code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from __future__ import annotations import math def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if num <= 0: _snake_case = f"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(_SCREAMING_SNAKE_CASE ) _snake_case = [True] * (num + 1) _snake_case = [] _snake_case = 2 _snake_case = int(math.sqrt(_SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , _SCREAMING_SNAKE_CASE ): if sieve[i] is True: _snake_case = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(_SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
585
'''simple docstring''' class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase ) -> Any: _snake_case = name _snake_case = val def __str__(self ) -> List[str]: return f"""{self.__class__.__name__}({self.name}, {self.val})""" def __lt__(self , UpperCAmelCase ) -> Any: return self.val < other.val class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase ) -> Dict: _snake_case = {} _snake_case = {} _snake_case = self.build_heap(UpperCAmelCase ) def __getitem__(self , UpperCAmelCase ) -> Union[str, Any]: return self.get_value(UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> Dict: return (idx - 1) // 2 def lowercase (self , UpperCAmelCase ) -> Optional[Any]: return idx * 2 + 1 def lowercase (self , UpperCAmelCase ) -> Optional[int]: return idx * 2 + 2 def lowercase (self , UpperCAmelCase ) -> Union[str, Any]: return self.heap_dict[key] def lowercase (self , UpperCAmelCase ) -> str: _snake_case = len(UpperCAmelCase ) - 1 _snake_case = self.get_parent_idx(UpperCAmelCase ) for idx, i in enumerate(UpperCAmelCase ): _snake_case = idx _snake_case = i.val for i in range(UpperCAmelCase , -1 , -1 ): self.sift_down(UpperCAmelCase , UpperCAmelCase ) return array def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> int: while True: _snake_case = self.get_left_child_idx(UpperCAmelCase ) # noqa: E741 _snake_case = self.get_right_child_idx(UpperCAmelCase ) _snake_case = idx if l < len(UpperCAmelCase ) and array[l] < array[idx]: _snake_case = l if r < len(UpperCAmelCase ) and array[r] < array[smallest]: _snake_case = r if smallest != idx: _snake_case, _snake_case = array[smallest], array[idx] ( ( _snake_case ), ( _snake_case ), ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) _snake_case = smallest else: break def lowercase (self , UpperCAmelCase ) -> str: _snake_case = self.get_parent_idx(UpperCAmelCase ) while p >= 0 and self.heap[p] > self.heap[idx]: _snake_case, _snake_case = self.heap[idx], self.heap[p] _snake_case, _snake_case = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) _snake_case = p _snake_case = self.get_parent_idx(UpperCAmelCase ) def lowercase (self ) -> Optional[int]: return self.heap[0] def lowercase (self ) -> List[Any]: _snake_case, _snake_case = self.heap[-1], self.heap[0] _snake_case, _snake_case = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) _snake_case = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def lowercase (self , UpperCAmelCase ) -> List[str]: self.heap.append(UpperCAmelCase ) _snake_case = len(self.heap ) - 1 _snake_case = node.val self.sift_up(len(self.heap ) - 1 ) def lowercase (self ) -> int: return len(self.heap ) == 0 def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" _snake_case = new_value _snake_case = new_value self.sift_up(self.idx_of_element[node] ) __lowerCAmelCase = Node('R', -1) __lowerCAmelCase = Node('B', 6) __lowerCAmelCase = Node('A', 3) __lowerCAmelCase = Node('X', 1) __lowerCAmelCase = Node('E', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array __lowerCAmelCase = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('Min Heap - before decrease key') for i in my_min_heap.heap: print(i) print('Min Heap - After decrease key of node [B -> -17]') my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
585
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'facebook/convnextv2-tiny-1k-224': 'https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json', } class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase): UpperCAmelCase__ : str = 'convnextv2' def __init__( self: Optional[Any] , UpperCamelCase_: int=3 , UpperCamelCase_: Dict=4 , UpperCamelCase_: int=4 , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: Optional[Any]=None , UpperCamelCase_: Optional[int]="gelu" , UpperCamelCase_: Union[str, Any]=0.02 , UpperCamelCase_: Any=1E-12 , UpperCamelCase_: List[str]=0.0 , UpperCamelCase_: Optional[int]=2_24 , UpperCamelCase_: List[str]=None , UpperCamelCase_: Any=None , **UpperCamelCase_: int , ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = num_channels __lowerCamelCase = patch_size __lowerCamelCase = num_stages __lowerCamelCase = [96, 1_92, 3_84, 7_68] if hidden_sizes is None else hidden_sizes __lowerCamelCase = [3, 3, 9, 3] if depths is None else depths __lowerCamelCase = hidden_act __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = drop_path_rate __lowerCamelCase = image_size __lowerCamelCase = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(self.depths ) + 1 )] __lowerCamelCase, __lowerCamelCase = get_aligned_output_features_output_indices( out_features=UpperCamelCase_ , out_indices=UpperCamelCase_ , stage_names=self.stage_names )
712
from __future__ import annotations from math import ceil, floor, sqrt def lowerCamelCase__ ( A__ : int = 2000000 ): '''simple docstring''' __lowerCamelCase = [0] __lowerCamelCase = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target __lowerCamelCase = 0 # the area corresponding to the grid that gives the product closest to target __lowerCamelCase = 0 # an estimate of b, using the quadratic formula __lowerCamelCase = 42 # the largest integer less than b_estimate __lowerCamelCase = 42 # the largest integer less than b_estimate __lowerCamelCase = 42 # the triangle number corresponding to b_floor __lowerCamelCase = 42 # the triangle number corresponding to b_ceil __lowerCamelCase = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): __lowerCamelCase = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 __lowerCamelCase = floor(A__ ) __lowerCamelCase = ceil(A__ ) __lowerCamelCase = triangle_numbers[b_floor] __lowerCamelCase = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): __lowerCamelCase = triangle_b_first_guess * triangle_a __lowerCamelCase = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): __lowerCamelCase = triangle_b_second_guess * triangle_a __lowerCamelCase = idx_a * b_ceil return area if __name__ == "__main__": print(f"""{solution() = }""")
80
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available __A : Any = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys __A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = filter(lambda _SCREAMING_SNAKE_CASE : p.requires_grad , model.parameters() ) _A = sum([np.prod(p.size() ) for p in model_parameters] ) return params __A : Union[str, Any] = logging.getLogger(__name__) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if metric == "rouge2": _A = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _A = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _A = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _A = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _A = ModelCheckpoint( dirpath=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , ) class lowerCamelCase( pl.Callback ): '''simple docstring''' def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): _A = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=True ): logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****" ) _A = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results _A = Path(pl_module.hparams.output_dir ) if type_path == "test": _A = od / 'test_results.txt' _A = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _A = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _A = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=snake_case_ ) generations_file.parent.mkdir(exist_ok=snake_case_ ) with open(snake_case_ , 'a+' ) as writer: for key in sorted(snake_case_ ): if key in ["log", "progress_bar", "preds"]: continue _A = metrics[key] if isinstance(snake_case_ , torch.Tensor ): _A = val.item() _A = F"{key}: {val:.6f}\n" writer.write(snake_case_ ) if not save_generations: return if "preds" in metrics: _A = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): try: _A = pl_module.model.model.num_parameters() except AttributeError: _A = pl_module.model.num_parameters() _A = count_trainable_parameters(snake_case_ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(snake_case_ , snake_case_ , 'test' ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
27
1
from queue import PriorityQueue from typing import Any import numpy as np def A ( _UpperCAmelCase : dict , _UpperCAmelCase : str , _UpperCAmelCase : set , _UpperCAmelCase : set , _UpperCAmelCase : dict , _UpperCAmelCase : dict , _UpperCAmelCase : PriorityQueue , _UpperCAmelCase : dict , _UpperCAmelCase : float | int , ) -> float | int: '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue _UpperCAmelCase = cst_fwd.get(_UpperCAmelCase , np.inf ) _UpperCAmelCase = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) _UpperCAmelCase = new_cost_f _UpperCAmelCase = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: _UpperCAmelCase = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def A ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : dict , _UpperCAmelCase : dict ) -> int: '''simple docstring''' _UpperCAmelCase = -1 _UpperCAmelCase = set() _UpperCAmelCase = set() _UpperCAmelCase = {source: 0} _UpperCAmelCase = {destination: 0} _UpperCAmelCase = {source: None} _UpperCAmelCase = {destination: None} _UpperCAmelCase = PriorityQueue() _UpperCAmelCase = PriorityQueue() _UpperCAmelCase = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): _UpperCAmelCase , _UpperCAmelCase = queue_forward.get() visited_forward.add(_UpperCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = queue_backward.get() visited_backward.add(_UpperCAmelCase ) _UpperCAmelCase = pass_and_relaxation( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) _UpperCAmelCase = pass_and_relaxation( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: _UpperCAmelCase = shortest_distance return shortest_path_distance UpperCAmelCase__ = { "B": [["C", 1]], "C": [["D", 1]], "D": [["F", 1]], "E": [["B", 1], ["G", 2]], "F": [], "G": [["F", 1]], } UpperCAmelCase__ = { "B": [["E", 1]], "C": [["B", 1]], "D": [["C", 1]], "F": [["D", 1], ["G", 1]], "E": [[None, np.inf]], "G": [["E", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
639
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(A )} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def _lowerCamelCase ( self : Any) -> Dict: """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path') @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field(default=A , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" if self.train_file is not None: _UpperCAmelCase = self.train_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: _UpperCAmelCase = self.validation_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def A ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as f: _UpperCAmelCase = [json.loads(_UpperCAmelCase ) for line in f.read().splitlines() if (len(_UpperCAmelCase ) > 0 and not line.isspace())] assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = {c: dataset[c] for c in dataset.column_names} _UpperCAmelCase = refs return Dataset.from_dict(_UpperCAmelCase ) def A ( ) -> Optional[Any]: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _UpperCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _UpperCAmelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[:{data_args.validation_split_percentage}%]" , ) _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[{data_args.validation_split_percentage}%:]" , ) else: _UpperCAmelCase = {} if data_args.train_file is not None: _UpperCAmelCase = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase = data_args.validation_file _UpperCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": _UpperCAmelCase = 'text' _UpperCAmelCase = load_dataset(_UpperCAmelCase , data_files=_UpperCAmelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.config_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: _UpperCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: _UpperCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _UpperCAmelCase = AutoModelForMaskedLM.from_config(_UpperCAmelCase ) model.resize_token_embeddings(len(_UpperCAmelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: _UpperCAmelCase = datasets['train'].column_names else: _UpperCAmelCase = datasets['validation'].column_names _UpperCAmelCase = 'text' if 'text' in column_names else column_names[0] _UpperCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(_UpperCAmelCase : str ): # Remove empty lines _UpperCAmelCase = [line for line in examples['text'] if len(_UpperCAmelCase ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=data_args.max_seq_length ) _UpperCAmelCase = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: _UpperCAmelCase = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: _UpperCAmelCase = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer _UpperCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: _UpperCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. _UpperCAmelCase = DataCollatorForWholeWordMask(tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCAmelCase = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): _UpperCAmelCase = model_args.model_name_or_path else: _UpperCAmelCase = None _UpperCAmelCase = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation _UpperCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCAmelCase = trainer.evaluate() _UpperCAmelCase = math.exp(eval_output['eval_loss'] ) _UpperCAmelCase = perplexity _UpperCAmelCase = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) return results def A ( _UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
639
1
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) _lowerCamelCase : Optional[int] = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def __lowerCamelCase ( A__ ) -> Any: """simple docstring""" UpperCamelCase = {} state_dict.pop('pixel_mean' , A__ ) state_dict.pop('pixel_std' , A__ ) UpperCamelCase = R'.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCamelCase = key.replace(A__ , A__ ) if re.match(A__ , A__ ): UpperCamelCase = int(re.match(A__ , A__ ).group(2 ) ) if layer_nb == 0: UpperCamelCase = key.replace('layers.0' , 'proj_in' ) elif layer_nb == 1: UpperCamelCase = key.replace('layers.1' , 'layers.0' ) elif layer_nb == 2: UpperCamelCase = key.replace('layers.2' , 'proj_out' ) UpperCamelCase = value UpperCamelCase = model_state_dict[ 'prompt_encoder.shared_embedding.positional_embedding' ] return model_state_dict def __lowerCamelCase ( A__ , A__ , A__ , A__="ybelkada/segment-anything" ) -> List[str]: """simple docstring""" UpperCamelCase = hf_hub_download(A__ , F"""checkpoints/{model_name}.pth""" ) if "sam_vit_b" in model_name: UpperCamelCase = SamConfig() elif "sam_vit_l" in model_name: UpperCamelCase = SamVisionConfig( hidden_size=1_024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) UpperCamelCase = SamConfig( vision_config=A__ , ) elif "sam_vit_h" in model_name: UpperCamelCase = SamVisionConfig( hidden_size=1_280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) UpperCamelCase = SamConfig( vision_config=A__ , ) UpperCamelCase = torch.load(A__ , map_location='cpu' ) UpperCamelCase = replace_keys(A__ ) UpperCamelCase = SamImageProcessor() UpperCamelCase = SamProcessor(image_processor=A__ ) UpperCamelCase = SamModel(A__ ) hf_model.load_state_dict(A__ ) UpperCamelCase = hf_model.to('cuda' ) UpperCamelCase = 'https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png' UpperCamelCase = Image.open(requests.get(A__ , stream=A__ ).raw ).convert('RGB' ) UpperCamelCase = [[[400, 650]]] UpperCamelCase = [[1]] UpperCamelCase = processor(images=np.array(A__ ) , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): UpperCamelCase = hf_model(**A__ ) UpperCamelCase = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_890_251_159_668 UpperCamelCase = processor( images=np.array(A__ ) , input_points=A__ , input_labels=A__ , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): UpperCamelCase = hf_model(**A__ ) UpperCamelCase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_712_603_092_193_604 UpperCamelCase = ((75, 275, 1_725, 850),) UpperCamelCase = processor(images=np.array(A__ ) , input_boxes=A__ , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): UpperCamelCase = hf_model(**A__ ) UpperCamelCase = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_686_015_605_926_514 # Test with 2 points and 1 image. UpperCamelCase = [[[400, 650], [800, 650]]] UpperCamelCase = [[1, 1]] UpperCamelCase = processor( images=np.array(A__ ) , input_points=A__ , input_labels=A__ , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): UpperCamelCase = hf_model(**A__ ) UpperCamelCase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_936_047_792_434_692 if __name__ == "__main__": _lowerCamelCase : int = argparse.ArgumentParser() _lowerCamelCase : Dict = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( "--model_name", default="sam_vit_h_4b8939", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) parser.add_argument( "--model_hub_id", default="ybelkada/segment-anything", choices=choices, type=str, help="Path to hf config.json of model to convert", ) _lowerCamelCase : Union[str, Any] = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
430
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def A ( self : Dict ): """simple docstring""" UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = BlipImageProcessor() UpperCamelCase = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) UpperCamelCase = BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert' ) UpperCamelCase = InstructBlipProcessor(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) processor.save_pretrained(self.tmpdirname ) def A ( self : Tuple , **UpperCamelCase__ : str ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).tokenizer def A ( self : Any , **UpperCamelCase__ : Tuple ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).image_processor def A ( self : List[Any] , **UpperCamelCase__ : Optional[Any] ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).qformer_tokenizer def A ( self : Any ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] UpperCamelCase = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def A ( self : Any ): """simple docstring""" UpperCamelCase = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) UpperCamelCase = self.get_image_processor(do_normalize=UpperCamelCase__ , padding_value=1.0 ) UpperCamelCase = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) self.assertIsInstance(processor.qformer_tokenizer , UpperCamelCase__ ) def A ( self : Tuple ): """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_qformer_tokenizer() UpperCamelCase = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = image_processor(UpperCamelCase__ , return_tensors='np' ) UpperCamelCase = processor(images=UpperCamelCase__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_qformer_tokenizer() UpperCamelCase = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) UpperCamelCase = 'lower newer' UpperCamelCase = processor(text=UpperCamelCase__ ) UpperCamelCase = tokenizer(UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) UpperCamelCase = qformer_tokenizer(UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['qformer_' + key] ) def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_qformer_tokenizer() UpperCamelCase = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) UpperCamelCase = 'lower newer' UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_qformer_tokenizer() UpperCamelCase = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) UpperCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase = processor.batch_decode(UpperCamelCase__ ) UpperCamelCase = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_qformer_tokenizer() UpperCamelCase = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) UpperCamelCase = 'lower newer' UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , )
430
1
'''simple docstring''' import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def SCREAMING_SNAKE_CASE ( lowerCAmelCase ): _UpperCamelCase = model.config _UpperCamelCase = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) _UpperCamelCase = MBartConfig( is_decoder=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , add_cross_attention=lowerCAmelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=lowerCAmelCase , add_final_layer_norm=lowerCAmelCase , ) return encoder_config, decoder_config def SCREAMING_SNAKE_CASE ( lowerCAmelCase ): if "encoder.model" in name: _UpperCamelCase = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: _UpperCamelCase = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: _UpperCamelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _UpperCamelCase = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: _UpperCamelCase = '''encoder.''' + name if "attn.proj" in name: _UpperCamelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: _UpperCamelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _UpperCamelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _UpperCamelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _UpperCamelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _UpperCamelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": _UpperCamelCase = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": _UpperCamelCase = '''encoder.layernorm.bias''' return name def SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase ): for key in orig_state_dict.copy().keys(): _UpperCamelCase = orig_state_dict.pop(lowerCAmelCase ) if "qkv" in key: _UpperCamelCase = key.split('''.''' ) _UpperCamelCase = int(key_split[3] ) _UpperCamelCase = int(key_split[5] ) _UpperCamelCase = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _UpperCamelCase = val[:dim, :] _UpperCamelCase = val[dim : dim * 2, :] _UpperCamelCase = val[-dim:, :] else: _UpperCamelCase = val[:dim] _UpperCamelCase = val[dim : dim * 2] _UpperCamelCase = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: _UpperCamelCase = val return orig_state_dict def SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase=False ): # load original model _UpperCamelCase = DonutModel.from_pretrained(lowerCAmelCase ).eval() # load HuggingFace model _UpperCamelCase , _UpperCamelCase = get_configs(lowerCAmelCase ) _UpperCamelCase = DonutSwinModel(lowerCAmelCase ) _UpperCamelCase = MBartForCausalLM(lowerCAmelCase ) _UpperCamelCase = VisionEncoderDecoderModel(encoder=lowerCAmelCase , decoder=lowerCAmelCase ) model.eval() _UpperCamelCase = original_model.state_dict() _UpperCamelCase = convert_state_dict(lowerCAmelCase , lowerCAmelCase ) model.load_state_dict(lowerCAmelCase ) # verify results on scanned document _UpperCamelCase = load_dataset('''hf-internal-testing/example-documents''' ) _UpperCamelCase = dataset['''test'''][0]['''image'''].convert('''RGB''' ) _UpperCamelCase = XLMRobertaTokenizerFast.from_pretrained(lowerCAmelCase , from_slow=lowerCAmelCase ) _UpperCamelCase = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) _UpperCamelCase = DonutProcessor(lowerCAmelCase , lowerCAmelCase ) _UpperCamelCase = processor(lowerCAmelCase , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": _UpperCamelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _UpperCamelCase = '''When is the coffee break?''' _UpperCamelCase = task_prompt.replace('''{user_input}''' , lowerCAmelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": _UpperCamelCase = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: _UpperCamelCase = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": _UpperCamelCase = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": _UpperCamelCase = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt _UpperCamelCase = '''hello world''' else: raise ValueError('''Model name not supported''' ) _UpperCamelCase = original_model.decoder.tokenizer(lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors='''pt''' )[ '''input_ids''' ] _UpperCamelCase = original_model.encoder.model.patch_embed(lowerCAmelCase ) _UpperCamelCase , _UpperCamelCase = model.encoder.embeddings(lowerCAmelCase ) assert torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-3 ) # verify encoder hidden states _UpperCamelCase = original_model.encoder(lowerCAmelCase ) _UpperCamelCase = model.encoder(lowerCAmelCase ).last_hidden_state assert torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-2 ) # verify decoder hidden states _UpperCamelCase = original_model(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).logits _UpperCamelCase = model(lowerCAmelCase , decoder_input_ids=lowerCAmelCase ).logits assert torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase ) processor.save_pretrained(lowerCAmelCase ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": lowercase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""naver-clova-ix/donut-base-finetuned-docvqa""", required=False, type=str, help="""Name of the original model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, required=False, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub.""", ) lowercase : int = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
704
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowercase : Optional[Any] = logging.getLogger(__name__) class __A( __UpperCAmelCase ): def __init__( self, A=-1 ): """simple docstring""" _UpperCamelCase = label_idx def _UpperCamelCase ( self, A, A ): """simple docstring""" if isinstance(A, A ): _UpperCamelCase = mode.value _UpperCamelCase = os.path.join(A, F'''{mode}.txt''' ) _UpperCamelCase = 1 _UpperCamelCase = [] with open(A, encoding='''utf-8''' ) as f: _UpperCamelCase = [] _UpperCamelCase = [] for line in f: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F'''{mode}-{guid_index}''', words=A, labels=A ) ) guid_index += 1 _UpperCamelCase = [] _UpperCamelCase = [] else: _UpperCamelCase = line.split(''' ''' ) words.append(splits[0] ) if len(A ) > 1: labels.append(splits[self.label_idx].replace('''\n''', '''''' ) ) else: # Examples could have no label for mode = "test" labels.append('''O''' ) if words: examples.append(InputExample(guid=F'''{mode}-{guid_index}''', words=A, labels=A ) ) return examples def _UpperCamelCase ( self, A, A, A ): """simple docstring""" _UpperCamelCase = 0 for line in test_input_reader: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": writer.write(A ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _UpperCamelCase = line.split()[0] + ''' ''' + preds_list[example_id].pop(0 ) + '''\n''' writer.write(A ) else: logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''', line.split()[0] ) def _UpperCamelCase ( self, A ): """simple docstring""" if path: with open(A, '''r''' ) as f: _UpperCamelCase = f.read().splitlines() if "O" not in labels: _UpperCamelCase = ['''O'''] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __A( __UpperCAmelCase ): def __init__( self ): """simple docstring""" super().__init__(label_idx=-2 ) def _UpperCamelCase ( self, A ): """simple docstring""" if path: with open(A, '''r''' ) as f: _UpperCamelCase = f.read().splitlines() if "O" not in labels: _UpperCamelCase = ['''O'''] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __A( __UpperCAmelCase ): def _UpperCamelCase ( self, A, A ): """simple docstring""" if isinstance(A, A ): _UpperCamelCase = mode.value _UpperCamelCase = os.path.join(A, F'''{mode}.txt''' ) _UpperCamelCase = 1 _UpperCamelCase = [] with open(A, encoding='''utf-8''' ) as f: for sentence in parse_incr(A ): _UpperCamelCase = [] _UpperCamelCase = [] for token in sentence: words.append(token['''form'''] ) labels.append(token['''upos'''] ) assert len(A ) == len(A ) if words: examples.append(InputExample(guid=F'''{mode}-{guid_index}''', words=A, labels=A ) ) guid_index += 1 return examples def _UpperCamelCase ( self, A, A, A ): """simple docstring""" _UpperCamelCase = 0 for sentence in parse_incr(A ): _UpperCamelCase = preds_list[example_id] _UpperCamelCase = '''''' for token in sentence: out += F'''{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ''' out += "\n" writer.write(A ) example_id += 1 def _UpperCamelCase ( self, A ): """simple docstring""" if path: with open(A, '''r''' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
105
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''microsoft/biogpt''': '''https://huggingface.co/microsoft/biogpt/resolve/main/config.json''', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class __magic_name__ (_lowercase ): lowerCamelCase__ = "biogpt" def __init__( self , _a=42384 , _a=1024 , _a=24 , _a=16 , _a=4096 , _a="gelu" , _a=0.1 , _a=0.1 , _a=1024 , _a=0.0_2 , _a=1E-12 , _a=True , _a=True , _a=0.0 , _a=0.0 , _a=1 , _a=0 , _a=2 , **_a , ) -> Dict: lowerCAmelCase_ = vocab_size lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = scale_embedding lowerCAmelCase_ = use_cache lowerCAmelCase_ = layerdrop lowerCAmelCase_ = activation_dropout super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase )
122
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class __snake_case : def __init__( self : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple=1_3 , __lowerCAmelCase : Any=2 , __lowerCAmelCase : List[str]=2_4 , __lowerCAmelCase : str=1_6 , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : Optional[Any]=3_2 , __lowerCAmelCase : List[Any]=5 , __lowerCAmelCase : int=4 , __lowerCAmelCase : int=3_7 , __lowerCAmelCase : Union[str, Any]="gelu" , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : str=0.1 , __lowerCAmelCase : int=1_0 , __lowerCAmelCase : List[Any]=0.02 , __lowerCAmelCase : str=None , __lowerCAmelCase : List[str]=2 , __lowerCAmelCase : Union[str, Any]=2 , ): """simple docstring""" _lowerCamelCase : List[str] = parent _lowerCamelCase : str = batch_size _lowerCamelCase : Tuple = patch_size _lowerCamelCase : Optional[int] = max_length _lowerCamelCase : List[Any] = num_mel_bins _lowerCamelCase : int = is_training _lowerCamelCase : Union[str, Any] = use_labels _lowerCamelCase : Dict = hidden_size _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : int = num_attention_heads _lowerCamelCase : Tuple = intermediate_size _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Dict = hidden_dropout_prob _lowerCamelCase : int = attention_probs_dropout_prob _lowerCamelCase : List[Any] = type_sequence_label_size _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : List[str] = scope _lowerCamelCase : Optional[int] = frequency_stride _lowerCamelCase : List[Any] = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _lowerCamelCase : Optional[int] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 _lowerCamelCase : Union[str, Any] = (self.max_length - self.patch_size) // self.time_stride + 1 _lowerCamelCase : Any = frequency_out_dimension * time_out_dimension _lowerCamelCase : List[Any] = num_patches + 2 def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : int = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) _lowerCamelCase : str = None if self.use_labels: _lowerCamelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase : Optional[int] = self.get_config() return config, input_values, labels def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : List[Any] = ASTModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : List[Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : int = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Optional[Any] = config_and_inputs _lowerCamelCase : int = {'''input_values''': input_values} return config, inputs_dict @require_torch class __snake_case ( _lowercase , _lowercase , unittest.TestCase): snake_case__ : List[Any] = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) snake_case__ : Tuple = ( {"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel} if is_torch_available() else {} ) snake_case__ : Any = False snake_case__ : List[Any] = False snake_case__ : Optional[Any] = False snake_case__ : Optional[Any] = False def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] ): """simple docstring""" if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Optional[int] = ASTModelTester(self ) _lowerCamelCase : Any = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''AST does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Dict = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCamelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : str = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Any = [*signature.parameters.keys()] _lowerCamelCase : str = ['''input_values'''] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Union[str, Any] = ASTModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : List[str] = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''', filename='''sample_audio.flac''', repo_type='''dataset''' ) _lowerCamelCase , _lowerCamelCase : str = torchaudio.load(A_ ) return audio, sampling_rate @require_torch @require_torchaudio class __snake_case ( unittest.TestCase): @cached_property def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" return ( ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ) if is_torchaudio_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : int = self.default_feature_extractor _lowerCamelCase : Union[str, Any] = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ).to(__lowerCAmelCase ) _lowerCamelCase : List[Any] = self.default_feature_extractor _lowerCamelCase , _lowerCamelCase : List[Any] = prepare_audio() _lowerCamelCase : Dict = audio.squeeze().numpy() _lowerCamelCase : Tuple = feature_extractor(__lowerCAmelCase , sampling_rate=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): _lowerCamelCase : Tuple = model(**__lowerCAmelCase ) # verify the logits _lowerCamelCase : Tuple = torch.Size((1, 5_2_7) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) _lowerCamelCase : Optional[int] = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) )
83
0
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING a_ = logging.get_logger(__name__) a_ = Dict[str, Any] a_ = List[Prediction] @add_end_docstrings(snake_case ) class UpperCAmelCase__ ( snake_case ): """simple docstring""" def __init__( self: Any , *__lowerCAmelCase: Tuple , **__lowerCAmelCase: Optional[int] ) -> Union[str, Any]: '''simple docstring''' super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) if self.framework == "tf": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , "vision" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def _UpperCAmelCase ( self: List[Any] , **__lowerCAmelCase: str ) -> str: '''simple docstring''' __UpperCAmelCase = {} if "threshold" in kwargs: __UpperCAmelCase = kwargs["threshold"] return {}, {}, postprocess_kwargs def __call__( self: Optional[Any] , *__lowerCAmelCase: Union[str, Any] , **__lowerCAmelCase: Optional[int] ) -> Union[Predictions, List[Prediction]]: '''simple docstring''' return super().__call__(*__lowerCAmelCase , **__lowerCAmelCase ) def _UpperCAmelCase ( self: int , __lowerCAmelCase: Any ) -> str: '''simple docstring''' __UpperCAmelCase = load_image(__lowerCAmelCase ) __UpperCAmelCase = torch.IntTensor([[image.height, image.width]] ) __UpperCAmelCase = self.image_processor(images=[image] , return_tensors="pt" ) if self.tokenizer is not None: __UpperCAmelCase = self.tokenizer(text=inputs["words"] , boxes=inputs["boxes"] , return_tensors="pt" ) __UpperCAmelCase = target_size return inputs def _UpperCAmelCase ( self: Optional[Any] , __lowerCAmelCase: List[Any] ) -> Tuple: '''simple docstring''' __UpperCAmelCase = model_inputs.pop("target_size" ) __UpperCAmelCase = self.model(**__lowerCAmelCase ) __UpperCAmelCase = outputs.__class__({"target_size": target_size, **outputs} ) if self.tokenizer is not None: __UpperCAmelCase = model_inputs["bbox"] return model_outputs def _UpperCAmelCase ( self: Dict , __lowerCAmelCase: Optional[int] , __lowerCAmelCase: List[Any]=0.9 ) -> Tuple: '''simple docstring''' __UpperCAmelCase = model_outputs["target_size"] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. __UpperCAmelCase , __UpperCAmelCase = target_size[0].tolist() def unnormalize(__lowerCAmelCase: str ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1_000), (height * bbox[1] / 1_000), (width * bbox[2] / 1_000), (height * bbox[3] / 1_000), ] ) ) __UpperCAmelCase , __UpperCAmelCase = model_outputs["logits"].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) __UpperCAmelCase = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] __UpperCAmelCase = [unnormalize(__lowerCAmelCase ) for bbox in model_outputs["bbox"].squeeze(0 )] __UpperCAmelCase = ["score", "label", "box"] __UpperCAmelCase = [dict(zip(__lowerCAmelCase , __lowerCAmelCase ) ) for vals in zip(scores.tolist() , __lowerCAmelCase , __lowerCAmelCase ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel __UpperCAmelCase = self.image_processor.post_process_object_detection(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __UpperCAmelCase = raw_annotations[0] __UpperCAmelCase = raw_annotation["scores"] __UpperCAmelCase = raw_annotation["labels"] __UpperCAmelCase = raw_annotation["boxes"] __UpperCAmelCase = scores.tolist() __UpperCAmelCase = [self.model.config.idalabel[label.item()] for label in labels] __UpperCAmelCase = [self._get_bounding_box(__lowerCAmelCase ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] __UpperCAmelCase = ["score", "label", "box"] __UpperCAmelCase = [ dict(zip(__lowerCAmelCase , __lowerCAmelCase ) ) for vals in zip(raw_annotation["scores"] , raw_annotation["labels"] , raw_annotation["boxes"] ) ] return annotation def _UpperCAmelCase ( self: Optional[Any] , __lowerCAmelCase: "torch.Tensor" ) -> Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError("The ObjectDetectionPipeline is only available in PyTorch." ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = box.int().tolist() __UpperCAmelCase = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
710
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase__ ( snake_case , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ : int = DiTPipeline lowerCAmelCase__ : Any = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS lowerCAmelCase__ : Optional[Any] = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } lowerCAmelCase__ : List[Any] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS lowerCAmelCase__ : Optional[int] = False def _UpperCAmelCase ( self: str ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=__lowerCAmelCase , activation_fn="gelu-approximate" , num_embeds_ada_norm=1_000 , norm_type="ada_norm_zero" , norm_elementwise_affine=__lowerCAmelCase , ) __UpperCAmelCase = AutoencoderKL() __UpperCAmelCase = DDIMScheduler() __UpperCAmelCase = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def _UpperCAmelCase ( self: str , __lowerCAmelCase: str , __lowerCAmelCase: Optional[int]=0 ) -> int: '''simple docstring''' if str(__lowerCAmelCase ).startswith("mps" ): __UpperCAmelCase = torch.manual_seed(__lowerCAmelCase ) else: __UpperCAmelCase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) __UpperCAmelCase = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _UpperCAmelCase ( self: Tuple ) -> Dict: '''simple docstring''' __UpperCAmelCase = "cpu" __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = self.pipeline_class(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) __UpperCAmelCase = self.get_dummy_inputs(__lowerCAmelCase ) __UpperCAmelCase = pipe(**__lowerCAmelCase ).images __UpperCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) __UpperCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) __UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCAmelCase , 1E-3 ) def _UpperCAmelCase ( self: int ) -> str: '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=__lowerCAmelCase , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _UpperCAmelCase ( self: Optional[int] ) -> str: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self: Any ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self: Dict ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) __UpperCAmelCase = ["vase", "umbrella", "white shark", "white wolf"] __UpperCAmelCase = pipe.get_label_ids(__lowerCAmelCase ) __UpperCAmelCase = pipe(__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=40 , output_type="np" ).images for word, image in zip(__lowerCAmelCase , __lowerCAmelCase ): __UpperCAmelCase = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-2 def _UpperCAmelCase ( self: Any ) -> List[str]: '''simple docstring''' __UpperCAmelCase = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) __UpperCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) __UpperCAmelCase = ["vase", "umbrella"] __UpperCAmelCase = pipe.get_label_ids(__lowerCAmelCase ) __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = pipe(__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=25 , output_type="np" ).images for word, image in zip(__lowerCAmelCase , __lowerCAmelCase ): __UpperCAmelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-1
286
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _a: int = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a: Tuple = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a: Any = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a: Union[str, Any] = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a: Optional[Any] = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _a: int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
162
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py _a: int = """src/diffusers""" # Matches is_xxx_available() _a: Tuple = re.compile(r"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla _a: Any = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") _a: Union[str, Any] = """ {0} = None """ _a: Tuple = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ _a: Tuple = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def __lowerCAmelCase ( A ): UpperCAmelCase_ = _re_backend.findall(A ) if len(A ) == 0: return None return "_and_".join(A ) def __lowerCAmelCase ( ): with open(os.path.join(A , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase_ = f.readlines() # Get to the point we do the actual imports for type checking UpperCAmelCase_ = 0 UpperCAmelCase_ = {} # Go through the end of the file while line_index < len(A ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCAmelCase_ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 UpperCAmelCase_ = [] # Until we unindent, add backend objects to the list while line_index < len(A ) and len(lines[line_index] ) > 1: UpperCAmelCase_ = lines[line_index] UpperCAmelCase_ = _re_single_line_import.search(A ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(A ) > 0: UpperCAmelCase_ = objects else: line_index += 1 return backend_specific_objects def __lowerCAmelCase ( A , A ): if name.isupper(): return DUMMY_CONSTANT.format(A ) elif name.islower(): return DUMMY_FUNCTION.format(A , A ) else: return DUMMY_CLASS.format(A , A ) def __lowerCAmelCase ( A=None ): if backend_specific_objects is None: UpperCAmelCase_ = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCAmelCase_ = {} for backend, objects in backend_specific_objects.items(): UpperCAmelCase_ = "[" + ", ".join(F"\"{b}\"" for b in backend.split("_and_" ) ) + "]" UpperCAmelCase_ = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(A , A ) for o in objects] ) UpperCAmelCase_ = dummy_file return dummy_files def __lowerCAmelCase ( A=False ): UpperCAmelCase_ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCAmelCase_ = {"torch": "pt"} # Locate actual dummy modules and read their content. UpperCAmelCase_ = os.path.join(A , "utils" ) UpperCAmelCase_ = { backend: os.path.join(A , F"dummy_{short_names.get(A , A )}_objects.py" ) for backend in dummy_files.keys() } UpperCAmelCase_ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(A ): with open(A , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase_ = f.read() else: UpperCAmelCase_ = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F"Updating diffusers.utils.dummy_{short_names.get(A , A )}_objects.py as the main " "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " F"diffusers.utils.dummy_{short_names.get(A , A )}_objects.py. Run `make fix-copies` " "to fix this." ) if __name__ == "__main__": _a: Dict = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") _a: Any = parser.parse_args() check_dummies(args.fix_and_overwrite)
162
1
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class A_ ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): '''simple docstring''' _UpperCamelCase : Any = AutoencoderKL _UpperCamelCase : str = """sample""" _UpperCamelCase : Any = 1e-2 @property def SCREAMING_SNAKE_CASE__ ( self ): lowercase = 4 lowercase = 3 lowercase = (32, 32) lowercase = floats_tensor((batch_size, num_channels) + sizes ).to(snake_case ) return {"sample": image} @property def SCREAMING_SNAKE_CASE__ ( self ): return (3, 32, 32) @property def SCREAMING_SNAKE_CASE__ ( self ): return (3, 32, 32) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } lowercase = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): pass @unittest.skipIf(torch_device == 'mps' , 'Gradient checkpointing skipped on MPS' ) def SCREAMING_SNAKE_CASE__ ( self ): # enable deterministic behavior for gradient checkpointing lowercase , lowercase = self.prepare_init_args_and_inputs_for_common() lowercase = self.model_class(**snake_case ) model.to(snake_case ) assert not model.is_gradient_checkpointing and model.training lowercase = model(**snake_case ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() lowercase = torch.randn_like(snake_case ) lowercase = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing lowercase = self.model_class(**snake_case ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(snake_case ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training lowercase = model_a(**snake_case ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() lowercase = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) lowercase = dict(model.named_parameters() ) lowercase = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase , lowercase = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' , output_loading_info=snake_case ) self.assertIsNotNone(snake_case ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(snake_case ) lowercase = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE__ ( self ): lowercase = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' ) lowercase = model.to(snake_case ) model.eval() if torch_device == "mps": lowercase = torch.manual_seed(0 ) else: lowercase = torch.Generator(device=snake_case ).manual_seed(0 ) lowercase = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) lowercase = image.to(snake_case ) with torch.no_grad(): lowercase = model(snake_case , sample_posterior=snake_case , generator=snake_case ).sample lowercase = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": lowercase = torch.tensor( [ -4.0_078E-01, -3.8_323E-04, -1.2_681E-01, -1.1_462E-01, 2.0_095E-01, 1.0_893E-01, -8.8_247E-02, -3.0_361E-01, -9.8_644E-03, ] ) elif torch_device == "cpu": lowercase = torch.tensor( [-0.1_352, 0.0_878, 0.0_419, -0.0_818, -0.1_069, 0.0_688, -0.1_458, -0.4_446, -0.0_026] ) else: lowercase = torch.tensor( [-0.2_421, 0.4_642, 0.2_507, -0.0_438, 0.0_682, 0.3_160, -0.2_018, -0.0_727, 0.2_485] ) self.assertTrue(torch_all_close(snake_case , snake_case , rtol=1E-2 ) ) @slow class A_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): return F'''gaussian_noise_s={seed}_shape={'_'.join([str(snake_case ) for s in shape] )}.npy''' def SCREAMING_SNAKE_CASE__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self , snake_case=0 , snake_case=(4, 3, 512, 512) , snake_case=False ): lowercase = torch.floataa if fpaa else torch.floataa lowercase = torch.from_numpy(load_hf_numpy(self.get_file_format(snake_case , snake_case ) ) ).to(snake_case ).to(snake_case ) return image def SCREAMING_SNAKE_CASE__ ( self , snake_case="CompVis/stable-diffusion-v1-4" , snake_case=False ): lowercase = 'fp16' if fpaa else None lowercase = torch.floataa if fpaa else torch.floataa lowercase = AutoencoderKL.from_pretrained( snake_case , subfolder='vae' , torch_dtype=snake_case , revision=snake_case , ) model.to(snake_case ).eval() return model def SCREAMING_SNAKE_CASE__ ( self , snake_case=0 ): if torch_device == "mps": return torch.manual_seed(snake_case ) return torch.Generator(device=snake_case ).manual_seed(snake_case ) @parameterized.expand( [ # fmt: off [33, [-0.1_603, 0.9_878, -0.0_495, -0.0_790, -0.2_709, 0.8_375, -0.2_060, -0.0_824], [-0.2_395, 0.0_098, 0.0_102, -0.0_709, -0.2_840, -0.0_274, -0.0_718, -0.1_824]], [47, [-0.2_376, 0.1_168, 0.1_332, -0.4_840, -0.2_508, -0.0_791, -0.0_493, -0.4_089], [0.0_350, 0.0_847, 0.0_467, 0.0_344, -0.0_842, -0.0_547, -0.0_633, -0.1_131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case ): lowercase = self.get_sd_vae_model() lowercase = self.get_sd_image(snake_case ) lowercase = self.get_generator(snake_case ) with torch.no_grad(): lowercase = model(snake_case , generator=snake_case , sample_posterior=snake_case ).sample assert sample.shape == image.shape lowercase = sample[-1, -2:, -2:, :2].flatten().float().cpu() lowercase = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(snake_case , snake_case , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_513, 0.0_289, 1.3_799, 0.2_166, -0.2_573, -0.0_871, 0.5_103, -0.0_999]], [47, [-0.4_128, -0.1_320, -0.3_704, 0.1_965, -0.4_116, -0.2_332, -0.3_340, 0.2_247]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): lowercase = self.get_sd_vae_model(fpaa=snake_case ) lowercase = self.get_sd_image(snake_case , fpaa=snake_case ) lowercase = self.get_generator(snake_case ) with torch.no_grad(): lowercase = model(snake_case , generator=snake_case , sample_posterior=snake_case ).sample assert sample.shape == image.shape lowercase = sample[-1, -2:, :2, -2:].flatten().float().cpu() lowercase = torch.tensor(snake_case ) assert torch_all_close(snake_case , snake_case , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_609, 0.9_866, -0.0_487, -0.0_777, -0.2_716, 0.8_368, -0.2_055, -0.0_814], [-0.2_395, 0.0_098, 0.0_102, -0.0_709, -0.2_840, -0.0_274, -0.0_718, -0.1_824]], [47, [-0.2_377, 0.1_147, 0.1_333, -0.4_841, -0.2_506, -0.0_805, -0.0_491, -0.4_085], [0.0_350, 0.0_847, 0.0_467, 0.0_344, -0.0_842, -0.0_547, -0.0_633, -0.1_131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case ): lowercase = self.get_sd_vae_model() lowercase = self.get_sd_image(snake_case ) with torch.no_grad(): lowercase = model(snake_case ).sample assert sample.shape == image.shape lowercase = sample[-1, -2:, -2:, :2].flatten().float().cpu() lowercase = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(snake_case , snake_case , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_051, -0.1_803, -0.2_311, -0.2_114, -0.3_292, -0.3_574, -0.2_953, -0.3_323]], [37, [-0.2_632, -0.2_625, -0.2_199, -0.2_741, -0.4_539, -0.4_990, -0.3_720, -0.4_925]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): lowercase = self.get_sd_vae_model() lowercase = self.get_sd_image(snake_case , shape=(3, 4, 64, 64) ) with torch.no_grad(): lowercase = model.decode(snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] lowercase = sample[-1, -2:, :2, -2:].flatten().cpu() lowercase = torch.tensor(snake_case ) assert torch_all_close(snake_case , snake_case , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_369, 0.0_207, -0.0_776, -0.0_682, -0.1_747, -0.1_930, -0.1_465, -0.2_039]], [16, [-0.1_628, -0.2_134, -0.2_747, -0.2_642, -0.3_774, -0.4_404, -0.3_687, -0.4_277]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): lowercase = self.get_sd_vae_model(fpaa=snake_case ) lowercase = self.get_sd_image(snake_case , shape=(3, 4, 64, 64) , fpaa=snake_case ) with torch.no_grad(): lowercase = model.decode(snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] lowercase = sample[-1, -2:, :2, -2:].flatten().float().cpu() lowercase = torch.tensor(snake_case ) assert torch_all_close(snake_case , snake_case , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = self.get_sd_vae_model(fpaa=snake_case ) lowercase = self.get_sd_image(snake_case , shape=(3, 4, 64, 64) , fpaa=snake_case ) with torch.no_grad(): lowercase = model.decode(snake_case ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): lowercase = model.decode(snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(snake_case , snake_case , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = self.get_sd_vae_model() lowercase = self.get_sd_image(snake_case , shape=(3, 4, 64, 64) ) with torch.no_grad(): lowercase = model.decode(snake_case ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): lowercase = model.decode(snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(snake_case , snake_case , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_001, 0.0_918, -2.6_984, -3.9_720, -3.2_099, -5.0_353, 1.7_338, -0.2_065, 3.4_267]], [47, [-1.5_030, -4.3_871, -6.0_355, -9.1_157, -1.6_661, -2.7_853, 2.1_607, -5.0_823, 2.5_633]], # fmt: on ] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): lowercase = self.get_sd_vae_model() lowercase = self.get_sd_image(snake_case ) lowercase = self.get_generator(snake_case ) with torch.no_grad(): lowercase = model.encode(snake_case ).latent_dist lowercase = dist.sample(generator=snake_case ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] lowercase = sample[0, -1, -3:, -3:].flatten().cpu() lowercase = torch.tensor(snake_case ) lowercase = 3E-3 if torch_device != 'mps' else 1E-2 assert torch_all_close(snake_case , snake_case , atol=snake_case )
565
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['''DeiTFeatureExtractor'''] UpperCAmelCase = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
565
1
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): __SCREAMING_SNAKE_CASE = JukeboxTokenizer __SCREAMING_SNAKE_CASE = { '''artist''': '''Zac Brown Band''', '''genres''': '''Country''', '''lyrics''': '''I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away ''', } @require_torch def __snake_case( self ): import torch _UpperCAmelCase : int = JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" ) _UpperCAmelCase : List[str] = tokenizer(**self.metas )["""input_ids"""] # fmt: off _UpperCAmelCase : Union[str, Any] = [ torch.tensor([[ 0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def __snake_case( self ): import torch _UpperCAmelCase : Tuple = JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" ) _UpperCAmelCase : int = tokenizer(**self.metas )["""input_ids"""] # fmt: off _UpperCAmelCase : str = [ torch.tensor([[ 0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
643
SCREAMING_SNAKE_CASE__ : dict[str, float] = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.602176634e-19, "britishthermalunit_it": 1_055.05_585, "footpound": 1.355_818, } def a__ ( snake_case__ : str , snake_case__ : str , snake_case__ : float ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: _UpperCAmelCase : Optional[Any] = ( f'''Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n''' f'''Valid values are: {", ".join(snake_case__ )}''' ) raise ValueError(snake_case__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
643
1
'''simple docstring''' def A ( _UpperCAmelCase : int = 1_0_0_0_0_0_0 ) -> int: '''simple docstring''' __lowerCAmelCase : str = limit + 1 __lowerCAmelCase : List[str] = [0] * limit for first_term in range(1 ,_UpperCAmelCase ): for n in range(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ): __lowerCAmelCase : Optional[int] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a __lowerCAmelCase : str = sum(1 for x in frequency[1:limit] if x == 1_0 ) return count if __name__ == "__main__": print(F'''{solution() = }''')
123
'''simple docstring''' def A ( _UpperCAmelCase : int = 5_0 ) -> int: '''simple docstring''' __lowerCAmelCase : Any = [1] * (length + 1) for row_length in range(3 ,length + 1 ): for block_length in range(3 ,row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F'''{solution() = }''')
123
1
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf __UpperCAmelCase = logging.get_logger(__name__) @dataclass class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self : Optional[int] , **lowerCamelCase_ : Optional[Any] ): '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: SCREAMING_SNAKE_CASE : Tuple = deprecated_arg[3:] SCREAMING_SNAKE_CASE : int = not kwargs.pop(lowerCamelCase_ ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) SCREAMING_SNAKE_CASE : Tuple = kwargs.pop("""tpu_name""" , self.tpu_name ) SCREAMING_SNAKE_CASE : List[str] = kwargs.pop("""device_idx""" , self.device_idx ) SCREAMING_SNAKE_CASE : Optional[int] = kwargs.pop("""eager_mode""" , self.eager_mode ) SCREAMING_SNAKE_CASE : Any = kwargs.pop("""use_xla""" , self.use_xla ) super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = field( default=lowercase_ , metadata={'''help''': '''Name of TPU'''} , ) SCREAMING_SNAKE_CASE__ = field( default=0 , metadata={'''help''': '''CPU / GPU device index. Defaults to 0.'''} , ) SCREAMING_SNAKE_CASE__ = field(default=lowercase_ , metadata={'''help''': '''Benchmark models in eager model.'''} ) SCREAMING_SNAKE_CASE__ = field( default=lowercase_ , metadata={ '''help''': '''Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.''' } , ) @cached_property def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' requires_backends(self , ["""tf"""] ) SCREAMING_SNAKE_CASE : List[Any] = None if self.tpu: try: if self.tpu_name: SCREAMING_SNAKE_CASE : List[str] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: SCREAMING_SNAKE_CASE : int = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: SCREAMING_SNAKE_CASE : List[Any] = None return tpu @cached_property def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) SCREAMING_SNAKE_CASE : Optional[int] = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" ) SCREAMING_SNAKE_CASE : Optional[int] = tf.distribute.OneDeviceStrategy(device=f'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , """GPU""" ) # disable GPU SCREAMING_SNAKE_CASE : List[str] = tf.distribute.OneDeviceStrategy(device=f'''/cpu:{self.device_idx}''' ) return strategy @property def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_tpu is not None @property def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_strategy @property def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' requires_backends(self , ["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return self.n_gpu > 0
379
'''simple docstring''' from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker __UpperCAmelCase = """CompVis/stable-diffusion-v1-1""" __UpperCAmelCase = """CompVis/stable-diffusion-v1-2""" __UpperCAmelCase = """CompVis/stable-diffusion-v1-3""" __UpperCAmelCase = """CompVis/stable-diffusion-v1-4""" class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : List[str] , lowerCamelCase_ : AutoencoderKL , lowerCamelCase_ : CLIPTextModel , lowerCamelCase_ : CLIPTokenizer , lowerCamelCase_ : UNetaDConditionModel , lowerCamelCase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCamelCase_ : StableDiffusionSafetyChecker , lowerCamelCase_ : CLIPImageProcessor , lowerCamelCase_ : bool = True , ): '''simple docstring''' super()._init_() SCREAMING_SNAKE_CASE : Tuple = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionPipeline( vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , requires_safety_checker=lowerCamelCase_ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def lowerCamelCase_ ( self : int ): '''simple docstring''' return {k: getattr(self , lowerCamelCase_ ) for k in self.config.keys() if not k.startswith("""_""" )} def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE : Optional[int] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' self.enable_attention_slicing(lowerCamelCase_ ) @torch.no_grad() def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Union[str, List[str]] , lowerCamelCase_ : int = 5_12 , lowerCamelCase_ : int = 5_12 , lowerCamelCase_ : int = 50 , lowerCamelCase_ : float = 7.5 , lowerCamelCase_ : Optional[Union[str, List[str]]] = None , lowerCamelCase_ : Optional[int] = 1 , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : Optional[torch.Generator] = None , lowerCamelCase_ : Optional[torch.FloatTensor] = None , lowerCamelCase_ : Optional[str] = "pil" , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ : int = 1 , **lowerCamelCase_ : Union[str, Any] , ): '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Union[str, List[str]] , lowerCamelCase_ : int = 5_12 , lowerCamelCase_ : int = 5_12 , lowerCamelCase_ : int = 50 , lowerCamelCase_ : float = 7.5 , lowerCamelCase_ : Optional[Union[str, List[str]]] = None , lowerCamelCase_ : Optional[int] = 1 , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : Optional[torch.Generator] = None , lowerCamelCase_ : Optional[torch.FloatTensor] = None , lowerCamelCase_ : Optional[str] = "pil" , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ : int = 1 , **lowerCamelCase_ : Union[str, Any] , ): '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Union[str, List[str]] , lowerCamelCase_ : int = 5_12 , lowerCamelCase_ : int = 5_12 , lowerCamelCase_ : int = 50 , lowerCamelCase_ : float = 7.5 , lowerCamelCase_ : Optional[Union[str, List[str]]] = None , lowerCamelCase_ : Optional[int] = 1 , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : Optional[torch.Generator] = None , lowerCamelCase_ : Optional[torch.FloatTensor] = None , lowerCamelCase_ : Optional[str] = "pil" , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ : int = 1 , **lowerCamelCase_ : str , ): '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Union[str, List[str]] , lowerCamelCase_ : int = 5_12 , lowerCamelCase_ : int = 5_12 , lowerCamelCase_ : int = 50 , lowerCamelCase_ : float = 7.5 , lowerCamelCase_ : Optional[Union[str, List[str]]] = None , lowerCamelCase_ : Optional[int] = 1 , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : Optional[torch.Generator] = None , lowerCamelCase_ : Optional[torch.FloatTensor] = None , lowerCamelCase_ : Optional[str] = "pil" , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ : int = 1 , **lowerCamelCase_ : Dict , ): '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Union[str, List[str]] , lowerCamelCase_ : int = 5_12 , lowerCamelCase_ : int = 5_12 , lowerCamelCase_ : int = 50 , lowerCamelCase_ : float = 7.5 , lowerCamelCase_ : Optional[Union[str, List[str]]] = None , lowerCamelCase_ : Optional[int] = 1 , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : Optional[torch.Generator] = None , lowerCamelCase_ : Optional[torch.FloatTensor] = None , lowerCamelCase_ : Optional[str] = "pil" , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ : int = 1 , **lowerCamelCase_ : Any , ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = """cuda""" if torch.cuda.is_available() else """cpu""" self.to(lowerCamelCase_ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` must be divisible by 8 but are {height} and {width}.''' ) # Get first result from Stable Diffusion Checkpoint v1.1 SCREAMING_SNAKE_CASE : List[str] = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.2 SCREAMING_SNAKE_CASE : Union[str, Any] = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.3 SCREAMING_SNAKE_CASE : int = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.4 SCREAMING_SNAKE_CASE : Optional[int] = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
379
1
'''simple docstring''' import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __A : def __init__(self : Optional[Any] , __a : Tuple , __a : List[Any]=2 , __a : Tuple=3 , __a : Union[str, Any]=4 , __a : List[Any]=2 , __a : List[str]=7 , __a : str=True , __a : List[Any]=True , __a : str=True , __a : Union[str, Any]=True , __a : Dict=99 , __a : Union[str, Any]=36 , __a : Dict=3 , __a : int=4 , __a : Tuple=37 , __a : Union[str, Any]="gelu" , __a : int=0.1 , __a : Optional[Any]=0.1 , __a : int=512 , __a : List[Any]=16 , __a : Any=2 , __a : Dict=0.02 , __a : List[Any]=6 , __a : Union[str, Any]=6 , __a : Tuple=3 , __a : Tuple=4 , __a : Optional[Any]=None , __a : str=1000 , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = text_seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_token_type_ids UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = coordinate_size UpperCAmelCase_ = shape_size UpperCAmelCase_ = num_labels UpperCAmelCase_ = num_choices UpperCAmelCase_ = scope UpperCAmelCase_ = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) UpperCAmelCase_ = text_seq_length UpperCAmelCase_ = (image_size // patch_size) ** 2 + 1 UpperCAmelCase_ = self.text_seq_length + self.image_seq_length def _lowercase (self : str ): UpperCAmelCase_ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCAmelCase_ = bbox[i, j, 3] UpperCAmelCase_ = bbox[i, j, 1] UpperCAmelCase_ = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCAmelCase_ = bbox[i, j, 2] UpperCAmelCase_ = bbox[i, j, 0] UpperCAmelCase_ = t UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.text_seq_length] ) UpperCAmelCase_ = None if self.use_token_type_ids: UpperCAmelCase_ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) UpperCAmelCase_ = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _lowercase (self : Any , __a : Optional[Any] , __a : Optional[Any] , __a : List[str] , __a : List[str] , __a : int , __a : Optional[Any] , __a : Tuple , __a : Tuple ): UpperCAmelCase_ = LayoutLMvaModel(config=__A ) model.to(__A ) model.eval() # text + image UpperCAmelCase_ = model(__A , pixel_values=__A ) UpperCAmelCase_ = model( __A , bbox=__A , pixel_values=__A , attention_mask=__A , token_type_ids=__A ) UpperCAmelCase_ = model(__A , bbox=__A , pixel_values=__A , token_type_ids=__A ) UpperCAmelCase_ = model(__A , bbox=__A , pixel_values=__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only UpperCAmelCase_ = model(__A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only UpperCAmelCase_ = model(pixel_values=__A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _lowercase (self : List[Any] , __a : List[Any] , __a : Optional[Any] , __a : Union[str, Any] , __a : int , __a : List[str] , __a : Any , __a : str , __a : Dict ): UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = LayoutLMvaForSequenceClassification(__A ) model.to(__A ) model.eval() UpperCAmelCase_ = model( __A , bbox=__A , pixel_values=__A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase (self : List[Any] , __a : int , __a : List[Any] , __a : Optional[int] , __a : Dict , __a : Optional[Any] , __a : Union[str, Any] , __a : List[str] , __a : List[Any] ): UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = LayoutLMvaForTokenClassification(config=__A ) model.to(__A ) model.eval() UpperCAmelCase_ = model( __A , bbox=__A , pixel_values=__A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _lowercase (self : Union[str, Any] , __a : Tuple , __a : Union[str, Any] , __a : Tuple , __a : Optional[Any] , __a : List[Any] , __a : Union[str, Any] , __a : Optional[int] , __a : int ): UpperCAmelCase_ = LayoutLMvaForQuestionAnswering(config=__A ) model.to(__A ) model.eval() UpperCAmelCase_ = model( __A , bbox=__A , pixel_values=__A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): a__ : Dict = False a__ : List[str] = False a__ : Tuple = False a__ : Tuple = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) a__ : str = ( {"""document-question-answering""": LayoutLMvaForQuestionAnswering, """feature-extraction""": LayoutLMvaModel} if is_torch_available() else {} ) def _lowercase (self : Any , __a : str , __a : Dict , __a : Optional[int] , __a : List[str] , __a : Union[str, Any] ): return True def _lowercase (self : int ): UpperCAmelCase_ = LayoutLMvaModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=__A , hidden_size=37 ) def _lowercase (self : str , __a : Any , __a : Union[str, Any] , __a : List[str]=False ): UpperCAmelCase_ = copy.deepcopy(__A ) if model_class in get_values(__A ): UpperCAmelCase_ = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(__A , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__A ): UpperCAmelCase_ = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=__A ) elif model_class in get_values(__A ): UpperCAmelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) UpperCAmelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) elif model_class in [ *get_values(__A ), ]: UpperCAmelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) elif model_class in [ *get_values(__A ), ]: UpperCAmelCase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=__A , ) return inputs_dict def _lowercase (self : str ): self.config_tester.run_common_tests() def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ = type self.model_tester.create_and_check_model(*__A ) def _lowercase (self : Tuple ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__A ) def _lowercase (self : Any ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__A ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__A ) @slow def _lowercase (self : Optional[int] ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = LayoutLMvaModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowerCAmelCase_ ( ): '''simple docstring''' UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class __A ( unittest.TestCase ): @cached_property def _lowercase (self : str ): return LayoutLMvaImageProcessor(apply_ocr=__A ) if is_vision_available() else None @slow def _lowercase (self : str ): UpperCAmelCase_ = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(__A ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=__A , return_tensors="pt" ).pixel_values.to(__A ) UpperCAmelCase_ = torch.tensor([[1, 2]] ) UpperCAmelCase_ = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass UpperCAmelCase_ = model( input_ids=input_ids.to(__A ) , bbox=bbox.to(__A ) , pixel_values=pixel_values.to(__A ) , ) # verify the logits UpperCAmelCase_ = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , __A ) UpperCAmelCase_ = torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(__A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __A , atol=1E-4 ) )
715
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class __A ( UpperCamelCase__ ): a__ : Optional[int] = """Wav2Vec2FeatureExtractor""" a__ : Dict = """AutoTokenizer""" def __init__(self : Any , __a : Union[str, Any] , __a : List[str] ): super().__init__(__a , __a ) UpperCAmelCase_ = self.feature_extractor UpperCAmelCase_ = False @classmethod def _lowercase (cls : List[str] , __a : Dict , **__a : int ): try: return super().from_pretrained(__a , **__a ) except OSError: warnings.warn( f"""Loading a tokenizer inside {cls.__name__} from a config that does not""" " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " , __a , ) UpperCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained(__a , **__a ) UpperCAmelCase_ = WavaVecaCTCTokenizer.from_pretrained(__a , **__a ) return cls(feature_extractor=__a , tokenizer=__a ) def __call__(self : Optional[int] , *__a : int , **__a : Tuple ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__a , **__a ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) UpperCAmelCase_ = kwargs.pop("raw_speech" ) else: UpperCAmelCase_ = kwargs.pop("audio" , __a ) UpperCAmelCase_ = kwargs.pop("sampling_rate" , __a ) UpperCAmelCase_ = kwargs.pop("text" , __a ) if len(__a ) > 0: UpperCAmelCase_ = args[0] UpperCAmelCase_ = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: UpperCAmelCase_ = self.feature_extractor(__a , *__a , sampling_rate=__a , **__a ) if text is not None: UpperCAmelCase_ = self.tokenizer(__a , **__a ) if text is None: return inputs elif audio is None: return encodings else: UpperCAmelCase_ = encodings["input_ids"] return inputs def _lowercase (self : List[Any] , *__a : Optional[Any] , **__a : Dict ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__a , **__a ) UpperCAmelCase_ = kwargs.pop("input_features" , __a ) UpperCAmelCase_ = kwargs.pop("labels" , __a ) if len(__a ) > 0: UpperCAmelCase_ = args[0] UpperCAmelCase_ = args[1:] if input_features is not None: UpperCAmelCase_ = self.feature_extractor.pad(__a , *__a , **__a ) if labels is not None: UpperCAmelCase_ = self.tokenizer.pad(__a , **__a ) if labels is None: return input_features elif input_features is None: return labels else: UpperCAmelCase_ = labels["input_ids"] return input_features def _lowercase (self : Tuple , *__a : List[Any] , **__a : Optional[int] ): return self.tokenizer.batch_decode(*__a , **__a ) def _lowercase (self : Any , *__a : Any , **__a : str ): return self.tokenizer.decode(*__a , **__a ) @contextmanager def _lowercase (self : Optional[Any] ): warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) UpperCAmelCase_ = True UpperCAmelCase_ = self.tokenizer yield UpperCAmelCase_ = self.feature_extractor UpperCAmelCase_ = False
415
0
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def _snake_case (*__lowercase): with open(__lowercase , 'r') as fh: fcntl.flock(__lowercase , fcntl.LOCK_EX) try: print(*__lowercase) finally: fcntl.flock(__lowercase , fcntl.LOCK_UN) snake_case__ : Optional[int] = int(os.environ["""LOCAL_RANK"""]) torch.cuda.set_device(local_rank) snake_case__ : List[str] = torch.device("""cuda""", local_rank) snake_case__ : List[Any] = socket.gethostname() snake_case__ : List[str] = f'[{hostname}-{local_rank}]' try: # test distributed dist.init_process_group("""nccl""") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank snake_case__ : Optional[Any] = dist.get_rank() snake_case__ : Optional[Any] = dist.get_world_size() printflock(f'{gpu} is OK (global rank: {rank}/{world_size})') dist.barrier() if rank == 0: printflock(f'pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}') except Exception: printflock(f'{gpu} is broken') raise
23
import numpy as np def _snake_case (__lowercase): return 1 / (1 + np.exp(-vector)) def _snake_case (__lowercase): return vector * sigmoid(__lowercase) if __name__ == "__main__": import doctest doctest.testmod()
23
1
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor snake_case__ : Dict = logging.get_logger(__name__) class _a ( A__ ): """simple docstring""" def __init__( self , *_snake_case , **_snake_case ): warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead." , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
702
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : Optional[int] = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[int] = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys snake_case__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
592
0
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class a__ ( a_ ): __lowerCAmelCase = (DDPMScheduler,) def __magic_name__ ( self , **_a ): lowercase : Dict = { "num_train_timesteps": 1_000, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**_a ) return config def __magic_name__ ( self ): for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_a ) def __magic_name__ ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_a , beta_end=_a ) def __magic_name__ ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_a ) def __magic_name__ ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_a ) def __magic_name__ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_a ) def __magic_name__ ( self ): self.check_over_configs(thresholding=_a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_a , prediction_type=_a , sample_max_value=_a , ) def __magic_name__ ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def __magic_name__ ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=_a ) def __magic_name__ ( self ): lowercase : Union[str, Any] = self.scheduler_classes[0] lowercase : Any = self.get_scheduler_config() lowercase : Dict = scheduler_class(**_a ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1E-5 def __magic_name__ ( self ): lowercase : Optional[int] = self.scheduler_classes[0] lowercase : Tuple = self.get_scheduler_config() lowercase : Dict = scheduler_class(**_a ) lowercase : Dict = len(_a ) lowercase : str = self.dummy_model() lowercase : Optional[int] = self.dummy_sample_deter lowercase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(_a ) ): # 1. predict noise residual lowercase : Optional[Any] = model(_a , _a ) # 2. predict previous mean of sample x_t-1 lowercase : str = scheduler.step(_a , _a , _a , generator=_a ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase : List[str] = pred_prev_sample lowercase : Dict = torch.sum(torch.abs(_a ) ) lowercase : List[Any] = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1E-3 def __magic_name__ ( self ): lowercase : Optional[int] = self.scheduler_classes[0] lowercase : Any = self.get_scheduler_config(prediction_type="v_prediction" ) lowercase : int = scheduler_class(**_a ) lowercase : str = len(_a ) lowercase : Optional[int] = self.dummy_model() lowercase : List[str] = self.dummy_sample_deter lowercase : Optional[Any] = torch.manual_seed(0 ) for t in reversed(range(_a ) ): # 1. predict noise residual lowercase : Union[str, Any] = model(_a , _a ) # 2. predict previous mean of sample x_t-1 lowercase : Optional[Any] = scheduler.step(_a , _a , _a , generator=_a ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase : Dict = pred_prev_sample lowercase : str = torch.sum(torch.abs(_a ) ) lowercase : Tuple = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1E-3 def __magic_name__ ( self ): lowercase : List[Any] = self.scheduler_classes[0] lowercase : Tuple = self.get_scheduler_config() lowercase : Tuple = scheduler_class(**_a ) lowercase : List[str] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_a ) lowercase : Union[str, Any] = scheduler.timesteps for i, timestep in enumerate(_a ): if i == len(_a ) - 1: lowercase : Any = -1 else: lowercase : Union[str, Any] = timesteps[i + 1] lowercase : Optional[int] = scheduler.previous_timestep(_a ) lowercase : Union[str, Any] = prev_t.item() self.assertEqual(_a , _a ) def __magic_name__ ( self ): lowercase : str = self.scheduler_classes[0] lowercase : List[str] = self.get_scheduler_config() lowercase : List[Any] = scheduler_class(**_a ) lowercase : Optional[int] = [100, 87, 50, 51, 0] with self.assertRaises(_a , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=_a ) def __magic_name__ ( self ): lowercase : Dict = self.scheduler_classes[0] lowercase : Union[str, Any] = self.get_scheduler_config() lowercase : Any = scheduler_class(**_a ) lowercase : int = [100, 87, 50, 1, 0] lowercase : Any = len(_a ) with self.assertRaises(_a , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a ) def __magic_name__ ( self ): lowercase : str = self.scheduler_classes[0] lowercase : Tuple = self.get_scheduler_config() lowercase : Optional[int] = scheduler_class(**_a ) lowercase : List[str] = [scheduler.config.num_train_timesteps] with self.assertRaises( _a , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=_a )
361
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a__ ( unittest.TestCase ): @property def __magic_name__ ( self ): torch.manual_seed(0 ) lowercase : str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __magic_name__ ( self ): lowercase : List[str] = self.dummy_uncond_unet lowercase : Dict = KarrasVeScheduler() lowercase : Any = KarrasVePipeline(unet=_a , scheduler=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) lowercase : Tuple = torch.manual_seed(0 ) lowercase : Tuple = pipe(num_inference_steps=2 , generator=_a , output_type="numpy" ).images lowercase : int = torch.manual_seed(0 ) lowercase : Tuple = pipe(num_inference_steps=2 , generator=_a , output_type="numpy" , return_dict=_a )[0] lowercase : Any = image[0, -3:, -3:, -1] lowercase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase : Tuple = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class a__ ( unittest.TestCase ): def __magic_name__ ( self ): lowercase : Tuple = "google/ncsnpp-celebahq-256" lowercase : str = UNetaDModel.from_pretrained(_a ) lowercase : Optional[Any] = KarrasVeScheduler() lowercase : Union[str, Any] = KarrasVePipeline(unet=_a , scheduler=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) lowercase : Tuple = torch.manual_seed(0 ) lowercase : Dict = pipe(num_inference_steps=20 , generator=_a , output_type="numpy" ).images lowercase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowercase : Optional[Any] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
361
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer _lowercase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast _lowercase = TaTokenizerFast _lowercase = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys _lowercase = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
713
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) _lowercase = 'bert-base-cased' _lowercase = 'fp16' _lowercase = 'bf16' _lowercase = [FPaa, BFaa] @require_fsdp @require_cuda class lowerCamelCase__ ( A__ ): def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' super().setUp() lowerCamelCase__: List[str] = dict( ACCELERATE_USE_FSDP="""true""" , MASTER_ADDR="""localhost""" , MASTER_PORT="""10999""" , RANK="""0""" , LOCAL_RANK="""0""" , WORLD_SIZE="""1""" , ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__a ): lowerCamelCase__: Union[str, Any] = self.dist_env.copy() lowerCamelCase__: int = f"""{i + 1}""" lowerCamelCase__: Any = strategy with mockenv_context(**__a ): lowerCamelCase__: Optional[int] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__a ): lowerCamelCase__: List[str] = self.dist_env.copy() lowerCamelCase__: List[str] = prefetch_policy with mockenv_context(**__a ): lowerCamelCase__: Dict = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__a ): lowerCamelCase__: str = self.dist_env.copy() lowerCamelCase__: Tuple = state_dict_type with mockenv_context(**__a ): lowerCamelCase__: int = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' lowerCamelCase__: str = AutoModel.from_pretrained(__a ) for policy in FSDP_AUTO_WRAP_POLICY: lowerCamelCase__: str = self.dist_env.copy() lowerCamelCase__: Union[str, Any] = policy if policy == "TRANSFORMER_BASED_WRAP": lowerCamelCase__: Union[str, Any] = """BertLayer""" elif policy == "SIZE_BASED_WRAP": lowerCamelCase__: Optional[Any] = """2000""" with mockenv_context(**__a ): lowerCamelCase__: Union[str, Any] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__a ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) lowerCamelCase__: Optional[Any] = self.dist_env.copy() lowerCamelCase__: str = """TRANSFORMER_BASED_WRAP""" lowerCamelCase__: str = """T5Layer""" with mockenv_context(**__a ): lowerCamelCase__: Dict = FullyShardedDataParallelPlugin() with self.assertRaises(__a ) as cm: fsdp_plugin.set_auto_wrap_policy(__a ) self.assertTrue("""Could not find the transformer layer class to wrap in the model.""" in str(cm.exception ) ) lowerCamelCase__: Union[str, Any] = self.dist_env.copy() lowerCamelCase__: int = """SIZE_BASED_WRAP""" lowerCamelCase__: str = """0""" with mockenv_context(**__a ): lowerCamelCase__: Any = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__a ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: lowerCamelCase__: Dict = self.dist_env.copy() lowerCamelCase__: Union[str, Any] = mp_dtype with mockenv_context(**__a ): lowerCamelCase__: List[str] = Accelerator() if mp_dtype == "fp16": lowerCamelCase__: Any = torch.floataa elif mp_dtype == "bf16": lowerCamelCase__: Dict = torch.bfloataa lowerCamelCase__: str = MixedPrecision(param_dtype=__a , reduce_dtype=__a , buffer_dtype=__a ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __a ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , __a ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__a ) def lowerCamelCase_ ( self : str ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: lowerCamelCase__: List[Any] = self.dist_env.copy() lowerCamelCase__: int = str(__a ).lower() with mockenv_context(**__a ): lowerCamelCase__: int = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__a ) ) @require_fsdp @require_multi_gpu @slow class lowerCamelCase__ ( A__ ): def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' super().setUp() lowerCamelCase__: List[Any] = 0.82 lowerCamelCase__: List[str] = [ """fsdp_shard_grad_op_transformer_based_wrap""", """fsdp_full_shard_transformer_based_wrap""", ] lowerCamelCase__: List[str] = { """multi_gpu_fp16""": 3200, """fsdp_shard_grad_op_transformer_based_wrap_fp16""": 2000, """fsdp_full_shard_transformer_based_wrap_fp16""": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } lowerCamelCase__: List[str] = 160 lowerCamelCase__: Optional[int] = 160 lowerCamelCase__: Optional[int] = inspect.getfile(accelerate.test_utils ) lowerCamelCase__: Any = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps"""] ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowerCamelCase__: List[str] = os.path.join(self.test_scripts_folder , """test_performance.py""" ) lowerCamelCase__: Dict = ["""accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp"""] for config in self.performance_configs: lowerCamelCase__: Dict = cmd.copy() for i, strategy in enumerate(__a ): if strategy.lower() in config: cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) break if "fp32" in config: cmd_config.append("""--mixed_precision=no""" ) else: cmd_config.append("""--mixed_precision=fp16""" ) if "cpu_offload" in config: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", f"""--performance_lower_bound={self.performance_lower_bound}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) def lowerCamelCase_ ( self : int ): '''simple docstring''' lowerCamelCase__: str = os.path.join(self.test_scripts_folder , """test_checkpointing.py""" ) lowerCamelCase__: Optional[Any] = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp""", """--mixed_precision=fp16""", """--fsdp_transformer_layer_cls_to_wrap=BertLayer""", ] for i, strategy in enumerate(__a ): lowerCamelCase__: Optional[Any] = cmd.copy() cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) if strategy != "FULL_SHARD": continue lowerCamelCase__: Union[str, Any] = len(__a ) for state_dict_type in FSDP_STATE_DICT_TYPE: lowerCamelCase__: Dict = cmd_config[:state_dict_config_index] cmd_config.append(f"""--fsdp_state_dict_type={state_dict_type}""" ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", """--partial_train_epoch=1""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) lowerCamelCase__: Union[str, Any] = cmd_config[:-1] lowerCamelCase__: List[Any] = os.path.join(self.tmpdir , """epoch_0""" ) cmd_config.extend( [ f"""--resume_from_checkpoint={resume_from_checkpoint}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__: str = os.path.join(self.test_scripts_folder , """test_peak_memory_usage.py""" ) lowerCamelCase__: int = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): lowerCamelCase__: str = cmd.copy() if "fp16" in spec: cmd_config.extend(["""--mixed_precision=fp16"""] ) else: cmd_config.extend(["""--mixed_precision=no"""] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["""--use_fsdp"""] ) for i, strategy in enumerate(__a ): if strategy.lower() in spec: cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) break if "cpu_offload" in spec: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", f"""--peak_memory_upper_bound={peak_mem_upper_bound}""", f"""--n_train={self.n_train}""", f"""--n_val={self.n_val}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() )
242
0
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters a = (7_2_0, 1_2_8_0) # Height, Width a = (0.4, 0.6) # if height or width lower than this scale, drop it. a = 1 / 1_0_0 a = '' a = '' a = '' a = 2_5_0 def UpperCAmelCase_ ( ): lowercase_ , lowercase_ = get_dataset(UpperCAmelCase__ , UpperCAmelCase__ ) for index in range(UpperCAmelCase__ ): lowercase_ = random.sample(range(len(UpperCAmelCase__ ) ) , 4 ) lowercase_ , lowercase_ , lowercase_ = update_image_and_anno( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , filter_scale=UpperCAmelCase__ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowercase_ = random_chars(3_2 ) lowercase_ = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] lowercase_ = F'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(F'''{file_root}.jpg''' , UpperCAmelCase__ , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(F'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) lowercase_ = [] for anno in new_annos: lowercase_ = anno[3] - anno[1] lowercase_ = anno[4] - anno[2] lowercase_ = anno[1] + width / 2 lowercase_ = anno[2] + height / 2 lowercase_ = F'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(UpperCAmelCase__ ) with open(F'''{file_root}.txt''' , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = [] lowercase_ = [] for label_file in glob.glob(os.path.join(UpperCAmelCase__ , """*.txt""" ) ): lowercase_ = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(UpperCAmelCase__ ) as in_file: lowercase_ = in_file.readlines() lowercase_ = os.path.join(UpperCAmelCase__ , F'''{label_name}.jpg''' ) lowercase_ = [] for obj_list in obj_lists: lowercase_ = obj_list.rstrip("""\n""" ).split(""" """ ) lowercase_ = float(obj[1] ) - float(obj[3] ) / 2 lowercase_ = float(obj[2] ) - float(obj[4] ) / 2 lowercase_ = float(obj[1] ) + float(obj[3] ) / 2 lowercase_ = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(UpperCAmelCase__ ) labels.append(UpperCAmelCase__ ) return img_paths, labels def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = 0.0 , ): lowercase_ = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) lowercase_ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowercase_ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowercase_ = int(scale_x * output_size[1] ) lowercase_ = int(scale_y * output_size[0] ) lowercase_ = [] lowercase_ = [] for i, index in enumerate(UpperCAmelCase__ ): lowercase_ = all_img_list[index] path_list.append(UpperCAmelCase__ ) lowercase_ = all_annos[index] lowercase_ = cva.imread(UpperCAmelCase__ ) if i == 0: # top-left lowercase_ = cva.resize(UpperCAmelCase__ , (divid_point_x, divid_point_y) ) lowercase_ = img for bbox in img_annos: lowercase_ = bbox[1] * scale_x lowercase_ = bbox[2] * scale_y lowercase_ = bbox[3] * scale_x lowercase_ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right lowercase_ = cva.resize(UpperCAmelCase__ , (output_size[1] - divid_point_x, divid_point_y) ) lowercase_ = img for bbox in img_annos: lowercase_ = scale_x + bbox[1] * (1 - scale_x) lowercase_ = bbox[2] * scale_y lowercase_ = scale_x + bbox[3] * (1 - scale_x) lowercase_ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left lowercase_ = cva.resize(UpperCAmelCase__ , (divid_point_x, output_size[0] - divid_point_y) ) lowercase_ = img for bbox in img_annos: lowercase_ = bbox[1] * scale_x lowercase_ = scale_y + bbox[2] * (1 - scale_y) lowercase_ = bbox[3] * scale_x lowercase_ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right lowercase_ = cva.resize( UpperCAmelCase__ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) lowercase_ = img for bbox in img_annos: lowercase_ = scale_x + bbox[1] * (1 - scale_x) lowercase_ = scale_y + bbox[2] * (1 - scale_y) lowercase_ = scale_x + bbox[3] * (1 - scale_x) lowercase_ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: lowercase_ = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def UpperCAmelCase_ ( UpperCAmelCase__ ): assert number_char > 1, "The number of character should greater than 1" lowercase_ = ascii_lowercase + digits return "".join(random.choice(UpperCAmelCase__ ) for _ in range(UpperCAmelCase__ ) ) if __name__ == "__main__": main() print('DONE ✅')
412
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class UpperCamelCase__ : def __init__( self : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple=13 , UpperCamelCase__ : int=10 , UpperCamelCase__ : Optional[int]=3 , UpperCamelCase__ : Any=2 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : Tuple=2 , UpperCamelCase__ : int=True , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Any=32 , UpperCamelCase__ : Dict=5 , UpperCamelCase__ : Optional[Any]=4 , UpperCamelCase__ : Any=37 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Optional[int]=10 , UpperCamelCase__ : Optional[Any]=0.02 , UpperCamelCase__ : Any=0.9 , UpperCamelCase__ : Dict=None , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = num_channels lowercase_ = patch_size lowercase_ = tubelet_size lowercase_ = num_frames lowercase_ = is_training lowercase_ = use_labels lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = mask_ratio lowercase_ = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowercase_ = (image_size // patch_size) ** 2 lowercase_ = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowercase_ = int(mask_ratio * self.seq_length ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = VideoMAEModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] ): '''simple docstring''' lowercase_ = VideoMAEForPreTraining(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase_ = torch.ones((self.num_masks,) ) lowercase_ = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowercase_ = mask.expand(self.batch_size , -1 ).bool() lowercase_ = model(UpperCamelCase__ , UpperCamelCase__ ) # model only returns predictions for masked patches lowercase_ = mask.sum().item() lowercase_ = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : str = ( {'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Optional[Any] = False __SCREAMING_SNAKE_CASE : str = False __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Dict = False def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = VideoMAEModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str=False ): '''simple docstring''' lowercase_ = copy.deepcopy(UpperCamelCase__ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase_ = torch.ones((self.model_tester.num_masks,) ) lowercase_ = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowercase_ = mask.expand(self.model_tester.batch_size , -1 ).bool() lowercase_ = bool_masked_pos.to(UpperCamelCase__ ) if return_labels: if model_class in [ *get_values(UpperCamelCase__ ), ]: lowercase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) return inputs_dict def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""VideoMAE does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCamelCase__ ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase__ ) @slow def UpperCAmelCase__ ( self : str ): '''simple docstring''' for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = VideoMAEModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' if not self.has_attentions: pass else: lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = True for model_class in self.all_model_classes: lowercase_ = self.model_tester.seq_length - self.model_tester.num_masks lowercase_ = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowercase_ = True lowercase_ = False lowercase_ = True lowercase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) lowercase_ = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase_ = True lowercase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) lowercase_ = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase_ = len(UpperCamelCase__ ) # Check attention is always last and order is fine lowercase_ = True lowercase_ = True lowercase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(out_len + 1 , len(UpperCamelCase__ ) ) lowercase_ = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' def check_hidden_states_output(UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Tuple ): lowercase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) lowercase_ = outputs.hidden_states lowercase_ = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) lowercase_ = self.model_tester.seq_length - self.model_tester.num_masks lowercase_ = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' pass def UpperCAmelCase_ ( ): lowercase_ = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) lowercase_ = np.load(UpperCAmelCase__ ) return list(UpperCAmelCase__ ) @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : Any ): '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = VideoMAEForVideoClassification.from_pretrained("""MCG-NJU/videomae-base-finetuned-kinetics""" ).to( UpperCamelCase__ ) lowercase_ = self.default_image_processor lowercase_ = prepare_video() lowercase_ = image_processor(UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowercase_ = model(**UpperCamelCase__ ) # verify the logits lowercase_ = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowercase_ = torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" ).to(UpperCamelCase__ ) lowercase_ = self.default_image_processor lowercase_ = prepare_video() lowercase_ = image_processor(UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # add boolean mask, indicating which patches to mask lowercase_ = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) lowercase_ = torch.load(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowercase_ = model(**UpperCamelCase__ ) # verify the logits lowercase_ = torch.Size([1, 1_408, 1_536] ) lowercase_ = torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] , device=UpperCamelCase__ ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowercase_ = torch.tensor([0.5_142] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.loss , UpperCamelCase__ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowercase_ = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" , norm_pix_loss=UpperCamelCase__ ).to( UpperCamelCase__ ) with torch.no_grad(): lowercase_ = model(**UpperCamelCase__ ) lowercase_ = torch.tensor(torch.tensor([0.6_469] ) , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.loss , UpperCamelCase__ , atol=1e-4 ) )
412
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _A : Tuple = logging.get_logger(__name__) _A : Optional[Any] = {"""vocab_file""": """vocab.txt"""} _A : str = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } _A : Any = { """YituTech/conv-bert-base""": 5_12, """YituTech/conv-bert-medium-small""": 5_12, """YituTech/conv-bert-small""": 5_12, } _A : Optional[int] = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class a__ ( a_ ): __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ConvBertTokenizer def __init__( self , _a=None , _a=None , _a=True , _a="[UNK]" , _a="[SEP]" , _a="[PAD]" , _a="[CLS]" , _a="[MASK]" , _a=True , _a=None , **_a , ): super().__init__( _a , tokenizer_file=_a , do_lower_case=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , tokenize_chinese_chars=_a , strip_accents=_a , **_a , ) lowercase : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _a ) != do_lower_case or normalizer_state.get("strip_accents" , _a ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _a ) != tokenize_chinese_chars ): lowercase : Any = getattr(_a , normalizer_state.pop("type" ) ) lowercase : Dict = do_lower_case lowercase : Dict = strip_accents lowercase : Optional[int] = tokenize_chinese_chars lowercase : Dict = normalizer_class(**_a ) lowercase : int = do_lower_case def __magic_name__ ( self , _a , _a=None ): lowercase : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __magic_name__ ( self , _a , _a = None ): lowercase : Tuple = [self.sep_token_id] lowercase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__ ( self , _a , _a = None ): lowercase : Optional[int] = self._tokenizer.model.save(_a , name=_a ) return tuple(_a )
518
"""simple docstring""" import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py _A : Any = """.""" if __name__ == "__main__": _A : Any = os.path.join(REPO_PATH, """utils/documentation_tests.txt""") _A : Any = [] _A : List[Any] = [] with open(doctest_file_path) as fp: for line in fp: _A : int = line.strip() _A : Optional[Any] = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: _A : Union[str, Any] = """\n""".join(non_existent_paths) raise ValueError(F"`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}") if all_paths != sorted(all_paths): raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
518
1
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowerCAmelCase : __lowerCamelCase = 42 # [batch_size x 3] __lowerCamelCase = 42 # [batch_size x 3] __lowerCamelCase = 42 # [batch_size x 3] __lowerCamelCase = 42 # [batch_size x 3] __lowerCamelCase = 42 __lowerCamelCase = 42 __lowerCamelCase = 42 __lowerCamelCase = 42 __lowerCamelCase = 42 def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' lowercase__ = torch.arange(self.height * self.width ) lowercase__ = torch.stack( [ pixel_indices % self.width, torch.div(_lowercase , self.width , rounding_mode="trunc" ), ] , axis=1 , ) return coords @property def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' lowercase__ , *lowercase__ = self.shape lowercase__ = int(np.prod(_lowercase ) ) lowercase__ = self.get_image_coords() lowercase__ = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) lowercase__ = self.get_camera_rays(_lowercase ) lowercase__ = rays.view(_lowercase , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def UpperCAmelCase ( self :Union[str, Any] , _lowercase :torch.Tensor ): '''simple docstring''' lowercase__ , *lowercase__ , lowercase__ = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] lowercase__ = coords.view(_lowercase , -1 , 2 ) lowercase__ = self.resolution() lowercase__ = self.fov() lowercase__ = (flat.float() / (res - 1)) * 2 - 1 lowercase__ = fracs * torch.tan(fov / 2 ) lowercase__ = fracs.view(_lowercase , -1 , 2 ) lowercase__ = ( self.z.view(_lowercase , 1 , 3 ) + self.x.view(_lowercase , 1 , 3 ) * fracs[:, :, :1] + self.y.view(_lowercase , 1 , 3 ) * fracs[:, :, 1:] ) lowercase__ = directions / directions.norm(dim=-1 , keepdim=_lowercase ) lowercase__ = torch.stack( [ torch.broadcast_to(self.origin.view(_lowercase , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(_lowercase , *_lowercase , 2 , 3 ) def UpperCAmelCase ( self :Optional[Any] , _lowercase :int , _lowercase :int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_lowercase , height=_lowercase , x_fov=self.x_fov , y_fov=self.y_fov , ) def _A ( __magic_name__ ): lowercase__ = [] lowercase__ = [] lowercase__ = [] lowercase__ = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): lowercase__ = np.array([np.sin(__magic_name__ ), np.cos(__magic_name__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) lowercase__ = -z * 4 lowercase__ = np.array([np.cos(__magic_name__ ), -np.sin(__magic_name__ ), 0.0] ) lowercase__ = np.cross(__magic_name__ , __magic_name__ ) origins.append(__magic_name__ ) xs.append(__magic_name__ ) ys.append(__magic_name__ ) zs.append(__magic_name__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__magic_name__ , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__magic_name__ , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__magic_name__ , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__magic_name__ , axis=0 ) ).float() , width=__magic_name__ , height=__magic_name__ , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__magic_name__ )) , )
655
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer _snake_case = logging.get_logger(__name__) class lowerCAmelCase ( lowercase_ ): __lowerCamelCase = 'AutoTokenizer' __lowerCamelCase = ['tokenizer'] __lowerCamelCase = { 'semantic_prompt': 1, 'coarse_prompt': 2, 'fine_prompt': 2, } def __init__( self :Dict , _lowercase :List[str] , _lowercase :List[Any]=None ): '''simple docstring''' super().__init__(_lowercase ) lowercase__ = speaker_embeddings @classmethod def UpperCAmelCase ( cls :Any , _lowercase :int , _lowercase :str="speaker_embeddings_path.json" , **_lowercase :List[str] ): '''simple docstring''' if speaker_embeddings_dict_path is not None: lowercase__ = get_file_from_repo( _lowercase , _lowercase , subfolder=kwargs.pop("subfolder" , _lowercase ) , cache_dir=kwargs.pop("cache_dir" , _lowercase ) , force_download=kwargs.pop("force_download" , _lowercase ) , proxies=kwargs.pop("proxies" , _lowercase ) , resume_download=kwargs.pop("resume_download" , _lowercase ) , local_files_only=kwargs.pop("local_files_only" , _lowercase ) , use_auth_token=kwargs.pop("use_auth_token" , _lowercase ) , revision=kwargs.pop("revision" , _lowercase ) , ) if speaker_embeddings_path is None: logger.warning( f'''`{os.path.join(_lowercase , _lowercase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) lowercase__ = None else: with open(_lowercase ) as speaker_embeddings_json: lowercase__ = json.load(_lowercase ) else: lowercase__ = None lowercase__ = AutoTokenizer.from_pretrained(_lowercase , **_lowercase ) return cls(tokenizer=_lowercase , speaker_embeddings=_lowercase ) def UpperCAmelCase ( self :Any , _lowercase :Any , _lowercase :List[str]="speaker_embeddings_path.json" , _lowercase :Any="speaker_embeddings" , _lowercase :bool = False , **_lowercase :Any , ): '''simple docstring''' if self.speaker_embeddings is not None: os.makedirs(os.path.join(_lowercase , _lowercase , "v2" ) , exist_ok=_lowercase ) lowercase__ = {} lowercase__ = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": lowercase__ = self._load_voice_preset(_lowercase ) lowercase__ = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["repo_or_path"] , _lowercase , f'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=_lowercase , ) lowercase__ = os.path.join(_lowercase , f'''{prompt_key}_{key}.npy''' ) lowercase__ = tmp_dict with open(os.path.join(_lowercase , _lowercase ) , "w" ) as fp: json.dump(_lowercase , _lowercase ) super().save_pretrained(_lowercase , _lowercase , **_lowercase ) def UpperCAmelCase ( self :Optional[int] , _lowercase :str = None , **_lowercase :List[Any] ): '''simple docstring''' lowercase__ = self.speaker_embeddings[voice_preset] lowercase__ = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) lowercase__ = get_file_from_repo( self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] , subfolder=kwargs.pop("subfolder" , _lowercase ) , cache_dir=kwargs.pop("cache_dir" , _lowercase ) , force_download=kwargs.pop("force_download" , _lowercase ) , proxies=kwargs.pop("proxies" , _lowercase ) , resume_download=kwargs.pop("resume_download" , _lowercase ) , local_files_only=kwargs.pop("local_files_only" , _lowercase ) , use_auth_token=kwargs.pop("use_auth_token" , _lowercase ) , revision=kwargs.pop("revision" , _lowercase ) , ) if path is None: raise ValueError( f'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) lowercase__ = np.load(_lowercase ) return voice_preset_dict def UpperCAmelCase ( self :Optional[int] , _lowercase :Optional[dict] = None ): '''simple docstring''' for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self :Optional[Any] , _lowercase :Optional[Any]=None , _lowercase :List[str]=None , _lowercase :List[str]="pt" , _lowercase :List[Any]=2_56 , _lowercase :List[str]=False , _lowercase :Union[str, Any]=True , _lowercase :Dict=False , **_lowercase :Tuple , ): '''simple docstring''' if voice_preset is not None and not isinstance(_lowercase , _lowercase ): if ( isinstance(_lowercase , _lowercase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): lowercase__ = self._load_voice_preset(_lowercase ) else: if isinstance(_lowercase , _lowercase ) and not voice_preset.endswith(".npz" ): lowercase__ = voice_preset + ".npz" lowercase__ = np.load(_lowercase ) if voice_preset is not None: self._validate_voice_preset_dict(_lowercase , **_lowercase ) lowercase__ = BatchFeature(data=_lowercase , tensor_type=_lowercase ) lowercase__ = self.tokenizer( _lowercase , return_tensors=_lowercase , padding="max_length" , max_length=_lowercase , return_attention_mask=_lowercase , return_token_type_ids=_lowercase , add_special_tokens=_lowercase , **_lowercase , ) if voice_preset is not None: lowercase__ = voice_preset return encoded_text
655
1
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): UpperCAmelCase = 'pt' elif is_tf_available(): UpperCAmelCase = 'tf' else: UpperCAmelCase = 'jax' class __snake_case( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : int = ByTaTokenizer UpperCAmelCase : Optional[Any] = False def __snake_case ( self ) -> List[str]: super().setUp() lowerCAmelCase = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __snake_case ( self ) -> Tuple: return ByTaTokenizer.from_pretrained("""google/byt5-small""" ) def __snake_case ( self , **A_ ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def __snake_case ( self , A_ , A_=False , A_=20 , A_=5 ) -> Tuple[str, list]: lowerCAmelCase = [] for i in range(len(_lowerCamelCase ) ): try: lowerCAmelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=_lowerCamelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCAmelCase = list(filter(lambda A_ : re.match(r"""^[ a-zA-Z]+$""" , t[1] ) , _lowerCamelCase ) ) lowerCAmelCase = list(filter(lambda A_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_lowerCamelCase ) , _lowerCamelCase ) ) if max_length is not None and len(_lowerCamelCase ) > max_length: lowerCAmelCase = toks[:max_length] if min_length is not None and len(_lowerCamelCase ) < min_length and len(_lowerCamelCase ) > 0: while len(_lowerCamelCase ) < min_length: lowerCAmelCase = toks + toks # toks_str = [t[1] for t in toks] lowerCAmelCase = [t[0] for t in toks] # Ensure consistency lowerCAmelCase = tokenizer.decode(_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) if " " not in output_txt and len(_lowerCamelCase ) > 1: lowerCAmelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_lowerCamelCase ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_lowerCamelCase ) ) if with_prefix_space: lowerCAmelCase = """ """ + output_txt lowerCAmelCase = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) return output_txt, output_ids def __snake_case ( self ) -> Any: lowerCAmelCase = self.ta_base_tokenizer lowerCAmelCase = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] ) lowerCAmelCase = tokenizer(["""hi""", """I went to the gym""", """"""] ) self.assertListEqual(batch_with_eos_added["""input_ids"""] , batch_without_eos_added["""input_ids"""] ) def __snake_case ( self ) -> Optional[int]: lowerCAmelCase = self.ta_base_tokenizer lowerCAmelCase = """Unicode €.""" lowerCAmelCase = tokenizer(_lowerCamelCase ) lowerCAmelCase = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["""input_ids"""] , _lowerCamelCase ) # decoding lowerCAmelCase = tokenizer.decode(_lowerCamelCase ) self.assertEqual(_lowerCamelCase , """Unicode €.</s>""" ) lowerCAmelCase = tokenizer("""e è é ê ë""" ) lowerCAmelCase = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["""input_ids"""] , _lowerCamelCase ) # decoding lowerCAmelCase = tokenizer.decode(_lowerCamelCase ) self.assertEqual(_lowerCamelCase , """e è é ê ë</s>""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """e è é ê ë</s>""" ) def __snake_case ( self ) -> List[Any]: lowerCAmelCase = self.ta_base_tokenizer lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off lowerCAmelCase = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on lowerCAmelCase = tokenizer(_lowerCamelCase , padding=_lowerCamelCase , return_tensors=_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) if FRAMEWORK != "jax": lowerCAmelCase = list(batch.input_ids.numpy()[0] ) else: lowerCAmelCase = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __snake_case ( self ) -> List[Any]: lowerCAmelCase = self.ta_base_tokenizer lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] lowerCAmelCase = tokenizer(_lowerCamelCase , padding=_lowerCamelCase , return_tensors=_lowerCamelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , _lowerCamelCase ) self.assertIn("""attention_mask""" , _lowerCamelCase ) self.assertNotIn("""decoder_input_ids""" , _lowerCamelCase ) self.assertNotIn("""decoder_attention_mask""" , _lowerCamelCase ) def __snake_case ( self ) -> int: lowerCAmelCase = self.ta_base_tokenizer lowerCAmelCase = [ """Summary of the text.""", """Another summary.""", ] lowerCAmelCase = tokenizer( text_target=_lowerCamelCase , max_length=32 , padding="""max_length""" , truncation=_lowerCamelCase , return_tensors=_lowerCamelCase ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def __snake_case ( self ) -> Optional[int]: lowerCAmelCase = self.ta_base_tokenizer lowerCAmelCase = ["""A long paragraph for summarization. </s>"""] lowerCAmelCase = ["""Summary of the text. </s>"""] # fmt: off lowerCAmelCase = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] lowerCAmelCase = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on lowerCAmelCase = tokenizer(_lowerCamelCase , text_target=_lowerCamelCase ) self.assertEqual(_lowerCamelCase , batch["""input_ids"""][0] ) self.assertEqual(_lowerCamelCase , batch["""labels"""][0] ) def __snake_case ( self ) -> List[str]: lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = """ He is very happy, UNwant\u00E9d,running""" lowerCAmelCase = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) tokenizer.save_pretrained(_lowerCamelCase ) lowerCAmelCase = tokenizer.__class__.from_pretrained(_lowerCamelCase ) lowerCAmelCase = after_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) shutil.rmtree(_lowerCamelCase ) lowerCAmelCase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) lowerCAmelCase = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) lowerCAmelCase = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) tokenizer.save_pretrained(_lowerCamelCase ) lowerCAmelCase = tokenizer.__class__.from_pretrained(_lowerCamelCase ) lowerCAmelCase = after_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowerCAmelCase = tokenizer.__class__.from_pretrained(_lowerCamelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_lowerCamelCase ) def __snake_case ( self ) -> str: lowerCAmelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCamelCase ) with open(os.path.join(_lowerCamelCase , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: lowerCAmelCase = json.load(_lowerCamelCase ) with open(os.path.join(_lowerCamelCase , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: lowerCAmelCase = json.load(_lowerCamelCase ) lowerCAmelCase = [f'<extra_id_{i}>' for i in range(125 )] lowerCAmelCase = added_tokens_extra_ids + [ """an_additional_special_token""" ] lowerCAmelCase = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(_lowerCamelCase , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(_lowerCamelCase , _lowerCamelCase ) with open(os.path.join(_lowerCamelCase , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(_lowerCamelCase , _lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCAmelCase = tokenizer_class.from_pretrained( _lowerCamelCase , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCAmelCase = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=_lowerCamelCase )] lowerCAmelCase = tokenizer_class.from_pretrained( _lowerCamelCase , additional_special_tokens=_lowerCamelCase , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def __snake_case ( self ) -> Optional[Any]: lowerCAmelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCamelCase ) lowerCAmelCase = tokenizer_class.from_pretrained(_lowerCamelCase ) self.assertTrue(tokenizer.decode([255] ) == """""" ) def __snake_case ( self ) -> List[str]: pass def __snake_case ( self ) -> Union[str, Any]: pass def __snake_case ( self ) -> List[Any]: pass def __snake_case ( self ) -> Union[str, Any]: pass def __snake_case ( self ) -> str: lowerCAmelCase = self.get_tokenizers(fast=_lowerCamelCase , do_lower_case=_lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): lowerCAmelCase = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""] lowerCAmelCase = tokenizer.convert_tokens_to_string(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) def __snake_case ( self ) -> Any: lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): lowerCAmelCase = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] lowerCAmelCase = 0 lowerCAmelCase = tokenizer.convert_ids_to_tokens( _lowerCamelCase , skip_special_tokens=_lowerCamelCase ) for attr in attributes_list: setattr(_lowerCamelCase , attr + """_id""" , _lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase , attr + """_id""" ) , _lowerCamelCase ) setattr(_lowerCamelCase , attr + """_id""" , _lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase , attr + """_id""" ) , _lowerCamelCase ) setattr(_lowerCamelCase , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(_lowerCamelCase , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(_lowerCamelCase , """additional_special_tokens_ids""" ) , [] ) setattr(_lowerCamelCase , """additional_special_tokens_ids""" , [token_id_to_test_setters] ) self.assertListEqual(getattr(_lowerCamelCase , """additional_special_tokens""" ) , [token_to_test_setters] ) self.assertListEqual(getattr(_lowerCamelCase , """additional_special_tokens_ids""" ) , [token_id_to_test_setters] )
712
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def _snake_case ( _SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple: """simple docstring""" lowerCAmelCase = SwinvaConfig() lowerCAmelCase = swinva_name.split("""_""" ) lowerCAmelCase = name_split[1] if "to" in name_split[3]: lowerCAmelCase = int(name_split[3][-3:] ) else: lowerCAmelCase = int(name_split[3] ) if "to" in name_split[2]: lowerCAmelCase = int(name_split[2][-2:] ) else: lowerCAmelCase = int(name_split[2][6:] ) if model_size == "tiny": lowerCAmelCase = 96 lowerCAmelCase = (2, 2, 6, 2) lowerCAmelCase = (3, 6, 12, 24) elif model_size == "small": lowerCAmelCase = 96 lowerCAmelCase = (2, 2, 18, 2) lowerCAmelCase = (3, 6, 12, 24) elif model_size == "base": lowerCAmelCase = 128 lowerCAmelCase = (2, 2, 18, 2) lowerCAmelCase = (4, 8, 16, 32) else: lowerCAmelCase = 192 lowerCAmelCase = (2, 2, 18, 2) lowerCAmelCase = (6, 12, 24, 48) if "to" in swinva_name: lowerCAmelCase = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): lowerCAmelCase = 21_841 lowerCAmelCase = """huggingface/label-files""" lowerCAmelCase = """imagenet-22k-id2label.json""" lowerCAmelCase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowerCAmelCase = idalabel lowerCAmelCase = {v: k for k, v in idalabel.items()} else: lowerCAmelCase = 1_000 lowerCAmelCase = """huggingface/label-files""" lowerCAmelCase = """imagenet-1k-id2label.json""" lowerCAmelCase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowerCAmelCase = idalabel lowerCAmelCase = {v: k for k, v in idalabel.items()} lowerCAmelCase = img_size lowerCAmelCase = num_classes lowerCAmelCase = embed_dim lowerCAmelCase = depths lowerCAmelCase = num_heads lowerCAmelCase = window_size return config def _snake_case ( _SCREAMING_SNAKE_CASE : Dict ) -> List[Any]: """simple docstring""" if "patch_embed.proj" in name: lowerCAmelCase = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowerCAmelCase = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: lowerCAmelCase = """encoder.""" + name if "attn.proj" in name: lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowerCAmelCase = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: lowerCAmelCase = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: lowerCAmelCase = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: lowerCAmelCase = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: lowerCAmelCase = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if name == "norm.weight": lowerCAmelCase = """layernorm.weight""" if name == "norm.bias": lowerCAmelCase = """layernorm.bias""" if "head" in name: lowerCAmelCase = name.replace("""head""" , """classifier""" ) else: lowerCAmelCase = """swinv2.""" + name return name def _snake_case ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : str ) -> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCAmelCase = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: lowerCAmelCase = key.split(""".""" ) lowerCAmelCase = int(key_split[1] ) lowerCAmelCase = int(key_split[3] ) lowerCAmelCase = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCAmelCase = val[:dim, :] lowerCAmelCase = val[dim : dim * 2, :] lowerCAmelCase = val[-dim:, :] else: lowerCAmelCase = val[:dim] lowerCAmelCase = val[ dim : dim * 2 ] lowerCAmelCase = val[-dim:] else: lowerCAmelCase = val return orig_state_dict def _snake_case ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() lowerCAmelCase = get_swinva_config(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swinva_name.replace("""_""" , """-""" ) ) ) lowerCAmelCase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) lowerCAmelCase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) lowerCAmelCase = timm_model(inputs["""pixel_values"""] ) lowerCAmelCase = model(**_SCREAMING_SNAKE_CASE ).logits assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) print(f'Saving model {swinva_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) model.push_to_hub( repo_path_or_name=Path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , organization="""nandwalritik""" , commit_message="""Add model""" , ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swinv2_name', default='swinv2_tiny_patch4_window8_256', type=str, help='Name of the Swinv2 timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCAmelCase = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
344
0
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): _a = """gptj""" _a = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowerCAmelCase=50_400 , lowerCAmelCase=2_048 , lowerCAmelCase=4_096 , lowerCAmelCase=28 , lowerCAmelCase=16 , lowerCAmelCase=64 , lowerCAmelCase=None , lowerCAmelCase="gelu_new" , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=1e-5 , lowerCAmelCase=0.02 , lowerCAmelCase=True , lowerCAmelCase=50_256 , lowerCAmelCase=50_256 , lowerCAmelCase=False , **lowerCAmelCase , ) -> Optional[Any]: '''simple docstring''' _lowercase =vocab_size _lowercase =n_positions _lowercase =n_embd _lowercase =n_layer _lowercase =n_head _lowercase =n_inner _lowercase =rotary_dim _lowercase =activation_function _lowercase =resid_pdrop _lowercase =embd_pdrop _lowercase =attn_pdrop _lowercase =layer_norm_epsilon _lowercase =initializer_range _lowercase =use_cache _lowercase =bos_token_id _lowercase =eos_token_id super().__init__( bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , tie_word_embeddings=lowerCAmelCase , **lowerCAmelCase ) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): def __init__( self , lowerCAmelCase , lowerCAmelCase = "default" , lowerCAmelCase = None , lowerCAmelCase = False , ) -> Optional[int]: '''simple docstring''' super().__init__(lowerCAmelCase , task=lowerCAmelCase , patching_specs=lowerCAmelCase , use_past=lowerCAmelCase ) if not getattr(self._config , 'pad_token_id' , lowerCAmelCase ): # TODO: how to do that better? _lowercase =0 @property def A__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' _lowercase =OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction='inputs' ) _lowercase ={0: 'batch', 1: 'past_sequence + sequence'} else: _lowercase ={0: 'batch', 1: 'sequence'} return common_inputs @property def A__ ( self ) -> int: '''simple docstring''' return self._config.n_layer @property def A__ ( self ) -> int: '''simple docstring''' return self._config.n_head def A__ ( self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' _lowercase =super(lowerCAmelCase , self ).generate_dummy_inputs( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) # We need to order the input in the way they appears in the forward() _lowercase =OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _lowercase , _lowercase =common_inputs['input_ids'].shape # Not using the same length for past_key_values _lowercase =seqlen + 2 _lowercase =( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _lowercase =[ (torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) for _ in range(self.num_layers ) ] _lowercase =common_inputs['attention_mask'] if self.use_past: _lowercase =ordered_inputs['attention_mask'].dtype _lowercase =torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowerCAmelCase , lowerCAmelCase , dtype=lowerCAmelCase )] , dim=1 ) return ordered_inputs @property def A__ ( self ) -> int: '''simple docstring''' return 13
291
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): _a = """timesformer""" def __init__( self , lowerCAmelCase=224 , lowerCAmelCase=16 , lowerCAmelCase=3 , lowerCAmelCase=8 , lowerCAmelCase=768 , lowerCAmelCase=12 , lowerCAmelCase=12 , lowerCAmelCase=3_072 , lowerCAmelCase="gelu" , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.02 , lowerCAmelCase=1e-6 , lowerCAmelCase=True , lowerCAmelCase="divided_space_time" , lowerCAmelCase=0 , **lowerCAmelCase , ) -> Any: '''simple docstring''' super().__init__(**lowerCAmelCase ) _lowercase =image_size _lowercase =patch_size _lowercase =num_channels _lowercase =num_frames _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_act _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =initializer_range _lowercase =layer_norm_eps _lowercase =qkv_bias _lowercase =attention_type _lowercase =drop_path_rate
291
1
"""simple docstring""" import argparse import os import re import packaging.version lowerCAmelCase_ = '''examples/''' lowerCAmelCase_ = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } lowerCAmelCase_ = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } lowerCAmelCase_ = '''README.md''' def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> List[Any]: with open(__SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: _SCREAMING_SNAKE_CASE : Dict = f.read() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = REPLACE_PATTERNS[pattern] _SCREAMING_SNAKE_CASE : List[Any] = replace.replace("""VERSION""" , __SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Any = re_pattern.sub(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) with open(__SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(__SCREAMING_SNAKE_CASE ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE )-> int: for folder, directories, fnames in os.walk(__SCREAMING_SNAKE_CASE ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , pattern="""examples""" ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False )-> Optional[int]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if not patch: update_version_in_examples(__SCREAMING_SNAKE_CASE ) def lowerCamelCase_()-> Optional[int]: _SCREAMING_SNAKE_CASE : Tuple = """🤗 Transformers currently provides the following architectures""" _SCREAMING_SNAKE_CASE : Any = """1. Want to contribute a new model?""" with open(__SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: _SCREAMING_SNAKE_CASE : Any = f.readlines() # Find the start of the list. _SCREAMING_SNAKE_CASE : Dict = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _SCREAMING_SNAKE_CASE : Union[str, Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): _SCREAMING_SNAKE_CASE : Union[str, Any] = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(__SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__SCREAMING_SNAKE_CASE ) def lowerCamelCase_()-> Any: with open(REPLACE_FILES["""init"""] , """r""" ) as f: _SCREAMING_SNAKE_CASE : Dict = f.read() _SCREAMING_SNAKE_CASE : Dict = REPLACE_PATTERNS["""init"""][0].search(__SCREAMING_SNAKE_CASE ).groups()[0] return packaging.version.parse(__SCREAMING_SNAKE_CASE ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE=False )-> Union[str, Any]: _SCREAMING_SNAKE_CASE : Union[str, Any] = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: _SCREAMING_SNAKE_CASE : Any = default_version.base_version elif patch: _SCREAMING_SNAKE_CASE : Optional[Any] = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: _SCREAMING_SNAKE_CASE : Dict = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. _SCREAMING_SNAKE_CASE : Union[str, Any] = input(F"""Which version are you releasing? [{default_version}]""" ) if len(__SCREAMING_SNAKE_CASE ) == 0: _SCREAMING_SNAKE_CASE : Any = default_version print(F"""Updating version to {version}.""" ) global_version_update(__SCREAMING_SNAKE_CASE , patch=__SCREAMING_SNAKE_CASE ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def lowerCamelCase_()-> Any: _SCREAMING_SNAKE_CASE : Optional[int] = get_version() _SCREAMING_SNAKE_CASE : Dict = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" _SCREAMING_SNAKE_CASE : Optional[int] = current_version.base_version # Check with the user we got that right. _SCREAMING_SNAKE_CASE : Optional[Any] = input(F"""Which version are we developing now? [{dev_version}]""" ) if len(__SCREAMING_SNAKE_CASE ) == 0: _SCREAMING_SNAKE_CASE : Optional[Any] = dev_version print(F"""Updating version to {version}.""" ) global_version_update(__SCREAMING_SNAKE_CASE ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') lowerCAmelCase_ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
635
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
635
1
import os from math import logaa def _snake_case ( __snake_case = "base_exp.txt" ): _UpperCamelCase = 0 _UpperCamelCase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(__snake_case ) , __snake_case ) ) ): _UpperCamelCase , _UpperCamelCase = list(map(__snake_case , line.split(''',''' ) ) ) if x * logaa(__snake_case ) > largest: _UpperCamelCase = x * logaa(__snake_case ) _UpperCamelCase = i + 1 return result if __name__ == "__main__": print(solution())
10
"""simple docstring""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowercase : List[str] = logging.get_logger(__name__) __lowercase : Tuple = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } __lowercase : int = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } __lowercase : Dict = {"""facebook/blenderbot-3B""": 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCamelCase_ ( ): lowerCamelCase_ = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowerCamelCase_ = bs[:] lowerCamelCase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowerCamelCase ) cs.append(2**8 + n ) n += 1 lowerCamelCase_ = [chr(_lowerCamelCase ) for n in cs] return dict(zip(_lowerCamelCase , _lowerCamelCase ) ) def lowerCamelCase_ ( _lowerCamelCase : Any ): lowerCamelCase_ = set() lowerCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ = char return pairs class lowerCAmelCase ( a ): """simple docstring""" __lowercase :Any = VOCAB_FILES_NAMES __lowercase :List[Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase :Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase :Dict = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__="replace" , UpperCamelCase__="<s>" , UpperCamelCase__="</s>" , UpperCamelCase__="</s>" , UpperCamelCase__="<s>" , UpperCamelCase__="<unk>" , UpperCamelCase__="<pad>" , UpperCamelCase__="<mask>" , UpperCamelCase__=False , **UpperCamelCase__ , ) -> Any: '''simple docstring''' lowerCamelCase_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else bos_token lowerCamelCase_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else eos_token lowerCamelCase_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else sep_token lowerCamelCase_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else cls_token lowerCamelCase_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else unk_token lowerCamelCase_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token super().__init__( errors=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) with open(UpperCamelCase__ , encoding='''utf-8''' ) as vocab_handle: lowerCamelCase_ = json.load(UpperCamelCase__ ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} lowerCamelCase_ = errors # how to handle errors in decoding lowerCamelCase_ = bytes_to_unicode() lowerCamelCase_ = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase__ , encoding='''utf-8''' ) as merges_handle: lowerCamelCase_ = merges_handle.read().split('''\n''' )[1:-1] lowerCamelCase_ = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase_ = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) lowerCamelCase_ = {} lowerCamelCase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase_ = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' return len(self.encoder ) def _lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCAmelCase ( self , UpperCamelCase__ ) -> str: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCamelCase_ = tuple(UpperCamelCase__ ) lowerCamelCase_ = get_pairs(UpperCamelCase__ ) if not pairs: return token while True: lowerCamelCase_ = min(UpperCamelCase__ , key=lambda UpperCamelCase__ : self.bpe_ranks.get(UpperCamelCase__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_ , lowerCamelCase_ = bigram lowerCamelCase_ = [] lowerCamelCase_ = 0 while i < len(UpperCamelCase__ ): try: lowerCamelCase_ = word.index(UpperCamelCase__ , UpperCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase_ = j if word[i] == first and i < len(UpperCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ = tuple(UpperCamelCase__ ) lowerCamelCase_ = new_word if len(UpperCamelCase__ ) == 1: break else: lowerCamelCase_ = get_pairs(UpperCamelCase__ ) lowerCamelCase_ = ''' '''.join(UpperCamelCase__ ) lowerCamelCase_ = word return word def _lowerCAmelCase ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = [] for token in re.findall(self.pat , UpperCamelCase__ ): lowerCamelCase_ = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase__ ).split(''' ''' ) ) return bpe_tokens def _lowerCAmelCase ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' return self.encoder.get(UpperCamelCase__ , self.encoder.get(self.unk_token ) ) def _lowerCAmelCase ( self , UpperCamelCase__ ) -> List[str]: '''simple docstring''' return self.decoder.get(UpperCamelCase__ ) def _lowerCAmelCase ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = ''''''.join(UpperCamelCase__ ) lowerCamelCase_ = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCamelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase__ , ensure_ascii=UpperCamelCase__ ) + '''\n''' ) lowerCamelCase_ = 0 with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase__ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) lowerCamelCase_ = token_index writer.write(''' '''.join(UpperCamelCase__ ) + '''\n''' ) index += 1 return vocab_file, merge_file def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] + ([0] * len(UpperCamelCase__ )) + [1] def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: '''simple docstring''' lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__=False , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase__ ) > 0 and not text[0].isspace()): lowerCamelCase_ = ''' ''' + text return (text, kwargs) def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[str]: '''simple docstring''' return token_ids_a + [self.eos_token_id] def _lowerCAmelCase ( self , UpperCamelCase__ ) -> List[int]: '''simple docstring''' lowerCamelCase_ = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(UpperCamelCase__ ) lowerCamelCase_ = ''' '''.join(UpperCamelCase__ ) lowerCamelCase_ = self.encode(UpperCamelCase__ ) if len(UpperCamelCase__ ) > self.model_max_length: lowerCamelCase_ = input_ids[-self.model_max_length :] logger.warning(F"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
142
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ : Optional[int] = logging.get_logger(__name__) A_ : List[Any] = '''▁''' A_ : Tuple = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''} A_ : int = { '''vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''', }, '''monolingual_vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''', }, } A_ : Union[str, Any] = {'''vinai/bartpho-syllable''': 10_24} class _lowercase ( UpperCAmelCase__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : Dict="<s>" , __lowerCAmelCase : Tuple="</s>" , __lowerCAmelCase : Optional[int]="</s>" , __lowerCAmelCase : int="<s>" , __lowerCAmelCase : Optional[int]="<unk>" , __lowerCAmelCase : List[Any]="<pad>" , __lowerCAmelCase : Dict="<mask>" , __lowerCAmelCase : Optional[Dict[str, Any]] = None , **__lowerCAmelCase : int , ) -> None: """simple docstring""" a = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) a = vocab_file a = monolingual_vocab_file a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCAmelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility a = {} a = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__lowerCAmelCase ) not in self.fairseq_tokens_to_ids: a = cnt cnt += 1 with open(__lowerCAmelCase , "r" , encoding="utf-8" ) as f: for line in f.readlines(): a = line.strip().split()[0] a = len(self.fairseq_tokens_to_ids ) if str(__lowerCAmelCase ) not in self.fairseq_tokens_to_ids: a = len(self.fairseq_tokens_to_ids ) a = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Dict ) -> Tuple: """simple docstring""" a = self.__dict__.copy() a = None a = self.sp_model.serialized_model_proto() return state def __setstate__( self : List[str] , __lowerCAmelCase : Any ) -> int: """simple docstring""" a = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a = {} a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def A ( self : int , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a = [self.cls_token_id] a = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A ( self : Optional[Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCAmelCase )) + [1] return [1] + ([0] * len(__lowerCAmelCase )) + [1, 1] + ([0] * len(__lowerCAmelCase )) + [1] def A ( self : List[Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A ( self : Tuple ) -> Any: """simple docstring""" return len(self.fairseq_ids_to_tokens ) def A ( self : Tuple ) -> Tuple: """simple docstring""" a = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A ( self : Optional[int] , __lowerCAmelCase : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) def A ( self : List[Any] , __lowerCAmelCase : int ) -> Union[str, Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def A ( self : Union[str, Any] , __lowerCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" return self.fairseq_ids_to_tokens[index] def A ( self : int , __lowerCAmelCase : List[str] ) -> Dict: """simple docstring""" a = "".join(__lowerCAmelCase ).replace(__lowerCAmelCase , " " ).strip() return out_string def A ( self : Any , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__lowerCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) a = os.path.join( __lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["monolingual_vocab_file"] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase , "wb" ) as fi: a = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __lowerCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__lowerCAmelCase , "w" , encoding="utf-8" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f"""{str(__lowerCAmelCase )} \n""" ) return out_vocab_file, out_monolingual_vocab_file
32
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process A_ : int = logging.getLogger(__name__) @dataclass class _lowercase : _UpperCAmelCase = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _UpperCAmelCase = field( default=UpperCAmelCase__, metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _UpperCAmelCase = field( default='''NER''', metadata={'''help''': '''Task type to fine tune in training (e.g. NER, POS, etc)'''} ) _UpperCAmelCase = field( default=UpperCAmelCase__, metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _UpperCAmelCase = field(default=UpperCAmelCase__, metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _UpperCAmelCase = field( default=UpperCAmelCase__, metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''}, ) @dataclass class _lowercase : _UpperCAmelCase = field( metadata={'''help''': '''The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'''} ) _UpperCAmelCase = field( default=UpperCAmelCase__, metadata={'''help''': '''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'''}, ) _UpperCAmelCase = field( default=128, metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) }, ) _UpperCAmelCase = field( default=UpperCAmelCase__, metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def UpperCAmelCase__ ( ): '''simple docstring''' a = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a , a , a = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a , a , a = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) a = import_module("tasks" ) try: a = getattr(UpperCAmelCase__ , model_args.task_type ) a = token_classification_task_clazz() except AttributeError: raise ValueError( F"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ F"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , UpperCAmelCase__ ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task a = token_classification_task.get_labels(data_args.labels ) a = dict(enumerate(UpperCAmelCase__ ) ) a = len(UpperCAmelCase__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCAmelCase__ , idalabel=UpperCAmelCase__ , labelaid={label: i for i, label in enumerate(UpperCAmelCase__ )} , cache_dir=model_args.cache_dir , ) a = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) a = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , ) # Get datasets a = ( TokenClassificationDataset( token_classification_task=UpperCAmelCase__ , data_dir=data_args.data_dir , tokenizer=UpperCAmelCase__ , labels=UpperCAmelCase__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) a = ( TokenClassificationDataset( token_classification_task=UpperCAmelCase__ , data_dir=data_args.data_dir , tokenizer=UpperCAmelCase__ , labels=UpperCAmelCase__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(UpperCAmelCase__ :np.ndarray , UpperCAmelCase__ :np.ndarray ) -> Tuple[List[int], List[int]]: a = np.argmax(UpperCAmelCase__ , axis=2 ) a , a = preds.shape a = [[] for _ in range(UpperCAmelCase__ )] a = [[] for _ in range(UpperCAmelCase__ )] for i in range(UpperCAmelCase__ ): for j in range(UpperCAmelCase__ ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(UpperCAmelCase__ :EvalPrediction ) -> Dict: a , a = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(UpperCAmelCase__ , UpperCAmelCase__ ), "precision": precision_score(UpperCAmelCase__ , UpperCAmelCase__ ), "recall": recall_score(UpperCAmelCase__ , UpperCAmelCase__ ), "f1": fa_score(UpperCAmelCase__ , UpperCAmelCase__ ), } # Data collator a = DataCollatorWithPadding(UpperCAmelCase__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer a = Trainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=UpperCAmelCase__ , eval_dataset=UpperCAmelCase__ , compute_metrics=UpperCAmelCase__ , data_collator=UpperCAmelCase__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation a = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) a = trainer.evaluate() a = os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_process_zero(): with open(UpperCAmelCase__ , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , UpperCAmelCase__ , UpperCAmelCase__ ) writer.write("%s = %s\n" % (key, value) ) results.update(UpperCAmelCase__ ) # Predict if training_args.do_predict: a = TokenClassificationDataset( token_classification_task=UpperCAmelCase__ , data_dir=data_args.data_dir , tokenizer=UpperCAmelCase__ , labels=UpperCAmelCase__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) a , a , a = trainer.predict(UpperCAmelCase__ ) a , a = align_predictions(UpperCAmelCase__ , UpperCAmelCase__ ) a = os.path.join(training_args.output_dir , "test_results.txt" ) if trainer.is_world_process_zero(): with open(UpperCAmelCase__ , "w" ) as writer: for key, value in metrics.items(): logger.info(" %s = %s" , UpperCAmelCase__ , UpperCAmelCase__ ) writer.write("%s = %s\n" % (key, value) ) # Save predictions a = os.path.join(training_args.output_dir , "test_predictions.txt" ) if trainer.is_world_process_zero(): with open(UpperCAmelCase__ , "w" ) as writer: with open(os.path.join(data_args.data_dir , "test.txt" ) , "r" ) as f: token_classification_task.write_predictions_to_file(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return results def UpperCAmelCase__ ( UpperCAmelCase__ :Tuple ): '''simple docstring''' main() if __name__ == "__main__": main()
32
1
class _a : """simple docstring""" def __init__( self: Union[str, Any] , __lowerCamelCase: int ): '''simple docstring''' UpperCamelCase__: Optional[Any] = n UpperCamelCase__: int = [None] * self.n UpperCamelCase__: Dict = 0 # index of the first element UpperCamelCase__: List[str] = 0 UpperCamelCase__: Optional[int] = 0 def __len__( self: Optional[Any] ): '''simple docstring''' return self.size def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' return self.size == 0 def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' return False if self.is_empty() else self.array[self.front] def UpperCAmelCase_ ( self: Optional[int] , __lowerCamelCase: Dict ): '''simple docstring''' if self.size >= self.n: raise Exception("QUEUE IS FULL" ) UpperCamelCase__: List[Any] = data UpperCamelCase__: Optional[int] = (self.rear + 1) % self.n self.size += 1 return self def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' if self.size == 0: raise Exception("UNDERFLOW" ) UpperCamelCase__: Dict = self.array[self.front] UpperCamelCase__: Union[str, Any] = None UpperCamelCase__: int = (self.front + 1) % self.n self.size -= 1 return temp
380
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING A__: str = logging.get_logger(__name__) A__: Union[str, Any] = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = """deformable_detr""" UpperCamelCase__ = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self: Dict , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: List[str]=None , __lowerCamelCase: Tuple=3 , __lowerCamelCase: Union[str, Any]=300 , __lowerCamelCase: Optional[Any]=1024 , __lowerCamelCase: Optional[int]=6 , __lowerCamelCase: Optional[int]=1024 , __lowerCamelCase: List[str]=8 , __lowerCamelCase: Any=6 , __lowerCamelCase: Tuple=1024 , __lowerCamelCase: List[str]=8 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: List[str]="relu" , __lowerCamelCase: Tuple=256 , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: Optional[Any]=0.0 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Any=0.02 , __lowerCamelCase: int=1.0 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: str=False , __lowerCamelCase: Any="sine" , __lowerCamelCase: Optional[Any]="resnet50" , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: int=False , __lowerCamelCase: int=4 , __lowerCamelCase: int=4 , __lowerCamelCase: Any=4 , __lowerCamelCase: Any=False , __lowerCamelCase: List[str]=300 , __lowerCamelCase: Dict=False , __lowerCamelCase: str=1 , __lowerCamelCase: int=5 , __lowerCamelCase: str=2 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Tuple=1 , __lowerCamelCase: Union[str, Any]=5 , __lowerCamelCase: Optional[Any]=2 , __lowerCamelCase: List[str]=0.1 , __lowerCamelCase: Dict=0.25 , __lowerCamelCase: Dict=False , **__lowerCamelCase: str , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCamelCase__: Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase__: Tuple = backbone_config.get("model_type" ) UpperCamelCase__: Optional[int] = CONFIG_MAPPING[backbone_model_type] UpperCamelCase__: Tuple = config_class.from_dict(__lowerCamelCase ) UpperCamelCase__: Dict = use_timm_backbone UpperCamelCase__: Any = backbone_config UpperCamelCase__: Optional[int] = num_channels UpperCamelCase__: int = num_queries UpperCamelCase__: List[str] = max_position_embeddings UpperCamelCase__: Dict = d_model UpperCamelCase__: List[Any] = encoder_ffn_dim UpperCamelCase__: Union[str, Any] = encoder_layers UpperCamelCase__: Tuple = encoder_attention_heads UpperCamelCase__: Tuple = decoder_ffn_dim UpperCamelCase__: Optional[int] = decoder_layers UpperCamelCase__: int = decoder_attention_heads UpperCamelCase__: Optional[Any] = dropout UpperCamelCase__: List[str] = attention_dropout UpperCamelCase__: List[Any] = activation_dropout UpperCamelCase__: List[Any] = activation_function UpperCamelCase__: Union[str, Any] = init_std UpperCamelCase__: List[str] = init_xavier_std UpperCamelCase__: Optional[Any] = encoder_layerdrop UpperCamelCase__: List[str] = auxiliary_loss UpperCamelCase__: Optional[int] = position_embedding_type UpperCamelCase__: Optional[Any] = backbone UpperCamelCase__: Any = use_pretrained_backbone UpperCamelCase__: Union[str, Any] = dilation # deformable attributes UpperCamelCase__: Union[str, Any] = num_feature_levels UpperCamelCase__: Optional[Any] = encoder_n_points UpperCamelCase__: Tuple = decoder_n_points UpperCamelCase__: Any = two_stage UpperCamelCase__: Optional[int] = two_stage_num_proposals UpperCamelCase__: str = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher UpperCamelCase__: Any = class_cost UpperCamelCase__: str = bbox_cost UpperCamelCase__: List[str] = giou_cost # Loss coefficients UpperCamelCase__: Optional[Any] = mask_loss_coefficient UpperCamelCase__: List[Any] = dice_loss_coefficient UpperCamelCase__: Optional[Any] = bbox_loss_coefficient UpperCamelCase__: List[Any] = giou_loss_coefficient UpperCamelCase__: Dict = eos_coefficient UpperCamelCase__: List[Any] = focal_alpha UpperCamelCase__: Dict = disable_custom_kernels super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) @property def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase_ ( self: Any ): '''simple docstring''' return self.d_model def UpperCAmelCase_ ( self: int ): '''simple docstring''' UpperCamelCase__: Optional[int] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCamelCase__: Tuple = self.backbone_config.to_dict() UpperCamelCase__: Optional[int] = self.__class__.model_type return output
380
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm snake_case__ : str = logging.get_logger(__name__) @dataclass class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self , **_UpperCAmelCase ) -> str: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: UpperCamelCase_ = deprecated_arg[3:] setattr(self , _UpperCAmelCase , not kwargs.pop(_UpperCAmelCase ) ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no_{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) UpperCamelCase_ = kwargs.pop('torchscript' , self.torchscript ) UpperCamelCase_ = kwargs.pop('torch_xla_tpu_print_metrics' , self.torch_xla_tpu_print_metrics ) UpperCamelCase_ = kwargs.pop('fp16_opt_level' , self.fpaa_opt_level ) super().__init__(**_UpperCAmelCase ) A_ = field(default=UpperCAmelCase__ , metadata={"""help""": """Trace the models using torchscript"""} ) A_ = field(default=UpperCAmelCase__ , metadata={"""help""": """Print Xla/PyTorch tpu metrics"""} ) A_ = field( default="""O1""" , metadata={ """help""": ( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. """ """See details at https://nvidia.github.io/apex/amp.html""" ) } , ) @cached_property def _UpperCAmelCase ( self ) -> Tuple["torch.device", int]: requires_backends(self , ['torch'] ) logger.info('PyTorch: setting up devices' ) if not self.cuda: UpperCamelCase_ = torch.device('cpu' ) UpperCamelCase_ = 0 elif is_torch_tpu_available(): UpperCamelCase_ = xm.xla_device() UpperCamelCase_ = 0 else: UpperCamelCase_ = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) UpperCamelCase_ = torch.cuda.device_count() return device, n_gpu @property def _UpperCAmelCase ( self ) -> Dict: return is_torch_tpu_available() and self.tpu @property def _UpperCAmelCase ( self ) -> int: requires_backends(self , ['torch'] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def _UpperCAmelCase ( self ) -> "torch.device": requires_backends(self , ['torch'] ) return self._setup_devices[0] @property def _UpperCAmelCase ( self ) -> Union[str, Any]: requires_backends(self , ['torch'] ) return self._setup_devices[1] @property def _UpperCAmelCase ( self ) -> Union[str, Any]: return self.n_gpu > 0
701
def _snake_case (__lowercase , __lowercase): _enforce_args(__lowercase , __lowercase) if n == 0: return 0 UpperCamelCase_ = float('-inf') for i in range(1 , n + 1): UpperCamelCase_ = max( __lowercase , prices[i - 1] + naive_cut_rod_recursive(n - i , __lowercase)) return max_revue def _snake_case (__lowercase , __lowercase): _enforce_args(__lowercase , __lowercase) UpperCamelCase_ = [float('-inf') for _ in range(n + 1)] return _top_down_cut_rod_recursive(__lowercase , __lowercase , __lowercase) def _snake_case (__lowercase , __lowercase , __lowercase): if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: UpperCamelCase_ = float('-inf') for i in range(1 , n + 1): UpperCamelCase_ = max( __lowercase , prices[i - 1] + _top_down_cut_rod_recursive(n - i , __lowercase , __lowercase) , ) UpperCamelCase_ = max_revenue return max_rev[n] def _snake_case (__lowercase , __lowercase): _enforce_args(__lowercase , __lowercase) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. UpperCamelCase_ = [float('-inf') for _ in range(n + 1)] UpperCamelCase_ = 0 for i in range(1 , n + 1): UpperCamelCase_ = max_rev[i] for j in range(1 , i + 1): UpperCamelCase_ = max(__lowercase , prices[j - 1] + max_rev[i - j]) UpperCamelCase_ = max_revenue_i return max_rev[n] def _snake_case (__lowercase , __lowercase): if n < 0: UpperCamelCase_ = f"""n must be greater than or equal to 0. Got n = {n}""" raise ValueError(__lowercase) if n > len(__lowercase): UpperCamelCase_ = ( 'Each integral piece of rod must have a corresponding price. ' f"""Got n = {n} but length of prices = {len(__lowercase)}""" ) raise ValueError(__lowercase) def _snake_case (): UpperCamelCase_ = [6, 10, 12, 15, 20, 23] UpperCamelCase_ = len(__lowercase) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. UpperCamelCase_ = 36 UpperCamelCase_ = top_down_cut_rod(__lowercase , __lowercase) UpperCamelCase_ = bottom_up_cut_rod(__lowercase , __lowercase) UpperCamelCase_ = naive_cut_rod_recursive(__lowercase , __lowercase) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
618
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
61
import random def _A ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Any ): """simple docstring""" lowerCAmelCase__ = a[left_index] lowerCAmelCase__ = left_index + 1 for j in range(left_index + 1 , lowerCAmelCase_ ): if a[j] < pivot: lowerCAmelCase__ , lowerCAmelCase__ = a[i], a[j] i += 1 lowerCAmelCase__ , lowerCAmelCase__ = a[i - 1], a[left_index] return i - 1 def _A ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str ): """simple docstring""" if left < right: lowerCAmelCase__ = random.randint(lowerCAmelCase_ , right - 1 ) lowerCAmelCase__ , lowerCAmelCase__ = ( a[left], a[pivot], ) # switches the pivot with the left most bound lowerCAmelCase__ = partition(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) quick_sort_random( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowerCAmelCase_ , pivot_index + 1 , lowerCAmelCase_ ) # recursive quicksort to the right of the pivot point def _A ( ): """simple docstring""" lowerCAmelCase__ = input("Enter numbers separated by a comma:\n" ).strip() lowerCAmelCase__ = [int(lowerCAmelCase_ ) for item in user_input.split("," )] quick_sort_random(lowerCAmelCase_ , 0 , len(lowerCAmelCase_ ) ) print(lowerCAmelCase_ ) if __name__ == "__main__": main()
61
1
def lowerCAmelCase_ ( A_ = 50): UpperCamelCase__: Optional[int] = [1] * (length + 1) for row_length in range(length + 1): for tile_length in range(2 ,5): for tile_start in range(row_length - tile_length + 1): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f"{solution() = }")
221
from ...configuration_utils import PretrainedConfig from ...utils import logging A__: Dict = logging.get_logger(__name__) A__: Tuple = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = """gpt_neox""" def __init__( self: List[str] , __lowerCamelCase: List[Any]=5_0432 , __lowerCamelCase: List[Any]=6144 , __lowerCamelCase: Tuple=44 , __lowerCamelCase: Optional[Any]=64 , __lowerCamelCase: Optional[Any]=2_4576 , __lowerCamelCase: Optional[int]="gelu" , __lowerCamelCase: Tuple=0.25 , __lowerCamelCase: str=1_0000 , __lowerCamelCase: Any=0.0 , __lowerCamelCase: List[Any]=0.0 , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: List[str]=2048 , __lowerCamelCase: Dict=0.02 , __lowerCamelCase: Any=1e-5 , __lowerCamelCase: Any=True , __lowerCamelCase: Optional[int]=0 , __lowerCamelCase: Dict=2 , __lowerCamelCase: List[str]=False , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: List[Any]=None , **__lowerCamelCase: Any , ): '''simple docstring''' super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) UpperCamelCase__: List[str] = vocab_size UpperCamelCase__: List[str] = max_position_embeddings UpperCamelCase__: Optional[Any] = hidden_size UpperCamelCase__: Any = num_hidden_layers UpperCamelCase__: Optional[int] = num_attention_heads UpperCamelCase__: Union[str, Any] = intermediate_size UpperCamelCase__: List[str] = hidden_act UpperCamelCase__: str = rotary_pct UpperCamelCase__: Any = rotary_emb_base UpperCamelCase__: int = attention_dropout UpperCamelCase__: Optional[Any] = hidden_dropout UpperCamelCase__: Any = classifier_dropout UpperCamelCase__: List[str] = initializer_range UpperCamelCase__: Optional[Any] = layer_norm_eps UpperCamelCase__: int = use_cache UpperCamelCase__: Optional[Any] = tie_word_embeddings UpperCamelCase__: List[str] = use_parallel_residual UpperCamelCase__: str = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!" ) def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __lowerCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " F"got {self.rope_scaling}" ) UpperCamelCase__: Any = self.rope_scaling.get("type" , __lowerCamelCase ) UpperCamelCase__: int = self.rope_scaling.get("factor" , __lowerCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(__lowerCamelCase , __lowerCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(F"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
221
1
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract UpperCamelCase = logging.get_logger(__name__) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> Tuple: _lowercase : Optional[int] = tesseract_config if tesseract_config is not None else '' # apply OCR _lowercase : Any = to_pil_image(SCREAMING_SNAKE_CASE ) _lowercase , _lowercase : Any = pil_image.size _lowercase : Dict = pytesseract.image_to_data(SCREAMING_SNAKE_CASE , lang=SCREAMING_SNAKE_CASE , output_type='dict' , config=SCREAMING_SNAKE_CASE ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : List[str] = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates _lowercase : Optional[Any] = [idx for idx, word in enumerate(SCREAMING_SNAKE_CASE ) if not word.strip()] _lowercase : Union[str, Any] = [word for idx, word in enumerate(SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] _lowercase : Optional[Any] = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] _lowercase : int = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] _lowercase : List[str] = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] _lowercase : Optional[Any] = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _lowercase : Any = [] for x, y, w, h in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _lowercase : Optional[Any] = [x, y, x + w, y + h] actual_boxes.append(SCREAMING_SNAKE_CASE ) # finally, normalize the bounding boxes _lowercase : Union[str, Any] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ), "Not as many words as there are bounding boxes" return words, normalized_boxes class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Union[str, Any] = ["pixel_values"] def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = PILImageResampling.BILINEAR , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = "" , **_lowerCAmelCase , ): super().__init__(**_lowerCAmelCase ) _lowercase : Optional[Any] = size if size is not None else {'height': 2_2_4, 'width': 2_2_4} _lowercase : int = get_size_dict(_lowerCAmelCase ) _lowercase : Dict = do_resize _lowercase : Any = size _lowercase : Tuple = resample _lowercase : Optional[int] = apply_ocr _lowercase : Optional[int] = ocr_lang _lowercase : str = tesseract_config def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = PILImageResampling.BILINEAR , _lowerCAmelCase = None , **_lowerCAmelCase , ): _lowercase : Any = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _lowercase : List[Any] = (size['height'], size['width']) return resize(_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ): _lowercase : Union[str, Any] = do_resize if do_resize is not None else self.do_resize _lowercase : Tuple = size if size is not None else self.size _lowercase : Optional[int] = get_size_dict(_lowerCAmelCase ) _lowercase : Union[str, Any] = resample if resample is not None else self.resample _lowercase : Union[str, Any] = apply_ocr if apply_ocr is not None else self.apply_ocr _lowercase : str = ocr_lang if ocr_lang is not None else self.ocr_lang _lowercase : List[Any] = tesseract_config if tesseract_config is not None else self.tesseract_config _lowercase : Tuple = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) # All transformations expect numpy arrays. _lowercase : Union[str, Any] = [to_numpy_array(_lowerCAmelCase ) for image in images] if apply_ocr: requires_backends(self , 'pytesseract' ) _lowercase : Any = [] _lowercase : Any = [] for image in images: _lowercase , _lowercase : int = apply_tesseract(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) words_batch.append(_lowerCAmelCase ) boxes_batch.append(_lowerCAmelCase ) if do_resize: _lowercase : List[Any] = [self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) _lowercase : List[str] = [flip_channel_order(_lowerCAmelCase ) for image in images] _lowercase : int = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] _lowercase : Optional[Any] = BatchFeature(data={'pixel_values': images} , tensor_type=_lowerCAmelCase ) if apply_ocr: _lowercase : Optional[Any] = words_batch _lowercase : Dict = boxes_batch return data
66
from PIL import Image def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Image: def brightness(SCREAMING_SNAKE_CASE ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change brightness to 100 UpperCamelCase = change_brightness(img, 100) brigt_img.save("image_data/lena_brightness.png", format="png")
66
1
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def lowerCAmelCase__ ( ): """simple docstring""" __a = argparse.ArgumentParser() parser.add_argument( """-m""" , """--pretrained_model_name_or_path""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , ) parser.add_argument( """-c""" , """--caption""" , type=_SCREAMING_SNAKE_CASE , default="""robotic cat with wings""" , help="""Text used to generate images.""" , ) parser.add_argument( """-n""" , """--images_num""" , type=_SCREAMING_SNAKE_CASE , default=4 , help="""How much images to generate.""" , ) parser.add_argument( """-s""" , """--seed""" , type=_SCREAMING_SNAKE_CASE , default=42 , help="""Seed for random process.""" , ) parser.add_argument( """-ci""" , """--cuda_id""" , type=_SCREAMING_SNAKE_CASE , default=0 , help="""cuda_id.""" , ) __a = parser.parse_args() return args def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" if not len(_SCREAMING_SNAKE_CASE ) == rows * cols: raise ValueError("""The specified number of rows and columns are not correct.""" ) __a , __a = imgs[0].size __a = Image.new("""RGB""" , size=(cols * w, rows * h) ) __a , __a = grid.size for i, img in enumerate(_SCREAMING_SNAKE_CASE ): grid.paste(_SCREAMING_SNAKE_CASE , box=(i % cols * w, i // cols * h) ) return grid def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : int="robotic cat with wings" , _SCREAMING_SNAKE_CASE : Optional[int]=7.5 , _SCREAMING_SNAKE_CASE : str=50 , _SCREAMING_SNAKE_CASE : Tuple=1 , _SCREAMING_SNAKE_CASE : int=42 , ): """simple docstring""" __a = torch.Generator(pipeline.device ).manual_seed(_SCREAMING_SNAKE_CASE ) __a = pipeline( _SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , ).images __a = int(math.sqrt(_SCREAMING_SNAKE_CASE ) ) __a = image_grid(_SCREAMING_SNAKE_CASE , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images lowerCamelCase__ = parse_args() # Load models and create wrapper for stable diffusion lowerCamelCase__ = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="""tokenizer""") lowerCamelCase__ = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""text_encoder""") lowerCamelCase__ = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="""vae""") lowerCamelCase__ = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""unet""") lowerCamelCase__ = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) lowerCamelCase__ = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, """best_model.pt""")): lowerCamelCase__ = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, """unet""", unet) else: lowerCamelCase__ = unet.to(torch.device("""cuda""", args.cuda_id)) lowerCamelCase__ = pipeline.to(unet.device) lowerCamelCase__ , lowerCamelCase__ = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, """{}.png""".format("""_""".join(args.caption.split())))) lowerCamelCase__ = os.path.join(args.pretrained_model_name_or_path, """_""".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, """{}.png""".format(idx + 1)))
547
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : torch.FloatTensor class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ ): @register_to_config def __init__( self : Tuple , __lowercase : int = 16 , __lowercase : int = 88 , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : int = 1 , __lowercase : float = 0.0 , __lowercase : int = 32 , __lowercase : Optional[int] = None , __lowercase : bool = False , __lowercase : Optional[int] = None , __lowercase : str = "geglu" , __lowercase : bool = True , __lowercase : bool = True , ): '''simple docstring''' super().__init__() __a = num_attention_heads __a = attention_head_dim __a = num_attention_heads * attention_head_dim __a = in_channels __a = torch.nn.GroupNorm(num_groups=__lowercase , num_channels=__lowercase , eps=1E-6 , affine=__lowercase ) __a = nn.Linear(__lowercase , __lowercase ) # 3. Define transformers blocks __a = nn.ModuleList( [ BasicTransformerBlock( __lowercase , __lowercase , __lowercase , dropout=__lowercase , cross_attention_dim=__lowercase , activation_fn=__lowercase , attention_bias=__lowercase , double_self_attention=__lowercase , norm_elementwise_affine=__lowercase , ) for d in range(__lowercase ) ] ) __a = nn.Linear(__lowercase , __lowercase ) def UpperCamelCase_ ( self : Any , __lowercase : Optional[Any] , __lowercase : str=None , __lowercase : List[Any]=None , __lowercase : List[Any]=None , __lowercase : int=1 , __lowercase : Union[str, Any]=None , __lowercase : bool = True , ): '''simple docstring''' __a , __a , __a , __a = hidden_states.shape __a = batch_frames // num_frames __a = hidden_states __a = hidden_states[None, :].reshape(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) __a = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) __a = self.norm(__lowercase ) __a = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , __lowercase , __lowercase ) __a = self.proj_in(__lowercase ) # 2. Blocks for block in self.transformer_blocks: __a = block( __lowercase , encoder_hidden_states=__lowercase , timestep=__lowercase , cross_attention_kwargs=__lowercase , class_labels=__lowercase , ) # 3. Output __a = self.proj_out(__lowercase ) __a = ( hidden_states[None, None, :] .reshape(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) __a = hidden_states.reshape(__lowercase , __lowercase , __lowercase , __lowercase ) __a = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=__lowercase )
547
1
import socket def A__ ( ) -> Dict: """simple docstring""" _UpperCAmelCase = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) _UpperCAmelCase = socket.gethostname() _UpperCAmelCase = 1_23_12 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: _UpperCAmelCase = sock.recv(10_24 ) if not data: break out_file.write(SCREAMING_SNAKE_CASE_ ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
32
from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=A__ ): __A : str = ["""torch""", """scipy"""] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] )
32
1
"""simple docstring""" _lowerCAmelCase : int = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_0000)] def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : List[Any] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100000] number //= 100000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _lowerCAmelCase : list[bool | None] = [None] * 1000_0000 _lowerCAmelCase : Any = True _lowerCAmelCase : Any = False def lowerCamelCase_( _lowerCamelCase ) -> bool: '''simple docstring''' if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore _lowerCamelCase : Union[str, Any] = chain(next_number(_lowerCamelCase ) ) _lowerCamelCase : Tuple = number_chain while number < 10000000: _lowerCamelCase : Optional[Any] = number_chain number *= 10 return number_chain def lowerCamelCase_( _lowerCamelCase = 10000000 ) -> int: '''simple docstring''' for i in range(1 , _lowerCamelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution() = }''')
716
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase = 10 , _lowerCamelCase = 22 ) -> int: '''simple docstring''' _lowerCamelCase : Tuple = range(1 , _lowerCamelCase ) _lowerCamelCase : Tuple = range(1 , _lowerCamelCase ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(10, 22) = }''')
386
0
'''simple docstring''' def UpperCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : int): return [sentence[i : i + ngram_size] for i in range(len(UpperCAmelCase__) - ngram_size + 1)] if __name__ == "__main__": from doctest import testmod testmod()
320
'''simple docstring''' from __future__ import annotations from typing import Any class __snake_case : def __init__( self, A, A, A = 0 ): """simple docstring""" lowerCamelCase , lowerCamelCase : str = row, column lowerCamelCase : List[str] = [[default_value for c in range(A )] for r in range(A )] def __str__( self ): """simple docstring""" lowerCamelCase : Any = F'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier lowerCamelCase : List[Any] = 0 for row_vector in self.array: for obj in row_vector: lowerCamelCase : List[Any] = max(A, len(str(A ) ) ) lowerCamelCase : int = F'''%{max_element_length}s''' # Make string and return def single_line(A ) -> str: nonlocal string_format_identifier lowerCamelCase : List[str] = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(A ) for row_vector in self.array ) return s def __repr__( self ): """simple docstring""" return str(self ) def UpperCAmelCase_ ( self, A ): """simple docstring""" if not (isinstance(A, (list, tuple) ) and len(A ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self, A ): """simple docstring""" assert self.validate_indicies(A ) return self.array[loc[0]][loc[1]] def __setitem__( self, A, A ): """simple docstring""" assert self.validate_indicies(A ) lowerCamelCase : List[Any] = value def __add__( self, A ): """simple docstring""" assert isinstance(A, A ) assert self.row == another.row and self.column == another.column # Add lowerCamelCase : Optional[int] = Matrix(self.row, self.column ) for r in range(self.row ): for c in range(self.column ): lowerCamelCase : Any = self[r, c] + another[r, c] return result def __neg__( self ): """simple docstring""" lowerCamelCase : List[str] = Matrix(self.row, self.column ) for r in range(self.row ): for c in range(self.column ): lowerCamelCase : Union[str, Any] = -self[r, c] return result def __sub__( self, A ): """simple docstring""" return self + (-another) def __mul__( self, A ): """simple docstring""" if isinstance(A, (int, float) ): # Scalar multiplication lowerCamelCase : List[Any] = Matrix(self.row, self.column ) for r in range(self.row ): for c in range(self.column ): lowerCamelCase : Optional[Any] = self[r, c] * another return result elif isinstance(A, A ): # Matrix multiplication assert self.column == another.row lowerCamelCase : List[Any] = Matrix(self.row, another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: lowerCamelCase : Tuple = F'''Unsupported type given for another ({type(A )})''' raise TypeError(A ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Optional[int] = Matrix(self.column, self.row ) for r in range(self.row ): for c in range(self.column ): lowerCamelCase : str = self[r, c] return result def UpperCAmelCase_ ( self, A, A ): """simple docstring""" assert isinstance(A, A ) and isinstance(A, A ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowerCamelCase : Union[str, Any] = v.transpose() lowerCamelCase : Optional[int] = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def UpperCAmelCase ( ): # a^(-1) lowerCamelCase : Optional[Any] = Matrix(3 , 3 , 0) for i in range(3): lowerCamelCase : Union[str, Any] = 1 print(F'''a^(-1) is {ainv}''') # u, v lowerCamelCase : Dict = Matrix(3 , 1 , 0) lowerCamelCase , lowerCamelCase , lowerCamelCase : Optional[int] = 1, 2, -3 lowerCamelCase : Tuple = Matrix(3 , 1 , 0) lowerCamelCase , lowerCamelCase , lowerCamelCase : Union[str, Any] = 4, -2, 5 print(F'''u is {u}''') print(F'''v is {v}''') print(F'''uv^T is {u * v.transpose()}''') # Sherman Morrison print(F'''(a + uv^T)^(-1) is {ainv.sherman_morrison(UpperCAmelCase__ , UpperCAmelCase__)}''') def UpperCAmelCase ( ): import doctest doctest.testmod() testa()
320
1
"""simple docstring""" import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput _UpperCamelCase = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowerCamelCase__ ( snake_case ): def __init__( self ,*A ,A=None ,A=None ,A=None ,**A ): super().__init__(*A ,**A ) UpperCAmelCase = eval_examples UpperCAmelCase = post_process_function UpperCAmelCase = quant_trainer_args UpperCAmelCase = 128 # default number of calibration samples def _UpperCamelCase ( self ,A=None ): if calib_dataset is None and self.calib_dataset is None: raise ValueError("""Trainer: calibration requires an calib_dataset.""" ) UpperCAmelCase = calib_dataset if calib_dataset is not None else self.calib_dataset UpperCAmelCase = self._remove_unused_columns(A ,description="""Calibration""" ) return DataLoader( A ,batch_size=self.args.eval_batch_size ,collate_fn=self.data_collator ,drop_last=self.args.dataloader_drop_last ,num_workers=self.args.dataloader_num_workers ,pin_memory=self.args.dataloader_pin_memory ,shuffle=A ,) def _UpperCamelCase ( self ,A=None ): UpperCAmelCase = self.train_dataset if calib_dataset is None else calib_dataset UpperCAmelCase = self.get_calib_dataloader(A ) UpperCAmelCase = self.model quant_trainer.configure_model(A ,self.quant_trainer_args ,calib=A ) model.eval() quant_trainer.enable_calibration(A ) logger.info("""***** Running calibration *****""" ) logger.info(F''' Num examples = {self.calib_num}''' ) logger.info(F''' Batch size = {calib_dataloader.batch_size}''' ) for step, inputs in enumerate(A ): # Prediction step UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self.prediction_step(A ,A ,prediction_loss_only=A ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(A ,self.quant_trainer_args ) UpperCAmelCase = model def _UpperCamelCase ( self ,A=None ,A=None ,A=None ,A = "eval" ): UpperCAmelCase = self.eval_dataset if eval_dataset is None else eval_dataset UpperCAmelCase = self.get_eval_dataloader(A ) UpperCAmelCase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase = self.compute_metrics UpperCAmelCase = None UpperCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCAmelCase = eval_loop( A ,description="""Evaluation""" ,prediction_loss_only=True if compute_metrics is None else None ,ignore_keys=A ,) finally: UpperCAmelCase = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: UpperCAmelCase = self.post_process_function(A ,A ,output.predictions ) UpperCAmelCase = self.compute_metrics(A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): UpperCAmelCase = metrics.pop(A ) self.log(A ) else: UpperCAmelCase = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCAmelCase = self.callback_handler.on_evaluate(self.args ,self.state ,self.control ,A ) return metrics def _UpperCamelCase ( self ,A ,A ,A=None ,A = "test" ): UpperCAmelCase = self.get_test_dataloader(A ) # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase = self.compute_metrics UpperCAmelCase = None UpperCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCAmelCase = eval_loop( A ,description="""Prediction""" ,prediction_loss_only=True if compute_metrics is None else None ,ignore_keys=A ,) finally: UpperCAmelCase = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output UpperCAmelCase = self.post_process_function(A ,A ,output.predictions ,"""predict""" ) UpperCAmelCase = self.compute_metrics(A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): UpperCAmelCase = metrics.pop(A ) return PredictionOutput(predictions=predictions.predictions ,label_ids=predictions.label_ids ,metrics=A ) def _UpperCamelCase ( self ,A="./" ): UpperCAmelCase = self.eval_dataset UpperCAmelCase = self.get_eval_dataloader(A ) UpperCAmelCase = next(iter(A ) ) # saving device - to make it consistent UpperCAmelCase = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) # convert to tuple UpperCAmelCase = tuple(v.to(A ) for k, v in batch.items() ) logger.info("""Converting model to be onnx compatible""" ) from pytorch_quantization.nn import TensorQuantizer UpperCAmelCase = True UpperCAmelCase = self.model.to(A ) model.eval() model.float() UpperCAmelCase = model.module if hasattr(A ,"""module""" ) else model quant_trainer.configure_model(A ,self.quant_trainer_args ) UpperCAmelCase = os.path.join(A ,"""model.onnx""" ) logger.info(F'''exporting model to {output_model_file}''' ) UpperCAmelCase = {0: """batch_size""", 1: """seq_len"""} torch.onnx.export( A ,A ,A ,export_params=A ,opset_version=13 ,do_constant_folding=A ,input_names=["""input_ids""", """attention_mask""", """token_type_ids"""] ,output_names=["""output_start_logits""", """output_end_logits"""] ,dynamic_axes={ """input_ids""": axes, """attention_mask""": axes, """token_type_ids""": axes, """output_start_logits""": axes, """output_end_logits""": axes, } ,verbose=A ,) logger.info("""onnx export finished""" )
714
"""simple docstring""" def _a ( _snake_case ): # noqa: E741 """simple docstring""" UpperCAmelCase = len(_snake_case ) UpperCAmelCase = 0 UpperCAmelCase = [0] * n UpperCAmelCase = [False] * n UpperCAmelCase = [False] * n def dfs(_snake_case , _snake_case , _snake_case , _snake_case ): if parent == root: out_edge_count += 1 UpperCAmelCase = True UpperCAmelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: UpperCAmelCase = dfs(_snake_case , _snake_case , _snake_case , _snake_case ) UpperCAmelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: UpperCAmelCase = True # AP found via cycle if at == low[to]: UpperCAmelCase = True else: UpperCAmelCase = min(low[at] , _snake_case ) return out_edge_count for i in range(_snake_case ): if not visited[i]: UpperCAmelCase = 0 UpperCAmelCase = dfs(_snake_case , _snake_case , -1 , _snake_case ) UpperCAmelCase = out_edge_count > 1 for x in range(len(_snake_case ) ): if is_art[x] is True: print(_snake_case ) # Adjacency list of graph _UpperCamelCase = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
74
0
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> float: """simple docstring""" if digit_amount > 0: return round(number - int(UpperCamelCase ) , UpperCamelCase ) return number - int(UpperCamelCase ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
77
from __future__ import annotations def lowerCAmelCase__(__snake_case ,__snake_case ) -> list[int]: '''simple docstring''' lowerCamelCase__ = 0 lowerCamelCase__ = len(__snake_case ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowerCamelCase__ = i + 1 else: lowerCamelCase__ = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
481
0
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _snake_case : str = logging.get_logger(__name__) _snake_case : List[str] = {'vocab_file': 'spiece.model'} _snake_case : Any = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), } } _snake_case : Dict = { 'google/bigbird-roberta-base': 4096, 'google/bigbird-roberta-large': 4096, 'google/bigbird-base-trivia-itc': 4096, } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["""input_ids""", """attention_mask"""] a_ = [] def __init__( self : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any="<unk>" , lowerCAmelCase_ : List[str]="<s>" , lowerCAmelCase_ : List[Any]="</s>" , lowerCAmelCase_ : Tuple="<pad>" , lowerCAmelCase_ : Dict="[SEP]" , lowerCAmelCase_ : int="[MASK]" , lowerCAmelCase_ : Any="[CLS]" , lowerCAmelCase_ : Optional[Dict[str, Any]] = None , **lowerCAmelCase_ : Optional[Any] , ) -> None: __lowerCAmelCase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else bos_token __lowerCAmelCase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else eos_token __lowerCAmelCase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else unk_token __lowerCAmelCase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else pad_token __lowerCAmelCase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else cls_token __lowerCAmelCase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __lowerCAmelCase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , ) __lowerCAmelCase = vocab_file __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase_ ) @property def lowercase ( self : Tuple ) -> Optional[int]: return self.sp_model.get_piece_size() def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ) -> Tuple: __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None return state def __setstate__( self : List[str] , lowerCAmelCase_ : Dict ) -> int: __lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : str ) -> List[str]: return self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ ) def lowercase ( self : str , lowerCAmelCase_ : int ) -> Any: return self.sp_model.piece_to_id(lowerCAmelCase_ ) def lowercase ( self : List[Any] , lowerCAmelCase_ : Dict ) -> List[str]: __lowerCAmelCase = self.sp_model.IdToPiece(lowerCAmelCase_ ) return token def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Any ) -> Any: __lowerCAmelCase = [] __lowerCAmelCase = '' __lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase_ ) + token __lowerCAmelCase = True __lowerCAmelCase = [] else: current_sub_tokens.append(lowerCAmelCase_ ) __lowerCAmelCase = False out_string += self.sp_model.decode(lowerCAmelCase_ ) return out_string.strip() def lowercase ( self : Optional[int] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : bool = True , **lowerCAmelCase_ : str , ) -> str: __lowerCAmelCase = kwargs.pop('use_source_tokenizer' , lowerCAmelCase_ ) __lowerCAmelCase = self.convert_ids_to_tokens(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __lowerCAmelCase = [] __lowerCAmelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase_ ) ) __lowerCAmelCase = [] sub_texts.append(lowerCAmelCase_ ) else: current_sub_text.append(lowerCAmelCase_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase_ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: __lowerCAmelCase = re.sub(R' (\[(MASK|SEP)\])' , R'\1' , ' '.join(lowerCAmelCase_ ) ) else: __lowerCAmelCase = ''.join(lowerCAmelCase_ ) __lowerCAmelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __lowerCAmelCase = self.clean_up_tokenization(lowerCAmelCase_ ) return clean_text else: return text def lowercase ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase_ , 'wb' ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase_ ) return (out_vocab_file,) def lowercase ( self : str , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] __lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def lowercase ( self : List[Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1] + ([0] * len(lowerCAmelCase_ )) + [1] def lowercase ( self : Any , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
421
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Any ): if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer __lowerCAmelCase = flax_key_tuple[:-1] + ('weight',) __lowerCAmelCase = torch.permute(lowerCAmelCase_, (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(lowerCAmelCase_ ): # linear layer __lowerCAmelCase = flax_key_tuple[:-1] + ('weight',) __lowerCAmelCase = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __lowerCAmelCase = flax_key_tuple[:-1] + ('weight',) return flax_key_tuple, flax_tensor def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : Dict, lowerCAmelCase_ : Any ): if "metadata" in layer: __lowerCAmelCase = layer.split('metadata' ) __lowerCAmelCase = ''.join(split_layer[0] )[:-1] __lowerCAmelCase = [tuple(('metadata' + split_layer[1]).split('/' ) )] elif "kvstore" in layer: __lowerCAmelCase = layer.split('kvstore' ) __lowerCAmelCase = ''.join(split_layer[0] )[:-1] __lowerCAmelCase = [tuple(('kvstore' + split_layer[1]).split('/' ) )] else: __lowerCAmelCase = layer.split('/' ) __lowerCAmelCase = '/'.join(split_layer[:-1] ) __lowerCAmelCase = (split_layer[-1],) if "kvstore/path" in layer: __lowerCAmelCase = F"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: __lowerCAmelCase = 'file' else: __lowerCAmelCase = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : int ): __lowerCAmelCase = rename_keys(lowerCAmelCase_ ) __lowerCAmelCase = {} for k, v in current_block.items(): __lowerCAmelCase = v __lowerCAmelCase = new_current_block torch.save(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : int, lowerCAmelCase_ : Dict, lowerCAmelCase_ : str = WEIGHTS_NAME ): __lowerCAmelCase = convert_file_size_to_int(lowerCAmelCase_ ) __lowerCAmelCase = [] __lowerCAmelCase = {} __lowerCAmelCase = 0 __lowerCAmelCase = 0 os.makedirs(lowerCAmelCase_, exist_ok=lowerCAmelCase_ ) with gfile.GFile(switch_checkpoint_path + '/checkpoint', 'rb' ) as fp: __lowerCAmelCase = serialization.msgpack_restore(fp.read() )['optimizer']['target'] __lowerCAmelCase = flatten_dict(lowerCAmelCase_, sep='/' ) __lowerCAmelCase = {} for layer in checkpoint_info.keys(): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = get_key_and_tensorstore_dict( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) if curr_real_layer_name in all_layers: __lowerCAmelCase = content else: __lowerCAmelCase = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file __lowerCAmelCase = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() __lowerCAmelCase = torch.tensor(lowerCAmelCase_ ) __lowerCAmelCase = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts __lowerCAmelCase , __lowerCAmelCase = rename_base_flax_keys(tuple(key.split('/' ) ), lowerCAmelCase_ ) __lowerCAmelCase = '/'.join(lowerCAmelCase_ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: __lowerCAmelCase = os.path.join( lowerCAmelCase_, weights_name.replace('.bin', F"""-{len(lowerCAmelCase_ )+1:05d}-of-???.bin""" ) ) rename_and_save_block(lowerCAmelCase_, lowerCAmelCase_ ) sharded_state_dicts.append(current_block.keys() ) del current_block __lowerCAmelCase = {} __lowerCAmelCase = 0 __lowerCAmelCase = raw_weights.to(getattr(lowerCAmelCase_, lowerCAmelCase_ ) ) current_block_size += weight_size total_size += weight_size # Add the last block __lowerCAmelCase = os.path.join(lowerCAmelCase_, weights_name.replace('.bin', F"""-{len(lowerCAmelCase_ )+1:05d}-of-???.bin""" ) ) rename_and_save_block(lowerCAmelCase_, lowerCAmelCase_ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(lowerCAmelCase_ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index __lowerCAmelCase = {} __lowerCAmelCase = {} for idx, shard in enumerate(lowerCAmelCase_ ): __lowerCAmelCase = weights_name.replace( '.bin', F"""-{idx+1:05d}-of-{len(lowerCAmelCase_ ):05d}.bin""" ) # len(sharded_state_dicts):05d} __lowerCAmelCase = os.path.join(lowerCAmelCase_, weights_name.replace('.bin', F"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(lowerCAmelCase_, os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) ) __lowerCAmelCase = shard for key in shard: __lowerCAmelCase = shard_file # Add the metadata __lowerCAmelCase = {'total_size': total_size} __lowerCAmelCase = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(lowerCAmelCase_, lowerCAmelCase_ ), 'w', encoding='utf-8' ) as f: __lowerCAmelCase = json.dumps(lowerCAmelCase_, indent=2, sort_keys=lowerCAmelCase_ ) + '\n' f.write(lowerCAmelCase_ ) return metadata, index if __name__ == "__main__": _snake_case : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) _snake_case : Dict = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def a_ ( ): from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer __lowerCAmelCase = SwitchTransformersConfig.from_pretrained('google/switch-base-8' ) config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted' ) __lowerCAmelCase = SwitchTransformersForConditionalGeneration.from_pretrained( '/home/arthur_huggingface_co/transformers/switch_converted', device_map='auto' ) __lowerCAmelCase = TaTokenizer.from_pretrained('t5-small' ) __lowerCAmelCase = 'A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.' __lowerCAmelCase = tokenizer(lowerCAmelCase_, return_tensors='pt' ).input_ids __lowerCAmelCase = model.generate(lowerCAmelCase_, decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
421
1
'''simple docstring''' import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class UpperCAmelCase_ ( __A ): """simple docstring""" def __init__( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Tuple=13 , UpperCAmelCase : Dict=7 , UpperCAmelCase : int=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : Dict=False , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Dict=99 , UpperCAmelCase : Union[str, Any]=32 , UpperCAmelCase : Dict=5 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : List[str]=37 , UpperCAmelCase : Tuple="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : int=512 , UpperCAmelCase : Optional[Any]=16 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Optional[int]=0.0_2 , UpperCAmelCase : Optional[int]=3 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : List[Any]=None , ) -> List[Any]: '''simple docstring''' lowercase : Union[str, Any] =parent lowercase : Tuple =batch_size lowercase : Dict =seq_length lowercase : List[Any] =is_training lowercase : int =use_input_mask lowercase : List[Any] =use_token_type_ids lowercase : List[Any] =use_labels lowercase : Any =vocab_size lowercase : List[Any] =hidden_size lowercase : str =num_hidden_layers lowercase : Dict =num_attention_heads lowercase : Union[str, Any] =intermediate_size lowercase : Union[str, Any] =hidden_act lowercase : List[Any] =hidden_dropout_prob lowercase : str =attention_probs_dropout_prob lowercase : Optional[Any] =max_position_embeddings lowercase : Dict =type_vocab_size lowercase : List[Any] =type_sequence_label_size lowercase : List[str] =initializer_range lowercase : Union[str, Any] =num_labels lowercase : List[str] =num_choices lowercase : Union[str, Any] =scope def A__ ( self : Any ) -> Dict: '''simple docstring''' lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Dict =None if self.use_input_mask: lowercase : Optional[Any] =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Union[str, Any] =None lowercase : int =None lowercase : int =None if self.use_labels: lowercase : Dict =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Any =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Union[str, Any] =ids_tensor([self.batch_size] , self.num_choices ) lowercase : Tuple =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : Any ) -> Tuple: '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def A__ ( self : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict ) -> List[Any]: '''simple docstring''' lowercase : int =DistilBertModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : List[str] =model(UpperCAmelCase , UpperCAmelCase ) lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' lowercase : Union[str, Any] =DistilBertForMaskedLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : Optional[Any] =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : List[str] ) -> List[str]: '''simple docstring''' lowercase : List[Any] =DistilBertForQuestionAnswering(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : Any =model( UpperCAmelCase , attention_mask=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Dict ) -> str: '''simple docstring''' lowercase : Tuple =self.num_labels lowercase : int =DistilBertForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : Any =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple =self.num_labels lowercase : List[str] =DistilBertForTokenClassification(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : Optional[int] =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : str , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' lowercase : Tuple =self.num_choices lowercase : Any =DistilBertForMultipleChoice(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : Union[str, Any] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : str =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : str =model( UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : Optional[int] ) -> str: '''simple docstring''' lowercase : List[str] =self.prepare_config_and_inputs() ((lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase)) : List[str] =config_and_inputs lowercase : Union[str, Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) UpperCamelCase_ = ( { '''feature-extraction''': DistilBertModel, '''fill-mask''': DistilBertForMaskedLM, '''question-answering''': DistilBertForQuestionAnswering, '''text-classification''': DistilBertForSequenceClassification, '''token-classification''': DistilBertForTokenClassification, '''zero-shot''': DistilBertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase_ = True UpperCamelCase_ = True UpperCamelCase_ = True UpperCamelCase_ = True def A__ ( self : Any ) -> int: '''simple docstring''' lowercase : List[Any] =DistilBertModelTester(self ) lowercase : Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase , dim=37 ) def A__ ( self : Tuple ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase ) def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase ) def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase ) def A__ ( self : int ) -> str: '''simple docstring''' lowercase : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> str: '''simple docstring''' lowercase : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase ) def A__ ( self : Dict ) -> int: '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase ) @slow def A__ ( self : List[str] ) -> str: '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : List[str] =DistilBertModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @slow @require_torch_gpu def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase , lowercase : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return lowercase : Optional[Any] =True lowercase : Tuple =model_class(config=UpperCAmelCase ) lowercase : Tuple =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowercase : Tuple =torch.jit.trace( UpperCAmelCase , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCAmelCase , os.path.join(UpperCAmelCase , '''traced_model.pt''' ) ) lowercase : Any =torch.jit.load(os.path.join(UpperCAmelCase , '''traced_model.pt''' ) , map_location=UpperCAmelCase ) loaded(inputs_dict['''input_ids'''].to(UpperCAmelCase ) , inputs_dict['''attention_mask'''].to(UpperCAmelCase ) ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Dict =DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) lowercase : List[str] =torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowercase : List[Any] =torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase : Any =model(UpperCAmelCase , attention_mask=UpperCAmelCase )[0] lowercase : Union[str, Any] =torch.Size((1, 11, 768) ) self.assertEqual(output.shape , UpperCAmelCase ) lowercase : Union[str, Any] =torch.tensor( [[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCAmelCase , atol=1e-4 ) )
94
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True , _lowerCamelCase="pt" ): '''simple docstring''' _lowerCAmelCase : str = {'add_prefix_space': True} if isinstance(_lowerCamelCase , _lowerCamelCase ) and not line.startswith(' ' ) else {} _lowerCAmelCase : List[str] = padding_side return tokenizer( [line] , max_length=_lowerCamelCase , padding='max_length' if pad_to_max_length else None , truncation=_lowerCamelCase , return_tensors=_lowerCamelCase , add_special_tokens=_lowerCamelCase , **_lowerCamelCase , ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , ): '''simple docstring''' _lowerCAmelCase : str = input_ids.ne(_lowerCamelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __UpperCamelCase ( a__ ): def __init__( self ,_A ,_A ,_A ,_A ,_A="train" ,_A=None ,_A=None ,_A=None ,_A="" ,): '''simple docstring''' super().__init__() _lowerCAmelCase : Any = Path(_A ).joinpath(type_path + '.source' ) _lowerCAmelCase : Optional[int] = Path(_A ).joinpath(type_path + '.target' ) _lowerCAmelCase : List[Any] = self.get_char_lens(self.src_file ) _lowerCAmelCase : Tuple = max_source_length _lowerCAmelCase : Union[str, Any] = max_target_length assert min(self.src_lens ) > 0, F"""found empty line in {self.src_file}""" _lowerCAmelCase : Dict = tokenizer _lowerCAmelCase : List[Any] = prefix if n_obs is not None: _lowerCAmelCase : int = self.src_lens[:n_obs] _lowerCAmelCase : List[str] = src_lang _lowerCAmelCase : Any = tgt_lang def __len__( self ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = index + 1 # linecache starts at 1 _lowerCAmelCase : Optional[int] = self.prefix + linecache.getline(str(self.src_file ) ,_A ).rstrip('\n' ) _lowerCAmelCase : Optional[int] = linecache.getline(str(self.tgt_file ) ,_A ).rstrip('\n' ) assert source_line, F"""empty source line for index {index}""" assert tgt_line, F"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer ,_A ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _lowerCAmelCase : List[str] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer ,_A ) else self.tokenizer ) _lowerCAmelCase : Dict = self.tokenizer.generator if isinstance(self.tokenizer ,_A ) else self.tokenizer _lowerCAmelCase : Union[str, Any] = encode_line(_A ,_A ,self.max_source_length ,'right' ) _lowerCAmelCase : Optional[int] = encode_line(_A ,_A ,self.max_target_length ,'right' ) _lowerCAmelCase : Tuple = source_inputs['input_ids'].squeeze() _lowerCAmelCase : int = target_inputs['input_ids'].squeeze() _lowerCAmelCase : Optional[Any] = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' return [len(_A ) for x in Path(_A ).open().readlines()] def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = torch.stack([x['input_ids'] for x in batch] ) _lowerCAmelCase : List[Any] = torch.stack([x['attention_mask'] for x in batch] ) _lowerCAmelCase : Any = torch.stack([x['decoder_input_ids'] for x in batch] ) _lowerCAmelCase : List[str] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer ,_A ) else self.tokenizer.pad_token_id ) _lowerCAmelCase : List[str] = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer ,_A ) else self.tokenizer.pad_token_id ) _lowerCAmelCase : int = trim_batch(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : Optional[int] = trim_batch(_A ,_A ,attention_mask=_A ) _lowerCAmelCase : List[str] = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch _lowerCAmelCase = getLogger(__name__) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return list(itertools.chain.from_iterable(_lowerCamelCase ) ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = get_git_info() save_json(_lowerCamelCase , os.path.join(_lowerCamelCase , 'git_log.json' ) ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=4 , **_lowerCamelCase ): '''simple docstring''' with open(_lowerCamelCase , 'w' ) as f: json.dump(_lowerCamelCase , _lowerCamelCase , indent=_lowerCamelCase , **_lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' with open(_lowerCamelCase ) as f: return json.load(_lowerCamelCase ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = git.Repo(search_parent_directories=_lowerCamelCase ) _lowerCAmelCase : Optional[int] = { 'repo_id': str(_lowerCamelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return list(map(_lowerCamelCase , _lowerCamelCase ) ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' with open(_lowerCamelCase , 'wb' ) as f: return pickle.dump(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' def remove_articles(_lowerCamelCase ): return re.sub(R'\b(a|an|the)\b' , ' ' , _lowerCamelCase ) def white_space_fix(_lowerCamelCase ): return " ".join(text.split() ) def remove_punc(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCamelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCamelCase ) ) ) ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = normalize_answer(_lowerCamelCase ).split() _lowerCAmelCase : List[str] = normalize_answer(_lowerCamelCase ).split() _lowerCAmelCase : Optional[Any] = Counter(_lowerCamelCase ) & Counter(_lowerCamelCase ) _lowerCAmelCase : List[Any] = sum(common.values() ) if num_same == 0: return 0 _lowerCAmelCase : Any = 1.0 * num_same / len(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = 1.0 * num_same / len(_lowerCamelCase ) _lowerCAmelCase : str = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return normalize_answer(_lowerCamelCase ) == normalize_answer(_lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = 0 for hypo, pred in zip(_lowerCamelCase , _lowerCamelCase ): em += exact_match_score(_lowerCamelCase , _lowerCamelCase ) if len(_lowerCamelCase ) > 0: em /= len(_lowerCamelCase ) return {"em": em} def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return model_prefix.startswith('rag' ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _lowerCAmelCase : List[str] = 'dropout_rate' for p in extra_params: if getattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if not hasattr(_lowerCamelCase , _lowerCamelCase ) and not hasattr(_lowerCamelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_lowerCamelCase ) ) delattr(_lowerCamelCase , _lowerCamelCase ) continue _lowerCAmelCase : Optional[Any] = p if hasattr(_lowerCamelCase , _lowerCamelCase ) else equivalent_param[p] setattr(_lowerCamelCase , _lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) delattr(_lowerCamelCase , _lowerCamelCase ) return hparams, config
259
0
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class _a : """simple docstring""" def __init__( self : Optional[int] , a : Optional[int] , a : List[Any]=13 , a : Optional[int]=7 , a : List[str]=True , a : int=True , a : List[Any]=True , a : Optional[int]=True , a : List[str]=99 , a : Dict=24 , a : List[str]=2 , a : Optional[Any]=6 , a : int=37 , a : Optional[Any]="gelu" , a : Optional[Any]=0.1 , a : List[Any]=0.1 , a : Any=5_12 , a : str=16 , a : List[str]=2 , a : Optional[int]=0.02 , a : Tuple=3 , a : Union[str, Any]=None , a : Any=10_00 , ) ->Tuple: SCREAMING_SNAKE_CASE__ : str = parent SCREAMING_SNAKE_CASE__ : Any = batch_size SCREAMING_SNAKE_CASE__ : Any = seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = is_training SCREAMING_SNAKE_CASE__ : List[Any] = use_input_mask SCREAMING_SNAKE_CASE__ : int = use_token_type_ids SCREAMING_SNAKE_CASE__ : Tuple = use_labels SCREAMING_SNAKE_CASE__ : List[Any] = vocab_size SCREAMING_SNAKE_CASE__ : int = hidden_size SCREAMING_SNAKE_CASE__ : int = num_hidden_layers SCREAMING_SNAKE_CASE__ : int = num_attention_heads SCREAMING_SNAKE_CASE__ : List[Any] = intermediate_size SCREAMING_SNAKE_CASE__ : Any = hidden_act SCREAMING_SNAKE_CASE__ : str = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE__ : Optional[Any] = type_vocab_size SCREAMING_SNAKE_CASE__ : str = type_sequence_label_size SCREAMING_SNAKE_CASE__ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE__ : List[str] = num_labels SCREAMING_SNAKE_CASE__ : Optional[Any] = scope SCREAMING_SNAKE_CASE__ : Any = range_bbox def A_ ( self : Tuple ) ->int: SCREAMING_SNAKE_CASE__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: SCREAMING_SNAKE_CASE__ : str = bbox[i, j, 3] SCREAMING_SNAKE_CASE__ : str = bbox[i, j, 1] SCREAMING_SNAKE_CASE__ : Dict = t if bbox[i, j, 2] < bbox[i, j, 0]: SCREAMING_SNAKE_CASE__ : List[str] = bbox[i, j, 2] SCREAMING_SNAKE_CASE__ : Optional[Any] = bbox[i, j, 0] SCREAMING_SNAKE_CASE__ : List[Any] = t SCREAMING_SNAKE_CASE__ : Optional[int] = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) SCREAMING_SNAKE_CASE__ : int = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : Any = None if self.use_labels: SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def A_ ( self : int ) ->Optional[int]: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def A_ ( self : Any , a : Union[str, Any] , a : Any , a : Dict , a : int , a : Union[str, Any] , a : Optional[Any] , a : Optional[int] , ) ->str: SCREAMING_SNAKE_CASE__ : Dict = LiltModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ : Dict = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ : Any = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ : int = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A_ ( self : int , a : str , a : Any , a : Tuple , a : Union[str, Any] , a : Optional[int] , a : str , a : List[Any] , ) ->Dict: SCREAMING_SNAKE_CASE__ : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE__ : Union[str, Any] = LiltForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ : List[Any] = model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self : Any , a : List[str] , a : Dict , a : str , a : List[str] , a : int , a : List[Any] , a : List[str] , ) ->Dict: SCREAMING_SNAKE_CASE__ : Tuple = LiltForQuestionAnswering(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] = model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self : int ) ->Optional[int]: SCREAMING_SNAKE_CASE__ : List[str] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ), ( SCREAMING_SNAKE_CASE__ ), ( SCREAMING_SNAKE_CASE__ ), ( SCREAMING_SNAKE_CASE__ ), ( SCREAMING_SNAKE_CASE__ ), ( SCREAMING_SNAKE_CASE__ ), ( SCREAMING_SNAKE_CASE__ ), ) : Union[str, Any] = config_and_inputs SCREAMING_SNAKE_CASE__ : Any = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class _a ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" snake_case_ = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) snake_case_ = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = False snake_case_ = False def A_ ( self : str , a : int , a : List[str] , a : Dict , a : int , a : Optional[int] ) ->Optional[int]: return True def A_ ( self : Dict ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : List[Any] = LiltModelTester(self ) SCREAMING_SNAKE_CASE__ : Optional[int] = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def A_ ( self : str ) ->List[Any]: self.config_tester.run_common_tests() def A_ ( self : List[str] ) ->int: SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def A_ ( self : Union[str, Any] ) ->List[str]: SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE__ : int = type self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def A_ ( self : List[Any] ) ->Dict: SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) def A_ ( self : Optional[Any] ) ->Dict: SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) @slow def A_ ( self : Union[str, Any] ) ->Optional[int]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : Dict = LiltModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @require_torch @slow class _a ( unittest.TestCase ): """simple docstring""" def A_ ( self : Optional[int] ) ->Dict: SCREAMING_SNAKE_CASE__ : List[Any] = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base" ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ : Tuple = torch.tensor([[1, 2]] , device=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase_ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[int] = model(input_ids=UpperCAmelCase_ , bbox=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ : str = torch.Size([1, 2, 7_68] ) SCREAMING_SNAKE_CASE__ : Dict = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=UpperCAmelCase_ , ) self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase_ , atol=1E-3 ) )
702
import sys from collections import defaultdict class _a : """simple docstring""" def __init__( self : Any ) ->Dict: SCREAMING_SNAKE_CASE__ : Tuple = [] def A_ ( self : int , a : List[str] ) ->Dict: return self.node_position[vertex] def A_ ( self : Optional[Any] , a : Any , a : List[str] ) ->Optional[Any]: SCREAMING_SNAKE_CASE__ : str = pos def A_ ( self : List[Any] , a : List[str] , a : Dict , a : Dict , a : List[Any] ) ->Optional[int]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: SCREAMING_SNAKE_CASE__ : Optional[Any] = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: SCREAMING_SNAKE_CASE__ : Dict = 2 * start + 1 else: SCREAMING_SNAKE_CASE__ : Tuple = 2 * start + 2 if heap[smallest_child] < heap[start]: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : int = heap[smallest_child], positions[smallest_child] SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[int] = ( heap[start], positions[start], ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Tuple = temp, tempa SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , a ) self.top_to_bottom(a , a , a , a ) def A_ ( self : Union[str, Any] , a : Tuple , a : Tuple , a : Union[str, Any] , a : List[Any] ) ->Optional[int]: SCREAMING_SNAKE_CASE__ : List[Any] = position[index] while index != 0: SCREAMING_SNAKE_CASE__ : Union[str, Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: SCREAMING_SNAKE_CASE__ : List[Any] = heap[parent] SCREAMING_SNAKE_CASE__ : str = position[parent] self.set_position(position[parent] , a ) else: SCREAMING_SNAKE_CASE__ : int = val SCREAMING_SNAKE_CASE__ : Optional[Any] = temp self.set_position(a , a ) break SCREAMING_SNAKE_CASE__ : Optional[int] = parent else: SCREAMING_SNAKE_CASE__ : int = val SCREAMING_SNAKE_CASE__ : List[str] = temp self.set_position(a , 0 ) def A_ ( self : Union[str, Any] , a : int , a : List[str] ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : List[str] = len(a ) // 2 - 1 for i in range(a , -1 , -1 ): self.top_to_bottom(a , a , len(a ) , a ) def A_ ( self : Dict , a : List[Any] , a : Dict ) ->Optional[int]: SCREAMING_SNAKE_CASE__ : Any = positions[0] SCREAMING_SNAKE_CASE__ : Optional[int] = sys.maxsize self.top_to_bottom(a , 0 , len(a ) , a ) return temp def UpperCAmelCase ( _lowerCamelCase : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = Heap() SCREAMING_SNAKE_CASE__ : Any = [0] * len(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Any = [-1] * len(_lowerCamelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] # Heap of Distance of vertices from their neighboring vertex SCREAMING_SNAKE_CASE__ : str = [] for vertex in range(len(_lowerCamelCase ) ): distance_tv.append(sys.maxsize ) positions.append(_lowerCamelCase ) heap.node_position.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = [] SCREAMING_SNAKE_CASE__ : int = 1 SCREAMING_SNAKE_CASE__ : int = sys.maxsize for neighbor, distance in adjacency_list[0]: SCREAMING_SNAKE_CASE__ : int = 0 SCREAMING_SNAKE_CASE__ : List[str] = distance heap.heapify(_lowerCamelCase , _lowerCamelCase ) for _ in range(1 , len(_lowerCamelCase ) ): SCREAMING_SNAKE_CASE__ : Optional[Any] = heap.delete_minimum(_lowerCamelCase , _lowerCamelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_lowerCamelCase )] ): SCREAMING_SNAKE_CASE__ : Any = distance heap.bottom_to_top( _lowerCamelCase , heap.get_position(_lowerCamelCase ) , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE__ : str = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __lowercase :Union[str, Any] = int(input("Enter number of edges: ").strip()) __lowercase :Dict = defaultdict(list) for _ in range(edges_number): __lowercase :Any = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
26
0
'''simple docstring''' import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class UpperCAmelCase__ ( UpperCamelCase__ ): """simple docstring""" __UpperCAmelCase : str = 42 __UpperCAmelCase : Union[str, Any] = jnp.floataa __UpperCAmelCase : List[Any] = True def __lowercase ( self : Tuple ): '''simple docstring''' super().setup() _a : List[str] = nn.Dense(5 ,dtype=self.dtype ) def __call__( self : List[Any] ,*_a : int ,**_a : Optional[Any] ): '''simple docstring''' _a : Optional[Any] = super().__call__(*__A ,**__A ) _a : Tuple = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class UpperCAmelCase__ ( UpperCamelCase__ ): """simple docstring""" __UpperCAmelCase : List[Any] = FlaxBigBirdForNaturalQuestionsModule def UpperCAmelCase_ (__a : List[Any] , __a : List[Any] , __a : Optional[int] , __a : Tuple , __a : Union[str, Any] , __a : Tuple ): """simple docstring""" def cross_entropy(__a : List[str] , __a : List[str] , __a : List[str]=None ): _a : List[Any] = logits.shape[-1] _a : Dict = (labels[..., None] == jnp.arange(UpperCamelCase__ )[None]).astype('f4' ) _a : str = jax.nn.log_softmax(UpperCamelCase__ , axis=-1 ) _a : Optional[Any] = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: _a : List[Any] = reduction(UpperCamelCase__ ) return loss _a : Optional[Any] = partial(UpperCamelCase__ , reduction=jnp.mean ) _a : Optional[Any] = cross_entropy(UpperCamelCase__ , UpperCamelCase__ ) _a : str = cross_entropy(UpperCamelCase__ , UpperCamelCase__ ) _a : List[str] = cross_entropy(UpperCamelCase__ , UpperCamelCase__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class UpperCAmelCase__ : """simple docstring""" __UpperCAmelCase : str = '''google/bigbird-roberta-base''' __UpperCAmelCase : Optional[Any] = 3000 __UpperCAmelCase : List[Any] = 1_0500 __UpperCAmelCase : Optional[int] = 128 __UpperCAmelCase : int = 3 __UpperCAmelCase : Any = 1 __UpperCAmelCase : List[Any] = 5 # tx_args __UpperCAmelCase : Optional[int] = 3e-5 __UpperCAmelCase : List[Any] = 0.0 __UpperCAmelCase : Tuple = 2_0000 __UpperCAmelCase : Any = 0.0_0_9_5 __UpperCAmelCase : int = '''bigbird-roberta-natural-questions''' __UpperCAmelCase : Any = '''training-expt''' __UpperCAmelCase : int = '''data/nq-training.jsonl''' __UpperCAmelCase : int = '''data/nq-validation.jsonl''' def __lowercase ( self : str ): '''simple docstring''' os.makedirs(self.base_dir ,exist_ok=__A ) _a : int = os.path.join(self.base_dir ,self.save_dir ) _a : str = self.batch_size_per_device * jax.device_count() @dataclass class UpperCAmelCase__ : """simple docstring""" __UpperCAmelCase : Optional[int] = 42 __UpperCAmelCase : int = 4096 # no dynamic padding on TPUs def __call__( self : Optional[Any] ,_a : Optional[int] ): '''simple docstring''' _a : str = self.collate_fn(__A ) _a : List[str] = jax.tree_util.tree_map(__A ,__A ) return batch def __lowercase ( self : List[Any] ,_a : Union[str, Any] ): '''simple docstring''' _a, _a : Optional[int] = self.fetch_inputs(features['input_ids'] ) _a : List[str] = { 'input_ids': jnp.array(__A ,dtype=jnp.intaa ), 'attention_mask': jnp.array(__A ,dtype=jnp.intaa ), 'start_labels': jnp.array(features['start_token'] ,dtype=jnp.intaa ), 'end_labels': jnp.array(features['end_token'] ,dtype=jnp.intaa ), 'pooled_labels': jnp.array(features['category'] ,dtype=jnp.intaa ), } return batch def __lowercase ( self : Tuple ,_a : list ): '''simple docstring''' _a : Dict = [self._fetch_inputs(__A ) for ids in input_ids] return zip(*__A ) def __lowercase ( self : List[str] ,_a : list ): '''simple docstring''' _a : str = [1 for _ in range(len(__A ) )] while len(__A ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def UpperCAmelCase_ (__a : str , __a : List[str] , __a : Optional[Any]=None ): """simple docstring""" if seed is not None: _a : Union[str, Any] = dataset.shuffle(seed=UpperCamelCase__ ) for i in range(len(UpperCamelCase__ ) // batch_size ): _a : Dict = dataset[i * batch_size : (i + 1) * batch_size] yield dict(UpperCamelCase__ ) @partial(jax.pmap , axis_name='batch' ) def UpperCAmelCase_ (__a : Dict , __a : Optional[int] , **__a : Optional[int] ): """simple docstring""" def loss_fn(__a : List[Any] ): _a : Optional[int] = model_inputs.pop('start_labels' ) _a : int = model_inputs.pop('end_labels' ) _a : Optional[int] = model_inputs.pop('pooled_labels' ) _a : int = state.apply_fn(**UpperCamelCase__ , params=UpperCamelCase__ , dropout_rng=UpperCamelCase__ , train=UpperCamelCase__ ) _a, _a, _a : str = outputs return state.loss_fn( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) _a, _a : Dict = jax.random.split(UpperCamelCase__ ) _a : int = jax.value_and_grad(UpperCamelCase__ ) _a, _a : str = grad_fn(state.params ) _a : Any = jax.lax.pmean({'loss': loss} , axis_name='batch' ) _a : int = jax.lax.pmean(UpperCamelCase__ , 'batch' ) _a : Optional[int] = state.apply_gradients(grads=UpperCamelCase__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='batch' ) def UpperCAmelCase_ (__a : Optional[Any] , **__a : Dict ): """simple docstring""" _a : Dict = model_inputs.pop('start_labels' ) _a : Dict = model_inputs.pop('end_labels' ) _a : Union[str, Any] = model_inputs.pop('pooled_labels' ) _a : int = state.apply_fn(**UpperCamelCase__ , params=state.params , train=UpperCamelCase__ ) _a, _a, _a : str = outputs _a : str = state.loss_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) _a : Optional[int] = jax.lax.pmean({'loss': loss} , axis_name='batch' ) return metrics class UpperCAmelCase__ ( train_state.TrainState ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = struct.field(pytree_node=UpperCamelCase__ ) @dataclass class UpperCAmelCase__ : """simple docstring""" __UpperCAmelCase : Dict = 42 __UpperCAmelCase : Optional[int] = 42 __UpperCAmelCase : List[str] = 42 __UpperCAmelCase : Tuple = 42 __UpperCAmelCase : Any = 42 __UpperCAmelCase : Tuple = 42 __UpperCAmelCase : Any = None def __lowercase ( self : List[Any] ,_a : str ,_a : str ,_a : str ,_a : Tuple=None ): '''simple docstring''' _a : Tuple = model.params _a : Union[str, Any] = TrainState.create( apply_fn=model.__call__ ,params=__A ,tx=__A ,loss_fn=__A ,) if ckpt_dir is not None: _a, _a, _a, _a, _a : Tuple = restore_checkpoint(__A ,__A ) _a : List[Any] = { 'lr': args.lr, 'init_lr': args.init_lr, 'warmup_steps': args.warmup_steps, 'num_train_steps': num_train_steps, 'weight_decay': args.weight_decay, } _a, _a : str = build_tx(**__A ) _a : Union[str, Any] = train_state.TrainState( step=__A ,apply_fn=model.__call__ ,params=__A ,tx=__A ,opt_state=__A ,) _a : Tuple = args _a : Optional[int] = data_collator _a : Optional[Any] = lr _a : Union[str, Any] = params _a : Any = jax_utils.replicate(__A ) return state def __lowercase ( self : Optional[Any] ,_a : Optional[int] ,_a : int ,_a : int ): '''simple docstring''' _a : Union[str, Any] = self.args _a : str = len(__A ) // args.batch_size _a : Optional[Any] = jax.random.PRNGKey(0 ) _a : str = jax.random.split(__A ,jax.device_count() ) for epoch in range(args.max_epochs ): _a : List[Any] = jnp.array(0 ,dtype=jnp.floataa ) _a : int = get_batched_dataset(__A ,args.batch_size ,seed=__A ) _a : Optional[int] = 0 for batch in tqdm(__A ,total=__A ,desc=F"""Running EPOCH-{epoch}""" ): _a : List[str] = self.data_collator(__A ) _a, _a, _a : List[str] = self.train_step_fn(__A ,__A ,**__A ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 if i % args.logging_steps == 0: _a : Optional[int] = jax_utils.unreplicate(state.step ) _a : Tuple = running_loss.item() / i _a : int = self.scheduler_fn(state_step - 1 ) _a : Dict = self.evaluate(__A ,__A ) _a : Dict = { 'step': state_step.item(), 'eval_loss': eval_loss.item(), 'tr_loss': tr_loss, 'lr': lr.item(), } tqdm.write(str(__A ) ) self.logger.log(__A ,commit=__A ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F"""-e{epoch}-s{i}""" ,state=__A ) def __lowercase ( self : List[str] ,_a : Dict ,_a : str ): '''simple docstring''' _a : str = get_batched_dataset(__A ,self.args.batch_size ) _a : int = len(__A ) // self.args.batch_size _a : Optional[int] = jnp.array(0 ,dtype=jnp.floataa ) _a : str = 0 for batch in tqdm(__A ,total=__A ,desc='Evaluating ... ' ): _a : Dict = self.data_collator(__A ) _a : int = self.val_step_fn(__A ,**__A ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 return running_loss / i def __lowercase ( self : List[Any] ,_a : Any ,_a : Dict ): '''simple docstring''' _a : int = jax_utils.unreplicate(__A ) print(F"""SAVING CHECKPOINT IN {save_dir}""" ,end=' ... ' ) self.model_save_fn(__A ,params=state.params ) with open(os.path.join(__A ,'opt_state.msgpack' ) ,'wb' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args ,os.path.join(__A ,'args.joblib' ) ) joblib.dump(self.data_collator ,os.path.join(__A ,'data_collator.joblib' ) ) with open(os.path.join(__A ,'training_state.json' ) ,'w' ) as f: json.dump({'step': state.step.item()} ,__A ) print('DONE' ) def UpperCAmelCase_ (__a : int , __a : Optional[Any] ): """simple docstring""" print(f"""RESTORING CHECKPOINT FROM {save_dir}""" , end=' ... ' ) with open(os.path.join(UpperCamelCase__ , 'flax_model.msgpack' ) , 'rb' ) as f: _a : int = from_bytes(state.params , f.read() ) with open(os.path.join(UpperCamelCase__ , 'opt_state.msgpack' ) , 'rb' ) as f: _a : int = from_bytes(state.opt_state , f.read() ) _a : List[str] = joblib.load(os.path.join(UpperCamelCase__ , 'args.joblib' ) ) _a : Union[str, Any] = joblib.load(os.path.join(UpperCamelCase__ , 'data_collator.joblib' ) ) with open(os.path.join(UpperCamelCase__ , 'training_state.json' ) , 'r' ) as f: _a : Dict = json.load(UpperCamelCase__ ) _a : Dict = training_state['step'] print('DONE' ) return params, opt_state, step, args, data_collator def UpperCAmelCase_ (__a : int , __a : Union[str, Any] , __a : List[Any] , __a : Dict ): """simple docstring""" _a : List[Any] = num_train_steps - warmup_steps _a : List[str] = optax.linear_schedule(init_value=UpperCamelCase__ , end_value=UpperCamelCase__ , transition_steps=UpperCamelCase__ ) _a : List[Any] = optax.linear_schedule(init_value=UpperCamelCase__ , end_value=1e-7 , transition_steps=UpperCamelCase__ ) _a : Any = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def UpperCAmelCase_ (__a : List[str] , __a : Union[str, Any] , __a : Tuple , __a : Tuple , __a : Tuple ): """simple docstring""" def weight_decay_mask(__a : Any ): _a : Tuple = traverse_util.flatten_dict(UpperCamelCase__ ) _a : Tuple = {k: (v[-1] != 'bias' and v[-2:] != ('LayerNorm', 'scale')) for k, v in params.items()} return traverse_util.unflatten_dict(UpperCamelCase__ ) _a : Any = scheduler_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) _a : Union[str, Any] = optax.adamw(learning_rate=UpperCamelCase__ , weight_decay=UpperCamelCase__ , mask=UpperCamelCase__ ) return tx, lr
229
from torch import nn def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'''Unsupported activation function: {act_fn}''' )
6
0
'''simple docstring''' import sys import turtle def _lowerCAmelCase ( __snake_case : tuple[float, float] , __snake_case : tuple[float, float] ) -> tuple[float, float]: return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def _lowerCAmelCase ( __snake_case : tuple[float, float] , __snake_case : tuple[float, float] , __snake_case : tuple[float, float] , __snake_case : int , ) -> None: my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(__snake_case , get_mid(__snake_case , __snake_case ) , get_mid(__snake_case , __snake_case ) , depth - 1 ) triangle(__snake_case , get_mid(__snake_case , __snake_case ) , get_mid(__snake_case , __snake_case ) , depth - 1 ) triangle(__snake_case , get_mid(__snake_case , __snake_case ) , get_mid(__snake_case , __snake_case ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) lowercase__ : Any = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') lowercase__ : Optional[Any] = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
711
'''simple docstring''' import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class SCREAMING_SNAKE_CASE (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base') __A : int = AutoTokenizer.from_pretrained('xlm-roberta-base') __A : List[str] = 'The dog is cute and lives in the garden house' __A : int = jnp.array([tokenizer.encode(_UpperCAmelCase)]) __A : Any = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim __A : Optional[Any] = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]]) __A : Union[str, Any] = model(_UpperCAmelCase)['last_hidden_state'] self.assertEqual(output.shape , _UpperCAmelCase) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , _UpperCAmelCase , atol=1e-3))
338
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A : int = logging.get_logger(__name__) _A : List[Any] = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = """yolos""" def __init__( self , A_=7_68 , A_=12 , A_=12 , A_=30_72 , A_="gelu" , A_=0.0 , A_=0.0 , A_=0.02 , A_=1E-12 , A_=[5_12, 8_64] , A_=16 , A_=3 , A_=True , A_=1_00 , A_=True , A_=False , A_=1 , A_=5 , A_=2 , A_=5 , A_=2 , A_=0.1 , **A_ , ): '''simple docstring''' super().__init__(**A_ ) SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = qkv_bias SCREAMING_SNAKE_CASE__ = num_detection_tokens SCREAMING_SNAKE_CASE__ = use_mid_position_embeddings SCREAMING_SNAKE_CASE__ = auxiliary_loss # Hungarian matcher SCREAMING_SNAKE_CASE__ = class_cost SCREAMING_SNAKE_CASE__ = bbox_cost SCREAMING_SNAKE_CASE__ = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE__ = bbox_loss_coefficient SCREAMING_SNAKE_CASE__ = giou_loss_coefficient SCREAMING_SNAKE_CASE__ = eos_coefficient class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = version.parse("""1.11""" ) @property def lowercase_ ( self ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowercase_ ( self ): '''simple docstring''' return 1E-4 @property def lowercase_ ( self ): '''simple docstring''' return 12
100
"""simple docstring""" import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger _lowercase = get_logger(__name__) class __a ( enum.Enum ): '''simple docstring''' _lowerCamelCase : Tuple = """all_checks""" _lowerCamelCase : Optional[int] = """basic_checks""" _lowerCamelCase : str = """no_checks""" class __a ( __a ): '''simple docstring''' class __a ( __a ): '''simple docstring''' class __a ( __a ): '''simple docstring''' class __a ( __a ): '''simple docstring''' def lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__=None ) ->Union[str, Any]: if expected_checksums is None: logger.info("Unable to verify checksums." ) return if len(set(__magic_name__ ) - set(__magic_name__ ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(__magic_name__ ) - set(__magic_name__ ) ) ) if len(set(__magic_name__ ) - set(__magic_name__ ) ) > 0: raise UnexpectedDownloadedFile(str(set(__magic_name__ ) - set(__magic_name__ ) ) ) __lowercase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] __lowercase = " for " + verification_name if verification_name is not None else "" if len(__magic_name__ ) > 0: raise NonMatchingChecksumError( F'''Checksums didn\'t match{for_verification_name}:\n''' F'''{bad_urls}\n''' "Set `verification_mode='no_checks'` to skip checksums verification and ignore this error" ) logger.info("All the checksums matched successfully" + for_verification_name ) class __a ( __a ): '''simple docstring''' class __a ( __a ): '''simple docstring''' class __a ( __a ): '''simple docstring''' class __a ( __a ): '''simple docstring''' def lowerCAmelCase__ ( __magic_name__ , __magic_name__ ) ->Any: if expected_splits is None: logger.info("Unable to verify splits sizes." ) return if len(set(__magic_name__ ) - set(__magic_name__ ) ) > 0: raise ExpectedMoreSplits(str(set(__magic_name__ ) - set(__magic_name__ ) ) ) if len(set(__magic_name__ ) - set(__magic_name__ ) ) > 0: raise UnexpectedSplits(str(set(__magic_name__ ) - set(__magic_name__ ) ) ) __lowercase = [ {"expected": expected_splits[name], "recorded": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(__magic_name__ ) > 0: raise NonMatchingSplitsSizesError(str(__magic_name__ ) ) logger.info("All the splits matched successfully." ) def lowerCAmelCase__ ( __magic_name__ , __magic_name__ = True ) ->dict: if record_checksum: __lowercase = shaaaa() with open(__magic_name__ , "rb" ) as f: for chunk in iter(lambda: f.read(1 << 2_0 ) , b"" ): m.update(__magic_name__ ) __lowercase = m.hexdigest() else: __lowercase = None return {"num_bytes": os.path.getsize(__magic_name__ ), "checksum": checksum} def lowerCAmelCase__ ( __magic_name__ ) ->List[str]: if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
118
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { "google/vivit-b-16x2-kinetics400": ( "https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class _lowercase ( __UpperCAmelCase ): _lowerCamelCase = """vivit""" def __init__( self , UpperCamelCase_=224 , UpperCamelCase_=32 , UpperCamelCase_=[2, 16, 16] , UpperCamelCase_=3 , UpperCamelCase_=768 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=3072 , UpperCamelCase_="gelu_fast" , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-0_6 , UpperCamelCase_=True , **UpperCamelCase_ , ): __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = initializer_range __magic_name__ = layer_norm_eps __magic_name__ = image_size __magic_name__ = num_frames __magic_name__ = tubelet_size __magic_name__ = num_channels __magic_name__ = qkv_bias super().__init__(**UpperCAmelCase_ )
711
"""simple docstring""" import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path __lowerCamelCase = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def lowercase ( __UpperCamelCase=True ) -> List[Any]: if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__UpperCAmelCase ) ) class _lowercase ( __UpperCAmelCase ): _lowerCamelCase = None _lowerCamelCase = None def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): with TemporaryDirectory() as tmp_dir: __magic_name__ = dataset_module_factory(UpperCamelCase_ , cache_dir=UpperCamelCase_ ) __magic_name__ = import_main_class(dataset_module.module_path , dataset=UpperCamelCase_ ) __magic_name__ = builder_cls( cache_dir=UpperCamelCase_ , config_name=UpperCamelCase_ , hash=dataset_module.hash , ) __magic_name__ = '''/'''.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=UpperCamelCase_ ).replace(os.sep , '''/''' ), config.DATASET_INFO_FILENAME, ] ) __magic_name__ = cached_path(UpperCamelCase_ , cache_dir=UpperCamelCase_ ) self.assertTrue(os.path.exists(UpperCamelCase_ ) ) @pytest.mark.integration def lowercase ( __UpperCamelCase ) -> Tuple: __magic_name__ = tmp_path_factory.mktemp('''test_hf_gcp''' ) / '''test_wikipedia_simple''' __magic_name__ = dataset_module_factory('''wikipedia''' , cache_dir=__UpperCamelCase ) __magic_name__ = import_main_class(dataset_module.module_path ) __magic_name__ = builder_cls( cache_dir=__UpperCamelCase , config_name='''20220301.frr''' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam __magic_name__ = None builder_instance.download_and_prepare() __magic_name__ = builder_instance.as_dataset() assert ds @pytest.mark.integration def lowercase ( __UpperCamelCase ) -> Tuple: __magic_name__ = dataset_module_factory('''wikipedia''' , cache_dir=__UpperCamelCase ) __magic_name__ = import_main_class(dataset_module.module_path , dataset=__UpperCamelCase ) __magic_name__ = builder_cls( cache_dir=__UpperCamelCase , config_name='''20220301.frr''' , hash=dataset_module.hash , ) __magic_name__ = builder_instance.as_streaming_dataset() assert ds assert isinstance(__UpperCamelCase , __UpperCamelCase ) assert "train" in ds assert isinstance(ds['''train'''] , __UpperCamelCase ) assert next(iter(ds['''train'''] ) )
190
0
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification __lowerCamelCase : Any = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co __lowerCamelCase : str = "main" # Default branch name __lowerCamelCase : Dict = "f2c752cfc5c0ab6f4bdec59acea69eefbee381c2" # One particular commit (not the top of `main`) __lowerCamelCase : Optional[int] = "aaaaaaa" # This commit does not exist, so we should 404. __lowerCamelCase : Tuple = "d9e9f15bc825e4b2c9249e9578f884bbcb5e3684" # Sha-1 of config.json on the top of `main`, for checking purposes __lowerCamelCase : List[Any] = "4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3" @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> str: print('''Welcome!''' ) yield print('''Bye!''' ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Dict: print('''Bonjour!''' ) yield print('''Au revoir!''' ) class a ( unittest.TestCase ): def lowerCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' assert transformers.__spec__ is not None assert importlib.util.find_spec('''transformers''' ) is not None class a ( unittest.TestCase ): @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def lowerCAmelCase_ ( self , __UpperCamelCase )-> Optional[int]: '''simple docstring''' with ContextManagers([] ): print('''Transformers are awesome!''' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , '''Transformers are awesome!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def lowerCAmelCase_ ( self , __UpperCamelCase )-> int: '''simple docstring''' with ContextManagers([context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Welcome!\nTransformers are awesome!\nBye!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def lowerCAmelCase_ ( self , __UpperCamelCase )-> Optional[Any]: '''simple docstring''' with ContextManagers([context_fr(), context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n''' ) @require_torch def lowerCAmelCase_ ( self )-> List[Any]: '''simple docstring''' self.assertEqual(find_labels(__UpperCamelCase ) , ['''labels'''] ) self.assertEqual(find_labels(__UpperCamelCase ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(__UpperCamelCase ) , ['''start_positions''', '''end_positions'''] ) class a ( UpperCamelCase_ ): pass self.assertEqual(find_labels(__UpperCamelCase ) , ['''labels'''] ) @require_tf def lowerCAmelCase_ ( self )-> Dict: '''simple docstring''' self.assertEqual(find_labels(__UpperCamelCase ) , ['''labels'''] ) self.assertEqual(find_labels(__UpperCamelCase ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(__UpperCamelCase ) , ['''start_positions''', '''end_positions'''] ) class a ( UpperCamelCase_ ): pass self.assertEqual(find_labels(__UpperCamelCase ) , ['''labels'''] ) @require_flax def lowerCAmelCase_ ( self )-> List[Any]: '''simple docstring''' self.assertEqual(find_labels(__UpperCamelCase ) , [] ) self.assertEqual(find_labels(__UpperCamelCase ) , [] ) self.assertEqual(find_labels(__UpperCamelCase ) , [] ) class a ( UpperCamelCase_ ): pass self.assertEqual(find_labels(__UpperCamelCase ) , [] )
416
from typing import Any class a : def __init__( self , __UpperCamelCase )-> List[str]: '''simple docstring''' A__ : Union[str, Any] =data A__ : Tuple =None def __repr__( self )-> str: '''simple docstring''' return F'Node({self.data})' class a : def __init__( self )-> Optional[int]: '''simple docstring''' A__ : Tuple =None def __iter__( self )-> Any: '''simple docstring''' A__ : int =self.head while node: yield node.data A__ : Tuple =node.next def __len__( self )-> int: '''simple docstring''' return sum(1 for _ in self ) def __repr__( self )-> str: '''simple docstring''' return "->".join([str(__UpperCamelCase ) for item in self] ) def __getitem__( self , __UpperCamelCase )-> Any: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , __UpperCamelCase , __UpperCamelCase )-> None: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) A__ : Any =self.head for _ in range(__UpperCamelCase ): A__ : int =current.next A__ : Dict =data def lowerCAmelCase_ ( self , __UpperCamelCase )-> None: '''simple docstring''' self.insert_nth(len(self ) , __UpperCamelCase ) def lowerCAmelCase_ ( self , __UpperCamelCase )-> None: '''simple docstring''' self.insert_nth(0 , __UpperCamelCase ) def lowerCAmelCase_ ( self , __UpperCamelCase , __UpperCamelCase )-> None: '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('''list index out of range''' ) A__ : Tuple =Node(__UpperCamelCase ) if self.head is None: A__ : Tuple =new_node elif index == 0: A__ : Dict =self.head # link new_node to head A__ : List[Any] =new_node else: A__ : int =self.head for _ in range(index - 1 ): A__ : List[str] =temp.next A__ : List[Any] =temp.next A__ : Optional[Any] =new_node def lowerCAmelCase_ ( self )-> None: # print every node data '''simple docstring''' print(self ) def lowerCAmelCase_ ( self )-> Any: '''simple docstring''' return self.delete_nth(0 ) def lowerCAmelCase_ ( self )-> Any: # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def lowerCAmelCase_ ( self , __UpperCamelCase = 0 )-> Any: '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('''List index out of range.''' ) A__ : Optional[Any] =self.head # default first node if index == 0: A__ : int =self.head.next else: A__ : List[str] =self.head for _ in range(index - 1 ): A__ : List[str] =temp.next A__ : int =temp.next A__ : Any =temp.next.next return delete_node.data def lowerCAmelCase_ ( self )-> bool: '''simple docstring''' return self.head is None def lowerCAmelCase_ ( self )-> None: '''simple docstring''' A__ : Dict =None A__ : Optional[int] =self.head while current: # Store the current node's next node. A__ : int =current.next # Make the current node's next point backwards A__ : Dict =prev # Make the previous node be the current node A__ : Dict =current # Make the current node the next node (to progress iteration) A__ : List[str] =next_node # Return prev in order to put the head at the end A__ : List[str] =prev def SCREAMING_SNAKE_CASE__ ( ) -> None: A__ : Union[str, Any] =LinkedList() assert linked_list.is_empty() is True assert str(snake_case_ ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(1_0 ): assert len(snake_case_ ) == i linked_list.insert_nth(snake_case_, i + 1 ) assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(1, 1_1 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(1_1 ) assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(0, 1_2 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 1_0 assert linked_list.delete_tail() == 1_1 assert len(snake_case_ ) == 9 assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(1, 1_0 ) ) assert all(linked_list[i] == i + 1 for i in range(0, 9 ) ) is True for i in range(0, 9 ): A__ : Dict =-i assert all(linked_list[i] == -i for i in range(0, 9 ) ) is True linked_list.reverse() assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(-8, 1 ) ) def SCREAMING_SNAKE_CASE__ ( ) -> None: A__ : Union[str, Any] =[ -9, 1_0_0, Node(7_7_3_4_5_1_1_2 ), '''dlrow olleH''', 7, 5_5_5_5, 0, -1_9_2.5_5_5_5_5, '''Hello, world!''', 7_7.9, Node(1_0 ), None, None, 1_2.2_0, ] A__ : Optional[Any] =LinkedList() for i in test_input: linked_list.insert_tail(snake_case_ ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(snake_case_ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head A__ : Tuple =linked_list.delete_head() assert result == -9 assert ( str(snake_case_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail A__ : Union[str, Any] =linked_list.delete_tail() assert result == 1_2.2 assert ( str(snake_case_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list A__ : Tuple =linked_list.delete_nth(1_0 ) assert result is None assert ( str(snake_case_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('''Hello again, world!''' ) ) assert ( str(snake_case_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(snake_case_ ) assert ( str(snake_case_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(snake_case_ ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: from doctest import testmod testmod() A__ : Optional[Any] =LinkedList() linked_list.insert_head(input('''Inserting 1st at head ''' ).strip() ) linked_list.insert_head(input('''Inserting 2nd at head ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() linked_list.insert_tail(input('''\nInserting 1st at tail ''' ).strip() ) linked_list.insert_tail(input('''Inserting 2nd at tail ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() print('''\nDelete head''' ) linked_list.delete_head() print('''Delete tail''' ) linked_list.delete_tail() print('''\nPrint list:''' ) linked_list.print_list() print('''\nReverse linked list''' ) linked_list.reverse() print('''\nPrint list:''' ) linked_list.print_list() print('''\nString representation of linked list:''' ) print(snake_case_ ) print('''\nReading/changing Node data using indexing:''' ) print(f'Element at Position 1: {linked_list[1]}' ) A__ : List[str] =input('''Enter New Value: ''' ).strip() print('''New list:''' ) print(snake_case_ ) print(f'length of linked_list is : {len(snake_case_ )}' ) if __name__ == "__main__": main()
416
1
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _A = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex _A = 10 _A = 2_56 def lowerCamelCase__ ( __lowerCAmelCase : List[str] ): """simple docstring""" if len(__lowerCAmelCase ) < MIN_NUM_TOKENS: return None lowerCAmelCase_ = MinHash(num_perm=__lowerCAmelCase ) for token in set(__lowerCAmelCase ): min_hash.update(token.encode() ) return min_hash def lowerCamelCase__ ( __lowerCAmelCase : str ): """simple docstring""" return {t for t in NON_ALPHA.split(__lowerCAmelCase ) if len(t.strip() ) > 0} class _lowerCAmelCase : def __init__( self , *, _UpperCamelCase = 0.85 , ) -> Dict: lowerCAmelCase_ = duplication_jaccard_threshold lowerCAmelCase_ = NUM_PERM lowerCAmelCase_ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) lowerCAmelCase_ = defaultdict(_UpperCamelCase ) def __a ( self , _UpperCamelCase , _UpperCamelCase ) -> None: lowerCAmelCase_ = self._index.query(_UpperCamelCase ) if code_key in self._index.keys: print(f"""Duplicate key {code_key}""" ) return self._index.insert(_UpperCamelCase , _UpperCamelCase ) if len(_UpperCamelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_UpperCamelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(_UpperCamelCase ) def __a ( self ) -> List[List[Dict]]: lowerCAmelCase_ = [] for base, duplicates in self._duplicate_clusters.items(): lowerCAmelCase_ = [base] + list(_UpperCamelCase ) # reformat the cluster to be a list of dict lowerCAmelCase_ = [{"base_index": el[0], "repo_name": el[1], "path": el[2]} for el in cluster] duplicate_clusters.append(_UpperCamelCase ) return duplicate_clusters def __a ( self , _UpperCamelCase ) -> None: lowerCAmelCase_ = self.get_duplicate_clusters() with open(_UpperCamelCase , "w" ) as f: json.dump(_UpperCamelCase , _UpperCamelCase ) def lowerCamelCase__ ( __lowerCAmelCase : Tuple ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = element lowerCAmelCase_ = get_min_hash([t for t in NON_ALPHA.split(data["content"] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCamelCase__ ( __lowerCAmelCase : Type[Dataset] ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__lowerCAmelCase , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def lowerCamelCase__ ( __lowerCAmelCase : Type[Dataset] , __lowerCAmelCase : float ): """simple docstring""" lowerCAmelCase_ = DuplicationIndex(duplication_jaccard_threshold=__lowerCAmelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__lowerCAmelCase ) ) , max_queue_size=100 ) ): di.add(__lowerCAmelCase , __lowerCAmelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCamelCase__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ): """simple docstring""" lowerCAmelCase_ = get_tokens(__lowerCAmelCase ) lowerCAmelCase_ = get_tokens(__lowerCAmelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _A = None def lowerCamelCase__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : int ): """simple docstring""" lowerCAmelCase_ = [] for elementa in cluster: lowerCAmelCase_ = _shared_dataset[elementa["base_index"]]["content"] for elementa in extremes: lowerCAmelCase_ = _shared_dataset[elementa["base_index"]]["content"] if jaccard_similarity(__lowerCAmelCase , __lowerCAmelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowerCAmelCase_ = 1 extremes.append(__lowerCAmelCase ) return extremes def lowerCamelCase__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" global _shared_dataset lowerCAmelCase_ = dataset lowerCAmelCase_ = [] lowerCAmelCase_ = partial(_find_cluster_extremes_shared , jaccard_threshold=__lowerCAmelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __lowerCAmelCase , __lowerCAmelCase , ) , total=len(__lowerCAmelCase ) , ): extremes_list.append(__lowerCAmelCase ) return extremes_list def lowerCamelCase__ ( __lowerCAmelCase : Type[Dataset] , __lowerCAmelCase : float = 0.85 ): """simple docstring""" lowerCAmelCase_ = make_duplicate_clusters(__lowerCAmelCase , __lowerCAmelCase ) lowerCAmelCase_ = {x["base_index"] for cluster in duplicate_clusters for x in cluster} lowerCAmelCase_ = {} lowerCAmelCase_ = find_extremes(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for extremes in extremes_clusters: for element in extremes: lowerCAmelCase_ = element lowerCAmelCase_ = duplicate_indices - set(extreme_dict.keys() ) lowerCAmelCase_ = dataset.filter(lambda __lowerCAmelCase , __lowerCAmelCase : idx not in remove_indices , with_indices=__lowerCAmelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowerCAmelCase_ = element["base_index"] in extreme_dict if element["is_extreme"]: lowerCAmelCase_ = extreme_dict[element["base_index"]]["copies"] print(F"""Original dataset size: {len(__lowerCAmelCase )}""" ) print(F"""Number of duplicate clusters: {len(__lowerCAmelCase )}""" ) print(F"""Files in duplicate cluster: {len(__lowerCAmelCase )}""" ) print(F"""Unique files in duplicate cluster: {len(__lowerCAmelCase )}""" ) print(F"""Filtered dataset size: {len(__lowerCAmelCase )}""" ) return ds_filter, duplicate_clusters
707
def lowerCamelCase__ ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : set ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = len(__lowerCAmelCase ), len(grid[0] ) if ( min(__lowerCAmelCase , __lowerCAmelCase ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) lowerCAmelCase_ = 0 count += depth_first_search(__lowerCAmelCase , row + 1 , __lowerCAmelCase , __lowerCAmelCase ) count += depth_first_search(__lowerCAmelCase , row - 1 , __lowerCAmelCase , __lowerCAmelCase ) count += depth_first_search(__lowerCAmelCase , __lowerCAmelCase , col + 1 , __lowerCAmelCase ) count += depth_first_search(__lowerCAmelCase , __lowerCAmelCase , col - 1 , __lowerCAmelCase ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
279
0
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _lowerCamelCase = """\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ _lowerCamelCase = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ _lowerCamelCase = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _snake_case (datasets.Metric): def UpperCamelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ,id="token" ) ,id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" ,id="token" ) ,id="sequence" ) ,id="references" ), } ) ,) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case = 1 ,_snake_case = 4 ,): return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_snake_case ,hypotheses=_snake_case ,min_len=_snake_case ,max_len=_snake_case ) }
71
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class lowercase ( unittest.TestCase ): def __init__( self : str , _UpperCamelCase : Any , _UpperCamelCase : Tuple=13 , _UpperCamelCase : Tuple=7 , _UpperCamelCase : Dict=True , _UpperCamelCase : str=True , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : int=99 , _UpperCamelCase : Optional[int]=32 , _UpperCamelCase : str=5 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : List[Any]=37 , _UpperCamelCase : int="gelu" , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : Optional[Any]=512 , _UpperCamelCase : Optional[Any]=16 , _UpperCamelCase : Tuple=2 , _UpperCamelCase : Union[str, Any]=0.0_2 , _UpperCamelCase : str=4 , ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_attention_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_choices def __snake_case( self : Dict ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_attention_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __snake_case( self : Dict ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def __snake_case( self : Union[str, Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class lowercase ( a , unittest.TestCase ): lowercase__ : List[Any] = True lowercase__ : str = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def __snake_case( self : str ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = FlaxRobertaPreLayerNormModelTester(self ) @slow def __snake_case( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=_UpperCamelCase ) SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCamelCase ) @require_flax class lowercase ( unittest.TestCase ): @slow def __snake_case( self : List[str] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=_UpperCamelCase ) SCREAMING_SNAKE_CASE = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase )[0] SCREAMING_SNAKE_CASE = [1, 11, 50_265] self.assertEqual(list(output.shape ) , _UpperCamelCase ) # compare the actual values for a slice. SCREAMING_SNAKE_CASE = np.array( [[[4_0.4_8_8_0, 1_8.0_1_9_9, -5.2_3_6_7], [-1.8_8_7_7, -4.0_8_8_5, 1_0.7_0_8_5], [-2.2_6_1_3, -5.6_1_1_0, 7.2_6_6_5]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow def __snake_case( self : List[str] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = FlaxRobertaPreLayerNormModel.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=_UpperCamelCase ) SCREAMING_SNAKE_CASE = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase )[0] # compare the actual values for a slice. SCREAMING_SNAKE_CASE = np.array( [[[0.0_2_0_8, -0.0_3_5_6, 0.0_2_3_7], [-0.1_5_6_9, -0.0_4_1_1, -0.2_6_2_6], [0.1_8_7_9, 0.0_1_2_5, -0.0_0_8_9]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) )
403
0
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: if principal <= 0: raise Exception("""Principal borrowed must be > 0""" ) if rate_per_annum < 0: raise Exception("""Rate of interest must be >= 0""" ) if years_to_repay <= 0 or not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise Exception("""Years to repay must be an integer > 0""" ) # Yearly rate is divided by 12 to get monthly rate snake_case_ = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly snake_case_ = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
721
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path __SCREAMING_SNAKE_CASE : Union[str, Any] = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) __SCREAMING_SNAKE_CASE : Dict = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} __SCREAMING_SNAKE_CASE : Dict = 'zero2' __SCREAMING_SNAKE_CASE : List[Any] = 'zero3' __SCREAMING_SNAKE_CASE : int = [ZEROa, ZEROa] def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param snake_case_ = parameterized.to_safe_name("""_""".join(str(_SCREAMING_SNAKE_CASE ) for x in param.args ) ) return f"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test __SCREAMING_SNAKE_CASE : Dict = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __A (snake_case__): '''simple docstring''' @parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ ) def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ) ->Any: """simple docstring""" self.run_and_check( stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , ) @require_torch_multi_gpu @parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] ) ->Optional[Any]: """simple docstring""" self.run_and_check( stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , ) @parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ ) def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ) ->List[str]: """simple docstring""" self.run_and_check( stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , ) @require_torch_multi_gpu @parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ ) def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ) ->Optional[int]: """simple docstring""" self.run_and_check( stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , ) def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]: """simple docstring""" pass def lowerCAmelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]: """simple docstring""" snake_case_ = models[model] snake_case_ = self.run_trainer( stage=UpperCAmelCase_ , model_name=UpperCAmelCase_ , eval_steps=UpperCAmelCase_ , num_train_epochs=1 , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , ) self.do_checks(UpperCAmelCase_ ) return output_dir def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]: """simple docstring""" snake_case_ = self.get_auto_remove_tmp_dir("""./xxx""" , after=UpperCAmelCase_ ) snake_case_ = F""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(UpperCAmelCase_ )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(["""--fp16"""] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files snake_case_ = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() snake_case_ = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] snake_case_ = self.get_launcher(UpperCAmelCase_ ) snake_case_ = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(UpperCAmelCase_ , env=self.get_env() ) return output_dir def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Any=False ) ->Tuple: """simple docstring""" snake_case_ = min(2 , get_gpu_count() ) if distributed else 1 return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
2
0
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata UpperCAmelCase = """""" if version.parse(importlib_metadata.version('''jiwer''')) < version.parse('''2.3.0'''): class __magic_name__ ( tr.AbstractTransform ): def __init__( self : List[Any] , snake_case__ : str = " " ): '''simple docstring''' lowercase :List[str] = sentence_delimiter def __snake_case ( self : Optional[Any] , snake_case__ : str ): '''simple docstring''' return list(lowercase_ ) def __snake_case ( self : Any , snake_case__ : List[str] ): '''simple docstring''' lowercase :str = [] for sent_idx, sentence in enumerate(lowercase_ ): chars.extend(self.process_string(lowercase_ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowercase_ ) - 1: chars.append(self.sentence_delimiter ) return chars UpperCAmelCase = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: UpperCAmelCase = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) UpperCAmelCase = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ UpperCAmelCase = """\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. """ UpperCAmelCase = """ Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> cer = datasets.load_metric(\"cer\") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def __snake_case ( self : Any ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def __snake_case ( self : Tuple , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : str=False ): '''simple docstring''' if concatenate_texts: return jiwer.compute_measures( lowercase_ , lowercase_ , truth_transform=lowercase_ , hypothesis_transform=lowercase_ , )["wer"] lowercase :Tuple = 0 lowercase :Union[str, Any] = 0 for prediction, reference in zip(lowercase_ , lowercase_ ): lowercase :Dict = jiwer.compute_measures( lowercase_ , lowercase_ , truth_transform=lowercase_ , hypothesis_transform=lowercase_ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
677
"""simple docstring""" from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ["input_features", "attention_mask"] def __init__( self : List[Any] , lowercase_ : Tuple=80 , lowercase_ : Optional[int]=16000 , lowercase_ : str=80 , lowercase_ : Optional[Any]=0.0 , lowercase_ : Optional[int]=True , lowercase_ : List[str]=True , lowercase_ : Optional[Any]=True , **lowercase_ : List[Any] , ): '''simple docstring''' super().__init__(feature_size=lowercase_ , sampling_rate=lowercase_ , padding_value=lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : Dict = num_mel_bins SCREAMING_SNAKE_CASE_ : Union[str, Any] = do_ceptral_normalize SCREAMING_SNAKE_CASE_ : Dict = normalize_means SCREAMING_SNAKE_CASE_ : Dict = normalize_vars SCREAMING_SNAKE_CASE_ : Dict = True def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : np.ndarray , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = waveform * (2**15) # Kaldi compliance: 16-bit signed integers SCREAMING_SNAKE_CASE_ : Tuple = torch.from_numpy(lowercase_).unsqueeze(0) SCREAMING_SNAKE_CASE_ : Optional[Any] = ta_kaldi.fbank(lowercase_ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate) return features.numpy() @staticmethod def _SCREAMING_SNAKE_CASE ( lowercase_ : np.ndarray , lowercase_ : int , lowercase_ : Optional[bool] = True , lowercase_ : Optional[bool] = True , lowercase_ : float = 0.0 , ): '''simple docstring''' if normalize_means: SCREAMING_SNAKE_CASE_ : Optional[int] = x[:input_length].mean(axis=0) SCREAMING_SNAKE_CASE_ : List[str] = np.subtract(lowercase_ , lowercase_) if normalize_vars: SCREAMING_SNAKE_CASE_ : Optional[Any] = x[:input_length].std(axis=0) SCREAMING_SNAKE_CASE_ : Tuple = np.divide(lowercase_ , lowercase_) if input_length < x.shape[0]: SCREAMING_SNAKE_CASE_ : str = padding_value # make sure array is in float32 SCREAMING_SNAKE_CASE_ : Optional[Any] = x.astype(np.floataa) return x def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : List[np.ndarray] , lowercase_ : Optional[np.ndarray] = None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = attention_mask.sum(-1) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(lowercase_ , lowercase_ , self.normalize_means , self.normalize_vars , self.padding_value) for x, n in zip(lowercase_ , lowercase_) ] def __call__( self : Dict , lowercase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowercase_ : Union[bool, str, PaddingStrategy] = False , lowercase_ : Optional[int] = None , lowercase_ : bool = False , lowercase_ : Optional[int] = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : Optional[int] = None , lowercase_ : Optional[bool] = None , **lowercase_ : List[str] , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.') else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''') SCREAMING_SNAKE_CASE_ : str = isinstance(lowercase_ , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}') SCREAMING_SNAKE_CASE_ : List[str] = is_batched_numpy or ( isinstance(lowercase_ , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: SCREAMING_SNAKE_CASE_ : Union[str, Any] = [np.asarray(lowercase_ , dtype=np.floataa) for speech in raw_speech] elif not is_batched and not isinstance(lowercase_ , np.ndarray): SCREAMING_SNAKE_CASE_ : int = np.asarray(lowercase_ , dtype=np.floataa) elif isinstance(lowercase_ , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): SCREAMING_SNAKE_CASE_ : Optional[Any] = raw_speech.astype(np.floataa) # always return batch if not is_batched: SCREAMING_SNAKE_CASE_ : Optional[int] = [raw_speech] # extract fbank features SCREAMING_SNAKE_CASE_ : Dict = [self._extract_fbank_features(lowercase_) for waveform in raw_speech] # convert into correct format for padding SCREAMING_SNAKE_CASE_ : Union[str, Any] = BatchFeature({'''input_features''': features}) SCREAMING_SNAKE_CASE_ : Dict = self.pad( lowercase_ , padding=lowercase_ , max_length=lowercase_ , truncation=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , **lowercase_ , ) # make sure list is in array format SCREAMING_SNAKE_CASE_ : Tuple = padded_inputs.get('''input_features''') if isinstance(input_features[0] , lowercase_): SCREAMING_SNAKE_CASE_ : List[str] = [np.asarray(lowercase_ , dtype=np.floataa) for feature in input_features] SCREAMING_SNAKE_CASE_ : Optional[int] = padded_inputs.get('''attention_mask''') if attention_mask is not None: SCREAMING_SNAKE_CASE_ : Any = [np.asarray(lowercase_ , dtype=np.intaa) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( np.array(lowercase_ , dtype=np.intaa) if self._get_padding_strategies(lowercase_ , max_length=lowercase_) is not PaddingStrategy.DO_NOT_PAD else None ) SCREAMING_SNAKE_CASE_ : Tuple = self.normalize( padded_inputs['''input_features'''] , attention_mask=lowercase_) if return_tensors is not None: SCREAMING_SNAKE_CASE_ : str = padded_inputs.convert_to_tensors(lowercase_) return padded_inputs
512
0
"""simple docstring""" from collections import deque from .hash_table import HashTable class snake_case__ ( snake_case_ ): def __init__( self , *lowerCamelCase , **lowerCamelCase ): super().__init__(*lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase ): __a = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(lowerCamelCase ) __a = self.values[key] def a__ ( self ): return ( sum(self.charge_factor - len(lowerCamelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def a__ ( self , lowerCamelCase , lowerCamelCase=None ): if not ( len(self.values[key] ) == self.charge_factor and self.values.count(lowerCamelCase ) == 0 ): return key return super()._collision_resolution(lowerCamelCase , lowerCamelCase )
67
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def _lowerCamelCase( a , a , a ): __a = OmegaConf.load(a ) __a = torch.load(a , map_location="cpu" )["model"] __a = list(state_dict.keys() ) # extract state_dict for VQVAE __a = {} __a = "first_stage_model." for key in keys: if key.startswith(a ): __a = state_dict[key] # extract state_dict for UNetLDM __a = {} __a = "model.diffusion_model." for key in keys: if key.startswith(a ): __a = state_dict[key] __a = config.model.params.first_stage_config.params __a = config.model.params.unet_config.params __a = VQModel(**a ).eval() vqvae.load_state_dict(a ) __a = UNetLDMModel(**a ).eval() unet.load_state_dict(a ) __a = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="scaled_linear" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=a , ) __a = LDMPipeline(a , a , a ) pipeline.save_pretrained(a ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__:List[Any] = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", type=str, required=True) parser.add_argument("""--config_path""", type=str, required=True) parser.add_argument("""--output_path""", type=str, required=True) SCREAMING_SNAKE_CASE__:Union[str, Any] = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
67
1
import re def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> list: return [char.split() for char in re.split(R'''[^ a-z A-Z 0-9 \s]''', str_ )] def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str: A__ : Any =split_input(str_ ) return "".join( [''''''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> str: try: A__ : Optional[Any] =split_input(snake_case_ ) if upper: A__ : List[str] =''''''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: A__ : Optional[int] =''''''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str: return to_simple_case(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str: try: A__ : Union[str, Any] =to_simple_case(snake_case_ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> str: return to_complex_case(snake_case_, snake_case_, '''_''' ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> str: return to_complex_case(snake_case_, snake_case_, '''-''' ) if __name__ == "__main__": __import__("doctest").testmod()
416
import glob import os import random from string import ascii_lowercase, digits import cva __lowerCamelCase : Union[str, Any] = "" __lowerCamelCase : Dict = "" __lowerCamelCase : Optional[int] = "" __lowerCamelCase : Optional[Any] = 1 # (0 is vertical, 1 is horizontal) def SCREAMING_SNAKE_CASE__ ( ) -> None: A__ , A__ : Optional[int] =get_dataset(snake_case_, snake_case_ ) print('''Processing...''' ) A__ , A__ , A__ : List[Any] =update_image_and_anno(snake_case_, snake_case_, snake_case_ ) for index, image in enumerate(snake_case_ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' A__ : List[Any] =random_chars(3_2 ) A__ : Union[str, Any] =paths[index].split(os.sep )[-1].rsplit('''.''', 1 )[0] A__ : Any =f'{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}' cva.imwrite(f'/{file_root}.jpg', snake_case_, [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(f'Success {index+1}/{len(snake_case_ )} with {file_name}' ) A__ : str =[] for anno in new_annos[index]: A__ : Optional[Any] =f'{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}' annos_list.append(snake_case_ ) with open(f'/{file_root}.txt', '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> tuple[list, list]: A__ : int =[] A__ : int =[] for label_file in glob.glob(os.path.join(snake_case_, '''*.txt''' ) ): A__ : Optional[int] =label_file.split(os.sep )[-1].rsplit('''.''', 1 )[0] with open(snake_case_ ) as in_file: A__ : Union[str, Any] =in_file.readlines() A__ : Union[str, Any] =os.path.join(snake_case_, f'{label_name}.jpg' ) A__ : Optional[Any] =[] for obj_list in obj_lists: A__ : Optional[int] =obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(snake_case_ ) labels.append(snake_case_ ) return img_paths, labels def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ = 1 ) -> tuple[list, list, list]: A__ : List[Any] =[] A__ : List[str] =[] A__ : Any =[] for idx in range(len(snake_case_ ) ): A__ : int =[] A__ : Any =img_list[idx] path_list.append(snake_case_ ) A__ : str =anno_list[idx] A__ : List[str] =cva.imread(snake_case_ ) if flip_type == 1: A__ : Optional[int] =cva.flip(snake_case_, snake_case_ ) for bbox in img_annos: A__ : List[str] =1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: A__ : List[str] =cva.flip(snake_case_, snake_case_ ) for bbox in img_annos: A__ : Optional[int] =1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(snake_case_ ) new_imgs_list.append(snake_case_ ) return new_imgs_list, new_annos_lists, path_list def SCREAMING_SNAKE_CASE__ ( snake_case_ = 3_2 ) -> str: assert number_char > 1, "The number of character should greater than 1" A__ : Optional[int] =ascii_lowercase + digits return "".join(random.choice(snake_case_ ) for _ in range(snake_case_ ) ) if __name__ == "__main__": main() print("DONE ✅")
416
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Union[str, Any] = { """configuration_clap""": [ """CLAP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ClapAudioConfig""", """ClapConfig""", """ClapTextConfig""", ], """processing_clap""": ["""ClapProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : int = [ """CLAP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ClapModel""", """ClapPreTrainedModel""", """ClapTextModel""", """ClapTextModelWithProjection""", """ClapAudioModel""", """ClapAudioModelWithProjection""", ] lowerCamelCase__ : List[str] = ["""ClapFeatureExtractor"""] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys lowerCamelCase__ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
710
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging lowerCamelCase__ : List[str] = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:List[Any] , _a:int = 1_01 ): snake_case__ = length def __len__( self:Optional[int] ): return self.length def __getitem__( self:Union[str, Any] , _a:int ): return i class __magic_name__ : '''simple docstring''' def __call__( self:str , _a:int ): return {"input_ids": torch.tensor(_a ), "labels": torch.tensor(_a )} class __magic_name__ (nn.Module ): '''simple docstring''' def __init__( self:List[str] ): super().__init__() # Add some (unused) params otherwise DDP will complain. snake_case__ = nn.Linear(1_20 , 80 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Optional[int] , _a:List[Any]=None ): if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class __magic_name__ (snake_case_ ): '''simple docstring''' @require_torch_neuroncore def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = F"""--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() snake_case__ = self.get_auto_remove_tmp_dir() snake_case__ = F"""--output_dir {output_dir}""".split() snake_case__ = ['''torchrun'''] + distributed_args + args execute_subprocess_async(_a , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class __magic_name__ (snake_case_ ): '''simple docstring''' @require_torch_multi_gpu def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = F"""--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() snake_case__ = self.get_auto_remove_tmp_dir() snake_case__ = F"""--output_dir {output_dir}""".split() snake_case__ = ['''torchrun'''] + distributed_args + args execute_subprocess_async(_a , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py lowerCamelCase__ : str = HfArgumentParser((TrainingArguments,)) lowerCamelCase__ : Any = parser.parse_args_into_dataclasses()[0] logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """ F"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}""" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [1_0_1, 4_0, 7]: lowerCamelCase__ : int = DummyDataset(dataset_length) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Dict: snake_case__ = list(range(len(__lowerCAmelCase ) ) ) snake_case__ = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' F"""{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}""" ) return {"success": success} lowerCamelCase__ : Tuple = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) lowerCamelCase__ : Tuple = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowerCamelCase__ : Union[str, Any] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowerCamelCase__ : Optional[int] = 2 lowerCamelCase__ : Optional[int] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowerCamelCase__ : Optional[int] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowerCamelCase__ : Optional[Any] = None
208
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase : List[Any] = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Union[str, Any] = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys lowercase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
568
"""simple docstring""" # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" _UpperCAmelCase = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] _UpperCAmelCase = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } _UpperCAmelCase = f"{src_lang}-{tgt_lang}" _UpperCAmelCase = f"\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"allenai/{model_name}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n" model_card_dir.mkdir(parents=UpperCamelCase__ , exist_ok=UpperCamelCase__ ) _UpperCAmelCase = os.path.join(UpperCamelCase__ , "README.md" ) print(f"Generating {path}" ) with open(UpperCamelCase__ , "w" , encoding="utf-8" ) as f: f.write(UpperCamelCase__ ) # make sure we are under the root of the project __magic_name__ = Path(__file__).resolve().parent.parent.parent __magic_name__ = repo_dir / '''model_cards''' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: __magic_name__ = model_cards_dir / '''allenai''' / model_name write_model_card(model_card_dir, src_lang='''en''', tgt_lang='''de''', model_name=model_name)
657
0
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowerCamelCase :List[str] = { 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def __snake_case ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ) -> int: # Initialise PyTorch model _a = XLNetConfig.from_json_file(_UpperCamelCase ) _a = finetuning_task.lower() if finetuning_task is not None else '''''' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f"Building PyTorch XLNetForSequenceClassification model from configuration: {config}" ) _a = finetuning_task _a = GLUE_TASKS_NUM_LABELS[finetuning_task] _a = XLNetForSequenceClassification(_UpperCamelCase ) elif "squad" in finetuning_task: _a = finetuning_task _a = XLNetForQuestionAnswering(_UpperCamelCase ) else: _a = XLNetLMHeadModel(_UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model _a = os.path.join(_UpperCamelCase , _UpperCamelCase ) _a = os.path.join(_UpperCamelCase , _UpperCamelCase ) print(f"Save PyTorch model to {os.path.abspath(_UpperCamelCase )}" ) torch.save(model.state_dict() , _UpperCamelCase ) print(f"Save configuration file to {os.path.abspath(_UpperCamelCase )}" ) with open(_UpperCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCamelCase :Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) lowerCamelCase :int = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
718
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCAmelCase : @staticmethod def _A ( *__UpperCamelCase: Optional[int] , **__UpperCamelCase: str ): pass def __snake_case ( _UpperCamelCase ) -> Dict: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. lowerCamelCase :List[str] = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): a: List[str] = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _A ( self: Dict , __UpperCamelCase: Optional[int] , __UpperCamelCase: Tuple , __UpperCamelCase: Dict ): _a = pipeline( '''document-question-answering''' , model=__UpperCamelCase , tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) _a = INVOICE_URL _a = list(zip(*apply_tesseract(load_image(__UpperCamelCase ) , __UpperCamelCase , '''''' ) ) ) _a = '''What is the placebo?''' _a = [ { '''image''': load_image(__UpperCamelCase ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def _A ( self: Tuple , __UpperCamelCase: Dict , __UpperCamelCase: List[str] ): _a = dqa_pipeline(__UpperCamelCase , top_k=2 ) self.assertEqual( __UpperCamelCase , [ [ {'''score''': ANY(__UpperCamelCase ), '''answer''': ANY(__UpperCamelCase ), '''start''': ANY(__UpperCamelCase ), '''end''': ANY(__UpperCamelCase )}, {'''score''': ANY(__UpperCamelCase ), '''answer''': ANY(__UpperCamelCase ), '''start''': ANY(__UpperCamelCase ), '''end''': ANY(__UpperCamelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _A ( self: List[str] ): _a = pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) _a = INVOICE_URL _a = '''How many cats are there?''' _a = [ {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] _a = dqa_pipeline(image=__UpperCamelCase , question=__UpperCamelCase , top_k=2 ) self.assertEqual(nested_simplify(__UpperCamelCase , decimals=4 ) , __UpperCamelCase ) _a = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(__UpperCamelCase , decimals=4 ) , __UpperCamelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably _a = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' _a = dqa_pipeline(image=__UpperCamelCase , question=__UpperCamelCase , top_k=2 ) self.assertEqual(__UpperCamelCase , [] ) # We can optionnally pass directly the words and bounding boxes _a = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' _a = [] _a = [] _a = dqa_pipeline(image=__UpperCamelCase , question=__UpperCamelCase , words=__UpperCamelCase , boxes=__UpperCamelCase , top_k=2 ) self.assertEqual(__UpperCamelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _A ( self: Tuple ): _a = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) _a = INVOICE_URL _a = '''What is the invoice number?''' _a = dqa_pipeline(image=__UpperCamelCase , question=__UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) _a = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) _a = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _A ( self: Dict ): _a = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) _a = INVOICE_URL _a = '''What is the invoice number?''' _a = dqa_pipeline(image=__UpperCamelCase , question=__UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) _a = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) _a = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _A ( self: Union[str, Any] ): _a = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=__UpperCamelCase ) _a = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=__UpperCamelCase , revision='''3dc6de3''' , ) _a = INVOICE_URL _a = '''What is the invoice number?''' _a = dqa_pipeline(image=__UpperCamelCase , question=__UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) _a = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) _a = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) _a = list(zip(*apply_tesseract(load_image(__UpperCamelCase ) , __UpperCamelCase , '''''' ) ) ) # This model should also work if `image` is set to None _a = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _A ( self: List[Any] ): _a = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=__UpperCamelCase ) _a = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=__UpperCamelCase , revision='''3dc6de3''' , max_seq_len=50 , ) _a = INVOICE_URL _a = '''What is the invoice number?''' _a = dqa_pipeline(image=__UpperCamelCase , question=__UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) _a = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) _a = list(zip(*apply_tesseract(load_image(__UpperCamelCase ) , __UpperCamelCase , '''''' ) ) ) # This model should also work if `image` is set to None _a = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def _A ( self: Optional[Any] ): _a = pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) _a = INVOICE_URL _a = '''What is the invoice number?''' _a = dqa_pipeline(image=__UpperCamelCase , question=__UpperCamelCase , top_k=2 ) self.assertEqual(nested_simplify(__UpperCamelCase , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def _A ( self: str ): pass
346
0
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a__ ( ) -> List[Any]: __lowerCAmelCase: Dict = ArgumentParser( description=( "PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=__SCREAMING_SNAKE_CASE , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=__SCREAMING_SNAKE_CASE , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=__SCREAMING_SNAKE_CASE ) return parser.parse_args() def a__ ( ) -> List[Any]: __lowerCAmelCase: List[Any] = parse_args() # Import training_script as a module. __lowerCAmelCase: str = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __lowerCAmelCase: int = script_fpath.stem __lowerCAmelCase: Dict = importlib.import_module(__SCREAMING_SNAKE_CASE ) # Patch sys.argv __lowerCAmelCase: Dict = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
346
"""simple docstring""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 __A = data_utils.TransfoXLTokenizer __A = data_utils.TransfoXLCorpus __A = data_utils __A = data_utils def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[str]: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(__SCREAMING_SNAKE_CASE , "rb" ) as fp: __lowerCAmelCase: Union[str, Any] = pickle.load(__SCREAMING_SNAKE_CASE , encoding="latin1" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) __lowerCAmelCase: Optional[Any] = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["pretrained_vocab_file"] print(F"Save vocabulary to {pytorch_vocab_dump_path}" ) __lowerCAmelCase: Optional[Any] = corpus.vocab.__dict__ torch.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = corpus.__dict__ corpus_dict_no_vocab.pop("vocab" , __SCREAMING_SNAKE_CASE ) __lowerCAmelCase: List[Any] = pytorch_dump_folder_path + "/" + CORPUS_NAME print(F"Save dataset to {pytorch_dataset_dump_path}" ) torch.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model __lowerCAmelCase: Optional[Any] = os.path.abspath(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = os.path.abspath(__SCREAMING_SNAKE_CASE ) print(F"Converting Transformer XL checkpoint from {tf_path} with config at {config_path}." ) # Initialise PyTorch model if transfo_xl_config_file == "": __lowerCAmelCase: str = TransfoXLConfig() else: __lowerCAmelCase: List[str] = TransfoXLConfig.from_json_file(__SCREAMING_SNAKE_CASE ) print(F"Building PyTorch model from configuration: {config}" ) __lowerCAmelCase: int = TransfoXLLMHeadModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Tuple = load_tf_weights_in_transfo_xl(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model __lowerCAmelCase: List[Any] = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Any = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) print(F"Save PyTorch model to {os.path.abspath(__SCREAMING_SNAKE_CASE )}" ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) print(F"Save configuration file to {os.path.abspath(__SCREAMING_SNAKE_CASE )}" ) with open(__SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--tf_checkpoint_path", default="", type=str, help="An optional path to a TensorFlow checkpoint path to be converted.", ) parser.add_argument( "--transfo_xl_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--transfo_xl_dataset_file", default="", type=str, help="An optional dataset file to be converted in a vocabulary.", ) __A = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
346
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = '''beit''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Any=8_1_9_2 , SCREAMING_SNAKE_CASE__ : str=7_6_8 , SCREAMING_SNAKE_CASE__ : Any=1_2 , SCREAMING_SNAKE_CASE__ : int=1_2 , SCREAMING_SNAKE_CASE__ : List[str]=3_0_7_2 , SCREAMING_SNAKE_CASE__ : str="gelu" , SCREAMING_SNAKE_CASE__ : str=0.0 , SCREAMING_SNAKE_CASE__ : int=0.0 , SCREAMING_SNAKE_CASE__ : str=0.02 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1e-12 , SCREAMING_SNAKE_CASE__ : int=2_2_4 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1_6 , SCREAMING_SNAKE_CASE__ : int=3 , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Dict=[3, 5, 7, 1_1] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=[1, 2, 3, 6] , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Tuple=0.4 , SCREAMING_SNAKE_CASE__ : List[Any]=2_5_6 , SCREAMING_SNAKE_CASE__ : Dict=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , SCREAMING_SNAKE_CASE__ : str=2_5_5 , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) __a : int = vocab_size __a : List[str] = hidden_size __a : str = num_hidden_layers __a : List[str] = num_attention_heads __a : Optional[int] = intermediate_size __a : List[Any] = hidden_act __a : str = hidden_dropout_prob __a : Union[str, Any] = attention_probs_dropout_prob __a : int = initializer_range __a : Union[str, Any] = layer_norm_eps __a : List[str] = image_size __a : List[Any] = patch_size __a : Dict = num_channels __a : List[str] = use_mask_token __a : Union[str, Any] = use_absolute_position_embeddings __a : Any = use_relative_position_bias __a : List[str] = use_shared_relative_position_bias __a : List[Any] = layer_scale_init_value __a : Union[str, Any] = drop_path_rate __a : str = use_mean_pooling # decode head attributes (semantic segmentation) __a : Optional[Any] = out_indices __a : Any = pool_scales # auxiliary head attributes (semantic segmentation) __a : List[str] = use_auxiliary_head __a : Tuple = auxiliary_loss_weight __a : Tuple = auxiliary_channels __a : Union[str, Any] = auxiliary_num_convs __a : Tuple = auxiliary_concat_input __a : Any = semantic_loss_ignore_index class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : int = version.parse('''1.11''' ) @property def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' return 1e-4
705
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): SCREAMING_SNAKE_CASE__ = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right SCREAMING_SNAKE_CASE__ = 12_8022 SCREAMING_SNAKE_CASE__ = 12_8028 @require_sentencepiece class _UpperCamelCase( __lowerCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : str = MaMaaaTokenizer __SCREAMING_SNAKE_CASE : str = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Dict = True def __lowerCAmelCase ( self : int ): '''simple docstring''' super().setUp() __a : Dict = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] __a : str = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __a : Any = Path(self.tmpdirname ) save_json(SCREAMING_SNAKE_CASE__ , save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(SCREAMING_SNAKE_CASE__ , save_dir / VOCAB_FILES_NAMES['spm_file'] ) __a : List[Any] = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : List[str] , **SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' return ( "This is a test", "This is a test", ) def __lowerCAmelCase ( self : Any ): '''simple docstring''' __a : Dict = '</s>' __a : List[str] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' __a : List[str] = self.get_tokenizer() __a : Optional[int] = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<s>' ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip('Skip this test while all models are still to be uploaded.' ) def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' pass def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' __a : Dict = self.get_tokenizer() __a : List[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [2, 3, 4, 5, 6] , ) __a : str = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) __a : Optional[int] = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'This is a test' ) @slow def __lowerCAmelCase ( self : Any ): '''simple docstring''' __a : Tuple = {'input_ids': [[1_2_8_0_2_2, 1_1_0_1_0_8, 3_9_7, 1_1, 3_8_2_7_2, 2_2_4_7, 1_2_4_8_1_1, 2_8_5, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 3_9_5_3_4, 4_4_2_8, 3_9_7, 1_0_1_9, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 4_1_3_3_7, 1_6_7_8_6, 2_4_1, 7, 2_0_2_1_4, 1_7, 1_2_5_6_9_0, 1_0_3_9_8, 7, 4_4_3_7_8, 5_8_0_6_9, 6_8_3_4_2, 7_7_9_8, 7_3_4_3, 1_1, 2_9_9, 3_3_3_1_0, 4, 1_5_8, 3_7_3_5_0, 9_4_0_7_7, 4_5_6_9, 2_9_9, 3_3_3_1_0, 9_0, 4, 5_2_8_4_0, 2_9_0, 4, 3_1_2_7_0, 1_1_2, 2_9_9, 6_8_2, 4, 5_2_8_4_0, 3_9_9_5_3, 1_4_0_7_9, 1_9_3, 5_2_5_1_9, 9_0_8_9_4, 1_7_8_9_4, 1_2_0_6_9_7, 1_1, 4_0_4_4_5, 5_5_1, 1_7, 1_0_1_9, 5_2_5_1_9, 9_0_8_9_4, 1_7_7_5_6, 9_6_3, 1_1, 4_0_4_4_5, 4_8_0, 1_7, 9_7_9_2, 1_1_2_0, 5_1_7_3, 1_3_9_3, 6_2_4_0, 1_6_7_8_6, 2_4_1, 1_2_0_9_9_6, 2_8, 1_2_4_5, 1_3_9_3, 1_1_8_2_4_0, 1_1_1_2_3, 1_0_1_9, 9_3_6_1_2, 2_6_9_1, 1_0_6_1_8, 9_8_0_5_8, 1_2_0_4_0_9, 1_9_2_8, 2_7_9, 4, 4_0_6_8_3, 3_6_7, 1_7_8, 2_0_7, 1_0_1_9, 1_0_3, 1_0_3_1_2_1, 5_0_6, 6_5_2_9_6, 5, 2], [1_2_8_0_2_2, 2_1_2_1_7, 3_6_7, 1_1_7, 1_2_5_4_5_0, 1_2_8, 7_1_9, 7, 7_3_0_8, 4_0, 9_3_6_1_2, 1_2_6_6_9, 1_1_1_6, 1_6_7_0_4, 7_1, 1_7_7_8_5, 3_6_9_9, 1_5_5_9_2, 3_5, 1_4_4, 9_5_8_4, 2_4_1, 1_1_9_4_3, 7_1_3, 9_5_0, 7_9_9, 2_2_4_7, 8_8_4_2_7, 1_5_0, 1_4_9, 1_1_8_8_1_3, 1_2_0_7_0_6, 1_0_1_9, 1_0_6_9_0_6, 8_1_5_1_8, 2_8, 1_2_2_4, 2_2_7_9_9, 3_9_7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1_2_8_0_2_2, 1_6_5_8, 1_2_3_3_1_1, 5_1_5_5, 5_5_7_8, 4_7_2_2, 2_7_9, 1_4_9_4_7, 2_3_6_6, 1_1_2_0, 1_1_9_7, 1_4, 1_3_4_8, 9_2_3_2, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE__ , model_name='facebook/m2m100_418M' , revision='c168bae485c864188cf9aa0e4108b0b6934dc91e' , ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCamelCase( unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = '''facebook/m2m100_418M''' __SCREAMING_SNAKE_CASE : List[Any] = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] __SCREAMING_SNAKE_CASE : Any = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off __SCREAMING_SNAKE_CASE : Optional[int] = [EN_CODE, 593, 1949, 11_5781, 4, 7_1586, 4234, 6_0633, 12_6233, 432, 12_3808, 1_5592, 1197, 11_7132, 12_0618, 5, 2] @classmethod def __lowerCAmelCase ( cls : Optional[int] ): '''simple docstring''' __a : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en' , tgt_lang='fr' ) __a : Optional[int] = 1 return cls def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' self.assertEqual(self.tokenizer.get_lang_id('ar' ) , 1_2_8_0_0_6 ) self.assertEqual(self.tokenizer.get_lang_id('en' ) , 1_2_8_0_2_2 ) self.assertEqual(self.tokenizer.get_lang_id('ro' ) , 1_2_8_0_7_6 ) self.assertEqual(self.tokenizer.get_lang_id('mr' ) , 1_2_8_0_6_3 ) def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' __a : Dict = self.tokenizer.get_vocab() self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab['<unk>'] , 3 ) self.assertIn(self.tokenizer.get_lang_token('en' ) , SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' __a : Union[str, Any] = 'en' __a : Optional[int] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' self.assertIn(SCREAMING_SNAKE_CASE__ , self.tokenizer.all_special_ids ) # fmt: off __a : Any = [FR_CODE, 5_3_6_4, 8_2, 8_6_4_2, 4, 2_9_4, 4_7, 8, 1_4_0_2_8, 1_3_6, 3_2_8_6, 9_7_0_6, 6, 9_0_7_9_7, 6, 1_4_4_0_1_2, 1_6_2, 8_8_1_2_8, 3_0_0_6_1, 5, 2] # fmt: on __a : List[str] = self.tokenizer.decode(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) __a : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertNotIn(self.tokenizer.eos_token , SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' __a : List[Any] = tempfile.mkdtemp() __a : List[str] = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) __a : Tuple = MaMaaaTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertDictEqual(new_tok.lang_token_to_id , SCREAMING_SNAKE_CASE__ ) @require_torch def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' __a : Dict = 'en' __a : int = 'fr' __a : Dict = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) __a : str = shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: __a : Optional[Any] = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' __a : Optional[Any] = 'mr' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('mr' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) __a : Optional[Any] = 'zh' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('zh' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' __a : Optional[Any] = 'mr' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('mr' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) __a : Optional[int] = 'zh' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('zh' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' __a : Union[str, Any] = self.tokenizer._build_translation_inputs('A test' , return_tensors='pt' , src_lang='en' , tgt_lang='ar' ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , { # en_XX, A, test, EOS 'input_ids': [[1_2_8_0_2_2, 5_8, 4_1_8_3, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 1_2_8_0_0_6, } , )
577
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = ShapEImgaImgPipeline UpperCAmelCase__ = ['''image'''] UpperCAmelCase__ = ['''image'''] UpperCAmelCase__ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] UpperCAmelCase__ = False @property def snake_case__ ( self : Optional[int] ) ->List[Any]: '''simple docstring''' return 32 @property def snake_case__ ( self : str ) ->Dict: '''simple docstring''' return 32 @property def snake_case__ ( self : Any ) ->Tuple: '''simple docstring''' return self.time_input_dim * 4 @property def snake_case__ ( self : str ) ->Optional[int]: '''simple docstring''' return 8 @property def snake_case__ ( self : Optional[int] ) ->int: '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase : Optional[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) _UpperCamelCase : List[Any] = CLIPVisionModel(lowercase__ ) return model @property def snake_case__ ( self : Optional[Any] ) ->str: '''simple docstring''' _UpperCamelCase : Optional[int] = CLIPImageProcessor( crop_size=224 , do_center_crop=lowercase__ , do_normalize=lowercase__ , do_resize=lowercase__ , image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , resample=3 , size=224 , ) return image_processor @property def snake_case__ ( self : int ) ->Dict: '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase : List[Any] = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "embedding_proj_norm_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } _UpperCamelCase : str = PriorTransformer(**lowercase__ ) return model @property def snake_case__ ( self : int ) ->Tuple: '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase : int = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } _UpperCamelCase : Optional[Any] = ShapERenderer(**lowercase__ ) return model def snake_case__ ( self : List[Any] ) ->Tuple: '''simple docstring''' _UpperCamelCase : int = self.dummy_prior _UpperCamelCase : Dict = self.dummy_image_encoder _UpperCamelCase : Tuple = self.dummy_image_processor _UpperCamelCase : Optional[Any] = self.dummy_renderer _UpperCamelCase : Optional[Any] = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1_024 , prediction_type="sample" , use_karras_sigmas=lowercase__ , clip_sample=lowercase__ , clip_sample_range=1.0 , ) _UpperCamelCase : Union[str, Any] = { "prior": prior, "image_encoder": image_encoder, "image_processor": image_processor, "renderer": renderer, "scheduler": scheduler, } return components def snake_case__ ( self : int , lowercase__ : List[str] , lowercase__ : Optional[Any]=0 ) ->Dict: '''simple docstring''' _UpperCamelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase__ ) ).to(lowercase__ ) if str(lowercase__ ).startswith("mps" ): _UpperCamelCase : Any = torch.manual_seed(lowercase__ ) else: _UpperCamelCase : List[Any] = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) _UpperCamelCase : List[str] = { "image": input_image, "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def snake_case__ ( self : Dict ) ->int: '''simple docstring''' _UpperCamelCase : Optional[Any] = "cpu" _UpperCamelCase : int = self.get_dummy_components() _UpperCamelCase : List[Any] = self.pipeline_class(**lowercase__ ) _UpperCamelCase : List[str] = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) _UpperCamelCase : List[Any] = pipe(**self.get_dummy_inputs(lowercase__ ) ) _UpperCamelCase : Any = output.images[0] _UpperCamelCase : str = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _UpperCamelCase : Dict = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__ ( self : Optional[int] ) ->List[str]: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def snake_case__ ( self : int ) ->Any: '''simple docstring''' _UpperCamelCase : List[str] = torch_device == "cpu" _UpperCamelCase : Optional[int] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowercase__ , relax_max_difference=lowercase__ , ) def snake_case__ ( self : Any ) ->int: '''simple docstring''' _UpperCamelCase : Tuple = self.get_dummy_components() _UpperCamelCase : Any = self.pipeline_class(**lowercase__ ) _UpperCamelCase : Any = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) _UpperCamelCase : List[str] = 1 _UpperCamelCase : str = 2 _UpperCamelCase : str = self.get_dummy_inputs(lowercase__ ) for key in inputs.keys(): if key in self.batch_params: _UpperCamelCase : Optional[int] = batch_size * [inputs[key]] _UpperCamelCase : Optional[int] = pipe(**lowercase__ , num_images_per_prompt=lowercase__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self : Optional[Any] ) ->Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self : List[str] ) ->int: '''simple docstring''' _UpperCamelCase : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/corgi.png" ) _UpperCamelCase : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_img2img_out.npy" ) _UpperCamelCase : List[Any] = ShapEImgaImgPipeline.from_pretrained("openai/shap-e-img2img" ) _UpperCamelCase : List[str] = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) _UpperCamelCase : Union[str, Any] = torch.Generator(device=lowercase__ ).manual_seed(0 ) _UpperCamelCase : Union[str, Any] = pipe( lowercase__ , generator=lowercase__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowercase__ , lowercase__ )
435
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __magic_name__ : """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=30 , lowerCamelCase=2 , lowerCamelCase=3 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=32 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=10 , lowerCamelCase=0.02 , lowerCamelCase=3 , lowerCamelCase=0.6 , lowerCamelCase=None , ): '''simple docstring''' __A : Tuple = parent __A : Union[str, Any] = batch_size __A : List[Any] = image_size __A : Union[str, Any] = patch_size __A : List[Any] = num_channels __A : Optional[Any] = is_training __A : str = use_labels __A : Tuple = hidden_size __A : int = num_hidden_layers __A : Dict = num_attention_heads __A : List[Any] = intermediate_size __A : Tuple = hidden_act __A : Tuple = hidden_dropout_prob __A : str = attention_probs_dropout_prob __A : Optional[Any] = type_sequence_label_size __A : Union[str, Any] = initializer_range __A : Optional[Any] = mask_ratio __A : List[Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __A : Optional[int] = (image_size // patch_size) ** 2 __A : List[Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A : Tuple = None if self.use_labels: __A : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A : Optional[int] = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __A : Optional[Any] = ViTMAEModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __A : List[Any] = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __A : str = ViTMAEForPreTraining(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __A : Optional[Any] = model(lowerCamelCase ) __A : List[str] = (self.image_size // self.patch_size) ** 2 __A : List[Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __A : List[str] = 1 __A : str = ViTMAEForPreTraining(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __A : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A : int = model(lowerCamelCase ) __A : Union[str, Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : List[str] = self.prepare_config_and_inputs() __A ,__A ,__A : List[Any] = config_and_inputs __A : Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCamelCase__ = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Union[str, Any] = ViTMAEModelTester(self ) __A : Tuple = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=37 ) def lowerCAmelCase__ ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass def lowerCAmelCase__ ( self ): '''simple docstring''' __A ,__A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[Any] = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __A : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase , nn.Linear ) ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : int = model_class(lowerCamelCase ) __A : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : Optional[Any] = [*signature.parameters.keys()] __A : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase ) def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' np.random.seed(2 ) __A : Tuple = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) __A : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __A : Optional[Any] = torch.from_numpy(lowerCamelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __A : int = pt_noise super().check_pt_tf_models(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : int = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) __A : Tuple = outputs[0].cpu().numpy() __A : List[Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase ) __A : List[Any] = model_class.from_pretrained(lowerCamelCase ) model.to(lowerCamelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __A : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) # Make sure we don't have nans __A : List[Any] = after_outputs[0].cpu().numpy() __A : List[str] = 0 __A : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase , 1E-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass @slow def lowerCAmelCase__ ( self ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : List[Any] = ViTMAEModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def _lowercase (): '''simple docstring''' __A : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCAmelCase__ ( self ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self ): '''simple docstring''' np.random.seed(2 ) __A : Dict = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(lowerCamelCase ) __A : str = self.default_image_processor __A : List[Any] = prepare_img() __A : Union[str, Any] = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __A : Optional[Any] = ViTMAEConfig() __A : List[str] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __A : Any = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): __A : str = model(**lowerCamelCase , noise=torch.from_numpy(lowerCamelCase ).to(device=lowerCamelCase ) ) # verify the logits __A : Union[str, Any] = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) __A : int = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowerCamelCase ) , atol=1E-4 ) )
111
0
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() A__ : List[str]= logging.get_logger() def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = True ) -> Optional[Any]: """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": UpperCamelCase__ = timm.create_model('levit_128s' , pretrained=SCREAMING_SNAKE_CASE ) else: UpperCamelCase__ = timm.create_model('levit_128' , pretrained=SCREAMING_SNAKE_CASE ) if hidden_sizes == 1_92: UpperCamelCase__ = timm.create_model('levit_192' , pretrained=SCREAMING_SNAKE_CASE ) if hidden_sizes == 2_56: UpperCamelCase__ = timm.create_model('levit_256' , pretrained=SCREAMING_SNAKE_CASE ) if hidden_sizes == 3_84: UpperCamelCase__ = timm.create_model('levit_384' , pretrained=SCREAMING_SNAKE_CASE ) from_model.eval() UpperCamelCase__ = LevitForImageClassificationWithTeacher(SCREAMING_SNAKE_CASE ).eval() UpperCamelCase__ = OrderedDict() UpperCamelCase__ = from_model.state_dict() UpperCamelCase__ = list(from_model.state_dict().keys() ) UpperCamelCase__ = list(our_model.state_dict().keys() ) print(len(SCREAMING_SNAKE_CASE ) , len(SCREAMING_SNAKE_CASE ) ) for i in range(len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = weights[og_keys[i]] our_model.load_state_dict(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = torch.randn((2, 3, 2_24, 2_24) ) UpperCamelCase__ = from_model(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = our_model(SCREAMING_SNAKE_CASE ).logits assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "The model logits don't match the original one." UpperCamelCase__ = name print(SCREAMING_SNAKE_CASE ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) UpperCamelCase__ = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'Pushed {checkpoint_name}' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = True ) -> Tuple: """simple docstring""" UpperCamelCase__ = 'imagenet-1k-id2label.json' UpperCamelCase__ = 10_00 UpperCamelCase__ = (1, num_labels) UpperCamelCase__ = 'huggingface/label-files' UpperCamelCase__ = num_labels UpperCamelCase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) UpperCamelCase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} UpperCamelCase__ = partial(SCREAMING_SNAKE_CASE , num_labels=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE ) UpperCamelCase__ = { 'levit-128S': 1_28, 'levit-128': 1_28, 'levit-192': 1_92, 'levit-256': 2_56, 'levit-384': 3_84, } UpperCamelCase__ = { 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , SCREAMING_SNAKE_CASE , names_to_config[model_name] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return config, expected_shape if __name__ == "__main__": A__ : List[Any]= argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help="""The name of the model you wish to convert, it must be one of the supported Levit* architecture,""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""levit-dump-folder/""", type=Path, required=False, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) A__ : Any= parser.parse_args() A__ : Path= args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
20
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow A__ : Union[str, Any]= logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = True , ) -> Tuple: UpperCamelCase__ = [file for file in os.listdir(snake_case_ ) if os.path.isfile(os.path.join(snake_case_ , snake_case_ ) )] if identifier is not None: UpperCamelCase__ = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(snake_case_ , snake_case_ ): for n_ in n_identifier: UpperCamelCase__ = [file for file in files if n_ not in file] else: UpperCamelCase__ = [file for file in files if n_identifier not in file] UpperCamelCase__ = ignore_files or [] ignore_files.append('__init__.py' ) UpperCamelCase__ = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , snake_case_ ) if only_modules: UpperCamelCase__ = file.split('.' )[0] try: UpperCamelCase__ = getattr(snake_case_ , snake_case_ ) UpperCamelCase__ = doctest.DocTestSuite(snake_case_ ) UpperCamelCase__ = unittest.TextTestRunner().run(snake_case_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: UpperCamelCase__ = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'modeling' UpperCamelCase__ = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(snake_case_ , identifier=snake_case_ , ignore_files=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'tokenization' self.analyze_directory(snake_case_ , identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'configuration' self.analyze_directory(snake_case_ , identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(snake_case_ , n_identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = Path('docs/source' ) UpperCamelCase__ = ['favicon.ico'] self.analyze_directory(snake_case_ , ignore_files=snake_case_ , only_modules=snake_case_ )
20
1
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __a :int = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : List[str] ): """simple docstring""" A_ = set() A_ = [] def parse_line(__UpperCamelCase : List[str] ): for line in fp: if isinstance(snake_case_ ,snake_case_ ): A_ = line.decode("UTF-8" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(" " ): # process a single warning and move it to `selected_warnings`. if len(snake_case_ ) > 0: A_ = '''\n'''.join(snake_case_ ) # Only keep the warnings specified in `targets` if any(f''': {x}: ''' in warning for x in targets ): selected_warnings.add(snake_case_ ) buffer.clear() continue else: A_ = line.strip() buffer.append(snake_case_ ) if from_gh: for filename in os.listdir(snake_case_ ): A_ = os.path.join(snake_case_ ,snake_case_ ) if not os.path.isdir(snake_case_ ): # read the file if filename != "warnings.txt": continue with open(snake_case_ ) as fp: parse_line(snake_case_ ) else: try: with zipfile.ZipFile(snake_case_ ) as z: for filename in z.namelist(): if not os.path.isdir(snake_case_ ): # read the file if filename != "warnings.txt": continue with z.open(snake_case_ ) as fp: parse_line(snake_case_ ) except Exception: logger.warning( f'''{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.''' ) return selected_warnings def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Any ): """simple docstring""" A_ = set() A_ = [os.path.join(snake_case_ ,snake_case_ ) for p in os.listdir(snake_case_ ) if (p.endswith(".zip" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(snake_case_ ,snake_case_ ) ) return selected_warnings if __name__ == "__main__": def __snake_case ( __UpperCamelCase : int ): """simple docstring""" return values.split("," ) __a :Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') # optional parameters parser.add_argument( '--targets', default='DeprecationWarning,UserWarning,FutureWarning', type=list_str, help='Comma-separated list of target warning(s) which we want to extract.', ) parser.add_argument( '--from_gh', action='store_true', help='If running from a GitHub action workflow and collecting warnings from its artifacts.', ) __a :Tuple = parser.parse_args() __a :List[Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __a :Union[str, Any] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('=' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __a :Optional[Any] = extract_warnings(args.output_dir, args.targets) __a :Any = sorted(selected_warnings) with open(os.path.join(args.output_dir, 'selected_warnings.json'), 'w', encoding='UTF-8') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
86
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar lowercase_ : Tuple = TypeVar('T') class _lowerCamelCase ( Generic[T] ): def __init__( self , lowerCAmelCase , lowerCAmelCase ) -> None: SCREAMING_SNAKE_CASE__: Any | T= None SCREAMING_SNAKE_CASE__: int= len(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: list[T]= [any_type for _ in range(self.N )] + arr SCREAMING_SNAKE_CASE__: List[Any]= fnc self.build() def UpperCamelCase_ ( self ) -> None: for p in range(self.N - 1 , 0 , -1 ): SCREAMING_SNAKE_CASE__: Optional[Any]= self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase ) -> None: p += self.N SCREAMING_SNAKE_CASE__: Union[str, Any]= v while p > 1: SCREAMING_SNAKE_CASE__: Any= p // 2 SCREAMING_SNAKE_CASE__: Optional[Any]= self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase ) -> T | None: # noqa: E741 SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: str= l + self.N, r + self.N SCREAMING_SNAKE_CASE__: T | None= None while l <= r: if l % 2 == 1: SCREAMING_SNAKE_CASE__: str= self.st[l] if res is None else self.fn(lowerCAmelCase , self.st[l] ) if r % 2 == 0: SCREAMING_SNAKE_CASE__: Optional[Any]= self.st[r] if res is None else self.fn(lowerCAmelCase , self.st[r] ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Any= (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce lowercase_ : str = [1, 1_0, -2, 9, -3, 8, 4, -7, 5, 6, 1_1, -1_2] lowercase_ : str = { 0: 7, 1: 2, 2: 6, 3: -1_4, 4: 5, 5: 4, 6: 7, 7: -1_0, 8: 9, 9: 1_0, 1_0: 1_2, 1_1: 1, } lowercase_ : int = SegmentTree(test_array, min) lowercase_ : Optional[int] = SegmentTree(test_array, max) lowercase_ : Optional[Any] = SegmentTree(test_array, lambda a, b: a + b) def A__ ( ): for i in range(len(snake_case_ ) ): for j in range(snake_case_ , len(snake_case_ ) ): SCREAMING_SNAKE_CASE__: Any= reduce(snake_case_ , test_array[i : j + 1] ) SCREAMING_SNAKE_CASE__: Optional[Any]= reduce(snake_case_ , test_array[i : j + 1] ) SCREAMING_SNAKE_CASE__: int= reduce(lambda snake_case_ , snake_case_ : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(snake_case_ , snake_case_ ) assert max_range == max_segment_tree.query(snake_case_ , snake_case_ ) assert sum_range == sum_segment_tree.query(snake_case_ , snake_case_ ) test_all_segments() for index, value in test_updates.items(): lowercase_ : int = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
64
0
"""simple docstring""" from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run UpperCamelCase = True except (ImportError, AttributeError): UpperCamelCase = object def _lowerCamelCase ( *UpperCAmelCase_ : Any, **UpperCAmelCase_ : str ) -> Dict: """simple docstring""" pass UpperCamelCase = False UpperCamelCase = logging.get_logger("""transformers-cli/serving""") def _lowerCamelCase ( UpperCAmelCase_ : Namespace ) -> List[str]: """simple docstring""" A__ = pipeline( task=args.task, model=args.model if args.model else None, config=args.config, tokenizer=args.tokenizer, device=args.device, ) return ServeCommand(UpperCAmelCase_, args.host, args.port, args.workers ) class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : dict class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : List[str] A__ : Optional[List[int]] class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : str class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : Any class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" @staticmethod def snake_case__ ( SCREAMING_SNAKE_CASE__ ) -> Dict: A__ = parser.add_parser( "serve" , help="CLI tool to run inference requests through REST and GraphQL endpoints." ) serve_parser.add_argument( "--task" , type=SCREAMING_SNAKE_CASE__ , choices=get_supported_tasks() , help="The task to run the pipeline on" , ) serve_parser.add_argument("--host" , type=SCREAMING_SNAKE_CASE__ , default="localhost" , help="Interface the server will listen on." ) serve_parser.add_argument("--port" , type=SCREAMING_SNAKE_CASE__ , default=8888 , help="Port the serving will listen to." ) serve_parser.add_argument("--workers" , type=SCREAMING_SNAKE_CASE__ , default=1 , help="Number of http workers" ) serve_parser.add_argument("--model" , type=SCREAMING_SNAKE_CASE__ , help="Model's name or path to stored model." ) serve_parser.add_argument("--config" , type=SCREAMING_SNAKE_CASE__ , help="Model's config name or path to stored model." ) serve_parser.add_argument("--tokenizer" , type=SCREAMING_SNAKE_CASE__ , help="Tokenizer name to use." ) serve_parser.add_argument( "--device" , type=SCREAMING_SNAKE_CASE__ , default=-1 , help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)" , ) serve_parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: A__ = pipeline A__ = host A__ = port A__ = workers if not _serve_dependencies_installed: raise RuntimeError( "Using serve command requires FastAPI and uvicorn. " "Please install transformers with [serving]: pip install \"transformers[serving]\"." "Or install FastAPI and uvicorn separately." ) else: logger.info(f"""Serving model over {host}:{port}""" ) A__ = FastAPI( routes=[ APIRoute( "/" , self.model_info , response_model=SCREAMING_SNAKE_CASE__ , response_class=SCREAMING_SNAKE_CASE__ , methods=["GET"] , ), APIRoute( "/tokenize" , self.tokenize , response_model=SCREAMING_SNAKE_CASE__ , response_class=SCREAMING_SNAKE_CASE__ , methods=["POST"] , ), APIRoute( "/detokenize" , self.detokenize , response_model=SCREAMING_SNAKE_CASE__ , response_class=SCREAMING_SNAKE_CASE__ , methods=["POST"] , ), APIRoute( "/forward" , self.forward , response_model=SCREAMING_SNAKE_CASE__ , response_class=SCREAMING_SNAKE_CASE__ , methods=["POST"] , ), ] , timeout=600 , ) def snake_case__ ( self ) -> str: run(self._app , host=self.host , port=self.port , workers=self.workers ) def snake_case__ ( self ) -> Dict: return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ = Body(SCREAMING_SNAKE_CASE__ , embed=SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ = Body(SCREAMING_SNAKE_CASE__ , embed=SCREAMING_SNAKE_CASE__ ) ) -> List[Any]: try: A__ = self._pipeline.tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) if return_ids: A__ = self._pipeline.tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) return ServeTokenizeResult(tokens=SCREAMING_SNAKE_CASE__ , tokens_ids=SCREAMING_SNAKE_CASE__ ) else: return ServeTokenizeResult(tokens=SCREAMING_SNAKE_CASE__ ) except Exception as e: raise HTTPException(status_code=500 , detail={"model": "", "error": str(SCREAMING_SNAKE_CASE__ )} ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ = Body(SCREAMING_SNAKE_CASE__ , embed=SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ = Body(SCREAMING_SNAKE_CASE__ , embed=SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ = Body(SCREAMING_SNAKE_CASE__ , embed=SCREAMING_SNAKE_CASE__ ) , ) -> Any: try: A__ = self._pipeline.tokenizer.decode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return ServeDeTokenizeResult(model="" , text=SCREAMING_SNAKE_CASE__ ) except Exception as e: raise HTTPException(status_code=500 , detail={"model": "", "error": str(SCREAMING_SNAKE_CASE__ )} ) async def snake_case__ ( self , SCREAMING_SNAKE_CASE__=Body(SCREAMING_SNAKE_CASE__ , embed=SCREAMING_SNAKE_CASE__ ) ) -> List[str]: # Check we don't have empty string if len(SCREAMING_SNAKE_CASE__ ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model A__ = self._pipeline(SCREAMING_SNAKE_CASE__ ) return ServeForwardResult(output=SCREAMING_SNAKE_CASE__ ) except Exception as e: raise HTTPException(500 , {"error": str(SCREAMING_SNAKE_CASE__ )} )
715
"""simple docstring""" import numpy as np def _lowerCamelCase ( UpperCAmelCase_ : np.array ) -> np.array: """simple docstring""" return 1 / (1 + np.exp(-vector )) def _lowerCamelCase ( UpperCAmelCase_ : np.array ) -> np.array: """simple docstring""" return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
562
0
def UpperCamelCase_ ( __a = 1_000_000 ) -> int: a__ : int = limit + 1 a__ : str = [0] * limit for first_term in range(1 , __a ): for n in range(__a , __a , __a ): a__ : Optional[int] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a a__ : Tuple = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"""{solution() = }""")
37
"""simple docstring""" import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class lowerCamelCase__ ( A , A ): """simple docstring""" __a = 1 @register_to_config def __init__( self : Dict , UpperCamelCase : int = 1_000 , UpperCamelCase : Optional[Union[np.ndarray, List[float]]] = None ): '''simple docstring''' self.set_timesteps(UpperCamelCase ) # standard deviation of the initial noise distribution __UpperCAmelCase : str = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. __UpperCAmelCase : int = 4 # running values __UpperCAmelCase : Union[str, Any] = [] def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : int , UpperCamelCase : Union[str, torch.device] = None ): '''simple docstring''' __UpperCAmelCase : Optional[int] = num_inference_steps __UpperCAmelCase : Tuple = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] __UpperCAmelCase : Union[str, Any] = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: __UpperCAmelCase : Dict = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: __UpperCAmelCase : int = torch.sin(steps * math.pi / 2 ) ** 2 __UpperCAmelCase : Union[str, Any] = (1.0 - self.betas**2) ** 0.5 __UpperCAmelCase : Optional[Any] = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] __UpperCAmelCase : Any = timesteps.to(UpperCamelCase ) __UpperCAmelCase : List[Any] = [] def lowerCamelCase__ ( self : Dict , UpperCamelCase : torch.FloatTensor , UpperCamelCase : int , UpperCamelCase : torch.FloatTensor , UpperCamelCase : bool = True , ): '''simple docstring''' if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) __UpperCAmelCase : List[Any] = (self.timesteps == timestep).nonzero().item() __UpperCAmelCase : List[str] = timestep_index + 1 __UpperCAmelCase : Optional[Any] = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(UpperCamelCase ) if len(self.ets ) == 1: __UpperCAmelCase : List[Any] = self.ets[-1] elif len(self.ets ) == 2: __UpperCAmelCase : List[str] = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: __UpperCAmelCase : Tuple = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: __UpperCAmelCase : int = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) __UpperCAmelCase : int = self._get_prev_sample(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : torch.FloatTensor , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : List[str] ): '''simple docstring''' return sample def lowerCamelCase__ ( self : Dict , UpperCamelCase : str , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : List[str] ): '''simple docstring''' __UpperCAmelCase : Dict = self.alphas[timestep_index] __UpperCAmelCase : List[str] = self.betas[timestep_index] __UpperCAmelCase : List[str] = self.alphas[prev_timestep_index] __UpperCAmelCase : Tuple = self.betas[prev_timestep_index] __UpperCAmelCase : Dict = (sample - sigma * ets) / max(UpperCamelCase , 1e-8 ) __UpperCAmelCase : Union[str, Any] = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : Tuple ): '''simple docstring''' return self.config.num_train_timesteps
139
0
def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): __snake_case : str = "" for word_or_phrase in separated: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(__lowerCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
203
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters _snake_case : Any = logging.get_logger(__name__) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None ): # Recurse if needed if "." in tensor_name: __snake_case : Tuple = tensor_name.split("." ) for split in splits[:-1]: __snake_case : List[str] = getattr(__lowerCamelCase , __lowerCamelCase ) if new_module is None: raise ValueError(F'{module} has no attribute {split}.' ) __snake_case : Optional[int] = new_module __snake_case : Union[str, Any] = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F'{module} does not have a parameter or a buffer named {tensor_name}.' ) __snake_case : Optional[int] = tensor_name in module._buffers __snake_case : List[str] = getattr(__lowerCamelCase , __lowerCamelCase ) if old_value.device == torch.device("meta" ) and device not in ["meta", torch.device("meta" )] and value is None: raise ValueError(F'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) __snake_case : List[Any] = False __snake_case : Optional[int] = False if is_buffer or not is_bitsandbytes_available(): __snake_case : Dict = False __snake_case : Optional[int] = False else: __snake_case : Any = hasattr(bnb.nn , "Params4bit" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) __snake_case : Union[str, Any] = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: __snake_case : Union[str, Any] = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: __snake_case : Any = old_value.to(__lowerCamelCase ) elif isinstance(__lowerCamelCase , torch.Tensor ): __snake_case : int = value.to("cpu" ) if value.dtype == torch.inta: __snake_case : Optional[int] = version.parse(importlib.metadata.version("bitsandbytes" ) ) > version.parse( "0.37.2" ) if not is_abit_serializable: raise ValueError( "Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. " "Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." ) else: __snake_case : Optional[int] = torch.tensor(__lowerCamelCase , device="cpu" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , __lowerCamelCase ) and fpaa_statistics is None: __snake_case : List[Any] = new_value.T __snake_case : Tuple = old_value.__dict__ if is_abit: __snake_case : List[str] = bnb.nn.IntaParams(__lowerCamelCase , requires_grad=__lowerCamelCase , **__lowerCamelCase ).to(__lowerCamelCase ) elif is_abit: __snake_case : Optional[int] = bnb.nn.Paramsabit(__lowerCamelCase , requires_grad=__lowerCamelCase , **__lowerCamelCase ).to(__lowerCamelCase ) __snake_case : Dict = new_value if fpaa_statistics is not None: setattr(module.weight , "SCB" , fpaa_statistics.to(__lowerCamelCase ) ) else: if value is None: __snake_case : Tuple = old_value.to(__lowerCamelCase ) elif isinstance(__lowerCamelCase , torch.Tensor ): __snake_case : Dict = value.to(__lowerCamelCase ) else: __snake_case : List[Any] = torch.tensor(__lowerCamelCase , device=__lowerCamelCase ) if is_buffer: __snake_case : Optional[Any] = new_value else: __snake_case : int = nn.Parameter(__lowerCamelCase , requires_grad=old_value.requires_grad ) __snake_case : Tuple = new_value def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=False ): for name, module in model.named_children(): if current_key_name is None: __snake_case : List[Any] = [] current_key_name.append(__lowerCamelCase ) if (isinstance(__lowerCamelCase , nn.Linear ) or isinstance(__lowerCamelCase , __lowerCamelCase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in ".".join(__lowerCamelCase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(__lowerCamelCase , __lowerCamelCase ): __snake_case , __snake_case : Union[str, Any] = module.weight.shape else: __snake_case : List[Any] = module.in_features __snake_case : Tuple = module.out_features if quantization_config.quantization_method() == "llm_int8": __snake_case : Tuple = bnb.nn.LinearabitLt( __lowerCamelCase , __lowerCamelCase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) __snake_case : List[str] = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: __snake_case : Optional[int] = bnb.nn.Linearabit( __lowerCamelCase , __lowerCamelCase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) __snake_case : int = True # Store the module class in case we need to transpose the weight later __snake_case : str = type(__lowerCamelCase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(__lowerCamelCase ) if len(list(module.children() ) ) > 0: __snake_case , __snake_case : Tuple = _replace_with_bnb_linear( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , has_been_replaced=__lowerCamelCase , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None ): __snake_case : List[str] = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert __snake_case , __snake_case : Any = _replace_with_bnb_linear( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def lowerCAmelCase_ ( *__lowerCamelCase , **__lowerCamelCase ): warnings.warn( "`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead" , __lowerCamelCase , ) return replace_with_bnb_linear(*__lowerCamelCase , **__lowerCamelCase ) def lowerCAmelCase_ ( *__lowerCamelCase , **__lowerCamelCase ): warnings.warn( "`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead" , __lowerCamelCase , ) return set_module_quantized_tensor_to_device(*__lowerCamelCase , **__lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Optional[int] = deepcopy(__lowerCamelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() __snake_case : Any = find_tied_parameters(__lowerCamelCase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowerCamelCase , __lowerCamelCase ): __snake_case : Dict = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: __snake_case : Any = sum(__lowerCamelCase , [] ) __snake_case : Optional[int] = len(__lowerCamelCase ) > 0 # Check if it is a base model __snake_case : Dict = not hasattr(__lowerCamelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head __snake_case : Optional[int] = list(model.named_children() ) __snake_case : List[str] = [list_modules[-1][0]] # add last module together with tied weights __snake_case : int = set(__lowerCamelCase ) - set(__lowerCamelCase ) __snake_case : Optional[Any] = list(set(__lowerCamelCase ) ) + list(__lowerCamelCase ) # remove ".weight" from the keys __snake_case : Optional[Any] = [".weight", ".bias"] __snake_case : Any = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: __snake_case : Optional[int] = name.replace(__lowerCamelCase , "" ) filtered_module_names.append(__lowerCamelCase ) return filtered_module_names
203
1
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED lowerCAmelCase = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } lowerCAmelCase = { """allenai/led-base-16384""": 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowerCAmelCase_ ( ) ->List[Any]: lowerCamelCase__ : Dict =( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) lowerCamelCase__ : int =bs[:] lowerCamelCase__ : Optional[int] =0 for b in range(2**8 ): if b not in bs: bs.append(snake_case_ ) cs.append(2**8 + n ) n += 1 lowerCamelCase__ : List[str] =[chr(snake_case_ ) for n in cs] return dict(zip(snake_case_ , snake_case_ ) ) def lowerCAmelCase_ ( snake_case_ : Optional[int] ) ->Any: lowerCamelCase__ : List[Any] =set() lowerCamelCase__ : List[Any] =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase__ : int =char return pairs class A_ ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["""input_ids""", """attention_mask"""] def __init__( self :Tuple , lowerCamelCase_ :int , lowerCamelCase_ :str , lowerCamelCase_ :Any="replace" , lowerCamelCase_ :Dict="<s>" , lowerCamelCase_ :Optional[Any]="</s>" , lowerCamelCase_ :int="</s>" , lowerCamelCase_ :Optional[int]="<s>" , lowerCamelCase_ :str="<unk>" , lowerCamelCase_ :List[Any]="<pad>" , lowerCamelCase_ :Optional[Any]="<mask>" , lowerCamelCase_ :Optional[Any]=False , **lowerCamelCase_ :str , ): """simple docstring""" lowerCamelCase__ : Dict =AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else bos_token lowerCamelCase__ : Tuple =AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else eos_token lowerCamelCase__ : int =AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else sep_token lowerCamelCase__ : Dict =AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else cls_token lowerCamelCase__ : Any =AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else unk_token lowerCamelCase__ : Optional[int] =AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ : Tuple =AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token super().__init__( errors=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , **lowerCamelCase_ , ) with open(lowerCamelCase_ , encoding='utf-8' ) as vocab_handle: lowerCamelCase__ : Optional[Any] =json.load(lowerCamelCase_ ) lowerCamelCase__ : List[str] ={v: k for k, v in self.encoder.items()} lowerCamelCase__ : Dict =errors # how to handle errors in decoding lowerCamelCase__ : Any =bytes_to_unicode() lowerCamelCase__ : List[Any] ={v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase_ , encoding='utf-8' ) as merges_handle: lowerCamelCase__ : str =merges_handle.read().split('\n' )[1:-1] lowerCamelCase__ : Optional[Any] =[tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase__ : Dict =dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) lowerCamelCase__ : Optional[int] ={} lowerCamelCase__ : Optional[Any] =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase__ : Any =re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def UpperCAmelCase__ ( self :List[Any] ): """simple docstring""" return len(self.encoder ) def UpperCAmelCase__ ( self :str ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase__ ( self :str , lowerCamelCase_ :Tuple ): """simple docstring""" if token in self.cache: return self.cache[token] lowerCamelCase__ : Union[str, Any] =tuple(lowerCamelCase_ ) lowerCamelCase__ : Any =get_pairs(lowerCamelCase_ ) if not pairs: return token while True: lowerCamelCase__ : List[Any] =min(lowerCamelCase_ , key=lambda lowerCamelCase_ : self.bpe_ranks.get(lowerCamelCase_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase__ , lowerCamelCase__ : str =bigram lowerCamelCase__ : int =[] lowerCamelCase__ : Dict =0 while i < len(lowerCamelCase_ ): try: lowerCamelCase__ : List[str] =word.index(lowerCamelCase_ , lowerCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase__ : str =j if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase__ : List[Any] =tuple(lowerCamelCase_ ) lowerCamelCase__ : Dict =new_word if len(lowerCamelCase_ ) == 1: break else: lowerCamelCase__ : List[str] =get_pairs(lowerCamelCase_ ) lowerCamelCase__ : List[Any] =' '.join(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] =word return word def UpperCAmelCase__ ( self :Any , lowerCamelCase_ :Optional[int] ): """simple docstring""" lowerCamelCase__ : List[Any] =[] for token in re.findall(self.pat , lowerCamelCase_ ): lowerCamelCase__ : str =''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase_ ).split(' ' ) ) return bpe_tokens def UpperCAmelCase__ ( self :Optional[Any] , lowerCamelCase_ :Any ): """simple docstring""" return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token ) ) def UpperCAmelCase__ ( self :Union[str, Any] , lowerCamelCase_ :Dict ): """simple docstring""" return self.decoder.get(lowerCamelCase_ ) def UpperCAmelCase__ ( self :List[str] , lowerCamelCase_ :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : List[Any] =''.join(lowerCamelCase_ ) lowerCamelCase__ : List[Any] =bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def UpperCAmelCase__ ( self :str , lowerCamelCase_ :str , lowerCamelCase_ :Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase__ : List[str] =os.path.join( lowerCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase__ : List[str] =os.path.join( lowerCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowerCamelCase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase_ , ensure_ascii=lowerCamelCase_ ) + '\n' ) lowerCamelCase__ : Any =0 with open(lowerCamelCase_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) lowerCamelCase__ : Tuple =token_index writer.write(' '.join(lowerCamelCase_ ) + '\n' ) index += 1 return vocab_file, merge_file def UpperCAmelCase__ ( self :Optional[Any] , lowerCamelCase_ :List[int] , lowerCamelCase_ :Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase__ : int =[self.cls_token_id] lowerCamelCase__ : List[str] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase__ ( self :Dict , lowerCamelCase_ :List[int] , lowerCamelCase_ :Optional[List[int]] = None , lowerCamelCase_ :bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def UpperCAmelCase__ ( self :Union[str, Any] , lowerCamelCase_ :List[int] , lowerCamelCase_ :Optional[List[int]] = None ): """simple docstring""" lowerCamelCase__ : List[Any] =[self.sep_token_id] lowerCamelCase__ : List[Any] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase__ ( self :List[str] , lowerCamelCase_ :Dict , lowerCamelCase_ :List[str]=False , **lowerCamelCase_ :int ): """simple docstring""" lowerCamelCase__ : Dict =kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase_ ) > 0 and not text[0].isspace()): lowerCamelCase__ : str =' ' + text return (text, kwargs) def UpperCAmelCase__ ( self :List[str] , lowerCamelCase_ :Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase_ :Optional[int] = None , lowerCamelCase_ :PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase_ :Optional[int] = None , lowerCamelCase_ :Optional[bool] = None , ): """simple docstring""" lowerCamelCase__ : Tuple =super()._pad( encoded_inputs=lowerCamelCase_ , max_length=lowerCamelCase_ , padding_strategy=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) # Load from model defaults if return_attention_mask is None: lowerCamelCase__ : Union[str, Any] ='attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowerCamelCase__ : Optional[Any] =encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowerCamelCase__ : Optional[Any] =len(encoded_inputs['global_attention_mask'] ) != len(lowerCamelCase_ ) if needs_to_be_padded: lowerCamelCase__ : Tuple =len(lowerCamelCase_ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowerCamelCase__ : List[str] =( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": lowerCamelCase__ : Union[str, Any] =[-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
174
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) class A_ ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = """timm_backbone""" def __init__( self :Any , lowerCamelCase_ :int=None , lowerCamelCase_ :Optional[int]=3 , lowerCamelCase_ :int=True , lowerCamelCase_ :Dict=True , lowerCamelCase_ :Union[str, Any]=None , **lowerCamelCase_ :Optional[int] , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) lowerCamelCase__ : Optional[int] =backbone lowerCamelCase__ : List[Any] =num_channels lowerCamelCase__ : Tuple =features_only lowerCamelCase__ : Dict =use_pretrained_backbone lowerCamelCase__ : Optional[int] =True lowerCamelCase__ : Optional[int] =out_indices if out_indices is not None else (-1,)
174
1
"""simple docstring""" from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def UpperCamelCase_ ( lowerCamelCase : List[Any] ) -> List[Any]: """simple docstring""" if not is_accelerate_available(): return method __magic_name__ : int = version.parse(accelerate.__version__ ).base_version if version.parse(lowerCamelCase ) < version.parse('''0.17.0''' ): return method def wrapper(self : Tuple , *lowerCamelCase : int , **lowerCamelCase : Any ): if hasattr(self , '''_hf_hook''' ) and hasattr(self._hf_hook , '''pre_forward''' ): self._hf_hook.pre_forward(self ) return method(self , *lowerCamelCase , **lowerCamelCase ) return wrapper
147
"""simple docstring""" from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar A = TypeVar("""T""") A = TypeVar("""U""") class _UpperCamelCase ( Generic[T, U] ): """simple docstring""" def __init__( self : Any , snake_case : T | None , snake_case : U | None ) -> Tuple: '''simple docstring''' __magic_name__ : Optional[Any] = key __magic_name__ : str = val __magic_name__ : DoubleLinkedListNode[T, U] | None = None __magic_name__ : DoubleLinkedListNode[T, U] | None = None def __repr__( self : str ) -> str: '''simple docstring''' return ( f"""Node: key: {self.key}, val: {self.val}, """ f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class _UpperCamelCase ( Generic[T, U] ): """simple docstring""" def __init__( self : str ) -> None: '''simple docstring''' __magic_name__ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(snake_case , snake_case ) __magic_name__ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(snake_case , snake_case ) __magic_name__ , __magic_name__ : Tuple = self.rear, self.head def __repr__( self : str ) -> str: '''simple docstring''' __magic_name__ : List[str] = ['''DoubleLinkedList'''] __magic_name__ : Optional[Any] = self.head while node.next is not None: rep.append(str(snake_case ) ) __magic_name__ : Any = node.next rep.append(str(self.rear ) ) return ",\n ".join(snake_case ) def _UpperCAmelCase ( self : List[str] , snake_case : DoubleLinkedListNode[T, U] ) -> None: '''simple docstring''' __magic_name__ : Tuple = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None __magic_name__ : Dict = node __magic_name__ : Optional[int] = previous __magic_name__ : Tuple = node __magic_name__ : Optional[int] = self.rear def _UpperCAmelCase ( self : str , snake_case : DoubleLinkedListNode[T, U] ) -> DoubleLinkedListNode[T, U] | None: '''simple docstring''' if node.prev is None or node.next is None: return None __magic_name__ : str = node.next __magic_name__ : Dict = node.prev __magic_name__ : Any = None __magic_name__ : Dict = None return node class _UpperCamelCase ( Generic[T, U] ): """simple docstring""" snake_case_ = {} def __init__( self : Dict , snake_case : int ) -> Optional[Any]: '''simple docstring''' __magic_name__ : DoubleLinkedList[T, U] = DoubleLinkedList() __magic_name__ : str = capacity __magic_name__ : Tuple = 0 __magic_name__ : Optional[Any] = 0 __magic_name__ : List[str] = 0 __magic_name__ : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self : Tuple ) -> str: '''simple docstring''' return ( f"""CacheInfo(hits={self.hits}, misses={self.miss}, """ f"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self : List[str] , snake_case : T ) -> bool: '''simple docstring''' return key in self.cache def _UpperCAmelCase ( self : Optional[int] , snake_case : T ) -> U | None: '''simple docstring''' if key in self.cache: self.hits += 1 __magic_name__ : DoubleLinkedListNode[T, U] = self.cache[key] __magic_name__ : Optional[Any] = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(snake_case ) return node.val self.miss += 1 return None def _UpperCAmelCase ( self : str , snake_case : T , snake_case : U ) -> None: '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity __magic_name__ : Optional[Any] = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(snake_case ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 __magic_name__ : List[str] = DoubleLinkedListNode(snake_case , snake_case ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value __magic_name__ : Dict = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list __magic_name__ : Any = value self.list.add(snake_case ) @classmethod def _UpperCAmelCase ( cls : Tuple , snake_case : int = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: '''simple docstring''' def cache_decorator_inner(snake_case : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*snake_case : T ) -> U: if func not in cls.decorator_function_to_instance_map: __magic_name__ : Any = LRUCache(snake_case ) __magic_name__ : Optional[Any] = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: __magic_name__ : Any = func(*snake_case ) cls.decorator_function_to_instance_map[func].put(args[0] , snake_case ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(snake_case , '''cache_info''' , snake_case ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
147
1
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _snake_case : Optional[int] = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __SCREAMING_SNAKE_CASE ( a__ ): SCREAMING_SNAKE_CASE__ =field(default=a__ , metadata={"""help""": """Whether to use SortishSampler or not."""} ) SCREAMING_SNAKE_CASE__ =field( default=a__ , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) SCREAMING_SNAKE_CASE__ =field( default=a__ , metadata={ """help""": ( """The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `max_length` value of the model configuration.""" ) } , ) SCREAMING_SNAKE_CASE__ =field( default=a__ , metadata={ """help""": ( """The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `num_beams` value of the model configuration.""" ) } , ) SCREAMING_SNAKE_CASE__ =field( default=a__ , metadata={ """help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.""" } , ) def __lowerCAmelCase ( self ) -> Dict: __SCREAMING_SNAKE_CASE = super().to_dict() for k, v in d.items(): if isinstance(lowerCamelCase_, lowerCamelCase_ ): __SCREAMING_SNAKE_CASE = v.to_dict() return d
693
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class a__ : '''simple docstring''' def __init__( self , lowerCamelCase_=2 , lowerCamelCase_=3 , lowerCamelCase_=64 , lowerCamelCase_=None ) -> Dict: lowerCAmelCase__ = np.random.default_rng(lowerCamelCase_ ) lowerCAmelCase__ = length lowerCAmelCase__ = rng.normal(size=(length,) ).astype(np.floataa ) lowerCAmelCase__ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self ) -> Any: return self.length def __getitem__( self , lowerCamelCase_ ) -> List[str]: return {"x": self.x[i], "y": self.y[i]} class a__ ( torch.nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase_=0 , lowerCamelCase_=0 , lowerCamelCase_=False ) -> List[Any]: super().__init__() lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase__ = True def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_=None ) -> Optional[Any]: if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCAmelCase__ = False return x * self.a[0] + self.b[0] class a__ ( torch.nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase_=0 , lowerCamelCase_=0 , lowerCamelCase_=False ) -> Any: super().__init__() lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(lowerCamelCase_ ).float() ) lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(lowerCamelCase_ ).float() ) lowerCAmelCase__ = True def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_=None ) -> Any: if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCAmelCase__ = False return x * self.a + self.b def _snake_case ( A , A = 16 ) -> Any: from datasets import load_dataset from transformers import AutoTokenizer lowerCAmelCase__ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowerCAmelCase__ = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} lowerCAmelCase__ = load_dataset('''csv''' , data_files=A ) lowerCAmelCase__ = datasets['''train'''].unique('''label''' ) lowerCAmelCase__ = {v: i for i, v in enumerate(A )} def tokenize_function(A ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ = tokenizer( examples['''sentence1'''] , examples['''sentence2'''] , truncation=A , max_length=A , padding='''max_length''' ) if "label" in examples: lowerCAmelCase__ = [label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase__ = datasets.map( A , batched=A , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , ) def collate_fn(A ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(A , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. lowerCAmelCase__ = DataLoader(tokenized_datasets['''train'''] , shuffle=A , collate_fn=A , batch_size=2 ) lowerCAmelCase__ = DataLoader(tokenized_datasets['''validation'''] , shuffle=A , collate_fn=A , batch_size=1 ) return train_dataloader, eval_dataloader
90
0
"""simple docstring""" import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A__ : Any = 1_6 A__ : List[Any] = 3_2 def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 16 ): """simple docstring""" _lowercase: Optional[int] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) _lowercase: List[Any] = DatasetDict( { '''train''': dataset['''train'''].select(_UpperCamelCase ), '''validation''': dataset['''train'''].select(_UpperCamelCase ), '''test''': dataset['''validation'''], } ) def tokenize_function(_UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) _lowercase: Tuple = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_UpperCamelCase , max_length=_UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowercase: Dict = datasets.map( _UpperCamelCase , batched=_UpperCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowercase: List[str] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowercase: List[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowercase: str = 16 elif accelerator.mixed_precision != "no": _lowercase: Dict = 8 else: _lowercase: List[Any] = None return tokenizer.pad( _UpperCamelCase , padding='''longest''' , max_length=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. _lowercase: int = DataLoader( tokenized_datasets['''train'''] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=_UpperCamelCase ) _lowercase: List[Any] = DataLoader( tokenized_datasets['''validation'''] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=_UpperCamelCase ) _lowercase: List[Any] = DataLoader( tokenized_datasets['''test'''] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=_UpperCamelCase ) return train_dataloader, eval_dataloader, test_dataloader def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase: Any = [] # Download the dataset _lowercase: List[Any] = load_dataset('''glue''' , '''mrpc''' ) # Create our splits _lowercase: Tuple = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _lowercase: Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowercase: Optional[int] = config['''lr'''] _lowercase: List[Any] = int(config['''num_epochs'''] ) _lowercase: Any = int(config['''seed'''] ) _lowercase: Optional[Any] = int(config['''batch_size'''] ) _lowercase: List[Any] = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation _lowercase: Dict = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _lowercase: Any = batch_size // MAX_GPU_BATCH_SIZE _lowercase: Dict = MAX_GPU_BATCH_SIZE set_seed(_UpperCamelCase ) # New Code # # Create our folds: _lowercase: int = kfold.split(np.zeros(datasets['''train'''].num_rows ) , datasets['''train''']['''label'''] ) _lowercase: Any = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(_UpperCamelCase ): _lowercase: str = get_fold_dataloaders( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowercase: Union[str, Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=_UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowercase: str = model.to(accelerator.device ) # Instantiate optimizer _lowercase: str = AdamW(params=model.parameters() , lr=_UpperCamelCase ) # Instantiate scheduler _lowercase: Union[str, Any] = get_linear_schedule_with_warmup( optimizer=_UpperCamelCase , num_warmup_steps=100 , num_training_steps=(len(_UpperCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowercase: Optional[Any] = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Now we train the model for epoch in range(_UpperCamelCase ): model.train() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _lowercase: Optional[Any] = model(**_UpperCamelCase ) _lowercase: str = outputs.loss _lowercase: str = loss / gradient_accumulation_steps accelerator.backward(_UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowercase: Optional[Any] = model(**_UpperCamelCase ) _lowercase: List[Any] = outputs.logits.argmax(dim=-1 ) _lowercase: Tuple = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_UpperCamelCase , references=_UpperCamelCase , ) _lowercase: Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , _UpperCamelCase ) # New Code # # We also run predictions on the test set at the very end _lowercase: Tuple = [] for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowercase: int = model(**_UpperCamelCase ) _lowercase: Optional[int] = outputs.logits _lowercase: Dict = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(_UpperCamelCase , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _lowercase: Optional[int] = torch.cat(_UpperCamelCase , dim=0 ) _lowercase: List[str] = torch.stack(_UpperCamelCase , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _lowercase: str = metric.compute(predictions=_UpperCamelCase , references=_UpperCamelCase ) accelerator.print('''Average test metrics from all folds:''' , _UpperCamelCase ) def _lowerCAmelCase ( ): """simple docstring""" _lowercase: Dict = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=_UpperCamelCase , default=_UpperCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) # New Code # parser.add_argument('''--num_folds''' , type=_UpperCamelCase , default=3 , help='''The number of splits to perform across the dataset''' ) _lowercase: Union[str, Any] = parser.parse_args() _lowercase: List[str] = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": main()
710
"""simple docstring""" import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" _lowercase: List[str] = VideoMAEConfig() set_architecture_configs(_UpperCamelCase , _UpperCamelCase ) if "finetuned" not in model_name: _lowercase: Optional[Any] = False if "finetuned" in model_name: _lowercase: Union[str, Any] = '''huggingface/label-files''' if "kinetics" in model_name: _lowercase: Union[str, Any] = 400 _lowercase: Dict = '''kinetics400-id2label.json''' elif "ssv2" in model_name: _lowercase: str = 174 _lowercase: Dict = '''something-something-v2-id2label.json''' else: raise ValueError('''Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.''' ) _lowercase: List[str] = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowercase: Optional[int] = {int(_UpperCamelCase ): v for k, v in idalabel.items()} _lowercase: Union[str, Any] = idalabel _lowercase: int = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if "small" in model_name: _lowercase: Optional[Any] = 384 _lowercase: int = 1_536 _lowercase: int = 12 _lowercase: List[str] = 16 _lowercase: List[Any] = 12 _lowercase: List[Any] = 3 _lowercase: Optional[int] = 192 _lowercase: Union[str, Any] = 768 elif "large" in model_name: _lowercase: Union[str, Any] = 1_024 _lowercase: Any = 4_096 _lowercase: int = 24 _lowercase: str = 16 _lowercase: List[str] = 12 _lowercase: Union[str, Any] = 8 _lowercase: Optional[int] = 512 _lowercase: Optional[Any] = 2_048 elif "huge" in model_name: _lowercase: Optional[int] = 1_280 _lowercase: Tuple = 5_120 _lowercase: Any = 32 _lowercase: Any = 16 _lowercase: Any = 12 _lowercase: int = 8 _lowercase: Union[str, Any] = 640 _lowercase: Dict = 2_560 elif "base" not in model_name: raise ValueError('''Model name should include either "small", "base", "large", or "huge"''' ) def _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" if "encoder." in name: _lowercase: str = name.replace('''encoder.''' , '''''' ) if "cls_token" in name: _lowercase: Tuple = name.replace('''cls_token''' , '''videomae.embeddings.cls_token''' ) if "decoder_pos_embed" in name: _lowercase: int = name.replace('''decoder_pos_embed''' , '''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: _lowercase: List[Any] = name.replace('''pos_embed''' , '''videomae.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: _lowercase: str = name.replace('''patch_embed.proj''' , '''videomae.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _lowercase: Any = name.replace('''patch_embed.norm''' , '''videomae.embeddings.norm''' ) if "decoder.blocks" in name: _lowercase: Dict = name.replace('''decoder.blocks''' , '''decoder.decoder_layers''' ) if "blocks" in name: _lowercase: int = name.replace('''blocks''' , '''videomae.encoder.layer''' ) if "attn.proj" in name: _lowercase: int = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "bias" not in name: _lowercase: Any = name.replace('''attn''' , '''attention.self''' ) if "attn" in name: _lowercase: Optional[Any] = name.replace('''attn''' , '''attention.attention''' ) if "norm1" in name: _lowercase: Dict = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _lowercase: Any = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _lowercase: Optional[Any] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _lowercase: Union[str, Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if "decoder_embed" in name: _lowercase: List[str] = name.replace('''decoder_embed''' , '''decoder.decoder_embed''' ) if "decoder_norm" in name: _lowercase: Optional[Any] = name.replace('''decoder_norm''' , '''decoder.decoder_norm''' ) if "decoder_pred" in name: _lowercase: List[str] = name.replace('''decoder_pred''' , '''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: _lowercase: Any = name.replace('''norm.weight''' , '''videomae.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: _lowercase: List[Any] = name.replace('''norm.bias''' , '''videomae.layernorm.bias''' ) if "head" in name and "decoder" not in name: _lowercase: int = name.replace('''head''' , '''classifier''' ) return name def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" for key in orig_state_dict.copy().keys(): _lowercase: Any = orig_state_dict.pop(_UpperCamelCase ) if key.startswith('''encoder.''' ): _lowercase: Any = key.replace('''encoder.''' , '''''' ) if "qkv" in key: _lowercase: List[str] = key.split('''.''' ) if key.startswith('''decoder.blocks''' ): _lowercase: Union[str, Any] = config.decoder_hidden_size _lowercase: Union[str, Any] = int(key_split[2] ) _lowercase: Optional[int] = '''decoder.decoder_layers.''' if "weight" in key: _lowercase: Dict = val[:dim, :] _lowercase: str = val[dim : dim * 2, :] _lowercase: int = val[-dim:, :] else: _lowercase: Union[str, Any] = config.hidden_size _lowercase: Optional[Any] = int(key_split[1] ) _lowercase: Optional[Any] = '''videomae.encoder.layer.''' if "weight" in key: _lowercase: Union[str, Any] = val[:dim, :] _lowercase: str = val[dim : dim * 2, :] _lowercase: str = val[-dim:, :] else: _lowercase: List[str] = val return orig_state_dict def _lowerCAmelCase ( ): """simple docstring""" _lowercase: Union[str, Any] = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) _lowercase: List[Any] = np.load(_UpperCamelCase ) return list(_UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase: int = get_videomae_config(_UpperCamelCase ) if "finetuned" in model_name: _lowercase: Optional[int] = VideoMAEForVideoClassification(_UpperCamelCase ) else: _lowercase: Union[str, Any] = VideoMAEForPreTraining(_UpperCamelCase ) # download original checkpoint, hosted on Google Drive _lowercase: Union[str, Any] = '''pytorch_model.bin''' gdown.cached_download(_UpperCamelCase , _UpperCamelCase , quiet=_UpperCamelCase ) _lowercase: str = torch.load(_UpperCamelCase , map_location='''cpu''' ) if "model" in files: _lowercase: Any = files['''model'''] else: _lowercase: Tuple = files['''module'''] _lowercase: Any = convert_state_dict(_UpperCamelCase , _UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) model.eval() # verify model on basic input _lowercase: Tuple = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) _lowercase: Optional[Any] = prepare_video() _lowercase: int = image_processor(_UpperCamelCase , return_tensors='''pt''' ) if "finetuned" not in model_name: _lowercase: Optional[int] = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) _lowercase: Union[str, Any] = torch.load(_UpperCamelCase ) _lowercase: int = model(**_UpperCamelCase ) _lowercase: List[Any] = outputs.logits _lowercase: str = [ '''videomae-small-finetuned-kinetics''', '''videomae-small-finetuned-ssv2''', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) '''videomae-base-short''', '''videomae-base-short-finetuned-kinetics''', '''videomae-base''', '''videomae-base-finetuned-kinetics''', '''videomae-large''', '''videomae-large-finetuned-kinetics''', '''videomae-huge-finetuned-kinetics''', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) '''videomae-base-short-ssv2''', '''videomae-base-short-finetuned-ssv2''', '''videomae-base-ssv2''', '''videomae-base-finetuned-ssv2''', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": _lowercase: Union[str, Any] = torch.Size([1, 400] ) _lowercase: Any = torch.tensor([-0.9_291, -0.4_061, -0.9_307] ) elif model_name == "videomae-small-finetuned-ssv2": _lowercase: Union[str, Any] = torch.Size([1, 174] ) _lowercase: Union[str, Any] = torch.tensor([0.2_671, -0.4_689, -0.8_235] ) elif model_name == "videomae-base": _lowercase: str = torch.Size([1, 1_408, 1_536] ) _lowercase: List[str] = torch.tensor([[0.7_739, 0.7_968, 0.7_089], [0.6_701, 0.7_487, 0.6_209], [0.4_287, 0.5_158, 0.4_773]] ) elif model_name == "videomae-base-short": _lowercase: Tuple = torch.Size([1, 1_408, 1_536] ) _lowercase: Optional[int] = torch.tensor([[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] ) # we verified the loss both for normalized and unnormalized targets for this one _lowercase: str = torch.tensor([0.5_142] ) if config.norm_pix_loss else torch.tensor([0.6_469] ) elif model_name == "videomae-large": _lowercase: Tuple = torch.Size([1, 1_408, 1_536] ) _lowercase: List[str] = torch.tensor([[0.7_149, 0.7_997, 0.6_966], [0.6_768, 0.7_869, 0.6_948], [0.5_139, 0.6_221, 0.5_605]] ) elif model_name == "videomae-large-finetuned-kinetics": _lowercase: Dict = torch.Size([1, 400] ) _lowercase: Dict = torch.tensor([0.0_771, 0.0_011, -0.3_625] ) elif model_name == "videomae-huge-finetuned-kinetics": _lowercase: Union[str, Any] = torch.Size([1, 400] ) _lowercase: str = torch.tensor([0.2_433, 0.1_632, -0.4_894] ) elif model_name == "videomae-base-short-finetuned-kinetics": _lowercase: List[str] = torch.Size([1, 400] ) _lowercase: Union[str, Any] = torch.tensor([0.6_588, 0.0_990, -0.2_493] ) elif model_name == "videomae-base-finetuned-kinetics": _lowercase: Tuple = torch.Size([1, 400] ) _lowercase: Any = torch.tensor([0.3_669, -0.0_688, -0.2_421] ) elif model_name == "videomae-base-short-ssv2": _lowercase: int = torch.Size([1, 1_408, 1_536] ) _lowercase: str = torch.tensor([[0.4_712, 0.5_296, 0.5_786], [0.2_278, 0.2_729, 0.4_026], [0.0_352, 0.0_730, 0.2_506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": _lowercase: Dict = torch.Size([1, 174] ) _lowercase: Optional[Any] = torch.tensor([-0.0_537, -0.1_539, -0.3_266] ) elif model_name == "videomae-base-ssv2": _lowercase: str = torch.Size([1, 1_408, 1_536] ) _lowercase: str = torch.tensor([[0.8_131, 0.8_727, 0.8_546], [0.7_366, 0.9_377, 0.8_870], [0.5_935, 0.8_874, 0.8_564]] ) elif model_name == "videomae-base-finetuned-ssv2": _lowercase: List[Any] = torch.Size([1, 174] ) _lowercase: Tuple = torch.tensor([0.1_961, -0.8_337, -0.6_389] ) else: raise ValueError(f'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , _UpperCamelCase , atol=1e-4 ) else: print('''Logits:''' , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , _UpperCamelCase , atol=1e-4 ) print('''Logits ok!''' ) # verify loss, if applicable if model_name == "videomae-base-short": _lowercase: List[str] = outputs.loss assert torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-4 ) print('''Loss ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) if push_to_hub: print('''Pushing to the hub...''' ) model.push_to_hub(_UpperCamelCase , organization='''nielsr''' ) if __name__ == "__main__": A__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4', type=str, help=( 'URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct' ' download link.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default='/Users/nielsrogge/Documents/VideoMAE/Test', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--model_name', default='videomae-base', type=str, help='Name of the model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A__ : Dict = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
272
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case : List[Any] = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Tuple = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys __snake_case : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
571
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any]=1_3 , _lowerCamelCase : Optional[Any]=7 , _lowerCamelCase : Tuple=True , _lowerCamelCase : List[Any]=True , _lowerCamelCase : Dict=True , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : List[str]=9_9 , _lowerCamelCase : Any=3_2 , _lowerCamelCase : List[Any]=5 , _lowerCamelCase : int=4 , _lowerCamelCase : List[Any]=3_7 , _lowerCamelCase : Optional[Any]="gelu" , _lowerCamelCase : Optional[int]=0.1 , _lowerCamelCase : Optional[Any]=0.1 , _lowerCamelCase : List[Any]=5_1_2 , _lowerCamelCase : List[str]=1_6 , _lowerCamelCase : Dict=2 , _lowerCamelCase : int=0.02 , _lowerCamelCase : str=4 , ): A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_attention_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_choices def A__ ( self : List[str] ): A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_attention_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def A__ ( self : Union[str, Any] ): A__ = self.prepare_config_and_inputs() A__ , A__ , A__ , A__ = config_and_inputs A__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class UpperCamelCase ( a , unittest.TestCase ): """simple docstring""" _lowerCamelCase : List[str] =( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def A__ ( self : Tuple ): A__ = FlaxAlbertModelTester(self ) @slow def A__ ( self : List[str] ): for model_class_name in self.all_model_classes: A__ = model_class_name.from_pretrained('''albert-base-v2''' ) A__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCamelCase ) @require_flax class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : List[Any] ): A__ = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) A__ = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) A__ = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) A__ = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] A__ = (1, 1_1, 7_6_8) self.assertEqual(output.shape , _lowerCamelCase ) A__ = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _lowerCamelCase , atol=1E-4 ) )
571
1
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : int = GPTSanJapaneseTokenizer _lowerCAmelCase : Tuple = False _lowerCAmelCase : Tuple = {'''do_clean_text''': False, '''add_prefix_space''': False} def A( self): super().setUp() # fmt: off __UpperCAmelCase : Union[str, Any] = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on __UpperCAmelCase : str = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 __UpperCAmelCase : Union[str, Any] = {'''unk_token''': '''<unk>'''} __UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) __UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) with open(self.emoji_file , '''w''') as emoji_writer: emoji_writer.write(json.dumps(lowercase__)) def A( self , **lowercase__): kwargs.update(self.special_tokens_map) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **lowercase__) def A( self , lowercase__): __UpperCAmelCase : Optional[Any] = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' __UpperCAmelCase : Tuple = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def A( self , lowercase__): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.get_input_output_texts(lowercase__) __UpperCAmelCase : Tuple = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__) __UpperCAmelCase : Dict = tokenizer.decode(lowercase__ , clean_up_tokenization_spaces=lowercase__) return text, ids def A( self): pass # TODO add if relevant def A( self): pass # TODO add if relevant def A( self): pass # TODO add if relevant def A( self): __UpperCAmelCase : List[Any] = self.get_tokenizer() # Testing tokenization __UpperCAmelCase : Any = '''こんにちは、世界。 こんばんは、㔺界。''' __UpperCAmelCase : List[Any] = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] __UpperCAmelCase : List[Any] = tokenizer.tokenize(lowercase__) self.assertListEqual(lowercase__ , lowercase__) # Testing conversion to ids without special tokens __UpperCAmelCase : List[Any] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] __UpperCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(lowercase__) self.assertListEqual(lowercase__ , lowercase__) # Testing conversion to ids with special tokens __UpperCAmelCase : Optional[Any] = tokens + [tokenizer.unk_token] __UpperCAmelCase : Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] __UpperCAmelCase : Dict = tokenizer.convert_tokens_to_ids(lowercase__) self.assertListEqual(lowercase__ , lowercase__) def A( self): __UpperCAmelCase : str = self.get_tokenizer() # Testing tokenization __UpperCAmelCase : List[str] = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' __UpperCAmelCase : Optional[Any] = '''こんにちは、、、、世界。こんばんは、、、、世界。''' __UpperCAmelCase : Any = tokenizer.encode(lowercase__) __UpperCAmelCase : List[Any] = tokenizer.decode(lowercase__) self.assertEqual(lowercase__ , lowercase__) @slow def A( self): __UpperCAmelCase : List[Any] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''') # Testing tokenization __UpperCAmelCase : Dict = '''こんにちは、世界。''' __UpperCAmelCase : List[str] = '''こんばんは、㔺界。😀''' __UpperCAmelCase : Union[str, Any] = '''こんにちは、世界。こんばんは、世界。😀''' __UpperCAmelCase : Optional[Any] = tokenizer.encode(prefix_text + input_text) __UpperCAmelCase : int = tokenizer.encode('''''' , prefix_text=prefix_text + input_text) __UpperCAmelCase : List[Any] = tokenizer.encode(lowercase__ , prefix_text=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(lowercase__) __UpperCAmelCase : Tuple = tokenizer.decode(lowercase__) __UpperCAmelCase : Optional[Any] = tokenizer.decode(lowercase__) self.assertEqual(lowercase__ , lowercase__) self.assertEqual(lowercase__ , lowercase__) self.assertEqual(lowercase__ , lowercase__) @slow def A( self): __UpperCAmelCase : int = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''') # Testing tokenization __UpperCAmelCase : Tuple = '''こんにちは、世界。''' __UpperCAmelCase : List[Any] = '''こんばんは、㔺界。😀''' __UpperCAmelCase : Union[str, Any] = len(tokenizer.encode(lowercase__)) - 2 __UpperCAmelCase : Tuple = len(tokenizer.encode(lowercase__)) - 2 __UpperCAmelCase : int = [1] + [0] * (len_prefix + len_text + 1) __UpperCAmelCase : Optional[Any] = [1] * (len_prefix + len_text + 1) + [0] __UpperCAmelCase : Dict = [1] + [1] * (len_prefix) + [0] * (len_text + 1) __UpperCAmelCase : List[Any] = tokenizer(prefix_text + input_text).token_type_ids __UpperCAmelCase : int = tokenizer('''''' , prefix_text=prefix_text + input_text).token_type_ids __UpperCAmelCase : int = tokenizer(lowercase__ , prefix_text=lowercase__).token_type_ids self.assertListEqual(lowercase__ , lowercase__) self.assertListEqual(lowercase__ , lowercase__) self.assertListEqual(lowercase__ , lowercase__) @slow def A( self): __UpperCAmelCase : str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''') __UpperCAmelCase : Union[str, Any] = tokenizer.encode('''あンいワ''') __UpperCAmelCase : str = tokenizer.encode('''''' , prefix_text='''あンいワ''') __UpperCAmelCase : Optional[Any] = tokenizer.encode('''いワ''' , prefix_text='''あン''') self.assertEqual(tokenizer.decode(lowercase__) , tokenizer.decode(lowercase__)) self.assertEqual(tokenizer.decode(lowercase__) , tokenizer.decode(lowercase__)) self.assertNotEqual(lowercase__ , lowercase__) self.assertNotEqual(lowercase__ , lowercase__) self.assertEqual(x_token_a[1] , x_token_a[-1]) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3]) # SEG token @slow def A( self): __UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''') __UpperCAmelCase : List[str] = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] __UpperCAmelCase : List[Any] = tokenizer(lowercase__ , padding=lowercase__) __UpperCAmelCase : Tuple = tokenizer.batch_encode_plus(lowercase__ , padding=lowercase__) # fmt: off __UpperCAmelCase : str = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] __UpperCAmelCase : List[str] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] __UpperCAmelCase : int = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , lowercase__) self.assertListEqual(x_token.token_type_ids , lowercase__) self.assertListEqual(x_token.attention_mask , lowercase__) self.assertListEqual(x_token_a.input_ids , lowercase__) self.assertListEqual(x_token_a.token_type_ids , lowercase__) self.assertListEqual(x_token_a.attention_mask , lowercase__) def A( self): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def A( self): # tokenizer has no padding token pass
675
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=8 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __UpperCAmelCase : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , ): super().__init__() self.register_modules( unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , ) __UpperCAmelCase : Any = 2 ** (len(self.movq.config.block_out_channels) - 1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): if latents is None: __UpperCAmelCase : Any = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}") __UpperCAmelCase : Union[str, Any] = latents.to(lowercase__) __UpperCAmelCase : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def A( self , lowercase__=0): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''') __UpperCAmelCase : List[str] = torch.device(F"cuda:{gpu_id}") __UpperCAmelCase : List[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase__ , lowercase__) def A( self , lowercase__=0): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0'''): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''') __UpperCAmelCase : Optional[Any] = torch.device(F"cuda:{gpu_id}") if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowercase__) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __UpperCAmelCase : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: __UpperCAmelCase , __UpperCAmelCase : List[str] = cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__) # We'll offload the last model manually. __UpperCAmelCase : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A( self): if not hasattr(self.unet , '''_hf_hook'''): return self.device for module in self.unet.modules(): if ( hasattr(lowercase__ , '''_hf_hook''') and hasattr(module._hf_hook , '''execution_device''') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(lowercase__) def __call__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 5_1_2 , lowercase__ = 5_1_2 , lowercase__ = 1_0_0 , lowercase__ = 4.0 , lowercase__ = 1 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : str = self._execution_device __UpperCAmelCase : List[str] = guidance_scale > 1.0 if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Any = torch.cat(lowercase__ , dim=0) __UpperCAmelCase : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : List[Any] = hint.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) __UpperCAmelCase : List[Any] = torch.cat([hint, hint] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) self.scheduler.set_timesteps(lowercase__ , device=lowercase__) __UpperCAmelCase : List[Any] = self.scheduler.timesteps __UpperCAmelCase : Any = self.movq.config.latent_channels __UpperCAmelCase , __UpperCAmelCase : List[str] = downscale_height_and_width(lowercase__ , lowercase__ , self.movq_scale_factor) # create initial latent __UpperCAmelCase : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase__)): # expand the latents if we are doing classifier free guidance __UpperCAmelCase : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __UpperCAmelCase : Union[str, Any] = {'''image_embeds''': image_embeds, '''hint''': hint} __UpperCAmelCase : Any = self.unet( sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0] if do_classifier_free_guidance: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) __UpperCAmelCase , __UpperCAmelCase : List[str] = noise_pred.chunk(2) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = variance_pred.chunk(2) __UpperCAmelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __UpperCAmelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , '''variance_type''') and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase : Tuple = self.scheduler.step( lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , )[0] # post-processing __UpperCAmelCase : str = self.movq.decode(lowercase__ , force_not_quantize=lowercase__)['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") if output_type in ["np", "pil"]: __UpperCAmelCase : Dict = image * 0.5 + 0.5 __UpperCAmelCase : Union[str, Any] = image.clamp(0 , 1) __UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : List[str] = self.numpy_to_pil(lowercase__) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__)
675
1
'''simple docstring''' import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowercase (_A ): """simple docstring""" return np.dot(__A , __A ) class UpperCamelCase__ : """simple docstring""" def __init__( self , *, snake_case__ = np.inf , snake_case__ = "linear" , snake_case__ = 0.0 , ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = regularization _lowerCAmelCase : Optional[int] = gamma if kernel == "linear": _lowerCAmelCase : str = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('gamma must be float or int' ) if not self.gamma > 0: raise ValueError('gamma must be > 0' ) _lowerCAmelCase : Optional[int] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: _lowerCAmelCase : List[str] = F'Unknown kernel: {kernel}' raise ValueError(_A ) def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' return np.dot(_A , _A ) def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : int = observations _lowerCAmelCase : List[Any] = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations (_lowerCAmelCase ) : Dict = np.shape(_A ) def to_minimize(snake_case__ ) -> float: _lowerCAmelCase : int = 0 (_lowerCAmelCase ) : int = np.shape(_A ) for i in range(_A ): for j in range(_A ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(_A ) _lowerCAmelCase : Optional[int] = LinearConstraint(_A , 0 , 0 ) _lowerCAmelCase : Tuple = Bounds(0 , self.regularization ) _lowerCAmelCase : Optional[Any] = minimize( _A , np.ones(_A ) , bounds=_A , constraints=[ly_contraint] ).x _lowerCAmelCase : List[str] = l_star # calculating mean offset of separation plane to points _lowerCAmelCase : Optional[Any] = 0 for i in range(_A ): for j in range(_A ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) _lowerCAmelCase : int = s / n def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , _A ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
444
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class A_ ( __lowercase ): '''simple docstring''' def __init__( self , *_A , **_A) -> None: """simple docstring""" warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''' , _A , ) super().__init__(*_A , **_A)
485
0
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCAmelCase__ : """simple docstring""" def __init__( self : int , lowercase__ : List[str]=2 , lowercase__ : Optional[Any]=3 , lowercase__ : Dict=6_4 , lowercase__ : List[str]=None ): __lowercase : Union[str, Any] = np.random.default_rng(lowercase__ ) __lowercase : Dict = length __lowercase : int = rng.normal(size=(length,) ).astype(np.floataa ) __lowercase : List[str] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Optional[int] ): return self.length def __getitem__( self : Optional[int] , lowercase__ : List[Any] ): return {"x": self.x[i], "y": self.y[i]} class lowerCAmelCase__ ( torch.nn.Module ): """simple docstring""" def __init__( self : List[Any] , lowercase__ : List[str]=0 , lowercase__ : int=0 , lowercase__ : List[Any]=False ): super().__init__() __lowercase : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __lowercase : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __lowercase : int = True def snake_case ( self : Tuple , lowercase__ : Any=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __lowercase : Any = False return x * self.a[0] + self.b[0] class lowerCAmelCase__ ( torch.nn.Module ): """simple docstring""" def __init__( self : int , lowercase__ : Union[str, Any]=0 , lowercase__ : List[str]=0 , lowercase__ : Tuple=False ): super().__init__() __lowercase : Union[str, Any] = torch.nn.Parameter(torch.tensor(lowercase__ ).float() ) __lowercase : Union[str, Any] = torch.nn.Parameter(torch.tensor(lowercase__ ).float() ) __lowercase : int = True def snake_case ( self : List[str] , lowercase__ : Optional[int]=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __lowercase : List[Any] = False return x * self.a + self.b def snake_case__ ( _lowerCamelCase, _lowerCamelCase = 16 ) ->int: """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer __lowercase : List[Any] = AutoTokenizer.from_pretrained("bert-base-cased" ) __lowercase : int = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} __lowercase : Tuple = load_dataset("csv", data_files=_lowerCamelCase ) __lowercase : Optional[int] = datasets["train"].unique("label" ) __lowercase : Optional[Any] = {v: i for i, v in enumerate(_lowerCamelCase )} def tokenize_function(_lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) __lowercase : Tuple = tokenizer( examples["sentence1"], examples["sentence2"], truncation=_lowerCamelCase, max_length=_lowerCamelCase, padding="max_length" ) if "label" in examples: __lowercase : Optional[Any] = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowercase : Any = datasets.map( _lowerCamelCase, batched=_lowerCamelCase, remove_columns=["sentence1", "sentence2", "label"], ) def collate_fn(_lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCamelCase, padding="max_length", max_length=1_28, return_tensors="pt" ) return tokenizer.pad(_lowerCamelCase, padding="longest", return_tensors="pt" ) # Instantiate dataloaders. __lowercase : Optional[int] = DataLoader(tokenized_datasets["train"], shuffle=_lowerCamelCase, collate_fn=_lowerCamelCase, batch_size=2 ) __lowercase : Union[str, Any] = DataLoader(tokenized_datasets["validation"], shuffle=_lowerCamelCase, collate_fn=_lowerCamelCase, batch_size=1 ) return train_dataloader, eval_dataloader
281
"""simple docstring""" def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->int: """simple docstring""" return abs(_lowerCamelCase ) if a == 0 else greatest_common_divisor(b % a, _lowerCamelCase ) def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->int: """simple docstring""" while y: # --> when y=0 then loop will terminate and return x as final GCD. __lowercase ,__lowercase : Any = y, x % y return abs(_lowerCamelCase ) def snake_case__ ( ) ->Optional[int]: """simple docstring""" try: __lowercase : Optional[int] = input("Enter two integers separated by comma (,): " ).split("," ) __lowercase : Optional[Any] = int(nums[0] ) __lowercase : str = int(nums[1] ) print( F'greatest_common_divisor({num_a}, {num_a}) = ' F'{greatest_common_divisor(_lowerCamelCase, _lowerCamelCase )}' ) print(F'By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(_lowerCamelCase, _lowerCamelCase )}' ) except (IndexError, UnboundLocalError, ValueError): print("Wrong input" ) if __name__ == "__main__": main()
281
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCamelCase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
418
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def SCREAMING_SNAKE_CASE_ ( __A : str , __A : str = "cpu" , __A : Union[str, None] = None ) -> None: _SCREAMING_SNAKE_CASE = torch.load(__A , map_location=__A ) for k, v in tqdm(state_dict.items() ): if not isinstance(__A , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) _SCREAMING_SNAKE_CASE = v.half() if save_path is None: # overwrite src_path _SCREAMING_SNAKE_CASE = src_path torch.save(__A , __A ) if __name__ == "__main__": fire.Fire(convert)
418
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a: Union[str, Any] = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: int = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: List[str] = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __a: Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
700
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig __a: Any = logging.get_logger(__name__) # General docstring __a: List[str] = '''RegNetConfig''' # Base docstring __a: int = '''facebook/regnet-y-040''' __a: Union[str, Any] = [1, 1088, 7, 7] # Image classification docstring __a: int = '''facebook/regnet-y-040''' __a: Any = '''tabby, tabby cat''' __a: List[str] = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCamelCase : int , lowerCamelCase : int = 3 , lowerCamelCase : int = 1 , lowerCamelCase : int = 1 , lowerCamelCase : Optional[str] = "relu" , **lowerCamelCase : Union[str, Any] , ) -> int: """simple docstring""" super().__init__(**lowerCamelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _UpperCAmelCase = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _UpperCAmelCase = tf.keras.layers.ConvaD( filters=lowerCamelCase , kernel_size=lowerCamelCase , strides=lowerCamelCase , padding="""VALID""" , groups=lowerCamelCase , use_bias=lowerCamelCase , name="""convolution""" , ) _UpperCAmelCase = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="""normalization""" ) _UpperCAmelCase = ACTaFN[activation] if activation is not None else tf.identity def lowerCamelCase ( self : Any , lowerCamelCase : Any ) -> Any: """simple docstring""" _UpperCAmelCase = self.convolution(self.padding(lowerCamelCase ) ) _UpperCAmelCase = self.normalization(lowerCamelCase ) _UpperCAmelCase = self.activation(lowerCamelCase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCamelCase : RegNetConfig , **lowerCamelCase : str ) -> str: """simple docstring""" super().__init__(**lowerCamelCase ) _UpperCAmelCase = config.num_channels _UpperCAmelCase = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="""embedder""" , ) def lowerCamelCase ( self : str , lowerCamelCase : Dict ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = shape_list(lowerCamelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _UpperCAmelCase = tf.transpose(lowerCamelCase , perm=(0, 2, 3, 1) ) _UpperCAmelCase = self.embedder(lowerCamelCase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : int , lowerCamelCase : int = 2 , **lowerCamelCase : Any ) -> str: """simple docstring""" super().__init__(**lowerCamelCase ) _UpperCAmelCase = tf.keras.layers.ConvaD( filters=lowerCamelCase , kernel_size=1 , strides=lowerCamelCase , use_bias=lowerCamelCase , name="""convolution""" ) _UpperCAmelCase = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="""normalization""" ) def lowerCamelCase ( self : int , lowerCamelCase : tf.Tensor , lowerCamelCase : bool = False ) -> tf.Tensor: """simple docstring""" return self.normalization(self.convolution(lowerCamelCase ) , training=lowerCamelCase ) class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int , **lowerCamelCase : Tuple ) -> List[Any]: """simple docstring""" super().__init__(**lowerCamelCase ) _UpperCAmelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase , name="""pooler""" ) _UpperCAmelCase = [ tf.keras.layers.ConvaD(filters=lowerCamelCase , kernel_size=1 , activation="""relu""" , name="""attention.0""" ), tf.keras.layers.ConvaD(filters=lowerCamelCase , kernel_size=1 , activation="""sigmoid""" , name="""attention.2""" ), ] def lowerCamelCase ( self : str , lowerCamelCase : int ) -> Optional[Any]: """simple docstring""" # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] _UpperCAmelCase = self.pooler(lowerCamelCase ) for layer_module in self.attention: _UpperCAmelCase = layer_module(lowerCamelCase ) _UpperCAmelCase = hidden_state * pooled return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Dict , lowerCamelCase : RegNetConfig , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int = 1 , **lowerCamelCase : Dict ) -> Optional[int]: """simple docstring""" super().__init__(**lowerCamelCase ) _UpperCAmelCase = in_channels != out_channels or stride != 1 _UpperCAmelCase = max(1 , out_channels // config.groups_width ) _UpperCAmelCase = ( TFRegNetShortCut(lowerCamelCase , stride=lowerCamelCase , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _UpperCAmelCase = [ TFRegNetConvLayer(lowerCamelCase , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( lowerCamelCase , stride=lowerCamelCase , groups=lowerCamelCase , activation=config.hidden_act , name="""layer.1""" ), TFRegNetConvLayer(lowerCamelCase , kernel_size=1 , activation=lowerCamelCase , name="""layer.2""" ), ] _UpperCAmelCase = ACTaFN[config.hidden_act] def lowerCamelCase ( self : Dict , lowerCamelCase : str ) -> List[str]: """simple docstring""" _UpperCAmelCase = hidden_state for layer_module in self.layers: _UpperCAmelCase = layer_module(lowerCamelCase ) _UpperCAmelCase = self.shortcut(lowerCamelCase ) hidden_state += residual _UpperCAmelCase = self.activation(lowerCamelCase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[str] , lowerCamelCase : RegNetConfig , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int = 1 , **lowerCamelCase : List[str] ) -> Optional[int]: """simple docstring""" super().__init__(**lowerCamelCase ) _UpperCAmelCase = in_channels != out_channels or stride != 1 _UpperCAmelCase = max(1 , out_channels // config.groups_width ) _UpperCAmelCase = ( TFRegNetShortCut(lowerCamelCase , stride=lowerCamelCase , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) _UpperCAmelCase = [ TFRegNetConvLayer(lowerCamelCase , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( lowerCamelCase , stride=lowerCamelCase , groups=lowerCamelCase , activation=config.hidden_act , name="""layer.1""" ), TFRegNetSELayer(lowerCamelCase , reduced_channels=int(round(in_channels / 4 ) ) , name="""layer.2""" ), TFRegNetConvLayer(lowerCamelCase , kernel_size=1 , activation=lowerCamelCase , name="""layer.3""" ), ] _UpperCAmelCase = ACTaFN[config.hidden_act] def lowerCamelCase ( self : Dict , lowerCamelCase : Tuple ) -> Dict: """simple docstring""" _UpperCAmelCase = hidden_state for layer_module in self.layers: _UpperCAmelCase = layer_module(lowerCamelCase ) _UpperCAmelCase = self.shortcut(lowerCamelCase ) hidden_state += residual _UpperCAmelCase = self.activation(lowerCamelCase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple , lowerCamelCase : RegNetConfig , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int = 2 , lowerCamelCase : int = 2 , **lowerCamelCase : Dict ) -> Dict: """simple docstring""" super().__init__(**lowerCamelCase ) _UpperCAmelCase = TFRegNetXLayer if config.layer_type == """x""" else TFRegNetYLayer _UpperCAmelCase = [ # downsampling is done in the first layer with stride of 2 layer(lowerCamelCase , lowerCamelCase , lowerCamelCase , stride=lowerCamelCase , name="""layers.0""" ), *[layer(lowerCamelCase , lowerCamelCase , lowerCamelCase , name=f"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def lowerCamelCase ( self : List[str] , lowerCamelCase : Tuple ) -> int: """simple docstring""" for layer_module in self.layers: _UpperCAmelCase = layer_module(lowerCamelCase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[str] , lowerCamelCase : RegNetConfig , **lowerCamelCase : Tuple ) -> Any: """simple docstring""" super().__init__(**lowerCamelCase ) _UpperCAmelCase = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCamelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="""stages.0""" , ) ) _UpperCAmelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCamelCase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCamelCase , lowerCamelCase , lowerCamelCase , depth=lowerCamelCase , name=f"""stages.{i+1}""" ) ) def lowerCamelCase ( self : Optional[int] , lowerCamelCase : tf.Tensor , lowerCamelCase : bool = False , lowerCamelCase : bool = True ) -> TFBaseModelOutputWithNoAttention: """simple docstring""" _UpperCAmelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCAmelCase = hidden_states + (hidden_state,) _UpperCAmelCase = stage_module(lowerCamelCase ) if output_hidden_states: _UpperCAmelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase , hidden_states=lowerCamelCase ) @keras_serializable class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): '''simple docstring''' _lowerCamelCase = RegNetConfig def __init__( self : int , lowerCamelCase : Dict , **lowerCamelCase : Dict ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowerCamelCase ) _UpperCAmelCase = config _UpperCAmelCase = TFRegNetEmbeddings(lowerCamelCase , name="""embedder""" ) _UpperCAmelCase = TFRegNetEncoder(lowerCamelCase , name="""encoder""" ) _UpperCAmelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase , name="""pooler""" ) @unpack_inputs def lowerCamelCase ( self : int , lowerCamelCase : tf.Tensor , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : bool = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: """simple docstring""" _UpperCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase = self.embedder(lowerCamelCase , training=lowerCamelCase ) _UpperCAmelCase = self.encoder( lowerCamelCase , output_hidden_states=lowerCamelCase , return_dict=lowerCamelCase , training=lowerCamelCase ) _UpperCAmelCase = encoder_outputs[0] _UpperCAmelCase = self.pooler(lowerCamelCase ) # Change to NCHW output format have uniformity in the modules _UpperCAmelCase = tf.transpose(lowerCamelCase , perm=(0, 3, 1, 2) ) _UpperCAmelCase = tf.transpose(lowerCamelCase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _UpperCAmelCase = tuple([tf.transpose(lowerCamelCase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase , pooler_output=lowerCamelCase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = RegNetConfig _lowerCamelCase = '''regnet''' _lowerCamelCase = '''pixel_values''' @property def lowerCamelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} __a: Dict = R''' Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. ''' __a: Union[str, Any] = R''' Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , UpperCAmelCase , ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : str , lowerCamelCase : RegNetConfig , *lowerCamelCase : int , **lowerCamelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" super().__init__(lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) _UpperCAmelCase = TFRegNetMainLayer(lowerCamelCase , name="""regnet""" ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCamelCase ( self : List[str] , lowerCamelCase : tf.Tensor , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Tuple=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: """simple docstring""" _UpperCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase = self.regnet( pixel_values=lowerCamelCase , output_hidden_states=lowerCamelCase , return_dict=lowerCamelCase , training=lowerCamelCase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , UpperCAmelCase , ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase , UpperCAmelCase ): '''simple docstring''' def __init__( self : Tuple , lowerCamelCase : RegNetConfig , *lowerCamelCase : Tuple , **lowerCamelCase : List[Any] ) -> str: """simple docstring""" super().__init__(lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) _UpperCAmelCase = config.num_labels _UpperCAmelCase = TFRegNetMainLayer(lowerCamelCase , name="""regnet""" ) # classification head _UpperCAmelCase = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="""classifier.1""" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCamelCase ( self : List[Any] , lowerCamelCase : tf.Tensor = None , lowerCamelCase : tf.Tensor = None , lowerCamelCase : bool = None , lowerCamelCase : bool = None , lowerCamelCase : Optional[Any]=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: """simple docstring""" _UpperCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase = self.regnet( lowerCamelCase , output_hidden_states=lowerCamelCase , return_dict=lowerCamelCase , training=lowerCamelCase ) _UpperCAmelCase = outputs.pooler_output if return_dict else outputs[1] _UpperCAmelCase = self.classifier[0](lowerCamelCase ) _UpperCAmelCase = self.classifier[1](lowerCamelCase ) _UpperCAmelCase = None if labels is None else self.hf_compute_loss(labels=lowerCamelCase , logits=lowerCamelCase ) if not return_dict: _UpperCAmelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCamelCase , logits=lowerCamelCase , hidden_states=outputs.hidden_states )
402
0
from math import isclose, sqrt def a_ ( lowerCAmelCase_ : float, lowerCAmelCase_ : float, lowerCAmelCase_ : float ): __lowerCAmelCase = point_y / 4 / point_x __lowerCAmelCase = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) __lowerCAmelCase = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) __lowerCAmelCase = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 __lowerCAmelCase = outgoing_gradient**2 + 4 __lowerCAmelCase = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) __lowerCAmelCase = (point_y - outgoing_gradient * point_x) ** 2 - 100 __lowerCAmelCase = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) __lowerCAmelCase = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point __lowerCAmelCase = x_minus if isclose(lowerCAmelCase_, lowerCAmelCase_ ) else x_plus __lowerCAmelCase = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def a_ ( lowerCAmelCase_ : float = 1.4, lowerCAmelCase_ : float = -9.6 ): __lowerCAmelCase = 0 __lowerCAmelCase = first_x_coord __lowerCAmelCase = first_y_coord __lowerCAmelCase = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = next_point(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"""{solution() = }""")
53
'''simple docstring''' _UpperCAmelCase : Tuple = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def UpperCamelCase ( lowercase_ : bytes ) -> bytes: '''simple docstring''' if not isinstance(lowercase_ , lowercase_ ): lowercase =f'a bytes-like object is required, not \'{data.__class__.__name__}\'' raise TypeError(lowercase_ ) lowercase =''''''.join(bin(lowercase_ )[2:].zfill(8 ) for byte in data ) lowercase =len(lowercase_ ) % 6 != 0 if padding_needed: # The padding that will be added later lowercase =b'''=''' * ((6 - len(lowercase_ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(lowercase_ ) % 6) else: lowercase =b'''''' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(lowercase_ ) , 6 ) ).encode() + padding ) def UpperCamelCase ( lowercase_ : str ) -> bytes: '''simple docstring''' if not isinstance(lowercase_ , lowercase_ ) and not isinstance(lowercase_ , lowercase_ ): lowercase =( '''argument should be a bytes-like object or ASCII string, ''' f'not \'{encoded_data.__class__.__name__}\'' ) raise TypeError(lowercase_ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(lowercase_ , lowercase_ ): try: lowercase =encoded_data.decode('''utf-8''' ) except UnicodeDecodeError: raise ValueError('''base64 encoded data should only contain ASCII characters''' ) lowercase =encoded_data.count('''=''' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(lowercase_ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowercase =encoded_data[:-padding] lowercase =''''''.join( bin(B64_CHARSET.index(lowercase_ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowercase =''''''.join( bin(B64_CHARSET.index(lowercase_ ) )[2:].zfill(6 ) for char in encoded_data ) lowercase =[ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(lowercase_ ) , 8 ) ] return bytes(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
72
0
import math def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' lowercase_ = [] lowercase_ = 2 lowercase_ = int(math.sqrt(__lowerCamelCase ) ) # Size of every segment lowercase_ = [True] * (end + 1) lowercase_ = [] while start <= end: if temp[start] is True: in_prime.append(__lowerCamelCase ) for i in range(start * start , end + 1 , __lowerCamelCase ): lowercase_ = False start += 1 prime += in_prime lowercase_ = end + 1 lowercase_ = min(2 * end , __lowerCamelCase ) while low <= n: lowercase_ = [True] * (high - low + 1) for each in in_prime: lowercase_ = math.floor(low / each ) * each if t < low: t += each for j in range(__lowerCamelCase , high + 1 , __lowerCamelCase ): lowercase_ = False for j in range(len(__lowerCamelCase ) ): if temp[j] is True: prime.append(j + low ) lowercase_ = high + 1 lowercase_ = min(high + end , __lowerCamelCase ) return prime print(sieve(1_0**6))
601
# using dfs for finding eulerian path traversal def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any , __lowerCamelCase: Tuple , __lowerCamelCase: List[Any] , __lowerCamelCase: Union[str, Any]=None ): '''simple docstring''' lowercase_ = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: lowercase_ , lowercase_ = True, True lowercase_ = dfs(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return path def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any , __lowerCamelCase: Union[str, Any] ): '''simple docstring''' lowercase_ = 0 lowercase_ = -1 for i in range(__lowerCamelCase ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 lowercase_ = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[str] ): '''simple docstring''' lowercase_ = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] lowercase_ , lowercase_ = check_circuit_or_path(__lowerCamelCase , __lowerCamelCase ) if check == 3: print("graph is not Eulerian" ) print("no path" ) return lowercase_ = 1 if check == 2: lowercase_ = odd_node print("graph has a Euler path" ) if check == 1: print("graph has a Euler cycle" ) lowercase_ = dfs(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) print(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} lowercase_ = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} lowercase_ = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} lowercase_ = {1: [2, 3], 2: [1, 3], 3: [1, 2]} lowercase_ = { 1: [], 2: [] # all degree is zero } lowercase_ = 10 check_euler(__lowerCamelCase , __lowerCamelCase ) check_euler(__lowerCamelCase , __lowerCamelCase ) check_euler(__lowerCamelCase , __lowerCamelCase ) check_euler(__lowerCamelCase , __lowerCamelCase ) check_euler(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
601
1
"""simple docstring""" import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def __UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ ): # Initialise PyTorch model A_ : List[str] = TaConfig.from_json_file(snake_case__ ) print(F"""Building PyTorch model from configuration: {config}""" ) A_ : List[str] = TaForConditionalGeneration(snake_case__ ) # Load weights from tf checkpoint load_tf_weights_in_ta(snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(snake_case__ ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCAmelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
180
"""simple docstring""" from __future__ import annotations def __UpperCamelCase ( snake_case__ , snake_case__ ): if len(snake_case__ ) == 0: return False A_ : Union[str, Any] = len(snake_case__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , snake_case__ ) else: return binary_search(a_list[midpoint + 1 :] , snake_case__ ) if __name__ == "__main__": _lowerCAmelCase = input("Enter numbers separated by comma:\n").strip() _lowerCAmelCase = [int(item.strip()) for item in user_input.split(",")] _lowerCAmelCase = int(input("Enter the number to be found in the list:\n").strip()) _lowerCAmelCase = "" if binary_search(sequence, target) else "not " print(F'{target} was {not_str}found in {sequence}')
180
1
"""simple docstring""" import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", } SCREAMING_SNAKE_CASE_ = { """vocab_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"""}, """merges_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"""}, } SCREAMING_SNAKE_CASE_ = { """ctrl""": 2_56, } SCREAMING_SNAKE_CASE_ = { """Pregnancy""": 16_86_29, """Christianity""": 76_75, """Explain""": 10_64_23, """Fitness""": 6_34_40, """Saving""": 6_31_63, """Ask""": 2_71_71, """Ass""": 9_59_85, """Joke""": 16_35_09, """Questions""": 4_56_22, """Thoughts""": 4_96_05, """Retail""": 5_23_42, """Feminism""": 16_43_38, """Writing""": 1_19_92, """Atheism""": 19_22_63, """Netflix""": 4_86_16, """Computing""": 3_96_39, """Opinion""": 4_32_13, """Alone""": 4_49_67, """Funny""": 5_89_17, """Gaming""": 4_03_58, """Human""": 40_88, """India""": 13_31, """Joker""": 7_71_38, """Diet""": 3_62_06, """Legal""": 1_18_59, """Norman""": 49_39, """Tip""": 7_26_89, """Weight""": 5_23_43, """Movies""": 4_62_73, """Running""": 2_34_25, """Science""": 20_90, """Horror""": 3_77_93, """Confession""": 6_05_72, """Finance""": 1_22_50, """Politics""": 1_63_60, """Scary""": 19_19_85, """Support""": 1_26_54, """Technologies""": 3_25_16, """Teenage""": 6_61_60, """Event""": 3_27_69, """Learned""": 6_74_60, """Notion""": 18_27_70, """Wikipedia""": 3_75_83, """Books""": 66_65, """Extract""": 7_60_50, """Confessions""": 10_27_01, """Conspiracy""": 7_59_32, """Links""": 6_36_74, """Narcissus""": 15_04_25, """Relationship""": 5_47_66, """Relationships""": 13_47_96, """Reviews""": 4_16_71, """News""": 42_56, """Translation""": 2_68_20, """multilingual""": 12_84_06, } def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> Optional[int]: a_ : List[Any] = set() a_ : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) a_ : Optional[int] = char a_ : int = set(SCREAMING_SNAKE_CASE__ ) return pairs class snake_case_ ( a_ ): __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = CONTROL_CODES def __init__( self , a_ , a_ , a_="<unk>" , **a_ ): super().__init__(unk_token=a_ , **a_ ) with open(a_ , encoding="utf-8" ) as vocab_handle: a_ : Optional[int] = json.load(a_ ) a_ : List[Any] = {v: k for k, v in self.encoder.items()} with open(a_ , encoding="utf-8" ) as merges_handle: a_ : List[str] = merges_handle.read().split("\n" )[1:-1] a_ : Tuple = [tuple(merge.split() ) for merge in merges] a_ : Union[str, Any] = dict(zip(a_ , range(len(a_ ) ) ) ) a_ : int = {} @property def snake_case_ ( self ): return len(self.encoder ) def snake_case_ ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def snake_case_ ( self , a_ ): if token in self.cache: return self.cache[token] a_ : Optional[Any] = tuple(a_ ) a_ : Tuple = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) a_ : int = get_pairs(a_ ) if not pairs: return token while True: a_ : Any = min(a_ , key=lambda a_ : self.bpe_ranks.get(a_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break a_ , a_ : Tuple = bigram a_ : Tuple = [] a_ : Tuple = 0 while i < len(a_ ): try: a_ : Optional[int] = word.index(a_ , a_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) a_ : int = j if word[i] == first and i < len(a_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a_ : Optional[Any] = tuple(a_ ) a_ : Tuple = new_word if len(a_ ) == 1: break else: a_ : int = get_pairs(a_ ) a_ : str = "@@ ".join(a_ ) a_ : Tuple = word[:-4] a_ : Union[str, Any] = word return word def snake_case_ ( self , a_ ): a_ : Tuple = [] a_ : Tuple = re.findall(R"\S+\n?" , a_ ) for token in words: split_tokens.extend(list(self.bpe(a_ ).split(" " ) ) ) return split_tokens def snake_case_ ( self , a_ ): return self.encoder.get(a_ , self.encoder.get(self.unk_token ) ) def snake_case_ ( self , a_ ): return self.decoder.get(a_ , self.unk_token ) def snake_case_ ( self , a_ ): a_ : Optional[int] = " ".join(a_ ).replace("@@ " , "" ).strip() return out_string def snake_case_ ( self , a_ , a_ = None ): if not os.path.isdir(a_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a_ : Optional[Any] = os.path.join( a_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) a_ : List[Any] = os.path.join( a_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(a_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a_ , ensure_ascii=a_ ) + "\n" ) a_ : Any = 0 with open(a_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) a_ : int = token_index writer.write(" ".join(a_ ) + "\n" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
370
"""simple docstring""" SCREAMING_SNAKE_CASE_ = 0 # The first color of the flag. SCREAMING_SNAKE_CASE_ = 1 # The second color of the flag. SCREAMING_SNAKE_CASE_ = 2 # The third color of the flag. SCREAMING_SNAKE_CASE_ = (red, white, blue) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> list: if not sequence: return [] if len(SCREAMING_SNAKE_CASE__ ) == 1: return list(SCREAMING_SNAKE_CASE__ ) a_ : Dict = 0 a_ : List[Any] = len(SCREAMING_SNAKE_CASE__ ) - 1 a_ : str = 0 while mid <= high: if sequence[mid] == colors[0]: a_ , a_ : int = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: a_ , a_ : List[Any] = sequence[high], sequence[mid] high -= 1 else: a_ : Dict = F"""The elements inside the sequence must contains only {colors} values""" raise ValueError(SCREAMING_SNAKE_CASE__ ) return sequence if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE_ = input("""Enter numbers separated by commas:\n""").strip() SCREAMING_SNAKE_CASE_ = [int(item.strip()) for item in user_input.split(""",""")] print(F"""{dutch_national_flag_sort(unsorted)}""")
370
1
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : Union[str, Any] = StableDiffusionControlNetImgaImgPipeline A_ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} A_ : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A_ : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'control_image'} ) A_ : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def a (self : str ): """simple docstring""" torch.manual_seed(0 ) __snake_case = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) __snake_case = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) __snake_case = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=a__ , set_alpha_to_one=a__ , ) torch.manual_seed(0 ) __snake_case = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __snake_case = CLIPTextModel(a__ ) __snake_case = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __snake_case = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def a (self : str , a__ : Union[str, Any] , a__ : Any=0 ): """simple docstring""" if str(a__ ).startswith('''mps''' ): __snake_case = torch.manual_seed(a__ ) else: __snake_case = torch.Generator(device=a__ ).manual_seed(a__ ) __snake_case = 2 __snake_case = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=a__ , device=torch.device(a__ ) , ) __snake_case = floats_tensor(control_image.shape , rng=random.Random(a__ ) ).to(a__ ) __snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case = Image.fromarray(np.uinta(a__ ) ).convert('''RGB''' ).resize((64, 64) ) __snake_case = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def a (self : Tuple ): """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def a (self : Optional[Any] ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def a (self : Optional[Any] ): """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : str = StableDiffusionControlNetImgaImgPipeline A_ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} A_ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A_ : Optional[int] = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def a (self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) __snake_case = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(a__ : Optional[Any] ): if isinstance(a__ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) __snake_case = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(a__ ) torch.manual_seed(0 ) __snake_case = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(a__ ) torch.manual_seed(0 ) __snake_case = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=a__ , set_alpha_to_one=a__ , ) torch.manual_seed(0 ) __snake_case = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __snake_case = CLIPTextModel(a__ ) __snake_case = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __snake_case = MultiControlNetModel([controlneta, controlneta] ) __snake_case = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def a (self : int , a__ : List[str] , a__ : Union[str, Any]=0 ): """simple docstring""" if str(a__ ).startswith('''mps''' ): __snake_case = torch.manual_seed(a__ ) else: __snake_case = torch.Generator(device=a__ ).manual_seed(a__ ) __snake_case = 2 __snake_case = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=a__ , device=torch.device(a__ ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=a__ , device=torch.device(a__ ) , ), ] __snake_case = floats_tensor(control_image[0].shape , rng=random.Random(a__ ) ).to(a__ ) __snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case = Image.fromarray(np.uinta(a__ ) ).convert('''RGB''' ).resize((64, 64) ) __snake_case = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def a (self : str ): """simple docstring""" __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**a__ ) pipe.to(a__ ) __snake_case = 1_0.0 __snake_case = 4 __snake_case = self.get_dummy_inputs(a__ ) __snake_case = steps __snake_case = scale __snake_case = pipe(**a__ )[0] __snake_case = self.get_dummy_inputs(a__ ) __snake_case = steps __snake_case = scale __snake_case = pipe(**a__ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] __snake_case = self.get_dummy_inputs(a__ ) __snake_case = steps __snake_case = scale __snake_case = pipe(**a__ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] __snake_case = self.get_dummy_inputs(a__ ) __snake_case = steps __snake_case = scale __snake_case = pipe(**a__ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def a (self : List[Any] ): """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def a (self : List[Any] ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def a (self : Optional[int] ): """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def a (self : int ): """simple docstring""" __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(a__ ) except NotImplementedError: pass @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Any ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a (self : int ): """simple docstring""" __snake_case = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''' ) __snake_case = StableDiffusionControlNetImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , safety_checker=a__ , controlnet=a__ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=a__ ) __snake_case = torch.Generator(device='''cpu''' ).manual_seed(0 ) __snake_case = '''evil space-punk bird''' __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ).resize((512, 512) ) __snake_case = load_image( '''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''' ).resize((512, 512) ) __snake_case = pipe( a__ , a__ , control_image=a__ , generator=a__ , output_type='''np''' , num_inference_steps=50 , strength=0.6 , ) __snake_case = output.images[0] assert image.shape == (512, 512, 3) __snake_case = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''' ) assert np.abs(expected_image - image ).max() < 9E-2
592
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position snake_case_ = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip snake_case_ = concatenate_datasets snake_case_ = DownloadConfig snake_case_ = DownloadManager snake_case_ = DownloadMode snake_case_ = DownloadConfig snake_case_ = DownloadMode snake_case_ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
592
1
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowercase = '''src/diffusers''' lowercase = '''.''' # This is to make sure the diffusers module imported is the one in the repo. lowercase = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) lowercase = spec.loader.load_module() def __lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any] ) -> Union[str, Any]: return line.startswith(UpperCAmelCase__ ) or len(UpperCAmelCase__ ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""" , UpperCAmelCase__ ) is not None def __lowerCAmelCase ( UpperCAmelCase__ : int ) -> List[str]: lowerCamelCase_ = object_name.split(""".""" ) lowerCamelCase_ = 0 # First let's find the module where our object lives. lowerCamelCase_ = parts[i] while i < len(UpperCAmelCase__ ) and not os.path.isfile(os.path.join(UpperCAmelCase__ , F'''{module}.py''' ) ): i += 1 if i < len(UpperCAmelCase__ ): lowerCamelCase_ = os.path.join(UpperCAmelCase__ , parts[i] ) if i >= len(UpperCAmelCase__ ): raise ValueError(F'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''' ) with open(os.path.join(UpperCAmelCase__ , F'''{module}.py''' ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase_ = f.readlines() # Now let's find the class / func in the code! lowerCamelCase_ = """""" lowerCamelCase_ = 0 for name in parts[i + 1 :]: while ( line_index < len(UpperCAmelCase__ ) and re.search(RF'''^{indent}(class|def)\s+{name}(\(|\:)''' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(UpperCAmelCase__ ): raise ValueError(F''' {object_name} does not match any function or class in {module}.''' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). lowerCamelCase_ = line_index while line_index < len(UpperCAmelCase__ ) and _should_continue(lines[line_index] , UpperCAmelCase__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowerCamelCase_ = lines[start_index:line_index] return "".join(UpperCAmelCase__ ) lowercase = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') lowercase = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''') lowercase = re.compile(r'''<FILL\s+[^>]*>''') def __lowerCAmelCase ( UpperCAmelCase__ : Tuple ) -> Any: lowerCamelCase_ = code.split("""\n""" ) lowerCamelCase_ = 0 while idx < len(UpperCAmelCase__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(UpperCAmelCase__ ): return re.search(R"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def __lowerCAmelCase ( UpperCAmelCase__ : Optional[int] ) -> Dict: lowerCamelCase_ = len(get_indent(UpperCAmelCase__ ) ) > 0 if has_indent: lowerCamelCase_ = F'''class Bla:\n{code}''' lowerCamelCase_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 , preview=UpperCAmelCase__ ) lowerCamelCase_ = black.format_str(UpperCAmelCase__ , mode=UpperCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ = style_docstrings_in_code(UpperCAmelCase__ ) return result[len("""class Bla:\n""" ) :] if has_indent else result def __lowerCAmelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str]=False ) -> str: with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase_ = f.readlines() lowerCamelCase_ = [] lowerCamelCase_ = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(UpperCAmelCase__ ): lowerCamelCase_ = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = search.groups() lowerCamelCase_ = find_code_in_diffusers(UpperCAmelCase__ ) lowerCamelCase_ = get_indent(UpperCAmelCase__ ) lowerCamelCase_ = line_index + 1 if indent == theoretical_indent else line_index + 2 lowerCamelCase_ = theoretical_indent lowerCamelCase_ = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. lowerCamelCase_ = True while line_index < len(UpperCAmelCase__ ) and should_continue: line_index += 1 if line_index >= len(UpperCAmelCase__ ): break lowerCamelCase_ = lines[line_index] lowerCamelCase_ = _should_continue(UpperCAmelCase__ , UpperCAmelCase__ ) and re.search(F'''^{indent}# End copy''' , UpperCAmelCase__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowerCamelCase_ = lines[start_index:line_index] lowerCamelCase_ = """""".join(UpperCAmelCase__ ) # Remove any nested `Copied from` comments to avoid circular copies lowerCamelCase_ = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(UpperCAmelCase__ ) is None] lowerCamelCase_ = """\n""".join(UpperCAmelCase__ ) # Before comparing, use the `replace_pattern` on the original code. if len(UpperCAmelCase__ ) > 0: lowerCamelCase_ = replace_pattern.replace("""with""" , """""" ).split(""",""" ) lowerCamelCase_ = [_re_replace_pattern.search(UpperCAmelCase__ ) for p in patterns] for pattern in patterns: if pattern is None: continue lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = pattern.groups() lowerCamelCase_ = re.sub(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if option.strip() == "all-casing": lowerCamelCase_ = re.sub(obja.lower() , obja.lower() , UpperCAmelCase__ ) lowerCamelCase_ = re.sub(obja.upper() , obja.upper() , UpperCAmelCase__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line lowerCamelCase_ = blackify(lines[start_index - 1] + theoretical_code ) lowerCamelCase_ = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: lowerCamelCase_ = lines[:start_index] + [theoretical_code] + lines[line_index:] lowerCamelCase_ = start_index + 1 if overwrite and len(UpperCAmelCase__ ) > 0: # Warn the user a file has been modified. print(F'''Detected changes, rewriting {filename}.''' ) with open(UpperCAmelCase__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(UpperCAmelCase__ ) return diffs def __lowerCAmelCase ( UpperCAmelCase__ : bool = False ) -> Any: lowerCamelCase_ = glob.glob(os.path.join(UpperCAmelCase__ , """**/*.py""" ) , recursive=UpperCAmelCase__ ) lowerCamelCase_ = [] for filename in all_files: lowerCamelCase_ = is_copy_consistent(UpperCAmelCase__ , UpperCAmelCase__ ) diffs += [F'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs] if not overwrite and len(UpperCAmelCase__ ) > 0: lowerCamelCase_ = """\n""".join(UpperCAmelCase__ ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') lowercase = parser.parse_args() check_copies(args.fix_and_overwrite)
716
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class __A( UpperCAmelCase ): SCREAMING_SNAKE_CASE = '''facebook/bart-large-mnli''' SCREAMING_SNAKE_CASE = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) SCREAMING_SNAKE_CASE = '''text_classifier''' SCREAMING_SNAKE_CASE = AutoTokenizer SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE = ['''text''', ['''text''']] SCREAMING_SNAKE_CASE = ['''text'''] def lowercase__ ( self : Union[str, Any] ): super().setup() lowerCamelCase_ = self.model.config lowerCamelCase_ = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("""entail""" ): lowerCamelCase_ = int(__UpperCamelCase ) if self.entailment_id == -1: raise ValueError("""Could not determine the entailment ID from the model config, please pass it at init.""" ) def lowercase__ ( self : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] ): lowerCamelCase_ = labels return self.pre_processor( [text] * len(__UpperCamelCase ) , [F'''This example is {label}''' for label in labels] , return_tensors="""pt""" , padding="""max_length""" , ) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[str] ): lowerCamelCase_ = outputs.logits lowerCamelCase_ = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
103
0
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _UpperCAmelCase : Dict = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class lowerCAmelCase ( unittest.TestCase ): def A_ ( self : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] = None , UpperCAmelCase : Union[str, Any] = None , UpperCAmelCase : Union[str, Any] = None , UpperCAmelCase : Optional[int] = True , ) -> Tuple: lowerCamelCase__ : Tuple = [file for file in os.listdir(lowerCamelCase__ ) if os.path.isfile(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) )] if identifier is not None: lowerCamelCase__ : Dict = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowerCamelCase__ , lowerCamelCase__ ): for n_ in n_identifier: lowerCamelCase__ : Dict = [file for file in files if n_ not in file] else: lowerCamelCase__ : Optional[int] = [file for file in files if n_identifier not in file] lowerCamelCase__ : Union[str, Any] = ignore_files or [] ignore_files.append('__init__.py' ) lowerCamelCase__ : Optional[int] = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , lowerCamelCase__ ) if only_modules: lowerCamelCase__ : List[Any] = file.split('.' )[0] try: lowerCamelCase__ : Tuple = getattr(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase__ : Dict = doctest.DocTestSuite(lowerCamelCase__ ) lowerCamelCase__ : Any = unittest.TextTestRunner().run(lowerCamelCase__ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F"""{module_identifier} is not a module.""" ) else: lowerCamelCase__ : List[str] = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def A_ ( self : int ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = Path('src/transformers' ) lowerCamelCase__ : Optional[int] = """modeling""" lowerCamelCase__ : Optional[int] = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(lowerCamelCase__ , identifier=lowerCamelCase__ , ignore_files=lowerCamelCase__ ) def A_ ( self : Dict ) -> int: lowerCamelCase__ : Optional[Any] = Path('src/transformers' ) lowerCamelCase__ : Tuple = """tokenization""" self.analyze_directory(lowerCamelCase__ , identifier=lowerCamelCase__ ) def A_ ( self : Any ) -> Optional[Any]: lowerCamelCase__ : Tuple = Path('src/transformers' ) lowerCamelCase__ : Any = """configuration""" self.analyze_directory(lowerCamelCase__ , identifier=lowerCamelCase__ ) def A_ ( self : Dict ) -> List[str]: lowerCamelCase__ : Any = Path('src/transformers' ) lowerCamelCase__ : List[Any] = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(lowerCamelCase__ , n_identifier=lowerCamelCase__ ) def A_ ( self : List[Any] ) -> Tuple: lowerCamelCase__ : Optional[int] = Path('docs/source' ) lowerCamelCase__ : Tuple = ["""favicon.ico"""] self.analyze_directory(lowerCamelCase__ , ignore_files=lowerCamelCase__ , only_modules=lowerCamelCase__ )
295
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = False, lowerCamelCase__ = False, lowerCamelCase__ = None, **lowerCamelCase__, ): super().__init__( lowerCamelCase__, split=lowerCamelCase__, features=lowerCamelCase__, cache_dir=lowerCamelCase__, keep_in_memory=lowerCamelCase__, streaming=lowerCamelCase__, num_proc=lowerCamelCase__, **lowerCamelCase__, ) A : List[Any] = path_or_paths if isinstance(lowerCamelCase__, lowerCamelCase__ ) else {self.split: path_or_paths} A : str = Text( cache_dir=lowerCamelCase__, data_files=lowerCamelCase__, features=lowerCamelCase__, **lowerCamelCase__, ) def _lowerCAmelCase ( self ): # Build iterable dataset if self.streaming: A : int = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A : List[str] = None A : Dict = None A : Tuple = None A : Tuple = None self.builder.download_and_prepare( download_config=lowerCamelCase__, download_mode=lowerCamelCase__, verification_mode=lowerCamelCase__, base_path=lowerCamelCase__, num_proc=self.num_proc, ) A : List[str] = self.builder.as_dataset( split=self.split, verification_mode=lowerCamelCase__, in_memory=self.keep_in_memory ) return dataset
662
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase ( unittest.TestCase ): @property def _A ( self : int ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def _A ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = self.dummy_uncond_unet lowerCAmelCase__ : Optional[int] = PNDMScheduler() lowerCAmelCase__ : Dict = PNDMPipeline(unet=a__ , scheduler=a__ ) pndm.to(a__ ) pndm.set_progress_bar_config(disable=a__ ) lowerCAmelCase__ : Any = torch.manual_seed(0 ) lowerCAmelCase__ : Optional[Any] = pndm(generator=a__ , num_inference_steps=20 , output_type="numpy" ).images lowerCAmelCase__ : List[Any] = torch.manual_seed(0 ) lowerCAmelCase__ : Any = pndm(generator=a__ , num_inference_steps=20 , output_type="numpy" , return_dict=a__ )[0] lowerCAmelCase__ : Any = image[0, -3:, -3:, -1] lowerCAmelCase__ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ : List[str] = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class lowerCAmelCase ( unittest.TestCase ): def _A ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = "google/ddpm-cifar10-32" lowerCAmelCase__ : Union[str, Any] = UNetaDModel.from_pretrained(a__ ) lowerCAmelCase__ : int = PNDMScheduler() lowerCAmelCase__ : Optional[int] = PNDMPipeline(unet=a__ , scheduler=a__ ) pndm.to(a__ ) pndm.set_progress_bar_config(disable=a__ ) lowerCAmelCase__ : Optional[int] = torch.manual_seed(0 ) lowerCAmelCase__ : Union[str, Any] = pndm(generator=a__ , output_type="numpy" ).images lowerCAmelCase__ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ : List[str] = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
706
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor snake_case = logging.getLogger(__name__) snake_case = 50 # max width of layer names snake_case = 70 # max width of quantizer names def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = parser.add_argument_group("quant_trainer arguments" ) group.add_argument("--wprec" , type=lowerCamelCase_ , default=8 , help="weight precision" ) group.add_argument("--aprec" , type=lowerCamelCase_ , default=8 , help="activation precision" ) group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" ) group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" ) group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" ) group.add_argument("--quant-disable-keyword" , type=lowerCamelCase_ , nargs="+" , help="disable quantizers by keyword" ) group.add_argument("--quant-disable-layer-module" , type=lowerCamelCase_ , help="disable quantizers by keyword under layer." ) group.add_argument("--quant-enable-layer-module" , type=lowerCamelCase_ , help="enable quantizers by keyword under layer" ) group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" ) group.add_argument("--percentile" , default=lowerCamelCase_ , type=lowerCamelCase_ , help="percentile for PercentileCalibrator" ) group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" ) group.add_argument("--clip-gelu" , metavar="N" , type=lowerCamelCase_ , help="clip gelu output maximum value to N" ) group.add_argument( "--recalibrate-weights" , action="store_true" , help=( "recalibrate weight amaxes by taking the max of the weights." " amaxes will be computed with the current quantization granularity (axis)." ) , ) def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" if args.calibrator == "max": lowerCAmelCase__ : int = "max" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("Specify --percentile when using percentile calibrator" ) lowerCAmelCase__ : List[str] = "histogram" elif args.calibrator == "mse": lowerCAmelCase__ : Any = "histogram" else: raise ValueError(f'''Invalid calibrator {args.calibrator}''' ) lowerCAmelCase__ : Union[str, Any] = QuantDescriptor(num_bits=args.aprec , calib_method=lowerCamelCase_ ) lowerCAmelCase__ : Any = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(lowerCamelCase_ ) quant_nn.QuantLinear.set_default_quant_desc_weight(lowerCamelCase_ ) def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=False ): """simple docstring""" logger.info("Configuring Model for Quantization" ) logger.info(f'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(lowerCamelCase_ , ["embeddings"] , which="weight" , _disabled=lowerCamelCase_ ) if args.quant_disable: set_quantizer_by_name(lowerCamelCase_ , [""] , _disabled=lowerCamelCase_ ) if args.quant_disable_keyword: set_quantizer_by_name(lowerCamelCase_ , args.quant_disable_keyword , _disabled=lowerCamelCase_ ) if args.quant_disable_layer_module: set_quantizer_by_name(lowerCamelCase_ , [R"layer.\d+." + args.quant_disable_layer_module] , _disabled=lowerCamelCase_ ) if args.quant_enable_layer_module: set_quantizer_by_name(lowerCamelCase_ , [R"layer.\d+." + args.quant_enable_layer_module] , _disabled=lowerCamelCase_ ) if args.recalibrate_weights: recalibrate_weights(lowerCamelCase_ ) if args.fuse_qkv: fuse_qkv(lowerCamelCase_ , lowerCamelCase_ ) if args.clip_gelu: clip_gelu(lowerCamelCase_ , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(lowerCamelCase_ ) def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" logger.info("Enabling Calibration" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f'''{name:80}: {module}''' ) def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" logger.info("Loading calibrated amax" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("percentile" , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(lowerCamelCase_ ) def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" def fusea(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): for mod in [qq, qk, qv]: if not hasattr(lowerCamelCase_ , "_amax" ): print(" WARNING: NO AMAX BUFFER" ) return lowerCAmelCase__ : Optional[int] = qq._amax.detach().item() lowerCAmelCase__ : Optional[int] = qk._amax.detach().item() lowerCAmelCase__ : Any = qv._amax.detach().item() lowerCAmelCase__ : List[str] = max(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) qq._amax.fill_(lowerCamelCase_ ) qk._amax.fill_(lowerCamelCase_ ) qv._amax.fill_(lowerCamelCase_ ) logger.info(f''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith(".attention.self" ): logger.info(f'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ): lowerCAmelCase__ : Any = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=lowerCamelCase_ ) lowerCAmelCase__ : Tuple = mod._input_quantizer._amax.data.detach().item() logger.info(f'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCamelCase_ , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None: lowerCAmelCase__ : Optional[int] = mod.weight.shape[0] lowerCAmelCase__ : List[str] = mod._weight_quantizer._amax.detach() lowerCAmelCase__ : List[str] = torch.ones(lowerCamelCase_ , dtype=amax.dtype , device=amax.device ) * amax print(f'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCamelCase_ , "_weight_quantizer" ): if not hasattr(mod.weight_quantizer , "_amax" ): print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) lowerCAmelCase__ : List[Any] = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) lowerCAmelCase__ : Tuple = set(range(len(mod.weight.size() ) ) ) - axis_set lowerCAmelCase__ : Tuple = pytorch_quantization.utils.reduce_amax(mod.weight , axis=lowerCamelCase_ , keepdims=lowerCamelCase_ ).detach() logger.info(f'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) lowerCAmelCase__ : str = amax def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_=2_5 , lowerCamelCase_=1_8_0 , lowerCamelCase_=None ): """simple docstring""" if ignore is None: lowerCAmelCase__ : str = [] elif not isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ : List[Any] = [ignore] lowerCAmelCase__ : Optional[int] = 0 for name, mod in model.named_modules(): if not hasattr(lowerCamelCase_ , "weight" ): continue lowerCAmelCase__ : str = max(lowerCamelCase_ , len(lowerCamelCase_ ) ) for name, mod in model.named_modules(): lowerCAmelCase__ : Tuple = getattr(lowerCamelCase_ , "_input_quantizer" , lowerCamelCase_ ) lowerCAmelCase__ : Union[str, Any] = getattr(lowerCamelCase_ , "_weight_quantizer" , lowerCamelCase_ ) if not hasattr(lowerCamelCase_ , "weight" ): continue if type(lowerCamelCase_ ) in ignore: continue if [True for s in ignore if type(lowerCamelCase_ ) is str and s in name]: continue lowerCAmelCase__ : List[Any] = f'''Act:{input_q.extra_repr()}''' lowerCAmelCase__ : Optional[int] = f'''Wgt:{weight_q.extra_repr()}''' lowerCAmelCase__ : int = f'''{name:{name_width}} {act_str} {wgt_str}''' if len(lowerCamelCase_ ) <= line_width: logger.info(lowerCamelCase_ ) else: logger.info(f'''{name:{name_width}} {act_str}''' ) logger.info(f'''{' ':{name_width}} {wgt_str}''' ) def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ : List[Any] = 0 for name, mod in model.named_modules(): if isinstance(lowerCamelCase_ , pytorch_quantization.nn.TensorQuantizer ): print(f'''{name:80} {mod}''' ) count += 1 print(f'''{count} TensorQuantizers found in model''' ) def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ : Tuple = getattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if quantizer_mod is not None: assert hasattr(lowerCamelCase_ , lowerCamelCase_ ) setattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: logger.warning(f'''{name} has no {quantizer}''' ) def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_="both" , **lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ : Tuple = f'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' if which in ["input", "both"]: set_quantizer(lowerCamelCase_ , lowerCamelCase_ , "_input_quantizer" , lowerCamelCase_ , lowerCamelCase_ ) if which in ["weight", "both"]: set_quantizer(lowerCamelCase_ , lowerCamelCase_ , "_weight_quantizer" , lowerCamelCase_ , lowerCamelCase_ ) logger.info(lowerCamelCase_ ) def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCamelCase_ , "_input_quantizer" ) or hasattr(lowerCamelCase_ , "_weight_quantizer" ): for n in names: if re.search(lowerCamelCase_ , lowerCamelCase_ ): set_quantizers(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) elif name.endswith("_quantizer" ): for n in names: if re.search(lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ : Optional[Any] = f'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' setattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) logger.info(lowerCamelCase_ )
568
0
"""simple docstring""" from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowercase(_lowercase ): __snake_case: jnp.ndarray __snake_case: jnp.ndarray class lowercase(nn.Module ): __snake_case: int __snake_case: Tuple[int] = (16, 32, 96, 256) __snake_case: jnp.dtype = jnp.floataa def lowercase__ ( self ) -> Dict: """simple docstring""" a__ = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) a__ = [] for i in range(len(self.block_out_channels ) - 1 ): a__ = self.block_out_channels[i] a__ = self.block_out_channels[i + 1] a__ = nn.Conv( __SCREAMING_SNAKE_CASE , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__SCREAMING_SNAKE_CASE ) a__ = nn.Conv( __SCREAMING_SNAKE_CASE , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__SCREAMING_SNAKE_CASE ) a__ = blocks a__ = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , __SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" a__ = self.conv_in(__SCREAMING_SNAKE_CASE ) a__ = nn.silu(__SCREAMING_SNAKE_CASE ) for block in self.blocks: a__ = block(__SCREAMING_SNAKE_CASE ) a__ = nn.silu(__SCREAMING_SNAKE_CASE ) a__ = self.conv_out(__SCREAMING_SNAKE_CASE ) return embedding @flax_register_to_config class lowercase(nn.Module , _lowercase , _lowercase ): __snake_case: int = 32 __snake_case: int = 4 __snake_case: Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __snake_case: Union[bool, Tuple[bool]] = False __snake_case: Tuple[int] = (320, 640, 1280, 1280) __snake_case: int = 2 __snake_case: Union[int, Tuple[int]] = 8 __snake_case: Optional[Union[int, Tuple[int]]] = None __snake_case: int = 1280 __snake_case: float = 0.0 __snake_case: bool = False __snake_case: jnp.dtype = jnp.floataa __snake_case: bool = True __snake_case: int = 0 __snake_case: str = "rgb" __snake_case: Tuple[int] = (16, 32, 96, 256) def lowercase__ ( self , __SCREAMING_SNAKE_CASE ) -> FrozenDict: """simple docstring""" a__ = (1, self.in_channels, self.sample_size, self.sample_size) a__ = jnp.zeros(__SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) a__ = jnp.ones((1,) , dtype=jnp.intaa ) a__ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) a__ = (1, 3, self.sample_size * 8, self.sample_size * 8) a__ = jnp.zeros(__SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) a__ , a__ = jax.random.split(__SCREAMING_SNAKE_CASE ) a__ = {'params': params_rng, 'dropout': dropout_rng} return self.init(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )["params"] def lowercase__ ( self ) -> str: """simple docstring""" a__ = self.block_out_channels a__ = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. a__ = self.num_attention_heads or self.attention_head_dim # input a__ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time a__ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) a__ = FlaxTimestepEmbedding(__SCREAMING_SNAKE_CASE , dtype=self.dtype ) a__ = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) a__ = self.only_cross_attention if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): a__ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): a__ = (num_attention_heads,) * len(self.down_block_types ) # down a__ = [] a__ = [] a__ = block_out_channels[0] a__ = nn.Conv( __SCREAMING_SNAKE_CASE , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__SCREAMING_SNAKE_CASE ) for i, down_block_type in enumerate(self.down_block_types ): a__ = output_channel a__ = block_out_channels[i] a__ = i == len(__SCREAMING_SNAKE_CASE ) - 1 if down_block_type == "CrossAttnDownBlock2D": a__ = FlaxCrossAttnDownBlockaD( in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: a__ = FlaxDownBlockaD( in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__SCREAMING_SNAKE_CASE ) for _ in range(self.layers_per_block ): a__ = nn.Conv( __SCREAMING_SNAKE_CASE , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__SCREAMING_SNAKE_CASE ) if not is_final_block: a__ = nn.Conv( __SCREAMING_SNAKE_CASE , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__SCREAMING_SNAKE_CASE ) a__ = down_blocks a__ = controlnet_down_blocks # mid a__ = block_out_channels[-1] a__ = FlaxUNetMidBlockaDCrossAttn( in_channels=__SCREAMING_SNAKE_CASE , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) a__ = nn.Conv( __SCREAMING_SNAKE_CASE , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1.0 , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = False , ) -> Union[FlaxControlNetOutput, Tuple]: """simple docstring""" a__ = self.controlnet_conditioning_channel_order if channel_order == "bgr": a__ = jnp.flip(__SCREAMING_SNAKE_CASE , axis=1 ) # 1. time if not isinstance(__SCREAMING_SNAKE_CASE , jnp.ndarray ): a__ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__SCREAMING_SNAKE_CASE , jnp.ndarray ) and len(timesteps.shape ) == 0: a__ = timesteps.astype(dtype=jnp.floataa ) a__ = jnp.expand_dims(__SCREAMING_SNAKE_CASE , 0 ) a__ = self.time_proj(__SCREAMING_SNAKE_CASE ) a__ = self.time_embedding(__SCREAMING_SNAKE_CASE ) # 2. pre-process a__ = jnp.transpose(__SCREAMING_SNAKE_CASE , (0, 2, 3, 1) ) a__ = self.conv_in(__SCREAMING_SNAKE_CASE ) a__ = jnp.transpose(__SCREAMING_SNAKE_CASE , (0, 2, 3, 1) ) a__ = self.controlnet_cond_embedding(__SCREAMING_SNAKE_CASE ) sample += controlnet_cond # 3. down a__ = (sample,) for down_block in self.down_blocks: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): a__ , a__ = down_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , deterministic=not train ) else: a__ , a__ = down_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , deterministic=not train ) down_block_res_samples += res_samples # 4. mid a__ = self.mid_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , deterministic=not train ) # 5. contronet blocks a__ = () for down_block_res_sample, controlnet_block in zip(__SCREAMING_SNAKE_CASE , self.controlnet_down_blocks ): a__ = controlnet_block(__SCREAMING_SNAKE_CASE ) controlnet_down_block_res_samples += (down_block_res_sample,) a__ = controlnet_down_block_res_samples a__ = self.controlnet_mid_block(__SCREAMING_SNAKE_CASE ) # 6. scaling a__ = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=__SCREAMING_SNAKE_CASE , mid_block_res_sample=__SCREAMING_SNAKE_CASE )
273
"""simple docstring""" from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowercase(_lowercase ): __snake_case: jnp.ndarray __snake_case: jnp.ndarray class lowercase(nn.Module ): __snake_case: int __snake_case: Tuple[int] = (16, 32, 96, 256) __snake_case: jnp.dtype = jnp.floataa def lowercase__ ( self ) -> Dict: """simple docstring""" a__ = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) a__ = [] for i in range(len(self.block_out_channels ) - 1 ): a__ = self.block_out_channels[i] a__ = self.block_out_channels[i + 1] a__ = nn.Conv( __SCREAMING_SNAKE_CASE , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__SCREAMING_SNAKE_CASE ) a__ = nn.Conv( __SCREAMING_SNAKE_CASE , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__SCREAMING_SNAKE_CASE ) a__ = blocks a__ = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , __SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" a__ = self.conv_in(__SCREAMING_SNAKE_CASE ) a__ = nn.silu(__SCREAMING_SNAKE_CASE ) for block in self.blocks: a__ = block(__SCREAMING_SNAKE_CASE ) a__ = nn.silu(__SCREAMING_SNAKE_CASE ) a__ = self.conv_out(__SCREAMING_SNAKE_CASE ) return embedding @flax_register_to_config class lowercase(nn.Module , _lowercase , _lowercase ): __snake_case: int = 32 __snake_case: int = 4 __snake_case: Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __snake_case: Union[bool, Tuple[bool]] = False __snake_case: Tuple[int] = (320, 640, 1280, 1280) __snake_case: int = 2 __snake_case: Union[int, Tuple[int]] = 8 __snake_case: Optional[Union[int, Tuple[int]]] = None __snake_case: int = 1280 __snake_case: float = 0.0 __snake_case: bool = False __snake_case: jnp.dtype = jnp.floataa __snake_case: bool = True __snake_case: int = 0 __snake_case: str = "rgb" __snake_case: Tuple[int] = (16, 32, 96, 256) def lowercase__ ( self , __SCREAMING_SNAKE_CASE ) -> FrozenDict: """simple docstring""" a__ = (1, self.in_channels, self.sample_size, self.sample_size) a__ = jnp.zeros(__SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) a__ = jnp.ones((1,) , dtype=jnp.intaa ) a__ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) a__ = (1, 3, self.sample_size * 8, self.sample_size * 8) a__ = jnp.zeros(__SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) a__ , a__ = jax.random.split(__SCREAMING_SNAKE_CASE ) a__ = {'params': params_rng, 'dropout': dropout_rng} return self.init(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )["params"] def lowercase__ ( self ) -> str: """simple docstring""" a__ = self.block_out_channels a__ = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. a__ = self.num_attention_heads or self.attention_head_dim # input a__ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time a__ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) a__ = FlaxTimestepEmbedding(__SCREAMING_SNAKE_CASE , dtype=self.dtype ) a__ = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) a__ = self.only_cross_attention if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): a__ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): a__ = (num_attention_heads,) * len(self.down_block_types ) # down a__ = [] a__ = [] a__ = block_out_channels[0] a__ = nn.Conv( __SCREAMING_SNAKE_CASE , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__SCREAMING_SNAKE_CASE ) for i, down_block_type in enumerate(self.down_block_types ): a__ = output_channel a__ = block_out_channels[i] a__ = i == len(__SCREAMING_SNAKE_CASE ) - 1 if down_block_type == "CrossAttnDownBlock2D": a__ = FlaxCrossAttnDownBlockaD( in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: a__ = FlaxDownBlockaD( in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__SCREAMING_SNAKE_CASE ) for _ in range(self.layers_per_block ): a__ = nn.Conv( __SCREAMING_SNAKE_CASE , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__SCREAMING_SNAKE_CASE ) if not is_final_block: a__ = nn.Conv( __SCREAMING_SNAKE_CASE , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__SCREAMING_SNAKE_CASE ) a__ = down_blocks a__ = controlnet_down_blocks # mid a__ = block_out_channels[-1] a__ = FlaxUNetMidBlockaDCrossAttn( in_channels=__SCREAMING_SNAKE_CASE , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) a__ = nn.Conv( __SCREAMING_SNAKE_CASE , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1.0 , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = False , ) -> Union[FlaxControlNetOutput, Tuple]: """simple docstring""" a__ = self.controlnet_conditioning_channel_order if channel_order == "bgr": a__ = jnp.flip(__SCREAMING_SNAKE_CASE , axis=1 ) # 1. time if not isinstance(__SCREAMING_SNAKE_CASE , jnp.ndarray ): a__ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__SCREAMING_SNAKE_CASE , jnp.ndarray ) and len(timesteps.shape ) == 0: a__ = timesteps.astype(dtype=jnp.floataa ) a__ = jnp.expand_dims(__SCREAMING_SNAKE_CASE , 0 ) a__ = self.time_proj(__SCREAMING_SNAKE_CASE ) a__ = self.time_embedding(__SCREAMING_SNAKE_CASE ) # 2. pre-process a__ = jnp.transpose(__SCREAMING_SNAKE_CASE , (0, 2, 3, 1) ) a__ = self.conv_in(__SCREAMING_SNAKE_CASE ) a__ = jnp.transpose(__SCREAMING_SNAKE_CASE , (0, 2, 3, 1) ) a__ = self.controlnet_cond_embedding(__SCREAMING_SNAKE_CASE ) sample += controlnet_cond # 3. down a__ = (sample,) for down_block in self.down_blocks: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): a__ , a__ = down_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , deterministic=not train ) else: a__ , a__ = down_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , deterministic=not train ) down_block_res_samples += res_samples # 4. mid a__ = self.mid_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , deterministic=not train ) # 5. contronet blocks a__ = () for down_block_res_sample, controlnet_block in zip(__SCREAMING_SNAKE_CASE , self.controlnet_down_blocks ): a__ = controlnet_block(__SCREAMING_SNAKE_CASE ) controlnet_down_block_res_samples += (down_block_res_sample,) a__ = controlnet_down_block_res_samples a__ = self.controlnet_mid_block(__SCREAMING_SNAKE_CASE ) # 6. scaling a__ = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=__SCREAMING_SNAKE_CASE , mid_block_res_sample=__SCREAMING_SNAKE_CASE )
273
1
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class __UpperCamelCase ( unittest.TestCase ): lowercase : Union[str, Any] = JukeboxTokenizer lowercase : Union[str, Any] = { 'artist': 'Zac Brown Band', 'genres': 'Country', 'lyrics': 'I met a traveller from an antique land,\n Who said "Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ', } @require_torch def a__ ( self :Dict ): import torch snake_case_ : int = JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" ) snake_case_ : Optional[Any] = tokenizer(**self.metas )["""input_ids"""] # fmt: off snake_case_ : Union[str, Any] = [ torch.tensor([[ 0, 0, 0, 7_1_6_9, 5_0_7, 9, 7_6, 3_9, 3_1, 4_6, 7_6, 2_7, 7_6, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_6, 3_2, 4_4, 4_1, 3_9, 7_6, 2_7, 4_0, 7_6, 2_7, 4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_6, 3_8, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 4_1, 7_6, 4_5, 2_7, 3_5, 3_0, 7_6, 7_1, 2_0, 4_9, 4_1, 7_6, 4_8, 2_7, 4_5, 4_6, 7_6, 2_7, 4_0, 3_0, 7_6, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5, 4_5, 7_6, 3_8, 3_1, 3_3, 4_5, 7_6, 4_1, 3_2, 7_6, 4_5, 4_6, 4_1, 4_0, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_9, 4_6, 2_7, 4_0, 3_0, 7_6, 3_5, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_6, 6_3, 7_6, 6_3, 7_6, 6_3, 7_6, 1_4, 3_1, 2_7, 4_4, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_5, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 8, 2_7, 3_8, 3_2, 7_6, 4_5, 4_7, 4_0, 3_7, 7_6, 2_7, 7_6, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_6, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_6, 3_8, 3_5, 3_1, 4_5, 6_4, 7_6, 4_9, 3_4, 4_1, 4_5, 3_1, 7_6, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_6, 3_8, 3_5, 4_2, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 4_5, 4_0, 3_1, 3_1, 4_4, 7_6, 4_1, 3_2, 7_6, 2_9, 4_1, 3_8, 3_0, 7_6, 2_9, 4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_5, 4_6, 4_5, 7_6, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_6, 4_9, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 4_1, 4_5, 3_1, 7_6, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_6, 4_4, 3_1, 2_7, 3_0, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 3_5, 2_9, 3_4, 7_6, 5_1, 3_1, 4_6, 7_6, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_6, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_6, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1, 7_6, 3_4, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_4, 3_1, 2_7, 4_4, 4_6, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_2, 3_1, 3_0, 6_6, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_2, 3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 4_9, 4_1, 4_4, 3_0, 4_5, 7_6, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_3, 5_1, 7_6, 4_0, 2_7, 3_9, 3_1, 7_6, 3_5, 4_5, 7_6, 1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_6, 1_1, 3_5, 4_0, 3_3, 7_6, 4_1, 3_2, 7_6, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_2, 4_1, 4_1, 3_7, 7_6, 4_1, 4_0, 7_6, 3_9, 5_1, 7_6, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4, 7_6, 5_1, 3_1, 7_6, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_6, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_6, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_6, 1_8, 4_1, 4_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 2_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_5, 3_2, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7, 3_8, 7_6, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_6, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_6, 2_7, 4_0, 3_0, 7_6, 2_8, 2_7, 4_4, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1, 7_6, 3_8, 4_1, 4_0, 3_1, 7_6, 2_7, 4_0, 3_0, 7_6, 3_8, 3_1, 4_8, 3_1, 3_8, 7_6, 4_5, 2_7, 4_0, 3_0, 4_5, 7_6, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_6, 3_2, 2_7, 4_4, 7_6, 2_7, 4_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] ,EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] ,EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] ,EXPECTED_OUTPUT[2] ) ) @require_torch def a__ ( self :Optional[int] ): import torch snake_case_ : Union[str, Any] = JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" ) snake_case_ : List[Any] = tokenizer(**self.metas )["""input_ids"""] # fmt: off snake_case_ : Union[str, Any] = [ torch.tensor([[ 0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1, 9, 7_7, 3_9, 3_1, 4_6, 7_7, 2_7, 7_7, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_7, 3_2, 4_4, 4_1, 3_9, 7_7, 2_7, 4_0, 7_7, 2_7, 4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_7, 3_8, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 4_1, 7_7, 4_5, 2_7, 3_5, 3_0, 7_7, 7_2, 2_0, 4_9, 4_1, 7_7, 4_8, 2_7, 4_5, 4_6, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5, 4_5, 7_7, 3_8, 3_1, 3_3, 4_5, 7_7, 4_1, 3_2, 7_7, 4_5, 4_6, 4_1, 4_0, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_9, 4_6, 2_7, 4_0, 3_0, 7_7, 3_5, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 1_4, 3_1, 2_7, 4_4, 7_7, 4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_5, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 8, 2_7, 3_8, 3_2, 7_7, 4_5, 4_7, 4_0, 3_7, 7_7, 2_7, 7_7, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_7, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_7, 3_8, 3_5, 3_1, 4_5, 6_4, 7_7, 4_9, 3_4, 4_1, 4_5, 3_1, 7_7, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1, 4_0, 3_0, 7_7, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_7, 3_8, 3_5, 4_2, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_5, 4_0, 3_1, 3_1, 4_4, 7_7, 4_1, 3_2, 7_7, 2_9, 4_1, 3_8, 3_0, 7_7, 2_9, 4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_5, 4_6, 4_5, 7_7, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_7, 4_9, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 4_1, 4_5, 3_1, 7_7, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_7, 4_4, 3_1, 2_7, 3_0, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 3_5, 2_9, 3_4, 7_7, 5_1, 3_1, 4_6, 7_7, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_7, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7, 3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_7, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_4, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_7, 4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_4, 3_1, 2_7, 4_4, 4_6, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_2, 3_1, 3_0, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1, 4_0, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_2, 3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7, 4_9, 4_1, 4_4, 3_0, 4_5, 7_7, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_3, 5_1, 7_7, 4_0, 2_7, 3_9, 3_1, 7_7, 3_5, 4_5, 7_7, 1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_7, 1_1, 3_5, 4_0, 3_3, 7_7, 4_1, 3_2, 7_7, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_2, 4_1, 4_1, 3_7, 7_7, 4_1, 4_0, 7_7, 3_9, 5_1, 7_7, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4, 7_7, 5_1, 3_1, 7_7, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_7, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_7, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_7, 1_8, 4_1, 4_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 2_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_5, 3_2, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7, 3_8, 7_7, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_7, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_7, 2_7, 4_0, 3_0, 7_7, 2_8, 2_7, 4_4, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_8, 4_1, 4_0, 3_1, 7_7, 2_7, 4_0, 3_0, 7_7, 3_8, 3_1, 4_8, 3_1, 3_8, 7_7, 4_5, 2_7, 4_0, 3_0, 4_5, 7_7, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_7, 3_2, 2_7, 4_4, 7_7, 2_7, 4_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] ,EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] ,EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] ,EXPECTED_OUTPUT[2] ) )
267
'''simple docstring''' import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __UpperCamelCase ( lowercase__ , unittest.TestCase ): lowercase : Dict = TransfoXLTokenizer lowercase : Optional[Any] = False lowercase : Dict = False def a__ ( self :Union[str, Any] ): super().setUp() snake_case_ : Optional[int] = [ """<unk>""", """[CLS]""", """[SEP]""", """want""", """unwanted""", """wa""", """un""", """running""", """,""", """low""", """l""", ] snake_case_ : Optional[int] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def a__ ( self :List[Any] ,**_UpperCamelCase :Optional[Any] ): snake_case_ : Tuple = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname ,**_UpperCamelCase ) def a__ ( self :Tuple ,_UpperCamelCase :Union[str, Any] ): snake_case_ : Any = """<unk> UNwanted , running""" snake_case_ : Optional[int] = """<unk> unwanted, running""" return input_text, output_text def a__ ( self :Dict ): snake_case_ : Dict = TransfoXLTokenizer(vocab_file=self.vocab_file ,lower_case=_UpperCamelCase ) snake_case_ : Dict = tokenizer.tokenize("""<unk> UNwanted , running""" ) self.assertListEqual(_UpperCamelCase ,["""<unk>""", """unwanted""", """,""", """running"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) ,[0, 4, 8, 7] ) def a__ ( self :Optional[Any] ): snake_case_ : Dict = TransfoXLTokenizer(lower_case=_UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) ,["""hello""", """!""", """how""", """are""", """you""", """?"""] ) def a__ ( self :Any ): snake_case_ : List[Any] = TransfoXLTokenizer(lower_case=_UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) ,["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def a__ ( self :List[str] ): snake_case_ : str = TransfoXLTokenizer(lower_case=_UpperCamelCase ) snake_case_ : List[str] = """Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?""" snake_case_ : Optional[int] = [ """Hello""", """(""", """bracket""", """)""", """and""", """side""", """@-@""", """scrolled""", """[""", """and""", """]""", """Henry""", """'s""", """$""", """5""", """@,@""", """000""", """with""", """3""", """@.@""", """34""", """m""", """.""", """What""", """'s""", """up""", """!""", """?""", ] self.assertListEqual(tokenizer.tokenize(_UpperCamelCase ) ,_UpperCamelCase ) self.assertEqual(tokenizer.convert_tokens_to_string(_UpperCamelCase ) ,_UpperCamelCase ) def a__ ( self :Dict ): snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : Dict = len(_UpperCamelCase ) tokenizer.add_tokens(["""new1""", """new2"""] ) tokenizer.move_added_token("""new1""" ,1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(_UpperCamelCase ) ,original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("""new1""" ) ,[1] ) self.assertEqual(tokenizer.decode([1] ) ,"""new1""" )
267
1
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging lowercase_ : Optional[int] = logging.get_logger(__name__) class _lowerCamelCase ( UpperCamelCase_ ): def __init__( self , lowerCAmelCase ) -> List[str]: super().__init__() SCREAMING_SNAKE_CASE__: Union[str, Any]= nn.ModuleList(lowerCAmelCase ) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = False , lowerCAmelCase = True , ) -> Union[ControlNetOutput, Tuple]: for i, (image, scale, controlnet) in enumerate(zip(lowerCAmelCase , lowerCAmelCase , self.nets ) ): SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: str= controlnet( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) # merge samples if i == 0: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: str= down_samples, mid_sample else: SCREAMING_SNAKE_CASE__: int= [ samples_prev + samples_curr for samples_prev, samples_curr in zip(lowerCAmelCase , lowerCAmelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = False , lowerCAmelCase = None , ) -> int: SCREAMING_SNAKE_CASE__: Optional[int]= 0 SCREAMING_SNAKE_CASE__: Tuple= save_directory for controlnet in self.nets: controlnet.save_pretrained( lowerCAmelCase , is_main_process=lowerCAmelCase , save_function=lowerCAmelCase , safe_serialization=lowerCAmelCase , variant=lowerCAmelCase , ) idx += 1 SCREAMING_SNAKE_CASE__: List[Any]= model_path_to_save + f'_{idx}' @classmethod def UpperCamelCase_ ( cls , lowerCAmelCase , **lowerCAmelCase ) -> int: SCREAMING_SNAKE_CASE__: Any= 0 SCREAMING_SNAKE_CASE__: Union[str, Any]= [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... SCREAMING_SNAKE_CASE__: List[str]= pretrained_model_path while os.path.isdir(lowerCAmelCase ): SCREAMING_SNAKE_CASE__: Union[str, Any]= ControlNetModel.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) controlnets.append(lowerCAmelCase ) idx += 1 SCREAMING_SNAKE_CASE__: List[Any]= pretrained_model_path + f'_{idx}' logger.info(f'{len(lowerCAmelCase )} controlnets loaded from {pretrained_model_path}.' ) if len(lowerCAmelCase ) == 0: raise ValueError( f'No ControlNets found under {os.path.dirname(lowerCAmelCase )}. Expected at least {pretrained_model_path + "_0"}.' ) return cls(lowerCAmelCase )
64
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case_ : Tuple = {"""configuration_unispeech""": ["""UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP""", """UniSpeechConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = [ """UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST""", """UniSpeechForCTC""", """UniSpeechForPreTraining""", """UniSpeechForSequenceClassification""", """UniSpeechModel""", """UniSpeechPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys snake_case_ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
595
0
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType lowercase__ = get_logger(__name__) def __snake_case ( lowercase : Tuple , lowercase : int , lowercase : Dict , lowercase : str , lowercase : Tuple=0 ): os.makedirs(_snake_case , exist_ok=_snake_case ) with FSDP.state_dict_type( _snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' snake_case_ = os.path.join(_snake_case , _snake_case ) if accelerator.process_index == 0: logger.info(f'''Saving model to {output_model_file}''' ) torch.save(_snake_case , _snake_case ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ = ( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) snake_case_ = os.path.join(_snake_case , _snake_case ) logger.info(f'''Saving model to {output_model_file}''' ) torch.save(_snake_case , _snake_case ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ = os.path.join(_snake_case , f'''{MODEL_NAME}_{model_index}''' ) os.makedirs(_snake_case , exist_ok=_snake_case ) logger.info(f'''Saving model to {ckpt_dir}''' ) snake_case_ = {"model": state_dict} dist_cp.save_state_dict( state_dict=_snake_case , storage_writer=dist_cp.FileSystemWriter(_snake_case ) , planner=DefaultSavePlanner() , ) logger.info(f'''Model saved to {ckpt_dir}''' ) def __snake_case ( lowercase : List[str] , lowercase : Any , lowercase : Dict , lowercase : Optional[int] , lowercase : Any=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( _snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(_snake_case ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return snake_case_ = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' snake_case_ = os.path.join(_snake_case , _snake_case ) logger.info(f'''Loading model from {input_model_file}''' ) snake_case_ = torch.load(_snake_case ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ = ( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) snake_case_ = os.path.join(_snake_case , _snake_case ) logger.info(f'''Loading model from {input_model_file}''' ) snake_case_ = torch.load(_snake_case ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ = ( os.path.join(_snake_case , f'''{MODEL_NAME}_{model_index}''' ) if f'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading model from {ckpt_dir}''' ) snake_case_ = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=_snake_case , storage_reader=dist_cp.FileSystemReader(_snake_case ) , planner=DefaultLoadPlanner() , ) snake_case_ = state_dict["model"] logger.info(f'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(_snake_case ) def __snake_case ( lowercase : Tuple , lowercase : List[Any] , lowercase : Tuple , lowercase : Dict , lowercase : Dict , lowercase : List[Any]=0 ): os.makedirs(_snake_case , exist_ok=_snake_case ) with FSDP.state_dict_type( _snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ = FSDP.optim_state_dict(_snake_case , _snake_case ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: snake_case_ = ( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) snake_case_ = os.path.join(_snake_case , _snake_case ) logger.info(f'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(_snake_case , _snake_case ) logger.info(f'''Optimizer state saved in {output_optimizer_file}''' ) else: snake_case_ = os.path.join(_snake_case , f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(_snake_case , exist_ok=_snake_case ) logger.info(f'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(_snake_case ) , planner=DefaultSavePlanner() , ) logger.info(f'''Optimizer state saved in {ckpt_dir}''' ) def __snake_case ( lowercase : Optional[Any] , lowercase : int , lowercase : List[str] , lowercase : List[Any] , lowercase : int , lowercase : str=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( _snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: snake_case_ = ( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) snake_case_ = os.path.join(_snake_case , _snake_case ) logger.info(f'''Loading Optimizer state from {input_optimizer_file}''' ) snake_case_ = torch.load(_snake_case ) logger.info(f'''Optimizer state loaded from {input_optimizer_file}''' ) else: snake_case_ = ( os.path.join(_snake_case , f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if f'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading Optimizer from {ckpt_dir}''' ) snake_case_ = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(_snake_case ) , ) snake_case_ = optim_state["optimizer"] logger.info(f'''Optimizer loaded from {ckpt_dir}''' ) snake_case_ = FSDP.optim_state_dict_to_load(_snake_case , _snake_case , _snake_case ) optimizer.load_state_dict(_snake_case )
708
'''simple docstring''' import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def __snake_case ( lowercase : str , lowercase : str , lowercase : str ): def get_masked_lm_array(lowercase : str ): snake_case_ = f'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE''' snake_case_ = tf.train.load_variable(lowercase , lowercase ) if "kernel" in name: snake_case_ = array.transpose() return torch.from_numpy(lowercase ) def get_encoder_array(lowercase : str ): snake_case_ = f'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE''' snake_case_ = tf.train.load_variable(lowercase , lowercase ) if "kernel" in name: snake_case_ = array.transpose() return torch.from_numpy(lowercase ) def get_encoder_layer_array(lowercase : int , lowercase : str ): snake_case_ = f'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE''' snake_case_ = tf.train.load_variable(lowercase , lowercase ) if "kernel" in name: snake_case_ = array.transpose() return torch.from_numpy(lowercase ) def get_encoder_attention_layer_array(lowercase : int , lowercase : str , lowercase : int ): snake_case_ = f'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE''' snake_case_ = tf.train.load_variable(lowercase , lowercase ) snake_case_ = array.reshape(lowercase ) if "kernel" in name: snake_case_ = array.transpose() return torch.from_numpy(lowercase ) print(f'''Loading model based on config from {config_path}...''' ) snake_case_ = BertConfig.from_json_file(lowercase ) snake_case_ = BertForMaskedLM(lowercase ) # Layers for layer_index in range(0 , config.num_hidden_layers ): snake_case_ = model.bert.encoder.layer[layer_index] # Self-attention snake_case_ = layer.attention.self snake_case_ = get_encoder_attention_layer_array( lowercase , "_query_dense/kernel" , self_attn.query.weight.data.shape ) snake_case_ = get_encoder_attention_layer_array( lowercase , "_query_dense/bias" , self_attn.query.bias.data.shape ) snake_case_ = get_encoder_attention_layer_array( lowercase , "_key_dense/kernel" , self_attn.key.weight.data.shape ) snake_case_ = get_encoder_attention_layer_array( lowercase , "_key_dense/bias" , self_attn.key.bias.data.shape ) snake_case_ = get_encoder_attention_layer_array( lowercase , "_value_dense/kernel" , self_attn.value.weight.data.shape ) snake_case_ = get_encoder_attention_layer_array( lowercase , "_value_dense/bias" , self_attn.value.bias.data.shape ) # Self-attention Output snake_case_ = layer.attention.output snake_case_ = get_encoder_attention_layer_array( lowercase , "_output_dense/kernel" , self_output.dense.weight.data.shape ) snake_case_ = get_encoder_attention_layer_array( lowercase , "_output_dense/bias" , self_output.dense.bias.data.shape ) snake_case_ = get_encoder_layer_array(lowercase , "_attention_layer_norm/gamma" ) snake_case_ = get_encoder_layer_array(lowercase , "_attention_layer_norm/beta" ) # Intermediate snake_case_ = layer.intermediate snake_case_ = get_encoder_layer_array(lowercase , "_intermediate_dense/kernel" ) snake_case_ = get_encoder_layer_array(lowercase , "_intermediate_dense/bias" ) # Output snake_case_ = layer.output snake_case_ = get_encoder_layer_array(lowercase , "_output_dense/kernel" ) snake_case_ = get_encoder_layer_array(lowercase , "_output_dense/bias" ) snake_case_ = get_encoder_layer_array(lowercase , "_output_layer_norm/gamma" ) snake_case_ = get_encoder_layer_array(lowercase , "_output_layer_norm/beta" ) # Embeddings snake_case_ = get_encoder_array("_position_embedding_layer/embeddings" ) snake_case_ = get_encoder_array("_type_embedding_layer/embeddings" ) snake_case_ = get_encoder_array("_embedding_norm_layer/gamma" ) snake_case_ = get_encoder_array("_embedding_norm_layer/beta" ) # LM Head snake_case_ = model.cls.predictions.transform snake_case_ = get_masked_lm_array("dense/kernel" ) snake_case_ = get_masked_lm_array("dense/bias" ) snake_case_ = get_masked_lm_array("layer_norm/gamma" ) snake_case_ = get_masked_lm_array("layer_norm/beta" ) snake_case_ = get_masked_lm_array("embedding_table" ) # Pooling snake_case_ = BertPooler(config=lowercase ) snake_case_ = get_encoder_array("_pooler_layer/kernel" ) snake_case_ = get_encoder_array("_pooler_layer/bias" ) # Export final model model.save_pretrained(lowercase ) # Integration test - should load without any errors ;) snake_case_ = BertForMaskedLM.from_pretrained(lowercase ) print(new_model.eval() ) print("Model conversion was done sucessfully!" ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow Token Dropping checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model.''', ) lowercase__ = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
420
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase : Any = logging.get_logger(__name__) class UpperCamelCase__ ( __lowercase ): """simple docstring""" __magic_name__ = ["pixel_values"] def __init__( self , snake_case__ = True , snake_case__ = None , snake_case__ = None , snake_case__ = PILImageResampling.BILINEAR , snake_case__ = True , snake_case__ = 1 / 255 , snake_case__ = True , snake_case__ = None , snake_case__ = None , **snake_case__ , ): '''simple docstring''' super().__init__(**_A ) _lowerCAmelCase : Tuple = size if size is not None else {'''shortest_edge''': 384} _lowerCAmelCase : Optional[Any] = get_size_dict(_A , default_to_square=_A ) _lowerCAmelCase : Union[str, Any] = do_resize _lowerCAmelCase : Optional[int] = size # Default value set here for backwards compatibility where the value in config is None _lowerCAmelCase : Optional[Any] = crop_pct if crop_pct is not None else 224 / 256 _lowerCAmelCase : Optional[Any] = resample _lowerCAmelCase : Optional[int] = do_rescale _lowerCAmelCase : int = rescale_factor _lowerCAmelCase : str = do_normalize _lowerCAmelCase : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCAmelCase : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = PILImageResampling.BICUBIC , snake_case__ = None , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : int = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) _lowerCAmelCase : Union[str, Any] = size['''shortest_edge'''] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct _lowerCAmelCase : Tuple = int(shortest_edge / crop_pct ) _lowerCAmelCase : Union[str, Any] = get_resize_output_image_size(_A , size=_A , default_to_square=_A ) _lowerCAmelCase : Optional[Any] = resize(image=_A , size=_A , resample=_A , data_format=_A , **_A ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_A , size=(shortest_edge, shortest_edge) , data_format=_A , **_A ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _A , size=(shortest_edge, shortest_edge) , resample=_A , data_format=_A , **_A ) def a ( self , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ): '''simple docstring''' return rescale(_A , scale=_A , data_format=_A , **_A ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ): '''simple docstring''' return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def a ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = ChannelDimension.FIRST , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[str] = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase : Union[str, Any] = crop_pct if crop_pct is not None else self.crop_pct _lowerCAmelCase : str = resample if resample is not None else self.resample _lowerCAmelCase : Tuple = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase : int = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase : int = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase : Tuple = image_std if image_std is not None else self.image_std _lowerCAmelCase : int = size if size is not None else self.size _lowerCAmelCase : List[str] = get_size_dict(_A , default_to_square=_A ) _lowerCAmelCase : Optional[int] = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError('crop_pct must be specified if size < 384.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _lowerCAmelCase : Union[str, Any] = [to_numpy_array(_A ) for image in images] if do_resize: _lowerCAmelCase : List[str] = [self.resize(image=_A , size=_A , crop_pct=_A , resample=_A ) for image in images] if do_rescale: _lowerCAmelCase : Dict = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: _lowerCAmelCase : List[str] = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] _lowerCAmelCase : str = [to_channel_dimension_format(_A , _A ) for image in images] _lowerCAmelCase : Any = {'''pixel_values''': images} return BatchFeature(data=_A , tensor_type=_A )
444
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class A_ ( __lowercase ): '''simple docstring''' def __init__( self , *_A , **_A) -> None: """simple docstring""" warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''' , _A , ) super().__init__(*_A , **_A)
485
0
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { '''nvidia/segformer-b0-finetuned-ade-512-512''': ( '''https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json''' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = '''segformer''' def __init__( self , snake_case_=3 , snake_case_=4 , snake_case_=[2, 2, 2, 2] , snake_case_=[8, 4, 2, 1] , snake_case_=[32, 64, 160, 256] , snake_case_=[7, 3, 3, 3] , snake_case_=[4, 2, 2, 2] , snake_case_=[1, 2, 5, 8] , snake_case_=[4, 4, 4, 4] , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=0.1 , snake_case_=1e-6 , snake_case_=256 , snake_case_=255 , **snake_case_ , ) -> Optional[Any]: super().__init__(**snake_case_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , snake_case_ , ) __lowerCAmelCase = num_channels __lowerCAmelCase = num_encoder_blocks __lowerCAmelCase = depths __lowerCAmelCase = sr_ratios __lowerCAmelCase = hidden_sizes __lowerCAmelCase = patch_sizes __lowerCAmelCase = strides __lowerCAmelCase = mlp_ratios __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = classifier_dropout_prob __lowerCAmelCase = initializer_range __lowerCAmelCase = drop_path_rate __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = decoder_hidden_size __lowerCAmelCase = kwargs.get("""reshape_last_stage""" , snake_case_ ) __lowerCAmelCase = semantic_loss_ignore_index class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = version.parse('''1.11''' ) @property def A__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A__ ( self ) -> float: return 1e-4 @property def A__ ( self ) -> int: return 12
573
"""simple docstring""" from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) @add_end_docstrings(A__ ) class lowerCAmelCase_ ( A__ ): '''simple docstring''' def __init__( self , **snake_case_ ) -> Optional[Any]: super().__init__(**snake_case_ ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) self.check_model_type(snake_case_ ) def A__ ( self , **snake_case_ ) -> Optional[Any]: __lowerCAmelCase = {} __lowerCAmelCase = {} __lowerCAmelCase = {} # preprocess args if "points_per_batch" in kwargs: __lowerCAmelCase = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: __lowerCAmelCase = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: __lowerCAmelCase = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: __lowerCAmelCase = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: __lowerCAmelCase = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: __lowerCAmelCase = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: __lowerCAmelCase = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: __lowerCAmelCase = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: __lowerCAmelCase = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: __lowerCAmelCase = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: __lowerCAmelCase = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: __lowerCAmelCase = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self , snake_case_ , *snake_case_ , snake_case_=None , snake_case_=None , **snake_case_ ) -> Union[str, Any]: return super().__call__(snake_case_ , *snake_case_ , num_workers=snake_case_ , batch_size=snake_case_ , **snake_case_ ) def A__ ( self , snake_case_ , snake_case_=64 , snake_case_ = 0 , snake_case_ = 512 / 1_500 , snake_case_ = 32 , snake_case_ = 1 , ) -> Optional[int]: __lowerCAmelCase = load_image(snake_case_ ) __lowerCAmelCase = self.image_processor.size["""longest_edge"""] __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.image_processor.generate_crop_boxes( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) __lowerCAmelCase = self.image_processor(images=snake_case_ , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": __lowerCAmelCase = self.get_inference_context() with inference_context(): __lowerCAmelCase = self._ensure_tensor_on_device(snake_case_ , device=self.device ) __lowerCAmelCase = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) __lowerCAmelCase = image_embeddings __lowerCAmelCase = grid_points.shape[1] __lowerCAmelCase = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , snake_case_ , snake_case_ ): __lowerCAmelCase = grid_points[:, i : i + points_per_batch, :, :] __lowerCAmelCase = input_labels[:, i : i + points_per_batch] __lowerCAmelCase = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def A__ ( self , snake_case_ , snake_case_=0.88 , snake_case_=0.95 , snake_case_=0 , snake_case_=1 , ) -> Dict: __lowerCAmelCase = model_inputs.pop("""input_boxes""" ) __lowerCAmelCase = model_inputs.pop("""is_last""" ) __lowerCAmelCase = model_inputs.pop("""original_sizes""" ).tolist() __lowerCAmelCase = model_inputs.pop("""reshaped_input_sizes""" ).tolist() __lowerCAmelCase = self.model(**snake_case_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks __lowerCAmelCase = model_outputs["""pred_masks"""] __lowerCAmelCase = self.image_processor.post_process_masks( snake_case_ , snake_case_ , snake_case_ , snake_case_ , binarize=snake_case_ ) __lowerCAmelCase = model_outputs["""iou_scores"""] __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def A__ ( self , snake_case_ , snake_case_=False , snake_case_=False , snake_case_=0.7 , ) -> str: __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) __lowerCAmelCase = torch.cat(snake_case_ ) __lowerCAmelCase = torch.cat(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.image_processor.post_process_for_mask_generation( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) __lowerCAmelCase = defaultdict(snake_case_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(snake_case_ ) __lowerCAmelCase = {} if output_rle_mask: __lowerCAmelCase = rle_mask if output_bboxes_mask: __lowerCAmelCase = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
573
1
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def _snake_case ( A , A ) -> str | Literal[False]: lowerCAmelCase__ = list(A ) lowerCAmelCase__ = list(A ) lowerCAmelCase__ = 0 for i in range(len(A ) ): if lista[i] != lista[i]: count += 1 lowerCAmelCase__ = '''_''' if count > 1: return False else: return "".join(A ) def _snake_case ( A ) -> list[str]: lowerCAmelCase__ = [] while True: lowerCAmelCase__ = ['''$'''] * len(A ) lowerCAmelCase__ = [] for i in range(len(A ) ): for j in range(i + 1 , len(A ) ): lowerCAmelCase__ = compare_string(binary[i] , binary[j] ) if k is False: lowerCAmelCase__ = '''*''' lowerCAmelCase__ = '''*''' temp.append('''X''' ) for i in range(len(A ) ): if checka[i] == "$": pi.append(binary[i] ) if len(A ) == 0: return pi lowerCAmelCase__ = list(set(A ) ) def _snake_case ( A , A ) -> list[str]: lowerCAmelCase__ = [] for minterm in minterms: lowerCAmelCase__ = '''''' for _ in range(A ): lowerCAmelCase__ = str(minterm % 2 ) + string minterm //= 2 temp.append(A ) return temp def _snake_case ( A , A , A ) -> bool: lowerCAmelCase__ = list(A ) lowerCAmelCase__ = list(A ) lowerCAmelCase__ = 0 for i in range(len(A ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def _snake_case ( A , A ) -> list[str]: lowerCAmelCase__ = [] lowerCAmelCase__ = [0] * len(A ) for i in range(len(chart[0] ) ): lowerCAmelCase__ = 0 lowerCAmelCase__ = -1 for j in range(len(A ) ): if chart[j][i] == 1: count += 1 lowerCAmelCase__ = j if count == 1: lowerCAmelCase__ = 1 for i in range(len(A ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(A ) ): lowerCAmelCase__ = 0 temp.append(prime_implicants[i] ) while True: lowerCAmelCase__ = 0 lowerCAmelCase__ = -1 lowerCAmelCase__ = 0 for i in range(len(A ) ): lowerCAmelCase__ = chart[i].count(1 ) if count_n > max_n: lowerCAmelCase__ = count_n lowerCAmelCase__ = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(A ) ): lowerCAmelCase__ = 0 def _snake_case ( A , A ) -> list[list[int]]: lowerCAmelCase__ = [[0 for x in range(len(A ) )] for x in range(len(A ) )] for i in range(len(A ) ): lowerCAmelCase__ = prime_implicants[i].count('''_''' ) for j in range(len(A ) ): if is_for_table(prime_implicants[i] , binary[j] , A ): lowerCAmelCase__ = 1 return chart def _snake_case ( ) -> None: lowerCAmelCase__ = int(input('''Enter the no. of variables\n''' ) ) lowerCAmelCase__ = [ float(A ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] lowerCAmelCase__ = decimal_to_binary(A , A ) lowerCAmelCase__ = check(A ) print('''Prime Implicants are:''' ) print(A ) lowerCAmelCase__ = prime_implicant_chart(A , A ) lowerCAmelCase__ = selection(A , A ) print('''Essential Prime Implicants are:''' ) print(A ) if __name__ == "__main__": import doctest doctest.testmod() main()
90
"""simple docstring""" import socket def a ( ): '''simple docstring''' UpperCAmelCase_ :Union[str, Any] = socket.socket(socket.AF_INET, socket.SOCK_STREAM ) UpperCAmelCase_ :int = socket.gethostname() UpperCAmelCase_ :List[Any] = 12312 sock.connect((host, port) ) sock.send(b'''Hello server!''' ) with open('''Received_file''', '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: UpperCAmelCase_ :int = sock.recv(1024 ) if not data: break out_file.write(__snake_case ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
608
0
import math class UpperCamelCase__ : """simple docstring""" def __init__( self : List[str] , lowerCamelCase_ : Tuple=0 ): # a graph with Node 0,1,...,N-1 '''simple docstring''' SCREAMING_SNAKE_CASE : Any = n SCREAMING_SNAKE_CASE : Optional[int] = [ [math.inf for j in range(0 , lowerCamelCase_ )] for i in range(0 , lowerCamelCase_ ) ] # adjacency matrix for weight SCREAMING_SNAKE_CASE : Union[str, Any] = [ [math.inf for j in range(0 , lowerCamelCase_ )] for i in range(0 , lowerCamelCase_ ) ] # dp[i][j] stores minimum distance from i to j def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : str , lowerCamelCase_ : List[str] , lowerCamelCase_ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = w def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): SCREAMING_SNAKE_CASE : Union[str, Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' return self.dp[u][v] if __name__ == "__main__": __UpperCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
721
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """microsoft/deberta-v2-xlarge""": """https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json""", """microsoft/deberta-v2-xxlarge""": """https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json""", """microsoft/deberta-v2-xlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json""" ), """microsoft/deberta-v2-xxlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json""" ), } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''deberta-v2''' def __init__( self : int , lowerCamelCase_ : Optional[Any]=12_81_00 , lowerCamelCase_ : str=15_36 , lowerCamelCase_ : int=24 , lowerCamelCase_ : List[str]=24 , lowerCamelCase_ : List[Any]=61_44 , lowerCamelCase_ : List[Any]="gelu" , lowerCamelCase_ : Optional[Any]=0.1 , lowerCamelCase_ : List[Any]=0.1 , lowerCamelCase_ : str=5_12 , lowerCamelCase_ : str=0 , lowerCamelCase_ : Union[str, Any]=0.02 , lowerCamelCase_ : Dict=1e-7 , lowerCamelCase_ : Optional[int]=False , lowerCamelCase_ : Optional[int]=-1 , lowerCamelCase_ : List[str]=0 , lowerCamelCase_ : Tuple=True , lowerCamelCase_ : Optional[int]=None , lowerCamelCase_ : Optional[Any]=0 , lowerCamelCase_ : Dict="gelu" , **lowerCamelCase_ : Optional[int] , ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = hidden_size SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : List[str] = intermediate_size SCREAMING_SNAKE_CASE : int = hidden_act SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : str = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Optional[int] = initializer_range SCREAMING_SNAKE_CASE : List[Any] = relative_attention SCREAMING_SNAKE_CASE : str = max_relative_positions SCREAMING_SNAKE_CASE : int = pad_token_id SCREAMING_SNAKE_CASE : List[str] = position_biased_input # Backwards compatibility if type(lowerCamelCase_ ) == str: SCREAMING_SNAKE_CASE : Dict = [x.strip() for x in pos_att_type.lower().split("""|""" )] SCREAMING_SNAKE_CASE : Any = pos_att_type SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE : str = kwargs.get("""pooler_hidden_size""" , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = pooler_dropout SCREAMING_SNAKE_CASE : Any = pooler_hidden_act class UpperCamelCase__ ( lowercase_ ): """simple docstring""" @property def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: SCREAMING_SNAKE_CASE : Union[str, Any] = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' return 12 def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCamelCase_ : int = -1 , lowerCamelCase_ : int = -1 , lowerCamelCase_ : int = -1 , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional["TensorType"] = None , lowerCamelCase_ : int = 3 , lowerCamelCase_ : int = 40 , lowerCamelCase_ : int = 40 , lowerCamelCase_ : "PreTrainedTokenizerBase" = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = super().generate_dummy_inputs(preprocessor=lowerCamelCase_ , framework=lowerCamelCase_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
79
0
from ..utils import DummyObject, requires_backends class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : Optional[int] = ['''torch'''] def __init__( self : List[str] , *lowerCamelCase_ : Dict , **lowerCamelCase_ : Optional[Any] ) ->Dict: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : List[str] , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Any ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Dict , *lowerCamelCase_ : str , **lowerCamelCase_ : List[str] ) ->List[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : List[Any] = ['''torch'''] def __init__( self : int , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : Tuple ) ->Any: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Optional[int] , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Tuple ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Any , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : int ) ->str: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : int = ['''torch'''] def __init__( self : Optional[int] , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : List[str] ) ->List[Any]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : List[Any] , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Optional[Any] ) ->Any: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : str , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : Union[str, Any] ) ->Any: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : List[str] = ['''torch'''] def __init__( self : Dict , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : List[Any] ) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Any , *lowerCamelCase_ : str , **lowerCamelCase_ : int ) ->str: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Tuple , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Optional[Any] ) ->List[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : str = ['''torch'''] def __init__( self : str , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Any ) ->Optional[Any]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Tuple , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Dict ) ->Tuple: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Optional[int] , *lowerCamelCase_ : str , **lowerCamelCase_ : str ) ->str: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : List[Any] = ['''torch'''] def __init__( self : Tuple , *lowerCamelCase_ : Dict , **lowerCamelCase_ : Optional[Any] ) ->Tuple: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Union[str, Any] , *lowerCamelCase_ : Any , **lowerCamelCase_ : Optional[int] ) ->Any: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Tuple , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : Optional[int] ) ->List[str]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : List[str] = ['''torch'''] def __init__( self : List[Any] , *lowerCamelCase_ : int , **lowerCamelCase_ : Tuple ) ->Dict: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : int , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : int ) ->Tuple: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : List[str] , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : List[str] ) ->Dict: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : str = ['''torch'''] def __init__( self : Any , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : Dict ) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : List[Any] , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : int ) ->int: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : int , *lowerCamelCase_ : str , **lowerCamelCase_ : List[Any] ) ->str: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = ['''torch'''] def __init__( self : Any , *lowerCamelCase_ : Any , **lowerCamelCase_ : int ) ->Any: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : str , *lowerCamelCase_ : Any , **lowerCamelCase_ : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Optional[Any] , *lowerCamelCase_ : Any , **lowerCamelCase_ : Optional[Any] ) ->Any: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = ['''torch'''] def __init__( self : Optional[Any] , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : Tuple ) ->Optional[int]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Optional[Any] , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : Dict ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : int , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : Union[str, Any] ) ->Any: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : Any = ['''torch'''] def __init__( self : int , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Dict ) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Dict , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : List[Any] ) ->List[str]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Optional[Any] , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : Optional[int] ) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) def lowercase ( *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(__lowerCAmelCase , ["""torch"""] ) def lowercase ( *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(__lowerCAmelCase , ["""torch"""] ) def lowercase ( *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(__lowerCAmelCase , ["""torch"""] ) def lowercase ( *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(__lowerCAmelCase , ["""torch"""] ) def lowercase ( *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(__lowerCAmelCase , ["""torch"""] ) def lowercase ( *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(__lowerCAmelCase , ["""torch"""] ) def lowercase ( *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(__lowerCAmelCase , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : List[str] = ['''torch'''] def __init__( self : int , *lowerCamelCase_ : Any , **lowerCamelCase_ : Union[str, Any] ) ->Tuple: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Tuple , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : int ) ->List[str]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : List[Any] , *lowerCamelCase_ : Any , **lowerCamelCase_ : Optional[Any] ) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : List[Any] = ['''torch'''] def __init__( self : Union[str, Any] , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Any ) ->List[Any]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Optional[int] , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Optional[int] ) ->Tuple: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Union[str, Any] , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : Dict ) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : Any = ['''torch'''] def __init__( self : List[Any] , *lowerCamelCase_ : str , **lowerCamelCase_ : List[Any] ) ->Dict: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : List[str] , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : int ) ->Any: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Dict , *lowerCamelCase_ : Any , **lowerCamelCase_ : Dict ) ->Any: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = ['''torch'''] def __init__( self : Optional[Any] , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : Optional[int] ) ->Tuple: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Optional[Any] , *lowerCamelCase_ : Dict , **lowerCamelCase_ : List[Any] ) ->Tuple: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Optional[int] , *lowerCamelCase_ : Dict , **lowerCamelCase_ : List[str] ) ->Tuple: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : List[Any] = ['''torch'''] def __init__( self : List[Any] , *lowerCamelCase_ : Any , **lowerCamelCase_ : List[Any] ) ->int: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : int , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : Optional[Any] ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : List[Any] , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Optional[int] ) ->List[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : Tuple = ['''torch'''] def __init__( self : int , *lowerCamelCase_ : Any , **lowerCamelCase_ : Tuple ) ->List[Any]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Optional[int] , *lowerCamelCase_ : int , **lowerCamelCase_ : Optional[int] ) ->List[str]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Union[str, Any] , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : Union[str, Any] ) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : Any = ['''torch'''] def __init__( self : str , *lowerCamelCase_ : str , **lowerCamelCase_ : Optional[int] ) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Optional[int] , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : str ) ->List[str]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : List[Any] , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : Dict ) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : Dict = ['''torch'''] def __init__( self : List[str] , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : List[Any] ) ->List[Any]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Any , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : List[Any] ) ->str: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Tuple , *lowerCamelCase_ : Dict , **lowerCamelCase_ : Tuple ) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = ['''torch'''] def __init__( self : List[Any] , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : List[str] ) ->Optional[int]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : str , *lowerCamelCase_ : str , **lowerCamelCase_ : List[Any] ) ->Tuple: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Union[str, Any] , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Any ) ->int: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : Tuple = ['''torch'''] def __init__( self : Tuple , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : Any ) ->Dict: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Tuple , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : List[str] , *lowerCamelCase_ : Dict , **lowerCamelCase_ : Tuple ) ->str: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : List[Any] = ['''torch'''] def __init__( self : List[str] , *lowerCamelCase_ : Dict , **lowerCamelCase_ : Dict ) ->Tuple: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Union[str, Any] , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Tuple ) ->int: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Union[str, Any] , *lowerCamelCase_ : Dict , **lowerCamelCase_ : Optional[Any] ) ->List[str]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : List[str] = ['''torch'''] def __init__( self : List[str] , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : int ) ->Dict: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Dict , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : List[str] ) ->Any: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Union[str, Any] , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Union[str, Any] ) ->str: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : List[str] = ['''torch'''] def __init__( self : int , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : Union[str, Any] ) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Dict , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : Optional[Any] ) ->List[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Optional[int] , *lowerCamelCase_ : Any , **lowerCamelCase_ : List[Any] ) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = ['''torch'''] def __init__( self : Optional[Any] , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : List[str] ) ->Any: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : List[Any] , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : Dict ) ->Any: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Tuple , *lowerCamelCase_ : Any , **lowerCamelCase_ : Dict ) ->List[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : int = ['''torch'''] def __init__( self : str , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : int ) ->Optional[Any]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : str , *lowerCamelCase_ : Dict , **lowerCamelCase_ : List[str] ) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Optional[int] , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : List[Any] ) ->Tuple: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : List[str] = ['''torch'''] def __init__( self : List[Any] , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : Optional[int] ) ->int: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Dict , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Optional[int] ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Tuple , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : Optional[Any] ) ->str: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : str = ['''torch'''] def __init__( self : Tuple , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : List[Any] ) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Optional[int] , *lowerCamelCase_ : Dict , **lowerCamelCase_ : Any ) ->str: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Tuple , *lowerCamelCase_ : Any , **lowerCamelCase_ : List[str] ) ->Any: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : Optional[int] = ['''torch'''] def __init__( self : List[str] , *lowerCamelCase_ : Dict , **lowerCamelCase_ : List[Any] ) ->str: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : str , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Union[str, Any] ) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : List[str] , *lowerCamelCase_ : int , **lowerCamelCase_ : Tuple ) ->Dict: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : str = ['''torch'''] def __init__( self : Tuple , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : Any ) ->Dict: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : List[Any] , *lowerCamelCase_ : int , **lowerCamelCase_ : Optional[Any] ) ->Any: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Optional[int] , *lowerCamelCase_ : int , **lowerCamelCase_ : Dict ) ->List[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : Dict = ['''torch'''] def __init__( self : Tuple , *lowerCamelCase_ : str , **lowerCamelCase_ : List[Any] ) ->Any: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Union[str, Any] , *lowerCamelCase_ : int , **lowerCamelCase_ : List[str] ) ->int: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Any , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : List[str] ) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : str = ['''torch'''] def __init__( self : Union[str, Any] , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : int ) ->Tuple: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Union[str, Any] , *lowerCamelCase_ : int , **lowerCamelCase_ : Any ) ->int: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : int , *lowerCamelCase_ : int , **lowerCamelCase_ : Optional[Any] ) ->List[str]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = ['''torch'''] def __init__( self : Any , *lowerCamelCase_ : int , **lowerCamelCase_ : str ) ->Any: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : int , *lowerCamelCase_ : int , **lowerCamelCase_ : Tuple ) ->Tuple: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Optional[Any] , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : str ) ->str: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : str = ['''torch'''] def __init__( self : Dict , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : List[str] ) ->int: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Union[str, Any] , *lowerCamelCase_ : str , **lowerCamelCase_ : Union[str, Any] ) ->Dict: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : List[Any] , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : Dict ) ->str: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : Optional[int] = ['''torch'''] def __init__( self : List[str] , *lowerCamelCase_ : int , **lowerCamelCase_ : Any ) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Optional[Any] , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : List[Any] ) ->Tuple: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : List[str] , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Union[str, Any] ) ->Any: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = ['''torch'''] def __init__( self : str , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : Optional[Any] ) ->Optional[Any]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Optional[int] , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Optional[int] ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Dict , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : Dict ) ->int: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : int = ['''torch'''] def __init__( self : Optional[int] , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : Optional[Any] ) ->Optional[Any]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : int , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : Any ) ->Any: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Any , *lowerCamelCase_ : Any , **lowerCamelCase_ : int ) ->Tuple: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : Optional[int] = ['''torch'''] def __init__( self : Any , *lowerCamelCase_ : str , **lowerCamelCase_ : List[Any] ) ->Optional[int]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Dict , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Union[str, Any] , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Any ) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : Dict = ['''torch'''] def __init__( self : List[str] , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : int ) ->Tuple: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Dict , *lowerCamelCase_ : int , **lowerCamelCase_ : Optional[Any] ) ->List[str]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Dict , *lowerCamelCase_ : int , **lowerCamelCase_ : Union[str, Any] ) ->List[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : Any = ['''torch'''] def __init__( self : Dict , *lowerCamelCase_ : Any , **lowerCamelCase_ : Any ) ->Dict: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : str , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : str ) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Optional[int] , *lowerCamelCase_ : str , **lowerCamelCase_ : Any ) ->Tuple: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : Tuple = ['''torch'''] def __init__( self : Tuple , *lowerCamelCase_ : int , **lowerCamelCase_ : List[Any] ) ->List[str]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Tuple , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : Union[str, Any] ) ->int: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : List[Any] , *lowerCamelCase_ : str , **lowerCamelCase_ : List[Any] ) ->Any: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : Any = ['''torch'''] def __init__( self : Dict , *lowerCamelCase_ : str , **lowerCamelCase_ : str ) ->Optional[Any]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Tuple , *lowerCamelCase_ : Any , **lowerCamelCase_ : Tuple ) ->List[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : int , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Optional[int] ) ->Tuple: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = ['''torch'''] def __init__( self : Any , *lowerCamelCase_ : str , **lowerCamelCase_ : Dict ) ->Tuple: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Optional[Any] , *lowerCamelCase_ : Dict , **lowerCamelCase_ : Optional[Any] ) ->Any: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : List[str] , *lowerCamelCase_ : Any , **lowerCamelCase_ : Optional[int] ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : int = ['''torch'''] def __init__( self : List[str] , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : Dict ) ->Any: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : List[Any] , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : int ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Optional[Any] , *lowerCamelCase_ : int , **lowerCamelCase_ : Optional[int] ) ->str: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = ['''torch'''] def __init__( self : List[Any] , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : Any ) ->List[str]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Dict , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : str ) ->str: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Tuple , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : Union[str, Any] ) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = ['''torch'''] def __init__( self : List[Any] , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : Optional[int] ) ->List[str]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : List[Any] , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : Tuple ) ->List[str]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : int , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : List[str] ) ->int: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : List[str] = ['''torch'''] def __init__( self : Dict , *lowerCamelCase_ : int , **lowerCamelCase_ : Dict ) ->Optional[int]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Tuple , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : Optional[int] ) ->str: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Tuple , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : Optional[int] = ['''torch'''] def __init__( self : str , *lowerCamelCase_ : str , **lowerCamelCase_ : List[Any] ) ->List[Any]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Optional[Any] , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : List[Any] ) ->str: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Optional[Any] , *lowerCamelCase_ : Dict , **lowerCamelCase_ : List[Any] ) ->List[str]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : List[Any] = ['''torch'''] def __init__( self : int , *lowerCamelCase_ : Dict , **lowerCamelCase_ : Union[str, Any] ) ->Dict: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Any , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : List[str] ) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Dict , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : Dict ) ->List[str]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class snake_case ( metaclass=A__ ): '''simple docstring''' UpperCamelCase__ : str = ['''torch'''] def __init__( self : int , *lowerCamelCase_ : int , **lowerCamelCase_ : Tuple ) ->int: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : Union[str, Any] , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Union[str, Any] ) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls : List[str] , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : Dict ) ->List[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] )
392
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class __a : def __lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' raise NotImplementedError() def __lowercase ( self : Optional[int] ): '''simple docstring''' raise NotImplementedError() class __a ( A__ ): def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : "AutoTokenizer" , SCREAMING_SNAKE_CASE : bool = False , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' UpperCamelCase__ : Any = tokenizer UpperCamelCase__ : Tuple = skip_prompt UpperCamelCase__ : List[str] = decode_kwargs # variables used in the streaming process UpperCamelCase__ : Union[str, Any] = [] UpperCamelCase__ : Union[str, Any] = 0 UpperCamelCase__ : int = True def __lowercase ( self : Dict , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("TextStreamer only supports batch size 1" ) elif len(value.shape ) > 1: UpperCamelCase__ : Dict = value[0] if self.skip_prompt and self.next_tokens_are_prompt: UpperCamelCase__ : Union[str, Any] = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) UpperCamelCase__ : int = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("\n" ): UpperCamelCase__ : Any = text[self.print_len :] UpperCamelCase__ : Dict = [] UpperCamelCase__ : int = 0 # If the last token is a CJK character, we print the characters. elif len(SCREAMING_SNAKE_CASE ) > 0 and self._is_chinese_char(ord(text[-1] ) ): UpperCamelCase__ : List[str] = text[self.print_len :] self.print_len += len(SCREAMING_SNAKE_CASE ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: UpperCamelCase__ : Dict = text[self.print_len : text.rfind(" " ) + 1] self.print_len += len(SCREAMING_SNAKE_CASE ) self.on_finalized_text(SCREAMING_SNAKE_CASE ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' if len(self.token_cache ) > 0: UpperCamelCase__ : int = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) UpperCamelCase__ : Tuple = text[self.print_len :] UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : int = 0 else: UpperCamelCase__ : List[str] = "" UpperCamelCase__ : Dict = True self.on_finalized_text(SCREAMING_SNAKE_CASE , stream_end=SCREAMING_SNAKE_CASE ) def __lowercase ( self : Any , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool = False ): '''simple docstring''' print(SCREAMING_SNAKE_CASE , flush=SCREAMING_SNAKE_CASE , end="" if not stream_end else None ) def __lowercase ( self : int , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' if ( (cp >= 0X4e_00 and cp <= 0X9f_ff) or (cp >= 0X34_00 and cp <= 0X4d_bf) # or (cp >= 0X2_00_00 and cp <= 0X2_a6_df) # or (cp >= 0X2_a7_00 and cp <= 0X2_b7_3f) # or (cp >= 0X2_b7_40 and cp <= 0X2_b8_1f) # or (cp >= 0X2_b8_20 and cp <= 0X2_ce_af) # or (cp >= 0Xf9_00 and cp <= 0Xfa_ff) or (cp >= 0X2_f8_00 and cp <= 0X2_fa_1f) # ): # return True return False class __a ( A__ ): def __init__( self : Dict , SCREAMING_SNAKE_CASE : "AutoTokenizer" , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : Optional[float] = None , **SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = Queue() UpperCamelCase__ : str = None UpperCamelCase__ : str = timeout def __lowercase ( self : Any , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool = False ): '''simple docstring''' self.text_queue.put(SCREAMING_SNAKE_CASE , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : Optional[Any] ): '''simple docstring''' return self def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCamelCase__ : Any = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
228
0
"""simple docstring""" def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ = False ): """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ = F'''Expected string as input, found {type(UpperCamelCase__ )}''' raise ValueError(UpperCamelCase__ ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ = F'''Expected boolean as use_pascal parameter, found {type(UpperCamelCase__ )}''' raise ValueError(UpperCamelCase__ ) A__ = input_str.split('_' ) A__ = 0 if use_pascal else 1 A__ = words[start_index:] A__ = [word[0].upper() + word[1:] for word in words_to_capitalize] A__ = '' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
536
"""simple docstring""" from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING __lowerCamelCase = logging.get_logger(__name__) @add_end_docstrings(__A ) class UpperCamelCase__( __A ): def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: super().__init__(*__UpperCAmelCase ,**__UpperCAmelCase ) requires_backends(self ,'decord' ) self.check_model_type(__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ) -> Any: A__ = {} if frame_sampling_rate is not None: A__ = frame_sampling_rate if num_frames is not None: A__ = num_frames A__ = {} if top_k is not None: A__ = top_k return preprocess_params, {}, postprocess_params def __call__( self ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: return super().__call__(__UpperCAmelCase ,**__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=None ,__UpperCAmelCase=1 ) -> List[Any]: if num_frames is None: A__ = self.model.config.num_frames if video.startswith('http://' ) or video.startswith('https://' ): A__ = BytesIO(requests.get(__UpperCAmelCase ).content ) A__ = VideoReader(__UpperCAmelCase ) videoreader.seek(0 ) A__ = 0 A__ = num_frames * frame_sampling_rate - 1 A__ = np.linspace(__UpperCAmelCase ,__UpperCAmelCase ,num=__UpperCAmelCase ,dtype=np.intaa ) A__ = videoreader.get_batch(__UpperCAmelCase ).asnumpy() A__ = list(__UpperCAmelCase ) A__ = self.image_processor(__UpperCAmelCase ,return_tensors=self.framework ) return model_inputs def snake_case__ ( self ,__UpperCAmelCase ) -> Optional[int]: A__ = self.model(**__UpperCAmelCase ) return model_outputs def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=5 ) -> int: if top_k > self.model.config.num_labels: A__ = self.model.config.num_labels if self.framework == "pt": A__ = model_outputs.logits.softmax(-1 )[0] A__ , A__ = probs.topk(__UpperCAmelCase ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) A__ = scores.tolist() A__ = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__UpperCAmelCase ,__UpperCAmelCase )]
536
1
'''simple docstring''' import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class A : @staticmethod def __lowerCAmelCase ( *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" pass def snake_case_ (UpperCamelCase : Image ): '''simple docstring''' _a = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class A ( unittest.TestCase ): lowercase_ = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] ) -> Dict: """simple docstring""" _a = DepthEstimationPipeline(model=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __lowerCAmelCase ( self : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int ) -> Dict: """simple docstring""" _a = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} , lowerCAmelCase_ ) import datasets _a = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) _a = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] ) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, ] , lowerCAmelCase_ , ) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''' ) def __lowerCAmelCase ( self : int ) -> int: """simple docstring""" pass @slow @require_torch def __lowerCAmelCase ( self : int ) -> int: """simple docstring""" _a = '''Intel/dpt-large''' _a = pipeline('''depth-estimation''' , model=lowerCAmelCase_ ) _a = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) _a = hashimage(outputs['''depth'''] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) , 2_9.3_0_4 ) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) , 2.6_6_2 ) @require_torch def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
22
'''simple docstring''' import requests def snake_case_ (UpperCamelCase : str , UpperCamelCase : str ): '''simple docstring''' _a = {'''Content-Type''': '''application/json'''} _a = requests.post(UpperCamelCase , json={'''text''': message_body} , headers=UpperCamelCase ) if response.status_code != 200: _a = ( '''Request to slack returned an error ''' f'{response.status_code}, the response is:\n{response.text}' ) raise ValueError(UpperCamelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
22
1
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = LayoutLMTokenizer __UpperCAmelCase = LayoutLMTokenizerFast __UpperCAmelCase = True __UpperCAmelCase = True def _lowerCAmelCase ( self : Dict ): super().setUp() SCREAMING_SNAKE_CASE =[ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def _lowerCAmelCase ( self : List[str] ,**snake_case : Any ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**snake_case ) def _lowerCAmelCase ( self : Optional[int] ,snake_case : Optional[int] ): SCREAMING_SNAKE_CASE ='UNwant\u00E9d,running' SCREAMING_SNAKE_CASE ='unwanted, running' return input_text, output_text def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE =tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(snake_case ,['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case ) ,[7, 4, 5, 10, 8, 9] ) def _lowerCAmelCase ( self : Optional[int] ): pass
252
from ...processing_utils import ProcessorMixin class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = ['image_processor', 'feature_extractor'] __UpperCAmelCase = 'TvltImageProcessor' __UpperCAmelCase = 'TvltFeatureExtractor' def __init__( self : Optional[int] ,snake_case : List[str] ,snake_case : Dict ): super().__init__(image_processor=snake_case ,feature_extractor=snake_case ) SCREAMING_SNAKE_CASE =image_processor SCREAMING_SNAKE_CASE =feature_extractor def __call__( self : Dict ,snake_case : Union[str, Any]=None ,snake_case : Optional[int]=None ,snake_case : List[Any]=None ,snake_case : int=None ,snake_case : List[Any]=False ,snake_case : Optional[int]=False ,*snake_case : int ,**snake_case : str ,): if images is None and audio is None: raise ValueError('You need to specify either an `images` or `audio` input to process.' ) SCREAMING_SNAKE_CASE =None if images is not None: SCREAMING_SNAKE_CASE =self.image_processor(snake_case ,mask_pixel=snake_case ,*snake_case ,**snake_case ) if images_mixed is not None: SCREAMING_SNAKE_CASE =self.image_processor(snake_case ,is_mixed=snake_case ,*snake_case ,**snake_case ) if audio is not None: SCREAMING_SNAKE_CASE =self.feature_extractor( snake_case ,*snake_case ,sampling_rate=snake_case ,mask_audio=snake_case ,**snake_case ) SCREAMING_SNAKE_CASE ={} if audio is not None: output_dict.update(snake_case ) if images is not None: output_dict.update(snake_case ) if images_mixed_dict is not None: output_dict.update(snake_case ) return output_dict @property def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =self.image_processor.model_input_names SCREAMING_SNAKE_CASE =self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
252
1
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments _snake_case : Dict = logging.getLogger(__name__) @dataclass class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Optional[float] = field( default=0.0 , metadata={"help": "The label smoothing epsilon to apply (if not zero)."} ) __UpperCAmelCase : bool = field(default=_lowerCAmelCase , metadata={"help": "Whether to SortishSamler or not."} ) __UpperCAmelCase : bool = field( default=_lowerCAmelCase , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) __UpperCAmelCase : bool = field(default=_lowerCAmelCase , metadata={"help": "whether to use adafactor"} ) __UpperCAmelCase : Optional[float] = field( default=_lowerCAmelCase , metadata={"help": "Encoder layer dropout probability. Goes into model.config."} ) __UpperCAmelCase : Optional[float] = field( default=_lowerCAmelCase , metadata={"help": "Decoder layer dropout probability. Goes into model.config."} ) __UpperCAmelCase : Optional[float] = field(default=_lowerCAmelCase , metadata={"help": "Dropout probability. Goes into model.config."} ) __UpperCAmelCase : Optional[float] = field( default=_lowerCAmelCase , metadata={"help": "Attention dropout probability. Goes into model.config."} ) __UpperCAmelCase : Optional[str] = field( default="linear" , metadata={"help": f"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} , )
81
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a__ : int = {"""configuration_yolos""": ["""YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """YolosConfig""", """YolosOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = ["""YolosFeatureExtractor"""] a__ : List[str] = ["""YolosImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ """YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST""", """YolosForObjectDetection""", """YolosModel""", """YolosPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys a__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
165
0
import math def lowerCamelCase_ ( UpperCAmelCase_ : list , UpperCAmelCase_ : int ) -> int: '''simple docstring''' _UpperCamelCase : Dict = len(UpperCAmelCase_ ) _UpperCamelCase : List[Any] = int(math.floor(math.sqrt(UpperCAmelCase_ ) ) ) _UpperCamelCase : Union[str, Any] = 0 while arr[min(UpperCAmelCase_ , UpperCAmelCase_ ) - 1] < x: _UpperCamelCase : List[Any] = step step += int(math.floor(math.sqrt(UpperCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: _UpperCamelCase : int = prev + 1 if prev == min(UpperCAmelCase_ , UpperCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": lowerCAmelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase__ = [int(item) for item in user_input.split(""",""")] lowerCAmelCase__ = int(input("""Enter the number to be searched:\n""")) lowerCAmelCase__ = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(f'Number {x} is at index {res}')
648
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowercase ( _lowercase ): """simple docstring""" a__ = "vit_mae" def __init__( self , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=2_24 , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=16 , __snake_case=5_12 , __snake_case=8 , __snake_case=20_48 , __snake_case=0.7_5 , __snake_case=False , **__snake_case , ): super().__init__(**__snake_case) _UpperCamelCase : Optional[int] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Tuple = num_attention_heads _UpperCamelCase : List[str] = intermediate_size _UpperCamelCase : str = hidden_act _UpperCamelCase : List[str] = hidden_dropout_prob _UpperCamelCase : List[Any] = attention_probs_dropout_prob _UpperCamelCase : str = initializer_range _UpperCamelCase : Any = layer_norm_eps _UpperCamelCase : int = image_size _UpperCamelCase : Any = patch_size _UpperCamelCase : List[Any] = num_channels _UpperCamelCase : Union[str, Any] = qkv_bias _UpperCamelCase : str = decoder_num_attention_heads _UpperCamelCase : Union[str, Any] = decoder_hidden_size _UpperCamelCase : Union[str, Any] = decoder_num_hidden_layers _UpperCamelCase : Any = decoder_intermediate_size _UpperCamelCase : int = mask_ratio _UpperCamelCase : List[Any] = norm_pix_loss
648
1
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration __a : str = 5_0_0_0_0 __a : int = 5_0_0_0 __a , __a : Optional[Any] = os.path.split(__file__) __a : int = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def __magic_name__ ( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' for i in range(lowercase_ ): UpperCamelCase = dataset[i] @get_duration def __magic_name__ ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' for i in range(0 , len(lowercase_ ) , lowercase_ ): UpperCamelCase = dataset[i : i + batch_size] @get_duration def __magic_name__ ( lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' with dataset.formatted_as(type=lowercase_ ): for i in range(lowercase_ ): UpperCamelCase = dataset[i] @get_duration def __magic_name__ ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' with dataset.formatted_as(type=lowercase_ ): for i in range(0 , lowercase_ , lowercase_ ): UpperCamelCase = dataset[i : i + batch_size] def __magic_name__ ( ) -> Dict: '''simple docstring''' UpperCamelCase = {"num examples": SPEED_TEST_N_EXAMPLES} UpperCamelCase = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted, {"type": "pandas", "length": SMALL_TEST}), (read_formatted, {"type": "torch", "length": SMALL_TEST}), (read_formatted, {"type": "tensorflow", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1000}), ] UpperCamelCase = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("generating dataset" ) UpperCamelCase = datasets.Features( {"list": datasets.Sequence(datasets.Value("float32" ) ), "numbers": datasets.Value("float32" )} ) UpperCamelCase = generate_example_dataset( os.path.join(lowercase_ , "dataset.arrow" ) , lowercase_ , num_examples=lowercase_ , seq_shapes={"list": (100,)} , ) print("first set of iterations" ) for func, kwargs in functions: print(func.__name__ , str(lowercase_ ) ) UpperCamelCase = func(lowercase_ , **lowercase_ ) print("shuffling dataset" ) UpperCamelCase = dataset.shuffle() print("Second set of iterations (after shuffling" ) for func, kwargs in functions_shuffled: print("shuffled " , func.__name__ , str(lowercase_ ) ) UpperCamelCase = func( lowercase_ , **lowercase_ ) with open(lowercase_ , "wb" ) as f: f.write(json.dumps(lowercase_ ).encode("utf-8" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
606
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration __a : Optional[Any] = """facebook/wmt19-en-de""" __a : Union[str, Any] = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model __a : Optional[int] = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) __a : Union[str, Any] = FSMTForConditionalGeneration(config) print(F'num of params {tiny_model.num_parameters()}') # Test __a : Optional[Any] = tokenizer(["""Making tiny model"""], return_tensors="""pt""") __a : Optional[Any] = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save __a : Union[str, Any] = """tiny-wmt19-en-de""" tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'Generated {mname_tiny}') # Upload # transformers-cli upload tiny-wmt19-en-de
606
1
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class __A( UpperCAmelCase_ ): def __init__( self : Any , __UpperCamelCase : List[str] , __UpperCamelCase : List[str]=1_3 , __UpperCamelCase : int=7 , __UpperCamelCase : int=True , __UpperCamelCase : List[str]=True , __UpperCamelCase : str=False , __UpperCamelCase : str=True , __UpperCamelCase : Tuple=9_9 , __UpperCamelCase : List[str]=3_2 , __UpperCamelCase : Optional[int]=5 , __UpperCamelCase : Union[str, Any]=4 , __UpperCamelCase : int=3_7 , __UpperCamelCase : Union[str, Any]="gelu" , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Union[str, Any]=5_1_2 , __UpperCamelCase : Optional[Any]=1_6 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : int=0.02 , __UpperCamelCase : str=3 , __UpperCamelCase : Optional[int]=4 , __UpperCamelCase : Optional[int]=None , ): lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_input_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope def lowercase__ ( self : Dict ): lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Any ): return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def lowercase__ ( self : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] ): lowerCamelCase_ = DistilBertModel(config=_lowercase ) model.to(_lowercase ) model.eval() lowerCamelCase_ = model(_lowercase , _lowercase ) lowerCamelCase_ = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] ): lowerCamelCase_ = DistilBertForMaskedLM(config=_lowercase ) model.to(_lowercase ) model.eval() lowerCamelCase_ = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Any , __UpperCamelCase : str , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] ): lowerCamelCase_ = DistilBertForQuestionAnswering(config=_lowercase ) model.to(_lowercase ) model.eval() lowerCamelCase_ = model( _lowercase , attention_mask=_lowercase , start_positions=_lowercase , end_positions=_lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Dict ): lowerCamelCase_ = self.num_labels lowerCamelCase_ = DistilBertForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() lowerCamelCase_ = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Dict , __UpperCamelCase : List[str] ): lowerCamelCase_ = self.num_labels lowerCamelCase_ = DistilBertForTokenClassification(config=_lowercase ) model.to(_lowercase ) model.eval() lowerCamelCase_ = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : Tuple , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] ): lowerCamelCase_ = self.num_choices lowerCamelCase_ = DistilBertForMultipleChoice(config=_lowercase ) model.to(_lowercase ) model.eval() lowerCamelCase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ = model( _lowercase , attention_mask=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : int ): lowerCamelCase_ = self.prepare_config_and_inputs() ((lowerCamelCase_) , (lowerCamelCase_) , (lowerCamelCase_) , (lowerCamelCase_) , (lowerCamelCase_) , (lowerCamelCase_)) = config_and_inputs lowerCamelCase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __A( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) SCREAMING_SNAKE_CASE = ( { '''feature-extraction''': DistilBertModel, '''fill-mask''': DistilBertForMaskedLM, '''question-answering''': DistilBertForQuestionAnswering, '''text-classification''': DistilBertForSequenceClassification, '''token-classification''': DistilBertForTokenClassification, '''zero-shot''': DistilBertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True def lowercase__ ( self : Dict ): lowerCamelCase_ = DistilBertModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=_lowercase , dim=3_7 ) def lowercase__ ( self : int ): self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*_lowercase ) def lowercase__ ( self : str ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*_lowercase ) def lowercase__ ( self : Any ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*_lowercase ) def lowercase__ ( self : int ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*_lowercase ) def lowercase__ ( self : str ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*_lowercase ) def lowercase__ ( self : str ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*_lowercase ) @slow def lowercase__ ( self : Tuple ): for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = DistilBertModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @slow @require_torch_gpu def lowercase__ ( self : Optional[int] ): lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return lowerCamelCase_ = True lowerCamelCase_ = model_class(config=_lowercase ) lowerCamelCase_ = self._prepare_for_class(_lowercase , _lowercase ) lowerCamelCase_ = torch.jit.trace( _lowercase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_lowercase , os.path.join(_lowercase , """traced_model.pt""" ) ) lowerCamelCase_ = torch.jit.load(os.path.join(_lowercase , """traced_model.pt""" ) , map_location=_lowercase ) loaded(inputs_dict["""input_ids"""].to(_lowercase ) , inputs_dict["""attention_mask"""].to(_lowercase ) ) @require_torch class __A( unittest.TestCase ): @slow def lowercase__ ( self : int ): lowerCamelCase_ = DistilBertModel.from_pretrained("""distilbert-base-uncased""" ) lowerCamelCase_ = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowerCamelCase_ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCamelCase_ = model(_lowercase , attention_mask=_lowercase )[0] lowerCamelCase_ = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , _lowercase ) lowerCamelCase_ = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowercase , atol=1E-4 ) )
703
from abc import ABC, abstractmethod from argparse import ArgumentParser class __A( UpperCAmelCase ): @staticmethod @abstractmethod def lowercase__ ( __UpperCamelCase : ArgumentParser ): raise NotImplementedError() @abstractmethod def lowercase__ ( self : Any ): raise NotImplementedError()
103
0
"""simple docstring""" import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _UpperCAmelCase ( __a , unittest.TestCase): __a : Union[str, Any] = PhobertTokenizer __a : Dict = False def __snake_case ( self ) -> Any: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCAmelCase : Tuple = ["T@@", "i", "I", "R@@", "r", "e@@"] _UpperCAmelCase : Any = dict(zip(_A , range(len(_A ) ) ) ) _UpperCAmelCase : Optional[Any] = ["#version: 0.2", "l à</w>"] _UpperCAmelCase : int = {"unk_token": "<unk>"} _UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: for token in vocab_tokens: fp.write(f'''{token} {vocab_tokens[token]}\n''' ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_A ) ) def __snake_case ( self , **_A ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **_A ) def __snake_case ( self , _A ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = "Tôi là VinAI Research" _UpperCAmelCase : List[str] = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>" return input_text, output_text def __snake_case ( self ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Dict = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCAmelCase : Tuple = "Tôi là VinAI Research" _UpperCAmelCase : int = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split() _UpperCAmelCase : Optional[Any] = tokenizer.tokenize(_A ) print(_A ) self.assertListEqual(_A , _A ) _UpperCAmelCase : List[str] = tokens + [tokenizer.unk_token] _UpperCAmelCase : List[str] = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , _A )
238
'''simple docstring''' import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[Any] = WavaVecaForSequenceClassification.from_pretrained(_UpperCamelCase , config=_UpperCamelCase ) lowercase_ : Optional[int] = downstream_dict["projector.weight"] lowercase_ : str = downstream_dict["projector.bias"] lowercase_ : int = downstream_dict["model.post_net.linear.weight"] lowercase_ : Optional[Any] = downstream_dict["model.post_net.linear.bias"] return model def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Tuple = WavaVecaForAudioFrameClassification.from_pretrained(_UpperCamelCase , config=_UpperCamelCase ) lowercase_ : Any = downstream_dict["model.linear.weight"] lowercase_ : List[str] = downstream_dict["model.linear.bias"] return model def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Any = WavaVecaForXVector.from_pretrained(_UpperCamelCase , config=_UpperCamelCase ) lowercase_ : str = downstream_dict["connector.weight"] lowercase_ : List[str] = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): lowercase_ : Union[str, Any] = downstream_dict[ F"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] lowercase_ : Dict = downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] lowercase_ : Dict = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] lowercase_ : List[Any] = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] lowercase_ : Dict = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] lowercase_ : Dict = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] lowercase_ : Optional[Any] = downstream_dict["objective.W"] return model @torch.no_grad() def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Tuple = torch.load(_UpperCamelCase , map_location="cpu" ) lowercase_ : Dict = checkpoint["Downstream"] lowercase_ : Optional[Any] = WavaVecaConfig.from_pretrained(_UpperCamelCase ) lowercase_ : Dict = WavaVecaFeatureExtractor.from_pretrained( _UpperCamelCase , return_attention_mask=_UpperCamelCase , do_normalize=_UpperCamelCase ) lowercase_ : Dict = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): lowercase_ : Any = convert_classification(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) elif arch.endswith("ForAudioFrameClassification" ): lowercase_ : Optional[int] = convert_diarization(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) elif arch.endswith("ForXVector" ): lowercase_ : List[Any] = convert_xvector(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: lowercase_ : List[str] = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(_UpperCamelCase ) hf_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') UpperCamelCase__ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
620
0
'''simple docstring''' from manim import * class UpperCAmelCase_ ( __A ): """simple docstring""" def A__ ( self : List[Any] ) -> int: '''simple docstring''' lowercase : Tuple =Rectangle(height=0.5 , width=0.5 ) lowercase : str =Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) lowercase : Any =Rectangle(height=0.2_5 , width=0.2_5 ) lowercase : Tuple =[mem.copy() for i in range(6 )] lowercase : Tuple =[mem.copy() for i in range(6 )] lowercase : Optional[int] =VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) lowercase : List[str] =VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) lowercase : Dict =VGroup(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) lowercase : Any =Text('''CPU''' , font_size=24 ) lowercase : Tuple =Group(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0.5 , aligned_edge=UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase ) lowercase : Tuple =[mem.copy() for i in range(4 )] lowercase : Dict =VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) lowercase : List[Any] =Text('''GPU''' , font_size=24 ) lowercase : Union[str, Any] =Group(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0.5 , aligned_edge=UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(UpperCAmelCase ) lowercase : List[str] =[mem.copy() for i in range(6 )] lowercase : str =VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) lowercase : Any =Text('''Model''' , font_size=24 ) lowercase : Dict =Group(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0.5 , aligned_edge=UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(UpperCAmelCase ) lowercase : List[str] =[] lowercase : int =[] for i, rect in enumerate(UpperCAmelCase ): lowercase : List[Any] =fill.copy().set_fill(UpperCAmelCase , opacity=0.8 ) target.move_to(UpperCAmelCase ) model_arr.append(UpperCAmelCase ) lowercase : Union[str, Any] =Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(UpperCAmelCase ) self.add(*UpperCAmelCase , *UpperCAmelCase ) lowercase : List[Any] =[meta_mem.copy() for i in range(6 )] lowercase : Any =[meta_mem.copy() for i in range(6 )] lowercase : Optional[int] =VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) lowercase : str =VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) lowercase : Optional[Any] =VGroup(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) lowercase : List[str] =Text('''Disk''' , font_size=24 ) lowercase : Optional[int] =Group(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0.5 , aligned_edge=UpperCAmelCase ) disk.move_to([-4, -1.2_5, 0] ) self.add(UpperCAmelCase , UpperCAmelCase ) lowercase : List[str] =Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase : List[str] =MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCAmelCase , UpperCAmelCase ) lowercase : str =MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(UpperCAmelCase ) lowercase : List[Any] =MarkupText( f'Now watch as an input is passed through the model\nand how the memory is utilized and handled.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase ) ) lowercase : Optional[int] =Square(0.3 ) input.set_fill(UpperCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , UpperCAmelCase , buff=0.5 ) self.play(Write(UpperCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=UpperCAmelCase , buff=0.0_2 ) self.play(MoveToTarget(UpperCAmelCase ) ) self.play(FadeOut(UpperCAmelCase ) ) lowercase : str =Arrow(start=UpperCAmelCase , end=UpperCAmelCase , color=UpperCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , UpperCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowercase : Optional[int] =MarkupText( f'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase , run_time=3 ) ) lowercase : int ={'''run_time''': 1, '''fade_in''': True, '''fade_out''': True, '''buff''': 0.0_2} self.play( Write(UpperCAmelCase ) , Circumscribe(model_arr[0] , color=UpperCAmelCase , **UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=UpperCAmelCase , **UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase , **UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowercase : Union[str, Any] =a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.0_2 , UpperCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.0_2 ) lowercase : Union[str, Any] =AnimationGroup( FadeOut(UpperCAmelCase , run_time=0.5 ) , MoveToTarget(UpperCAmelCase , run_time=0.5 ) , FadeIn(UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(UpperCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowercase : str =0.7 self.play( Circumscribe(model_arr[i] , **UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=UpperCAmelCase , **UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase , **UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=UpperCAmelCase , **UpperCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.0_2 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=UpperCAmelCase , **UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=UpperCAmelCase , **UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase , **UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowercase : Tuple =a_c lowercase : Union[str, Any] =a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.0_2 , buff=0.5 ) self.play( FadeOut(UpperCAmelCase ) , FadeOut(UpperCAmelCase , run_time=0.5 ) , ) lowercase : Tuple =MarkupText(f'Inference on a model too large for GPU memory\nis successfully completed.' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase , run_time=3 ) , MoveToTarget(UpperCAmelCase ) ) self.wait()
706
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : int=7 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=99 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : str=2 , UpperCAmelCase : str=4 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Dict=512 , UpperCAmelCase : List[Any]=16 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Any=0.0_2 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Optional[int]=None , ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =parent lowercase : Tuple =13 lowercase : Any =7 lowercase : Union[str, Any] =True lowercase : Any =True lowercase : Optional[int] =True lowercase : List[str] =True lowercase : Tuple =99 lowercase : str =32 lowercase : Union[str, Any] =2 lowercase : Dict =4 lowercase : Union[str, Any] =37 lowercase : Union[str, Any] ='''gelu''' lowercase : Any =0.1 lowercase : Dict =0.1 lowercase : Dict =512 lowercase : List[str] =16 lowercase : Dict =2 lowercase : int =0.0_2 lowercase : List[Any] =3 lowercase : List[str] =4 lowercase : Optional[Any] =None def A__ ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : str =None if self.use_input_mask: lowercase : int =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Any =None if self.use_token_type_ids: lowercase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : List[Any] =None lowercase : List[str] =None lowercase : List[str] =None if self.use_labels: lowercase : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Any =ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModel(config=UpperCAmelCase ) lowercase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase : Tuple =[input_ids, input_mask] lowercase : str =model(UpperCAmelCase ) lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' lowercase : Dict =True lowercase : List[Any] =TFRoFormerForCausalLM(config=UpperCAmelCase ) lowercase : Union[str, Any] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A__ ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' lowercase : List[Any] =TFRoFormerForMaskedLM(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =self.num_labels lowercase : Optional[int] =TFRoFormerForSequenceClassification(config=UpperCAmelCase ) lowercase : Optional[int] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase : int =self.num_choices lowercase : Tuple =TFRoFormerForMultipleChoice(config=UpperCAmelCase ) lowercase : Union[str, Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =self.num_labels lowercase : Union[str, Any] =TFRoFormerForTokenClassification(config=UpperCAmelCase ) lowercase : Tuple ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ) -> Any: '''simple docstring''' lowercase : Tuple =TFRoFormerForQuestionAnswering(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' lowercase : Optional[Any] =self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Optional[int] =config_and_inputs lowercase : str ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase_ = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : str ) -> Tuple: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModelTester(self ) lowercase : Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase ) def A__ ( self : int ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : str ) -> str: '''simple docstring''' lowercase : Union[str, Any] =TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Any =TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) lowercase : Optional[Any] =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[str] =model(UpperCAmelCase )[0] # TODO Replace vocab size lowercase : Tuple =5_0000 lowercase : List[str] =[1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowercase : Dict =tf.constant( [ [ [-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6], [-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7], [-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : int ) -> List[Any]: '''simple docstring''' lowercase : Union[str, Any] =tf.constant([[4, 10]] ) lowercase : List[Any] =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowercase : Any =emba(input_ids.shape ) lowercase : List[str] =tf.constant( [[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] ) tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) def A__ ( self : Optional[Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =tf.constant( [ [0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0], [0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7], [0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0], ] ) lowercase : Tuple =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowercase : str =emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : Dict ) -> Dict: '''simple docstring''' lowercase : str =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowercase : Optional[Any] =embed_positions([2, 16, 768] )[None, None, :, :] lowercase , lowercase : Optional[int] =TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : Any =tf.constant( [ [0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0], [-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3], [-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5], [-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1], [0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0], [3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3], ] ) lowercase : int =tf.constant( [ [0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0], [0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3], [1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5], [2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1], [-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0], [-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
8
0
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ): A_ : str = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('''All input parameters must be positive''' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('''Relative densities cannot be greater than one''' ) else: A_ : str = 1 - (matter_density + radiation_density + dark_energy) A_ : Optional[Any] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) A_ : str = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation UpperCamelCase = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
590
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE = "" ): A_ : Union[str, Any] = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250''' A_ : Dict = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE ).text , '''html.parser''' ) A_ : List[str] = soup.find_all('''td''' , attrs='''titleColumn''' ) A_ : Optional[int] = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) } def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE = "IMDb_Top_250_Movies.csv" ): A_ : Optional[Any] = get_imdb_top_aaa_movies() with open(SCREAMING_SNAKE_CASE , '''w''' , newline='''''' ) as out_file: A_ : Union[str, Any] = csv.writer(SCREAMING_SNAKE_CASE ) writer.writerow(['''Movie title''', '''IMDb rating'''] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
590
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case :Tuple ={ 'configuration_jukebox': [ 'JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'JukeboxConfig', 'JukeboxPriorConfig', 'JukeboxVQVAEConfig', ], 'tokenization_jukebox': ['JukeboxTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :Dict =[ 'JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'JukeboxModel', 'JukeboxPreTrainedModel', 'JukeboxVQVAE', 'JukeboxPrior', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys __snake_case :Union[str, Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
717
from __future__ import annotations def lowerCamelCase_ ( lowerCAmelCase__ : list[float] ) -> bool: '''simple docstring''' if len(lowerCAmelCase__ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) A = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
224
0