name__ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__UpperCamelCase ) __magic_name__ = 'a bowl of fruit' __magic_name__ = 'a bowl of pears' __magic_name__ = pipe.generate_mask( image=self.raw_image , source_prompt=__UpperCamelCase , target_prompt=__UpperCamelCase , generator=__UpperCamelCase , ) __magic_name__ = pipe.invert( prompt=__UpperCamelCase , image=self.raw_image , inpaint_strength=0.7 , generator=__UpperCamelCase , num_inference_steps=25 , ).latents __magic_name__ = pipe( prompt=__UpperCamelCase , mask_image=__UpperCamelCase , image_latents=__UpperCamelCase , generator=__UpperCamelCase , negative_prompt=__UpperCamelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type='numpy' , ).images[0] __magic_name__ = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5E-1
184
0
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Optional[Any] = ["input_values", "attention_mask"] def __init__( self : str , _snake_case : int = 1 , _snake_case : int = 1_60_00 , _snake_case : float = 0.0 , _snake_case : bool = False , _snake_case : int = 80 , _snake_case : int = 16 , _snake_case : int = 64 , _snake_case : str = "hann_window" , _snake_case : float = 1.0 , _snake_case : float = 80 , _snake_case : float = 76_00 , _snake_case : float = 1E-10 , _snake_case : int = 2 , _snake_case : bool = True , **_snake_case : Union[str, Any] , ): """simple docstring""" super().__init__(feature_size=_snake_case , sampling_rate=_snake_case , padding_value=_snake_case , **_snake_case ) A__ = do_normalize A__ = return_attention_mask A__ = num_mel_bins A__ = hop_length A__ = win_length A__ = win_function A__ = frame_signal_scale A__ = fmin A__ = fmax A__ = mel_floor A__ = reduction_factor A__ = win_length * sampling_rate // 10_00 A__ = hop_length * sampling_rate // 10_00 A__ = optimal_fft_length(self.sample_size ) A__ = (self.n_fft // 2) + 1 A__ = window_function(window_length=self.sample_size , name=self.win_function , periodic=_snake_case ) A__ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , _snake_case , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , _snake_case , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _a ( _snake_case : List[np.ndarray] , _snake_case : List[np.ndarray] , _snake_case : float = 0.0 ): """simple docstring""" if attention_mask is not None: A__ = np.array(_snake_case , np.intaa ) A__ = [] for vector, length in zip(_snake_case , attention_mask.sum(-1 ) ): A__ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: A__ = padding_value normed_input_values.append(_snake_case ) else: A__ = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def _a ( self : Tuple , _snake_case : np.ndarray , ): """simple docstring""" A__ = spectrogram( _snake_case , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self : List[str] , _snake_case : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _snake_case : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Optional[int] = None , _snake_case : bool = False , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : Optional[int] = None , **_snake_case : Tuple , ): """simple docstring""" if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: A__ = self._process_audio( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , **_snake_case , ) else: A__ = None if audio_target is not None: A__ = self._process_audio( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , **_snake_case , ) if inputs is None: return inputs_target else: A__ = inputs_target['input_values'] A__ = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def _a ( self : Tuple , _snake_case : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _snake_case : bool = False , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Optional[int] = None , _snake_case : bool = False , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[Union[str, TensorType]] = None , **_snake_case : Tuple , ): """simple docstring""" A__ = isinstance(_snake_case , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) A__ = is_batched_numpy or ( isinstance(_snake_case , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A__ = [np.asarray(_snake_case , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_snake_case , np.ndarray ): A__ = np.asarray(_snake_case , dtype=np.floataa ) elif isinstance(_snake_case , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): A__ = speech.astype(np.floataa ) # always return batch if not is_batched: A__ = [speech] # needed to make pad() work on spectrogram inputs A__ = self.feature_size # convert into correct format for padding if is_target: A__ = [self._extract_mel_features(_snake_case ) for waveform in speech] A__ = BatchFeature({'input_values': features} ) A__ = self.num_mel_bins else: A__ = BatchFeature({'input_values': speech} ) A__ = self.pad( _snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , **_snake_case , ) A__ = feature_size_hack # convert input values to correct format A__ = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray ): A__ = [np.asarray(_snake_case , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_snake_case , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): A__ = [array.astype(np.floataa ) for array in input_values] elif isinstance(_snake_case , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): A__ = input_values.astype(np.floataa ) # convert attention_mask to correct format A__ = padded_inputs.get('attention_mask' ) if attention_mask is not None: A__ = [np.asarray(_snake_case , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: A__ = ( attention_mask if self._get_padding_strategies(_snake_case , max_length=_snake_case ) is not PaddingStrategy.DO_NOT_PAD else None ) A__ = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=_snake_case , padding_value=self.padding_value ) if return_tensors is not None: A__ = padded_inputs.convert_to_tensors(_snake_case ) return padded_inputs def _a ( self : Optional[Any] ): """simple docstring""" A__ = super().to_dict() # Don't serialize these as they are derived from the other properties. A__ = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
9
'''simple docstring''' def _UpperCamelCase ( lowerCAmelCase__: int ,lowerCAmelCase__: int ) -> str: if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) SCREAMING_SNAKE_CASE_ = str(bin(lowerCAmelCase__ ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE_ = str(bin(lowerCAmelCase__ ) )[2:] SCREAMING_SNAKE_CASE_ = max(len(lowerCAmelCase__ ) ,len(lowerCAmelCase__ ) ) return "0b" + "".join( str(int('1' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowerCAmelCase__ ) ,b_binary.zfill(lowerCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
294
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class __UpperCamelCase ( unittest.TestCase ): @slow def a__ ( self :str ): snake_case_ : Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" ) snake_case_ : List[str] = AutoTokenizer.from_pretrained("""google/mt5-small""" ) snake_case_ : Any = tokenizer("""Hello there""" ,return_tensors="""tf""" ).input_ids snake_case_ : Dict = tokenizer("""Hi I am""" ,return_tensors="""tf""" ).input_ids snake_case_ : Optional[Any] = model(_UpperCamelCase ,labels=_UpperCamelCase ).loss snake_case_ : str = -tf.math.reduce_mean(_UpperCamelCase ).numpy() snake_case_ : Tuple = -21.22_81_68 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
267
'''simple docstring''' import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __UpperCamelCase ( lowercase__ , unittest.TestCase ): lowercase : Dict = TransfoXLTokenizer lowercase : Optional[Any] = False lowercase : Dict = False def a__ ( self :Union[str, Any] ): super().setUp() snake_case_ : Optional[int] = [ """<unk>""", """[CLS]""", """[SEP]""", """want""", """unwanted""", """wa""", """un""", """running""", """,""", """low""", """l""", ] snake_case_ : Optional[int] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def a__ ( self :List[Any] ,**_UpperCamelCase :Optional[Any] ): snake_case_ : Tuple = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname ,**_UpperCamelCase ) def a__ ( self :Tuple ,_UpperCamelCase :Union[str, Any] ): snake_case_ : Any = """<unk> UNwanted , running""" snake_case_ : Optional[int] = """<unk> unwanted, running""" return input_text, output_text def a__ ( self :Dict ): snake_case_ : Dict = TransfoXLTokenizer(vocab_file=self.vocab_file ,lower_case=_UpperCamelCase ) snake_case_ : Dict = tokenizer.tokenize("""<unk> UNwanted , running""" ) self.assertListEqual(_UpperCamelCase ,["""<unk>""", """unwanted""", """,""", """running"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) ,[0, 4, 8, 7] ) def a__ ( self :Optional[Any] ): snake_case_ : Dict = TransfoXLTokenizer(lower_case=_UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) ,["""hello""", """!""", """how""", """are""", """you""", """?"""] ) def a__ ( self :Any ): snake_case_ : List[Any] = TransfoXLTokenizer(lower_case=_UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) ,["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def a__ ( self :List[str] ): snake_case_ : str = TransfoXLTokenizer(lower_case=_UpperCamelCase ) snake_case_ : List[str] = """Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?""" snake_case_ : Optional[int] = [ """Hello""", """(""", """bracket""", """)""", """and""", """side""", """@-@""", """scrolled""", """[""", """and""", """]""", """Henry""", """'s""", """$""", """5""", """@,@""", """000""", """with""", """3""", """@.@""", """34""", """m""", """.""", """What""", """'s""", """up""", """!""", """?""", ] self.assertListEqual(tokenizer.tokenize(_UpperCamelCase ) ,_UpperCamelCase ) self.assertEqual(tokenizer.convert_tokens_to_string(_UpperCamelCase ) ,_UpperCamelCase ) def a__ ( self :Dict ): snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : Dict = len(_UpperCamelCase ) tokenizer.add_tokens(["""new1""", """new2"""] ) tokenizer.move_added_token("""new1""" ,1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(_UpperCamelCase ) ,original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("""new1""" ) ,[1] ) self.assertEqual(tokenizer.decode([1] ) ,"""new1""" )
267
1
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self , _lowercase , _lowercase=13 , _lowercase=32 , _lowercase=3 , _lowercase=4 , _lowercase=[10, 20, 30, 40] , _lowercase=[2, 2, 3, 2] , _lowercase=True , _lowercase=True , _lowercase=37 , _lowercase="gelu" , _lowercase=10 , _lowercase=0.02 , _lowercase=["stage2", "stage3", "stage4"] , _lowercase=[2, 3, 4] , _lowercase=None , ) -> Dict: _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : Optional[Any] = image_size _lowerCamelCase : Optional[Any] = num_channels _lowerCamelCase : Tuple = num_stages _lowerCamelCase : List[Any] = hidden_sizes _lowerCamelCase : str = depths _lowerCamelCase : List[Any] = is_training _lowerCamelCase : Any = use_labels _lowerCamelCase : str = intermediate_size _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : Union[str, Any] = num_labels _lowerCamelCase : Dict = initializer_range _lowerCamelCase : Dict = out_features _lowerCamelCase : List[Any] = out_indices _lowerCamelCase : Tuple = scope def a__ ( self ) -> List[Any]: _lowerCamelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : int = None if self.use_labels: _lowerCamelCase : str = ids_tensor([self.batch_size] , self.num_labels ) _lowerCamelCase : Any = self.get_config() return config, pixel_values, labels def a__ ( self ) -> Optional[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_snake_case , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def a__ ( self , _lowercase , _lowercase , _lowercase ) -> List[Any]: _lowerCamelCase : Optional[Any] = ConvNextVaModel(config=_snake_case ) model.to(_snake_case ) model.eval() _lowerCamelCase : Any = model(_snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__ ( self , _lowercase , _lowercase , _lowercase ) -> str: _lowerCamelCase : Any = ConvNextVaForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() _lowerCamelCase : str = model(_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self , _lowercase , _lowercase , _lowercase ) -> List[Any]: _lowerCamelCase : Optional[int] = ConvNextVaBackbone(config=_snake_case ) model.to(_snake_case ) model.eval() _lowerCamelCase : Union[str, Any] = model(_snake_case ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _lowerCamelCase : Optional[int] = None _lowerCamelCase : Optional[int] = ConvNextVaBackbone(config=_snake_case ) model.to(_snake_case ) model.eval() _lowerCamelCase : Dict = model(_snake_case ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self ) -> List[Any]: _lowerCamelCase : Dict = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = config_and_inputs _lowerCamelCase : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict def a__ ( self ) -> Optional[int]: _lowerCamelCase : Any = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = config_and_inputs _lowerCamelCase : Optional[int] = {'''pixel_values''': pixel_values, '''labels''': labels} return config, inputs_dict @require_torch class _UpperCAmelCase ( A__ , A__ , unittest.TestCase ): """simple docstring""" __snake_case = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) __snake_case = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) __snake_case = False __snake_case = False __snake_case = False __snake_case = False __snake_case = False def a__ ( self ) -> int: _lowerCamelCase : Optional[int] = ConvNextVaModelTester(self ) _lowerCamelCase : List[Any] = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=37 ) def a__ ( self ) -> Any: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self ) -> List[str]: return @unittest.skip(reason='''ConvNextV2 does not use inputs_embeds''' ) def a__ ( self ) -> str: pass @unittest.skip(reason='''ConvNextV2 does not support input and output embeddings''' ) def a__ ( self ) -> str: pass @unittest.skip(reason='''ConvNextV2 does not use feedforward chunking''' ) def a__ ( self ) -> Optional[Any]: pass def a__ ( self ) -> List[Any]: if not self.model_tester.is_training: return for model_class in self.all_model_classes: _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_with_labels() _lowerCamelCase : Optional[int] = True if model_class.__name__ in [ *get_values(_snake_case ), *get_values(_snake_case ), ]: continue _lowerCamelCase : List[str] = model_class(_snake_case ) model.to(_snake_case ) model.train() _lowerCamelCase : Union[str, Any] = self._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) _lowerCamelCase : List[Any] = model(**_snake_case ).loss loss.backward() def a__ ( self ) -> Optional[int]: if not self.model_tester.is_training: return for model_class in self.all_model_classes: _lowerCamelCase, _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_with_labels() _lowerCamelCase : str = False _lowerCamelCase : Optional[int] = True if ( model_class.__name__ in [*get_values(_snake_case ), *get_values(_snake_case )] or not model_class.supports_gradient_checkpointing ): continue _lowerCamelCase : List[Any] = model_class(_snake_case ) model.to(_snake_case ) model.gradient_checkpointing_enable() model.train() _lowerCamelCase : List[Any] = self._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) _lowerCamelCase : Dict = model(**_snake_case ).loss loss.backward() def a__ ( self ) -> int: _lowerCamelCase, _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[Any] = model_class(_snake_case ) _lowerCamelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Tuple = [*signature.parameters.keys()] _lowerCamelCase : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case ) def a__ ( self ) -> int: _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def a__ ( self ) -> Optional[int]: def check_hidden_states_output(_lowercase , _lowercase , _lowercase ): _lowerCamelCase : int = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): _lowerCamelCase : Optional[Any] = model(**self._prepare_for_class(_snake_case , _snake_case ) ) _lowerCamelCase : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCamelCase : str = self.model_tester.num_stages self.assertEqual(len(_snake_case ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _lowerCamelCase, _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Union[str, Any] = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : List[str] = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) def a__ ( self ) -> Tuple: _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def a__ ( self ) -> List[Any]: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : List[str] = ConvNextVaModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def UpperCamelCase ( ) ->Any: _lowerCamelCase : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def a__ ( self ) -> Tuple: return AutoImageProcessor.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ) if is_vision_available() else None @slow def a__ ( self ) -> List[str]: _lowerCamelCase : Any = ConvNextVaForImageClassification.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ).to(_snake_case ) _lowerCamelCase : str = self.default_image_processor _lowerCamelCase : Dict = prepare_img() _lowerCamelCase : str = preprocessor(images=_snake_case , return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): _lowerCamelCase : Tuple = model(**_snake_case ) # verify the logits _lowerCamelCase : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _snake_case ) _lowerCamelCase : Dict = torch.tensor([0.9996, 0.1966, -0.4386] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1E-4 ) )
434
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy snake_case__ : Optional[Any] = logging.get_logger(__name__) snake_case__ : List[Any] = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } snake_case__ : int = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } snake_case__ : Optional[int] = { 'jukebox': 5_1_2, } class _a ( A__ ): """simple docstring""" snake_case =VOCAB_FILES_NAMES snake_case =PRETRAINED_VOCAB_FILES_MAP snake_case =PRETRAINED_LYRIC_TOKENS_SIZES snake_case =["""input_ids""", """attention_mask"""] def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case=["v3", "v2", "v2"] , _snake_case=512 , _snake_case=5 , _snake_case="<|endoftext|>" , **_snake_case , ): _UpperCAmelCase =AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else unk_token super().__init__( unk_token=_snake_case , n_genres=_snake_case , version=_snake_case , max_n_lyric_tokens=_snake_case , **_snake_case , ) _UpperCAmelCase =version _UpperCAmelCase =max_n_lyric_tokens _UpperCAmelCase =n_genres with open(_snake_case , encoding="utf-8" ) as vocab_handle: _UpperCAmelCase =json.load(_snake_case ) with open(_snake_case , encoding="utf-8" ) as vocab_handle: _UpperCAmelCase =json.load(_snake_case ) with open(_snake_case , encoding="utf-8" ) as vocab_handle: _UpperCAmelCase =json.load(_snake_case ) _UpperCAmelCase =R"[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: _UpperCAmelCase =oov.replace(R"\-'" , R"\-+'" ) _UpperCAmelCase =regex.compile(_snake_case ) _UpperCAmelCase ={v: k for k, v in self.artists_encoder.items()} _UpperCAmelCase ={v: k for k, v in self.genres_encoder.items()} _UpperCAmelCase ={v: k for k, v in self.lyrics_encoder.items()} @property def SCREAMING_SNAKE_CASE ( self ): return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def SCREAMING_SNAKE_CASE ( self ): return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case ): _UpperCAmelCase =[self.artists_encoder.get(_snake_case , 0 ) for artist in list_artists] for genres in range(len(_snake_case ) ): _UpperCAmelCase =[self.genres_encoder.get(_snake_case , 0 ) for genre in list_genres[genres]] _UpperCAmelCase =list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) _UpperCAmelCase =[[self.lyrics_encoder.get(_snake_case , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def SCREAMING_SNAKE_CASE ( self , _snake_case ): return list(_snake_case ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case , **_snake_case ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase =self.prepare_for_tokenization(_snake_case , _snake_case , _snake_case ) _UpperCAmelCase =self._tokenize(_snake_case ) return artist, genre, lyrics def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case , _snake_case = False ): for idx in range(len(self.version ) ): if self.version[idx] == "v3": _UpperCAmelCase =artists[idx].lower() _UpperCAmelCase =[genres[idx].lower()] else: _UpperCAmelCase =self._normalize(artists[idx] ) + ".v2" _UpperCAmelCase =[ self._normalize(_snake_case ) + ".v2" for genre in genres[idx].split("_" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": _UpperCAmelCase =regex.compile(R"[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+" ) _UpperCAmelCase ="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n" _UpperCAmelCase ={vocab[index]: index + 1 for index in range(len(_snake_case ) )} _UpperCAmelCase =0 _UpperCAmelCase =len(_snake_case ) + 1 _UpperCAmelCase =self.vocab _UpperCAmelCase ={v: k for k, v in self.vocab.items()} _UpperCAmelCase ="" else: _UpperCAmelCase =regex.compile(R"[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+" ) _UpperCAmelCase =self._run_strip_accents(_snake_case ) _UpperCAmelCase =lyrics.replace("\\" , "\n" ) _UpperCAmelCase =self.out_of_vocab.sub("" , _snake_case ), [], [] return artists, genres, lyrics def SCREAMING_SNAKE_CASE ( self , _snake_case ): _UpperCAmelCase =unicodedata.normalize("NFD" , _snake_case ) _UpperCAmelCase =[] for char in text: _UpperCAmelCase =unicodedata.category(_snake_case ) if cat == "Mn": continue output.append(_snake_case ) return "".join(_snake_case ) def SCREAMING_SNAKE_CASE ( self , _snake_case ): _UpperCAmelCase =( [chr(_snake_case ) for i in range(ord("a" ) , ord("z" ) + 1 )] + [chr(_snake_case ) for i in range(ord("A" ) , ord("Z" ) + 1 )] + [chr(_snake_case ) for i in range(ord("0" ) , ord("9" ) + 1 )] + ["."] ) _UpperCAmelCase =frozenset(_snake_case ) _UpperCAmelCase =re.compile(R"_+" ) _UpperCAmelCase ="".join([c if c in accepted else "_" for c in text.lower()] ) _UpperCAmelCase =pattern.sub("_" , _snake_case ).strip("_" ) return text def SCREAMING_SNAKE_CASE ( self , _snake_case ): return " ".join(_snake_case ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case = None , _snake_case = False ): # Convert to TensorType if not isinstance(_snake_case , _snake_case ): _UpperCAmelCase =TensorType(_snake_case ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( "Unable to convert output to TensorFlow tensors format, TensorFlow is not installed." ) import tensorflow as tf _UpperCAmelCase =tf.constant _UpperCAmelCase =tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("Unable to convert output to PyTorch tensors format, PyTorch is not installed." ) import torch _UpperCAmelCase =torch.tensor _UpperCAmelCase =torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("Unable to convert output to JAX tensors format, JAX is not installed." ) import jax.numpy as jnp # noqa: F811 _UpperCAmelCase =jnp.array _UpperCAmelCase =_is_jax else: _UpperCAmelCase =np.asarray _UpperCAmelCase =_is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: _UpperCAmelCase =[inputs] if not is_tensor(_snake_case ): _UpperCAmelCase =as_tensor(_snake_case ) except: # noqa E722 raise ValueError( "Unable to create tensor, you should probably activate truncation and/or padding " "with 'padding=True' 'truncation=True' to have batched tensors with the same length." ) return inputs def __call__( self , _snake_case , _snake_case , _snake_case="" , _snake_case="pt" ): _UpperCAmelCase =[0, 0, 0] _UpperCAmelCase =[artist] * len(self.version ) _UpperCAmelCase =[genres] * len(self.version ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase =self.tokenize(_snake_case , _snake_case , _snake_case ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase =self._convert_token_to_id(_snake_case , _snake_case , _snake_case ) _UpperCAmelCase =[-INFINITY] * len(full_tokens[-1] ) _UpperCAmelCase =[ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_snake_case ) for i in range(len(self.version ) ) ] return BatchEncoding({"input_ids": input_ids, "attention_masks": attention_masks} ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case = None ): if not os.path.isdir(_snake_case ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _UpperCAmelCase =os.path.join( _snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["artists_file"] ) with open(_snake_case , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=_snake_case ) ) _UpperCAmelCase =os.path.join( _snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["genres_file"] ) with open(_snake_case , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=_snake_case ) ) _UpperCAmelCase =os.path.join( _snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["lyrics_file"] ) with open(_snake_case , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_snake_case ) ) return (artists_file, genres_file, lyrics_file) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case ): _UpperCAmelCase =self.artists_decoder.get(_snake_case ) _UpperCAmelCase =[self.genres_decoder.get(_snake_case ) for genre in genres_index] _UpperCAmelCase =[self.lyrics_decoder.get(_snake_case ) for character in lyric_index] return artist, genres, lyrics
408
0
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class lowerCamelCase ( TensorFormatter[Mapping, """torch.Tensor""", Mapping] ): '''simple docstring''' def __init__( self: Optional[Any] , snake_case: str=None , **snake_case: str ) -> List[str]: super().__init__(features=_SCREAMING_SNAKE_CASE ) snake_case_ :Union[str, Any] = torch_tensor_kwargs import torch # noqa import torch at initialization def lowerCAmelCase_ ( self: List[str] , snake_case: str ) -> Optional[int]: import torch if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and column: if all( isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(_SCREAMING_SNAKE_CASE ) return column def lowerCAmelCase_ ( self: Optional[Any] , snake_case: Dict ) -> Any: import torch if isinstance(_SCREAMING_SNAKE_CASE , (str, bytes, type(_SCREAMING_SNAKE_CASE )) ): return value elif isinstance(_SCREAMING_SNAKE_CASE , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case_ :Dict = {} if isinstance(_SCREAMING_SNAKE_CASE , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): snake_case_ :Optional[int] = {"""dtype""": torch.intaa} elif isinstance(_SCREAMING_SNAKE_CASE , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case_ :Optional[int] = {"""dtype""": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ): snake_case_ :Any = np.asarray(_SCREAMING_SNAKE_CASE ) return torch.tensor(_SCREAMING_SNAKE_CASE , **{**default_dtype, **self.torch_tensor_kwargs} ) def lowerCAmelCase_ ( self: Optional[int] , snake_case: int ) -> List[Any]: import torch # support for torch, tf, jax etc. if hasattr(_SCREAMING_SNAKE_CASE , """__array__""" ) and not isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): snake_case_ :Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_SCREAMING_SNAKE_CASE ) for substruct in data_struct] ) elif isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_SCREAMING_SNAKE_CASE ) for substruct in data_struct] ) return self._tensorize(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( self: Dict , snake_case: Tuple ) -> List[str]: return map_nested(self._recursive_tensorize , _SCREAMING_SNAKE_CASE , map_list=_SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( self: List[Any] , snake_case: int ) -> Mapping: snake_case_ :Tuple = self.numpy_arrow_extractor().extract_row(_SCREAMING_SNAKE_CASE ) snake_case_ :List[Any] = self.python_features_decoder.decode_row(_SCREAMING_SNAKE_CASE ) return self.recursive_tensorize(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( self: Any , snake_case: Dict ) -> "torch.Tensor": snake_case_ :str = self.numpy_arrow_extractor().extract_column(_SCREAMING_SNAKE_CASE ) snake_case_ :List[str] = self.python_features_decoder.decode_column(_SCREAMING_SNAKE_CASE , pa_table.column_names[0] ) snake_case_ :Tuple = self.recursive_tensorize(_SCREAMING_SNAKE_CASE ) snake_case_ :str = self._consolidate(_SCREAMING_SNAKE_CASE ) return column def lowerCAmelCase_ ( self: int , snake_case: Union[str, Any] ) -> Mapping: snake_case_ :Optional[Any] = self.numpy_arrow_extractor().extract_batch(_SCREAMING_SNAKE_CASE ) snake_case_ :Optional[Any] = self.python_features_decoder.decode_batch(_SCREAMING_SNAKE_CASE ) snake_case_ :Any = self.recursive_tensorize(_SCREAMING_SNAKE_CASE ) for column_name in batch: snake_case_ :Tuple = self._consolidate(batch[column_name] ) return batch
709
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase : '''simple docstring''' def __init__( self: Any , snake_case: Dict=2 , snake_case: Union[str, Any]=3 , snake_case: Dict=64 , snake_case: Union[str, Any]=None ) -> Union[str, Any]: snake_case_ :List[Any] = np.random.default_rng(snake_case ) snake_case_ :Optional[Any] = length snake_case_ :str = rng.normal(size=(length,) ).astype(np.floataa ) snake_case_ :Optional[int] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self: Any ) -> Union[str, Any]: return self.length def __getitem__( self: Optional[int] , snake_case: Union[str, Any] ) -> Optional[Any]: return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase ( torch.nn.Module ): '''simple docstring''' def __init__( self: int , snake_case: Optional[Any]=0 , snake_case: Tuple=0 , snake_case: List[Any]=False ) -> Optional[int]: super().__init__() snake_case_ :str = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) snake_case_ :Any = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) snake_case_ :Tuple = True def lowerCAmelCase_ ( self: Optional[Any] , snake_case: Optional[Any]=None ) -> List[str]: if self.first_batch: print(f"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) snake_case_ :Union[str, Any] = False return x * self.a[0] + self.b[0] class lowerCamelCase ( torch.nn.Module ): '''simple docstring''' def __init__( self: str , snake_case: List[Any]=0 , snake_case: Tuple=0 , snake_case: List[str]=False ) -> int: super().__init__() snake_case_ :int = torch.nn.Parameter(torch.tensor(snake_case ).float() ) snake_case_ :List[str] = torch.nn.Parameter(torch.tensor(snake_case ).float() ) snake_case_ :List[Any] = True def lowerCAmelCase_ ( self: Tuple , snake_case: Optional[int]=None ) -> Union[str, Any]: if self.first_batch: print(f"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) snake_case_ :List[str] = False return x * self.a + self.b def A_ ( _lowercase, _lowercase = 16 ): '''simple docstring''' from datasets import load_dataset from transformers import AutoTokenizer snake_case_ :Tuple = AutoTokenizer.from_pretrained("""bert-base-cased""" ) snake_case_ :Optional[int] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} snake_case_ :Union[str, Any] = load_dataset("""csv""", data_files=_lowercase ) snake_case_ :List[str] = datasets["""train"""].unique("""label""" ) snake_case_ :Any = {v: i for i, v in enumerate(_lowercase )} def tokenize_function(_lowercase ): # max_length=None => use the model max length (it's actually the default) snake_case_ :Dict = tokenizer( examples["""sentence1"""], examples["""sentence2"""], truncation=_lowercase, max_length=_lowercase, padding="""max_length""" ) if "label" in examples: snake_case_ :Union[str, Any] = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case_ :Any = datasets.map( _lowercase, batched=_lowercase, remove_columns=["""sentence1""", """sentence2""", """label"""], ) def collate_fn(_lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowercase, padding="""max_length""", max_length=128, return_tensors="""pt""" ) return tokenizer.pad(_lowercase, padding="""longest""", return_tensors="""pt""" ) # Instantiate dataloaders. snake_case_ :str = DataLoader(tokenized_datasets["""train"""], shuffle=_lowercase, collate_fn=_lowercase, batch_size=2 ) snake_case_ :Any = DataLoader(tokenized_datasets["""validation"""], shuffle=_lowercase, collate_fn=_lowercase, batch_size=1 ) return train_dataloader, eval_dataloader
310
0
"""simple docstring""" import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __a (_UpperCAmelCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :int = ["""image_processor""", """tokenizer"""] _SCREAMING_SNAKE_CASE :Dict = """AutoImageProcessor""" _SCREAMING_SNAKE_CASE :Any = """AutoTokenizer""" def __init__( self , _a=None , _a=None , **_a ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , UpperCAmelCase__ , ) SCREAMING_SNAKE_CASE__ : List[Any] = kwargs.pop("""feature_extractor""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ : List[str] = self.image_processor SCREAMING_SNAKE_CASE__ : Dict = False def __call__( self , *_a , **_a ) -> Union[str, Any]: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*UpperCAmelCase__ , **UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ : Dict = kwargs.pop("""images""" , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = kwargs.pop("""text""" , UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 0: SCREAMING_SNAKE_CASE__ : Optional[int] = args[0] SCREAMING_SNAKE_CASE__ : List[Any] = args[1:] if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processor(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__ ) if text is not None: SCREAMING_SNAKE_CASE__ : str = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__ ) if text is None: return inputs elif images is None: return encodings else: SCREAMING_SNAKE_CASE__ : int = encodings["""input_ids"""] return inputs def _a ( self , *_a , **_a ) -> int: """simple docstring""" return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__ ) def _a ( self , *_a , **_a ) -> int: """simple docstring""" return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__ ) @contextmanager def _a ( self ) -> List[Any]: """simple docstring""" warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your images inputs, or in a separate call.""" ) SCREAMING_SNAKE_CASE__ : Any = True SCREAMING_SNAKE_CASE__ : Optional[Any] = self.tokenizer yield SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processor SCREAMING_SNAKE_CASE__ : Union[str, Any] = False def _a ( self , _a , _a=False , _a=None ) -> Dict: """simple docstring""" if added_vocab is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.tokenizer.get_added_vocab() SCREAMING_SNAKE_CASE__ : Any = {} while tokens: SCREAMING_SNAKE_CASE__ : str = re.search(r"""<s_(.*?)>""" , UpperCAmelCase__ , re.IGNORECASE ) if start_token is None: break SCREAMING_SNAKE_CASE__ : Any = start_token.group(1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = re.search(rf'''</s_{key}>''' , UpperCAmelCase__ , re.IGNORECASE ) SCREAMING_SNAKE_CASE__ : Any = start_token.group() if end_token is None: SCREAMING_SNAKE_CASE__ : List[str] = tokens.replace(UpperCAmelCase__ , """""" ) else: SCREAMING_SNAKE_CASE__ : List[str] = end_token.group() SCREAMING_SNAKE_CASE__ : int = re.escape(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ : List[Any] = re.escape(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = re.search(f'''{start_token_escaped}(.*?){end_token_escaped}''' , UpperCAmelCase__ , re.IGNORECASE ) if content is not None: SCREAMING_SNAKE_CASE__ : Optional[int] = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node SCREAMING_SNAKE_CASE__ : Optional[int] = self.tokenajson(UpperCAmelCase__ , is_inner_value=UpperCAmelCase__ , added_vocab=UpperCAmelCase__ ) if value: if len(UpperCAmelCase__ ) == 1: SCREAMING_SNAKE_CASE__ : Optional[Any] = value[0] SCREAMING_SNAKE_CASE__ : int = value else: # leaf nodes SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for leaf in content.split(r"""<sep/>""" ): SCREAMING_SNAKE_CASE__ : int = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": SCREAMING_SNAKE_CASE__ : Optional[Any] = leaf[1:-2] # for categorical special tokens output[key].append(UpperCAmelCase__ ) if len(output[key] ) == 1: SCREAMING_SNAKE_CASE__ : Tuple = output[key][0] SCREAMING_SNAKE_CASE__ : Dict = tokens[tokens.find(UpperCAmelCase__ ) + len(UpperCAmelCase__ ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=UpperCAmelCase__ , added_vocab=UpperCAmelCase__ ) if len(UpperCAmelCase__ ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def _a ( self ) -> Tuple: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , UpperCAmelCase__ , ) return self.image_processor_class @property def _a ( self ) -> Dict: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , UpperCAmelCase__ , ) return self.image_processor
680
def UpperCamelCase ( _A : int )-> int: """simple docstring""" if not isinstance(_A , _A ): raise ValueError("multiplicative_persistence() only accepts integral values" ) if num < 0: raise ValueError("multiplicative_persistence() does not accept negative values" ) A__ = 0 A__ = str(_A ) while len(_A ) != 1: A__ = [int(_A ) for i in num_string] A__ = 1 for i in range(0 , len(_A ) ): total *= numbers[i] A__ = str(_A ) steps += 1 return steps def UpperCamelCase ( _A : int )-> int: """simple docstring""" if not isinstance(_A , _A ): raise ValueError("additive_persistence() only accepts integral values" ) if num < 0: raise ValueError("additive_persistence() does not accept negative values" ) A__ = 0 A__ = str(_A ) while len(_A ) != 1: A__ = [int(_A ) for i in num_string] A__ = 0 for i in range(0 , len(_A ) ): total += numbers[i] A__ = str(_A ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
491
0
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class lowerCAmelCase__ ( ctypes.Structure ): # _fields is a specific attr expected by ctypes UpperCamelCase_ : int = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def __A() -> Optional[Any]: """simple docstring""" if os.name == "nt": _UpperCamelCase = CursorInfo() _UpperCamelCase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowerCAmelCase , ctypes.byref(lowerCAmelCase ) ) _UpperCamelCase = False ctypes.windll.kernelaa.SetConsoleCursorInfo(lowerCAmelCase , ctypes.byref(lowerCAmelCase ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def __A() -> List[Any]: """simple docstring""" if os.name == "nt": _UpperCamelCase = CursorInfo() _UpperCamelCase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowerCAmelCase , ctypes.byref(lowerCAmelCase ) ) _UpperCamelCase = True ctypes.windll.kernelaa.SetConsoleCursorInfo(lowerCAmelCase , ctypes.byref(lowerCAmelCase ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def __A() -> Tuple: """simple docstring""" try: hide_cursor() yield finally: show_cursor()
202
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCamelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( __lowercase ): def __init__( self , *a , **a ) -> None: '''simple docstring''' warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , a , ) super().__init__(*a , **a )
202
1
"""simple docstring""" from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _lowercase : Optional[int] = logging.get_logger(__name__) class _UpperCAmelCase ( _lowerCAmelCase ): a__ : str = ["pixel_values"] def __init__( self : Optional[Any] , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 2_55 , _lowercase : bool = True , _lowercase : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , _lowercase : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **_lowercase : List[Any] , ): super().__init__(**_lowercase ) __UpperCAmelCase = size if size is not None else {'''shortest_edge''': 2_24} __UpperCAmelCase = get_size_dict(_lowercase , default_to_square=_lowercase ) __UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} __UpperCAmelCase = get_size_dict(_lowercase , param_name='''crop_size''' ) __UpperCAmelCase = do_resize __UpperCAmelCase = size __UpperCAmelCase = resample __UpperCAmelCase = do_center_crop __UpperCAmelCase = crop_size __UpperCAmelCase = do_rescale __UpperCAmelCase = rescale_factor __UpperCAmelCase = do_normalize __UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def a ( self : Dict , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): __UpperCAmelCase = get_size_dict(_lowercase , default_to_square=_lowercase ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __UpperCAmelCase = int((2_56 / 2_24) * size['''shortest_edge'''] ) __UpperCAmelCase = get_resize_output_image_size(_lowercase , size=_lowercase , default_to_square=_lowercase ) __UpperCAmelCase = {'''height''': output_size[0], '''width''': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( _lowercase , size=(size_dict['''height'''], size_dict['''width''']) , resample=_lowercase , data_format=_lowercase , **_lowercase ) def a ( self : Union[str, Any] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Dict , ): __UpperCAmelCase = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_lowercase , size=(size['''height'''], size['''width''']) , data_format=_lowercase , **_lowercase ) def a ( self : str , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Union[str, Any] , ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def a ( self : Union[str, Any] , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Dict , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def a ( self : Any , _lowercase : ImageInput , _lowercase : Optional[bool] = None , _lowercase : Optional[Dict[str, int]] = None , _lowercase : PILImageResampling = None , _lowercase : Optional[bool] = None , _lowercase : Optional[Dict[str, int]] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[float] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[Union[float, Iterable[float]]] = None , _lowercase : Optional[Union[float, Iterable[float]]] = None , _lowercase : Optional[TensorType] = None , _lowercase : ChannelDimension = ChannelDimension.FIRST , **_lowercase : Optional[Any] , ): __UpperCAmelCase = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase = resample if resample is not None else self.resample __UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase = image_std if image_std is not None else self.image_std __UpperCAmelCase = size if size is not None else self.size __UpperCAmelCase = get_size_dict(_lowercase , default_to_square=_lowercase ) __UpperCAmelCase = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase = get_size_dict(_lowercase , param_name='''crop_size''' ) __UpperCAmelCase = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __UpperCAmelCase = [to_numpy_array(_lowercase ) for image in images] if do_resize: __UpperCAmelCase = [self.resize(_lowercase , _lowercase , _lowercase ) for image in images] if do_center_crop: __UpperCAmelCase = [self.center_crop(_lowercase , _lowercase ) for image in images] if do_rescale: __UpperCAmelCase = [self.rescale(_lowercase , _lowercase ) for image in images] if do_normalize: __UpperCAmelCase = [self.normalize(_lowercase , _lowercase , _lowercase ) for image in images] __UpperCAmelCase = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] __UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
49
"""simple docstring""" import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { "kakaobrain/align-base": "https://huggingface.co/kakaobrain/align-base/resolve/main/config.json", } class _snake_case ( A__ ): '''simple docstring''' UpperCamelCase__ ="""align_text_model""" def __init__( self : List[Any] , snake_case : Tuple=30_522 , snake_case : Any=768 , snake_case : str=12 , snake_case : Optional[Any]=12 , snake_case : str=3_072 , snake_case : int="gelu" , snake_case : List[Any]=0.1 , snake_case : str=0.1 , snake_case : Optional[int]=512 , snake_case : str=2 , snake_case : Optional[int]=0.02 , snake_case : int=1e-12 , snake_case : Any=0 , snake_case : Optional[int]="absolute" , snake_case : List[Any]=True , **snake_case : Tuple , ): super().__init__(**snake_case ) UpperCAmelCase_ :Optional[Any] = vocab_size UpperCAmelCase_ :Union[str, Any] = hidden_size UpperCAmelCase_ :Optional[int] = num_hidden_layers UpperCAmelCase_ :Any = num_attention_heads UpperCAmelCase_ :int = hidden_act UpperCAmelCase_ :Any = intermediate_size UpperCAmelCase_ :str = hidden_dropout_prob UpperCAmelCase_ :str = attention_probs_dropout_prob UpperCAmelCase_ :Any = max_position_embeddings UpperCAmelCase_ :Dict = type_vocab_size UpperCAmelCase_ :int = initializer_range UpperCAmelCase_ :List[str] = layer_norm_eps UpperCAmelCase_ :Optional[Any] = position_embedding_type UpperCAmelCase_ :Dict = use_cache UpperCAmelCase_ :Tuple = pad_token_id @classmethod def snake_case_ ( cls : int , snake_case : Union[str, os.PathLike] , **snake_case : Dict ): cls._set_token_in_kwargs(snake_case ) UpperCAmelCase_ ,UpperCAmelCase_ :Optional[int] = cls.get_config_dict(snake_case , **snake_case ) # get the text config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": UpperCAmelCase_ :List[str] = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case , **snake_case ) class _snake_case ( A__ ): '''simple docstring''' UpperCamelCase__ ="""align_vision_model""" def __init__( self : Dict , snake_case : int = 3 , snake_case : int = 600 , snake_case : float = 2.0 , snake_case : float = 3.1 , snake_case : int = 8 , snake_case : List[int] = [3, 3, 5, 3, 5, 5, 3] , snake_case : List[int] = [32, 16, 24, 40, 80, 112, 192] , snake_case : List[int] = [16, 24, 40, 80, 112, 192, 320] , snake_case : List[int] = [] , snake_case : List[int] = [1, 2, 2, 2, 1, 2, 1] , snake_case : List[int] = [1, 2, 2, 3, 3, 4, 1] , snake_case : List[int] = [1, 6, 6, 6, 6, 6, 6] , snake_case : float = 0.25 , snake_case : str = "swish" , snake_case : int = 2_560 , snake_case : str = "mean" , snake_case : float = 0.02 , snake_case : float = 0.001 , snake_case : float = 0.99 , snake_case : float = 0.2 , **snake_case : int , ): super().__init__(**snake_case ) UpperCAmelCase_ :str = num_channels UpperCAmelCase_ :str = image_size UpperCAmelCase_ :List[str] = width_coefficient UpperCAmelCase_ :Any = depth_coefficient UpperCAmelCase_ :Any = depth_divisor UpperCAmelCase_ :int = kernel_sizes UpperCAmelCase_ :List[Any] = in_channels UpperCAmelCase_ :Dict = out_channels UpperCAmelCase_ :List[str] = depthwise_padding UpperCAmelCase_ :Dict = strides UpperCAmelCase_ :Optional[int] = num_block_repeats UpperCAmelCase_ :Optional[Any] = expand_ratios UpperCAmelCase_ :str = squeeze_expansion_ratio UpperCAmelCase_ :Tuple = hidden_act UpperCAmelCase_ :Dict = hidden_dim UpperCAmelCase_ :Any = pooling_type UpperCAmelCase_ :Any = initializer_range UpperCAmelCase_ :str = batch_norm_eps UpperCAmelCase_ :Union[str, Any] = batch_norm_momentum UpperCAmelCase_ :Dict = drop_connect_rate UpperCAmelCase_ :Union[str, Any] = sum(snake_case ) * 4 @classmethod def snake_case_ ( cls : Dict , snake_case : Union[str, os.PathLike] , **snake_case : Optional[int] ): cls._set_token_in_kwargs(snake_case ) UpperCAmelCase_ ,UpperCAmelCase_ :List[str] = cls.get_config_dict(snake_case , **snake_case ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": UpperCAmelCase_ :Tuple = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case , **snake_case ) class _snake_case ( A__ ): '''simple docstring''' UpperCamelCase__ ="""align""" UpperCamelCase__ =True def __init__( self : List[str] , snake_case : List[str]=None , snake_case : Optional[int]=None , snake_case : Union[str, Any]=640 , snake_case : int=1.0 , snake_case : Any=0.02 , **snake_case : Optional[int] , ): super().__init__(**snake_case ) if text_config is None: UpperCAmelCase_ :Optional[Any] = {} logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''' ) if vision_config is None: UpperCAmelCase_ :int = {} logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''' ) UpperCAmelCase_ :int = AlignTextConfig(**snake_case ) UpperCAmelCase_ :Any = AlignVisionConfig(**snake_case ) UpperCAmelCase_ :Dict = projection_dim UpperCAmelCase_ :Dict = temperature_init_value UpperCAmelCase_ :List[Any] = initializer_range @classmethod def snake_case_ ( cls : str , snake_case : AlignTextConfig , snake_case : AlignVisionConfig , **snake_case : int ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **snake_case ) def snake_case_ ( self : Optional[Any] ): UpperCAmelCase_ :List[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ :Tuple = self.text_config.to_dict() UpperCAmelCase_ :Dict = self.vision_config.to_dict() UpperCAmelCase_ :int = self.__class__.model_type return output
608
0
import re from filelock import FileLock try: import nltk lowerCAmelCase__ = True except (ImportError, ModuleNotFoundError): lowerCAmelCase__ = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def _lowerCAmelCase( __A ): re.sub("<n>" , "" , __A ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__A ) )
1
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def _lowerCAmelCase( __A ): UpperCAmelCase = fname.split(os.path.sep )[-1] return re.search(r"^(.*)_\d+\.jpg$" , __A ).groups()[0] class __magic_name__ ( _snake_case ): def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : int=None ) -> Optional[Any]: UpperCAmelCase = file_names UpperCAmelCase = image_transform UpperCAmelCase = label_to_id def __len__( self : Tuple ) -> List[str]: return len(self.file_names ) def __getitem__( self : Optional[int] , lowerCAmelCase__ : Tuple ) -> Dict: UpperCAmelCase = self.file_names[idx] UpperCAmelCase = PIL.Image.open(lowerCAmelCase__ ) UpperCAmelCase = raw_image.convert("RGB" ) if self.image_transform is not None: UpperCAmelCase = self.image_transform(lowerCAmelCase__ ) UpperCAmelCase = extract_label(lowerCAmelCase__ ) if self.label_to_id is not None: UpperCAmelCase = self.label_to_id[label] return {"image": image, "label": label} def _lowerCAmelCase( __A , __A ): # Initialize accelerator if args.with_tracking: UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config["lr"] UpperCAmelCase = int(config["num_epochs"] ) UpperCAmelCase = int(config["seed"] ) UpperCAmelCase = int(config["batch_size"] ) UpperCAmelCase = config["image_size"] if not isinstance(__A , (list, tuple) ): UpperCAmelCase = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , "isdigit" ): if args.checkpointing_steps == "epoch": UpperCAmelCase = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): UpperCAmelCase = int(args.checkpointing_steps ) else: raise ValueError( F"Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed." ) else: UpperCAmelCase = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: UpperCAmelCase = os.path.split(__A )[-1].split("." )[0] accelerator.init_trackers(__A , __A ) # Grab all the image filenames UpperCAmelCase = [os.path.join(args.data_dir , __A ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )] # Build the label correspondences UpperCAmelCase = [extract_label(__A ) for fname in file_names] UpperCAmelCase = list(set(__A ) ) id_to_label.sort() UpperCAmelCase = {lbl: i for i, lbl in enumerate(__A )} # Set the seed before splitting the data. np.random.seed(__A ) torch.manual_seed(__A ) torch.cuda.manual_seed_all(__A ) # Split our filenames between train and validation UpperCAmelCase = np.random.permutation(len(__A ) ) UpperCAmelCase = int(0.8 * len(__A ) ) UpperCAmelCase = random_perm[:cut] UpperCAmelCase = random_perm[cut:] # For training we use a simple RandomResizedCrop UpperCAmelCase = Compose([RandomResizedCrop(__A , scale=(0.5, 1.0) ), ToTensor()] ) UpperCAmelCase = PetsDataset( [file_names[i] for i in train_split] , image_transform=__A , label_to_id=__A ) # For evaluation, we use a deterministic Resize UpperCAmelCase = Compose([Resize(__A ), ToTensor()] ) UpperCAmelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=__A , label_to_id=__A ) # Instantiate dataloaders. UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 ) UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = create_model("resnet50d" , pretrained=__A , num_classes=len(__A ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): UpperCAmelCase = False for param in model.get_classifier().parameters(): UpperCAmelCase = True # We normalize the batches of images to be a bit faster. UpperCAmelCase = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device ) UpperCAmelCase = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler UpperCAmelCase = OneCycleLR(optimizer=__A , max_lr=__A , epochs=__A , steps_per_epoch=len(__A ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( __A , __A , __A , __A , __A ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase = 0 # We also need to keep track of the starting epoch so files are named properly UpperCAmelCase = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F"Resumed from checkpoint: {args.resume_from_checkpoint}" ) accelerator.load_state(args.resume_from_checkpoint ) UpperCAmelCase = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint UpperCAmelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) UpperCAmelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` UpperCAmelCase = os.path.splitext(__A )[0] if "epoch" in training_difference: UpperCAmelCase = int(training_difference.replace("epoch_" , "" ) ) + 1 UpperCAmelCase = None else: UpperCAmelCase = int(training_difference.replace("step_" , "" ) ) UpperCAmelCase = resume_step // len(__A ) resume_step -= starting_epoch * len(__A ) # Now we train the model for epoch in range(__A , __A ): model.train() if args.with_tracking: UpperCAmelCase = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step UpperCAmelCase = accelerator.skip_first_batches(__A , __A ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader UpperCAmelCase = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase = (batch["image"] - mean) / std UpperCAmelCase = model(__A ) UpperCAmelCase = torch.nn.functional.cross_entropy(__A , batch["label"] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(__A ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(__A , __A ): UpperCAmelCase = F"step_{overall_step}" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: UpperCAmelCase = os.path.join(args.output_dir , __A ) accelerator.save_state(__A ) model.eval() UpperCAmelCase = 0 UpperCAmelCase = 0 for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase = (batch["image"] - mean) / std with torch.no_grad(): UpperCAmelCase = model(__A ) UpperCAmelCase = outputs.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch["label"]) ) UpperCAmelCase = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() UpperCAmelCase = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}: {100 * eval_metric:.2f}" ) if args.with_tracking: accelerator.log( { "accuracy": 100 * eval_metric, "train_loss": total_loss.item() / len(__A ), "epoch": epoch, } , step=__A , ) if checkpointing_steps == "epoch": UpperCAmelCase = F"epoch_{epoch}" if args.output_dir is not None: UpperCAmelCase = os.path.join(args.output_dir , __A ) accelerator.save_state(__A ) if args.with_tracking: accelerator.end_training() def _lowerCAmelCase( ): UpperCAmelCase = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument("--data_dir" , required=__A , help="The data folder on disk." ) parser.add_argument("--fp16" , action="store_true" , help="If passed, will use FP16 training." ) parser.add_argument( "--mixed_precision" , type=__A , default=__A , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--checkpointing_steps" , type=__A , default=__A , help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch." , ) parser.add_argument( "--output_dir" , type=__A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=__A , default=__A , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=__A , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {"lr": 3E-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224} training_function(__A , __A ) if __name__ == "__main__": main()
1
1
def lowerCAmelCase_ ( __a , __a ) -> str: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(__a , int(b / 2 ) ) * actual_power(__a , int(b / 2 ) ) else: return a * actual_power(__a , int(b / 2 ) ) * actual_power(__a , int(b / 2 ) ) def lowerCAmelCase_ ( __a , __a ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(__a , __a ) return actual_power(__a , __a ) if __name__ == "__main__": print(power(-2, -3))
258
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _A = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _A = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } _A = { """unc-nlp/lxmert-base-uncased""": 512, } _A = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCamelCase__ ): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = LxmertTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Union[str, Any]: super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) SCREAMING_SNAKE_CASE : List[str] =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , snake_case_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , snake_case_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , snake_case_ ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : str =getattr(snake_case_ , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : List[str] =do_lower_case SCREAMING_SNAKE_CASE : Dict =strip_accents SCREAMING_SNAKE_CASE : Dict =tokenize_chinese_chars SCREAMING_SNAKE_CASE : Union[str, Any] =normalizer_class(**snake_case_ ) SCREAMING_SNAKE_CASE : str =do_lower_case def __a ( self , snake_case_ , snake_case_=None ) -> Dict: SCREAMING_SNAKE_CASE : List[Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self , snake_case_ , snake_case_ = None ) -> List[int]: SCREAMING_SNAKE_CASE : Dict =[self.sep_token_id] SCREAMING_SNAKE_CASE : Any =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE : List[Any] =self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
258
1
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _A = logging.get_logger(__name__) _A = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } _A = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def SCREAMING_SNAKE_CASE ( __UpperCAmelCase ) -> List[Any]: SCREAMING_SNAKE_CASE__ = {} with open(__UpperCAmelCase , "r" ) as file: for line_number, line in enumerate(__UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = line.strip() if line: SCREAMING_SNAKE_CASE__ = line.split() SCREAMING_SNAKE_CASE__ = line_number SCREAMING_SNAKE_CASE__ = words[0] SCREAMING_SNAKE_CASE__ = value return result def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: for attribute in key.split("." ): SCREAMING_SNAKE_CASE__ = getattr(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = PARAM_MAPPING[full_name.split("." )[-1]] SCREAMING_SNAKE_CASE__ = "param" if weight_type is not None and weight_type != "param": SCREAMING_SNAKE_CASE__ = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape elif weight_type is not None and weight_type == "param": SCREAMING_SNAKE_CASE__ = hf_pointer for attribute in hf_param_name.split("." ): SCREAMING_SNAKE_CASE__ = getattr(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = shape_pointer.shape # let's reduce dimension SCREAMING_SNAKE_CASE__ = value[0] else: SCREAMING_SNAKE_CASE__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": SCREAMING_SNAKE_CASE__ = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE__ = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE__ = value elif weight_type == "bias": SCREAMING_SNAKE_CASE__ = value elif weight_type == "param": for attribute in hf_param_name.split("." ): SCREAMING_SNAKE_CASE__ = getattr(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = value else: SCREAMING_SNAKE_CASE__ = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: SCREAMING_SNAKE_CASE__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = PARAM_MAPPING[full_name.split("." )[-1]] SCREAMING_SNAKE_CASE__ = "param" if weight_type is not None and weight_type != "param": SCREAMING_SNAKE_CASE__ = ".".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": SCREAMING_SNAKE_CASE__ = ".".join([key, hf_param_name] ) else: SCREAMING_SNAKE_CASE__ = key SCREAMING_SNAKE_CASE__ = value if "lm_head" in full_key else value[0] _A = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> List[str]: SCREAMING_SNAKE_CASE__ = False for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE__ = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: SCREAMING_SNAKE_CASE__ = True if "*" in mapped_key: SCREAMING_SNAKE_CASE__ = name.split(__UpperCAmelCase )[0].split("." )[-2] SCREAMING_SNAKE_CASE__ = mapped_key.replace("*" , __UpperCAmelCase ) if "weight_g" in name: SCREAMING_SNAKE_CASE__ = "weight_g" elif "weight_v" in name: SCREAMING_SNAKE_CASE__ = "weight_v" elif "bias" in name: SCREAMING_SNAKE_CASE__ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj SCREAMING_SNAKE_CASE__ = "weight" else: SCREAMING_SNAKE_CASE__ = None if hf_dict is not None: rename_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return is_used return is_used def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = fairseq_model.state_dict() SCREAMING_SNAKE_CASE__ = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE__ = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == "group" , ) SCREAMING_SNAKE_CASE__ = True else: SCREAMING_SNAKE_CASE__ = load_wavaveca_layer(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: SCREAMING_SNAKE_CASE__ = full_name.split("conv_layers." )[-1] SCREAMING_SNAKE_CASE__ = name.split("." ) SCREAMING_SNAKE_CASE__ = int(items[0] ) SCREAMING_SNAKE_CASE__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) SCREAMING_SNAKE_CASE__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) SCREAMING_SNAKE_CASE__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__UpperCAmelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=False ) -> Dict: if config_path is not None: SCREAMING_SNAKE_CASE__ = WavaVecaConfig.from_pretrained(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE__ = WavaVecaConfig() if is_seq_class: SCREAMING_SNAKE_CASE__ = read_txt_into_dict(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = idalabel SCREAMING_SNAKE_CASE__ = WavaVecaForSequenceClassification(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) feature_extractor.save_pretrained(__UpperCAmelCase ) elif is_finetuned: if dict_path: SCREAMING_SNAKE_CASE__ = Dictionary.load(__UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq SCREAMING_SNAKE_CASE__ = target_dict.pad_index SCREAMING_SNAKE_CASE__ = target_dict.bos_index SCREAMING_SNAKE_CASE__ = target_dict.eos_index SCREAMING_SNAKE_CASE__ = len(target_dict.symbols ) SCREAMING_SNAKE_CASE__ = os.path.join(__UpperCAmelCase , "vocab.json" ) if not os.path.isdir(__UpperCAmelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__UpperCAmelCase ) ) return os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = target_dict.indices # fairseq has the <pad> and <s> switched SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 1 with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = WavaVecaCTCTokenizer( __UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__UpperCAmelCase , ) SCREAMING_SNAKE_CASE__ = True if config.feat_extract_norm == "layer" else False SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) SCREAMING_SNAKE_CASE__ = WavaVecaProcessor(feature_extractor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = WavaVecaForCTC(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE__ = WavaVecaForPreTraining(__UpperCAmelCase ) if is_finetuned or is_seq_class: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: SCREAMING_SNAKE_CASE__ = argparse.Namespace(task="audio_pretraining" ) SCREAMING_SNAKE_CASE__ = fairseq.tasks.setup_task(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = model[0].eval() recursively_load_weights(__UpperCAmelCase , __UpperCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) _A = parser.parse_args() _A = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
707
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule _A = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
538
0
'''simple docstring''' def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('Input value must be an \'int\' type' ) __a : Any = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
597
'''simple docstring''' # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys SCREAMING_SNAKE_CASE_ = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") SCREAMING_SNAKE_CASE_ = subprocess.check_output(F"git diff --name-only {fork_point_sha}".split()).decode("utf-8").split() SCREAMING_SNAKE_CASE_ = "|".join(sys.argv[1:]) SCREAMING_SNAKE_CASE_ = re.compile(rF"^({joined_dirs}).*?\.py$") SCREAMING_SNAKE_CASE_ = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
597
1
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device a__ : Union[str, Any] = False class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : Optional[int] ): UpperCAmelCase = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pipe.dual_guided( prompt='''first prompt''' , image=a__ , text_to_image_strength=0.75 , generator=a__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a__ ) UpperCAmelCase = VersatileDiffusionPipeline.from_pretrained(a__ , torch_dtype=torch.floataa ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) UpperCAmelCase = generator.manual_seed(0 ) UpperCAmelCase = pipe.dual_guided( prompt='''first prompt''' , image=a__ , text_to_image_strength=0.75 , generator=a__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def __snake_case ( self : Optional[int] ): UpperCAmelCase = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) UpperCAmelCase = '''cyberpunk 2077''' UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pipe.dual_guided( prompt=a__ , image=a__ , text_to_image_strength=0.75 , generator=a__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images UpperCAmelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase = np.array([0.1_448, 0.1_619, 0.1_741, 0.1_086, 0.1_147, 0.1_128, 0.1_199, 0.1_165, 0.1_001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCAmelCase = '''A painting of a squirrel eating a burger ''' UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pipe.text_to_image( prompt=a__ , generator=a__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images UpperCAmelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCAmelCase = pipe.image_variation(a__ , generator=a__ , output_type='''numpy''' ).images UpperCAmelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase = np.array([0.3_076, 0.3_123, 0.3_284, 0.3_782, 0.3_770, 0.3_894, 0.4_297, 0.4_331, 0.4_456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
570
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a__ : Tuple = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys a__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
570
1
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=1_0_0 , __UpperCAmelCase=1_3 , __UpperCAmelCase=3_0 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=3_2 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=3_7 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1_0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , ): '''simple docstring''' lowerCAmelCase__ :int = parent lowerCAmelCase__ :List[Any] = vocab_size lowerCAmelCase__ :int = batch_size lowerCAmelCase__ :Optional[Any] = image_size lowerCAmelCase__ :List[Any] = patch_size lowerCAmelCase__ :Optional[Any] = num_channels lowerCAmelCase__ :List[str] = is_training lowerCAmelCase__ :int = use_labels lowerCAmelCase__ :Optional[int] = hidden_size lowerCAmelCase__ :Union[str, Any] = num_hidden_layers lowerCAmelCase__ :Any = num_attention_heads lowerCAmelCase__ :Union[str, Any] = intermediate_size lowerCAmelCase__ :Optional[int] = hidden_act lowerCAmelCase__ :str = hidden_dropout_prob lowerCAmelCase__ :Optional[int] = attention_probs_dropout_prob lowerCAmelCase__ :int = type_sequence_label_size lowerCAmelCase__ :Dict = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ :int = (image_size // patch_size) ** 2 lowerCAmelCase__ :Tuple = num_patches + 1 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ :Dict = None if self.use_labels: lowerCAmelCase__ :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ :Any = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) return config, pixel_values, labels def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = FlaxBeitModel(config=__UpperCAmelCase ) lowerCAmelCase__ :Dict = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[str] = FlaxBeitForMaskedImageModeling(config=__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.type_sequence_label_size lowerCAmelCase__ :List[str] = FlaxBeitForImageClassification(config=__UpperCAmelCase ) lowerCAmelCase__ :int = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase__ :Tuple = 1 lowerCAmelCase__ :Union[str, Any] = FlaxBeitForImageClassification(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ :int = model(__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) :str = config_and_inputs lowerCAmelCase__ :Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class _lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" __magic_name__ :Optional[int] = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = FlaxBeitModelTester(self ) lowerCAmelCase__ :Optional[Any] = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=3_7 ) def snake_case ( self ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ :Dict = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ :int = [*signature.parameters.keys()] lowerCAmelCase__ :List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase__ :List[str] = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Dict = model_class(__UpperCAmelCase ) @jax.jit def model_jitted(__UpperCAmelCase , **__UpperCAmelCase ): return model(pixel_values=__UpperCAmelCase , **__UpperCAmelCase ) with self.subTest('JIT Enabled' ): lowerCAmelCase__ :str = model_jitted(**__UpperCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowerCAmelCase__ :List[Any] = model_jitted(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) for jitted_output, output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def snake_case ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: lowerCAmelCase__ :str = model_class_name.from_pretrained('microsoft/beit-base-patch16-224' ) lowerCAmelCase__ :Any = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(__UpperCAmelCase ) def __A () ->Union[str, Any]: """simple docstring""" lowerCAmelCase__ :List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self ): '''simple docstring''' return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = FlaxBeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ) lowerCAmelCase__ :Optional[int] = self.default_image_processor lowerCAmelCase__ :List[str] = prepare_img() lowerCAmelCase__ :Any = image_processor(images=__UpperCAmelCase , return_tensors='np' ).pixel_values # prepare bool_masked_pos lowerCAmelCase__ :str = np.ones((1, 1_9_6) , dtype=__UpperCAmelCase ) # forward pass lowerCAmelCase__ :int = model(pixel_values=__UpperCAmelCase , bool_masked_pos=__UpperCAmelCase ) lowerCAmelCase__ :Dict = outputs.logits # verify the logits lowerCAmelCase__ :Optional[Any] = (1, 1_9_6, 8_1_9_2) self.assertEqual(logits.shape , __UpperCAmelCase ) lowerCAmelCase__ :List[Any] = np.array( [[-3.24_37, 0.50_72, -13.91_74], [-3.24_56, 0.49_48, -13.94_01], [-3.20_33, 0.51_21, -13.85_50]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , __UpperCAmelCase , atol=1E-2 ) ) @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ) lowerCAmelCase__ :int = self.default_image_processor lowerCAmelCase__ :Any = prepare_img() lowerCAmelCase__ :Optional[Any] = image_processor(images=__UpperCAmelCase , return_tensors='np' ) # forward pass lowerCAmelCase__ :int = model(**__UpperCAmelCase ) lowerCAmelCase__ :Tuple = outputs.logits # verify the logits lowerCAmelCase__ :str = (1, 1_0_0_0) self.assertEqual(logits.shape , __UpperCAmelCase ) lowerCAmelCase__ :Tuple = np.array([-1.23_85, -1.09_87, -1.01_08] ) self.assertTrue(np.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) lowerCAmelCase__ :Optional[Any] = 2_8_1 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ) lowerCAmelCase__ :Dict = self.default_image_processor lowerCAmelCase__ :Optional[Any] = prepare_img() lowerCAmelCase__ :List[str] = image_processor(images=__UpperCAmelCase , return_tensors='np' ) # forward pass lowerCAmelCase__ :Dict = model(**__UpperCAmelCase ) lowerCAmelCase__ :Any = outputs.logits # verify the logits lowerCAmelCase__ :Tuple = (1, 2_1_8_4_1) self.assertEqual(logits.shape , __UpperCAmelCase ) lowerCAmelCase__ :Any = np.array([1.68_81, -0.27_87, 0.59_01] ) self.assertTrue(np.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) lowerCAmelCase__ :int = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase )
93
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version __A = { """<""": operator.lt, """<=""": operator.le, """==""": operator.eq, """!=""": operator.ne, """>=""": operator.ge, """>""": operator.gt, } def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Union[str, Any]: """simple docstring""" if got_ver is None or want_ver is None: raise ValueError( F"Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider" F" reinstalling {pkg}." ) if not ops[op](version.parse(_SCREAMING_SNAKE_CASE ) , version.parse(_SCREAMING_SNAKE_CASE ) ): raise ImportError( F"{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}" ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) ->None: """simple docstring""" lowerCAmelCase__ :List[str] = F"\n{hint}" if hint is not None else '' # non-versioned check if re.match(r'^[\w_\-\d]+$' , _SCREAMING_SNAKE_CASE ): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Any = requirement, None, None else: lowerCAmelCase__ :List[str] = re.findall(r'^([^!=<>\s]+)([\s!=<>]{1,2}.+)' , _SCREAMING_SNAKE_CASE ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but' F" got {requirement}" ) lowerCAmelCase__ , lowerCAmelCase__ :Union[str, Any] = match[0] lowerCAmelCase__ :List[Any] = want_full.split(',' ) # there could be multiple requirements lowerCAmelCase__ :Any = {} for w in want_range: lowerCAmelCase__ :Tuple = re.findall(r'^([\s!=<>]{1,2})(.+)' , _SCREAMING_SNAKE_CASE ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,' F" but got {requirement}" ) lowerCAmelCase__ , lowerCAmelCase__ :int = match[0] lowerCAmelCase__ :str = want_ver if op not in ops: raise ValueError(F"{requirement}: need one of {list(ops.keys() )}, but got {op}" ) # special case if pkg == "python": lowerCAmelCase__ :Any = '.'.join([str(_SCREAMING_SNAKE_CASE ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return # check if any version is installed try: lowerCAmelCase__ :List[Any] = importlib.metadata.version(_SCREAMING_SNAKE_CASE ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F"The '{requirement}' distribution was not found and is required by this application. {hint}" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A (_SCREAMING_SNAKE_CASE ) ->List[Any]: """simple docstring""" lowerCAmelCase__ :Optional[Any] = 'Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main' return require_version(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
93
1
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> str: '''simple docstring''' return "\n".join( F'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
320
'''simple docstring''' import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Dict = { 'attention_cell': 'multi_head', 'num_layers': 4, 'units': 1_0_2_4, 'hidden_size': 7_6_8, 'max_length': 5_1_2, 'num_heads': 8, 'scaled': True, 'dropout': 0.1, 'use_residual': True, 'embed_size': 1_0_2_4, 'embed_dropout': 0.1, 'word_embed': None, 'layer_norm_eps': 1e-5, 'token_type_vocab_size': 2, } SCREAMING_SNAKE_CASE__ :List[str] = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py SCREAMING_SNAKE_CASE__ :Tuple = BERTEncoder( attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=UpperCAmelCase__ , output_all_encodings=UpperCAmelCase__ , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , UpperCAmelCase__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later SCREAMING_SNAKE_CASE__ :Optional[Any] = 'openwebtext_ccnews_stories_books_cased' # Specify download folder to Gluonnlp's vocab SCREAMING_SNAKE_CASE__ :Any = os.path.join(get_home_dir() , 'models' ) SCREAMING_SNAKE_CASE__ :Tuple = _load_vocab(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , cls=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :str = nlp.model.BERTModel( UpperCAmelCase__ , len(UpperCAmelCase__ ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=UpperCAmelCase__ , use_token_type_embed=UpperCAmelCase__ , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=UpperCAmelCase__ , use_decoder=UpperCAmelCase__ , ) original_bort.load_parameters(UpperCAmelCase__ , cast_dtype=UpperCAmelCase__ , ignore_extra=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = original_bort._collect_params_with_prefix() # Build our config 🤗 SCREAMING_SNAKE_CASE__ :List[str] = { 'architectures': ['BertForMaskedLM'], 'attention_probs_dropout_prob': predefined_args['dropout'], 'hidden_act': 'gelu', 'hidden_dropout_prob': predefined_args['dropout'], 'hidden_size': predefined_args['embed_size'], 'initializer_range': 0.02, 'intermediate_size': predefined_args['hidden_size'], 'layer_norm_eps': predefined_args['layer_norm_eps'], 'max_position_embeddings': predefined_args['max_length'], 'model_type': 'bort', 'num_attention_heads': predefined_args['num_heads'], 'num_hidden_layers': predefined_args['num_layers'], 'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa 'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa 'vocab_size': len(UpperCAmelCase__ ), } SCREAMING_SNAKE_CASE__ :List[str] = BertConfig.from_dict(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :List[str] = BertForMaskedLM(UpperCAmelCase__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(UpperCAmelCase__ : Optional[int] ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple ): SCREAMING_SNAKE_CASE__ :Optional[Any] = hf_param.shape SCREAMING_SNAKE_CASE__ :Tuple = to_torch(params[gluon_param] ) SCREAMING_SNAKE_CASE__ :Optional[int] = gluon_param.shape assert ( shape_hf == shape_gluon ), F'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param SCREAMING_SNAKE_CASE__ :Union[str, Any] = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' ) SCREAMING_SNAKE_CASE__ :Dict = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' ) SCREAMING_SNAKE_CASE__ :List[str] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' ) SCREAMING_SNAKE_CASE__ :int = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) SCREAMING_SNAKE_CASE__ :int = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): SCREAMING_SNAKE_CASE__ :BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention SCREAMING_SNAKE_CASE__ :BertSelfAttention = layer.attention.self SCREAMING_SNAKE_CASE__ :Optional[Any] = check_and_map_params( self_attn.key.bias.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) SCREAMING_SNAKE_CASE__ :Optional[int] = check_and_map_params( self_attn.key.weight.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) SCREAMING_SNAKE_CASE__ :int = check_and_map_params( self_attn.query.bias.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = check_and_map_params( self_attn.query.weight.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = check_and_map_params( self_attn.value.bias.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) SCREAMING_SNAKE_CASE__ :List[str] = check_and_map_params( self_attn.value.weight.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output SCREAMING_SNAKE_CASE__ :BertSelfOutput = layer.attention.output SCREAMING_SNAKE_CASE__ :Optional[int] = check_and_map_params( self_output.dense.bias , F'''encoder.transformer_cells.{i}.proj.bias''' ) SCREAMING_SNAKE_CASE__ :List[str] = check_and_map_params( self_output.dense.weight , F'''encoder.transformer_cells.{i}.proj.weight''' ) SCREAMING_SNAKE_CASE__ :List[str] = check_and_map_params( self_output.LayerNorm.bias , F'''encoder.transformer_cells.{i}.layer_norm.beta''' ) SCREAMING_SNAKE_CASE__ :Any = check_and_map_params( self_output.LayerNorm.weight , F'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate SCREAMING_SNAKE_CASE__ :BertIntermediate = layer.intermediate SCREAMING_SNAKE_CASE__ :str = check_and_map_params( intermediate.dense.bias , F'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) SCREAMING_SNAKE_CASE__ :Optional[int] = check_and_map_params( intermediate.dense.weight , F'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output SCREAMING_SNAKE_CASE__ :BertOutput = layer.output SCREAMING_SNAKE_CASE__ :Any = check_and_map_params( bert_output.dense.bias , F'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) SCREAMING_SNAKE_CASE__ :Optional[int] = check_and_map_params( bert_output.dense.weight , F'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) SCREAMING_SNAKE_CASE__ :Optional[Any] = check_and_map_params( bert_output.LayerNorm.bias , F'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) SCREAMING_SNAKE_CASE__ :Tuple = check_and_map_params( bert_output.LayerNorm.weight , F'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models SCREAMING_SNAKE_CASE__ :Tuple = RobertaTokenizer.from_pretrained('roberta-base' ) SCREAMING_SNAKE_CASE__ :int = tokenizer.encode_plus(UpperCAmelCase__ )['input_ids'] # Get gluon output SCREAMING_SNAKE_CASE__ :Union[str, Any] = mx.nd.array([input_ids] ) SCREAMING_SNAKE_CASE__ :int = original_bort(inputs=UpperCAmelCase__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :Any = BertModel.from_pretrained(UpperCAmelCase__ ) hf_bort_model.eval() SCREAMING_SNAKE_CASE__ :Dict = tokenizer.encode_plus(UpperCAmelCase__ , return_tensors='pt' ) SCREAMING_SNAKE_CASE__ :Optional[int] = hf_bort_model(**UpperCAmelCase__ )[0] SCREAMING_SNAKE_CASE__ :Any = output_gluon[0].asnumpy() SCREAMING_SNAKE_CASE__ :Union[str, Any] = output_hf[0].detach().numpy() SCREAMING_SNAKE_CASE__ :Tuple = np.max(np.abs(hf_layer - gluon_layer ) ).item() SCREAMING_SNAKE_CASE__ :Tuple = np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-3 ) if success: print('✔️ Both model do output the same tensors' ) else: print('❌ Both model do **NOT** output the same tensors' ) print('Absolute difference is:' , UpperCAmelCase__ ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase_ = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
320
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Optional[Any] = logging.get_logger(__name__) A__ : str = { 'microsoft/git-base': 'https://huggingface.co/microsoft/git-base/resolve/main/config.json', } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = """git_vision_model""" def __init__( self : Any, lowerCamelCase : Tuple=768, lowerCamelCase : List[Any]=3_072, lowerCamelCase : int=12, lowerCamelCase : Optional[int]=12, lowerCamelCase : List[Any]=3, lowerCamelCase : List[Any]=224, lowerCamelCase : Union[str, Any]=16, lowerCamelCase : List[str]="quick_gelu", lowerCamelCase : int=1E-5, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : List[Any]=0.02, **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__(**lowerCamelCase ) lowercase__ = hidden_size lowercase__ = intermediate_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = num_channels lowercase__ = patch_size lowercase__ = image_size lowercase__ = initializer_range lowercase__ = attention_dropout lowercase__ = layer_norm_eps lowercase__ = hidden_act @classmethod def lowercase__ ( cls : Tuple, lowerCamelCase : Union[str, os.PathLike], **lowerCamelCase : Any ): '''simple docstring''' cls._set_token_in_kwargs(lowerCamelCase ) lowercase__ , lowercase__ = cls.get_config_dict(lowerCamelCase, **lowerCamelCase ) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''' ) == "git": lowercase__ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls, '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCamelCase, **lowerCamelCase ) class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = """git""" def __init__( self : str, lowerCamelCase : Any=None, lowerCamelCase : Any=30_522, lowerCamelCase : Tuple=768, lowerCamelCase : int=6, lowerCamelCase : List[Any]=12, lowerCamelCase : List[str]=3_072, lowerCamelCase : Dict="gelu", lowerCamelCase : Optional[Any]=0.1, lowerCamelCase : Tuple=0.1, lowerCamelCase : int=1_024, lowerCamelCase : str=0.02, lowerCamelCase : Union[str, Any]=1E-12, lowerCamelCase : List[Any]=0, lowerCamelCase : Any="absolute", lowerCamelCase : Dict=True, lowerCamelCase : Tuple=False, lowerCamelCase : List[str]=101, lowerCamelCase : List[Any]=102, lowerCamelCase : List[Any]=None, **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__(bos_token_id=lowerCamelCase, eos_token_id=lowerCamelCase, pad_token_id=lowerCamelCase, **lowerCamelCase ) if vision_config is None: lowercase__ = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''' ) lowercase__ = GitVisionConfig(**lowerCamelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = tie_word_embeddings lowercase__ = num_image_with_embedding lowercase__ = bos_token_id lowercase__ = eos_token_id def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.vision_config.to_dict() lowercase__ = self.__class__.model_type return output
183
import numpy as np import datasets A__ : int = '\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' A__ : Optional[int] = '\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' A__ : Optional[int] = '\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): """simple docstring""" def lowercase__ ( self : str ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''X''': datasets.Sequence(datasets.Value('''float''', id='''sequence''' ), id='''X''' ), } ), ) def lowercase__ ( self : Dict, lowerCamelCase : int, lowerCamelCase : Optional[int] ): '''simple docstring''' # convert to numpy arrays lowercase__ = np.array(lowerCamelCase ) lowercase__ = np.array(lowerCamelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError('''Expected `X` to be a 2D vector''' ) if len(reference_distribution.shape ) != 2: raise ValueError('''Expected `reference_distribution` to be a 2D vector''' ) if reference_distribution.shape[0] < 2: raise ValueError( '''Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension''' ) # Get mahalanobis distance for each prediction lowercase__ = X - np.mean(lowerCamelCase ) lowercase__ = np.cov(reference_distribution.T ) try: lowercase__ = np.linalg.inv(lowerCamelCase ) except np.linalg.LinAlgError: lowercase__ = np.linalg.pinv(lowerCamelCase ) lowercase__ = np.dot(lowerCamelCase, lowerCamelCase ) lowercase__ = np.dot(lowerCamelCase, X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
183
1
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCAmelCase( a__ : Optional[Any] ): # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCAmelCase( ): '''simple docstring''' with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" lowerCamelCase__ = [1, 2, 3] with pytest.raises(a__ ): with parallel_backend("unsupported backend" ): map_nested(a__ , a__ , num_proc=2 ) with pytest.raises(a__ ): with parallel_backend("unsupported backend" ): map_nested(a__ , a__ , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def lowerCAmelCase( a__ : Optional[int] ): '''simple docstring''' lowerCamelCase__ = [1, 2] lowerCamelCase__ = {"a": 1, "b": 2} lowerCamelCase__ = {"a": [1, 2], "b": [3, 4]} lowerCamelCase__ = {"a": {"1": 1}, "b": 2} lowerCamelCase__ = {"a": 1, "b": 2, "c": 3, "d": 4} lowerCamelCase__ = [2, 3] lowerCamelCase__ = {"a": 2, "b": 3} lowerCamelCase__ = {"a": [2, 3], "b": [4, 5]} lowerCamelCase__ = {"a": {"1": 2}, "b": 3} lowerCamelCase__ = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(a__ , a__ , num_proc=a__ ) == expected_map_nested_sa assert map_nested(a__ , a__ , num_proc=a__ ) == expected_map_nested_sa assert map_nested(a__ , a__ , num_proc=a__ ) == expected_map_nested_sa assert map_nested(a__ , a__ , num_proc=a__ ) == expected_map_nested_sa assert map_nested(a__ , a__ , num_proc=a__ ) == expected_map_nested_sa
426
'''simple docstring''' import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) set_seed(7_7_0) lowerCAmelCase_ = { "c_attn": "att_proj", "c_proj": "out_proj", "c_fc": "in_proj", "transformer.": "", "h.": "layers.", "ln_1": "layernorm_1", "ln_2": "layernorm_2", "ln_f": "layernorm_final", "wpe": "position_embeds_layer", "wte": "input_embeds_layer", } lowerCAmelCase_ = { "text_small": { "repo_id": "suno/bark", "file_name": "text.pt", }, "coarse_small": { "repo_id": "suno/bark", "file_name": "coarse.pt", }, "fine_small": { "repo_id": "suno/bark", "file_name": "fine.pt", }, "text": { "repo_id": "suno/bark", "file_name": "text_2.pt", }, "coarse": { "repo_id": "suno/bark", "file_name": "coarse_2.pt", }, "fine": { "repo_id": "suno/bark", "file_name": "fine_2.pt", }, } lowerCAmelCase_ = os.path.dirname(os.path.abspath(__file__)) lowerCAmelCase_ = os.path.join(os.path.expanduser("~"), ".cache") lowerCAmelCase_ = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "suno", "bark_v0") def lowerCAmelCase( a__ : Dict , a__ : Union[str, Any]=False ): '''simple docstring''' lowerCamelCase__ = model_type if use_small: key += "_small" return os.path.join(a__ , REMOTE_MODEL_PATHS[key]["file_name"] ) def lowerCAmelCase( a__ : Optional[Any] , a__ : Union[str, Any] ): '''simple docstring''' os.makedirs(a__ , exist_ok=a__ ) hf_hub_download(repo_id=a__ , filename=a__ , local_dir=a__ ) def lowerCAmelCase( a__ : List[Any] , a__ : Optional[int] , a__ : Union[str, Any]=False , a__ : str="text" ): '''simple docstring''' if model_type == "text": lowerCamelCase__ = BarkSemanticModel lowerCamelCase__ = BarkSemanticConfig lowerCamelCase__ = BarkSemanticGenerationConfig elif model_type == "coarse": lowerCamelCase__ = BarkCoarseModel lowerCamelCase__ = BarkCoarseConfig lowerCamelCase__ = BarkCoarseGenerationConfig elif model_type == "fine": lowerCamelCase__ = BarkFineModel lowerCamelCase__ = BarkFineConfig lowerCamelCase__ = BarkFineGenerationConfig else: raise NotImplementedError() lowerCamelCase__ = f"""{model_type}_small""" if use_small else model_type lowerCamelCase__ = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(a__ ): logger.info(f"""{model_type} model not found, downloading into `{CACHE_DIR}`.""" ) _download(model_info["repo_id"] , model_info["file_name"] ) lowerCamelCase__ = torch.load(a__ , map_location=a__ ) # this is a hack lowerCamelCase__ = checkpoint["model_args"] if "input_vocab_size" not in model_args: lowerCamelCase__ = model_args["vocab_size"] lowerCamelCase__ = model_args["vocab_size"] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments lowerCamelCase__ = model_args.pop("n_head" ) lowerCamelCase__ = model_args.pop("n_embd" ) lowerCamelCase__ = model_args.pop("n_layer" ) lowerCamelCase__ = ConfigClass(**checkpoint["model_args"] ) lowerCamelCase__ = ModelClass(config=a__ ) lowerCamelCase__ = GenerationConfigClass() lowerCamelCase__ = model_generation_config lowerCamelCase__ = checkpoint["model"] # fixup checkpoint lowerCamelCase__ = "_orig_mod." for k, v in list(state_dict.items() ): if k.startswith(a__ ): # replace part of the key with corresponding layer name in HF implementation lowerCamelCase__ = k[len(a__ ) :] for old_layer_name in new_layer_name_dict: lowerCamelCase__ = new_k.replace(a__ , new_layer_name_dict[old_layer_name] ) lowerCamelCase__ = state_dict.pop(a__ ) lowerCamelCase__ = set(state_dict.keys() ) - set(model.state_dict().keys() ) lowerCamelCase__ = {k for k in extra_keys if not k.endswith(".attn.bias" )} lowerCamelCase__ = set(model.state_dict().keys() ) - set(state_dict.keys() ) lowerCamelCase__ = {k for k in missing_keys if not k.endswith(".attn.bias" )} if len(a__ ) != 0: raise ValueError(f"""extra keys found: {extra_keys}""" ) if len(a__ ) != 0: raise ValueError(f"""missing keys: {missing_keys}""" ) model.load_state_dict(a__ , strict=a__ ) lowerCamelCase__ = model.num_parameters(exclude_embeddings=a__ ) lowerCamelCase__ = checkpoint["best_val_loss"].item() logger.info(f"""model loaded: {round(n_params/1E6 , 1 )}M params, {round(a__ , 3 )} loss""" ) model.eval() model.to(a__ ) del checkpoint, state_dict return model def lowerCAmelCase( a__ : Tuple , a__ : List[Any]=False , a__ : Optional[Any]="text" ): '''simple docstring''' if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() lowerCamelCase__ = "cpu" # do conversion on cpu lowerCamelCase__ = _get_ckpt_path(a__ , use_small=a__ ) lowerCamelCase__ = _load_model(a__ , a__ , model_type=a__ , use_small=a__ ) # load bark initial model lowerCamelCase__ = _bark_load_model(a__ , "cpu" , model_type=a__ , use_small=a__ ) if model_type == "text": lowerCamelCase__ = bark_model["model"] if model.num_parameters(exclude_embeddings=a__ ) != bark_model.get_num_params(): raise ValueError("initial and new models don't have the same number of parameters" ) # check if same output as the bark model lowerCamelCase__ = 5 lowerCamelCase__ = 10 if model_type in ["text", "coarse"]: lowerCamelCase__ = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) lowerCamelCase__ = bark_model(a__ )[0] lowerCamelCase__ = model(a__ ) # take last logits lowerCamelCase__ = output_new_model_total.logits[:, [-1], :] else: lowerCamelCase__ = 3 lowerCamelCase__ = 8 lowerCamelCase__ = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) lowerCamelCase__ = model(a__ , a__ ) lowerCamelCase__ = bark_model(a__ , a__ ) lowerCamelCase__ = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("initial and new outputs don't have the same shape" ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError("initial and new outputs are not equal" ) Path(a__ ).mkdir(exist_ok=a__ ) model.save_pretrained(a__ ) def lowerCAmelCase( a__ : Dict , a__ : int , a__ : List[str] , a__ : Tuple , a__ : int , a__ : Tuple , ): '''simple docstring''' lowerCamelCase__ = os.path.join(a__ , a__ ) lowerCamelCase__ = BarkSemanticConfig.from_pretrained(os.path.join(a__ , "config.json" ) ) lowerCamelCase__ = BarkCoarseConfig.from_pretrained(os.path.join(a__ , "config.json" ) ) lowerCamelCase__ = BarkFineConfig.from_pretrained(os.path.join(a__ , "config.json" ) ) lowerCamelCase__ = EncodecConfig.from_pretrained("facebook/encodec_24khz" ) lowerCamelCase__ = BarkSemanticModel.from_pretrained(a__ ) lowerCamelCase__ = BarkCoarseModel.from_pretrained(a__ ) lowerCamelCase__ = BarkFineModel.from_pretrained(a__ ) lowerCamelCase__ = EncodecModel.from_pretrained("facebook/encodec_24khz" ) lowerCamelCase__ = BarkConfig.from_sub_model_configs( a__ , a__ , a__ , a__ ) lowerCamelCase__ = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) lowerCamelCase__ = BarkModel(a__ ) lowerCamelCase__ = semantic lowerCamelCase__ = coarseAcoustic lowerCamelCase__ = fineAcoustic lowerCamelCase__ = codec lowerCamelCase__ = bark_generation_config Path(a__ ).mkdir(exist_ok=a__ ) bark.save_pretrained(a__ , repo_id=a__ , push_to_hub=a__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument("model_type", type=str, help="text, coarse or fine.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--is_small", action="store_true", help="convert the small version instead of the large.") lowerCAmelCase_ = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
426
1
import itertools import math def lowerCAmelCase_ ( lowercase: int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( ) -> Any: '''simple docstring''' _UpperCamelCase: Optional[Any] = 2 while True: if is_prime(lowercase ): yield num num += 1 def lowerCAmelCase_ ( lowercase: int = 10_001 ) -> int: '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , lowercase ) ) if __name__ == "__main__": print(f"""{solution() = }""")
271
import random def lowerCAmelCase_ ( lowercase: int , lowercase: float , lowercase: bool = False ) -> dict: '''simple docstring''' _UpperCamelCase: dict = {i: [] for i in range(lowercase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowercase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowercase ): for j in range(i + 1 , lowercase ): if random.random() < probability: graph[i].append(lowercase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowercase ) return graph def lowerCAmelCase_ ( lowercase: int ) -> dict: '''simple docstring''' return { i: [j for j in range(lowercase ) if i != j] for i in range(lowercase ) } if __name__ == "__main__": import doctest doctest.testmod()
271
1
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' @staticmethod @abstractmethod def _lowerCAmelCase ( _a ): """simple docstring""" raise NotImplementedError() @abstractmethod def _lowerCAmelCase ( self ): """simple docstring""" raise NotImplementedError()
533
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def a__ ( snake_case__ ) -> List[str]: return getitem, k def a__ ( snake_case__ , snake_case__ ) -> Optional[Any]: return setitem, k, v def a__ ( snake_case__ ) -> str: return delitem, k def a__ ( snake_case__ , snake_case__ , *snake_case__ ) -> Union[str, Any]: try: return fun(snake_case__ , *snake_case__ ), None except Exception as e: return None, e lowerCAmelCase : Optional[int] = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) lowerCAmelCase : List[Any] = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] lowerCAmelCase : List[Any] = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] lowerCAmelCase : List[Any] = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] lowerCAmelCase : Tuple = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowerCAmelCase : Tuple = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def a__ ( snake_case__ ) -> Any: lowerCamelCase = HashMap(initial_block_size=4 ) lowerCamelCase = {} for _, (fun, *args) in enumerate(snake_case__ ): lowerCamelCase , lowerCamelCase = _run_operation(snake_case__ , snake_case__ , *snake_case__ ) lowerCamelCase , lowerCamelCase = _run_operation(snake_case__ , snake_case__ , *snake_case__ ) assert my_res == py_res assert str(snake_case__ ) == str(snake_case__ ) assert set(snake_case__ ) == set(snake_case__ ) assert len(snake_case__ ) == len(snake_case__ ) assert set(my.items() ) == set(py.items() ) def a__ ( ) -> int: def is_public(snake_case__ ) -> bool: return not name.startswith("""_""" ) lowerCamelCase = {name for name in dir({} ) if is_public(snake_case__ )} lowerCamelCase = {name for name in dir(HashMap() ) if is_public(snake_case__ )} assert dict_public_names > hash_public_names
533
1
from __future__ import annotations __A : Union[str, Any] = list[list[int]] # assigning initial values to the grid __A : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __A : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> bool: '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> tuple[int, int] | None: '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Matrix | None: '''simple docstring''' if location := find_empty_location(_UpperCAmelCase ): lowerCAmelCase , lowerCAmelCase : int = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1, 10 ): if is_safe(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): lowerCAmelCase : List[str] = digit if sudoku(_UpperCAmelCase ) is not None: return grid lowerCAmelCase : Optional[int] = 0 return None def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> None: '''simple docstring''' for row in grid: for cell in row: print(_UpperCAmelCase, end=' ' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('''\nExample grid:\n''' + '''=''' * 20) print_solution(example_grid) print('''\nExample grid solution:''') __A : List[Any] = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('''Cannot find a solution.''')
343
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''): raise Exception('''requires fairseq >= 1.0.0a''') logging.set_verbosity_info() __A : Any = logging.get_logger(__name__) __A : Optional[Any] = '''Hello world! cécé herlolip''' def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : Any = FairseqRobertaModel.from_pretrained(_UpperCAmelCase ) roberta.eval() # disable dropout lowerCAmelCase : Dict = roberta.model.encoder.sentence_encoder lowerCAmelCase : Any = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings, hidden_size=roberta.cfg.model.encoder_embed_dim, num_hidden_layers=roberta.cfg.model.encoder_layers, num_attention_heads=roberta.cfg.model.encoder_attention_heads, intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim, max_position_embeddings=514, type_vocab_size=1, layer_norm_eps=1e-5, ) if classification_head: lowerCAmelCase : List[str] = roberta.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our RoBERTa config:', _UpperCAmelCase ) lowerCAmelCase : Optional[int] = XLMRobertaXLForSequenceClassification(_UpperCAmelCase ) if classification_head else XLMRobertaXLForMaskedLM(_UpperCAmelCase ) model.eval() # Now let's copy all the weights. # Embeddings lowerCAmelCase : Tuple = roberta_sent_encoder.embed_tokens.weight lowerCAmelCase : Tuple = roberta_sent_encoder.embed_positions.weight lowerCAmelCase : Optional[int] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. lowerCAmelCase : Tuple = roberta_sent_encoder.layer_norm.weight lowerCAmelCase : Union[str, Any] = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCAmelCase : BertLayer = model.roberta.encoder.layer[i] lowerCAmelCase : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] lowerCAmelCase : RobertaAttention = layer.attention lowerCAmelCase : str = roberta_layer.self_attn_layer_norm.weight lowerCAmelCase : str = roberta_layer.self_attn_layer_norm.bias # self attention lowerCAmelCase : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) lowerCAmelCase : str = roberta_layer.self_attn.q_proj.weight lowerCAmelCase : Union[str, Any] = roberta_layer.self_attn.q_proj.bias lowerCAmelCase : Optional[Any] = roberta_layer.self_attn.k_proj.weight lowerCAmelCase : Dict = roberta_layer.self_attn.k_proj.bias lowerCAmelCase : List[Any] = roberta_layer.self_attn.v_proj.weight lowerCAmelCase : Union[str, Any] = roberta_layer.self_attn.v_proj.bias # self-attention output lowerCAmelCase : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape lowerCAmelCase : List[str] = roberta_layer.self_attn.out_proj.weight lowerCAmelCase : Optional[int] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm lowerCAmelCase : Any = roberta_layer.final_layer_norm.weight lowerCAmelCase : Any = roberta_layer.final_layer_norm.bias # intermediate lowerCAmelCase : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape lowerCAmelCase : Tuple = roberta_layer.fca.weight lowerCAmelCase : int = roberta_layer.fca.bias # output lowerCAmelCase : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape lowerCAmelCase : Optional[Any] = roberta_layer.fca.weight lowerCAmelCase : List[Any] = roberta_layer.fca.bias # end of layer if classification_head: lowerCAmelCase : Any = roberta.model.classification_heads['mnli'].dense.weight lowerCAmelCase : Any = roberta.model.classification_heads['mnli'].dense.bias lowerCAmelCase : List[str] = roberta.model.classification_heads['mnli'].out_proj.weight lowerCAmelCase : Tuple = roberta.model.classification_heads['mnli'].out_proj.bias else: # LM Head lowerCAmelCase : Optional[Any] = roberta.model.encoder.lm_head.dense.weight lowerCAmelCase : Dict = roberta.model.encoder.lm_head.dense.bias lowerCAmelCase : int = roberta.model.encoder.lm_head.layer_norm.weight lowerCAmelCase : Optional[int] = roberta.model.encoder.lm_head.layer_norm.bias lowerCAmelCase : Optional[Any] = roberta.model.encoder.lm_head.weight lowerCAmelCase : Optional[int] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCAmelCase : torch.Tensor = roberta.encode(_UpperCAmelCase ).unsqueeze(0 ) # batch of size 1 lowerCAmelCase : Any = model(_UpperCAmelCase )[0] if classification_head: lowerCAmelCase : Tuple = roberta.model.classification_heads['mnli'](roberta.extract_features(_UpperCAmelCase ) ) else: lowerCAmelCase : int = roberta.model(_UpperCAmelCase )[0] print(our_output.shape, their_output.shape ) lowerCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item() print(f"max_absolute_diff = {max_absolute_diff}" ) # ~ 1e-7 lowerCAmelCase : str = torch.allclose(_UpperCAmelCase, _UpperCAmelCase, atol=1e-3 ) print('Do both models output the same tensors?', '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) pathlib.Path(_UpperCAmelCase ).mkdir(parents=_UpperCAmelCase, exist_ok=_UpperCAmelCase ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __A : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) __A : List[Any] = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
343
1
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def snake_case_ ( snake_case , snake_case , snake_case ) -> Optional[int]: lowercase__: Optional[Any] = os.path.abspath(lowerCamelCase_ ) logger.info(f'Converting TensorFlow checkpoint from {tf_path}' ) # Load weights from TF model lowercase__: Dict = tf.train.list_variables(lowerCamelCase_ ) lowercase__: List[str] = [] lowercase__: Union[str, Any] = [] lowercase__: Optional[Any] = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") lowercase__: Optional[Any] = full_name.split('/' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f'Skipping non-model layer {full_name}' ) continue if "optimizer" in full_name: logger.info(f'Skipping optimization layer {full_name}' ) continue if name[0] == "model": # ignore initial 'model' lowercase__: str = name[1:] # figure out how many levels deep the name is lowercase__: Dict = 0 for _name in name: if _name.startswith('layer_with_weights' ): depth += 1 else: break layer_depth.append(lowerCamelCase_ ) # read data lowercase__: Any = tf.train.load_variable(lowerCamelCase_ , lowerCamelCase_ ) names.append('/'.join(lowerCamelCase_ ) ) arrays.append(lowerCamelCase_ ) logger.info(f'Read a total of {len(lowerCamelCase_ ):,} layers' ) # Sanity check if len(set(lowerCamelCase_ ) ) != 1: raise ValueError(f'Found layer names with different depths (layer depth {list(set(lowerCamelCase_ ) )})' ) lowercase__: List[str] = list(set(lowerCamelCase_ ) )[0] if layer_depth != 1: raise ValueError( 'The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP' ' heads.' ) # convert layers logger.info('Converting weights...' ) for full_name, array in zip(lowerCamelCase_ , lowerCamelCase_ ): lowercase__: int = full_name.split('/' ) lowercase__: Tuple = model lowercase__: int = [] for i, m_name in enumerate(lowerCamelCase_ ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('layer_with_weights' ): lowercase__: Optional[int] = int(m_name.split('-' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['embeddings', 'LayerNorm'] ) lowercase__: str = getattr(lowerCamelCase_ , 'embeddings' ) lowercase__: Optional[int] = getattr(lowerCamelCase_ , 'LayerNorm' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['encoder', 'layer', str(layer_num - 4 )] ) lowercase__: List[str] = getattr(lowerCamelCase_ , 'encoder' ) lowercase__: Any = getattr(lowerCamelCase_ , 'layer' ) lowercase__: List[Any] = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['pooler', 'dense'] ) lowercase__: str = getattr(lowerCamelCase_ , 'pooler' ) lowercase__: Optional[Any] = getattr(lowerCamelCase_ , 'dense' ) elif m_name == "embeddings": trace.append('embeddings' ) lowercase__: Any = getattr(lowerCamelCase_ , 'embeddings' ) if layer_num == 0: trace.append('word_embeddings' ) lowercase__: List[str] = getattr(lowerCamelCase_ , 'word_embeddings' ) elif layer_num == 1: trace.append('position_embeddings' ) lowercase__: Dict = getattr(lowerCamelCase_ , 'position_embeddings' ) elif layer_num == 2: trace.append('token_type_embeddings' ) lowercase__: List[Any] = getattr(lowerCamelCase_ , 'token_type_embeddings' ) else: raise ValueError(f'Unknown embedding layer with name {full_name}' ) trace.append('weight' ) lowercase__: List[Any] = getattr(lowerCamelCase_ , 'weight' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['attention', 'self'] ) lowercase__: Optional[Any] = getattr(lowerCamelCase_ , 'attention' ) lowercase__: str = getattr(lowerCamelCase_ , 'self' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['attention', 'output', 'LayerNorm'] ) lowercase__: Dict = getattr(lowerCamelCase_ , 'attention' ) lowercase__: Dict = getattr(lowerCamelCase_ , 'output' ) lowercase__: Any = getattr(lowerCamelCase_ , 'LayerNorm' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['attention', 'output', 'dense'] ) lowercase__: int = getattr(lowerCamelCase_ , 'attention' ) lowercase__: str = getattr(lowerCamelCase_ , 'output' ) lowercase__: str = getattr(lowerCamelCase_ , 'dense' ) elif m_name == "_output_dense": # output dense trace.extend(['output', 'dense'] ) lowercase__: List[Any] = getattr(lowerCamelCase_ , 'output' ) lowercase__: Dict = getattr(lowerCamelCase_ , 'dense' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['output', 'LayerNorm'] ) lowercase__: Optional[int] = getattr(lowerCamelCase_ , 'output' ) lowercase__: Dict = getattr(lowerCamelCase_ , 'LayerNorm' ) elif m_name == "_key_dense": # attention key trace.append('key' ) lowercase__: List[str] = getattr(lowerCamelCase_ , 'key' ) elif m_name == "_query_dense": # attention query trace.append('query' ) lowercase__: List[str] = getattr(lowerCamelCase_ , 'query' ) elif m_name == "_value_dense": # attention value trace.append('value' ) lowercase__: int = getattr(lowerCamelCase_ , 'value' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['intermediate', 'dense'] ) lowercase__: str = getattr(lowerCamelCase_ , 'intermediate' ) lowercase__: List[str] = getattr(lowerCamelCase_ , 'dense' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('output' ) lowercase__: int = getattr(lowerCamelCase_ , 'output' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('bias' ) lowercase__: List[Any] = getattr(lowerCamelCase_ , 'bias' ) elif m_name in ["kernel", "gamma"]: trace.append('weight' ) lowercase__: List[str] = getattr(lowerCamelCase_ , 'weight' ) else: logger.warning(f'Ignored {m_name}' ) # for certain layers reshape is necessary lowercase__: str = '''.'''.join(lowerCamelCase_ ) if re.match(R'(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)' , lowerCamelCase_ ) or re.match( R'(\S+)\.attention\.output\.dense\.weight' , lowerCamelCase_ ): lowercase__: Tuple = array.reshape(pointer.data.shape ) if "kernel" in full_name: lowercase__: Tuple = array.transpose() if pointer.shape == array.shape: lowercase__: Union[str, Any] = torch.from_numpy(lowerCamelCase_ ) else: raise ValueError( f'Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:' f' {array.shape}' ) logger.info(f'Successfully set variable {full_name} to PyTorch layer {trace}' ) return model def snake_case_ ( snake_case , snake_case , snake_case ) -> Optional[Any]: logger.info(f'Loading model based on config from {config_path}...' ) lowercase__: Tuple = BertConfig.from_json_file(lowerCamelCase_ ) lowercase__: Union[str, Any] = BertModel(lowerCamelCase_ ) # Load weights from checkpoint logger.info(f'Loading weights from checkpoint {tf_checkpoint_path}...' ) load_tfa_weights_in_bert(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Save pytorch-model logger.info(f'Saving PyTorch model to {pytorch_dump_path}...' ) torch.save(model.state_dict() , lowerCamelCase_ ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow 2.x checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model (must include filename).''', ) __lowerCAmelCase = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
702
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class __a ( __UpperCamelCase ): __lowercase : Optional[Any] = 'beit' def __init__( self , lowerCAmelCase__=8_192 , lowerCAmelCase__=768 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=3_072 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=224 , lowerCAmelCase__=16 , lowerCAmelCase__=3 , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=True , lowerCAmelCase__=[3, 5, 7, 11] , lowerCAmelCase__=[1, 2, 3, 6] , lowerCAmelCase__=True , lowerCAmelCase__=0.4 , lowerCAmelCase__=256 , lowerCAmelCase__=1 , lowerCAmelCase__=False , lowerCAmelCase__=255 , **lowerCAmelCase__ , ) -> Optional[int]: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) lowercase__: Optional[Any] = vocab_size lowercase__: Dict = hidden_size lowercase__: int = num_hidden_layers lowercase__: List[Any] = num_attention_heads lowercase__: List[str] = intermediate_size lowercase__: Any = hidden_act lowercase__: List[str] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: Optional[Any] = initializer_range lowercase__: Tuple = layer_norm_eps lowercase__: Optional[Any] = image_size lowercase__: List[str] = patch_size lowercase__: List[str] = num_channels lowercase__: List[Any] = use_mask_token lowercase__: Tuple = use_absolute_position_embeddings lowercase__: Tuple = use_relative_position_bias lowercase__: int = use_shared_relative_position_bias lowercase__: Dict = layer_scale_init_value lowercase__: List[Any] = drop_path_rate lowercase__: Optional[int] = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__: Optional[Any] = out_indices lowercase__: Tuple = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__: Dict = use_auxiliary_head lowercase__: Union[str, Any] = auxiliary_loss_weight lowercase__: Tuple = auxiliary_channels lowercase__: Any = auxiliary_num_convs lowercase__: Optional[Any] = auxiliary_concat_input lowercase__: Optional[int] = semantic_loss_ignore_index class __a ( __UpperCamelCase ): __lowercase : Optional[int] = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: '''simple docstring''' return 1E-4
335
0
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = inspect.getfile(accelerate.test_utils ) __SCREAMING_SNAKE_CASE : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) __SCREAMING_SNAKE_CASE : str = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_distributed_data_loop.py"""] ) __SCREAMING_SNAKE_CASE : Dict = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_ops.py"""] ) @require_multi_gpu def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" print(F"Found {torch.cuda.device_count()} devices." ) __SCREAMING_SNAKE_CASE : Optional[int] = ["""torchrun""", F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) @require_multi_gpu def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" print(F"Found {torch.cuda.device_count()} devices." ) __SCREAMING_SNAKE_CASE : Optional[int] = ["""torchrun""", F"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path] print(F"Command: {cmd}" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) @require_multi_gpu def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = ["""torchrun""", F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) @require_multi_gpu def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" print(F"Found {torch.cuda.device_count()} devices, using 2 devices only" ) __SCREAMING_SNAKE_CASE : str = ["""torchrun""", F"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="""0,1""" ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) if __name__ == "__main__": UpperCamelCase__ : int = Accelerator() UpperCamelCase__ : Any = (accelerator.state.process_index + 2, 10) UpperCamelCase__ : Tuple = torch.randint(0, 10, shape).to(accelerator.device) UpperCamelCase__ : Dict = '''''' UpperCamelCase__ : Tuple = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." UpperCamelCase__ : Any = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." UpperCamelCase__ : int = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
578
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCAmelCase_ ( _lowerCamelCase: str , _lowerCamelCase: str , _lowerCamelCase: str , _lowerCamelCase: PreTrainedTokenizer , _lowerCamelCase: int , _lowerCamelCase: Optional[int] = None , ): __SCREAMING_SNAKE_CASE : Union[str, Any] = {} if train_file is not None: __SCREAMING_SNAKE_CASE : Any = [train_file] if eval_file is not None: __SCREAMING_SNAKE_CASE : Any = [eval_file] if test_file is not None: __SCREAMING_SNAKE_CASE : Optional[Any] = [test_file] __SCREAMING_SNAKE_CASE : Optional[Any] = datasets.load_dataset("""csv""" , data_files=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[str] = list(ds[list(files.keys() )[0]].features.keys() ) __SCREAMING_SNAKE_CASE : Dict = features_name.pop(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = list(set(ds[list(files.keys() )[0]][label_name] ) ) __SCREAMING_SNAKE_CASE : str = {label: i for i, label in enumerate(_lowerCamelCase )} __SCREAMING_SNAKE_CASE : Any = tokenizer.model_input_names __SCREAMING_SNAKE_CASE : Any = {} if len(_lowerCamelCase ) == 1: for k in files.keys(): __SCREAMING_SNAKE_CASE : Optional[int] = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" ) , batched=_lowerCamelCase , ) elif len(_lowerCamelCase ) == 2: for k in files.keys(): __SCREAMING_SNAKE_CASE : int = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" , ) , batched=_lowerCamelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __SCREAMING_SNAKE_CASE : int = {k: v for k, v in ex.items() if k in input_names} __SCREAMING_SNAKE_CASE : str = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __SCREAMING_SNAKE_CASE : str = {k: v for k, v in ex.items() if k in input_names} __SCREAMING_SNAKE_CASE : int = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __SCREAMING_SNAKE_CASE : Optional[int] = {k: v for k, v in ex.items() if k in input_names} __SCREAMING_SNAKE_CASE : str = labelaid[ex[label_name]] yield (d, label) __SCREAMING_SNAKE_CASE : Tuple = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __SCREAMING_SNAKE_CASE : Dict = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __SCREAMING_SNAKE_CASE : Any = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __SCREAMING_SNAKE_CASE : Optional[int] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid UpperCamelCase__ : List[str] = logging.getLogger(__name__) @dataclass class _UpperCamelCase : '''simple docstring''' _A : int = field(metadata={'''help''': '''Which column contains the label'''} ) _A : str = field(default=lowerCamelCase__ , metadata={'''help''': '''The path of the training file'''} ) _A : Optional[str] = field(default=lowerCamelCase__ , metadata={'''help''': '''The path of the development file'''} ) _A : Optional[str] = field(default=lowerCamelCase__ , metadata={'''help''': '''The path of the test file'''} ) _A : int = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _A : bool = field( default=lowerCamelCase__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class _UpperCamelCase : '''simple docstring''' _A : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _A : Optional[str] = field( default=lowerCamelCase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _A : Optional[str] = field( default=lowerCamelCase__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _A : bool = field(default=lowerCamelCase__ , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _A : Optional[str] = field( default=lowerCamelCase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def lowerCAmelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __SCREAMING_SNAKE_CASE : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info( F"n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, " F"16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __SCREAMING_SNAKE_CASE : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_lowerCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __SCREAMING_SNAKE_CASE : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_lowerCamelCase ) , labelaid=_lowerCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="""text-classification""" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __SCREAMING_SNAKE_CASE : List[Any] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(""".bin""" in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(_lowerCamelCase: EvalPrediction ) -> Dict: __SCREAMING_SNAKE_CASE : List[Any] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __SCREAMING_SNAKE_CASE : List[Any] = TFTrainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=_lowerCamelCase , eval_dataset=_lowerCamelCase , compute_metrics=_lowerCamelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __SCREAMING_SNAKE_CASE : Dict = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = trainer.evaluate() __SCREAMING_SNAKE_CASE : List[str] = os.path.join(training_args.output_dir , """eval_results.txt""" ) with open(_lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) results.update(_lowerCamelCase ) return results if __name__ == "__main__": main()
578
1
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: Optional[Any] ): assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Tuple ): SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE__ = ParquetDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ ).read() _check_parquet_dataset(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: int , UpperCamelCase__: Tuple ): SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} SCREAMING_SNAKE_CASE__ = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE__ = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__ = ParquetDatasetReader(UpperCamelCase__ , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_parquet_dataset(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Optional[Any] ): SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} SCREAMING_SNAKE_CASE__ = ParquetDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ , split=UpperCamelCase__ ).read() _check_parquet_dataset(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: Tuple , UpperCamelCase__: Union[str, Any] ): if issubclass(UpperCamelCase__ , UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = parquet_path elif issubclass(UpperCamelCase__ , UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = [parquet_path] SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} SCREAMING_SNAKE_CASE__ = ParquetDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_parquet_dataset(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: Dict , UpperCamelCase__: Any=("train",) ): assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) for split in splits: SCREAMING_SNAKE_CASE__ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Dict ): SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE__ = ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ ).read() _check_parquet_datasetdict(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: List[str] , UpperCamelCase__: Tuple ): SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} SCREAMING_SNAKE_CASE__ = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE__ = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__ = ParquetDatasetReader({"""train""": parquet_path} , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_parquet_datasetdict(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: str ): if split: SCREAMING_SNAKE_CASE__ = {split: parquet_path} else: SCREAMING_SNAKE_CASE__ = """train""" SCREAMING_SNAKE_CASE__ = {"""train""": parquet_path, """test""": parquet_path} SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} SCREAMING_SNAKE_CASE__ = ParquetDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_parquet_datasetdict(UpperCamelCase__ , UpperCamelCase__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Optional[int] ): SCREAMING_SNAKE_CASE__ = ParquetDatasetWriter(UpperCamelCase__ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 SCREAMING_SNAKE_CASE__ = pq.ParquetFile(tmp_path / """foo.parquet""" ) SCREAMING_SNAKE_CASE__ = pf.read() assert dataset.data.table == output_table def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: List[Any] ): SCREAMING_SNAKE_CASE__ = str(shared_datadir / """test_image_rgb.jpg""" ) SCREAMING_SNAKE_CASE__ = {"""image""": [image_path]} SCREAMING_SNAKE_CASE__ = Features({"""image""": Image()} ) SCREAMING_SNAKE_CASE__ = Dataset.from_dict(UpperCamelCase__ , features=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = ParquetDatasetWriter(UpperCamelCase__ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 SCREAMING_SNAKE_CASE__ = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features SCREAMING_SNAKE_CASE__ = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=UpperCamelCase__ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] , UpperCamelCase__: Any ): assert get_writer_batch_size(UpperCamelCase__ ) == expected
59
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase_ = OpenAIGPTTokenizer lowerCamelCase_ = OpenAIGPTTokenizerFast lowerCamelCase_ = True lowerCamelCase_ = False def _snake_case ( self :Optional[Any] ) -> Dict: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] SCREAMING_SNAKE_CASE__ = dict(zip(__A , range(len(__A ) ) ) ) SCREAMING_SNAKE_CASE__ = ["""#version: 0.2""", """l o""", """lo w""", """e r</w>""", """"""] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(__A ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(__A ) ) def _snake_case ( self :Union[str, Any] , __A :str ) -> List[Any]: """simple docstring""" return "lower newer", "lower newer" def _snake_case ( self :Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) SCREAMING_SNAKE_CASE__ = """lower""" SCREAMING_SNAKE_CASE__ = ["""low""", """er</w>"""] SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) SCREAMING_SNAKE_CASE__ = tokens + ["""<unk>"""] SCREAMING_SNAKE_CASE__ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , __A ) def _snake_case ( self :Optional[Any] , __A :Optional[Any]=15 ) -> Any: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained(__A , **__A ) # Simple input SCREAMING_SNAKE_CASE__ = """This is a simple input""" SCREAMING_SNAKE_CASE__ = ["""This is a simple input 1""", """This is a simple input 2"""] SCREAMING_SNAKE_CASE__ = ("""This is a simple input""", """This is a pair""") SCREAMING_SNAKE_CASE__ = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(__A , tokenizer_r.encode , __A , max_length=__A , padding="""max_length""" ) # Simple input self.assertRaises(__A , tokenizer_r.encode_plus , __A , max_length=__A , padding="""max_length""" ) # Simple input self.assertRaises( __A , tokenizer_r.batch_encode_plus , __A , max_length=__A , padding="""max_length""" , ) # Pair input self.assertRaises(__A , tokenizer_r.encode , __A , max_length=__A , padding="""max_length""" ) # Pair input self.assertRaises(__A , tokenizer_r.encode_plus , __A , max_length=__A , padding="""max_length""" ) # Pair input self.assertRaises( __A , tokenizer_r.batch_encode_plus , __A , max_length=__A , padding="""max_length""" , ) def _snake_case ( self :Dict ) -> List[Any]: """simple docstring""" pass @require_ftfy @require_spacy @require_tokenizers class UpperCamelCase_ ( UpperCamelCase__ ): pass
59
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class a ( unittest.TestCase ): def A_ ( self : Tuple ): snake_case_ = tempfile.mkdtemp() # fmt: off snake_case_ = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on snake_case_ = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) snake_case_ = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] snake_case_ = {'unk_token': '<unk>'} snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase_ ) ) snake_case_ = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073], 'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711], } snake_case_ = os.path.join(self.tmpdirname , lowercase_ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(lowercase_ , lowercase_ ) def A_ ( self : Any , **lowercase_ : List[str] ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def A_ ( self : Optional[int] , **lowercase_ : Optional[Any] ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_ ) def A_ ( self : Optional[Any] , **lowercase_ : Optional[int] ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowercase_ ) def A_ ( self : List[Any] ): shutil.rmtree(self.tmpdirname ) def A_ ( self : Optional[int] ): snake_case_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] snake_case_ = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def A_ ( self : str ): snake_case_ = self.get_tokenizer() snake_case_ = self.get_rust_tokenizer() snake_case_ = self.get_image_processor() snake_case_ = CLIPSegProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) processor_slow.save_pretrained(self.tmpdirname ) snake_case_ = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase_ ) snake_case_ = CLIPSegProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) processor_fast.save_pretrained(self.tmpdirname ) snake_case_ = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowercase_ ) self.assertIsInstance(processor_fast.tokenizer , lowercase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowercase_ ) self.assertIsInstance(processor_fast.image_processor , lowercase_ ) def A_ ( self : int ): snake_case_ = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) snake_case_ = self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0 ) snake_case_ = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowercase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase_ ) def A_ ( self : List[Any] ): snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = CLIPSegProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) snake_case_ = self.prepare_image_inputs() snake_case_ = image_processor(lowercase_ , return_tensors='''np''' ) snake_case_ = processor(images=lowercase_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A_ ( self : int ): snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = CLIPSegProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) snake_case_ = 'lower newer' snake_case_ = processor(text=lowercase_ ) snake_case_ = tokenizer(lowercase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A_ ( self : Optional[Any] ): snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = CLIPSegProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) snake_case_ = 'lower newer' snake_case_ = self.prepare_image_inputs() snake_case_ = processor(text=lowercase_ , images=lowercase_ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def A_ ( self : List[str] ): snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = CLIPSegProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) snake_case_ = self.prepare_image_inputs() snake_case_ = self.prepare_image_inputs() snake_case_ = processor(images=lowercase_ , visual_prompt=lowercase_ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def A_ ( self : List[Any] ): snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = CLIPSegProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) snake_case_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case_ = processor.batch_decode(lowercase_ ) snake_case_ = tokenizer.batch_decode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ )
640
"""simple docstring""" def UpperCAmelCase_ ( __a : list ): '''simple docstring''' if len(__a ) <= 1: return lst _lowerCamelCase : str = 1 while i < len(__a ): if lst[i - 1] <= lst[i]: i += 1 else: _lowerCamelCase , _lowerCamelCase : Optional[Any] = lst[i], lst[i - 1] i -= 1 if i == 0: _lowerCamelCase : Dict = 1 return lst if __name__ == "__main__": a_ = input("""Enter numbers separated by a comma:\n""").strip() a_ = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
437
0
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def _lowercase ( self : Optional[int]): A__ : List[str] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") A__ : Optional[Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(_A) A__ : str = -1 A__ : Optional[int] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(_A) A__ : Tuple = model.generate(_A , max_new_tokens=10 , do_sample=_A) A__ : List[Any] = tokenizer.decode(greedy_ids[0]) with CaptureStdout() as cs: A__ : List[str] = TextStreamer(_A) model.generate(_A , max_new_tokens=10 , do_sample=_A , streamer=_A) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A__ : Union[str, Any] = cs.out[:-1] self.assertEqual(_A , _A) def _lowercase ( self : Union[str, Any]): A__ : Any = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") A__ : str = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(_A) A__ : List[str] = -1 A__ : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(_A) A__ : Tuple = model.generate(_A , max_new_tokens=10 , do_sample=_A) A__ : Any = tokenizer.decode(greedy_ids[0]) A__ : Any = TextIteratorStreamer(_A) A__ : Optional[int] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} A__ : List[Any] = Thread(target=model.generate , kwargs=_A) thread.start() A__ : List[Any] = "" for new_text in streamer: streamer_text += new_text self.assertEqual(_A , _A) def _lowercase ( self : Tuple): A__ : List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") A__ : List[Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(_A) A__ : List[Any] = -1 A__ : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(_A) A__ : Tuple = model.generate(_A , max_new_tokens=10 , do_sample=_A) A__ : int = greedy_ids[:, input_ids.shape[1] :] A__ : Optional[Any] = tokenizer.decode(new_greedy_ids[0]) with CaptureStdout() as cs: A__ : Tuple = TextStreamer(_A , skip_prompt=_A) model.generate(_A , max_new_tokens=10 , do_sample=_A , streamer=_A) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A__ : Optional[Any] = cs.out[:-1] self.assertEqual(_A , _A) def _lowercase ( self : Dict): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them A__ : Union[str, Any] = AutoTokenizer.from_pretrained("distilgpt2") A__ : Dict = AutoModelForCausalLM.from_pretrained("distilgpt2").to(_A) A__ : List[Any] = -1 A__ : Union[str, Any] = torch.ones((1, 5) , device=_A).long() * model.config.bos_token_id with CaptureStdout() as cs: A__ : int = TextStreamer(_A , skip_special_tokens=_A) model.generate(_A , max_new_tokens=1 , do_sample=_A , streamer=_A) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token A__ : Optional[int] = cs.out[:-1] # Remove the final "\n" A__ : Any = tokenizer(_A , return_tensors="pt") self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1)) def _lowercase ( self : List[str]): A__ : Optional[int] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") A__ : Dict = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(_A) A__ : Optional[int] = -1 A__ : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(_A) A__ : Dict = TextIteratorStreamer(_A , timeout=0.0_01) A__ : Dict = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} A__ : Tuple = Thread(target=model.generate , kwargs=_A) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_A): A__ : List[Any] = "" for new_text in streamer: streamer_text += new_text
711
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def snake_case__ ( __lowercase ) -> bool: """simple docstring""" A__ : int = int(number**0.5 ) return number == sq * sq def snake_case__ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> tuple[int, int]: """simple docstring""" A__ : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den A__ : int = x_den * y_den * z_den A__ : int = gcd(__lowercase , __lowercase ) top //= hcf bottom //= hcf return top, bottom def snake_case__ ( __lowercase = 3_5 ) -> int: """simple docstring""" A__ : set = set() A__ : int A__ : Fraction = Fraction(0 ) A__ : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 A__ : Any = x_num * y_den + x_den * y_num A__ : List[Any] = x_den * y_den A__ : List[Any] = gcd(__lowercase , __lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: A__ : List[Any] = add_three( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) unique_s.add(__lowercase ) # n=2 A__ : Any = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) A__ : Optional[int] = x_den * x_den * y_den * y_den if is_sq(__lowercase ) and is_sq(__lowercase ): A__ : Union[str, Any] = int(sqrt(__lowercase ) ) A__ : int = int(sqrt(__lowercase ) ) A__ : Any = gcd(__lowercase , __lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: A__ : List[Any] = add_three( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) unique_s.add(__lowercase ) # n=-1 A__ : Tuple = x_num * y_num A__ : int = x_den * y_num + x_num * y_den A__ : List[str] = gcd(__lowercase , __lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: A__ : str = add_three( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) unique_s.add(__lowercase ) # n=2 A__ : Any = x_num * x_num * y_num * y_num A__ : List[str] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__lowercase ) and is_sq(__lowercase ): A__ : Optional[int] = int(sqrt(__lowercase ) ) A__ : List[Any] = int(sqrt(__lowercase ) ) A__ : Union[str, Any] = gcd(__lowercase , __lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: A__ : Optional[Any] = add_three( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) unique_s.add(__lowercase ) for num, den in unique_s: total += Fraction(__lowercase , __lowercase ) return total.denominator + total.numerator if __name__ == "__main__": print(f"""{solution() = }""")
182
0
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask snake_case = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE ( _a ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : str=-1 ): # in NER datasets, the last column is usually reserved for NER label SCREAMING_SNAKE_CASE : Tuple = label_idx def _A ( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] ): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : Optional[Any] = mode.value SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(UpperCAmelCase_ , f'''{mode}.txt''' ) SCREAMING_SNAKE_CASE : Any = 1 SCREAMING_SNAKE_CASE : Union[str, Any] = [] with open(UpperCAmelCase_ , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : Union[str, Any] = [] for line in f: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=UpperCAmelCase_ , labels=UpperCAmelCase_ ) ) guid_index += 1 SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : Dict = [] else: SCREAMING_SNAKE_CASE : Optional[Any] = line.split(" " ) words.append(splits[0] ) if len(UpperCAmelCase_ ) > 1: labels.append(splits[self.label_idx].replace("\n" , "" ) ) else: # Examples could have no label for mode = "test" labels.append("O" ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=UpperCAmelCase_ , labels=UpperCAmelCase_ ) ) return examples def _A ( self : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE : Dict = 0 for line in test_input_reader: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": writer.write(UpperCAmelCase_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: SCREAMING_SNAKE_CASE : List[Any] = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(UpperCAmelCase_ ) else: logger.warning("Maximum sequence length exceeded: No prediction for \'%s\'." , line.split()[0] ) def _A ( self : Any , UpperCAmelCase_ : Dict ): if path: with open(UpperCAmelCase_ , "r" ) as f: SCREAMING_SNAKE_CASE : Any = f.read().splitlines() if "O" not in labels: SCREAMING_SNAKE_CASE : Optional[int] = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class SCREAMING_SNAKE_CASE ( _a ): '''simple docstring''' def __init__( self : Optional[Any] ): # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def _A ( self : str , UpperCAmelCase_ : List[str] ): if path: with open(UpperCAmelCase_ , "r" ) as f: SCREAMING_SNAKE_CASE : str = f.read().splitlines() if "O" not in labels: SCREAMING_SNAKE_CASE : Tuple = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class SCREAMING_SNAKE_CASE ( _a ): '''simple docstring''' def _A ( self : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int ): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : List[Any] = mode.value SCREAMING_SNAKE_CASE : int = os.path.join(UpperCAmelCase_ , f'''{mode}.txt''' ) SCREAMING_SNAKE_CASE : List[Any] = 1 SCREAMING_SNAKE_CASE : Dict = [] with open(UpperCAmelCase_ , encoding="utf-8" ) as f: for sentence in parse_incr(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : List[str] = [] for token in sentence: words.append(token["form"] ) labels.append(token["upos"] ) assert len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=UpperCAmelCase_ , labels=UpperCAmelCase_ ) ) guid_index += 1 return examples def _A ( self : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict ): SCREAMING_SNAKE_CASE : Dict = 0 for sentence in parse_incr(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : List[str] = preds_list[example_id] SCREAMING_SNAKE_CASE : Tuple = '' for token in sentence: out += f'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(UpperCAmelCase_ ) example_id += 1 def _A ( self : List[str] , UpperCAmelCase_ : Dict ): if path: with open(UpperCAmelCase_ , "r" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
62
"""simple docstring""" import argparse import json from tqdm import tqdm def a_ ( ): '''simple docstring''' lowercase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=_lowerCAmelCase , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=_lowerCAmelCase , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=_lowerCAmelCase , help='where to store parsed gold_data_path file' , ) lowercase__ : Union[str, Any] = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: lowercase__ : List[str] = json.load(_lowerCAmelCase ) for dpr_record in tqdm(_lowerCAmelCase ): lowercase__ : Any = dpr_record['question'] lowercase__ : Optional[Any] = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(_lowerCAmelCase ) + '\n' ) if __name__ == "__main__": main()
599
0
'''simple docstring''' from collections.abc import Generator def lowerCamelCase_ ( ) -> Generator[int, None, None]: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = 0, 1 while True: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = b, a + b yield b def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 1000 ) -> int: UpperCAmelCase_ : Optional[int] = 1 UpperCAmelCase_ : Optional[Any] = fibonacci_generator() while len(str(next(SCREAMING_SNAKE_CASE__ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
644
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __a (lowerCamelCase ): __a : int = "dandelin/vilt-b32-finetuned-vqa" __a : Any = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) __a : Any = "image_qa" __a : str = AutoProcessor __a : Any = AutoModelForVisualQuestionAnswering __a : List[Any] = ["image", "text"] __a : int = ["text"] def __init__( self : Tuple , *__magic_name__ : Any , **__magic_name__ : Any ) -> Tuple: """simple docstring""" requires_backends(self , ['''vision'''] ) super().__init__(*__magic_name__ , **__magic_name__ ) def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : "Image" , __magic_name__ : str ) -> Tuple: """simple docstring""" return self.pre_processor(__magic_name__ , __magic_name__ , return_tensors='''pt''' ) def UpperCAmelCase__ ( self : Any , __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" with torch.no_grad(): return self.model(**__magic_name__ ).logits def UpperCAmelCase__ ( self : int , __magic_name__ : int ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Dict = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
644
1
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' A: int = 10 A: Any = datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) A: List[str] = datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [97], """text""": ["""1976"""]}] * 10, """id""": list(range(lowerCamelCase__ ) ), } , features=lowerCamelCase__ , ) return dataset @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : Any ): '''simple docstring''' A: List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=lowerCamelCase__ ) return filename # FILE_CONTENT + files __SCREAMING_SNAKE_CASE : Dict ='\\n Text data.\n Second line of data.' @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : Tuple ): '''simple docstring''' A: List[Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt""" A: int = FILE_CONTENT with open(lowerCamelCase__ , """w""" ) as f: f.write(lowerCamelCase__ ) return filename @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : Optional[int] ): '''simple docstring''' import bza A: List[Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" A: Any = bytes(lowerCamelCase__ , """utf-8""" ) with bza.open(lowerCamelCase__ , """wb""" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : Dict ): '''simple docstring''' import gzip A: Optional[int] = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) A: List[str] = bytes(lowerCamelCase__ , """utf-8""" ) with gzip.open(lowerCamelCase__ , """wb""" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : str ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame A: Tuple = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" A: int = bytes(lowerCamelCase__ , """utf-8""" ) with lza.frame.open(lowerCamelCase__ , """wb""" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Dict ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr A: Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(lowerCamelCase__ , """w""" ) as archive: archive.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : int , lowerCamelCase__ : Tuple ): '''simple docstring''' import tarfile A: str = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(lowerCamelCase__ , """w""" ) as f: f.add(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : List[str] ): '''simple docstring''' import lzma A: Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" A: int = bytes(lowerCamelCase__ , """utf-8""" ) with lzma.open(lowerCamelCase__ , """wb""" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : List[str] , lowerCamelCase__ : int ): '''simple docstring''' import zipfile A: Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(lowerCamelCase__ , """w""" ) as f: f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : Optional[Any] ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd A: Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" A: Union[str, Any] = bytes(lowerCamelCase__ , """utf-8""" ) with zstd.open(lowerCamelCase__ , """wb""" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' A: Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """file.xml""" A: Any = textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(lowerCamelCase__ , """w""" ) as f: f.write(lowerCamelCase__ ) return filename __SCREAMING_SNAKE_CASE : Any =[ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __SCREAMING_SNAKE_CASE : Tuple =[ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __SCREAMING_SNAKE_CASE : Tuple ={ 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __SCREAMING_SNAKE_CASE : List[str] =[ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __SCREAMING_SNAKE_CASE : Tuple =[ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : Dict ): '''simple docstring''' A: Union[str, Any] = datasets.Dataset.from_dict(lowerCamelCase__ ) A: Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=lowerCamelCase__ ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : str ): '''simple docstring''' A: Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(lowerCamelCase__ ) ) as con: A: Union[str, Any] = con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' A: List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(lowerCamelCase__ , """w""" , newline="""""" ) as f: A: Any = csv.DictWriter(lowerCamelCase__ , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(lowerCamelCase__ ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : List[Any] ): '''simple docstring''' A: Optional[int] = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(lowerCamelCase__ , """w""" , newline="""""" ) as f: A: Any = csv.DictWriter(lowerCamelCase__ , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(lowerCamelCase__ ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : int , lowerCamelCase__ : Tuple ): '''simple docstring''' import bza A: Any = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(lowerCamelCase__ , """rb""" ) as f: A: List[Any] = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowerCamelCase__ , """wb""" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' A: Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(lowerCamelCase__ , """w""" ) as f: f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Dict , lowerCamelCase__ : str ): '''simple docstring''' A: Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(lowerCamelCase__ , """w""" ) as f: f.write(lowerCamelCase__ , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(lowerCamelCase__ , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any] ): '''simple docstring''' A: Any = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(lowerCamelCase__ , """w""" ) as f: f.write(lowerCamelCase__ , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCamelCase__ ) ) ) f.write(lowerCamelCase__ , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCamelCase__ ) ) ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : Optional[Any] ): '''simple docstring''' A: Union[str, Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) A: Optional[Any] = pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(lowerCamelCase__ , """wb""" ) as f: A: List[Any] = pq.ParquetWriter(lowerCamelCase__ , schema=lowerCamelCase__ ) A: Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowerCamelCase__ ) )] for k in DATA[0]} , schema=lowerCamelCase__ ) writer.write_table(lowerCamelCase__ ) writer.close() return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : List[str] ): '''simple docstring''' A: Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) A: Union[str, Any] = {"""data""": DATA} with open(lowerCamelCase__ , """w""" ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : Tuple ): '''simple docstring''' A: int = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) A: List[str] = {"""data""": DATA_DICT_OF_LISTS} with open(lowerCamelCase__ , """w""" ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : int ): '''simple docstring''' A: Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(lowerCamelCase__ , """w""" ) as f: for item in DATA: f.write(json.dumps(lowerCamelCase__ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : Dict ): '''simple docstring''' A: Optional[int] = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(lowerCamelCase__ , """w""" ) as f: for item in DATA: f.write(json.dumps(lowerCamelCase__ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : List[Any] ): '''simple docstring''' A: Union[str, Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(lowerCamelCase__ , """w""" ) as f: for item in DATA_312: f.write(json.dumps(lowerCamelCase__ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : Any ): '''simple docstring''' A: List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(lowerCamelCase__ , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(lowerCamelCase__ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] ): '''simple docstring''' import gzip A: Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(lowerCamelCase__ , """rb""" ) as orig_file: with gzip.open(lowerCamelCase__ , """wb""" ) as zipped_file: zipped_file.writelines(lowerCamelCase__ ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[Any] ): '''simple docstring''' import gzip A: List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(lowerCamelCase__ , """rb""" ) as orig_file: with gzip.open(lowerCamelCase__ , """wb""" ) as zipped_file: zipped_file.writelines(lowerCamelCase__ ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : Tuple , lowerCamelCase__ : Tuple , lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' A: int = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(lowerCamelCase__ , """w""" ) as f: f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any] ): '''simple docstring''' A: Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(lowerCamelCase__ , """w""" ) as f: f.write(lowerCamelCase__ , arcname=os.path.join("""nested""" , os.path.basename(lowerCamelCase__ ) ) ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[Any] ): '''simple docstring''' A: List[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(lowerCamelCase__ , """w""" ) as f: f.write(lowerCamelCase__ , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCamelCase__ ) ) ) f.write(lowerCamelCase__ , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCamelCase__ ) ) ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str , lowerCamelCase__ : Dict ): '''simple docstring''' A: Optional[int] = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(lowerCamelCase__ , """w""" ) as f: f.add(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) f.add(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : Any , lowerCamelCase__ : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : Tuple ): '''simple docstring''' A: int = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(lowerCamelCase__ , """w""" ) as f: f.add(lowerCamelCase__ , arcname=os.path.join("""nested""" , os.path.basename(lowerCamelCase__ ) ) ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : List[Any] ): '''simple docstring''' A: Optional[Any] = ["""0""", """1""", """2""", """3"""] A: Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(lowerCamelCase__ , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' A: Tuple = ["""0""", """1""", """2""", """3"""] A: Any = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(lowerCamelCase__ , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : int ): '''simple docstring''' A: Optional[int] = ["""0""", """1""", """2""", """3"""] A: Any = tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(lowerCamelCase__ , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : int , lowerCamelCase__ : Tuple ): '''simple docstring''' A: List[str] = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(lowerCamelCase__ , """w""" ) as f: f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str , lowerCamelCase__ : Dict ): '''simple docstring''' A: Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(lowerCamelCase__ , """w""" ) as f: f.write(lowerCamelCase__ , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCamelCase__ ) ) ) f.write(lowerCamelCase__ , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCamelCase__ ) ) ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : str , lowerCamelCase__ : int , lowerCamelCase__ : str ): '''simple docstring''' A: List[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(lowerCamelCase__ , """w""" ) as f: f.write(lowerCamelCase__ , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(lowerCamelCase__ , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : List[Any] ): '''simple docstring''' A: List[Any] = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) A: List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : str , lowerCamelCase__ : List[str] ): '''simple docstring''' A: List[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(lowerCamelCase__ , """w""" ) as f: f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' A: List[Any] = tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 10 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 10 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) return data_dir
135
'''simple docstring''' from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class SCREAMING_SNAKE_CASE__ ( snake_case_ ): """simple docstring""" A__ : torch.FloatTensor class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self , A = 16 , A = 88 , A = None , A = None , A = 1 , A = 0.0 , A = 32 , A = None , A = False , A = None , A = "geglu" , A = True , A = True , ) -> Union[str, Any]: super().__init__() A: Union[str, Any] = num_attention_heads A: Optional[Any] = attention_head_dim A: Optional[int] = num_attention_heads * attention_head_dim A: str = in_channels A: List[Any] = torch.nn.GroupNorm(num_groups=A , num_channels=A , eps=1e-6 , affine=A ) A: Optional[int] = nn.Linear(A , A ) # 3. Define transformers blocks A: Optional[Any] = nn.ModuleList( [ BasicTransformerBlock( A , A , A , dropout=A , cross_attention_dim=A , activation_fn=A , attention_bias=A , double_self_attention=A , norm_elementwise_affine=A , ) for d in range(A ) ] ) A: Tuple = nn.Linear(A , A ) def a__ ( self , A , A=None , A=None , A=None , A=1 , A=None , A = True , ) -> str: A , A , A , A: Optional[Any] = hidden_states.shape A: Optional[Any] = batch_frames // num_frames A: List[str] = hidden_states A: List[str] = hidden_states[None, :].reshape(A , A , A , A , A ) A: Dict = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) A: List[str] = self.norm(A ) A: List[Any] = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , A , A ) A: Optional[Any] = self.proj_in(A ) # 2. Blocks for block in self.transformer_blocks: A: int = block( A , encoder_hidden_states=A , timestep=A , cross_attention_kwargs=A , class_labels=A , ) # 3. Output A: Tuple = self.proj_out(A ) A: List[str] = ( hidden_states[None, None, :] .reshape(A , A , A , A , A ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) A: Optional[int] = hidden_states.reshape(A , A , A , A ) A: Optional[int] = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=A )
135
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { """configuration_trajectory_transformer""": [ """TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrajectoryTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrajectoryTransformerModel""", """TrajectoryTransformerPreTrainedModel""", """load_tf_weights_in_trajectory_transformer""", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ : """simple docstring""" def __init__( self : Optional[Any] ,_a : Union[str, Any] ,_a : Union[str, Any]=13 ,_a : Any=32 ,_a : Optional[Any]=2 ,_a : Any=3 ,_a : str=16 ,_a : Tuple=[1, 2, 1] ,_a : Tuple=[2, 2, 4] ,_a : Any=2 ,_a : Optional[int]=2.0 ,_a : List[Any]=True ,_a : str=0.0 ,_a : Tuple=0.0 ,_a : Optional[Any]=0.1 ,_a : Dict="gelu" ,_a : Union[str, Any]=False ,_a : Any=True ,_a : Any=0.02 ,_a : List[Any]=1E-5 ,_a : Any=True ,_a : List[str]=None ,_a : str=True ,_a : Optional[int]=10 ,_a : List[str]=8 ,): '''simple docstring''' _a : Dict = parent _a : str = batch_size _a : Optional[int] = image_size _a : str = patch_size _a : Optional[int] = num_channels _a : List[Any] = embed_dim _a : Optional[Any] = depths _a : Optional[int] = num_heads _a : str = window_size _a : Any = mlp_ratio _a : Optional[Any] = qkv_bias _a : Optional[Any] = hidden_dropout_prob _a : Union[str, Any] = attention_probs_dropout_prob _a : Union[str, Any] = drop_path_rate _a : Union[str, Any] = hidden_act _a : Union[str, Any] = use_absolute_embeddings _a : str = patch_norm _a : Tuple = layer_norm_eps _a : List[Any] = initializer_range _a : Optional[int] = is_training _a : str = scope _a : List[str] = use_labels _a : int = type_sequence_label_size _a : List[str] = encoder_stride def __lowercase ( self : List[str] ): '''simple docstring''' _a : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : List[Any] = None if self.use_labels: _a : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _a : Optional[Any] = self.get_config() return config, pixel_values, labels def __lowercase ( self : str ): '''simple docstring''' return SwinvaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def __lowercase ( self : str ,_a : Tuple ,_a : Tuple ,_a : Any ): '''simple docstring''' _a : List[Any] = SwinvaModel(config=_a ) model.to(_a ) model.eval() _a : Optional[Any] = model(_a ) _a : Any = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _a : Any = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def __lowercase ( self : Union[str, Any] ,_a : List[str] ,_a : Tuple ,_a : List[Any] ): '''simple docstring''' _a : int = SwinvaForMaskedImageModeling(config=_a ) model.to(_a ) model.eval() _a : List[str] = model(_a ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _a : List[Any] = 1 _a : str = SwinvaForMaskedImageModeling(_a ) model.to(_a ) model.eval() _a : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a : Optional[Any] = model(_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def __lowercase ( self : Any ,_a : List[Any] ,_a : Optional[int] ,_a : List[Any] ): '''simple docstring''' _a : Optional[Any] = self.type_sequence_label_size _a : str = SwinvaForImageClassification(_a ) model.to(_a ) model.eval() _a : List[str] = model(_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def __lowercase ( self : Tuple ): '''simple docstring''' _a : Any = self.prepare_config_and_inputs() _a, _a, _a : int = config_and_inputs _a : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __UpperCAmelCase : Any = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : Dict = False __UpperCAmelCase : Any = False __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Any = False def __lowercase ( self : int ): '''simple docstring''' _a : Optional[int] = SwinvaModelTester(self ) _a : Any = ConfigTester(self ,config_class=_a ,embed_dim=37 ) def __lowercase ( self : str ): '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowercase ( self : Dict ): '''simple docstring''' _a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def __lowercase ( self : int ): '''simple docstring''' pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def __lowercase ( self : Tuple ): '''simple docstring''' pass def __lowercase ( self : Tuple ): '''simple docstring''' _a, _a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _a : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a ,nn.Linear ) ) def __lowercase ( self : Optional[int] ): '''simple docstring''' _a, _a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = model_class(_a ) _a : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Tuple = [*signature.parameters.keys()] _a : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_a ) def __lowercase ( self : List[str] ): '''simple docstring''' _a, _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _a : int = True for model_class in self.all_model_classes: _a : Optional[Any] = True _a : List[str] = False _a : Tuple = True _a : Dict = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Tuple = model(**self._prepare_for_class(_a ,_a ) ) _a : Any = outputs.attentions _a : Optional[int] = len(self.model_tester.depths ) self.assertEqual(len(_a ) ,_a ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _a : Optional[int] = True _a : Dict = config.window_size**2 _a : Optional[int] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Union[str, Any] = model(**self._prepare_for_class(_a ,_a ) ) _a : Union[str, Any] = outputs.attentions self.assertEqual(len(_a ) ,_a ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) _a : str = len(_a ) # Check attention is always last and order is fine _a : int = True _a : int = True _a : Union[str, Any] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Optional[int] = model(**self._prepare_for_class(_a ,_a ) ) if hasattr(self.model_tester ,'num_hidden_states_types' ): _a : Any = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states _a : Optional[Any] = 2 self.assertEqual(out_len + added_hidden_states ,len(_a ) ) _a : str = outputs.attentions self.assertEqual(len(_a ) ,_a ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) def __lowercase ( self : Optional[int] ,_a : str ,_a : Union[str, Any] ,_a : Any ,_a : Union[str, Any] ): '''simple docstring''' _a : int = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Optional[int] = model(**self._prepare_for_class(_a ,_a ) ) _a : Any = outputs.hidden_states _a : str = getattr( self.model_tester ,'expected_num_hidden_layers' ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_a ) ,_a ) # Swinv2 has a different seq_length _a : List[str] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _a : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) _a : Optional[int] = outputs.reshaped_hidden_states self.assertEqual(len(_a ) ,_a ) _a, _a, _a, _a : Optional[int] = reshaped_hidden_states[0].shape _a : str = ( reshaped_hidden_states[0].view(_a ,_a ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def __lowercase ( self : Dict ): '''simple docstring''' _a, _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _a : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _a : List[Any] = True self.check_hidden_states_output(_a ,_a ,_a ,_a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : Any = True self.check_hidden_states_output(_a ,_a ,_a ,_a ) def __lowercase ( self : Dict ): '''simple docstring''' _a, _a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _a : List[Any] = 3 _a : int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _a : Union[str, Any] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _a : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _a : Optional[int] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _a : int = True self.check_hidden_states_output(_a ,_a ,_a ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : Optional[Any] = True self.check_hidden_states_output(_a ,_a ,_a ,(padded_height, padded_width) ) def __lowercase ( self : str ): '''simple docstring''' _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_a ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __lowercase ( self : Optional[Any] ): '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : str = SwinvaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def __lowercase ( self : List[str] ): '''simple docstring''' _a, _a : Any = self.model_tester.prepare_config_and_inputs_for_common() _a : int = _config_zero_init(_a ) for model_class in self.all_model_classes: _a : int = model_class(config=_a ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() ,[0.0, 1.0] ,msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" ,) @require_vision @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self : Tuple ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def __lowercase ( self : int ): '''simple docstring''' _a : Optional[Any] = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( _a ) _a : Union[str, Any] = self.default_image_processor _a : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _a : Dict = image_processor(images=_a ,return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): _a : Dict = model(**_a ) # verify the logits _a : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,_a ) _a : int = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_a ,atol=1E-4 ) )
319
1
"""simple docstring""" import enum import shutil import sys _UpperCamelCase , _UpperCamelCase = shutil.get_terminal_size() _UpperCamelCase = {"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""} class lowerCamelCase__ ( enum.Enum ): SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 1 def _a ( _snake_case , _snake_case="" ): """simple docstring""" sys.stdout.write(str(_snake_case ) + end ) sys.stdout.flush() def _a ( _snake_case , _snake_case , _snake_case="" ): """simple docstring""" forceWrite(F'''\u001b[{color}m{content}\u001b[0m''' , _snake_case ) def _a ( ): """simple docstring""" forceWrite("""\r""" ) def _a ( _snake_case , _snake_case ): """simple docstring""" forceWrite(F'''\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}''' ) def _a ( ): """simple docstring""" forceWrite(""" """ * TERMINAL_WIDTH ) reset_cursor() def _a ( ): """simple docstring""" reset_cursor() forceWrite("""-""" * TERMINAL_WIDTH )
341
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" if (ksize % 2) == 0: UpperCAmelCase = ksize + 1 UpperCAmelCase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(_snake_case ): for x in range(_snake_case ): # distance from center UpperCAmelCase = x - ksize // 2 UpperCAmelCase = y - ksize // 2 # degree to radiant UpperCAmelCase = theta / 180 * np.pi UpperCAmelCase = np.cos(_theta ) UpperCAmelCase = np.sin(_theta ) # get kernel x UpperCAmelCase = cos_theta * px + sin_theta * py # get kernel y UpperCAmelCase = -sin_theta * px + cos_theta * py # fill kernel UpperCAmelCase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _UpperCamelCase = imread("""../image_data/lena.jpg""") # turn image in gray scale value _UpperCamelCase = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _UpperCamelCase = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _UpperCamelCase = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _UpperCamelCase = out / out.max() * 255 _UpperCamelCase = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
341
1
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py __A : Tuple = 'src/transformers' __A : Dict = 'docs/source/en/tasks' def __UpperCamelCase ( _A : str , _A : Any , _A : int ) ->List[str]: """simple docstring""" with open(_A , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase_ =f.readlines() # Find the start prompt. lowerCamelCase_ =0 while not lines[start_index].startswith(_A ): start_index += 1 start_index += 1 lowerCamelCase_ =start_index while not lines[end_index].startswith(_A ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. __A : Dict = direct_transformers_import(TRANSFORMERS_PATH) __A : Any = { 'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, 'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, 'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, 'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, 'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, 'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, 'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, 'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, 'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, 'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, 'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, 'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, 'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, 'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). __A : List[Any] = { 'summarization.md': ('nllb',), 'translation.md': ('nllb',), } def __UpperCamelCase ( _A : Union[str, Any] ) ->Optional[int]: """simple docstring""" lowerCamelCase_ =TASK_GUIDE_TO_MODELS[task_guide] lowerCamelCase_ =SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(_A , set() ) lowerCamelCase_ ={ code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f'[{name}](../model_doc/{code})' for code, name in model_names.items()] ) + "\n" def __UpperCamelCase ( _A : Tuple , _A : int=False ) ->str: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ =_find_text_in_file( filename=os.path.join(_A , _A ) , start_prompt="""<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->""" , end_prompt="""<!--End of the generated tip-->""" , ) lowerCamelCase_ =get_model_list_for_task(_A ) if current_list != new_list: if overwrite: with open(os.path.join(_A , _A ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f'The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`' """ to fix this.""" ) if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __A : List[str] = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
75
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Optional[int] = { 'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ 'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimesformerModel', 'TimesformerForVideoClassification', 'TimesformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
75
1
import re from filelock import FileLock try: import nltk __snake_case = True except (ImportError, ModuleNotFoundError): __snake_case = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def _A ( _lowercase ) -> str: """simple docstring""" re.sub('<n>' , '' , _lowercase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_lowercase ) )
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class __lowerCamelCase (_a ): _lowercase = """bert""" def __init__( self: Any,A_: Dict=3_0522,A_: Optional[Any]=768,A_: Union[str, Any]=12,A_: List[Any]=12,A_: Optional[int]=3072,A_: Union[str, Any]="gelu",A_: List[str]=0.1,A_: Dict=0.1,A_: Optional[int]=512,A_: Optional[Any]=2,A_: Union[str, Any]=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=0,A_: List[Any]="absolute",A_: str=True,A_: Union[str, Any]=None,**A_: int,): '''simple docstring''' super().__init__(pad_token_id=A_,**A_ ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache __UpperCamelCase = classifier_dropout class __lowerCamelCase (_a ): @property def snake_case_ ( self: Optional[int] ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
1
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class __snake_case : '''simple docstring''' def __init__( self : Dict , A : Optional[int] , A : str=13 , A : Optional[Any]=2 , A : Optional[int]=24 , A : str=16 , A : List[str]=True , A : str=True , A : Optional[Any]=32 , A : int=5 , A : Tuple=4 , A : str=37 , A : int="gelu" , A : List[Any]=0.1 , A : Any=0.1 , A : List[str]=10 , A : Dict=0.02 , A : Dict=None , A : Optional[Any]=2 , A : Union[str, Any]=2 , ): __snake_case: int = parent __snake_case: Union[str, Any] = batch_size __snake_case: Any = patch_size __snake_case: int = max_length __snake_case: str = num_mel_bins __snake_case: Union[str, Any] = is_training __snake_case: Any = use_labels __snake_case: Any = hidden_size __snake_case: Dict = num_hidden_layers __snake_case: List[Any] = num_attention_heads __snake_case: Optional[int] = intermediate_size __snake_case: Dict = hidden_act __snake_case: Dict = hidden_dropout_prob __snake_case: Tuple = attention_probs_dropout_prob __snake_case: Tuple = type_sequence_label_size __snake_case: Dict = initializer_range __snake_case: int = scope __snake_case: Optional[int] = frequency_stride __snake_case: Optional[Any] = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __snake_case: List[str] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 __snake_case: int = (self.max_length - self.patch_size) // self.time_stride + 1 __snake_case: Union[str, Any] = frequency_out_dimension * time_out_dimension __snake_case: List[str] = num_patches + 2 def UpperCAmelCase__ ( self : Any ): __snake_case: Tuple = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) __snake_case: Optional[Any] = None if self.use_labels: __snake_case: Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case: Union[str, Any] = self.get_config() return config, input_values, labels def UpperCAmelCase__ ( self : List[str] ): return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def UpperCAmelCase__ ( self : Tuple , A : str , A : Tuple , A : Dict ): __snake_case: List[Any] = ASTModel(config=A ) model.to(A ) model.eval() __snake_case: List[Any] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : str ): __snake_case: List[str] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ): Dict = config_and_inputs __snake_case: Union[str, Any] = {"""input_values""": input_values} return config, inputs_dict @require_torch class __snake_case ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) lowerCAmelCase__ = ( {"""audio-classification""": ASTForAudioClassification, """feature-extraction""": ASTModel} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def UpperCAmelCase__ ( self : Tuple , A : Any , A : Union[str, Any] , A : Union[str, Any] , A : Optional[Any] , A : str ): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def UpperCAmelCase__ ( self : Dict ): __snake_case: Dict = ASTModelTester(self ) __snake_case: List[Any] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def UpperCAmelCase__ ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="""AST does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : List[str] ): pass def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case , __snake_case: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case: Tuple = model_class(A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case: List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A , nn.Linear ) ) def UpperCAmelCase__ ( self : List[Any] ): __snake_case , __snake_case: Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case: List[str] = model_class(A ) __snake_case: int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case: Any = [*signature.parameters.keys()] __snake_case: List[Any] = ["""input_values"""] self.assertListEqual(arg_names[:1] , A ) def UpperCAmelCase__ ( self : List[Any] ): __snake_case: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) @slow def UpperCAmelCase__ ( self : Dict ): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case: int = ASTModel.from_pretrained(A ) self.assertIsNotNone(A ) def A__ ( ) -> List[Any]: __snake_case: List[Any] = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""") __snake_case , __snake_case: Optional[int] = torchaudio.load(SCREAMING_SNAKE_CASE__) return audio, sampling_rate @require_torch @require_torchaudio class __snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase__ ( self : Optional[int] ): return ( ASTFeatureExtractor.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ) if is_torchaudio_available() else None ) @slow def UpperCAmelCase__ ( self : Dict ): __snake_case: Tuple = self.default_feature_extractor __snake_case: Any = ASTForAudioClassification.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ).to(A ) __snake_case: Any = self.default_feature_extractor __snake_case , __snake_case: int = prepare_audio() __snake_case: Optional[Any] = audio.squeeze().numpy() __snake_case: Tuple = feature_extractor(A , sampling_rate=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): __snake_case: Union[str, Any] = model(**A ) # verify the logits __snake_case: Dict = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , A ) __snake_case: Union[str, Any] = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1E-4 ) )
155
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed __UpperCAmelCase : Any = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f'{bindir}/../../examples/pytorch/translation'): from run_translation import main # noqa set_seed(42) __UpperCAmelCase : List[Any] = "sshleifer/student_marian_en_ro_6_1" __UpperCAmelCase : Optional[Any] = "sshleifer/tiny-mbart" @require_torch class __snake_case ( __lowerCamelCase ): '''simple docstring''' def UpperCAmelCase__ ( self : int , A : Tuple=False , A : Dict=None , A : List[Any]=True , A : Any=True , A : Optional[Any]=True , A : int=True , ): __snake_case: Dict = self.run_trainer( eval_steps=1 , max_len=12 , model_name=A , num_train_epochs=1 , distributed=A , extra_args_str=A , predict_with_generate=A , do_train=A , do_eval=A , do_predict=A , ) __snake_case: Any = TrainerState.load_from_json(os.path.join(A , """trainer_state.json""" ) ).log_history if not do_eval: return __snake_case: List[Any] = [log for log in logs if """eval_loss""" in log.keys()] __snake_case: int = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats __snake_case: int = eval_metrics[-1] assert isinstance(last_step_stats["""eval_bleu"""] , A ) assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def UpperCAmelCase__ ( self : Union[str, Any] ): self.run_seqaseq_quick() @require_torch_multi_gpu def UpperCAmelCase__ ( self : Optional[int] ): self.run_seqaseq_quick(distributed=A ) @require_torch_multi_gpu def UpperCAmelCase__ ( self : List[Any] ): self.run_seqaseq_quick(distributed=A ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCAmelCase__ ( self : Any ): self.run_seqaseq_quick(distributed=A , extra_args_str="""--sharded_ddp simple""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCAmelCase__ ( self : Optional[Any] ): self.run_seqaseq_quick(distributed=A , extra_args_str="""--sharded_ddp simple --fp16""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCAmelCase__ ( self : Union[str, Any] ): self.run_seqaseq_quick(distributed=A , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=A ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCAmelCase__ ( self : Dict ): self.run_seqaseq_quick( distributed=A , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=A ) @require_apex @require_torch_gpu def UpperCAmelCase__ ( self : Any ): # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=A , extra_args_str="""--fp16 --fp16_backend=apex""" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=A , extra_args_str="""--fp16 --fp16_backend=apex""" ) @parameterized.expand(["""base""", """low""", """high""", """mixed"""] ) @require_torch_multi_gpu def UpperCAmelCase__ ( self : Tuple , A : List[Any] ): # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout __snake_case: Tuple = { # test with the default log_level - should be info and thus log info once """base""": {"""extra_args_str""": """""", """n_matches""": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes """low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica """high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1}, # test with high log_level and log_level_replica - should be quiet on all processes """mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0}, } __snake_case: int = experiments[experiment_id] __snake_case: Dict = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False} __snake_case: str = """Running training""" with CaptureStderr() as cl: self.run_seqaseq_quick(**A , extra_args_str=data["""extra_args_str"""] ) __snake_case: List[str] = len(re.findall(A , cl.err ) ) self.assertEqual(A , data["""n_matches"""] ) @slow def UpperCAmelCase__ ( self : Dict ): __snake_case: Optional[int] = self.run_trainer( eval_steps=2 , max_len=128 , model_name=A , learning_rate=3E-4 , num_train_epochs=10 , distributed=A , ) # Check metrics __snake_case: Optional[int] = TrainerState.load_from_json(os.path.join(A , """trainer_state.json""" ) ).log_history __snake_case: Any = [log for log in logs if """eval_loss""" in log.keys()] __snake_case: Tuple = eval_metrics[0] __snake_case: Optional[int] = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["""eval_bleu"""] , A ) # test if do_predict saves generations and metrics __snake_case: List[str] = os.listdir(A ) __snake_case: List[str] = {os.path.basename(A ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def UpperCAmelCase__ ( self : Any ): from transformers.training_args import OptimizerNames def train_and_return_metrics(A : str ) -> Tuple[int, float]: __snake_case: List[Any] = """--skip_memory_metrics 0""" __snake_case: Tuple = self.run_trainer( max_len=128 , model_name=A , learning_rate=3E-4 , num_train_epochs=1 , optim=A , distributed=A , extra_args_str=A , do_eval=A , do_predict=A , n_gpus_to_use=1 , ) # Check metrics __snake_case: Any = TrainerState.load_from_json(Path(A , """trainer_state.json""" ) ).log_history __snake_case: Tuple = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 ) __snake_case: Union[str, Any] = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 ) __snake_case: int = logs[0]["""train_loss"""] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss __snake_case , __snake_case , __snake_case: Tuple = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) __snake_case , __snake_case , __snake_case: List[str] = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) __snake_case: Dict = gpu_alloc_mem_orig - gpu_alloc_mem_bnb __snake_case: Optional[int] = gpu_peak_mem_orig + gpu_alloc_mem_orig __snake_case: str = gpu_peak_mem_bnb + gpu_alloc_mem_bnb __snake_case: Tuple = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings __snake_case: Any = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( A , A , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got""" f''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and''' f''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , ) self.assertGreater( A , A , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got""" f''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and''' f''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , ) self.assertEqual( A , A , f'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' ) def UpperCAmelCase__ ( self : str , A : int , A : str , A : int , A : float = 3E-3 , A : str = "adafactor" , A : bool = False , A : str = None , A : int = 0 , A : bool = True , A : bool = True , A : bool = True , A : bool = True , A : int = None , ): __snake_case: str = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro""" __snake_case: str = self.get_auto_remove_tmp_dir() __snake_case: List[str] = f''' --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(A )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(A )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX '''.split() __snake_case: str = f''' --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(A )} '''.split() __snake_case: Dict = """ --do_predict """.split() __snake_case: Tuple = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f'''--optim {optim}'''.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: __snake_case: Optional[int] = get_gpu_count() __snake_case: List[Any] = get_torch_dist_unique_port() __snake_case: Union[str, Any] = f''' -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py '''.split() __snake_case: Optional[int] = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(A , env=self.get_env() ) else: __snake_case: int = ["""run_translation.py"""] + args with patch.object(A , """argv""" , A ): main() return output_dir
155
1
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCamelCase__ : List[str] = logging.get_logger(__name__) class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:Any , *_a:Optional[Any] , **_a:Optional[Any] ): warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
33
import argparse import os import re import packaging.version snake_case__ : List[Any] = '''examples/''' snake_case__ : Union[str, Any] = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } snake_case__ : Tuple = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } snake_case__ : Union[str, Any] = '''README.md''' def lowercase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCAmelCase__ = f.read() UpperCAmelCase__ , UpperCAmelCase__ = REPLACE_PATTERNS[pattern] UpperCAmelCase__ = replace.replace("""VERSION""" , _lowerCAmelCase ) UpperCAmelCase__ = re_pattern.sub(_lowerCAmelCase , _lowerCAmelCase ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(_lowerCAmelCase ) def lowercase ( _lowerCAmelCase ): for folder, directories, fnames in os.walk(_lowerCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , pattern="""examples""" ) def lowercase ( _lowerCAmelCase , _lowerCAmelCase=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not patch: update_version_in_examples(_lowerCAmelCase ) def lowercase ( ): UpperCAmelCase__ = """🤗 Transformers currently provides the following architectures""" UpperCAmelCase__ = """1. Want to contribute a new model?""" with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCAmelCase__ = f.readlines() # Find the start of the list. UpperCAmelCase__ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase__ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): UpperCAmelCase__ = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(_lowerCAmelCase ) def lowercase ( ): with open(REPLACE_FILES["""init"""] , """r""" ) as f: UpperCAmelCase__ = f.read() UpperCAmelCase__ = REPLACE_PATTERNS["""init"""][0].search(_lowerCAmelCase ).groups()[0] return packaging.version.parse(_lowerCAmelCase ) def lowercase ( _lowerCAmelCase=False ): UpperCAmelCase__ = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: UpperCAmelCase__ = default_version.base_version elif patch: UpperCAmelCase__ = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: UpperCAmelCase__ = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. UpperCAmelCase__ = input(F'''Which version are you releasing? [{default_version}]''' ) if len(_lowerCAmelCase ) == 0: UpperCAmelCase__ = default_version print(F'''Updating version to {version}.''' ) global_version_update(_lowerCAmelCase , patch=_lowerCAmelCase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def lowercase ( ): UpperCAmelCase__ = get_version() UpperCAmelCase__ = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' UpperCAmelCase__ = current_version.base_version # Check with the user we got that right. UpperCAmelCase__ = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(_lowerCAmelCase ) == 0: UpperCAmelCase__ = dev_version print(F'''Updating version to {version}.''' ) global_version_update(_lowerCAmelCase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": snake_case__ : List[str] = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') snake_case__ : Union[str, Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
392
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCAmelCase : List[Any] = { "configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"], "tokenization_roc_bert": ["RoCBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[Any] = [ "ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RoCBertForCausalLM", "RoCBertForMaskedLM", "RoCBertForMultipleChoice", "RoCBertForPreTraining", "RoCBertForQuestionAnswering", "RoCBertForSequenceClassification", "RoCBertForTokenClassification", "RoCBertLayer", "RoCBertModel", "RoCBertPreTrainedModel", "load_tf_weights_in_roc_bert", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys _UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
713
def UpperCAmelCase__ ( lowerCamelCase = "The quick brown fox jumps over the lazy dog", ): lowercase :Dict = set() # Replace all the whitespace in our sentence lowercase :Optional[int] = input_str.replace(" ", "" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(lowerCamelCase ) == 26 def UpperCAmelCase__ ( lowerCamelCase = "The quick brown fox jumps over the lazy dog", ): lowercase :Optional[Any] = [False] * 26 for char in input_str: if char.islower(): lowercase :Union[str, Any] = True elif char.isupper(): lowercase :int = True return all(lowerCamelCase ) def UpperCAmelCase__ ( lowerCamelCase = "The quick brown fox jumps over the lazy dog", ): return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def UpperCAmelCase__ ( ): from timeit import timeit lowercase :Optional[Any] = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit("is_pangram()", setup=lowerCamelCase ) ) print(timeit("is_pangram_faster()", setup=lowerCamelCase ) ) print(timeit("is_pangram_fastest()", setup=lowerCamelCase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
453
0
def __magic_name__ ( lowerCAmelCase_): '''simple docstring''' if any(not isinstance(A_ , A_) or x < 0 for x in sequence): raise TypeError("Sequence must be list of non-negative integers") for _ in range(len(A_)): for i, (rod_upper, rod_lower) in enumerate(zip(A_ , sequence[1:])): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
250
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING A__: str = logging.get_logger(__name__) A__: Union[str, Any] = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = """deformable_detr""" UpperCamelCase__ = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self: Dict , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: List[str]=None , __lowerCamelCase: Tuple=3 , __lowerCamelCase: Union[str, Any]=300 , __lowerCamelCase: Optional[Any]=1024 , __lowerCamelCase: Optional[int]=6 , __lowerCamelCase: Optional[int]=1024 , __lowerCamelCase: List[str]=8 , __lowerCamelCase: Any=6 , __lowerCamelCase: Tuple=1024 , __lowerCamelCase: List[str]=8 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: List[str]="relu" , __lowerCamelCase: Tuple=256 , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: Optional[Any]=0.0 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Any=0.02 , __lowerCamelCase: int=1.0 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: str=False , __lowerCamelCase: Any="sine" , __lowerCamelCase: Optional[Any]="resnet50" , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: int=False , __lowerCamelCase: int=4 , __lowerCamelCase: int=4 , __lowerCamelCase: Any=4 , __lowerCamelCase: Any=False , __lowerCamelCase: List[str]=300 , __lowerCamelCase: Dict=False , __lowerCamelCase: str=1 , __lowerCamelCase: int=5 , __lowerCamelCase: str=2 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Tuple=1 , __lowerCamelCase: Union[str, Any]=5 , __lowerCamelCase: Optional[Any]=2 , __lowerCamelCase: List[str]=0.1 , __lowerCamelCase: Dict=0.25 , __lowerCamelCase: Dict=False , **__lowerCamelCase: str , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCamelCase__: Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase__: Tuple = backbone_config.get("model_type" ) UpperCamelCase__: Optional[int] = CONFIG_MAPPING[backbone_model_type] UpperCamelCase__: Tuple = config_class.from_dict(__lowerCamelCase ) UpperCamelCase__: Dict = use_timm_backbone UpperCamelCase__: Any = backbone_config UpperCamelCase__: Optional[int] = num_channels UpperCamelCase__: int = num_queries UpperCamelCase__: List[str] = max_position_embeddings UpperCamelCase__: Dict = d_model UpperCamelCase__: List[Any] = encoder_ffn_dim UpperCamelCase__: Union[str, Any] = encoder_layers UpperCamelCase__: Tuple = encoder_attention_heads UpperCamelCase__: Tuple = decoder_ffn_dim UpperCamelCase__: Optional[int] = decoder_layers UpperCamelCase__: int = decoder_attention_heads UpperCamelCase__: Optional[Any] = dropout UpperCamelCase__: List[str] = attention_dropout UpperCamelCase__: List[Any] = activation_dropout UpperCamelCase__: List[Any] = activation_function UpperCamelCase__: Union[str, Any] = init_std UpperCamelCase__: List[str] = init_xavier_std UpperCamelCase__: Optional[Any] = encoder_layerdrop UpperCamelCase__: List[str] = auxiliary_loss UpperCamelCase__: Optional[int] = position_embedding_type UpperCamelCase__: Optional[Any] = backbone UpperCamelCase__: Any = use_pretrained_backbone UpperCamelCase__: Union[str, Any] = dilation # deformable attributes UpperCamelCase__: Union[str, Any] = num_feature_levels UpperCamelCase__: Optional[Any] = encoder_n_points UpperCamelCase__: Tuple = decoder_n_points UpperCamelCase__: Any = two_stage UpperCamelCase__: Optional[int] = two_stage_num_proposals UpperCamelCase__: str = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher UpperCamelCase__: Any = class_cost UpperCamelCase__: str = bbox_cost UpperCamelCase__: List[str] = giou_cost # Loss coefficients UpperCamelCase__: Optional[Any] = mask_loss_coefficient UpperCamelCase__: List[Any] = dice_loss_coefficient UpperCamelCase__: Optional[Any] = bbox_loss_coefficient UpperCamelCase__: List[Any] = giou_loss_coefficient UpperCamelCase__: Dict = eos_coefficient UpperCamelCase__: List[Any] = focal_alpha UpperCamelCase__: Dict = disable_custom_kernels super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) @property def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase_ ( self: Any ): '''simple docstring''' return self.d_model def UpperCAmelCase_ ( self: int ): '''simple docstring''' UpperCamelCase__: Optional[int] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCamelCase__: Tuple = self.backbone_config.to_dict() UpperCamelCase__: Optional[int] = self.__class__.model_type return output
380
0
'''simple docstring''' from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : Dict , a_ : str , a_ : Tuple ): """simple docstring""" super().__init__() self.register_modules(unet=a_ , scheduler=a_ ) @torch.no_grad() def __call__( self : Tuple , a_ : int = 1 , a_ : Optional[torch.Generator] = None , a_ : int = 50 , a_ : Optional[str] = "pil" , a_ : bool = True , **a_ : Dict , ): """simple docstring""" __snake_case = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=a_ , ) __snake_case = image.to(self.device ) # set step values self.scheduler.set_timesteps(a_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __snake_case = self.unet(a_ , a_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __snake_case = self.scheduler.step(a_ , a_ , a_ ).prev_sample __snake_case = (image / 2 + 0.5).clamp(0 , 1 ) __snake_case = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __snake_case = self.numpy_to_pil(a_ ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=a_ ), "This is a local test"
701
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a : Optional[Any] = False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : List[Any] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained(a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = generator.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def A ( self : Optional[int] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images __snake_case = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __snake_case = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
680
0
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :Optional[int] = AutoencoderKL snake_case__ :int = 'sample' snake_case__ :str = 1e-2 @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = 4 lowerCAmelCase__ = 3 lowerCAmelCase__ = (32, 32) lowerCAmelCase__ = floats_tensor((batch_size, num_channels) + sizes ).to(__magic_name__ ) return {"sample": image} @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return (3, 32, 32) @property def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" return (3, 32, 32) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } lowerCAmelCase__ = self.dummy_input return init_dict, inputs_dict def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" pass @unittest.skipIf(torch_device == "mps" , "Gradient checkpointing skipped on MPS" ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ ,lowerCAmelCase__ = self.prepare_init_args_and_inputs_for_common() lowerCAmelCase__ = self.model_class(**__magic_name__ ) model.to(__magic_name__ ) assert not model.is_gradient_checkpointing and model.training lowerCAmelCase__ = model(**__magic_name__ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() lowerCAmelCase__ = torch.randn_like(__magic_name__ ) lowerCAmelCase__ = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing lowerCAmelCase__ = self.model_class(**__magic_name__ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(__magic_name__ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training lowerCAmelCase__ = model_a(**__magic_name__ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() lowerCAmelCase__ = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) lowerCAmelCase__ = dict(model.named_parameters() ) lowerCAmelCase__ = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ ,lowerCAmelCase__ = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" , output_loading_info=__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(__magic_name__ ) lowerCAmelCase__ = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" ) lowerCAmelCase__ = model.to(__magic_name__ ) model.eval() if torch_device == "mps": lowerCAmelCase__ = torch.manual_seed(0 ) else: lowerCAmelCase__ = torch.Generator(device=__magic_name__ ).manual_seed(0 ) lowerCAmelCase__ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) lowerCAmelCase__ = image.to(__magic_name__ ) with torch.no_grad(): lowerCAmelCase__ = model(__magic_name__ , sample_posterior=__magic_name__ , generator=__magic_name__ ).sample lowerCAmelCase__ = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": lowerCAmelCase__ = torch.tensor( [ -4.0078E-01, -3.8323E-04, -1.2681E-01, -1.1462E-01, 2.0095E-01, 1.0893E-01, -8.8247E-02, -3.0361E-01, -9.8644E-03, ] ) elif torch_device == "cpu": lowerCAmelCase__ = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: lowerCAmelCase__ = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(__magic_name__ , __magic_name__ , rtol=1E-2 ) ) @slow class A ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Any ): """simple docstring""" return f"""gaussian_noise_s={seed}_shape={"_".join([str(__magic_name__ ) for s in shape] )}.npy""" def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : List[str]=0 , __magic_name__ : str=(4, 3, 512, 512) , __magic_name__ : str=False ): """simple docstring""" lowerCAmelCase__ = torch.floataa if fpaa else torch.floataa lowerCAmelCase__ = torch.from_numpy(load_hf_numpy(self.get_file_format(__magic_name__ , __magic_name__ ) ) ).to(__magic_name__ ).to(__magic_name__ ) return image def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : List[str]="CompVis/stable-diffusion-v1-4" , __magic_name__ : Optional[Any]=False ): """simple docstring""" lowerCAmelCase__ = "fp16" if fpaa else None lowerCAmelCase__ = torch.floataa if fpaa else torch.floataa lowerCAmelCase__ = AutoencoderKL.from_pretrained( __magic_name__ , subfolder="vae" , torch_dtype=__magic_name__ , revision=__magic_name__ , ) model.to(__magic_name__ ).eval() return model def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Union[str, Any]=0 ): """simple docstring""" if torch_device == "mps": return torch.manual_seed(__magic_name__ ) return torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : Tuple , __magic_name__ : Optional[int] , __magic_name__ : Dict ): """simple docstring""" lowerCAmelCase__ = self.get_sd_vae_model() lowerCAmelCase__ = self.get_sd_image(__magic_name__ ) lowerCAmelCase__ = self.get_generator(__magic_name__ ) with torch.no_grad(): lowerCAmelCase__ = model(__magic_name__ , generator=__magic_name__ , sample_posterior=__magic_name__ ).sample assert sample.shape == image.shape lowerCAmelCase__ = sample[-1, -2:, -2:, :2].flatten().float().cpu() lowerCAmelCase__ = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(__magic_name__ , __magic_name__ , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = self.get_sd_vae_model(fpaa=__magic_name__ ) lowerCAmelCase__ = self.get_sd_image(__magic_name__ , fpaa=__magic_name__ ) lowerCAmelCase__ = self.get_generator(__magic_name__ ) with torch.no_grad(): lowerCAmelCase__ = model(__magic_name__ , generator=__magic_name__ , sample_posterior=__magic_name__ ).sample assert sample.shape == image.shape lowerCAmelCase__ = sample[-1, -2:, :2, -2:].flatten().float().cpu() lowerCAmelCase__ = torch.tensor(__magic_name__ ) assert torch_all_close(__magic_name__ , __magic_name__ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Dict ): """simple docstring""" lowerCAmelCase__ = self.get_sd_vae_model() lowerCAmelCase__ = self.get_sd_image(__magic_name__ ) with torch.no_grad(): lowerCAmelCase__ = model(__magic_name__ ).sample assert sample.shape == image.shape lowerCAmelCase__ = sample[-1, -2:, -2:, :2].flatten().float().cpu() lowerCAmelCase__ = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(__magic_name__ , __magic_name__ , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : List[str] , __magic_name__ : List[str] ): """simple docstring""" lowerCAmelCase__ = self.get_sd_vae_model() lowerCAmelCase__ = self.get_sd_image(__magic_name__ , shape=(3, 4, 64, 64) ) with torch.no_grad(): lowerCAmelCase__ = model.decode(__magic_name__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] lowerCAmelCase__ = sample[-1, -2:, :2, -2:].flatten().cpu() lowerCAmelCase__ = torch.tensor(__magic_name__ ) assert torch_all_close(__magic_name__ , __magic_name__ , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Optional[int] , __magic_name__ : Tuple ): """simple docstring""" lowerCAmelCase__ = self.get_sd_vae_model(fpaa=__magic_name__ ) lowerCAmelCase__ = self.get_sd_image(__magic_name__ , shape=(3, 4, 64, 64) , fpaa=__magic_name__ ) with torch.no_grad(): lowerCAmelCase__ = model.decode(__magic_name__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] lowerCAmelCase__ = sample[-1, -2:, :2, -2:].flatten().float().cpu() lowerCAmelCase__ = torch.tensor(__magic_name__ ) assert torch_all_close(__magic_name__ , __magic_name__ , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.get_sd_vae_model(fpaa=__magic_name__ ) lowerCAmelCase__ = self.get_sd_image(__magic_name__ , shape=(3, 4, 64, 64) , fpaa=__magic_name__ ) with torch.no_grad(): lowerCAmelCase__ = model.decode(__magic_name__ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): lowerCAmelCase__ = model.decode(__magic_name__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(__magic_name__ , __magic_name__ , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : List[Any] ): """simple docstring""" lowerCAmelCase__ = self.get_sd_vae_model() lowerCAmelCase__ = self.get_sd_image(__magic_name__ , shape=(3, 4, 64, 64) ) with torch.no_grad(): lowerCAmelCase__ = model.decode(__magic_name__ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): lowerCAmelCase__ = model.decode(__magic_name__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(__magic_name__ , __magic_name__ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Dict , __magic_name__ : Tuple ): """simple docstring""" lowerCAmelCase__ = self.get_sd_vae_model() lowerCAmelCase__ = self.get_sd_image(__magic_name__ ) lowerCAmelCase__ = self.get_generator(__magic_name__ ) with torch.no_grad(): lowerCAmelCase__ = model.encode(__magic_name__ ).latent_dist lowerCAmelCase__ = dist.sample(generator=__magic_name__ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] lowerCAmelCase__ = sample[0, -1, -3:, -3:].flatten().cpu() lowerCAmelCase__ = torch.tensor(__magic_name__ ) lowerCAmelCase__ = 3E-3 if torch_device != "mps" else 1E-2 assert torch_all_close(__magic_name__ , __magic_name__ , atol=__magic_name__ )
48
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCamelCase_ ( __a , __a , __a ) -> Optional[Any]: a__ : Union[str, Any] = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") a__ : Union[str, Any] = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(__a ): os.makedirs(__a ) a__ : Any = model.state_dict() def to_tf_var_name(__a ): for patt, repl in iter(__a ): a__ : Tuple = name.replace(__a , __a ) return f'''bert/{name}''' def create_tf_var(__a , __a , __a ): a__ : Tuple = tf.dtypes.as_dtype(tensor.dtype ) a__ : Dict = tf.get_variable(dtype=__a , shape=tensor.shape , name=__a , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__a ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: a__ : int = to_tf_var_name(__a ) a__ : Union[str, Any] = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): a__ : int = torch_tensor.T a__ : Optional[Any] = create_tf_var(tensor=__a , name=__a , session=__a ) tf.keras.backend.set_value(__a , __a ) a__ : int = session.run(__a ) print(f'''Successfully created {tf_name}: {np.allclose(__a , __a )}''' ) a__ : Any = tf.train.Saver(tf.trainable_variables() ) saver.save(__a , os.path.join(__a , model_name.replace("-" , "_" ) + ".ckpt" ) ) def UpperCamelCase_ ( __a=None ) -> int: a__ : Dict = argparse.ArgumentParser() parser.add_argument("--model_name" , type=__a , required=__a , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=__a , default=__a , required=__a , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=__a , required=__a , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=__a , required=__a , help="Directory in which to save tensorflow model" ) a__ : Optional[Any] = parser.parse_args(__a ) a__ : Tuple = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__a , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
37
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { 'configuration_informer': [ 'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'InformerForPrediction', 'InformerModel', 'InformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
706
import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() lowercase_ = { 'bart': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'bert': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-base-cased-finetuned-mrpc': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'dpr': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'gpt2': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlnet': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm-roberta': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'transfo-xl': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'openai-gpt': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'roberta': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'layoutlm': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'roberta-large-mnli': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'camembert': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'flaubert': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert-base-distilled-squad': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert-visual-feature-encoder': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'ctrl': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'albert': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 't5': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'electra': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'wav2vec2': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def a ( A__ : Tuple , A__ : List[Any] , A__ : Optional[int] , A__ : Dict , A__ : Any=False , A__ : str=True ) -> str: """simple docstring""" if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' ) _lowercase , _lowercase , _lowercase , _lowercase =MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: _lowercase =cached_file(A__ , A__ , force_download=not use_cached_models ) _lowercase =config_class.from_json_file(A__ ) _lowercase =True _lowercase =True print(F'''Building TensorFlow model from configuration: {config}''' ) _lowercase =model_class(A__ ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): _lowercase =cached_file( A__ , A__ , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: _lowercase =load_pytorch_checkpoint_in_tfa_model(A__ , A__ ) if compare_with_pt_model: _lowercase =tf_model(tf_model.dummy_inputs , training=A__ ) # build the network _lowercase =torch.load(A__ , map_location='cpu' ) _lowercase =pt_model_class.from_pretrained( pretrained_model_name_or_path=A__ , config=A__ , state_dict=A__ ) with torch.no_grad(): _lowercase =pt_model(**pt_model.dummy_inputs ) _lowercase =pto[0].numpy() _lowercase =tfo[0].numpy() _lowercase =np.amax(np.abs(np_pt - np_tf ) ) print(F'''Max absolute difference between models outputs {diff}''' ) assert diff <= 2e-2, F'''Error, model absolute difference is >2e-2: {diff}''' # Save pytorch-model print(F'''Save TensorFlow model to {tf_dump_path}''' ) tf_model.save_weights(A__ , save_format='h5' ) def a ( A__ : str , A__ : str , A__ : Optional[Any]=None , A__ : Any=None , A__ : Optional[int]=False , A__ : Optional[int]=False , A__ : int=False , A__ : str=False , ) -> List[Any]: """simple docstring""" if args_model_type is None: _lowercase =list(MODEL_CLASSES.keys() ) else: _lowercase =[args_model_type] for j, model_type in enumerate(A__ , start=1 ): print('=' * 100 ) print(F''' Converting model type {j}/{len(A__ )}: {model_type}''' ) print('=' * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase =MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: _lowercase =list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: _lowercase =model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(A__ , A__ ) , start=1 ): print('-' * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F''' Skipping finetuned checkpoint {model_shortcut_name}''' ) continue _lowercase =model_shortcut_name elif only_convert_finetuned_models: print(F''' Skipping not finetuned checkpoint {model_shortcut_name}''' ) continue print( F''' Converting checkpoint {i}/{len(A__ )}: {model_shortcut_name} - model_type {model_type}''' ) print('-' * 100 ) if config_shortcut_name in aws_config_map: _lowercase =cached_file(A__ , A__ , force_download=not use_cached_models ) else: _lowercase =config_shortcut_name if model_shortcut_name in aws_model_maps: _lowercase =cached_file(A__ , A__ , force_download=not use_cached_models ) else: _lowercase =model_shortcut_name if os.path.isfile(A__ ): _lowercase ='converted_model' convert_pt_checkpoint_to_tf( model_type=A__ , pytorch_checkpoint_path=A__ , config_file=A__ , tf_dump_path=os.path.join(A__ , model_shortcut_name + '-tf_model.h5' ) , compare_with_pt_model=A__ , ) if remove_cached_files: os.remove(A__ ) os.remove(A__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_dump_path', default=None, type=str, required=True, help='Path to the output Tensorflow dump file.' ) parser.add_argument( '--model_type', default=None, type=str, help=( f"Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and " 'convert all the models from AWS.' ), ) parser.add_argument( '--pytorch_checkpoint_path', default=None, type=str, help=( 'Path to the PyTorch checkpoint path or shortcut name to download from AWS. ' 'If not given, will download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--config_file', default=None, type=str, help=( 'The config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture. If not given and ' '--pytorch_checkpoint_path is not given or is a shortcut name ' 'use the configuration associated to the shortcut name on the AWS' ), ) parser.add_argument( '--compare_with_pt_model', action='store_true', help='Compare Tensorflow and PyTorch model predictions.' ) parser.add_argument( '--use_cached_models', action='store_true', help='Use cached models if possible instead of updating to latest checkpoint versions.', ) parser.add_argument( '--remove_cached_files', action='store_true', help='Remove pytorch models after conversion (save memory when converting in batches).', ) parser.add_argument('--only_convert_finetuned_models', action='store_true', help='Only convert finetuned models.') lowercase_ = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
380
0
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters __A = (720, 1_280) # Height, Width __A = (0.4, 0.6) # if height or width lower than this scale, drop it. __A = 1 / 100 __A = "" __A = "" __A = "" __A = 250 def _A ( ): lowercase__ , lowercase__ = get_dataset(lowercase__ , lowercase__ ) for index in range(lowercase__ ): lowercase__ = random.sample(range(len(lowercase__ ) ) , 4 ) lowercase__ , lowercase__ , lowercase__ = update_image_and_anno( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , filter_scale=lowercase__ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowercase__ = random_chars(32 ) lowercase__ = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] lowercase__ = f'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(f'''{file_root}.jpg''' , lowercase__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) lowercase__ = [] for anno in new_annos: lowercase__ = anno[3] - anno[1] lowercase__ = anno[4] - anno[2] lowercase__ = anno[1] + width / 2 lowercase__ = anno[2] + height / 2 lowercase__ = f'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(lowercase__ ) with open(f'''{file_root}.txt''' , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def _A ( lowercase__ , lowercase__ ): lowercase__ = [] lowercase__ = [] for label_file in glob.glob(os.path.join(lowercase__ , """*.txt""" ) ): lowercase__ = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(lowercase__ ) as in_file: lowercase__ = in_file.readlines() lowercase__ = os.path.join(lowercase__ , f'''{label_name}.jpg''' ) lowercase__ = [] for obj_list in obj_lists: lowercase__ = obj_list.rstrip("""\n""" ).split(""" """ ) lowercase__ = float(obj[1] ) - float(obj[3] ) / 2 lowercase__ = float(obj[2] ) - float(obj[4] ) / 2 lowercase__ = float(obj[1] ) + float(obj[3] ) / 2 lowercase__ = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(lowercase__ ) labels.append(lowercase__ ) return img_paths, labels def _A ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 0.0 , ): lowercase__ = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) lowercase__ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowercase__ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowercase__ = int(scale_x * output_size[1] ) lowercase__ = int(scale_y * output_size[0] ) lowercase__ = [] lowercase__ = [] for i, index in enumerate(lowercase__ ): lowercase__ = all_img_list[index] path_list.append(lowercase__ ) lowercase__ = all_annos[index] lowercase__ = cva.imread(lowercase__ ) if i == 0: # top-left lowercase__ = cva.resize(lowercase__ , (divid_point_x, divid_point_y) ) lowercase__ = img for bbox in img_annos: lowercase__ = bbox[1] * scale_x lowercase__ = bbox[2] * scale_y lowercase__ = bbox[3] * scale_x lowercase__ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right lowercase__ = cva.resize(lowercase__ , (output_size[1] - divid_point_x, divid_point_y) ) lowercase__ = img for bbox in img_annos: lowercase__ = scale_x + bbox[1] * (1 - scale_x) lowercase__ = bbox[2] * scale_y lowercase__ = scale_x + bbox[3] * (1 - scale_x) lowercase__ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left lowercase__ = cva.resize(lowercase__ , (divid_point_x, output_size[0] - divid_point_y) ) lowercase__ = img for bbox in img_annos: lowercase__ = bbox[1] * scale_x lowercase__ = scale_y + bbox[2] * (1 - scale_y) lowercase__ = bbox[3] * scale_x lowercase__ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right lowercase__ = cva.resize( lowercase__ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) lowercase__ = img for bbox in img_annos: lowercase__ = scale_x + bbox[1] * (1 - scale_x) lowercase__ = scale_y + bbox[2] * (1 - scale_y) lowercase__ = scale_x + bbox[3] * (1 - scale_x) lowercase__ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: lowercase__ = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def _A ( lowercase__ ): assert number_char > 1, "The number of character should greater than 1" lowercase__ = ascii_lowercase + digits return "".join(random.choice(lowercase__ ) for _ in range(lowercase__ ) ) if __name__ == "__main__": main() print("DONE ✅")
325
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel __A = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class A ( unittest.TestCase ): @classmethod def A__ ( cls ) -> List[Any]: '''simple docstring''' lowercase__ = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def A__ ( cls ) -> Tuple: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="""test-model-flax""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-model-flax-org""" ) except HTTPError: pass def A__ ( self ) -> Dict: '''simple docstring''' lowercase__ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) lowercase__ = FlaxBertModel(lowerCamelCase__ ) model.push_to_hub("""test-model-flax""" , use_auth_token=self._token ) lowercase__ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) lowercase__ = flatten_dict(unfreeze(model.params ) ) lowercase__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase__ , 1e-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="""test-model-flax""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCamelCase__ , repo_id="""test-model-flax""" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) lowercase__ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) lowercase__ = flatten_dict(unfreeze(model.params ) ) lowercase__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase__ , 1e-3 , msg=F'''{key} not identical''' ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase__ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) lowercase__ = FlaxBertModel(lowerCamelCase__ ) model.push_to_hub("""valid_org/test-model-flax-org""" , use_auth_token=self._token ) lowercase__ = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) lowercase__ = flatten_dict(unfreeze(model.params ) ) lowercase__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase__ , 1e-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-model-flax-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( lowerCamelCase__ , repo_id="""valid_org/test-model-flax-org""" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) lowercase__ = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) lowercase__ = flatten_dict(unfreeze(model.params ) ) lowercase__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase__ , 1e-3 , msg=F'''{key} not identical''' ) def _A ( lowercase__ , lowercase__ ): lowercase__ = True lowercase__ = flatten_dict(modela.params ) lowercase__ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: lowercase__ = False return models_are_equal @require_flax class A ( unittest.TestCase ): def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__ = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) lowercase__ = FlaxBertModel(lowerCamelCase__ ) lowercase__ = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) ) with self.assertRaises(lowerCamelCase__ ): lowercase__ = FlaxBertModel.from_pretrained(lowerCamelCase__ ) lowercase__ = FlaxBertModel.from_pretrained(lowerCamelCase__ , subfolder=lowerCamelCase__ ) self.assertTrue(check_models_equal(lowerCamelCase__ , lowerCamelCase__ ) ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase__ = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) lowercase__ = FlaxBertModel(lowerCamelCase__ ) lowercase__ = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) , max_shard_size="""10KB""" ) with self.assertRaises(lowerCamelCase__ ): lowercase__ = FlaxBertModel.from_pretrained(lowerCamelCase__ ) lowercase__ = FlaxBertModel.from_pretrained(lowerCamelCase__ , subfolder=lowerCamelCase__ ) self.assertTrue(check_models_equal(lowerCamelCase__ , lowerCamelCase__ ) ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase__ = """bert""" lowercase__ = """hf-internal-testing/tiny-random-bert-subfolder""" with self.assertRaises(lowerCamelCase__ ): lowercase__ = FlaxBertModel.from_pretrained(lowerCamelCase__ ) lowercase__ = FlaxBertModel.from_pretrained(lowerCamelCase__ , subfolder=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__ = """bert""" lowercase__ = """hf-internal-testing/tiny-random-bert-sharded-subfolder""" with self.assertRaises(lowerCamelCase__ ): lowercase__ = FlaxBertModel.from_pretrained(lowerCamelCase__ ) lowercase__ = FlaxBertModel.from_pretrained(lowerCamelCase__ , subfolder=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ )
325
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ =logging.get_logger(__name__) lowercase__ ={ 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class a_ ( UpperCamelCase__ ): lowerCamelCase__ : int = 'distilbert' lowerCamelCase__ : List[str] = { 'hidden_size': 'dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', } def __init__( self , UpperCAmelCase=3_05_22 , UpperCAmelCase=5_12 , UpperCAmelCase=False , UpperCAmelCase=6 , UpperCAmelCase=12 , UpperCAmelCase=7_68 , UpperCAmelCase=4 * 7_68 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=0.02 , UpperCAmelCase=0.1 , UpperCAmelCase=0.2 , UpperCAmelCase=0 , **UpperCAmelCase , ): a_ = vocab_size a_ = max_position_embeddings a_ = sinusoidal_pos_embds a_ = n_layers a_ = n_heads a_ = dim a_ = hidden_dim a_ = dropout a_ = attention_dropout a_ = activation a_ = initializer_range a_ = qa_dropout a_ = seq_classif_dropout super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase ) class a_ ( UpperCamelCase__ ): @property def lowerCAmelCase__ ( self ): if self.task == "multiple-choice": a_ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: a_ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
511
'''simple docstring''' import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter lowercase__ =True except ImportError: lowercase__ =False lowercase__ =logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCamelCase_ ( A__ ): return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class a_ ( UpperCamelCase__ ): @staticmethod def lowerCAmelCase__ ( UpperCAmelCase ): a_ = parser.add_parser("""add-new-model""" ) add_new_model_parser.add_argument("""--testing""" , action="""store_true""" , help="""If in testing mode.""" ) add_new_model_parser.add_argument("""--testing_file""" , type=UpperCAmelCase , help="""Configuration file on which to run.""" ) add_new_model_parser.add_argument( """--path""" , type=UpperCAmelCase , help="""Path to cookiecutter. Should only be used for testing purposes.""" ) add_new_model_parser.set_defaults(func=UpperCAmelCase ) def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , *UpperCAmelCase ): a_ = testing a_ = testing_file a_ = path def lowerCAmelCase__ ( self ): warnings.warn( """The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. """ """It is not actively maintained anymore, so might give a result that won't pass all tests and quality """ """checks, you should use `transformers-cli add-new-model-like` instead.""" ) if not _has_cookiecutter: raise ImportError( """Model creation dependencies are required to use the `add_new_model` command. Install them by running """ """the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n""" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory a_ = [directory for directory in os.listdir() if """cookiecutter-template-""" == directory[:22]] if len(UpperCAmelCase ) > 0: raise ValueError( """Several directories starting with `cookiecutter-template-` in current working directory. """ """Please clean your directory by removing all folders starting with `cookiecutter-template-` or """ """change your working directory.""" ) a_ = ( Path(UpperCAmelCase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) a_ = path_to_transformer_root / """templates""" / """adding_a_new_model""" # Execute cookiecutter if not self._testing: cookiecutter(str(UpperCAmelCase ) ) else: with open(self._testing_file , """r""" ) as configuration_file: a_ = json.load(UpperCAmelCase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=UpperCAmelCase , extra_context=UpperCAmelCase , ) a_ = [directory for directory in os.listdir() if """cookiecutter-template-""" in directory[:22]][0] # Retrieve configuration with open(directory + """/configuration.json""" , """r""" ) as configuration_file: a_ = json.load(UpperCAmelCase ) a_ = configuration["""lowercase_modelname"""] a_ = configuration["""generate_tensorflow_pytorch_and_flax"""] os.remove(f'''{directory}/configuration.json''' ) a_ = """PyTorch""" in generate_tensorflow_pytorch_and_flax a_ = """TensorFlow""" in generate_tensorflow_pytorch_and_flax a_ = """Flax""" in generate_tensorflow_pytorch_and_flax a_ = f'''{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}''' os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) os.makedirs(f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}''' , exist_ok=UpperCAmelCase ) # Tests require submodules as they have parent imports with open(f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py''' , """w""" ): pass shutil.move( f'''{directory}/__init__.py''' , f'''{model_dir}/__init__.py''' , ) shutil.move( f'''{directory}/configuration_{lowercase_model_name}.py''' , f'''{model_dir}/configuration_{lowercase_model_name}.py''' , ) def remove_copy_lines(UpperCAmelCase ): with open(UpperCAmelCase , """r""" ) as f: a_ = f.readlines() with open(UpperCAmelCase , """w""" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(UpperCAmelCase ) if output_pytorch: if not self._testing: remove_copy_lines(f'''{directory}/modeling_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_{lowercase_model_name}.py''' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_tf_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_tf_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' ) if output_flax: if not self._testing: remove_copy_lines(f'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_flax_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_flax_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/{lowercase_model_name}.md''' , f'''{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md''' , ) shutil.move( f'''{directory}/tokenization_{lowercase_model_name}.py''' , f'''{model_dir}/tokenization_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/tokenization_fast_{lowercase_model_name}.py''' , f'''{model_dir}/tokenization_{lowercase_model_name}_fast.py''' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): # Create temp file a_ , a_ = mkstemp() a_ = False with fdopen(UpperCAmelCase , """w""" ) as new_file: with open(UpperCAmelCase ) as old_file: for line in old_file: new_file.write(UpperCAmelCase ) if line_to_copy_below in line: a_ = True for line_to_copy in lines_to_copy: new_file.write(UpperCAmelCase ) if not line_found: raise ValueError(f'''Line {line_to_copy_below} was not found in file.''' ) # Copy the file permissions from the old file to the new file copymode(UpperCAmelCase , UpperCAmelCase ) # Remove original file remove(UpperCAmelCase ) # Move new file move(UpperCAmelCase , UpperCAmelCase ) def skip_units(UpperCAmelCase ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(UpperCAmelCase ): with open(UpperCAmelCase ) as datafile: a_ = [] a_ = False a_ = False for line in datafile: if "# To replace in: " in line and "##" not in line: a_ = line.split("""\"""" )[1] a_ = skip_units(UpperCAmelCase ) elif "# Below: " in line and "##" not in line: a_ = line.split("""\"""" )[1] a_ = skip_units(UpperCAmelCase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) a_ = [] elif "# Replace with" in line and "##" not in line: a_ = [] elif "##" not in line: lines_to_copy.append(UpperCAmelCase ) remove(UpperCAmelCase ) replace_in_files(f'''{directory}/to_replace_{lowercase_model_name}.py''' ) os.rmdir(UpperCAmelCase )
511
1
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Union[str, Any] = '''MCTCTFeatureExtractor''' __a : Optional[Any] = '''AutoTokenizer''' def __init__( self ,snake_case__ ,snake_case__ ): super().__init__(a__ ,a__ ) SCREAMING_SNAKE_CASE_ : List[str] = self.feature_extractor SCREAMING_SNAKE_CASE_ : Dict = False def __call__( self ,*snake_case__ ,**snake_case__ ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*a__ ,**a__ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) SCREAMING_SNAKE_CASE_ : List[str] = kwargs.pop('raw_speech' ) else: SCREAMING_SNAKE_CASE_ : Any = kwargs.pop('audio' ,a__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = kwargs.pop('sampling_rate' ,a__ ) SCREAMING_SNAKE_CASE_ : Dict = kwargs.pop('text' ,a__ ) if len(a__ ) > 0: SCREAMING_SNAKE_CASE_ : List[str] = args[0] SCREAMING_SNAKE_CASE_ : Optional[int] = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: SCREAMING_SNAKE_CASE_ : Dict = self.feature_extractor(a__ ,*a__ ,sampling_rate=a__ ,**a__ ) if text is not None: SCREAMING_SNAKE_CASE_ : int = self.tokenizer(a__ ,**a__ ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE_ : int = encodings['input_ids'] return inputs def snake_case ( self ,*snake_case__ ,**snake_case__ ): return self.tokenizer.batch_decode(*a__ ,**a__ ) def snake_case ( self ,*snake_case__ ,**snake_case__ ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*a__ ,**a__ ) SCREAMING_SNAKE_CASE_ : List[str] = kwargs.pop('input_features' ,a__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = kwargs.pop('labels' ,a__ ) if len(a__ ) > 0: SCREAMING_SNAKE_CASE_ : str = args[0] SCREAMING_SNAKE_CASE_ : Optional[Any] = args[1:] if input_features is not None: SCREAMING_SNAKE_CASE_ : List[str] = self.feature_extractor.pad(a__ ,*a__ ,**a__ ) if labels is not None: SCREAMING_SNAKE_CASE_ : List[str] = self.tokenizer.pad(a__ ,**a__ ) if labels is None: return input_features elif input_features is None: return labels else: SCREAMING_SNAKE_CASE_ : Optional[Any] = labels['input_ids'] return input_features def snake_case ( self ,*snake_case__ ,**snake_case__ ): return self.tokenizer.decode(*a__ ,**a__ ) @contextmanager def snake_case ( self ): warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.tokenizer yield SCREAMING_SNAKE_CASE_ : List[Any] = self.feature_extractor SCREAMING_SNAKE_CASE_ : List[str] = False
105
from __future__ import annotations import typing from collections import Counter def lowerCamelCase_ ( __UpperCamelCase ): A_ = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(__UpperCamelCase , max_perimeter + 1 ): A_ = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(__UpperCamelCase ): A_ = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def lowerCamelCase_ ( __UpperCamelCase = 10_00 ): A_ = pythagorean_triple(__UpperCamelCase ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f'''Perimeter {solution()} has maximum solutions''')
141
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { """facebook/convnextv2-tiny-1k-224""": """https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json""", } class __UpperCAmelCase ( lowercase_ , lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = '''convnextv2''' def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=0.0 , _UpperCAmelCase=224 , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) UpperCAmelCase__ : Union[str, Any] = num_channels UpperCAmelCase__ : Union[str, Any] = patch_size UpperCAmelCase__ : List[Any] = num_stages UpperCAmelCase__ : Tuple = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes UpperCAmelCase__ : Optional[int] = [3, 3, 9, 3] if depths is None else depths UpperCAmelCase__ : List[str] = hidden_act UpperCAmelCase__ : Optional[Any] = initializer_range UpperCAmelCase__ : Dict = layer_norm_eps UpperCAmelCase__ : Tuple = drop_path_rate UpperCAmelCase__ : Optional[Any] = image_size UpperCAmelCase__ : Optional[Any] = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = get_aligned_output_features_output_indices( out_features=_UpperCAmelCase , out_indices=_UpperCAmelCase , stage_names=self.stage_names )
720
'''simple docstring''' import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def lowerCAmelCase__ ( a_ : bytes , a_ : int ) -> np.array: UpperCAmelCase__ : Union[str, Any] = f"""{sampling_rate}""" UpperCAmelCase__ : List[Any] = '''1''' UpperCAmelCase__ : int = '''f32le''' UpperCAmelCase__ : Tuple = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(a_ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: UpperCAmelCase__ : Dict = ffmpeg_process.communicate(a_ ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error UpperCAmelCase__ : Dict = output_stream[0] UpperCAmelCase__ : int = np.frombuffer(a_ , np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def lowerCAmelCase__ ( a_ : int , a_ : float , a_ : str = "f32le" , ) -> List[str]: UpperCAmelCase__ : str = f"""{sampling_rate}""" UpperCAmelCase__ : Tuple = '''1''' if format_for_conversion == "s16le": UpperCAmelCase__ : str = 2 elif format_for_conversion == "f32le": UpperCAmelCase__ : Any = 4 else: raise ValueError(f"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) UpperCAmelCase__ : Dict = platform.system() if system == "Linux": UpperCAmelCase__ : Union[str, Any] = '''alsa''' UpperCAmelCase__ : List[Any] = '''default''' elif system == "Darwin": UpperCAmelCase__ : List[str] = '''avfoundation''' UpperCAmelCase__ : List[Any] = ''':0''' elif system == "Windows": UpperCAmelCase__ : Optional[int] = '''dshow''' UpperCAmelCase__ : Any = '''default''' UpperCAmelCase__ : str = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] UpperCAmelCase__ : Tuple = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample UpperCAmelCase__ : Dict = _ffmpeg_stream(a_ , a_ ) for item in iterator: yield item def lowerCAmelCase__ ( a_ : int , a_ : float , a_ : Optional[int] = None , a_ : Optional[Union[Tuple[float, float], float]] = None , a_ : str = "f32le" , ) -> Any: if stream_chunk_s is not None: UpperCAmelCase__ : int = stream_chunk_s else: UpperCAmelCase__ : str = chunk_length_s UpperCAmelCase__ : Any = ffmpeg_microphone(a_ , a_ , format_for_conversion=a_ ) if format_for_conversion == "s16le": UpperCAmelCase__ : Dict = np.intaa UpperCAmelCase__ : List[Any] = 2 elif format_for_conversion == "f32le": UpperCAmelCase__ : Tuple = np.floataa UpperCAmelCase__ : List[str] = 4 else: raise ValueError(f"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: UpperCAmelCase__ : Any = chunk_length_s / 6 UpperCAmelCase__ : Union[str, Any] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(a_ , (int, float) ): UpperCAmelCase__ : int = [stride_length_s, stride_length_s] UpperCAmelCase__ : List[str] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample UpperCAmelCase__ : Dict = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample UpperCAmelCase__ : Optional[int] = datetime.datetime.now() UpperCAmelCase__ : Dict = datetime.timedelta(seconds=a_ ) for item in chunk_bytes_iter(a_ , a_ , stride=(stride_left, stride_right) , stream=a_ ): # Put everything back in numpy scale UpperCAmelCase__ : str = np.frombuffer(item['''raw'''] , dtype=a_ ) UpperCAmelCase__ : Any = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) UpperCAmelCase__ : List[Any] = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 1_0 * delta: # We're late !! SKIP continue yield item def lowerCAmelCase__ ( a_ : str , a_ : int , a_ : Tuple[int, int] , a_ : bool = False ) -> Any: UpperCAmelCase__ : Union[str, Any] = B'''''' UpperCAmelCase__ , UpperCAmelCase__ : int = stride if stride_left + stride_right >= chunk_len: raise ValueError( f"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) UpperCAmelCase__ : List[Any] = 0 for raw in iterator: acc += raw if stream and len(a_ ) < chunk_len: UpperCAmelCase__ : str = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(a_ ) >= chunk_len: # We are flushing the accumulator UpperCAmelCase__ : Union[str, Any] = (_stride_left, stride_right) UpperCAmelCase__ : int = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: UpperCAmelCase__ : List[Any] = False yield item UpperCAmelCase__ : Optional[int] = stride_left UpperCAmelCase__ : Dict = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(a_ ) > stride_left: UpperCAmelCase__ : List[str] = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: UpperCAmelCase__ : Optional[Any] = False yield item def lowerCAmelCase__ ( a_ : str , a_ : int ) -> Any: UpperCAmelCase__ : str = 2**2_4 # 16Mo try: with subprocess.Popen(a_ , stdout=subprocess.PIPE , bufsize=a_ ) as ffmpeg_process: while True: UpperCAmelCase__ : Tuple = ffmpeg_process.stdout.read(a_ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
599
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__:Optional[Any] = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:Optional[Any] = ["""ReformerTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:List[str] = ["""ReformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:int = [ """REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ReformerAttention""", """ReformerForMaskedLM""", """ReformerForQuestionAnswering""", """ReformerForSequenceClassification""", """ReformerLayer""", """ReformerModel""", """ReformerModelWithLMHead""", """ReformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__:int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
528
"""simple docstring""" def _lowerCamelCase( a ): return " ".join( "".join(word[::-1] ) if len(a ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("""Hey wollef sroirraw"""))
528
1
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( lowerCamelCase , unittest.TestCase ): lowercase = RobertaTokenizer lowercase = RobertaTokenizerFast lowercase = True lowercase = {"""cls_token""": """<s>"""} def A__ ( self ) -> Any: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] UpperCamelCase = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] UpperCamelCase = {"""unk_token""": """<unk>"""} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_SCREAMING_SNAKE_CASE ) ) def A__ ( self , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def A__ ( self , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase = """lower newer""" UpperCamelCase = """lower newer""" return input_text, output_text def A__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase = """lower newer""" UpperCamelCase = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] UpperCamelCase = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) # , add_prefix_space=True) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = tokens + [tokenizer.unk_token] UpperCamelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=_SCREAMING_SNAKE_CASE ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=_SCREAMING_SNAKE_CASE ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.tokenizer_class.from_pretrained("""roberta-base""" ) UpperCamelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.encode( """sequence builders""" , add_special_tokens=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def A__ ( self ) -> str: """simple docstring""" UpperCamelCase = self.get_tokenizer() UpperCamelCase = """Encode this sequence.""" UpperCamelCase = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments UpperCamelCase = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) UpperCamelCase = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Testing spaces after special tokens UpperCamelCase = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE )} ) # mask token has a left space UpperCamelCase = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) UpperCamelCase = """Encode <mask> sequence""" UpperCamelCase = """Encode <mask>sequence""" UpperCamelCase = tokenizer.encode(_SCREAMING_SNAKE_CASE ) UpperCamelCase = encoded.index(_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.encode(_SCREAMING_SNAKE_CASE ) UpperCamelCase = encoded.index(_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> int: """simple docstring""" pass def A__ ( self ) -> Union[str, Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCamelCase = self.rust_tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase = """A, <mask> AllenNLP sentence.""" UpperCamelCase = tokenizer_r.encode_plus(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer_p.encode_plus(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) UpperCamelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) UpperCamelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( _SCREAMING_SNAKE_CASE , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( _SCREAMING_SNAKE_CASE , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def A__ ( self ) -> Optional[Any]: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): UpperCamelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , trim_offsets=_SCREAMING_SNAKE_CASE ) UpperCamelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) UpperCamelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , _SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state["""add_prefix_space"""] , _SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state["""trim_offsets"""] , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> str: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCamelCase = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` UpperCamelCase = F"{text_of_1_token} {text_of_1_token}" UpperCamelCase = self.rust_tokenizer_class.from_pretrained( _SCREAMING_SNAKE_CASE , use_fast=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , trim_offsets=_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer_r(_SCREAMING_SNAKE_CASE , return_offsets_mapping=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_SCREAMING_SNAKE_CASE ) + 1, len(_SCREAMING_SNAKE_CASE ) + 1 + len(_SCREAMING_SNAKE_CASE )) , ) UpperCamelCase = self.rust_tokenizer_class.from_pretrained( _SCREAMING_SNAKE_CASE , use_fast=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , trim_offsets=_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer_r(_SCREAMING_SNAKE_CASE , return_offsets_mapping=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_SCREAMING_SNAKE_CASE ) + 1, len(_SCREAMING_SNAKE_CASE ) + 1 + len(_SCREAMING_SNAKE_CASE )) , ) UpperCamelCase = self.rust_tokenizer_class.from_pretrained( _SCREAMING_SNAKE_CASE , use_fast=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , trim_offsets=_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer_r(_SCREAMING_SNAKE_CASE , return_offsets_mapping=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_SCREAMING_SNAKE_CASE ), len(_SCREAMING_SNAKE_CASE ) + 1 + len(_SCREAMING_SNAKE_CASE )) , ) UpperCamelCase = self.rust_tokenizer_class.from_pretrained( _SCREAMING_SNAKE_CASE , use_fast=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , trim_offsets=_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer_r(_SCREAMING_SNAKE_CASE , return_offsets_mapping=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_SCREAMING_SNAKE_CASE ), len(_SCREAMING_SNAKE_CASE ) + 1 + len(_SCREAMING_SNAKE_CASE )) , ) UpperCamelCase = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) UpperCamelCase = self.rust_tokenizer_class.from_pretrained( _SCREAMING_SNAKE_CASE , use_fast=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , trim_offsets=_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer_r(_SCREAMING_SNAKE_CASE , return_offsets_mapping=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_SCREAMING_SNAKE_CASE ) + 1, 1 + len(_SCREAMING_SNAKE_CASE ) + 1 + len(_SCREAMING_SNAKE_CASE )) , ) UpperCamelCase = self.rust_tokenizer_class.from_pretrained( _SCREAMING_SNAKE_CASE , use_fast=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , trim_offsets=_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer_r(_SCREAMING_SNAKE_CASE , return_offsets_mapping=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_SCREAMING_SNAKE_CASE ), 1 + len(_SCREAMING_SNAKE_CASE ) + 1 + len(_SCREAMING_SNAKE_CASE )) , ) UpperCamelCase = self.rust_tokenizer_class.from_pretrained( _SCREAMING_SNAKE_CASE , use_fast=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , trim_offsets=_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer_r(_SCREAMING_SNAKE_CASE , return_offsets_mapping=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_SCREAMING_SNAKE_CASE ), 1 + len(_SCREAMING_SNAKE_CASE ) + 1 + len(_SCREAMING_SNAKE_CASE )) , )
712
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def lowercase__ ( __UpperCamelCase )-> str: return EnvironmentCommand() def lowercase__ ( __UpperCamelCase )-> str: return EnvironmentCommand(args.accelerate_config_file ) class a_ ( lowerCamelCase ): @staticmethod def A__ ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" UpperCamelCase = parser.add_parser("""env""" ) download_parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) download_parser.add_argument( """--accelerate-config_file""" , default=_SCREAMING_SNAKE_CASE , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) def __init__( self , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" UpperCamelCase = accelerate_config_file def A__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = """not installed""" if is_safetensors_available(): import safetensors UpperCamelCase = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors UpperCamelCase = F"{safetensors.__version__} but is ignored because of PyTorch version too old." UpperCamelCase = """not installed""" UpperCamelCase = UpperCamelCase = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file UpperCamelCase = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(_SCREAMING_SNAKE_CASE ): UpperCamelCase = load_config_from_file(self._accelerate_config_file ).to_dict() UpperCamelCase = ( """\n""".join([F"\t- {prop}: {val}" for prop, val in accelerate_config.items()] ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else F"\t{accelerate_config}" ) UpperCamelCase = """not installed""" UpperCamelCase = """NA""" if is_torch_available(): import torch UpperCamelCase = torch.__version__ UpperCamelCase = torch.cuda.is_available() UpperCamelCase = """not installed""" UpperCamelCase = """NA""" if is_tf_available(): import tensorflow as tf UpperCamelCase = tf.__version__ try: # deprecated in v2.1 UpperCamelCase = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool UpperCamelCase = bool(tf.config.list_physical_devices("""GPU""" ) ) UpperCamelCase = """not installed""" UpperCamelCase = """not installed""" UpperCamelCase = """not installed""" UpperCamelCase = """NA""" if is_flax_available(): import flax import jax import jaxlib UpperCamelCase = flax.__version__ UpperCamelCase = jax.__version__ UpperCamelCase = jaxlib.__version__ UpperCamelCase = jax.lib.xla_bridge.get_backend().platform UpperCamelCase = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": F"{safetensors_version}", """Accelerate version""": F"{accelerate_version}", """Accelerate config""": F"{accelerate_config_str}", """PyTorch version (GPU?)""": F"{pt_version} ({pt_cuda_available})", """Tensorflow version (GPU?)""": F"{tf_version} ({tf_cuda_available})", """Flax version (CPU?/GPU?/TPU?)""": F"{flax_version} ({jax_backend})", """Jax version""": F"{jax_version}", """JaxLib version""": F"{jaxlib_version}", """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(_SCREAMING_SNAKE_CASE ) ) return info @staticmethod def A__ ( _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return "\n".join([F"- {prop}: {val}" for prop, val in d.items()] ) + "\n"
35
0
"""simple docstring""" def a__ ( __SCREAMING_SNAKE_CASE ) -> bool: __lowerCAmelCase: int = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
346
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase :List[Any] = logging.get_logger(__name__) _lowerCAmelCase :Tuple = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case__ : List[Any] = "fnet" def __init__( self , lowercase__=32_000 , lowercase__=768 , lowercase__=12 , lowercase__=3_072 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=512 , lowercase__=4 , lowercase__=0.0_2 , lowercase__=1E-12 , lowercase__=False , lowercase__=512 , lowercase__=3 , lowercase__=1 , lowercase__=2 , **lowercase__ , ) -> Optional[int]: super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__ ) SCREAMING_SNAKE_CASE : Tuple = vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : Dict = intermediate_size SCREAMING_SNAKE_CASE : int = hidden_act SCREAMING_SNAKE_CASE : int = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = initializer_range SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size SCREAMING_SNAKE_CASE : Dict = layer_norm_eps SCREAMING_SNAKE_CASE : Dict = use_tpu_fourier_optimizations SCREAMING_SNAKE_CASE : str = tpu_short_seq_length
251
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __A : Tuple = logging.get_logger(__name__) __A : List[Any] = torch.device("cpu") def lowercase ( ): '''simple docstring''' _UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCAmelCase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.17_03E00, 2.11_07E00, -2.08_11E00, 8.86_85E-01, 2.43_60E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.96_36E-01, 2.34_78E-01, -1.69_63E00, -1.73_81E00, -8.63_37E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.27_68E-01, -4.74_29E-01, -1.08_97E00, -1.02_48E00, 3.55_23E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.53_30E-01, 2.42_11E-01, -6.01_85E-01, -8.27_89E-01, -6.04_46E-02] ) def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase = dct.pop(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = val def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase = [] for k in state_dict.keys(): _UpperCAmelCase = k if ".pwconv" in k: _UpperCAmelCase = k_new.replace('''.pwconv''' , '''.point_wise_conv''' ) if ".dwconv" in k: _UpperCAmelCase = k_new.replace('''.dwconv''' , '''.depth_wise_conv''' ) if ".Proj." in k: _UpperCAmelCase = k_new.replace('''.Proj.''' , '''.proj.''' ) if "patch_embed" in k_new: _UpperCAmelCase = k_new.replace('''patch_embed''' , '''swiftformer.patch_embed.patch_embedding''' ) if "network" in k_new: _UpperCAmelCase = k_new.split('''.''' ) if ls[2].isdigit(): _UpperCAmelCase = '''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] ) else: _UpperCAmelCase = k_new.replace('''network''' , '''swiftformer.encoder.network''' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size _UpperCAmelCase = 1000 _UpperCAmelCase = '''huggingface/label-files''' _UpperCAmelCase = '''imagenet-1k-id2label.json''' _UpperCAmelCase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) _UpperCAmelCase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": _UpperCAmelCase = [3, 3, 6, 4] _UpperCAmelCase = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": _UpperCAmelCase = [3, 3, 9, 6] _UpperCAmelCase = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": _UpperCAmelCase = [4, 3, 10, 5] _UpperCAmelCase = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": _UpperCAmelCase = [4, 4, 12, 6] _UpperCAmelCase = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('''https''' ): _UpperCAmelCase = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location='''cpu''' , check_hash=_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' ) _UpperCAmelCase = checkpoint _UpperCAmelCase = create_rename_keys(_SCREAMING_SNAKE_CASE ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # load HuggingFace model _UpperCAmelCase = SwiftFormerForImageClassification(_SCREAMING_SNAKE_CASE ).eval() hf_model.load_state_dict(_SCREAMING_SNAKE_CASE ) # prepare test inputs _UpperCAmelCase = prepare_img() _UpperCAmelCase = ViTImageProcessor.from_pretrained('''preprocessor_config''' ) _UpperCAmelCase = processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) # compare outputs from both models _UpperCAmelCase = get_expected_output(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = hf_model(inputs['''pixel_values'''] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , _SCREAMING_SNAKE_CASE , atol=1E-3 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(f'Saving model {swiftformer_name} to {pytorch_dump_folder_path}' ) hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") __A : Optional[Any] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
95
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : Tuple )->int: _UpperCAmelCase = inspect.getfile(accelerate.test_utils ) _UpperCAmelCase = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 _UpperCAmelCase = test_metrics @require_cpu def lowercase__ ( self : Any )->int: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def lowercase__ ( self : List[str] )->List[str]: debug_launcher(self.test_metrics.main ) @require_single_gpu def lowercase__ ( self : List[Any] )->Dict: self.test_metrics.main() @require_multi_gpu def lowercase__ ( self : str )->int: print(F'Found {torch.cuda.device_count()} devices.' ) _UpperCAmelCase = ['''torchrun''', F'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__UpperCamelCase , env=os.environ.copy() )
95
1
'''simple docstring''' def UpperCamelCase ( a ) -> List[Any]: '''simple docstring''' __magic_name__ = [0] * len(a ) __magic_name__ = [] __magic_name__ = [] __magic_name__ = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(a ) ): if indegree[i] == 0: queue.append(a ) while queue: __magic_name__ = queue.pop(0 ) cnt += 1 topo.append(a ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(a ) if cnt != len(a ): print('''Cycle exists''' ) else: print(a ) # Adjacency List of Graph _lowerCAmelCase = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
432
'''simple docstring''' import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 _lowerCAmelCase = 0B10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 _lowerCAmelCase = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class _SCREAMING_SNAKE_CASE : def __init__( self : List[Any] ): __magic_name__ = WATERMARK_BITS __magic_name__ = WatermarkEncoder() self.encoder.set_watermark('''bits''' , self.watermark ) def snake_case__ ( self : Optional[Any] , a__ : torch.FloatTensor ): # can't encode images that are smaller than 256 if images.shape[-1] < 256: return images __magic_name__ = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __magic_name__ = [self.encoder.encode(a__ , '''dwtDct''' ) for image in images] __magic_name__ = torch.from_numpy(np.array(a__ ) ).permute(0 , 3 , 1 , 2 ) __magic_name__ = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
432
1
'''simple docstring''' import numpy as np class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = (0, 0) UpperCamelCase__ = None UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = 0 def __eq__( self : Any , lowercase : Optional[Any] ) -> Any: '''simple docstring''' return self.position == cell.position def A ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' print(self.position ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Union[str, Any] , lowercase : List[str]=(5, 5) ) -> int: '''simple docstring''' UpperCamelCase__ = np.zeros(lowercase ) UpperCamelCase__ = world_size[0] UpperCamelCase__ = world_size[1] def A ( self : Dict ) -> Union[str, Any]: '''simple docstring''' print(self.w ) def A ( self : Optional[Any] , lowercase : List[Any] ) -> Dict: '''simple docstring''' UpperCamelCase__ = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCamelCase__ = cell.position[0] UpperCamelCase__ = cell.position[1] UpperCamelCase__ = [] for n in neughbour_cord: UpperCamelCase__ = current_x + n[0] UpperCamelCase__ = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCamelCase__ = Cell() UpperCamelCase__ = (x, y) UpperCamelCase__ = cell neighbours.append(lowercase ) return neighbours def __magic_name__( _A , _A , _A ): '''simple docstring''' UpperCamelCase__ = [] UpperCamelCase__ = [] _open.append(_A ) while _open: UpperCamelCase__ = np.argmin([n.f for n in _open] ) UpperCamelCase__ = _open[min_f] _closed.append(_open.pop(_A ) ) if current == goal: break for n in world.get_neigbours(_A ): for c in _closed: if c == n: continue UpperCamelCase__ = current.g + 1 UpperCamelCase__ , UpperCamelCase__ = n.position UpperCamelCase__ , UpperCamelCase__ = goal.position UpperCamelCase__ = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCamelCase__ = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_A ) UpperCamelCase__ = [] while current.parent is not None: path.append(current.position ) UpperCamelCase__ = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": lowerCamelCase_ : Union[str, Any] = Gridworld() # Start position and goal lowerCamelCase_ : Dict = Cell() lowerCamelCase_ : Union[str, Any] = (0, 0) lowerCamelCase_ : Optional[int] = Cell() lowerCamelCase_ : Any = (4, 4) print(f"""path from {start.position} to {goal.position}""") lowerCamelCase_ : Optional[Any] = astar(world, start, goal) # Just for visual reasons. for i in s: lowerCamelCase_ : Any = 1 print(world.w)
265
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar lowerCamelCase_ : List[str] = TypeVar('''T''') lowerCamelCase_ : Optional[int] = TypeVar('''U''') class _SCREAMING_SNAKE_CASE ( Generic[T, U] ): '''simple docstring''' def __init__( self : Dict , lowercase : T | None , lowercase : U | None ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = key UpperCamelCase__ = val UpperCamelCase__ = None UpperCamelCase__ = None def __repr__( self : List[Any] ) -> str: '''simple docstring''' return ( f"Node: key: {self.key}, val: {self.val}, " f"has next: {bool(self.next )}, has prev: {bool(self.prev )}" ) class _SCREAMING_SNAKE_CASE ( Generic[T, U] ): '''simple docstring''' def __init__( self : Union[str, Any] ) -> None: '''simple docstring''' UpperCamelCase__ = DoubleLinkedListNode(lowercase , lowercase ) UpperCamelCase__ = DoubleLinkedListNode(lowercase , lowercase ) UpperCamelCase__ , UpperCamelCase__ = self.rear, self.head def __repr__( self : int ) -> str: '''simple docstring''' UpperCamelCase__ = ["""DoubleLinkedList"""] UpperCamelCase__ = self.head while node.next is not None: rep.append(str(lowercase ) ) UpperCamelCase__ = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowercase ) def A ( self : str , lowercase : DoubleLinkedListNode[T, U] ) -> None: '''simple docstring''' UpperCamelCase__ = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None UpperCamelCase__ = node UpperCamelCase__ = previous UpperCamelCase__ = node UpperCamelCase__ = self.rear def A ( self : Any , lowercase : DoubleLinkedListNode[T, U] ) -> DoubleLinkedListNode[T, U] | None: '''simple docstring''' if node.prev is None or node.next is None: return None UpperCamelCase__ = node.next UpperCamelCase__ = node.prev UpperCamelCase__ = None UpperCamelCase__ = None return node class _SCREAMING_SNAKE_CASE ( Generic[T, U] ): '''simple docstring''' __a : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self : int , lowercase : int ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = DoubleLinkedList() UpperCamelCase__ = capacity UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = {} def __repr__( self : Any ) -> str: '''simple docstring''' return ( f"CacheInfo(hits={self.hits}, misses={self.miss}, " f"capacity={self.capacity}, current size={self.num_keys})" ) def __contains__( self : Any , lowercase : T ) -> bool: '''simple docstring''' return key in self.cache def A ( self : Tuple , lowercase : T ) -> U | None: '''simple docstring''' if key in self.cache: self.hits += 1 UpperCamelCase__ = self.cache[key] UpperCamelCase__ = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowercase ) return node.val self.miss += 1 return None def A ( self : Dict , lowercase : T , lowercase : U ) -> None: '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity UpperCamelCase__ = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowercase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 UpperCamelCase__ = DoubleLinkedListNode(lowercase , lowercase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value UpperCamelCase__ = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list UpperCamelCase__ = value self.list.add(lowercase ) @classmethod def A ( cls : Optional[int] , lowercase : int = 1_2_8 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: '''simple docstring''' def cache_decorator_inner(lowercase : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*lowercase : T ) -> U: if func not in cls.decorator_function_to_instance_map: UpperCamelCase__ = LRUCache(lowercase ) UpperCamelCase__ = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: UpperCamelCase__ = func(*lowercase ) cls.decorator_function_to_instance_map[func].put(args[0] , lowercase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowercase , """cache_info""" , lowercase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
265
1